L. Régularité-de-ce, orientation des ligaments dans deux directions symétriques mais non-alignées par rapport à la direction de chargement peut surprendre Chapitre 14 Caractérisation de la fissuration en fatigue pour un matériau cristallisant : Premières tendances Néanmoins, on peut citer deux limitations de cette étude. Tout d'abord, le cadre informatique dans lequel les simulations ont été réalisées ne nous a pas

P. A. Albouy, G. Guillier, D. Petermann, A. Vieyres, O. Sanseau et al., A stroboscopic X-ray apparatus for the study of the kinetics of strain-induced crystallization in natural rubber, Polymer, vol.53, issue.15, pp.53-3313, 2012.
DOI : 10.1016/j.polymer.2012.05.042

P. A. Albouy, A. Vieyres, O. Sanseau, and P. Sotta, Straininduced crystallization in natural rubber : Kinetics and strain relaxation. Constitutive Models for Rubber VIII, p.461, 2013.

G. Allaire, Conception optimale de structures, mathématiques and applications, 2007.

J. H. Argyris, J. S. Doltsinis, and M. Kleiber, Incremental formulation in nonlinear mechanics and large strain elasto-plasticity ??? Natural approach. Part II, Computer Methods in Applied Mechanics and Engineering, vol.14, issue.2, pp.259-294, 1978.
DOI : 10.1016/0045-7825(78)90096-8

A. O. Ayhan, Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements, International Journal of Solids and Structures, vol.44, issue.25-26, pp.8579-8599, 2007.
DOI : 10.1016/j.ijsolstr.2007.06.022

P. Bazant and B. H. Oh, Efficient Numerical Integration on the Surface of a Sphere, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift f??r Angewandte Mathematik und Mechanik, vol.146, issue.1, pp.37-49, 1986.
DOI : 10.1002/zamm.19860660108

N. Bekkedahl and L. A. Wood, Crystallization of Vulcanized Rubber, Industrial & Engineering Chemistry, vol.33, issue.3, pp.381-384, 1941.
DOI : 10.1021/ie50375a023

J. Besson, Non-linear mechanics of materials, 2010.
DOI : 10.1007/978-90-481-3356-7

S. Beurrot, Cristallisation sous contrainte du caoutchouc naturel en fatigue et sous sollicitation multiaxiale, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00835499

G. Bilbie and J. Guilie, Etude de la fissuration d'une éprouvette Pure-Shear 3D, 2009.

Z. Bo and D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops, International Journal of Engineering Science, vol.37, issue.9, pp.1205-1249, 1999.
DOI : 10.1016/S0020-7225(98)00116-5

C. Bouvet, S. Calloch, and C. Lexcellent, A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings, European Journal of Mechanics - A/Solids, vol.23, issue.1, pp.37-61, 2004.
DOI : 10.1016/j.euromechsol.2003.09.005

K. Brüning, K. Schneider, S. V. Roth, and G. Heinrich, Kinetics of Strain-Induced Crystallization in Natural Rubber Studied by WAXD: Dynamic and Impact Tensile Experiments, Macromolecules, vol.45, issue.19, pp.45-7914, 2012.
DOI : 10.1021/ma3011476

M. Burger, A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces and Free boundaries, pp.301-330, 2003.

S. M. Cadwell, R. A. Merrill, C. M. Sloman, and F. L. Yost, Dynamic Fatigue Life of Rubber, Industrial & Engineering Chemistry Analytical Edition, vol.12, issue.1, pp.19-23, 1940.
DOI : 10.1021/ac50141a006

N. Candau, L. Chazeau, J. M. Chenal, C. Gauthier, J. Ferreira et al., Characteristic time of strain induced crystallization of crosslinked natural rubber, Polymer, vol.53, issue.13, pp.53-2540, 2012.
DOI : 10.1016/j.polymer.2012.04.027

N. Candau, Compréhension des mécanismes de cristallisation sous tension des élastomères en conditions quasi-statiques et dynamiques, Thèse de doctorat, 2014.

N. Candau, . Laghmach, . Rabia, . Chazeau, . Laurent et al., Strain induced crystallization of natural rubber and crosslink densities heterogeneities, Macromolecules, 2014.

V. Capasso, Mathematical Modelling for Polymer Processing, 2003.
DOI : 10.1007/978-3-642-55771-2

C. R. Chen, O. Kolednik, I. Scheider, T. Siegmund, A. Tatschl et al., On the determination of the cohesive zone parameters for the modeling of micro-ductile crack growth in thick specimens*, International Journal of Fracture, vol.120, issue.3, pp.517-536, 2003.
DOI : 10.1023/A:1025426121928

J. M. Chenal, C. Gauthier, L. Chazeau, L. Guy, and Y. Bomal, Parameters governing strain induced crystallization in filled natural rubber, Polymer, vol.48, issue.23, pp.48-6893, 2007.
DOI : 10.1016/j.polymer.2007.09.023

URL : https://hal.archives-ouvertes.fr/hal-00434168

J. M. Chenal, L. Chazeau, L. Guy, Y. Bomal, and C. Gauthier, Molecular weight between physical entanglements in natural rubber: A critical parameter during strain-induced crystallization, Polymer, vol.48, issue.4, pp.1042-1046, 2007.
DOI : 10.1016/j.polymer.2006.12.031

URL : https://hal.archives-ouvertes.fr/hal-00434170

V. Chiaruttini, F. Feyel, and J. L. Chaboche, A robust meshing algorithm for complex 3D crack growth simulation, 2010.

V. Chiaruttini, F. Feyel, J. Rannou, and J. Guilie, An hybrid optimal approach for crack propagation : mixing conform remeshing and crack front enrichment. XFEM, UK ECCOMAS / IACM Special Interest Conference, 2011.

V. Chiaruttini, J. Guilie, and V. Riolo, Fast and efficient stress intensity factors computations for 3D cracked structures Application to unstructured conform meshes or XFEM discretizions, 2013.

V. Chiarutinni and J. Guilie, Fast and efficient stress intensity factors computations for 3D cracked structures Application to unstructured conform meshes or XFEM discretizions

I. S. Choi and C. M. Roland, Strain-crystallization of guayule and hevea rubbers. Rubber chemistry and technology, pp.202-210, 1997.

P. G. Ciarlet, Mathematical Elasticity, volume I. Noth-Holland, 1988.

A. Cohen, A Pad??? approximant to the inverse Langevin function, Rheologica Acta, vol.2, issue.3, pp.270-273, 1991.
DOI : 10.1007/BF00366640

G. Debruyne, An arbitrary Lagrangian description of 2D and 3D cracked structures, Nuclear Engineering and Design, vol.158, issue.2-3, pp.285-294, 1995.
DOI : 10.1016/0029-5493(95)01036-H

M. C. Delfour and J. P. Zolésio, Shapes and geometries : metrics, analysis, differential calculus, and optimization Siam, 2011.
DOI : 10.1137/1.9780898719826

F. De-gournay, Velocity Extension for the Level-set Method and Multiple Eigenvalues in Shape Optimization, SIAM Journal on Control and Optimization, vol.45, issue.1, pp.343-367, 2006.
DOI : 10.1137/050624108

T. D. Derose and B. A. Barsky, Geometric continuity, shape parameters, and geometric constructions for Catmull-Rom splines, ACM Transactions on Graphics, vol.7, issue.1, pp.1-41, 1988.
DOI : 10.1145/42188.42265

M. Djaoua, Analyse mathématique et numérique de quelques problèmes en mécanique de la rupture (Doctoral dissertation), 1983.

M. Doi, The theory of polymer dynamics, 1988.

J. E. Dolbow and M. Gosz, On the computation of mixed-mode stress intensity factors in functionally graded materials, International Journal of Solids and Structures, vol.39, issue.9, pp.2557-2574, 2002.
DOI : 10.1016/S0020-7683(02)00114-2

D. J. Dunning and P. J. Pennells, Effect of Strain on Rate of Crystallization of Natural Rubber, Rubber Chemistry and Technology, vol.40, issue.5, pp.1381-1393, 1967.
DOI : 10.5254/1.3539150

A. E. Ehret, M. Itskov, and H. Schmid, Numerical integration on the sphere and its effect on the material symmetry of constitutive equations-A comparative study, International Journal for Numerical Methods in Engineering, vol.35, issue.2, pp.189-206, 2010.
DOI : 1016/j.ijsolstr.2009.03.022

F. Erdogan and B. H. Wu, CRACK PROBLEMS IN FGM LAYERS UNDER THERMAL STRESSES, Journal of Thermal Stresses, vol.53, issue.3, pp.237-265, 1996.
DOI : 10.1007/BF00708260

F. Erdogan and B. H. Wu, The Surface Crack Problem for a Plate With Functionally Graded Properties, Journal of Applied Mechanics, vol.64, issue.3, pp.449-456, 1997.
DOI : 10.1115/1.2788914

J. Fliege and U. Maier, The distribution of points on the sphere and corresponding cubature formulae, IMA Journal of Numerical Analysis, vol.19, issue.2, pp.317-334, 1999.
DOI : 10.1093/imanum/19.2.317

P. J. Flory, Thermodynamic relations for high elastic materials. Transactions of the Faraday Society, pp.829-838, 1961.

B. Gabrielle, L. Guy, P. A. Albouy, L. Vanel, D. R. Long et al., Effect of Tear Rotation on Ultimate Strength in Reinforced Natural Rubber, Macromolecules, vol.44, issue.17, pp.44-7006, 2011.
DOI : 10.1021/ma2010926

A. N. Gent, Crystallization and the relaxation of stress in stretched natural rubber vulcanizates, Transactions of the Faraday Society, vol.50, pp.521-533, 1954.
DOI : 10.1039/tf9545000521

A. Gloria, L. Tallec, P. Vidrascu, and M. , Comparison of networkbased models for rubber, 2012.

S. Göktepe, Micro-macro approaches to rubbery and glassy polymers : Predictive micromechanically-based models and simulations. Dissertation , Report-No. I-20, 2007.

A. E. Green and P. M. Naghdi, A general theory of an elasticplastic continuum. Archive for rational mechanics and analysis, pp.251-281, 1965.

P. Guélin, Remarques sur l'hystérésis mécanique, Journal de Mécanique Théorique et Appliquée, vol.19, issue.2, pp.217-247, 1980.

J. Guilie, Mémoire interne dans un caoutchouc cristallisant sous contrainte, 2012.

J. Guilie, L. Tallec, and P. , On the coupling between shape variation and material dissipation for computation of the crack driving force, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00871043

J. Guilie, Etude bibliographique et loi de comportement à mémoire interne ponctuelle, 2013.

G. R. Hamed, H. J. Kim, and A. N. Gent, Cut growth in vulcanizates of natural rubber, cis-polybutadiene, and a 50/50 blend during single and repeated extension. Rubber chemistry and technology, pp.69-807, 1996.

D. J. Hartl, Modeling of shape memory alloys considering rateindependent and rate-dependent irrecoverable strains (Doctoral disser- tation), 2013.

L. J. Hart-smith, Elasticity parameters for finite deformations of rubber-like materials, Zeitschrift für angewandte Mathematik und Physik ZAMP, pp.608-626, 1966.
DOI : 10.1007/BF01597242

A. M. Healey, P. J. Hendra, and Y. D. West, A Fourier-transform Raman study of the strain-induced crystallization and cold crystallization of natural rubber, Polymer, vol.37, issue.18, pp.37-4009, 1996.
DOI : 10.1016/0032-3861(96)00257-1

S. Heo and Y. Xu, Constructing fully symmetric cubature formulae for the sphere, Mathematics of Computation, vol.70, issue.233, pp.269-279, 2001.
DOI : 10.1090/S0025-5718-00-01198-4

K. Hesse, I. H. Sloan, and R. S. Womersley, Numerical integration on the sphere, Handbook of Geomathematics, vol.2, pp.1187-1220, 2010.

R. Hill, A general theory of uniqueness and stability in elastic-plastic solids, Journal of the Mechanics and Physics of Solids, vol.6, issue.3, pp.236-249, 1958.
DOI : 10.1016/0022-5096(58)90029-2

T. J. Hughes, Mathematical foundations of elasticity, 1994.

C. Y. Hui, A. Jagota, S. J. Bennison, and J. D. Londono, Crack blunting and the strength of soft elastic solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.459, issue.2034, pp.459-1489, 2003.
DOI : 10.1098/rspa.2002.1057

B. Huneau, Strain-induced crystallization of natural rubber : a review of x-ray diffraction investigations. Rubber chemistry and technology, pp.425-452, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01007326

M. Kaliske and G. Heinrich, An Extended Tube-Model for Rubber Elasticity: Statistical-Mechanical Theory and Finite Element Implementation, Rubber Chemistry and Technology, vol.72, issue.4, pp.602-632, 1999.
DOI : 10.5254/1.3538822

J. R. Katz and K. Bing, Ist Rohkautschuk teilweise kristallisiert?, Zeitschrift f??r Angewandte Chemie, vol.38, issue.20, pp.439-441, 1925.
DOI : 10.1002/ange.19250382003

H. Kawai, Dynamic X-ray diffraction technique for measuring rheo-optical properties of crystalline polymeric materials, Rheologica Acta, vol.9, issue.1, pp.27-47, 1975.
DOI : 10.1007/BF01527209

A. M. Khludnev, V. A. Kovtunenko, and A. Tani, On the topological derivative due to kink of a crack with non-penetration. Anti-plane model, Journal de mathématiques pures et appliquées, pp.94-571, 2010.
DOI : 10.1016/j.matpur.2010.06.002

V. R. Krishnan, C. Y. Hui, and R. Long, Finite Strain Crack Tip Fields in Soft Incompressible Elastic Solids, Langmuir, vol.24, issue.24, pp.24-14245, 2008.
DOI : 10.1021/la802795e

M. Kroon, A constitutive model for strain-crystallising Rubber-like materials, Mechanics of Materials, vol.42, issue.9, pp.873-885, 2010.
DOI : 10.1016/j.mechmat.2010.07.008

Y. W. Kwon and H. Bang, The finite element method using MAT- LAB, 2000.

R. Laghmach, T. Biben, L. Chazeau, and J. M. Chenal, Straininduced crystallization in natural rubber : A model for the microstructural evolution. Constitutive Models for Rubber VIII, p.473, 2013.

D. C. Lagoudas, Shape memory alloys : modeling and engineering applications, 2008.

G. J. Lake, Mechanical Fatigue of Rubber, Rubber Chemistry and Technology, vol.45, issue.1, pp.309-328, 1972.
DOI : 10.5254/1.3544709

A. Lalegname, A. M. Sändig, and G. Sewell, Analytical and numerical treatment of a dynamic crack model, International Journal of Fracture, vol.80, issue.4, pp.97-125, 2008.
DOI : 10.1007/s10704-008-9274-7

E. Laporte and P. Le-tallec, Numerical methods in sensitivity analysis and shape optimization, 2003.
DOI : 10.1007/978-1-4612-0069-7

D. J. Lee and J. A. Donovan, Microstructural changes in the crack tip region of carbon-black-filled natural rubber. Rubber chemistry and technology, pp.910-923, 1987.

L. Tallec, P. Rahier, C. Kaiss, and A. , Three-dimensional incompressible viscoelasticity in large strains: Formulation and numerical approximation, Computer Methods in Applied Mechanics and Engineering, vol.109, issue.3-4, pp.233-258, 1993.
DOI : 10.1016/0045-7825(93)90080-H

L. Tallec and P. , Handbook of Numerical Analysis, 1994.

L. Tallec and P. , Modélisation et calcul des milieux continus. Editions Polytechnique, 2009.

P. B. Lindley, Non-Relaxing Crack Growth and Fatigue in a Non-Crystallizing Rubber, Rubber Chemistry and Technology, vol.47, issue.5, pp.1253-1264, 1974.
DOI : 10.5254/1.3540497

J. D. Long, W. E. Singer, and W. P. Davey, Fibering of Rubber - Time Lag and Its Relation to Rubber Structure, Industrial & Engineering Chemistry, vol.26, issue.5, pp.543-547, 1934.
DOI : 10.1021/ie50293a017

R. Long, V. R. Krishnan, and C. Y. Hui, Finite strain analysis of crack tip fields in incompressible hyperelastic solids loaded in plane stress, Journal of the Mechanics and Physics of Solids, vol.59, issue.3, pp.672-695, 2011.
DOI : 10.1016/j.jmps.2010.12.005

D. Luch and G. S. Yeh, Morphology of strain???induced crystallization of natural rubber. I. Electron microscopy on uncrosslinked thin film, Journal of Applied Physics, vol.43, issue.11, pp.43-4326, 1972.
DOI : 10.1063/1.1660923

D. Luch and G. S. Yeh, Strain-induced crystallization of natural rubber. III. Reexamination of axial-stress changes during oriented crystallization of natural rubber vulcanizates, Journal of Polymer Science Part A-2: Polymer Physics, vol.11, issue.3, pp.467-486, 1973.
DOI : 10.1002/pol.1973.180110306

S. A. Maas, B. J. Ellis, G. A. Ateshian, and J. A. Weiss, FEBio: Finite Elements for Biomechanics, Journal of Biomechanical Engineering, vol.134, issue.1, 2012.
DOI : 10.1115/1.4005694

J. Marchal, Cristallisation des caoutchoucs chargés et non chargés sous contrainte : Effet sur les chaines amorphes (Doctoral dissertation, 2006.

H. Mark and G. V. Susich, Ueber geregelte Mizellarstrukturen von Kautschuk, Kolloid-Zeitschrift, vol.46, issue.1, pp.11-21, 1928.
DOI : 10.1007/BF01423666

X. Markenscoff and A. Gupta, Collected Works of JD Eshelby : The mechanics of defects & inhomogeneities, Solid mechanics & its applications, 2006.

W. V. Mars and A. Fatemi, A literature survey on fatigue analysis approaches for rubber, International Journal of Fatigue, vol.24, issue.9, pp.949-961, 2002.
DOI : 10.1016/S0142-1123(02)00008-7

W. V. Mars and A. Fatemi, A phenomenological model for the effect of R ratio on fatigue of strain crystallizing rubbers. Rubber chemistry and technology, pp.1241-1258, 2003.

G. A. Maugin, Configurational forces : thermomechanics, physics, mathematics, and numerics, 2010.
DOI : 10.1201/b10356

J. C. Mitchell and D. J. Meier, Rapid stress induced crystallization in natural rubber, Journal of Polymer Science Part Polymer Physics, vol.2, issue.610, pp.1689-1703, 1968.

C. Miehe, N. Apel, and M. Lambrecht, Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.47-48, pp.191-5383, 2002.
DOI : 10.1016/S0045-7825(02)00438-3

C. Miehe, S. Göktepe, and F. Lulei, A micro-macro approach to rubber-like materials?Part I: the non-affine micro-sphere model of rubber elasticity, Journal of the Mechanics and Physics of Solids, vol.52, issue.11, pp.52-2617, 2004.
DOI : 10.1016/j.jmps.2004.03.011

C. Miehe, F. Welschinger, and M. Hofacker, A phase field model of electromechanical fracture, Journal of the Mechanics and Physics of Solids, vol.58, issue.10, pp.1716-1740, 2010.
DOI : 10.1016/j.jmps.2010.06.013

S. J. Mistry and S. Govindjee, A micro-mechanically based continuum model for strain-induced crystallization in natural rubber, International Journal of Solids and Structures, vol.51, issue.2
DOI : 10.1016/j.ijsolstr.2013.10.027

Y. Miyamoto, H. Yamao, and K. Sekimoto, Crystallization and melting of polyisoprene rubber under uniaxial deformation, Macromolecules, issue.17, pp.36-6462, 2003.

F. Murat and J. Simon, Etude de problemes d'optimal design, Optimization Techniques Modeling and Optimization in the Service of Man Part, pp.54-62, 1976.
DOI : 10.1007/3-540-07623-9_279

S. Mzabi, Caracterisation et analyse des mecanismes de fracture en fatigue des elastomeres charges (Doctoral dissertation, 2010.

J. C. Nagtegaal and J. E. De-jong, Plasticity of metals at finite strain : theory, experiment and computation, p.65, 1982.

S. Nemat-nasser, On finite deformation elasto-plasticity, International Journal of Solids and Structures, vol.18, issue.10, pp.857-872, 1982.
DOI : 10.1016/0020-7683(82)90070-1

Q. S. Nguyen, Stabilit?? et m??canique non lin??aire, Revue Fran??aise de G??nie Civil, vol.4, issue.1, 1999.
DOI : 10.1080/12795119.2000.9692281

Q. S. Nguyen, Stability and nonlinear solid mechanics, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00105248

S. T. Nguyen, Propagation de fissures et endommagement par microfissures des matériaux viscoélastiques linéaires non vieillissants (Doctoral dissertation, 2010.

S. T. Nguyen, L. Dormieux, L. Pape, Y. Sanahuja, and J. , Crack propagation in viscoelastic structures: Theoretical and numerical analyses, Computational Materials Science, vol.50, issue.1, pp.83-91, 2010.
DOI : 10.1016/j.commatsci.2010.07.010

R. W. Ogden, Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, pp.326-565, 1567.

R. Oono, K. Miyasaka, and K. Ishikawa, Crystallization kinetics of biaxially stretched natural rubber, Journal of Polymer Science Part A-2: Polymer Physics, vol.11, issue.8, pp.1477-1488, 1973.
DOI : 10.1002/pol.1973.180110802

O. , Y. Roudolff, and F. , Un modèle limite de bande mince présentant deux fissures longitudinales Comptes rendus de l'Académie des sciences, pp.314-321, 1992.

I. C. Papadopoulos, A. G. Thomas, and J. J. Busfield, Rate transitions in the fatigue crack growth of elastomers, Journal of Applied Polymer Science, vol.51, issue.3, pp.1900-1910, 2008.
DOI : 10.1002/app.28086

C. E. Pereira and M. L. Bittencourt, Topological sensitivity analysis in large deformation problems. Structural and Multidisciplinary Optimization, pp.149-163, 2008.

P. Duval and R. M. , Evolution des systèmes avec frontières de discontinuités mobiles

S. Poompradub, M. Tosaka, S. Kohjiya, Y. Ikeda, S. Toki et al., Lattice Deformation of Strain-induced Crystallites in Carbon-filled Natural Rubber, Chemistry Letters, vol.33, issue.3, pp.220-221, 2004.
DOI : 10.1246/cl.2004.220

S. Poompradub, M. Tosaka, S. Kohjiya, Y. Ikeda, S. Toki et al., Mechanism of strain-induced crystallization in filled and unfilled natural rubber vulcanizates, Journal of Applied Physics, vol.97, issue.10, pp.97-103529, 2005.
DOI : 10.1063/1.1900927

E. A. Poshtan, R. Dargazany, and M. Itskov, Modeling of strain-induced crystallization in natural rubbers, PAMM, vol.11, issue.1, pp.423-424, 2011.
DOI : 10.1002/pamm.201110203

W. Press, . Teukolsky, . Vetterling, . Flannery, and . Bp, Section 10.2. Golden Section Search in One Dimension, Numerical Recipes : The Art of Scientific Computing, 2007.

G. Puglisi and L. Truskinovsky, A mechanism of transformational plasticity, Continuum Mechanics and Thermodynamics, vol.14, issue.5, pp.437-457, 2002.
DOI : 10.1007/s001610200083

J. Rault, J. Marchal, P. Judeinstein, and P. A. Albouy, Stressinduced crystallization and reinforcement in filled natural rubbers : 2H NMR study, Macromolecules, issue.24, pp.39-8356, 2006.

R. S. Rivlin, Large Elastic Deformations of Isotropic Materials. II. Some Uniqueness Theorems for Pure, Homogeneous Deformation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.240, issue.822, pp.240-491, 1948.
DOI : 10.1098/rsta.1948.0003

R. S. Rivlin and D. W. Saunders, Large Elastic Deformations of Isotropic Materials. VII. Experiments on the Deformation of Rubber, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.243, issue.865, pp.243-251, 1951.
DOI : 10.1098/rsta.1951.0004

R. S. Rivlin and A. G. Thomas, Rupture of Rubber. I. Characteristic Energy for Tearing, Journal of Polymer Science, vol.10, issue.3, pp.291-318, 1953.
DOI : 10.1007/978-1-4612-2416-7_180

J. Rouvière, A. Bennani, D. Pachoutinsky, J. Besson, and S. Cantournet, Constitutive Models for Rubber V, pp.323-326, 2007.

R. Rubinstein and S. N. Atluri, Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analyses, Computer Methods in Applied Mechanics and Engineering, vol.36, issue.3, pp.277-290, 1983.
DOI : 10.1016/0045-7825(83)90125-1

P. Rublon, Etude expérimentale multi-échelle de la propagation de fissure de fatigue dans le caoutchouc naturel, 2013.

P. Rublon, B. Huneau, N. Saintier, S. Beurrot, A. Leygue et al., synchrotron wide-angle X-ray diffraction investigation of fatigue cracks in natural rubber, Journal of Synchrotron Radiation, vol.59, issue.1, pp.105-109, 2012.
DOI : 10.1107/S0909049512044457

P. Rublon, B. Huneau, E. Verron, N. Saintier, and D. Berghezan, Effect of strain-induced crystallization on fatigue crack growth resistance of natural rubber. Constitutive Models for Rubber VIII, p.349, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01092942

K. Runesson, F. Larsson, and P. Steinmann, On energetic changes due to configurational motion of standard continua, International Journal of Solids and Structures, vol.46, issue.6, pp.1464-1475, 2009.
DOI : 10.1016/j.ijsolstr.2008.11.011

N. Saintier, G. Cailletaud, and R. Piques, Cyclic loadings and crystallization of natural rubber: An explanation of fatigue crack propagation reinforcement under a positive loading ratio, Materials Science and Engineering: A, vol.528, issue.3, pp.1078-1086, 2011.
DOI : 10.1016/j.msea.2010.09.079

URL : https://hal.archives-ouvertes.fr/hal-00553173

J. Salençon, Mécanique des milieux continus : Tome 1 : Concepts généraux, 2005.

S. Martinez, J. R. , L. Cam, J. B. Balandraud, X. Toussaint et al., Mechanisms of deformation in crystallizable natural rubber, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01073889

N. K. Simha, F. D. Fischer, G. X. Shan, C. R. Chen, and O. Kolednik, J-integral and crack driving force in elastic???plastic materials, Journal of the Mechanics and Physics of Solids, vol.56, issue.9, pp.2876-2895, 2008.
DOI : 10.1016/j.jmps.2008.04.003

J. C. Simo and K. S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Computer Methods in Applied Mechanics and Engineering, vol.46, issue.2, pp.201-215, 1984.
DOI : 10.1016/0045-7825(84)90062-8

J. C. Simo, On the computational significance of the intermediate configuration and hyperelastic stress relations in finite deformation elastoplasticity, Mechanics of Materials, vol.4, issue.3-4, pp.439-451, 1985.
DOI : 10.1016/0167-6636(85)90039-0

J. C. Simo and M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Computer Methods in Applied Mechanics and Engineering, vol.49, issue.2, pp.221-245, 1985.
DOI : 10.1016/0045-7825(85)90061-1

J. C. Simo, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation, Computer Methods in Applied Mechanics and Engineering, vol.66, issue.2, pp.199-219, 1988.
DOI : 10.1016/0045-7825(88)90076-X

J. C. Sobotka, Steady crack growth through ductile metals : Computational studies, 2010.
DOI : 10.1016/j.ijsolstr.2009.08.002

URL : http://doi.org/10.1016/j.ijsolstr.2009.08.002

J. Sokolowski and A. Zochowski, On the Topological Derivative in Shape Optimization, SIAM Journal on Control and Optimization, vol.37, issue.4, pp.1251-1272, 1999.
DOI : 10.1137/S0363012997323230

J. Sokolowski and A. Zochowski, Topological derivatives for elliptic problems, Inverse Problems, vol.15, issue.1, p.123, 1999.
DOI : 10.1088/0266-5611/15/1/016

URL : https://hal.archives-ouvertes.fr/hal-00105955

P. Sotta, B. Deloche, J. Herz, A. Lapp, D. Durand et al., Evidence for short-range orientational couplings between chain segments in strained rubbers: a deuterium magnetic resonance investigation, Macromolecules, vol.20, issue.11, pp.20-2769, 1987.
DOI : 10.1021/ma00177a023

C. Stolz, Milieux continus en transformations finies. Editions Polytechnique, 2009.

P. Suquet, Rupture et plasticité Pierre Suquet, Ecole polytechnique (France)

A. Thomas, The Development of Fracture Mechanics for Elastomers, Rubber Chemistry and Technology, vol.67, issue.3, pp.50-60, 1994.
DOI : 10.5254/1.3538688

J. Tillberg, F. Larsson, and K. Runesson, On the role of material dissipation for the crack-driving force, International Journal of Plasticity, vol.26, issue.7, pp.992-1012, 2010.
DOI : 10.1016/j.ijplas.2009.12.001

S. Trabelsi, Etude statique et dynamique de la cristallisation des élastomères sous tension, 2002.

S. Trabelsi, P. A. Albouy, and J. Rault, Stress-Induced Crystallization around a Crack Tip in Natural Rubber, Macromolecules, vol.35, issue.27, pp.35-10054, 2002.
DOI : 10.1021/ma021106c

S. Trabelsi, P. A. Albouy, and J. Rault, Crystallization and Melting Processes in Vulcanized Stretched Natural Rubber, Macromolecules, vol.36, issue.20, pp.36-7624, 2003.
DOI : 10.1021/ma030224c

S. Trabelsi, P. A. Albouy, and J. Rault, Effective Local Deformation in Stretched Filled Rubber, Macromolecules, vol.36, issue.24, pp.36-9093, 2003.
DOI : 10.1021/ma0303566

L. R. Treloar, The elasticity of a network of long-chain molecules???II, Trans. Faraday Soc., vol.39, issue.0, pp.241-246, 1943.
DOI : 10.1039/TF9433900241

S. Toki, I. Sics, S. Ran, L. Liu, and B. S. Hsiao, Molecular orientation and structural development in vulcanized polyisoprene rubbers during uniaxial deformation by in situ synchrotron X-ray diffraction, Polymer, vol.44, issue.19, pp.44-6003, 2003.
DOI : 10.1016/S0032-3861(03)00548-2

M. Tosaka, S. Kohjiya, S. Murakami, S. Poompradub, Y. Ikeda et al., Effect of network-chain length on straininduced crystallization of NR and IR vulcanizates. Rubber chemistry and technology, pp.711-723, 2004.

M. Tosaka, S. Murakami, S. Poompradub, S. Kohjiya, Y. Ikeda et al., Orientation and Crystallization of Natural Rubber Network As Revealed by WAXD Using Synchrotron Radiation, Macromolecules, vol.37, issue.9, pp.37-3299, 2004.
DOI : 10.1021/ma0355608

M. Tosaka, S. Murakami, S. Poompradub, S. Kohjiya, Y. Ikeda et al., Orientation and Crystallization of Natural Rubber Network As Revealed by WAXD Using Synchrotron Radiation, Macromolecules, vol.37, issue.9, pp.37-3299, 2004.
DOI : 10.1021/ma0355608

M. Tosaka, D. Kawakami, K. Senoo, S. Kohjiya, Y. Ikeda et al., Crystallization and Stress Relaxation in Highly Stretched Samples of Natural Rubber and Its Synthetic Analogue, Macromolecules, vol.39, issue.15, pp.39-5100, 2006.
DOI : 10.1021/ma060407+

M. Tosaka, Strain-Induced Crystallization of Crosslinked Natural Rubber As Revealed by X-ray Diffraction Using Synchrotron Radiation, Polymer Journal, vol.11, issue.12, pp.1207-1220, 2007.
DOI : 10.1021/ma050465f

M. Tosaka, A route for the thermodynamic description of straininduced crystallization in sulfur-cured natural rubber, Macromolecules, issue.16, pp.42-6166, 2009.

M. Tosaka, S. Kohjiya, Y. Ikeda, S. Toki, and B. S. Hsiao, Molecular orientation and stress relaxation during strain-induced crystallization of vulcanized natural rubber, Polymer Journal, vol.100, issue.6, pp.42-474, 2010.
DOI : 10.1021/ma034729e

M. Tosaka, K. Senoo, K. Sato, M. Noda, and N. Ohta, Detection of fast and slow crystallization processes in instantaneously-strained samples of cis-1,4-polyisoprene, Polymer, vol.53, issue.3, pp.53-864, 2012.
DOI : 10.1016/j.polymer.2011.12.035

M. C. Walters, G. H. Paulino, and R. H. Dodds-jr, Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading, International Journal of Solids and Structures, vol.41, issue.3-4, pp.41-1081, 2004.
DOI : 10.1016/j.ijsolstr.2003.09.050

D. Zimmermann, Material forces in finite inelasticity and structural dynamics : topology optimization, mesh refinement and fracture, 2008.