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Introduction

Industrial needs for large metal components for aerospace, transport, or energy applications
constantly increase. After casting, the presence of internal voids may be observed in
large ingots or preforms. According to client specifications, such internal defects must
obviously be eliminated before delivery, as they may significantly affect the mechanical
properties of final products. Void elimination is classically performed during the first steps
of elaboration, involving hot metal processes (e.g. hot forging or hot rolling).

Prior to delivery, the final soundness of the workpieces is systematically verified. The
detected presence of voids in the final workpieces may involve rejection of the workpiece and
is, consequently, extremely costly. Designing the forming process in order to enhance void
closure is thus of utmost importance. Finite element simulations of processes is generally
used, involving the use of a prediction model for void closure. The accuracy of process
design is thus mainly driven by the accuracy of the prediction model.

There is at present a lack of understanding of void closure mechanisms. As a consequence,
the existing models for void closure are currently unable to provide satisfactory predictions
in an industrial context.

Void closure generally involves two stages: the mechanical closure of the void (reducing
the void volume to zero), and the final bonding of internal surfaces providing complete
healing and thus a sound material [Park and Yang, 1996]. The present work focuses on
the first stage only: the mechanical closure.

The objective of this work is thus to better understand the involved mechanisms and to
define a new reliable prediction model for void closure. This work was supported by an
industrial consortium Cicaporo involving six partners:

e TIMET Savoie,

e ArcelorMittal (Industeel),

Areva (Creusot Forge),

Ascometal (CREAS),

Aubert&Duval (Les Ancizes and Issoire) and

Constellium (CRV Services).

Among all industrial data, common statements and common issues regarding void closure
are pointed out: large workpieces are concerned, and hot metal forming processes are used
to obtain void closure. Nevertheless, such a consortium involves a large diversity in terms
of initial void states, processes (hot forging, hot rolling) and materials (various grades of
steel, Ti-alloys, Al-alloys). A very important feature of the new developed model is its
versatility regarding the wide framework that is considered.

Mean-field models merge as powerful tools to predict voids evolution during process
simulation. A mean-field model is a function of the current thermo-mechanical state and a
set of initial parameters, which is able to predict the evolution of a variable (e.g. the void
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volume) at any point of a workpiece, during process simulation. The required computation
cost of mean-field models is generally negligible, as it simply requires the evaluation of a
mathematical function.

According to literature, two main approaches were used to study void closure:

e the macroscopic approach, in which entire workpieces containing explicit voids are
studied using plasticine [Stahlberg et al., 1980] or full-field finite element simula-
tions [Tanaka et al., 1986, Dudra and Im, 1990, Banaszek and Stefanik, 2006, Kaki-
moto et al., 2010, Chen et al., 2012] and

e the micro-analytical approach, in which the evolution of an initial geometry in an
infinite matrix is analytically predicted |Rice and Tracey, 1969, Budiansky et al.,
1982, Duva and Hutchinson, 1984, Zhang and Cui, 2009].

In the present work, a new meso-scale approach is proposed in order to take advantage
of both main approaches. The meso-scale approach enables the mechanisms of void closure
to be accurately studied at the micro-scale, using full-field explicit simulations in a rep-
resentative volume element (RVE), and using boundary conditions that are representative
of the thermomechanical conditions during macroscopic processes.

A wide campaign of simulation at the micro-scale is performed in order to build and
calibrate a new mean-field prediction model for void closure. The new prediction model
for void closure is finally implemented in the finite element software for metal forming
FORGE [2011] and compared to existing mean-field models from literature using real
industrial process cases.

This document is composed of five chapters.

Chapter 1 presents the state-of-the-art of the present work. First, a review of industrial
issues within the consortium Cicaporo is presented. The framework of the present study
and the ranges of values are defined in terms of materials, thermomechanical conditions
and initial void states.

It is followed by an extensive literature review of qualitative and quantitative results
dealing with void closure. The two main approaches are described and numerous criteria
and models for void closure are presented. Their hypotheses are discussed within the ranges
of interest regarding the industrial issues and their limitations are pointed out. The great
potential of the meso-scale approach is underlined.

Chapter 2 describes the meso-scale and all relative numerical tools that were developed to
accurately study void closure mechanisms. The general assumptions are exposed. The RVE
methodology is described in details, including the application of boundary conditions and
the generation of tridimensional mesh containing a void. Finally, the use of the meso-scale
approach is validated regarding the numerical parameters to ensure the results validity.

Chapter 3 presents an experimental validation of the full-field simulations performed
using the finite element software FORGE [2011]. Simulations of hot compression testing
are carried out on samples containing initial voids. The position and the morphology
of these voids are obtained using X-ray microtomography on initial samples and after
compression. Thee tridimensional experimental observations are compared to the finite
element results in order to validate the full-field simulations. Then the validated full-field
formalisms is used at two levels in the following chapters: at the RVE-scale in Chapter 4
to define and calibrate the mean-field model for void closure, and at the workpiece-scale
in Chapter 5 to compare a few explicit full-field simulations of entire processes containing
voids, to the new mean-field model.



Chapter 4 is dedicated to the study of void closure mechanisms at the micro-scale. The
wide campaign of RVE-simulations is described. A parametric sensitivity study to mate-
rial behaviour, to void morphology (geometry and orientation), and to thermomechanical
loading is presented. This study enables identifying the major parameters to be considered
for the new prediction model for void closure. The equations for the new prediction model
are presented and the calibration step is illustrated with a few examples.

Chapter 5 describes the implementation of the new mean-field model in the finite element
software FORGE [2011]. The new model is compared to two recent existing mean-field
models from the literature using a real case of open die forging and a real case of hot
rolling. Full-field simulations of the processes containing explicit voids are also performed
and are considered as reference case for the comparison. The benefits of the new mean-field
model are underlined and the assumptions are discussed.

The conclusions are finally given and numerous perspectives are proposed according
previous discussions.

During this PhD thesis, a paper was published in an international journal:

e M. Saby, M. Bernacki, E. Roux, and P.-O. Bouchard. Three-dimensional analysis of
real void closure at the meso-scale during hot metal forming processes. Computational
Materials Science, 77:194-201, 2013b,

two papers were published in proceedings:

e M. Saby, E. Roux, M. Bernacki, and P.-O. Bouchard. Multiscale analysis of void
closure during hot forming process. In Proceedings of the 29th Forging Industry
Technical Conference, 2012¢

e M. Saby, M. Bernacki, and P.-O. Bouchard. Analyse multi-échelle de la refermeture
de porosités, appliquée a la mise en forme des métaux & chaud. In Actes du 11e
Collogue National en Calcul des Structures CSMA, 2013a

and two presentations were held in international conferences:

e M. Saby, M. Bernacki, P.-O. Bouchard, and E. Roux. Sensitivity study for void
closure relative to macroscopic mechanical loadings, using finite element simulations
at a meso-scale. In 8th European Solid Mechanics Conference, 2012a

e M. Saby, M. Bernacki, E. Roux, S. Brzuchacz, and P.-O. Bouchard. Sensitivity
study for closure of real void relative to macroscopic mechanical loadings, using finite
element simulations at meso-scale. In European Congress on Computational Methods
in Applied Science and Engineering, 2012b.

NB: In this document, references to papers are made using the form: [Saby et al., 2013b],
and references to authors are made with the form: Saby et al. [2013b].
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Chapter 1 State-of-the-art
Résumé francais

Ce chapitre présente un état de ’art de ’ensemble des études recensées relatives a la
refermeture de porosité. Il est divisé en deux parties.

La premiére partie présente une synthése de la problématique industrielle, réalisée a par-
tir de ’ensemble des données recueillies auprés des différents partenaires industriels. Les
différents matériaux, procédés, et états de porosités initiaux sont listés afin de clairement
définir le domaine d’étude. Les états initiaux de pores présentent généralement des formes
complexes (allongées, polygonales ou interdendritiques). Leur position est trés majori-
tairement située sur l'axe central des lingots. Les orientations sont variables (selon l'axe
principal du lingot, en V-ségrégés ou distribuées aléatoirement). Les tailles de pores rencon-
trées varient d’environ 0,01 mm & 45 mm. Plusieurs nuances d’aciers, d’alliages de titane
et d’aluminium sont concernées par la problématique industrielle. Les comportements a
chaud sont en revanche relativement similaires. L’écrouissage est faible et est souvent suivi
d’un adoucissement. Les coefficients de sensibilité a la vitesse de déformation m sont com-
pris entre 0,1 et 0,3. Au cours des procédés, les trajets de chargement thermo-mécaniques
présentent des profils d’évolutions tres différents. Cependant, la plage de valeurs de la
triaxialité des contraintes [—1,0] est représentative de I’ensemble des procédés recenseés.
Les vitesses de défomation varient de 0,01 & 10 s~!. Les contraintes d’écoulement varient
de 10 & 100 MPa.

La seconde partie dresse un bilan des études existantes traitant de la refermeture de
porosité dans la litérature. Il est montré que les approches explicites macroscopiques per-
mettent d’obtenir de nombreux résultats qualitatifs quant aux parameétres pocédés influents
sur la refermeture de porosité. Des étude quantitatives empiriques ont également proposé
plusieurs modéles et critéres relatifs & la refermeture de porosité. Ils sont en grande ma-
jorité basés sur le produit de la triaxialité des contraintes et de la déformation équivalente.
Ensuite, les études micro-analytiques traitant de la refermeture de porosité sont présen-
tées, et les modeéles analytiques qui en découlent sont décrits. Leurs hypothéses sont dis-
cutées vis-a-vis de la problématique industrielle. Une comparaison finale de ’ensemble des
modeles recensés (empiriques, analytique, et semi-analytique) est proposée sur le domaine
d’intérét défini dans la premiére partie. Il est montré que les hypothéses sont fortement
restrictives, notamment en terme de géomeétrie initiale de pore (géomeétrie sphérique exclu-
sivement considérée), et prise en compte du changement de forme de la porosité en cours
de déformation. Le modéle semi-analytique de Zhang et al. [2009] semble étre le modele le
plus avanceé.



1.1 Introduction
1.1 Introduction

This chapter presents an extensive state-of-the-art regarding studies dealing with void
closure in hot metal forming. It is divided in two sections.

The first section deals with industrial issues. The issues are described in order to evaluate
the variety in terms of materials, processes and initial states of voids. The main objective
of this section is to draw a clear framework of the parameters to be considered, and to
determine their ranges of interest.

The second section describes the main results from literature regarding studies about
void closure. Qualitative results, and quantitative models are described and discussed. An
extensive comparison of existing models in the literature is presented. Their hypotheses
and ability to predict void closure in an industrial context are discussed.

1.2 Industnial issues

A review of industrial issues is presented in this section. All data regarding initial obser-
vations of porosity, materials and process conditions were collected and analyzed in order
to accurately draw the frame of the current work.

1.2.1 Initial void observations

Historical and recent studies regarding void observations were collected from each industrial
partner, and are summarized in Table 1.1. The voids are observed using ultrasonic (US)
testing techniques and visual inspection (metallography).

Source Ingot type Pos. Shape Direction  Size (mm) Obs.
Timet 2830%2000 as—cast Center - - 0.01-0.1 Visual
Aubert&Duval 600 :Sg?azfooo Center Interdendritic - < 45 US
Imbrosound’ 185x185 as—cast Center Elongated Billet axis 5%20 Visual
P 365265 as-—cast - Equiaxed - 0.03 US
Ascometal 2500%x2700 as—cast  Center Elongated V-—segregate 5x25 Visual
178T as—cast - - - <40 -
161T as—forged Center Polygonal - - -
CRMC2 2.6T as—cast - - Billet axis 3-7 x 20 Visual
550x 550 forged - Interdendritic - 1-20 Visual
550x550 rolled - Polygonal Billet axis 0.25x0.1 Visual
550x 550 rolled - Polygonal Equiaxed 20.8 Visual
Constellium - Center Elongated Diffuse 0.1-0.7 US, ptomo

Table 1.1: Available industrial void observations.

Ultrasonic scanning allows a localization of defects in the workpiece, and provides an
order of magnitude of void size. For the detections of voids, the flat-bottom hole equivalence
is used. This technique consists in comparing the signal amplitude to the response of a flat-
bottom hole. The correlation of signals provides an evaluation of the void’s diameter. This
technique shows accurate results for the case of voids that present a relatively flat shape in

Improsound was a common industrial project from the European Commission that was supported by
the Research Fund for Coal and Steel, see Llanos et al. [2008].

2CRMC stands for Centre de Recherche des Matériauz du Creusot, and includes observations from In-
dusteel and Creusot Forge.
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the direction perpendicular to the ultrasonic wave. However, the technique becomes rather
limited in the case of more complex geometries, such as tortuous morphologies or cluster
of voids.

A precise morphology examination can be obtained using metallography. Excellent res-
olutions can be obtained by using adequate observation equipment (i.e. microscope). The
main limitation of this technique is that it is destructive, and that only 2D information is
obtained, according to the cutting plane.

From all observations given in Table 1.1, it can be stated that voids are mostly located
at the core of ingots (central axis). According to several cases, higher void densities are
also observed in the upper half of the ingot, at the head (i.e. feeder), or at the foot of the
ingot.

From a general point of view, void shapes are rather complex. They are generally angular
(assumed polygonal), and may sometimes even present an interdendritic structure, typical
from shrinkage effect during cooling of the ingots. Many observed voids were elongated in
the direction of the billet axis, or in the direction of the V-segregates.

The size of voids is rather disperse. Tiny voids with an average diameter [10,30]um
were observed at Timet on Ti-alloys, as well as in the Improsound® report Llanos et al.
[2008] on steels. Larger voids, up to 40 mm, were observed in the largest ingots (at
CRMC? and Aubert&Duval). In the case of Aubert&Duval, the values obtained using
US measurements may actually represent the size of an area containing a cluster of small
voids, which individual sizes within the range [0.2, 1] mm.

1.2.2 Materials

The alloys that are mainly considered regarding industrial issues are given in Table 1.2.
Various grades of steels were identified, as well as two grades of titanium alloys and three
grades of aluminium alloys.

Among all materials, one behaviour law was selected for each partner, according to
common agreements, in order to get a representative sampling of the materials considered
within industrial issues. The behaviour laws are visco-plastic with strain hardening (power-
law), or with strain hardening-softening (Hansel-Spittel, GNHB-type). For the Ti-alloy,
the behaviour is given using tabulated curves (obtained from experimental data).

Source Materials

Timet Ti-alloy1, Ti-alloy2

Aubert&Duval Steell(, Steelll, Steell2, Steell3, Steell4
Ascometal Steel20, Steel21, Steel22, Steel23, Steel24
Industeel Steel30

Creusot Forge Steeld(

Constellium Al-alloyl, Al-alloy2, Al-alloy3

Table 1.2: Affected materials and their corresponding type of casting (exact grades are not
given here for confidential reasons).

From a general point of view, flow stress values present comparable orders of magnitude
for all materials, as presented in the example given in Fig. 1.1.
Strain hardening behaviour

Material laws in Fig. 1.1 present rather heterogeneous strain hardening properties. Steell0,
20, 30 and Al-alloy1 exhibit monotonous hardening features, with different coefficients. The
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case of Steeld0 presents a comparable strain hardening, but it is followed by a softening
behaviour after a certain value of cumulated strain. The softening behaviour is also a
typical characteristic of Ti-alloys. In the case of Ti-alloyl, a maximum value of flow stress
is reached at a very early stage of deformation, followed by a slightly decreasing softening
behaviour.

10 100, 100
Steel20 (Ascometal)
—— Al-alloyl (Constellium)
80 —— Ti-alloy1 (Timet) 80 SO\F__\
—— Steell0 (A&D)
E_ —— Steel30 (Industeel) E E_
s 60 —— Steel40 (Creusot Forge) = 60 = 60
@ & @
L 40 2 a0 L a0
0 (2] (2]
20? 20| 20
8.0 0.1 0.2 0.3 04 0.50.6 0.7 0.8 8.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 8.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Strain Strain Strain
(a) €=0.01s"1 (b)y £=0.1s"1 (c)é=1s""!

Figure 1.1: Stress-strain curves of selected materials at working temperature, for various
strain-rate values.

Materials’ dependence to strain-rate

The dependence to strain-rate varies between materials. From Fig. 1.1, the strongest
dependence can be seen for the Ti-alloyl. Its average value of flow stress increases by a
factor 3.5 between cases (a) and (c). The smallest influence is observed in the case of
Al-alloyl and Steell0.

1.2.3 Processes

From each industrial partner, one typical process was chosen. The objective here is to
precisely understand what material undergoes in each considered process, and to draw
a framework regarding thermo-mechanical conditions. The choice was made in order to
obtain the largest diversity in terms of ingot geometry, and considered process.

In total, six industrial cases (ingot + process) were simulated with the finite element
software FORGE [2011], according to existing industrial data. The software is briefly
described in Appendix A. The simulations were performed at the macroscopic scale, using
void-free ingots:

Forging of cylindrical ingot between hammer and flat dies at Timet.

— Forging of rectangular ingot between hammer and flat dies at Industeel.
— Forging of cylindrical ingot between V-shaped dies at Creusot Forge.

— Incremental cogging of cylindrical ingot at Aubert&Duval.

— Rolling of rectangular bloom at Ascometal.

— Rolling of plate at Constellium.
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The simulations of forging (Industeel, Creusot Forge), rolling (Ascometal) and incre-
mental cogging (Aubert&Duval) were computed at Cemef using FORGE®. Input data
were provided by each partner. The forging simulations for Timet and the plate rolling
simulations for Constellium were performed in-house using DEFORM and LAMS3, respec-
tively. Fig. 1.2 illustrates the diversity of geometries and processes that are involved in the
current framework.

Figure 1.2: Ingot geometries and process overview for (a) forging at Creusot Forge, (b)
rolling at Ascometal, (¢) forging at Industeel, (d) incremental cogging at
Aubert&Duval.

All processes are multi-pass processes, and lead to long computation times. They will
not be described in further details for two main reasons. First, most industrial data
(workpiece geometries, pass depths, working temperatures) are strictly confidential data.
Second, these data would, in fact, not bring significant information to further discussion,
since the crucial information is the local thermo-mechanical state during the process. The
description will thus be focused on local loading paths.

To obtain such information, the point tracking technique was used. This technique
enables thermo-mechanical fields to be recorded during the whole process, for a given
point at every increment step. The field values are interpolated using the values computed
at integration points. The position is actualized according to the displacement field at each
increment step.

1.2.4 Thermo-mechanical local loadings

For each industrial case, several points of interest were defined in the workpieces. Centerline
positions were chosen according to initial void observations (Table 1.1). The points were
then tracked for each multi-pass process in order to obtain the local thermo-mechanical
loading paths. The evolutions of strain-rate, temperature, von Mises equivalent stress and
stress triaxiality ratio are presented in this section.

10
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Evolution of strain-rate

For the four processes given in Fig 1.2, the values of strain-rate are presented for a cross-
section in Fig. 1.3. The measured strain-rate values (given in log-scale) strongly vary
between the four presented processes. In Fig. 1.4, the values recorded using point tracking
are plotted for all processes. These values are within the range [0.001,0.1] s~! for forging
processes, in the interval [0.1,1] s7! for incremental cogging, and in the interval [1,10] s~
for rolling.

Let us now focus on the evolution profile of each curve. For the cases of free forging
(Industeel, Timet), each stroke induces a rapid increase of the local strain-rate, followed
by a rather constant value, then a brutal stop. The material mainly undergoes a quasi
steady deformation over the whole stroke duration, with a strain-rate around 0.01 s,

In the cases of rolling (Ascometal, Constellium), the material undergoes more continuous
strain-rate profiles. The local deformation accelerates then decelerates, by passing through
the rolling cylinders. The maximum value of strain-rate is higher, around 5 s~!.

The strain-rate profile for incremental cogging presents common aspects with rolling and
forging, i.e. a slight increase and a brutal stop. The average value of strain-rate is about
0.5 s7L.

In the case of forging at Creusot Forge the values present rather complex evolutions.
The values of strain-rate (about 5.1073 s~1) present the lowest values over all considered
cases.

(a)

Moeud: 13211
Sol 1.87624 (interpolated)

J

TALY_DEF
Unit: =-1
Frin, Cut
10
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1

0316

o1
0.0316
0.
0.00316
0.001
0.000316
0.0001

Pos: -156.339 -9.70466 0166543
Scalaire: 0171762

Moeud: 2176
Sch 0.0180916 (interpolated)

Figure 1.3: Maps of strain-rate for the four processes with cutting planes at the core of each
workpiece, in log-scale: (a) forging at Creusot Forge, (b) rolling at Ascometal,
(c) forging at Industeel and (d) incremental cogging at Aubert&Duval.
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Figure 1.4: Evolution of equivalent strain-rate of a centerline point tracked during multi-
pass processes.

Evolution of temperature

Let us now focus on the evolution of temperature during processes. The values were ob-
tained using the point tracking technique described previously, and are plotted in Fig. 1.5.
The figure shows that the temperature slightly increases due to self heating during each de-
formation stroke/pass. The highest temperature increase is about 10°C. A few temperature
drops can also be observed, such as in the case of incremental cogging (Aubert&Duval) at
0.27 and 0.6 strain. This is due to natural loss of temperature of the workpiece (heat trans-
fer with dies and with surrounding air). This effect can be neglected since the resulting
drop does not exceed 2°C.

Nominal working temperatures are typical for hot forming processes, i.e. around 1100°C
for Ti-alloys, around 1200°C for steels and around 450°C for Al-alloys. The previous
increases and drops may thus be insignificant with respect to workpiece temperatures.
Isothermal conditions can therefore be assumed.

Evolution of von Mises equivalent stress

The values of von Mises equivalent stress are driven by the material’s behaviour law (pre-
viously presented in Fig. 1.1) taking into account the real process conditions presented in
Figs. 1.4 and 1.5. The resulting values are plotted in Fig. 1.6. They were obtained using
the identical point tracking technique described previously for strain-rate and tempera-
ture. The values of von Mises equivalent stress vary with a factor about 3 between forging
processes (lowest values) and rolling processes (highest values). The equivalent stress for
incremental cogging is between the two previous cases. Similar evolution profiles can be
observed as the ones for strain-rate. The forging processes induce rather steady values
with brutal decrease, while rolling processes induce smoother curves.

12
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Figure 1.5: Temperature increase of a centerline point tracked during simulation processes.
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Figure 1.6: Evolution of von Mises equivalent stress of a centerline point tracked during
simulation processes.

13



Chapter 1 State-of-the-art

Evolution of stress triaxiality ratio

The stress triaxiality ratio is defined as the ratio between the mean stress o, (or the
isostatic pressure p) and the von Mises equivalent stress &, such that:
Om

Tx = - =3 (1.1)

The ratio is positive for tensile state, and negative for compressive state. The particular
value Tx = % describes uniaxial tension and Tx = —% uniaxial compression. When
Tx = 0, shearing stresses are predominant.

In Fig. 1.7, the evolutions of stress triaxiality ratio are plotted versus cumulated equiv-
alent strain. This choice was made as it presents the advantage that the integral of stress
triaxiality ratio with cumulated strain is easy to visualize (using the area under the curve).
This integral is often used in the literature as an indicator for void closure Tanaka et al.
[1986], Nakasaki et al. [2006], Llanos et al. [2008]. It might provide a first approximation
of void closure and will be discussed later in section 1.3 and compared to further criteria.

The curves in Fig. 1.7 exhibit a few isolated extreme values. When isolated, these
extreme values of stress triaxiality ratio have no significant impact on void closure, as the
void does not undergo any deformation at this instant. The sharp peaks can thus be simply
ignored.

On the contrary, according to the criterion mentioned above, the area under curve pro-
vides an indication whether the conditions are favorable for void closure, or not. Negative
areas are favorable for void closure.

In the present chapter, the objective of Fig. 1.7 is only to illustrate the variety of me-
chanical loading paths that may be encountered within the industrial consortium. An
extensive discussion regarding the efficiency of each process would not be relevant here,
as the criteria was not yet clearly defined, and may in fact be insufficient to accurately
predict void closure (discussed in Chapter 4).

Nevertheless, Fig. 1.7 shows great interest to set the ranges of interest within this study.
For forging processes (Industeel, Creusot Forge) the evolution presents a rather smooth
decrease and mostly remains within the range [—0.7,—0.5]. The evolution of stress triax-
iality ratio in the case of plate rolling (Constellium) reaches similar values in the interval
[—0.7,—0.5]. These three cases can be seen as the processes providing the most compressive
states.

The evolution of T’y for bar rolling (Ascometal) is comparable to the one of plate rolling
(Constellium), starting and ending with very compressive states, and presenting a rather
constant value over the main deformation range. Nevertheless, the case of bar rolling
(Ascometal) presents less compressive states. It is worth noticing that the third pass
presents more compressive values, while the two previous ones are rather tensile. The
values remain in the interval —% <Tx < %

The case of incremental cogging (Aubert&Duval) presents the highest amplitude varia-
tions, even though most of the values are within the range —% <Tx < % as well. Higher
values are briefly reached, leading to very tensile states for several strokes (Tx > %)

14
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Figure 1.7: Evolution of stress triaxiality ratio of a centerline point tracked during simula-
tion processes.
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1.2.5 Conclusions

Industrial issues were analyzed according to initial void states, materials and process con-
ditions. It was found out that:

16

e Initial void geometries present complex shapes, such as interdendritic, polygonal,

or elongated shapes. Their position in the ingots is mainly centerline, and their
orientation is not unique. They may be oriented along the ingot’s axis, along the
V-segregates, or even present random orientations. Void sizes are between [0.01, 45]
mm. The void-to-billet ratios are generally about 107 to 1073, and do not exceed
0.075 within the industrial framework.

Various material behaviours were identified. Materials with monotonous strain hard-
ening may be distinguished from the ones presenting a subsequent softening be-
haviour. Nevertheless, comparable orders of magnitude regarding flow stress values
were observed in the considered working conditions. The strain-rate sensitivities of
materials are within the range m = [0.1,0.3].

Six different types of processes are considered. From the resulting local thermo-
mechanical loadings, the following conclusions are made:

— Temperature evolution of a material point is insignificant and can be neglected.
— strain-rate values vary on a range [0.01,10] s~ L.
— The flow stress values vary on a range [10,100] MPa.

— Stress triaxiality ratios present very different evolution profiles. The values
vary on a range [—1.0,+0.6]. Here, positive values may lead to an opening phe-
nomenon of voids. Void growth is a part of ductile damage micro-mechanisms
that leads to coalescence and final fracture Schliiter et al. [1996]. Many studies
were conducted according to theories developed by Rice and Tracey [1969] or
Gurson [1977|. Yet, the present work is restricted to void closure only, i.e. on
the range T'x = [—1,0].
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1.3 Literature review: models and criteria for void closure

According to literature, void closure generally involves two stages: the mechanical closure of
void, bringing internal surfaces into contact and reducing void volume to zero; and the final
bonding of the internal surfaces providing complete healing and thus a sound material [Park
and Yang, 1996]. The present work focuses on the first stage: the mechanical closure. A
review of the most important results from literature regarding mechanical closure is given
in this section.

Two different approaches are presented in literature regarding the mechanical closure
phenomenon: (i) an explicit macroscopic approach, and (ii) a micro-analytical approach.

e The explicit macroscopic approach consists in studying a whole process with a work-
piece in which voids are explicitly defined. The influence of various parameters on
void closure is studied using experimental data [Stahlberg et al., 1980, Wallers, 1985]
or finite element simulations [Hwang and Chen, 2002, Tanaka et al., 1986, Dudra and
Im, 1990, Banaszek and Stefanik, 2006, Kakimoto et al., 2010, Chen et al., 2012].
Criteria and prediction models are presented in a first section, as well as a discussion
regarding their benefits and limitations.

e The micro-analytical approach considers a single void in an infinite matrix [Rice and
Tracey, 1969, Budiansky et al., 1982, Duva and Hutchinson, 1984, Zhang and Cui,
2009]. The void volume evolution is analytically predicted, according to a certain
number of assumptions. A review of these analytical prediction models is presented
in a second section, and the assumptions are discussed.

A third section mentions Gurson-based models [Gurson, 1977|. Such models were ini-
tially developed for predicting the global behaviour of porous materials and were dedicated
to ductile fracture (void growth under positive stress triaxiality ratios). However, interest-
ing features were found out regarding void evolution and are compared to the approaches
regarding void closure.

1.3.1 Macroscopic approach

Due to the great industrial interest in understanding void closure, numerous studies on void
closure were conducted using the macroscopic explicit approach. This approach enables
a process to be partially or fully described and the closure mechanisms to be studied in
accurate process conditions. The influence of process parameters is studied in order to
establish qualitative or quantitative relationships between the parameters and the void
closure efficiency.

This review focuses on forging and rolling processes. Main qualitative results are sum-
marized first, with a brief description of the studies conditions (considered processes, types
of voids). In a second part, existing prediction models are presented and discussed.

Qualitative results

The macroscopic explicit approach generally involves experimental testing or numerical
simulation. From a general point of view, the following statements are found out:

(i) large deformations, especially in the first stages of forming processes, are preferred for
better void closure [Tomlison et al., 1958, Stahlberg et al., 1980, Keife and Stahlberg,
1980, Zutang and Meng, 1994, Wallerd, 1985, Hwang and Chen, 2002, Chen, 2006,
Chun et al., 2006, Banaszek and Stefanik, 2006, Chen et al., 2011, Llanos et al.,
2008];

17
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(ii) a relevant choice of process configuration may considerably improve the void closure
efficiency: shaped-dies for forging [Dudra and Im, 1990, Tomlison et al., 1958, Park
and Yang, 1997a, Shah et al., 1986, Chun et al., 2006, Kim et al., 2002, Banaszek
and Stefanik, 2006] and large roll radius for rolling [Wallers, 1985, Chen, 2006, Chen
et al., 2011, Llanos et al., 2008, Stahlberg, 1986];

(iii) temperature gradient in the workpiece also plays an important role and it is shown
that a colder skin improves the closure of centerline voids [Stahlberg and Keife, 1992,
Pietrzyk et al., 1995, Overstam and Jarl, 2004, Banaszek and Stefanik, 2006, Llanos
et al., 2008, Park and Yang, 1997b].

(iv) friction with dies may also improve the voids closure efficiency [Hwang and Chen,
2002, Chen, 2006].

Hot forging Further details are given here for open die forging and cogging processes.
The conditions are briefly summarized in Table 1.3. Most studies consider steel in its
typical working temperature (900-1250°C). Aluminium, plasticine and lead (Pb) are also
used. Height reduction ratios vary between 10 and 40% per pass. In general, it is shown
that larger values are preferred for a better closure. In the case of multi-pass forging, it is
shown that the reduction of the first pass is predominant [Chun et al., 2006].

strain-rate Void/billet

Process, billet Reduc. (%)

. © .
Source Material dim. (mm) T (°C) or eq. strain ) Void shapes ratios
Dudra .
and Im ISte.el.’ Open die 1230 30% 0.01 2D cylinder 0.07
[1990] plasticine ?2800
Park

and Open die

[ngg Steel @100 x L8O 1000-1200 0.35 0.01 Cylinder 0.1
1997a]

Kim Multipass Sphere

et al. Steel 2004850 1043848 10% 0.1-0.2 TR 0.03
[2002] X cylinder

Overstam
and Jarl Steel Open die 1100 - - - -
[2004]

Banaszek
Stg&‘lik Steel @OSI(’J"E glgeo 1100-1250 0.15-0.25 0.1-0.2 2D cylinder 0.05-0.12
[2006]

Chun
et al. Steel Multipass 1000 30% - - -
[2006]

Nakasaki .
et al. pli?stfiecli’ne 95 Sr;znxdieQOO 1000 10-25% B B B
[2006]

Lee .
Cogging 800, 1000, _
[;toglﬂ Steel @90 x 1,220 1200 0.8 Natural 0.5

Kakimoto
et al. Aluminium Compression 450 80% - Spbere, 0.01, 0'(_]5’
[2010] cylinder 0.1, 0.2

Kakimoto Open die
et al. Pstlelfd @40 and 35x35 900-1200 30% 0.02-2 Cﬁiied“er 0.05
[2010] - : x 1.36 ’

Chen Open die Sphere,
et al. Steel ®§5 210 1150-1200 42% - cylinder, 0.025-0.125
[2010] tetrahedron

[Agouti, .

2012, Aluminum Mf“lf’ipass 420 1.3 -89 0.02 - 0.2 Natural 0.001
chap IV] orging

Table 1.3: Review of tested conditions regarding main studies on forging processes.

Overstam and Jarl [2004] investigated the effects of natural cooling and the one due to
the contact with the tools. Surface cooling generally has a positive effect on void closure.
The study shows that the effect of temperature gradient is significant for small billets (size
< 200 x 200 mm), but becomes negligible for large billets.

The influence of strain-rate has not been studied regarding void closure evolution.
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Different tool shapes were investigated: bowl-shape [Tomlison et al., 1958, Banaszek
and Stefanik, 2006], V-shape [Tanaka et al., 1986, Chen et al., 2012], FML (Free of Man-
nesmann effect at Lower press load) [Dudra and Im, 1990], and BFTV (Bottom Flat Top
V) [Park and Yang, 1997a]. Concave tools are shown to provide better void closure. The
positive effect of concave dies, compared to flat dies, results from a more compressive stress
triaxiality states at the billets center. This is coherent with the effect of temperature gra-
dient (colder skin) mentioned previously, as both involve more compressive states at the
core of workpieces.

Banaszek and Stefanik [2006] studied the evolution of a 2D—section of a billet containing
circular voids during hot forging. They proposed a relation between the total surface area
of defects and forging parameters (i.e. upper die speed, relative reduction and starting
temperature). A statistical analysis on case studies was performed using finite element
simulations and several experimental validation cases. The authors concluded that void
closure is enhanced when using asymmetrical concave dies in the early stages, and flat dies
in the final stages of forging.

Hot rolling For the studies regarding rolling processes, steel was mostly studied as well
(see Table 1.4). The technical report Improsound |Llanos et al., 2008] relates a large

Source Material Process, billet T Q) Reduc. per Roll diam Void Void/sheet

ur - dim. (mm) pass (mm) shapes ratios
Wallero Steel, . [

5909 _
[1985] plasticine Multipass 1100 2-20% Artificial 0.05
Pietrzyk .
et al. Steel Multipass, 1200 4-16% 450 2D Cyl. 0.25
L 200x200
[1995]
Wang 3—-pass
, _1¢ ~
et al. Steel H20x150%80 900-1200 30, 50, 70% 300 Half-open 0.06
[1996]
Nakasaki
qul o Sel e oo :
[2006] p Y
Llanos Multipass,
et al. Steel 137x137 or 1100-1200 2-15% 510-670 1\/@;&15 0.015-0.06
[2008] 365x265 ’
Toda 2—-pass Natural 1.7-8.3
°C [ 20° [ _ _ 8.
gt al. Aluminium 3x0.6x0.6 pass 400°C(50%), pass 320°C(50%) (X-ray «10-3
[2009] (samples) tomo)
Compression 540 6-60% —

Table 1.4: Review of tested conditions regarding main studies on rolling processes.

quantity of results regarding the optimization of multi-pass hot rolling. Several pass-
schedules are studied. It is shown that a one-pass schedule brings better void closure than
a two-pass schedule with identical cumulated reduction ratios. Further studies regarding
multipass schedules confirmed that the effect of the first pass is predominant regarding
void closure. Lower numbers of passes with large reductions, and without turning the billet
between the passes, are recommended for better void closure. Wallerd [1985] studied the
effect of rolling conditions and concluded that passes involving large spread are favourable
as well.

The tested temperatures are comparable to the ones tested for forging (900-1200°C). As
for forging, the temperature gradient between the skin and the core of the workpieces is
shown to improve void closure.

Rolling of aluminium was studied as well by Toda et al. [2009]. The study deals with a
succession of rolling passes at various temperatures. A diffuse state of voids is tracked using
X-ray microtomography according to various compression ratios and annealing periods. A
geometry dependence is observed regarding void closure. An increase of void fraction is
also pointed out during high temperature exposure, such as void growth or reopening of
closed voids.
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Initial void state Model holes are generally used to investigate the influence of parameters
on void closure. The geometries typically involve spheroidal or cylindrical shapes.

Hot compression tests on aluminum samples containing cylindrical voids were conducted
by Kakimoto et al. [2010] (see Fig 1.8). The study shows that the critical reduction
required for complete void closure is mainly influenced by the height hg of the void (in the

compression direction). The perpendicular dimension did not show any significant effect
on void closure.

<~

H l/ Reduction direction
0

Dy/2

Figure 1.8: Dimensions used for the hot compression tests performed by Kakimoto et al.
[2010], acording to various conditions hg/dy = 1,2,5; Ho/T = 2,4; do/Dy =
0.01,0.05,0.1,0.2.

Closure mechanisms are discussed by Chen et al. [2010] with respect to various void
shapes (spherical, tetrahedral, and cylindrical), at different positions in a billet under
compression (see Fig. 1.9). Long cylindrical voids present a two-stage mechanism: firstly,
the upper and lower surfaces rapidly enter into contact, and secondly, the small subsequent

holes are more hardly closed up. It is also shown that tetrahedral voids are longer to
completely close than spherical voids.
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Figure 1.9: Tested positions (a) and void shapes (b,c,d) in Chen et al. [2010].

The change of position in the billet induces a change in closure rate. Closure is faster
in the center of the billet. However, it is shown that the behaviour remains unchanged at
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any tested position within the billet. In the technical report Improsound [Llanos et al.,
2008], rolling trials were performed in order to compare different initial states. A billet
was designed to contain several pre-defined void states that were inserted in its center (see
Fig. 1.10). The pre-defined states were a 3 x 3 matrix of holes, a central single hole, and a
natural porosity state. From metallographic examinations, it is shown that the hole in the
center of the billet is completely closed, whereas those off-center are only partially closed.

(a) (b) (c) (d)

Figure 1.10: Rolling pilot plant trial billet (a) with pre-defined porosity states (b) 3 x 3
matrix, (c¢) central hole, and (d) natural state (schematically represented),
Improsound [Llanos et al., 2008].

The effect of the hole’s position in the billet is also presented by Wang et al. [1996].
In these experiments, the holes were drilled in the direction perpendicular to the rolling
direction (see Fig. 1.11) and were drilled from the surface of the billet, providing half-
opened holes. This contrasts with the holes defined in |Llanos et al., 2008|, which are
oriented along the deformation direction and fully embedded in the billet. In the rolling
trials performed by Wang et al. [1996], the holes were better closed when positioned near
the billet’s surface. This result is mainly attributed to the value of hydrostatic pressure at
the positions of the voids. It is also shown that shear is helpful for void closure.

rolling direction

_‘:)_ |
Ral

R e e

Figure 1.11: Rolling trials performed in Wang et al. [1996].

From the rolling trials in the Improsound report Llanos et al. [2008], it was also shown
that natural holes are harder to close than artificial drilled holes. This result is in good
agreement with the results from Chen et al. [2010], mentioning that in the case of complex
initial void shapes, subsequent small voids are created during compression and are more
hardly eliminated. Simple void geometries might therefore not fairly represent the closure
behavior of natural voids.

The influence of initial state is also demonstrated in Toda et al. [2009]. Different closure
behaviors were observed using 3D X-ray microtomography on Al-Mg alloy containing hy-
drogen micropores with various initial geometries. Some micropores remain visible after
60% compression, while others are completely closed. A combination of effects related to
initial shape and position is the most plausible explanation.
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Criteria for void closure

Keife and Stahlberg [1980] studied the deformation of round and square voids in a rigid-
perfectly plastic material. They proposed a simple upper bound model based on the
plane-strain condition, considering two different simple deformation modes around the
voids. They concluded that the reduction R, necessary for complete void closure is a
function of initial void volume fraction Vj, such that R, ~ Vol/ 2,

Tanaka et al. [1986] proposed the use of the hydrostatic integration () as an indicator
for void closure. The parameter @ is the integral of stress triaxiality ratio Ty = = over

the cumulated strain:

Q= /(;8 —Txdz. (1.2)

Nakasaki et al. [2006] discussed the use of @ as a parameter for void closure in hot
forging and rolling conditions. Based on experimental and numerical results, an expression
for the total void area reduction is obtained by linear regression. In the case of rolling,
the hydrostatic integration parameter is revised to Q*, for reasons that are not explicitly
given.

Hydrostatic integration was later used by Kakimoto et al. [2010] to compare the closure
of a void in different configurations of forging. In this paper, numerical simulations are
performed after validations using experiments on lead billets. A cylindrical hole is drilled
through the billet with a void-to-billet diameter ratio of 0.05, and multi-pass forging is
performed. It is found out that the critical value of hydrostatic integration for complete
void closure is @) > 0.21. The authors used this criterion to investigate four forging pa-
rameters and proposed industrial improvements regarding process design. Although the
qualitative results regarding process optimization shows great interest, the quantitative
analysis to obtain the )-criterion remains questionable. In this paper, experimental vali-
dations were performed using workpieces containing a drilled open-hole, which may have
a rather different behaviour than an internal void.

Nevertheless, recently Chen and Lin [2013] used the @ criterion to study the evolu-
tion of shape parameters in the three directions x,y, z. They introduced a tridimensional
version of the @ criterion, using three values ; (i € z,y,2). The authors proposed a
phenomenological expression to fit the aspect ratios of an ellipsoidal void according to @Q;.

€ <.
S; = (Cl + SZ()) eXp(—QZ'/CQ) + 03, with Qz = / %dé, (1.3)
0

where s; is the the component of the stress deviator tensor s in the ¢ direction. S; and
Sio are the aspect ratios and their initial values, respectively. Cy, Cy and Cjs are fitting
coefficient that are obtained using FE-simulations. Fitting values are obtained for several
positions in a billet under a given forging process.

Tanaka et al. [1986] also proposed an empirical void closure parameter V' C' P based on Q
value, with a series of six coefficients Cj; obtained by linear regression based on numerical
simulations of compression:

2 2—3

VCP =) > Cyn(1l+e)] In(l-Q), (1.4)

i=0 j=0
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The parameter returns a degree of closure (0-100%) of a virtually existing void, at any
position in the billet. In the technical report Improsound [Llanos et al., 2008], a wide
campaign of numerical simulations and experimental observations about hot rolling was
performed, and Cj; coefficients were obtained as well. Process design was performed using
maps of void closure parameter obtained using the previous model.

A simple stress-triaxiality-based (STB) model for void closure was introduced in the
commercial code FORGE |2011], Lasne [2008] and was implemented as:

AV

AV _ kreae. (15)

Vo
The variation of void volume fraction at each increment step is assumed proportional
to the product of stress triaxiality ratio with incremental strain. Under constant stress
triaxiality ratio, Eq. 1.5 becomes:

v
Z =1+ K Txe. (1.6)
Vo

The proportionality coefficient K, = 5 (default value) was identified using simulation of
compression tests on a single spherical void. Note that by summing AV in Eq. 1.5 over

the increments of deformation, the sum Zf) Tx A€ can be seen as the discretized form of
Q in Eq. 1.2,

g AV g g
Y D =K.> TxAf =~ K/ Txds = K.(—Q). (1.7)
o Vo 0 0
Using the criterion of closure (Q = 0.21, the predicted volume reduction can be computed
as: B
1% —~ AV
— =1+ — =1+5(-0.21) = 0. (1.8)
Vol(@=0.21) o Vo

Final void volume equals to 0, i.e. void is closed.

In all the studies presented above, the void-to-billet dimension ratio remains relatively
large, i.e. around an average value of 0.1. Though, a large number of tiny voids usually
exist in workpieces Llanos et al. [2008|. Tiny voids can hardly be considered by such a
macroscopic approach, since their volume is very small and becomes negligible with respect
to the volume of the workpiece. As pointed out in 2009 by Zhang and Cui [2009], Zhang
et al. [2009], there is at present a lack of applicable and accurate criterion in evaluating
void closure. Based on micromechanical results from the literature, the authors proposed
two numerical models for void closure. After a brief review of the main steps used within
the micromechanical approach, the most recent criteria are presented and discussed in the
following section.
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1.3.2 Micro-analytical approach

In the micromechanical analysis, a single void in an infinite incompressible matrix is con-
sidered. The constitutive relations for the matrix are of the power-law type, with m the
power exponent:

<E>m4e, with tr(&) = 0, (1.9)

€0

200
®T 3%
where € is the strain-rate tensor, s is the deviatoric part of the stress tensor o, & and &g
are, respectively, the effective and the reference strain-rate, og is the reference stress. The
evolution of the initial void is studied with respect to various mechanical parameters, for
different types of materials which properties are controlled by the power exponent: linearly
viscous materials (m = 1), rigid-perfectly plastic materials (m = 0), and the general case
of non-linear viscous materials (0 < m < 1).

A large number of studies regarding void evolution in an infinite matrix were reviewed by
Huang and Wang [2006]. In these studies, voids are typically assumed to have a spherical
(or ellipsoidal), or cylindrical shape. Most studies do not consider any change of shape
during deformation, and the resulting equations often become inappropriate for large de-
formations (which is generally the case to obtain void closure).

Rigid-perfectly plastic material

Gurson-based models Gurson [1977] established a relation providing a yield criterion for
porous materials, as a function of void volume fraction f. The void evolution f is governed
by the condition of incompressibility of the matrix, leading to a simple void growth law
given by:

f=(1- (e, (1.10)
where € is the plastic strain-rate tensor. To obtain a yield criterion for porous materials,
the material model used in Gurson’s analysis is rigid-perfectly plastic (m = 0). A spherical
cell, composed of matrix material containing a concentric spherical void, is considered.
Based on cell calculations, an upper bound solution for yield criterion is proposed for the
macroscopic behavior of porous metals.

Tvergaard [1982] proposed corrective coefficients ¢; = 1.5, g2 = 1.0 to Gurson’s model.
Gurson-Tvergaard’s model is widely used in the framework of ductile fracture due to void
nucleation, growth and coalescence. Additionally, Tvergaard and Needleman [1984] intro-
duced a modified void volume fraction f* = f*(f) for f > f., where f. is a critical value
over which the coalescence phenomenon takes place. Nevertheless, void coalescence is out
of the scope of this work, since it is not supposed to occur in the case of void closure.
Various modified Gurson-based models are available in the literature, taking into account
some additional mechanisms, such as isotropic and kinematic hardening, and the effect
of strain-rate sensitivity. Recently, Scheyvaerts et al. [2011] extended Gurson’s model to
ellipsoidal voids in shear and tension conditions, using a constitutive law considering both
elastic regime and plastic hardening. However, very few studies focused on pure void
closure.

From the Gurson-Tvergaard model, Ragab [2004]| found an expression to evaluate the
volumetric strain-rate of a spherical void,

Vo qg . <3 >
——— = “Zginh | =qo|Tx]| |, 1.11
36V 9 2f12| X| ( )

where E, is the remote equivalent strain, and ¢q; and ¢o are the coefficients obtained by
Tvergaard [1982]. In this equation, the void is assumed to remain spherical.
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Analytical solutions Rice and Tracey [1969] proposed a model for the evolution of a
spherical void in a rigid-perfectly plastic matrix (m = 0). In the analysis, the void under-
goes an uniaxial loading with axisymmetric stress conditions. As no analytical expression
can be obtained, approximate Rayleigh-Ritz solutions were obtained using the variational
principle. The velocity field is defined as:

v =vy+V, (1.12)

with vo = E - x the remote velocity field, where E is the remote strain-rate tensor at
infinity, x is the spatial coordinates vector, and v = Dvp + v is the local velocity change
due to the presence of a void. The first term vp thus describes the spherically symmetric
deformation due to the volume change of the void, where D is the normalized dilatation
rate, and vy describes the shape change of the void. Under high stress triaxiality, it is
shown that the influence of vp is much larger that the one of vg, and the void’s shape
change can be neglected. The approximation of high stress triaziality thus leads to:

v=E.x+ Dvp. (1.13)

The minimum principle, which consists in minimizing a functional F'(v) is used to obtain
a velocity field. The normalized dilatation rate D is obtained as:

2
o 0.850 exp (3TX> vV Tx >0,
D= = ) (1.14)
eV —0.826 exp <_3TX> vV Tx <0.

where E, = 4/ %E : B is the remote equivalent strain. The coefficients are analytical values
that result from the Rayleigh-Ritz procedure.

Linear viscous material

In the case of linear viscous (or Newtonian) materials m = 1, analytical solutions were
calculated by Budiansky et al. [1982] for an extended number of constant stress triaxiality

ratios T’y = “2¢. The volume rate of a sphere may be expressed as:

— =Ty (1.15)

25



Chapter 1 State-of-the-art

Nonlinear viscous material

Analytical solutions Budiansky et al. [1982] studied the deformation of a spherical void
in a nonlinear viscous matrix. As for the case presented above, the authors showed that
no analytical solution may be obtained, and the Rayleigh-Ritz procedure is used. The high
stress triaziality (HST') approximation is also used to only consider the radially symmetric
contribution of the velocity field. Using this approximation, the volumetric strain-rate of
the spherical void is obtained:

. 1
Dg)ST = E‘e/V = g <3;n|TX] + G(m)) " Vo |[Tx|> 1. (1.16)
In the case of low stress triaziality (LST), an expression for volumetric strain-rate is
proposed by Tvergaard [1984]:
. 1
Dy = EVV = % <3;n + G(m)> Trx] ¥ Ty <1 (1.17)
In these equations,

Gm)=(1-m)(1+ (In(3) —2/3)m) =~ (1 —m)(1+0.432m) vV Tx >0,

G(m) = (1 —m)(1 + 92\7/%771) ~(1—m)(1+0403m) ¥ Ty <0.
(1.18)

Note that for m =1, G(m) = 0 and both Egs. (1.16, 1.17) reduce to Eq. 1.15.

Duva and Hutchinson [1984| proposed an extension of Eqs. 1.16 and 1.17 for any stress
triaxiality ratios, using an interpolation approximation. The expression of volumetric
strain-rate for a sphere Ds), gives:

. 1
Vv 3 [ 3m m
D= |—1)| =2(27 T Ty, 1.1
. (m) (Gl 6m) " valmdve v T (1)

which, in the case of void closure (T'x < 0), leads to:

. 1
v 3 3m m
D= ——) =27y +(1—m)(1+04 — T : 1.2

D <E6V>Sp 2( 5 X+( m)( +0 03m)> cidx +c2 ( O)

where parameters ¢; and ¢z are tabulated functions of m Zhang and Cui [2009]. The volu-
metric strain-rate is plotted in Fig. 1.12a for m = 0.2. Note that there is a slight difference
between values proposed by the generalized formula and the solution given by Budiansky
et al. [1982] using the high stress triaxiality approximation. The authors argued that the
solution in Eq. 1.16 underestimates the deformation rate, due to the approximation made
by Budiansky et al. [1982] on the velocity field. Indeed, the relative error obtained between
the generalized formula Eq. 1.20 and both Eqgs. 1.16 and 1.17 on their respective domain of
validity is plotted in Fig. 1.12b. A greater difference (about 20-25%) can be seen around
|Tx| = 1, i.e. at the boundary between both approximations. The generalized formula
for D, was proposed in order to approach Eqgs. 1.16 and 1.17 on their respective domain
of validity, and thus considers the same approximations. Note that the relative error is
slightly negative at very low stress triaxiality values, without great influence of m-value.
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Figure 1.12: (a) Normalized volumetric strain-rate for a sphere Dy, given by Eq. 1.20 (Gen-
eralized formula), compared to high and low stress triaziality approximations
given by Eq. 1.16 and Eq. 1.17, respectively; and (b) the relative deviation
between Eq. 1.20 and Eq. 1.16 of Eq. 1.17 on their domain of validity, for
various values of m (given as n = 1/m).
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A similar analysis was performed by He and Hutchinson [1981], considering the defor-

mation of a penny-shaped crack. The Rayleigh-Ritz solution for the volumetric strain-rate
of a crack gives:

1% D, 1 6 2
| === 2 (|Tx|+ 2] for A<, 1.21
(EV> X Anv/I+3m <| x| 3> or (121)

where A = a/b is a shape factor, as shown in Fig. 1.13 (A < 1 for a penny-shaped crack).

Figure 1.13: Void evolution from spherical shape to a crack Zhang and Cui [2009], Zhang
et al. [2009].

Using an interpolation scheme, Zhang and Cui [2009] proposed an expression for the
transition state from spherical to finally crack-like mode. The evolution of void volume
can be expressed as:

D; _DcrEe _Dcr _D'Ee
V:‘ i exp( ) SPDsEe) | (D EL), (1.22)

Vo Dj\*Dcr

where Dy corresponds to the change-rate of the aspect ratio of a spherical shape, which is
obtained using a Rayleigh-Ritz procedure on spherical voids:

. 3
Dj = (2) =25—(1—m) [(29 — 45m) (1 + 3TX3—2> - 3] : (1.23)

e

Semi-empirical solution From the analytical model in Eq. 1.20 for a spherical void (as-
sumed to remain spherical) the same authors alternatively proposed a semi-empirical ex-
tension for considering the change of shape during deformation [Zhang et al., 2009]. The
authors introduced an empirical dependence to void shape A, assuming that it depends
on the cumulated strain, only. The coefficient ¢ in Eq 1.20 is replaced by a polynomial
function of cumulated strain and leads to Eq. 1.24. The values for parameters c1, co, c3, ¢4
are numerically obtained using finite element calculations based on a cubic cell model con-
taining a spherical void (Fig. 1.14). The volume of void is obtained using different values
of stress triaxiality ratio |T'x|, and are given in tables in [Zhang et al., 2009] for various
values of m.

Note that the dependence in triaxiality ratio is consistent with the results presented
in Section 1.3.1 dealing with the product of stress triaxiality ratio with effective strain.
Eq. 1.24 is also in good agreement with qualitative results from process studies presented
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(a)

Figure 1.14: The cubic cell model used for obtaining ¢; values Zhang et al. [2009].

above in Section 1.3.1, which relates that pore closure is faster for high reduction ratios
and large negative stress triaxiality levels. Here, the effect of power exponent, i.e. of a
material property, is also considered.
Vo 33 ™
m " 2 4

E"eiv = 5 (2|TX| + G(m)) + Cl|TX| + 362E€ + 5C3Ee + c4.
Integration of Eq. 1.24 over the strain path (assuming constant triaxiality ratio during
deformation) leads to:

) . (1.25)

“//0 = exp <—E6

The authors studied the evolution of void volume as a function of macroscopic strain
E, for several values of power exponents and stress triaxiality levels. It is shown that
stress triaxiality might considerably increase void closure, as shown in Fig. 1.15a, and
that decreasing m has a positive influence on void closure, as shown in Fig. 1.15b. It
is noteworthy that large stress triaxiality have an effect since the earliest stages of void
closure, by increasing the initial rate of closure. The macroscopic strain required for void
closure is thus reduced by increasing stress triaxiality.

(1.24)

1
3 /3m m
3 (2|TX| +G(m)> +c1|Tx| + c2E% + 3B + ¢4
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Figure 1.15: Effect of stress triaxiality ratio and of power exponent on void closure,
from Zhang et al. [2009].

Lee and Mear [1992, 1994] discussed the validity of Gurson’s models regarding a mate-
rial containing aligned spheroidal voids in axisymmetric loading conditions. Various shapes
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were considered, such as penny-shaped, oblate, prolate, or cylindrical voids. The authors
provided qualitative results regarding the evolutions of ellipsoidal voids under various tri-
axiality ratios. It is pointed out that initial void shape may have a significant influence
on void closure. Randomly orientated ellipsoids are also discussed. It is concluded that
it is extremely difficult to obtain accurate results, although bounds and estimates were
proposed by Ponte Castaneda [1991]. The qualitative data in Lee and Mear [1994] were
used by Zhang and coworkers [Zhang and Cui, 2009, Zhang et al., 2009] to compare with
the results obtained from Eqgs. 1.22 and 1.25.
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1.3.3 Comparison of models
Comparison by Zhang and Cui [2009]

The analytical model in Eq. 1.22 was discussed by Zhang and Cui [2009]. The results were
compared with data from Lee and Mear [1994] in Fig. 1.16. As it can be seen for m = 0.33,
the interpolation scheme and the numerical data are in very good agreement for all tested
stress triaxiality ratios. The authors implemented Eq. 1.22 in a FE code to compute their
prediction model at the macroscopic scale in a void-free process. They used the case of a
billet under uniaxial compression, as shown in Fig. 1.17. The model was able to predict
the volume of voids with very good accuracy, providing considerable reduction CPU time
(the authors showed a reduction by a factor of 10).
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Figure 1.16: Comparison of void evolutions, with m = 0.33, given by Eq. 1.22 and by Lee
and Mear, from [Zhang and Cui, 2009].
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Figure 1.17: Comparison of the results at 32% billet reduction, from [Zhang and Cui, 2009].

Comparison by Zhang et al. [2009]

Zhang et al. [2009] compared their semi-analytical model (Eq. 1.25) with the models of
Gurson (G), Gurson-Tvergaard (GT), Budiansky-Hutchinson-Slutsky (BHS), the results
of Lee and Mear [1992, 1994], as well as the finite element (FE) results that were used
for calibration. The comparison is made for two values of stress triaxiality ratios and is
presented in Fig. 1.18. The plot for G and GT-models were obtained using Eq. 1.11, using
the values ¢; = ¢2 = 1, and ¢; = 1.5 and g2 = 1, respectively. The plot for BHS-model was
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obtained Eq. 1.16. For very compressive stress triaxiality ratios Tx = —2, Fig. 1.18a shows
that all models predict a roughly similar evolution of void volume, although G and G-T
models seem to slightly overestimate void closure. For the less compressive triaxiality ratio
Tx = —0.6, Fig. 1.18b shows that two different behaviors are predicted by the models. This
difference is attributed to the assumption made in the G, G-T, and BHS models, that the
spherical /spheroidal void remains spherical /spheroidal during deformation. This difference
rises with strain E., since the actual shape of the void deforms towards a crack-shape. This
difference is less marked with larger negative stress triaxiality ratios (Fig. 1.18a), as the
change in shape is slighter. This observation was also made by Lee and Mear [1994]. This
is coherent with the high triaziality assumption of BHS model.
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Figure 1.18: Comparison of the criterion of Zhang et al. [2009] (Eq. 1.25) plotted in black
line, with data from literature and FE simulations on cell model, with m = 0.2,
from [Zhang et al., 2009].

The model of Zhang et al. [2009] was recently implemented in the commercial finite
element code DEFORM-3D™ by Zhang et al. [2012]. The influence of various process
parameters on void closure was studied using upsetting, blocking and multi-pass forging.
The influence of die-shapes is discussed in order to enhance void closure and thus material
soundness. Although the model showed good agreement with the result from the litera-
ture regarding the evolution of a sphere under constant boundary conditions (Fig. 1.18),
no validation of the model under complex loadings was presented. The accuracy of the
presented results remains thus questionable in the case of industrial processes. This point
will be discussed in Chapter 5.

Comparison of all models

A comparison of all models is now proposed in order to discuss the reliability of the models
within the range of values of interest of the present work. According to the literature,
the stress triaxiality ratio Tx and the material parameter m are the two parameters that
were taken into account. According to the review on industrial issues (section 1.2), the
range of interest for the stress triaxiality values is Tx = [—1,0]. This range is extended to
Tx = [—1.2,0] in the present comparison.

The simple behaviour law in Eq. 1.9 that is used in the analytical and semi-analytical
models Budiansky et al. [1982], Duva and Hutchinson [1984], Zhang and Cui [2009], Zhang
et al. [2009] is insufficient to model the behaviour of hot metals presented in section 1.2.
However, several values of m are considered in order to illustrate the dependence of the
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models to material behaviour.

In total, six values of stress triaxiality ratios Tx and three values of m were defined and
void volume evolutions are plotted in Fig. 1.19. The six models are synthetically recalled
in Table 1.5 with the values of coefficients that were used to plot the 18 configurations.

Model Type Equation Constants values
STB [Lasne, 2008| Empirical Eq. 1.5 Ke=5
Tanaka et al. [1986] Empirical Eq. 1.4 C;; (Table. 1.6)
Gurson-Tvergaard [1982] Analytical Eq. 1.11 =15 gp=1
Budiansky et al. [1982] Analytical Eq. 1.16 -
Duva and Hutchinson [1984] Analytical Eq. 1.20 c1 and co (Table. 1.7)
Zhang and Cui [2009] Analytical Eq. 1.22 -
Zhang et al. [2009] Semi-analytical ~ Eq. 1.25 c1,¢2,c3,cq4 (Table. 1.8)

Table 1.5: Equations of the models used to plot Fig. 1.19.

Coo Co1 Co2 Cn Ci2 C22
0.0114 0.84 -2.48 2.17 12.6 -1.98

Table 1.6: Values of coefficients Cj; in Eq. 1.4, from Tanaka et al. [1986].

m 1.0 0.5 0.2 0.3 0.1 0.01
c1 0. 0.5951 0.7061 0.8049 0.9002 1.0066
c2 0. -0.5479 -0.6571 -0.7340 -0.7874 -0.8329

Table 1.7: Values of coefficients ¢; and ¢y in Eq. 1.20 resulting from analytic solutions from
Duva and Hutchinson [1984], tabulated in Zhang and Cui [2009].

m 1.0 0.5 0.2 0.3 0.1 0.01
c1 0.5048 0.4911 0.6016 1.1481 2.9132 6.5456
c2 6.4675 0.8002 -0.6981 -4.2026 -11.6464 -15.3775
c3 14.2610 53.8018 72.6397 108.2114 185.5622 324.4417
c4 -0.3379 -0.2314 -0.1243 -0.2480 -0.6511 -1.9575

Table 1.8: Values of coefficients ¢1, ¢, ¢3 and ¢4 in Eq. 1.25 resulting from calibration using
finite element simulations obtained by Zhang et al. [2009].

From Fig. 1.19, it can be seen that Gurson-Tvergaard curves coincides with the ones
of Duva and Hutchinson [1984] for m = 0.01, even though their expressions are rather
different. Gurson-Tvergaard was developed for perfectly-rigid plastic materials (which
corresponds to the case m = 0). The good agreement comes from the fact that both
models are based on the same assumptions and consider the evolution of a spherical void.
This is no longer the case for larger m values, as the model of Gurson-Tvergaard is valid
for perfectly-rigid plastic materials, exclusively.

The influence of material parameter m was neither considered in both empirical models
(STB Lasne [2008], Tanaka et al. [1986]).

The curves from Budiansky et al. [1982] model tends to get closer to the ones of Duva and
Hutchinson [1984| for T'x < 1. This is coherent with the fact that Duva and Hutchinson
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[1984] is an extension of Budiansky et al. [1982] (based on high triaziality assumption) to
all values of Tx. Both models are superimposed in the case of linear viscous materials
(m = 1), since both equations reduce to Eq. 1.15 for linearly viscous materials.

The comparisons made in Zhang and Cui [2009] and Zhang et al. [2009] covered the
range —2.7 < Tx < —0.33 (in Figs. 1.16 and 1.18). Both comparisons were made for a
single value of m (for m = 0.33 and for m = 0.2, respectively). In Fig. 1.19, both models
are plotted over the range of interest for T’x, and for the three values of m. Rather good
agreement between both models is observed over the range —1.2 < Tx < —0.4 as well,
notably for the value m = 0.3. Void closure is obtained around similar strain values.
Void evolution is roughly similar, although a few differences may be pointed out. The
analytical model provides monotonous curves, whereas the semi-analytical model induces
several changes of slope. The latter also exhibits an asymptotic final closure, unlike the
analytical model that presents a rather steep decrease until complete closure.

Larger deviations can be observed for the less compressive triaxiality values (—0.2 <
Tx < 0.0), especially for extreme values of m (m — 0 and m = 1). Such values of triaxiality
were unfortunately not discussed in the papers, but may require full attention, as they
belong to the range of interest within the present work. Very different initial behaviours
are predicted between the analytical model and the semi-empirical model. Let us finally
note that, for the analytical model, the value of strain that is required for complete closure
using T'x = 0.0 is lower than for T’y = —0.2, which is physically counter-intuitive. The best
agreement between the analytical and semi-empirical models is obtained for Tx = —0.4,
i.e. close to the particular case of uniaxial compression (Tx = —%) The curves also show
good agreement with the STB model, except for the value m = 1 (although such a value
remains excessively elevated regarding the ranges of interest within this work).

The empirical model of Tanaka et al. [1986] systematically underestimates void closure,
although the general tendency regarding the dependence on stress triaxiality is respected.
However, the evolution of void volume with strain remains rather different from analytical
models.

34



1.3 Literature review

—-0.4

—-0.8

—1.0

—-1.2

‘0.0 0.2 0.4 06 0.8 1.0
Eq. strain

|

080 02 04 06 08 10

Eq. strain

‘80 0.2 0.4 06 0.8 1.0

Eq. strain

‘0.0 0.2 0.4 06 0.8 1.0

Eq. strain

‘0.0 0.2 0.4 06 0.8 1.0
Eq. strain

‘0.0 02 04 06 0.8 1.0

Eq. strain

‘0.0 02 0.4 06 08 1.0

Eq. strain

‘0.0 02 04 06 0.8 1.0

Eq. strain

0.0 02 0.4 0.6 0.8 1.0

Eq. strain

[

8.0 02 04 06 08

80 02 04 06 08 10
Eq. strain

1.0
Eq. strain

80 02 04 06 08 10

Eq. strain

T

T T
STB model
N - - Tanaka et al.
AN ---- Gurson-Tvergaard
\ Budiansky et al.
—— Duva and Hutchinson

—— Zhang and Cui (analy.) |{
= Zhang et al. (semi-emp.)

\

Eq. strain

80 02 04 06 08 1.0

Eq. strain

80 02 04 06 08 10

Eq. strain

—

0 02 04 06 08 10
Eq. strain

0 02 04 06 08 1.0
Eq. strain

Figure 1.19: Comparison models given in Table 1.5 (STB model [Lasne, 2008|, Tanaka
et al. [1986], Gurson-Tvergaard [1982], Budiansky et al. [1982], Duva and
Hutchinson [1984], Zhang and Cui [2009] and Zhang et al. [2009]) over the
range —1.2 < Tx < 0.0 and for m = {0.01,0.3,1}.
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1.3.4 Conclusions

Two main approaches are used in the literature to study void closure: the macroscopic
approach and the micro-analytical approach.

e Using the macroscopic approach, it is possible to study void closure according to accu-
rate industrial conditions (voids, process). Important improvements are pointed out
in the literature regarding process design. Nevertheless, this approach is very limited
by the fact that the obtained results entirely depend on process-conditions and initial
porosity state (geometry and position). A full explicit description is systematically
required and no generalization is possible. In addition, due to the large disparity be-
tween voids and workpieces dimensions, numerical simulation using full-field explicit
descriptions at the workpiece scale usually involves very heavy computations.

e The micro-analytical approach is able to predict the analytical evolution of an iso-
lated void in an infinite matrix under constant mechanical loadings. The mechanical
analysis requires a rather large number of assumptions, especially regarding the ma-
terial’s behaviour and initial analytical void shape. Therefore, this approach remains
questionable with respect to industrial issues. In addition, there is at present a lack
of validation cases regarding such approaches.

From the most advanced studies, empirical, analytical and semi-empirical models were
discussed. The STB model and the model of Tanaka et al. [1986] are based on empirical
results that were obtained from experiments and numerical simulations. They were ini-
tially calibrated for the case of spherical voids using a given material law. Both models
respect the general tendency relative to stress triaxiality ratio. They do not consider any
dependence to material behaviour. Further calibration of these models is possible to con-
sider additional parameters. However, new coefficients might at best predict void closure
for a given geometry and a given material, and must be repeated for any configurations.
Generalization is at present not permitted using such models.

Among all analytical models, the one from Zhang and Cui [2009] seems to be the most
advanced as it covers the largest range of stress triaxiality ratios, material behaviour, and
considers the change in void shape during deformation. However, this model suffers from
limitations as well. Firstly, the evolution of a sphere is exclusively predicted, although
it was shown [Lee and Mear, 1994| that initial void shape might significantly influence
the void closure behaviour. Secondly, the reliability of the model remains questionable
as there is a lack of validation cases in the literature. In addition, some counter-intuitive
observations were made at low compressive stress triaxiality ratios (Fig. 1.19).

The semi-empirical model from Zhang et al. [2009] suffers from comparable limitations
as the previous from the same author. Spherical initial voids are exclusively considered
and a lack of validation cases was stated.

The initial state of voids (morphology) will therefore be intensively studied within this
work, as complex geometries were pointed out in the industrial review, and according to
the significant influence that was qualitatively exhibited in literature. The dependence to
mechanical state will also be further studied in order to better predict the phenomenon over
the entire range of stress-triaxiality and deformation. The influence of material parameters
will also be further studied, notably regarding actual behaviours of hot metals (e.g. strain
hardening or softening effects).

To consider all these new influences, void closure will be studied at the meso-scale,
involving the use of a representative volume element. This approach is described in Chap-
ter 2.
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Chapter 2 Description of the meso-scale approach
Résumé francais

Etant données les fortes limitations des deux approches macroscopiques en champ complet,
et micro-analytique, présentées au chapitre précédent, une approche de type méso-scopique
est présentée dans ce chapitre.

L'’utilisation d’un volume élémentaire représentatif (VER) est présentée. L’application
de conditions aux limites représentatives des trajets de chargement thermo-mécaniques in-
dustriels est décrite. Il est montré que la méthode utilisée permet de respecter un profil de
triaxialité des contraintes sur un trajet de déformation de facon trés précise. La méthode
permet également d’appliquer des grandeurs mécaniques constantes (triaxialité des con-
traintes, vitesse de déformation), en dépit de la non-linéarité de la loi de comportement
utilisée.

La génération de maillages 3D de VER contenant un pore réel dont la morphologie a été
obtenue par microtomographie est ensuite décrite. L’utilisation d’éllipsoides de morpholo-
gie équivalente, basée sur la matrice d’inertie de pores réels, est également détaillée. Une
validation numérique de 'approche est finalement présentée.

L’influence des paramétres numeériques (taille de maille et dimensions du VER) sur les
résultats des simulations est discutée et un jeu de valeurs assurant la fiabilité des résultats
est donné.

Finalement, un cas de refermeture d’un pore réel dans un VER avec conditions aux
limites représentatives d’un chargement industriel réel est comparée & un cas de simulation
explicite du procédé industriel concerné. L’accord est trés bon en terme de prédiction du
volume et le gain en terme de temps de calcul est significatif.

38



2.1 Introduction

2.1 Introduction

The final objective of this PhD work is to obtain a reliable numerical tool that can be
industrially used for process design in terms of void closure efficiency. From an industrial
point of view, such numerical tool shall therefore fulfill the two following requirements:

i) to provide a representative prediction of void closure and

ii) to minimize the required computation time.

As pointed out in the previous chapter, the full-field explicit description is often used in
the literature, using an entire workpiece containing explicit voids. Using adequate numer-
ical features (e.g. mesh size, time step), this description may become extremely accurate
for studying void closure in real process conditions, according to a given case study. Yet,
the obtained results naturally are case-dependent. This remark makes this approach par-
ticularly unsuitable for a sustainable industrial use, as a detailed knowledge of the actual
void state is required. Moreover, there is at present a lack of applicable techniques to easily
and precisely observe the actual state of voids in the workpieces during production. Met-
allography may provide high resolution imaging of voids, but it is a destructive technique.
Ultrasonic testing is non-destructive and may provide a good localization but the actual
void shape is captured with a rather low resolution. X-ray microtomography might show
great interest as it is also non-destructive and provides an accurate description of the void
shape; however it is a rather costly technique and is unfortunately limited to relatively
small samples, while the presence of voids is known to be a typical feature of large work-
pieces. To summarize, the full-field explicit description at the workpiece scale can provide
an excellent but costly simulation of the actual phenomena in accurate conditions (par-
tially fulfilling requirement (i)), which makes it unsuitable to understand the phenomenon
from a general point of view. Requirement ii) is anyway far from being fulfilled, according
to the heavy computations that are involved.

Mean-field models appear to be excellent candidates to fulfill requirement (ii). A mean-
field model is a function that is able to predict the evolution of a given variable (e.g. void
volume) at any point of a workpiece during process, according to a certain number of
parameters. They can easily be implemented in a finite element code, as they depend on
mechanical fields (typically stress and strain) and a set of initial parameters. This pre-
diction function is therefore automatically computed at any integration point, providing
maps of void closure. Process design can be performed using these maps. Existing pre-
diction functions from literature were discussed in Chapter 1. They were either obtained
analytically [Budiansky et al., 1982, Duva and Hutchinson, 1984, Zhang and Cui, 2009],
semi-analytically [Zhang et al., 2009], or empirically [Tanaka et al., 1986, Lasne, 2008]. A
certain number of limitations were shown in terms of void volume prediction, making such
functions unsuitable to fulfill requirement (i). Within this work, a new mean-field model
is sought in order to better predict void volume evolution.

Void closure is in fact a micro-scale problem. It is influenced by local thermo-mechanical
fields, no matter the macroscopic thermo-mechanical fields in the entire workpiece. The
use of a Representative Volume Element (RVE) was chosen to separate macro- and micro-
scales. Void closure can therefore be studied at the micro-scale using a full-field description
(enabling the best level of details) and using boundary conditions that are representative
of what a material point undergoes during industrial processes.

The use of an RVE can be seen as an accurate tool to understand void closure, according
to various input parameters. This chapter presents a detailed description of this tool. First,
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the application of boundary conditions is presented. It is followed by a detailed description
of the generation of tridimensional meshes for the RVE.

2.2 General assumptions

The separation of micro- and macro-scales requires the condition that the void dimen-
sions are small with respect to the workpiece dimensions. From this condition, two main
assumptions can be made:

1. The presence of voids in a workpiece has no influence on the macroscopic deformation
of the workpiece. This assumption distinguishes the present approach from the one
of Gurson, in which the presence of a void volume fraction modifies the yield stress
of the global material. In the present work, it is neglected as initial void fraction is
generally very low. In addition, it is expected to decrease and tend to zero.

2. The thermo-mechanical fields that are obtained from the macroscopic scale are con-
sidered as locally homogeneous and can be used as remote boundary conditions at
the RVE-scale.

These assumptions will be discussed in Chapter 5.
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2.3 Boundary conditions

The RVE is a cuboid of dimensions D, D, and D,. Three symmetry planes (Ozy), (Oyz),
and (Ozz) are defined. The boundary conditions are applied on the three remaining planes
of the RVE, i.e. in each spatial direction, as presented in Fig 2.1. It is chosen to apply a
normal velocity along z-axis, and normal stresses along x and y-axes. This choice presents
the advantage of providing an accurate control of both the deformation state and the stress
state.

Figure 2.1: RVE with imposed boundary conditions.

Equivalent strain, as well as stress triaxiality ratio were shown to have first order in-
fluences on void closure. As discussed in Chapter 1, this was demonstrated using the
micro-analytical approach [Budiansky et al., 1982, Duva and Hutchinson, 1984, Lee and
Mear, 1994], the macroscopic explicit approach [Tanaka et al., 1986, Stahlberg, 1986 and
more recently using the meso-scale approach [Zhang et al., 2009].

The objective is thus to impose a given evolution of stress triaxiality ratio vs. equivalent
strain. Stress triaxiality ratio is defined as Tx = %=, where 0y, = 3tr(o) is the mean

stress and & = \/%a : o is the von Mises equivalent stress. Equivalent strain is defined as

_ 2.
€= 3E L E.

2.3.1 Real industrial conditions

Mechanical fields were previously recorded using the point tracking method, described
in the previous chapter in section 1.2.4. The obtained ranges were defined in terms of
strain-rates £ = [0.01, 10] s™, and stress triaxiality ratio Tx = [~1,0]. The case of steel
hot rolling from Ascometal is used as an illustrative example. Time-dependent boundary
conditions are imposed on the RVE. Values for zz-strain and zx- and yy-stresses that were
obtained from the void-free simulation for a material point are applied as such on the three
directions of the RVE.

The values were measured at several points in the RVE and homogeneity was verified
throughout the RVE (see Fig. 2.2). Local variations can be observed at the edges of
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the cuboid, resulting from the local application of boundary conditions. However, using a
sufficiently large RVE, these local fluctuations will not impact the values of stress triaxiality
ratio in the zone of interest, i.e. the center of the RVE. The choice of RVE dimensions is
discussed in section 2.5.2.
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Figure 2.2: Value of stress triaxiality ratio in the RVE under hot rolling BC.

The values measured using point tracking for a central point in the RVE are then com-
pared to the ones from the process simulation. The accuracy of xzx- and yy-stresses and
zz-strain was verified in Figs. 2.3a,b,c. Boundary conditions are thus applied with good
accuracy in each spatial direction.

It was shown that the evolution of stress triaxiality ratio vs. equivalent strain was a key
parameter for void closure. It is therefore also plotted in Fig. 2.3d. Apart from the slight
difference observed for the final strain values, the figure shows that the evolution of stress
triaxiality ratio ws. equivalent strain, is represented in the RVE with very good accuracy.
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2.3.2 Imposed mechanical state

In order to quantitatively (and independently) study the influence of mechanical param-
eters on void closure, a constant mechanical state must be imposed. In this section, a
method to impose a constant stress triaxiality ratio and constant strain-rate is presented.

From the definition of stress triaxiality ratio, there is no unicity of the relationship
between the stress tensor and the stress triaxiality ratio. In fact, an infinite number of
stress states can lead to the same stress triaxiality ratio. Here, an additional condition
is introduced by assuming axisymmetric conditions such that the prescribed boundary
conditions 0, = 0yy. This choice was made in a first approach and may be considered
as another general hypothesis within this work. It will be discussed in Chapter 5 as well.
The prescribed stress triaxiality ratio can be expressed as:

Ty = I = T T ¥ 0 Wt Oa 21)
o 30 30
and equivalent von Mises stress reduces to:
0= |0gs — 02z (2.2)
It comes: |
Oxx — <TX + 3) o Vo, < 0z,
(2.3)

In Eq. 2.3, the values of remote stress 0., (and o,,) can be obtained knowing the remote
equivalent von Mises stress in the RVE. The remote equivalent von Mises is given by the
material behaviour according to the remote strain conditions that are imposed using the
velocity boundary condition (Eq. 2.4). According to the axisymmetric loading conditions,
it comes €, =~ €yy. The equivalent strain is thus reduced to the expression:

I <D2 - DZ>
D?
where D, and D? are the current height and the initial height of the RVE, respectively.

The constant prescribed strain-rate £* is imposed using a normal velocity V, on the
upper surface of the RVE, i.e. along the z-axis (see Fig. 2.1),

ER s = , (2.4)

V.(t) = —€*D,(t). (2.5)

The tridimensional boundary conditions are thus applied as shown in Fig. 2.1, using the
values given by Eq. 2.5 and Eq. 2.3.

The obtained stress triaxiality field is presented in Fig. 2.4. For all cases, the measured
stress triaxiality field T’x is rather homogeneous throughout the RVE, except at the edges,
due the local application of boundary conditions. Apart from this, the value of stress
triaxiality ratio T'x varies on a range T% £ 0.02 (green color) around the prescribed value,
over the whole RVE. In the case of T = —1.0, the values of T’x tend to be slightly higher
(less compressive) than the prescribed value, but remain on the range T% — 0.02 < T'x <
T% + 0.06 (yellow and green colors).

The imposed values are verified by plotting, for several prescribed values T%, the values
of xx—stress and yy-stress vs. time in Fig. 2.5a,b, and & vs. time in Fig. 2.5c. The values

43



Chapter 2 Description of the meso-scale approach

are measured using point tracking at a central position of the RVE. The evolutions of
xx—stress and yy—stress are directly imposed by Eq. 2.3 and their evolution is proportional
to the one of the behaviour law (i.e. stress—strain curve). The evolution of measured
strain-rate shows that the value is imposed with very good accuracy with respect to the
prescribed value &* = 1 s~!. This remark shows that the approximation that is made in
Eq. 2.4 is acceptable.

The evolution of the stress triaxiality ratio is plotted in Fig. 2.5d. The figure verifies
that the values of stress triaxiality remains constant over the whole deformation range.
The values of 0., and o,, (see Fig. 2.5b) are driven by the boundary conditions given in
Eq. 2.3. The figure shows that their value faithfully follows the evolution of &, the latter
being driven by the behaviour law of the material under &* = 1 s=% (black line).

Regarding the measured values of T, the highest discrepancy is about 4% superior to
the prescribed condition T% = —1 (obtained around & = 0.2). For the less compressive
state T% = 0, the measured value of T’x is slightly inferior to the prescribed value (about
2%). The obtained discrepancies are acceptable. The presented method is thus suitable to
impose a constant stress triaxiality ratio in the RVE.
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Figure 2.3: Comparison of mechanical variables obtained from void-free process simulation
(dashed lines) and RVE with boundary conditions (dots).
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Figure 2.4: Stress triaxiality field for various prescribed boundary conditions T, for & =
0.2. For each case, the legend represents the range 7% 4 0.22.
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Chapter 2 Description of the meso-scale approach
2.4 Generation of a 3D Representative Volume Element

This section describes the generation of a tridimensional RVE containing internal void.
It is firstly presented for the case of real-void morphology obtained from experimental
observation. Then, the generation of an RVE containing a morphology-equivalent geometry
is detailed.

2.4.1 Real-void morphology obtained from 3D microtomography
X-ray microtomography

X-ray microtomography is a relatively recent technique that enables tridimensional non-
destructive examination of materials [Maire et al., 2001, Salvo et al., 2003]. It is divided
in two successive steps: an acquisition step and a reconstruction step. For the acquisition
step, the sample is placed between the X-ray source and the detector on a rotating stage, as
schematically presented in Fig. 2.6. Rotation is discretized in several hundreds of rotation
angles. For each angle of rotation a projection radiograph is acquired from the detector.
All projection radiographs are then numerically treated during the reconstruction step to
generate a tridimensional grayscale image.

Detector

Sample

X-ray source

Figure 2.6: Schematic drawing of the acquisition step of a tomograph.

Over the last decade, synchrotron lighting source was often used in the literature to
observe void evolution in steel samples Everett et al. [2001], Bouchard et al. [2008], Maire
et al. [2008] and in aluminum samples Buffiere et al. [1999], Morgeneyer et al. [2008],
Horstemeyer et al. [2003]. As these studies focus on void evolution under tensile conditions,
dealing with ductile damage, the results remain out of the scope of the present work.
Nevertheless the methodology shows great potential of using X-ray microtomography for
studying void closure.

Toda et al. [2009] used synchrotron microtomography to study the closure of hydrogen
micropores in Mg-Al alloy under hot and cold deformation and annealing. The study shows
attractive results in terms of accuracy of the tridimensional images obtained with samples
containing voids under compression.

Using synchrotron’s monochromatic light presents the main advantage of providing a
high resolution (about 1 pm voxel size) for the 3D image, due to the high energy and
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2.4 Generation of a 3D Representative Volume Element

quality of the incoming X-ray photons. It is also possible to perform microtomography
using an X-ray tube. In this case, the photons are accelerated using an acceleration tension
that varies between 220 kV and 450 kV for classical tomographs. The obtained resolution
is generally limited to about 10 um voxel size. Another difference with synchrotron light
is that an X-ray tube generates a conic beam, while synchrotron provides a parallel beam.
Magnification is therefore possible using an X-ray tube by shifting the sample in the conic
beam. Lee et al. [2007, 2011] used a 450 kV-tomograph to obtain a tridimensional image
of a porous @90 mmx200 mm steel sample. A tridimensional mesh was generated and
FE simulations using the commercial finite element code DEFORM-3D™ were performed
under hot compression. The final mesh was compared with a second tridimensional image of
the deformed sample, and a good agreement was obtained. Due to the very low availability
of synchrotron facilities and the promising results found in literature using X-ray tube, the
latter solution was chosen within this work.

3D images of industrial samples

Several porous specimen were collected by various partners and are listed in Table 2.1.

Partner Alloy Sample Dimensions (mm) Tomograph Voxel size (um)
T1 27 x 27 x 90 CETIM 21
Timet Ti-alloyl T2 20 x 20 x 50 Fr(;;g:}flc:/f[er i’é
TB 7Tx7x90 CETIM 13
Aubert&D. Steell4 AD 40 x 40 x 330 CETIM 100
JD20 @20 x 85 CETIM 128
Ascometal - Steel2d —yz 10 x 10 x 85 Fraunhofer 102
C70lav 10 x 8.2 x 6.1 Internal 12
C70lap 6.1 x 6.1 x6.1 Internal 12
Constellium  Al-alloyl CA 7.9 X 7.7 x 8.2 Internal 18
CG 7.8 %79 x84 Internal 18
C3 9.2 x9.2x9.2 Internal 18

Table 2.1: List of samples that were observed using X-ray microtomography at CETIM,
Fraunhofer, or directly provided from internal data.

The samples were extracted from critically porous workpieces according to a previous
localization of voids using ultrasonic testing. In a first phase, two Ti-alloy samples (T1 and
T2) and two steel samples (AD and JD20) were collected in order to constitute a various
sampling of various materials and void state. They were observed by X-ray microtomog-
raphy at CETIM! and Fraunhofer?. At CETIM, a direct access to the microtomograph
facility was provided. The scanning parameters could be carefully adjusted in order to
enhance the quality of the tridimensional images. Regarding the Fraunhofer facilities, no
access was provided. The scans were performed by the Fraunhofer Institut and the results
were shipped.

According to the results obtained during the first phase, two further samples (TB and
JDAT) were then analyzed in a second phase. The 3D images of the samples of Al-alloy

!CETIM Senlis, Péle EPI, BP 80067 52 avenue Felix Louat, 60304 Senlis cedex, France
2Fraunhofer Institut Zerstérungsfreie Priifverfahren IZFP, Campus E3.1, 66123 Saarbriicken, Germany

49



Chapter 2 Description of the meso-scale approach

had been previously obtained from internal work at Constellium and were received as such
between the first and the second phase.

The maximum dimensions of a sample to be scanned are defined according to several
parameters:

e The energy of the X-ray beam, which depends on the acceleration tension.

e The attenuation coefficient of the material. The beam intensity obey to the Beer—
Lambert law
I = Ipel=D), (2.6)

where I is the incident intensity, « the attenuation coefficient and D the path

length. The attenuation coefficient is a material property which increases with the
atomic number. Within the materials in Table 2.1, the steels present the largest
attenuation coefficients, then the Ti-alloy and finally the Al-alloy.

e The detector sensitivity.

e The spatial capabilities to contain the sample inside the chamber, considering its
360°—rotation.

Using X-ray tubes, the highest energy source (i.e. 450 kV acceleration tension) enables
larger samples to be scanned, but the X-ray source focal is generally larger. This reduces
the radiographs’ sharpness. Sharper images may be obtained using the lowest energy source
(i.e. 220 kV acceleration tension) as their focal is smaller, but the maximum acceptable
thickness is reduced. A compromise had therefore to be found for each sample to obtain
the best quality of images.

Examples of tridimensional reconstructed images are given in Figs. 2.7, 2.8, 2.9, 2.10
and 2.11. For each sample, a global 3D overview and 2D-slices (in the three spatial
directions) are presented. For the samples T1, T2 and AD, the number and size of voids
was lower than it was expected according to previous ultrasonic estimation. It is notably
the case for the two Ti-alloy samples, in which only a few submillimetric voids (0.1 —
0.5 mm) were detected.

The steel sample AD presented millimetric voids (1 — 10 mm), and the obtained image
had a relative low contrast due to the excessive sample-to-void thickness ratio. Neverthe-
less, two particularly porous zones could be identified, showing good agreement with the
previous ultrasonic indications.

The Al-alloy sample C3 contains rather dispersed submillimetric voids (0.1 — 0.5 mm).
The obtained contrast is better than the one for Ti-alloys, due to the difference of absorp-
tion coefficient.

The sample JD20 provided the best contrast. It was due to the relative small dimensions
of the sample combined with a low sample-to-void thickness ratio. Centerline millimetric
voids were observed throughout the sample. A continuous porous zone was identified at
the lowest half of the sample as it is presented in Fig. 2.11. The upper half is mainly
composed of three isolated voids with dimensions about 3 — 10 mm. They present a rather
tortuous aspect.

Image filtering

X-ray microtomography generally involves a certain number of artifacts. Using thick sam-
ples, the transmitted light intensity might be relatively low and the sensitivity range of
the detector may induce noise on the grayscale radiographs. They also appear on the
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2.4 Generation of a 3D Representative Volume Element

Figure 2.7: Tridimensional raw image of sample T1 (Ti-alloy) obtained using X-ray micro-
tomography, and 2D slices along each spatial direction.
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Chapter 2 Description of the meso-scale approach

O

Figure 2.8: Tridimensional raw image of sample AD (steel) obtained using X-ray microto-
mography, and 2D slices along each spatial direction.
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2.4 Generation of a 3D Representative Volume Element

Figure 2.9: Tridimensional raw image of sample T2 (Ti-alloy) obtained using X-ray micro-
tomography, and 2D slices along each spatial direction.

X

Figure 2.10: Tridimensional raw image of sample C3 (Al-alloy) obtained using X-ray mi-
crotomography, and 2D slices along each spatial direction.
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Chapter 2 Description of the meso-scale approach

Figure 2.11: Tridimensional raw image of sample JD20 obtained using X-ray microtomog-
raphy, and 2D slices along each spatial direction.
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2.4 Generation of a 3D Representative Volume Element

3D reconstructed image. The interaction of X-rays with the surface of the sample may
also involve brighter or darker zones due to beam hardening phenomenon and reflexion
at the sample’s surface. The objective being to capture the void-matrix interface using a
grayscale threshold value, these two artifacts must be eliminated. The free software Image.J
[Rasband, 1997-2012.] is a very powerful software for the analysis of tridimensional images
and was thus used within this work for image filtering.

The grayscale tridimensional data is first submitted to a 3D median filter in order to
reduce the grayscale noise, (a) — (b) in Fig. 2.12. Compared to other filters (e.g. Gauss,
mean value) the median filter presents the advantage of reducing the noise without affecting
the image sharpness. This is of great interest, especially at the void-matrix interface.

The presence of brighter and darker zones is reduced by means of a background subtrac-
tion algorithm. A background image is computed according to the rolling ball algorithm
[Sternberg, 1983], which can be briefly described as follows. Let us consider the 2D im-
age Fig. 2.12 (b) and imagine a ball that is rolling at the top of the grayscale profile to
generate the background profile. The level of details to be eliminated thus depends on
the ball radius. In this case, a ball radius of 20 voxels was chosen to obtain (¢). The
obtained background image is subtracted to the image to obtain the final treated image

(d) = (b) - (0.

3D surface mesh generation

A tridimensional surface mesh of the matrix-void interface was generated from the tridi-
mensional grayscale image using an algorithm that was previously developed at CEMEF
by Zaragoci et al. [2012], Zaragoci [2012]. This algorithm is based on the marching-cubes
method [Lorensen and Cline, 1987], using extension by Rajon and Bolch [2003] providing a
grayscale interpolation to better capture the interface. According to a grayscale threshold
value that determines whether a voxel belongs to one phase (bright voxels: matrix) or to
the other phase (dark voxels: void), the algorithm generates a tridimensional surface that
corresponds to the interface between both phases.

From sample JD20, the void-matrix interface is illustrated in Fig. 2.13. Let us note the
particularly high void density of this sample. Three significant isolated voids were named
A, B and C (see enlargement in Fig. 2.13b). They will be further used within this work as
their features present great interest for the study. Note the presence of smaller voids on the
right of the window in (a), and of a continuous cavity along the entire remaining length on
the left of the window. This continuous cavity gives an excellent illustration of tortuosity
that can be encountered. However, it will not be further studied within this work as it is
industrially considered as an extreme case and is not representative of industrial issues.

In Fig. 2.14, the void-matrix interface is illustrated using a perpendicular view, i.e. along
the sample’s axis. The tridimensional surface mesh is composed of triangles, whose edges
are drawn with red segments. Note the periodicity of the nodes that directly depends on
the voxel size of the tridimensional image.

A cutting plane was introduced using the same position than the one defined for the slice
in Fig 2.12. The intersection between the surface mesh and the cutting plane is drawn using
a blue contour.

3D volume mesh generation

This section describes how to generate a tridimensional RVE containing a real void. It is
illustrated using void A.
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Figure 2.12: Image filtering, illustrated for each step with a slice of sample JD20, and a
profile of grayscale values plotted for the horizontal line.
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) Tridimensional void-matrix interface of the entire sample JD20
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(b) Surface mesh (detail)

Figure 2.13: Tridimensional surface obtained using the marching-cubes algorithm from raw
image of JD20.
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Chapter 2 Description of the meso-scale approach

A cuboidal surface mesh is created using the GLPre! software according to the di-
mensions D;, i € {x,y,z} in order to define the external boundaries of the RVE (see
Fig. 2.15). The RVE dimensions D; are defined according to the void dimensions d; using
a proportionality coefficient n, such as:

D; =n.d;, (S {x,y, Z}, (27)

where d; are the dimensions of the void. They are defined as the dimensions of the smallest
cuboid in which the void can be contained.
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Figure 2.15: Initial RVE containing void A, showing the surface elements in the internal
surface and the volume elements on the cutting plane.

!GLPre is the preprocessor used in FORGE®) to setup simulations
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2.4 Generation of a 3D Representative Volume Element

The relative position of the cuboid is chosen such that the centers of gravity of both
meshes coincide. A volume mesh (unstructured tetrahedral elements) is generated between
the internal surface mesh of void A and the cuboid’s surface using GLPre.

2.4.2 Morphology parameters

The final objective of this work is to obtain a prediction model for void closure accounting
for void morphology. A quantification of this morphology is therefore required and is pre-
sented in this section. Quantification of tridimensional morphology is often used in image
analysis and can be declined in various approaches depending on the desired information
to be quantified. Three approaches were defined and discussed by Parra-Denis [2007] to
study the morphology of intermetallic particles in aluminum alloys: the parametric char-
acterization, the spectral characterization and an original approach based on the local
tridimensional curvature of particles. The first provides a series of parameters that can
be physically interpretable. The second and the third provide accurate signatures of the
tridimensional morphologies. The parametric characterization shows great interest within
this work, as the parameters can be directly used as input data in the prediction model.
This approach was thus chosen and the parameters are described in this section.

The number of parameters that can be used to characterize void morphology must be
carefully chosen. An excessive number of parameters would substantially hinder the cali-
bration step, as well as the final use of the model.

Void volume is traditionally used to study void closure, notably using the normalized
volume V/Vj. A precise knowledge of the current void volume during closure is thus of
utmost importance. It can be seen as the first morphology parameter and is presented
first. Additionally, tridimensional parameters are introduced using the inertia matrix of
the void. The inertia matrix enables principal dimensions and orientations to be computed
and will be presented in a second paragraph.

Void volume

Let us consider the closed surface 9P = |J 7, where 7 is a triangle of the surface mesh
TET:
T, of the void-matrix interface of a void P, as illustrated in Fig. 2.16. Let us introduce the

divergence theorem:
/// div (F)dV = # F.RdS (2.8)
\%4 ov

where F is a vector field, 77 the outward unit normal to the surface V. Let F=0X ;
1

where OX = | z2 | the coordinates vector of a point X, such that div (F') = div (OX) = 3.
x3

Then Eq. 2.8 can be rewritten as
3V = # OX.7dS =Y //O_X).ﬁ’ds, (2.9)
ov 7—67’7* T

—

By definition, 7 being a triangle, it belongs to a plane and VX € 7, OX.7 = constant. Tt

leads to
3V = Z O—X;.T{T//dS = Z surf(1)0X ;.7 1, (2.10)

€T T €T
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Chapter 2 Description of the meso-scale approach

where O—X) » the coordinates vector of a point X, of the triangle 7, and 77, its outwards
unit normal. The total volume of the void can thus be obtained by

1 —
V= 3 Z surf(1)OX ;.7 1, VX, e,

(2.11)
TET:

where %surf(T)O—)fT.ﬁ’T can be seen as the signed volume vol(7;) of the tetrahedron 7;
composed by the triangle 7 and the vertex O.

In this work, the normal vector is defined by the meshing algorithm in GLPre. This
algorithm systematically defines the normal vector outwards the material. In the case of a
void, the normal vector is thus oriented towards the void and the final volume of a void is
negative. This is coherent as the equation shall be able to be used to compute the volume
of any surface mesh. In the case of a meshed domain, the surface’s normal will be directed
outwards and the computed volume will be positive. On the contrary, in the case of a void

(mesh-free domain), a negative volume can thus reasonably be defined as it exhibits the
absence of material inside the surface.

Internal sﬁfféCe oP

Figure 2.16: Triangle of the internal surface mesh (void-matrix interface).

Tridimensional dimensions and orientation

Equivalent dimensions are obtained by computing the inertia matrix of the initial void.
The inertia matrix is expressed by:

60
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2.4 Generation of a 3D Representative Volume Element

with
M1y = [[[ p(23 + 23)dV MIy = — [[[ pr120dV
MIy = [[[p p(x] +23)dV  and MIs = — [[[ prax3dV (2.13)
MIs = [[[p p(z} + 23)dV MIs = — [[[, pr1z3dV

where p is the mass density. Within this work, the inertia matrix is used for its morpho-
logical features. A homogeneous unitary density p = 1 is thus considered.
Let Py = [[[ zixz;dV, such that:

M1y = Py + P33 MIy = —Pio
MIQ P11 + P33 and MI5 = —P23 5 (214)
MI3 = P11 + P2 Ml = —Pr3

with (i,7) € {1,2,3}. Let OX the coordinates vector of a point of the triangle 7, and let
VZ] = éxzx]OX such that le(Vw) = x;xj. The divergence theorem leads to:

Bj:/// xixjdvz/// div (V;)dV = ¢b Vi, 72dS, (2.15)
P P oP

which can be rewritten as:

Pij = 1# .%',wj(O—AX)T”L))dS (2.16)
5 JJop

Using the same 1 remark than for obtaining Eq. 2.10, the scalar product OX.7 is constant

VX € 7 and OX. 70 3V°1f((7;)) the equation can be rewritten as:

1 — 1
= - Z (OXT.WT//I’i:Bde> = <VO // Ty JdS> (2.17)
=t - % surf(7

To compute the surface integral [[ x;x;dS, let us define A, B and C the three vertices of
the triangle 7 (see Fig. 2.16). The coordinates of the point X can be expressed by:

OX = OA + 31 AB + B, AC, (2.18)

where (81, B2) € [0,1] the coordinates in the new integration basis (E, A_C)) It comes:

S = ||AB A AC||dB1dBs = 2surt(r)dB1dps, (2.19)
and Eq. 2.17 becomes:
6 1 1-p1
Pij = 5 Z VOI('E) / / (OA‘Z + ﬁlAB’i -+ BQAC‘Z‘) (OA|j + ,31AB’J‘ + /BQAC‘]‘) dBodfy,
T€Tr 0 0
(2.20)
which can be developed in:
6 1 1-p1
P=t % vol(m/ / (0A[:OAl; + B2 AB:AB|; + B AC|,AC;
T€T, 0 0

+ 61/82(AB‘ZAC’J + AB‘]AC’I)]dﬁgdﬂl
(2.21)
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Finally, the value of P;; can be computed as

1
Pij = 55 ) vol(T)[12041;04]; + 2(ABl; AB|; + AC|; AC);)

et (2.22)

+ 4(OA|;AB|; + OA|;AB|: + OA;AC|, + OA|;ACI)

Using Eq. 2.22 and Eq. 2.14, the inertia matrix can be computed for any void, knowing
the coordinates of the triangles of the surface mesh of the closed surface 9P.

The inertia matrix is a symmetric positive-definite matrix. It is diagonalizable in an
orthonormal basis {u7,uz,us} of eigen-vectors, which correspond to the three principal
inertia axes of the void. It also admits strictly positive eigenvalues {I1, 2, I3}, which
correspond to the three principal inertia moments of the void.

The computation of void volume and void’s inertia matrix was implemented in the source
code of FORGE [2011] as a Fortran subroutine in order to provide values at each increment
step of the full-field simulations.

2.4.3 Morphology-equivalent ellipsoids

For the particular case of an ellipsoid, the principal moments of inertia are given by an
analytical expression of the ellipsoid’s dimensions (see Fig. 2.17):

Vv
I = 5 (’I“% + 7«%) , (2.23)

leading to:
)
Tl—\/w(12+f3—fl),
)
=) — (I + I — 1T 2.24
2 \/2V(1+3 1), (2.24)
r—\/5(I + I~ 1)
3=\ oy i+ l2=1I3).

Figure 2.17: Definition of the dimensions and orientation of an ellipsoid.

The void’s principal moments of inertia {I;, I, Is} can therefore be used to obtain a set
of morphology-equivalent dimensions rq,ry, rs of any void, by analogy with an ellipsoid.

Similarly, the eigen-vectors {u1,u3,u3} correspond to the void’s principal basis and can
also be used to set the orientation of the morphology-equivalent ellipsoid.
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Fig. 2.18 illustrates a superposition of the surface mesh for void A and its equivalent
ellipsoid obtained using the proposed methodology.

In this example, the ellipsoid was generated using data coming from a real case. Natu-
rally, it is also possible to generate ellipsoids with arbitrary dimensions and orientation in
order to generate test cases over various ranges of values. This will have great interest to
perform the sensitivity study to geometry parameters in Chapter 4. The code to generate
the surface mesh of an ellipsoid with given dimensions and orientation was implemented
using C++.

(a) Surface mesh of the RVE containing a morphology-equivalent ellipsoid to void A (green),
indicatively superimposed with void A (white)

(b) Cutting xz-plane of the volume mesh of the RVE containing the morphology-equivalent ellipsoid

Figure 2.18: Initial RVE containing the morphology-equivalent ellipsoid, compared to the real
morphology of void A.
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2.5 Validation of the meso-scale approach

In the proposed meso-scale approach, the use of RVEs is the core of the work and must
be carefully defined. The mechanisms of void closure are studied on the basis of a wide
campaign of full-field simulations at the RVE-scale. The simulations are performed using
the finite element software FORGE [2011] (described in Appendix A).

The objective of this section is to identify adequate numerical parameters in order to
ensure the validity of the results obtained at the RVE-sale. First, a sensitivity study to
numerical features is presented in terms of RVE dimensions and mesh size. The RVE
dimensions are defined according to the proportionality coefficient 7 (defined in Eq. 2.7).
The mesh sizes are isotropic and homogeneous by zone in the RVE.

The sensitivity study to numerical features was performed in several steps.

e In a first approach, approximate RVE dimensions were determined using a coarse
mesh size. The results will not be detailed in this document.

e Using these approximate RVE dimensions, the dependence to mesh size was studied
and an adequate value of mesh size was determined.

e Using the value of mesh size obtained in the previous step, the sensitivity study to
RVE dimensions was then repeated for various RVE dimensions.

e The sensitivity study to mesh size was finally repeated using another real void with
different boundary conditions.

e Using the adequate values, the results obtained at the RVE-scale for Void A were
finally compared to a full-field explicit process simulation at the workpiece scale in
order to verify the use of a meso-scale approach to study void closure in industrial
process conditions.

2.5.1 Dependence to mesh size

According to the first step, the approximate value n = 4 was obtained using a coarse mesh
size h = 2.5 mm (in a first approximation). In this paragraph, all RVE simulations are
thus performed using the value n = 4 in Eq. 2.7. Their relative computation times are
presented in Table 2.2.

hmae (mm) A, (mm)  Nbnodes Nb CPUs CPU time Total CPU time

2.5 2.5 12 000 2 30 min 1 hour

0.5 0.5 450 000 16 2 days 12 hours 40 days

2.5 1.8 14 000 1 2 hours 2 hours

2.5 1.3 19 000 2 2 hours 4 hours

2.5 1.0 23 000 2 6 hours 12 hours
2.5 0.8 32 000 2 10 hours 20 hours
2.5 0.5 67 000 4 12 hours 2 days

2.5 0.25 400 000 16 2 days 2 hours 33 days 8 hours
2.5 0.13 650 000 16 6 days 21 hours 110 days

Table 2.2: Tested mesh sizes with associated computation features, performed using CPUs
at 2.3GHz, 32Go RAM.
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2.5 Validation of the meso-scale approach

Reduction of the required area for h,,;,

In the two first lines of Table 2.2, the mesh size was homogeneous throughout the RVE,
respectively h = 2.5 mm and h = 0.5 mm. By comparing their total CPU times, it
can be seen that refining the mesh size homogeneously throughout the RVE involves a
significant increase in terms of computation times. This is mainly due to the large increase
in the number of nodes of the finite element mesh. Figs. 2.19a and b illustrate the field
of equivalent strain for both cases of homogeneous mesh size. It can be seen that the
mechanical fields are relatively homogeneous in the zones that are far from the void. It
was thus decided to define two areas for the mesh size, such as illustrated in Fig. 2.19c.
A fine mesh size h,,;, and a coarse mesh size hp,q, can be set, respectively, close and far
from the void. The dimensions of the area close to the void (refinement box) are defined
as twice the voids dimensions d;.

Effective strain
Unit: 5_unit
Frin, Cut (a) No refinement hmin = hmin = 2.5 mm

B
1.4

L&

17

L&

L5

1.4

13 (b) Global refinement hmaz = hmin = 0.5 mm
1.2

11

(¢) Local refinement Ny = 2.5 mm; Apin = 0.5 mm

Figure 2.19: Cutting plane of the RVE containing void A under hot rolling conditions, with
various mesh sizes, at t = 0.1 s.

It was then verified that the introduction of these two areas had no impact on void
closure. The void volume evolutions are plotted in Fig. 2.20. The evolutions that were
obtained with the global and local refinement are identical. On the contrary, the evolution
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Chapter 2 Description of the meso-scale approach

that was obtained without refinement (Apap = hmin = 2.5 mm) significantly underesti-
mates void closure.

In the following, the value of the fine mesh size h,,;, will be defined in the refinement box.
A coarse mesh size hp,q; = 2.5 mm will systematically be defined far from the void. Note
that the fact of coarsening the mesh size far from the void induces a significant reduction
of total CPU time (by a factor 20) for the same void volume evolution.

— Ny =P =2.5
1.0 min max
° hmi n=— hmu,.r =0.5
hm,(u: :25! hm,in =0.5

0.8}

0.2r

0f00 005 010 015 020 025 030 035 040
(D;)_Dz)/DB

Figure 2.20: Effect of hyee (in mm) on void volume evolution of void A under hot rolling
conditions.

Influence of h,,;,

Several RVE were generated using various values of hy,;, (see Table 2.2). A few examples
are illustrated in Fig. 2.21 on a cutting plane.

Void volume evolution is plotted in Fig. 2.22 for the tested mesh sizes. The figure points
out a non negligible sensitivity to mesh size. A maximum difference of about 10% was
obtained over the tested range.

In order to understand the origin of this sensitivity, profiles of equivalent strain for a
segment length in the RVE are presented in Fig. 2.23 for several mesh sizes. On the two
ranges of abscissa [0, 15] mm and [38, 50] mm, homogeneous values are measured. They
correspond to the homogeneous deformation zones in the RVE.

In the close neighborhood of the void, i.e. on the ranges [18, 24| mm and [27, 33] mm,
strong fluctuations can be observed. The fluctuations are due to the material flow around
the void. In fact, void closure involves rather strong gradients of deformation around the
void. Tt is particularly elevated in this case, as the void presents a rather tortuous aspect.
The values of equivalent strain obtained with finer meshes show higher amplitude regarding
the peaks at 22 mm and at 33 mm. In order to ensure the accuracy of such gradients of
mechanical fields, the mesh size must be sufficiently fine. Using coarse mesh sizes involves
an underestimation of the void evolution (see Fig. 2.22a and b).

Fig. 2.22 illustrates the influence of hp,y, on the value of void volume at ¢ = 0.1 s. The
figure mentions a convergence of the values when refining the mesh size. The relative
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Chapter 2 Description of the meso-scale approach

difference in terms of void volume between the results using Ay, = 0.25 mm and those
using M, = 0.13 mm is lower than 0.5%. However, the total required CPU time is
multiplied by a factor greater than 3. The value Ay, = 0.25 mm can thus be considered
as an acceptable value and will be used in the forthcoming RVE simulations.

2.5.2 Dimensions of the RVE

In the previous paragraph, the value of n = 4 had to be used in a first approximation, as
the adequate mesh size was not yet defined.

In the present section, the RVE dimensions are studied using the adequate value of mesh
size hmin = 0.25 mm. This value is set throughout the RVE hin = Amae = 0.25 mm. The
number of nodes of the finite element meshes are thus relatively high (see Table 2.3). The
total CPU times are consequently very high as well.

The same case as previously was used, considering void A under hot rolling conditions,
and is illustrated in Fig. 2.24 for the four RVE dimensions.

i Nb nodes Nb CPUs CPU time Total CPU time
2 240 000 4 6 days 17 hours 26 days 20 hours
3 400 000 4 10 days 1 hour 40 days 4 hours
4 570 000 8 10 days 16 hours 85 days 8 hours
5 722 000 8 16 days 22 hours 135 days 8 hours

Table 2.3: Tested dimensions for the RVE containing void A, under hot rolling conditions,
performed using CPUs at 2.3GHz, 32Go RAM.

Figure 2.24: Strain field in RVE using various dimensions.

The volume evolutions are given in Fig. 2.25. The values exhibit a convergence for large
RVE dimensions. This is coherent with the fact that homogeneous mechanical fields are
applied using boundary conditions. In fact, the error obtained when reducing the value of
71 is due to an interaction of the mechanical fields with the boundaries of the RVE. This
interaction can be qualitatively observed in Fig. 2.24, by comparing the strain field for
n = 2 and the three other cases. The presence of boundaries at the close surroundings
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2.5 Validation of the meso-scale approach

of the void locally modifies the mechanical fields around the void. The four cases are
given for a common remote deformation state. The resulting value of deformation in the
homogeneous zones (right and left) is about 1.35. Zones of lower deformation (around 1.25)
can be observed above and below the void. It is noteworthy that these zones are truncated
by the presence of the boundary, but the resulting field is roughly the same for all cases
n > 3. Conversely, the value obtained for the case n = 2 is lower, around 1.20, due to the
excessive proximity of the upper and lower boundaries. This results in an underestimation
of void closure. In Fig. 2.25, the volume obtained from the RVE with n = 2 is about 8%
larger than the three values obtained with n > 3.

However, increasing the dimensions of the RVE significantly increases the number of
elements of the mesh and thus the required computation time. For the case n = 3, the
difference in void volume is about 1.5% compared to n = 5, which can be seen as an
acceptable compromise between computation time and the obtained value of void volume.

. . . . \ . . . . . . R .
06).00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0&00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
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(a) Void volume vs. time (b) Void volume wvs. height reduction

[— W=0105)/;

n
(c) Void volume at ¢t = 0.1 s vs. n

Figure 2.25: Effect of RVE dimensions on void volume evolution.
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Chapter 2 Description of the meso-scale approach

2.5.3 Verification of the mesh size using a second case

The previous influence to mesh size was identified using the case of void A under hot
rolling condition. The sensitivity to mesh size was then repeated using a second void,
and using different boundary conditions. Void AD was extracted from the tridimensional
microtomography image of Sample AD. A tridimensional RVE mesh was generated using
the value n = 3 (in Eq. 2.7), and is illustrated in Fig. 2.26. The local refinement box
containing the value h,,;, was defined as twice the dimensions of the void, as in the
previous case. The values of mesh size are given in Table 2.4. The value hApq, = 1 mm
was defined elsewere, as illustrated on the cutting planes in Fig. 2.27.

Figure 2.26: Initial geometry of the tridimensional RVE containing void AD.

himae (mm) Romin, (mm) Nb nodes  Nb CPUs CPU time Total CPU time

1.0 1.0 31 000 16 4 hours 2 days 16 hours
1.0 0.8 36 000 16 6 hours 4 days

1.0 0.5 64 000 16 18 hours 12 days

1.0 0.38 91 000 16 26 hours 17 days 8 hours
1.0 0.25 182 000 16 106 hours 70 days 16 hours
1.0 0.18 396 000 32 117 hours 156 days

Table 2.4: Tested mesh sizes with associated computation features for void AD, performed
using CPUs at 2.3GHz, 32Go RAM.

In this case, more compressive boundary conditions were chosen, in order to obtain a
significantly different void volume evolution. As illustrated in Fig. 2.28, this case involves a
steep initial slope and a complete final closure. The maximum relative difference obtained
over the range of tested mesh sizes was slighter in this case, about 5% at t = 2.14 s.

Void volumes vs. hm;n are plotted in Fig. 2.28¢ and the influence of the mesh size on the
void volume can be observed. In the present case, the mesh size of hy = 0.25 mm also
appears as an adequate compromise between computation time and of the void volume
evolution accuracy.
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Figure 2.27: Cutting plane of the RVE containing void AD under constant boundary condi-
tions, for various mesh sizes A, and common hp,q, = 0.1 mm, at t = 2.14 s.
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Figure 2.28: Effect of Ay, (in mm) on void volume evolution of void AD under constant
boundary conditions.
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2.5 Validation of the meso-scale approach

As a conclusion, the RVE dimensions must be at least three times larger than the void
dimensions. If a lower value of 7 is used, boundary effects might rise and void closure
might be underestimated. All forthcoming RVE simulations will thus be defined according
to the condition n > 3.

The dimensions of the refinement zone must be about twice the dimensions of the void.

For the two studied real voids A and AD, the value h;,;;, = 0.25 mm provided a good
compromise between the results accuracy and computation times. Larger mesh sizes have
the tendency to slightly underestimate of void closure as well.

The two voids A and AD can be considered as representative of the real voids that will
be considered within this work, as they were all extracted from comparable steel specimen
and exhibit comparable sizes. Within this work, the value of h,,;, = 0.25 mm can thus
reasonably be chosen for the forthcoming simulations.
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Chapter 2 Description of the meso-scale approach

2.5.4 Comparison with full-field explicit simulation

To finally validate the use of an RVE to study void closure at the micro-scale under real
industrial conditions, a comparison was performed with a full-field explicit simulation at
the workpiece scale and is presented in this section.

The internal void surface of void A (see Fig. 2.13) was embedded in the workpiece defined
in the case Pass C1-5, provided by Ascometal. The case of hot rolling was chosen for the
following reasons. First, mechanical loadings that were obtained from the process study
were successfully applied using boundary conditions on an RVE. Second, the morphology
of void A (obtained from Ascometal steel sample) is coherent in terms of dimensions and
conditions.

The void position in the workpiece was defined according to the position of the points
used to generate boundary conditions. The workpiece mesh is illustrated in Fig. 2.29.

Identical mesh sizes are defined around the void, according to values prescribed in the
previous section in order to ensure the accuracy of local mechanical fields. Boundary
conditions on the RVE were imposed according to the method presented in section 2.3.
The computation features are given in Table 2.5.

The void volume evolutions are compared in Fig. 2.30. Note that in the case of the
explicit rolling simulation, mesh degeneration was encountered and was manually corrected
in order to pursue the simulation. This explains the discontinuities of the void evolution
for the explicit process. Manual mesh correction became impossible after a certain time.
The curve is thus incomplete.

However, on the entire range t = [0, 0.11] s, the curves show an excellent agreement. This
agreement shows that the volume of a real void can be predicted with excellent accuracy
in an RVE, using adequate boundary conditions, adequate meshing features and adequate
RVE dimensions. In addition, by substituting the actual complete behaviour of the entire
workpiece with simple boundary conditions, the RVE approach enables the computation
to be performed with better stability, as mesh degeneration was not encountered in this
case. The void volume evolution was obtained over the process duration, while it was
interrupted in the case of the explicit process.

Simulation hmin Nb nodes Nb CPUs CPU time Total CPU time
Full-field explicit 0.25 mm 3 450 000 32 11 days 9 hours 364 days
RVE (n =3) 0.25 mm 400 000 4 10 days 1 hour 40 days 4 hours

Table 2.5: Computation features for the explicit macroscopic approach and the RVE ap-
proach, performed using CPUs at 2.3GHz, 32Go RAM.

76



2.5 Validation of the meso-scale approach

Effective strain [3D element]
unit; S_unit
Frin

4
36
32

TIME: 0.1184 |, H:-305.8 NG 57

Figure 2.29: Full-field explicit description of a bar containing void A, during hot rolling
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Figure 2.30: Comparison of void volume evolution in the explicit process simulation and
in the RVE.
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2.6 Conclusions

A meso-scale approach was chosen thanks to its potential accuracy and flexibility for
studying void closure in a wide range of conditions.

The accuracy was shown in terms of void description and boundary conditions. Real void
morphologies coming from tridimensional microtomography images can be defined with
excellent precision. Boundary conditions that respect real industrial loadings can also
be applied and were verified. A comparison with a full-field explicit process simulation
containing a void justified the use of an RVE, and illustrated the benefits in terms of
accuracy and computation times.

The flexibility of the approach was also demonstrated by the introduction of morphology-
equivalent geometries and prescribed boundary conditions. Flexibility is, in fact, a key
of the presented approach, as it enables a series of arbitrary geometries and arbitrary
boundary conditions to be defined within the ranges defined in Chapter 1. The use of
RVEs using such prescribed conditions will enable a parametric study and the construction
of the prediction model.

Numerical features were also tested in order to ensure the validity of the RVE simulations.
The study showed that attention must be paid to the definition of tridimensional meshes,
in terms of dimensions and mesh size. Adequate values of RVE-to-void dimensions ratio
n and of mesh size hy,;, were found (regarding the typical voids considered within this
work). A good compromise between results accuracy and computation time was obtained.
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Chapter 3 Experimental validation of full-field simulations
Résumé francais

Ce chapitre présente une validation expérimentale de I’évolution de pores qui peut étre
prédite par une description explicite en champ complet en utilisant le logiciel éléments finis
FORGE [2011]. La description explicite en champ complet est utilisée dans ce manuscrit a
deux reprises. A I’échelle du VER, les pores sont décrits de fagon explicite, afin d’étudier les
mécanismes de refermeture de maniére trés précise (chapitre 4). A 1’échelle macroscopique,
le modéle développé sera finalement comparé au chapitre 5 a des simulations explicites en
champ complet, pour deux cas de procédés industriels. La simulation en champ complet
apparait donc comme un outil de référence & la construction du modeéle et a sa validation.
Il convient donc de s’assurer de la validité des calculs obtenus.

L’observation précise de la morphologie 3D des pores a été réalisée sur quatre échantillons
d’aciers par microtomographie aux rayons X. Des essais d’écrasement & chaud ont été
réalisés afin d’induire un certain taux de refermeture. Ensuite, les échantillons déformés
ont été & nouveau observés par microtomographie aux rayons X. Ces essais d’écrasement ont
parallélement été simulés en utilisant une description explicite en champ complet & partir
des images initiales, et I’état final des pores prédit par cette simulation a été comparée aux
images finales obtenues par microtomographie.

Malgré le peu de littérature existante sur ce type d’observations, la faisabilité de cette
validation expérimentale a été démontrée. Le parameétre clé est le rapport entre la taille
moyenne des pores et celle de ’échantillon. L’échantillon qui a donné lieu & la meilleure
qualité d’image a montré une excellente corrélation avec la simulation éléments finis en
champ complet. Ce résultat a donc permis de valider d’utilisation de la description explicite
en champ complet comme représentatif du comportement réel des pores dans le cadre de
ce travail.

80



3.1 Introduction
3.1 Introduction

The main objective of the present chapter is to verify the accuracy of the void evolution that
can be obtained using a full-field explicit simulation in FORGE [2011]. Full-field explicit
simulations are extremely useful in the present work and are used at two levels. Firstly, full-
field explicit simulations are used at the RVE-scale to study the local mechanisms of void
closure (Chapter 4). Secondly, full-field explicit simulations are used at the process-scale
with workpieces containing voids for the final validation of the mean-field model (Chapter
5). In other words, full-field explicit simulations are assumed to faithfully represent the
real behaviour of voids during deformation. It is therefore a prerequisite to ensure the
validity of such simulations using experimental testing.
Certain assumptions were made regarding the use of FORGE [2011].

e The boundary condition at the void’s surface is a free surface (zero-stress). This
choice was made according to the assumption that the presence of an internal gas in
the void is neglected.

e An algorithm of self-contact also avoids two zones of the void’s surface to penetrate
each other. This self-contact is handled using a master-slave algorithm based on the
penalty method [Fourment et al., 2003]. A normal force is applied on both surfaces
to avoid penetration of both parts of the mesh. As a consequence, the algorithm
does not allow friction between the two surfaces in contact.

e Fully plastic deformation is only considered and the material obeys the von Mises
plasticity theory.

The experimental validation aims to verify these assumptions.

As pointed out in the previous chapter, it is relatively difficult to obtain accurate infor-
mation regarding voids in workpieces using non-destructive methods.

Ultrasonic testing is generally used at an industrial level as it provides relatively fast
information regarding internal defects.

X-ray microtomography rises as the most accurate method to provide non-destructive
tridimensional information. Although relatively few studies were found in the literature,
this technique shows great potential [Toda et al., 2009, Lee et al., 2011] and was thus
chosen in the present work.

Four different samples containing voids were provided by industrial partners. They were
deformed using hot compression tests, in various conditions. The initial and final void
states were measured using X-ray microtomography. The initial state was used to generate
the initial mesh of each sample. The deformation of each sample was then simulated
using a full-field explicit description with FORGE [2011] and the final computed state was
compared to the final measured state obtained using X-ray microtomography.
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3.2 Scope of the experimental campaign

Due to the lack of literature regarding such testing and the non-negligible costs of micro-
tomography scans, the experimental procedure had to be carefully defined.

The adequate testing conditions are unknown a priori. The conditions had thus to be
chosen such that an exploitable final state could be obtained. Indeed, for a better final
comparison, the voids must have been significantly deformed. On the other hand the final
void volume must also remain sufficiently large to provide significant contrast using X-ray
microtomography.

The main adjustable parameter for compression tests is the height reduction. In order
to define a prescribed height reduction, preliminary simulations were performed using
approximate testing conditions. The results from preliminary simulations were used to
define an adequate reduction height for each compression test, exclusively.

Once the tests were conducted, a new full-field explicit simulation at the workpiece scale
was performed for each sample according to the real testing conditions (e.g. initial sample’s
temperature, thermal and friction coefficients with the tools).

To summarize, for each sample, the following sequence was performed:

0. US-scan to identify the samples of interest (available industrial data),
1. X-ray microtomography to obtain the initial state,

2. preliminary simulation to define the experimental protocol,

3. experimental compression test,

4. simulation of the compression tests using real conditions,

5. X-ray microtomography to obtain the final state,

6. comparison of results from points 4 and 5.

From all specimen that were examined using X-ray microtomography (Chapter 2), the
steel specimens AD and JD20 exhibited the best quality of images. In total, four samples
were used. Two samples were extracted from specimen AD and were deformed using
upsetting test (between flat dies) at Aubert&Duval. Sample JD20 and an additional sample
JD47 (extracted from the same ingot) were used using plane-strain compression (between
punch-dies) at Ascometal CREAS. One advantage of performing two different mechanical
tests is to impose various thermomechanical states in the samples.

The two upsetting tests were performed first. The results in terms of feasibility were
used for a better dimensioning for the second campaign. The two campaigns are thus
presented in their chronological order.
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3.3 Samples NEZ1 and NEZ2

3.3.1 Initial void state

Two steel samples were extracted from the specimen AD. The extraction was performed
according to the initial void state in the specimen AD, which is detailed in Fig. 3.1.

Non-Echo-Zone 1 Non-Echo-Zone 2

Amp./depth
..99.5% I182.6 mm

= 1.6%I2.9 mm
(b) Ultrasonic testing (signal amplitude from Face A)

(c) Slice of tridimensional microtomography image (depth from Face A: 12.9 mm)

! -
5 i .
‘ P
/ i n'& 1 ‘
“ oty

(d) Void-matrix interface, obtained using the marching-cubes algorithm from the tridimensional mi-
crotomography image

Figure 3.1: Tridimensional examination of specimen AD.

Indications from ultrasonic testing

The average positions and sizes of the voids were previously assessed using ultrasonic testing
at Aubert&Duval. Ultrasonic testing was performed using the immersion technique along
the four lateral faces of the squared-based specimen. The results are typically presented
using C-scans, which is a 2D representation of the signal amplitude over the samples
surface. In Fig. 3.1b, the C-scan is presented for face A, i.e. the visible face on Fig. 3.1a.
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The C-scan exhibits a roughly homogeneous signal amplitude of the signal with the green
color. This level of amplitude corresponds to a depth of about 40 mm and can thus be
attributed to the back echo of the sample’s opposite face.

The local presence of a void generates an additional ultrasonic echo that can be analyzed
in order to assess its size. This is performed using the classical flat-bottom hole equivalence.
This empirical technique consists in comparing the measured signal with a series of signals
that were previously calibrated using flat-bottom holes. It enables an equivalent diameter
and an average depth for the void to be assessed. This technique is rather widely used at
an industrial level.

Note that the ultrasonic reflection is implicitly assumed to be identical to the one of a
flat-bottom hole, which may be questionable, notably in the case of complex morphologies.

For the specimen AD, the scanning parameters were adjusted in order to detect in-
dications that were greater than a flat-bottom hole of 1 mm. The results are given in
Table 3.1. Four indications were obtained. Their equivalent diameter and average depth
were comparable.

Indication in Fig. 3.1a 1 2 3 4
Equivalent diameter (mm) 1.2 1.2 1.34 1.1
Depth (mm) 10.6 11.1 9.8 10.7

Table 3.1: Ultrasonic indications from Face A using the flat-bottom hole equivalence.

On the C-scan in Fig. 3.1b, two white areas can be noticed and are due to the absence of
amplitude in the ultrasonic signal. The absence of amplitude results from a total dispersion
of the signal and mentions the presence of strong heterogeneities in the sample. It can be
the result of the presence of a large void, or a cluster of voids.

These indications were obviously insufficient for an accurate definition of full-field ex-
plicit simulations. A tridimensional examination using X-ray microtomography was thus
performed and is presented in the following.

Indications from X-ray microtomography

As presented in Chapter 2, the initial specimen was entirely scanned using X-ray microto-
mography (Fig. 2.8). An example of slice of the tridimensional image is given in Fig. 3.1¢c
for an arbitrary depth.

The void-matrix interface was extracted from the tridimensional image according to the
method presented in section 2.4.1 involving the marching-cubes algorithm. The void-matrix
interface is illustrated in Fig. 3.1d.

Two porous zones were observed in the black frames and were enlarged. It is noteworthy
that the positions of these two zones roughly coincide with the non-echo zones from the
ultrasonic indications. Between the two zones, note the presence of a smaller void (green
frame) that was not detected using the ultrasonic scan.

Interestingly, no contrast heterogeneity was observed using X-ray microtomography at
the position of the four indications given in Table 3.1. Two different hypotheses may
explain this result. In the first hypothesis, a void is present but is not detectable using
X-ray microtomography due to its small size. It is plausible in the case of a flat void, in
which the thickness would be lower than the resolution of the tridimensional image. In the
second hypothesis, no void is present at these positions. The ultrasonic signal might result
from another discontinuity from the material (e.g. grain boundary).
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3.3 Samples NEZ1 and NEZ2

The available information was insufficient to determine which of both hypotheses to
consider. The study was therefore rather focused on the two non-echo zones (NEZ), as the
presence of voids was unquestionable here.

Two samples with comparable dimensions were thus extracted from specimen AD and
were called NEZ1 and NEZ2, see Fig. 3.2.

i1 || o L5313 1.

(a) Sample NEZ1 (95 mmx 40 mm X 40 mm) (b) Sample NEZ2 (100 mmXx 40 mm x 40 mm)

Figure 3.2: Photograph of samples NEZ1 and NEZ2, after extraction.

3.3.2 Preliminary simulations

Preliminary simulations were performed in order to obtain an approximate closure be-
haviour of the voids contained in NEZ1 and NEZ2. The main objective was to determine
an experimental protocol that might provide the best results. A temperature of 1100°C was
chosen according to the range defined in the industrial issues (Chapter 1), typical for forg-
ing processes. Thermal exchange and friction coefficients were set according to values that
are usually used at Aubert&Duval, but not detailed here for confidentiality reasons.

The meshes for NEZ1 and NEZ2 were generated according to the same method as for
the generation of the RVE mesh (Chapter 2). A tridimensional volume mesh was gener-
ated between the internal void-matrix surface and the external surface of the sample, as
illustrated in Figs. 3.3 and 3.4.

Symmetry planes were defined in order to reduce the computation time. One symmetry
plane was defined for NEZ1, as voids were located in one half of the sample (see Fig. 3.3).
Three symmetry planes were defined for NEZ2, as the main voids were located in one eighth
of the sample, only (see Fig. 3.4). The definition of symmetry planes might be questionable
here, as it artificially defines voids in the symmetrical parts of each samples. Yet, the benefit
in terms of mesh reduction (i.e. its number of elements) is very attractive and a first-order
approximation of the void closure is expected, according to the approximate conditions
that are set. Simulations under real conditions will be presented later in this document.

In order to further reduce the number of elements of NEZ1, the mesh size was slightly
coarser than the one prescribed by the sensitivity study (section 2.5.1). A slight error is also
due to the chosen mesh size hp,;,. According to the sensitivity study, this error in terms
of void volume is about a few percents and remains acceptable for a first approximation.
The computation features are given in Table 3.2.

Figs. 3.3 and 3.4 also illustrate the field of equivalent strain on the deformed samples,
using a cutting plane. The field exhibits two zones of low deformation at the top and the
bottom of the cutting plane, which is a typical effect of compression between flat dies.
Around the voids, the mechanical fields exhibit rather strong fluctuations, as it can be
expected according to the discussion regarding mesh size.
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Chapter 3 Experimental validation of full-field simulations

Simulation Rmin Nb elements CPU time Total CPU time
Full-field explicit NEZ1 0.5 mm 2.6 10° 6 days 192 days
Full-field explicit NEZ2  0.25 mm 2.3 106 4 days 8 hours 139 days

Table 3.2: Computation features for the preliminary simulations for NEZ1 and NEZ2, per-
formed using 32 CPUs at 2.3GHz, 32Go RAM.
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(b) Cutting plane on deformed mesh of NEZ1, showing equivalent strain field

Figure 3.3: Preliminary simulation of NEZ1 for the definition of experimental protocol.

The volume evolutions of all internal voids are plotted in Fig. 3.5 using color lines.
The total volume of voids is plotted using a dashed black line. In both samples, a large
disparity in terms of void volumes can be observed. In fact, many small voids were defined,
but remain negligible in terms of void volume. The total volume evolution is mainly due
to the evolution of the biggest voids.
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3.3 Samples NEZ1 and NEZ2
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Figure 3.4: Cutting plane on deformed mesh of NEZ2 for the definition of experimental
protocol.

Note the presence of numerical artifacts (resulting from mesh degeneration of several
voids) beyond the height reduction -12mm. The largest artifact can be seen on VOID 19
(red thick line) on NEZ2. It is therefore also visible in the curve for the total volume
(dashed black line). Fortunately, this artifact occurs when voids are nearly closed, i.e. at
a level of closure that presents low interest for the preliminary study.

In the case of NEZ1, the evolution of VOID 15 clearly drives the total evolution, as its
initial volume is much larger than others. Moreover, regarding VOID 18, VOID 1 and
VOID 2, it can be seen that their evolutions are significantly different. This is due to a
combination of several effects, e.g. the position in the sample, the mechanical state at the
considered position and the void’s morphology. These results highlight the sensitivity of
void closure to all these parameters, and illustrates the great interest in properly defining
an adequate reduction height to obtain relevant results in terms of final void states. A
too low deformation might involve insignificant reductions of void volume reduction. An
excessive value of deformation might lead to complete closure of the voids, or to final
volumes that might not be detectable using X-ray microtomography. The final prescribed
reduction height is 6 mm for both samples.
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Figure 3.5: Void volume evolutions for the preliminary simulations.
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3.3 Samples NEZ1 and NEZ2

3.3.3 Experimental testing

The experimental compressions of both samples NEZ1 and NEZ2 were performed at
Aubert&Duval using a 300-ton press with pre-heated dies (850°C), as illustrated in Fig. 3.6.
Samples were heated at 1100°C and held during 1 h 30 min at this temperature.

(a) Sample before compression (b) Samples after compression (during cooling)
Figure 3.6: Photographs of NEZ1 and NEZ2 during experiment.

Transfer duration from furnace to the lower die was 8 s. Contact duration with the lower
die was 7 s and with both dies was 4 s. The die velocity was 0.6 mm/s and the deformation
duration was 12 s. The resulting reduction height was thus 7.2 mm. The samples were
cooled down and the surface oxidation (about 0.5 — 1 mm thickness) was removed. The
final samples are illustrated in Figs. 3.7 and 3.8.

(a) Side view (b) Upper view

Figure 3.7: Photographs of the deformed sample NEZ1.

(a) Side view (b) Upper view

Figure 3.8: Photographs of the deformed sample NEZ2.
The samples were then observed using X-ray microtomography at CETIM. A slice of the

obtained image after deformation is presented in Fig. 3.9b and is compared to the initial
state before compression (Fig. 3.9a). Note that the contrast that was obtained with the
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Chapter 3 Experimental validation of full-field simulations

deformed sample is even lower than the one from the initial sample, as the voids dimensions
were reduced. Nevertheless, the largest void at the bottom right of the initial state can
be seen on the deformed state as well (see black frames in Fig. 3.9). At mid-height right
position, a rather small initial void remained visible on the deformed state as well (see red
frames in Fig. 3.9). On the contrary, a void can be seen at the upper right position on the
initial state and is not visible on the deformed state (see white frame in Fig. 3.9a).

From the tridimensional image, the void-matrix interface was extracted according to the
method presented in the previous chapter.

(a) Before compression (b) After compression

Figure 3.9: Slices obtained from microtomography images (NEZ1).

3.3.4 Simulations under real experimental conditions

New simulations were performed using the real experimental conditions. Both samples were
meshed with best level of detail that could be obtained using the initial 3D image. The
internal 3D surface mesh of the void-matrix interface (extracted from the raw image using
the marching-cubes algorithm) was used, and an external 3D surface mesh was generated
using the sample dimensions. The 3D volume meshing of the samples was performed using
GLPre.

The thermal path (transfer and contact times) was reproduced, as it was measured
during experiment. Thermal coefficients and friction coefficients were adjusted according
to the final bulged shape of the samples (also known as barrel effect). Several values of
friction coefficients and thermal coefficients were imposed and a series of simulations were
performed in order to obtain an adequate set of values.

In the case of NEZ1, the entire sample was meshed, as the actual position of the void
is rather central (see Fig. 3.10). In the case of NEZ2, a symmetry plane was defined (see
Fig. 3.11), thanks to the absence of voids in the right half of the sample. This implicitly
assumes that the presence of voids has no impact on the global deformation of the sample.
This assumption is reasonable regarding the void-to-sample dimensions ratio, which is
about 1/40 to 1/10.

The computation features are given in Table 3.3. The number of elements were very
large due to the wide porous zone that required fine mesh size. The computation time of
NEZ1 was longer because the time step had to be reduced to avoid mesh degeneration in
this case.
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3.3 Samples NEZ1 and NEZ2

TIME: 0000 , H: 2440 JINC: 0

(a) Initial state of NEZ1

TIME: 3100, H 7200 JINC: 130

(b) Deformed state of NEZ1

Figure 3.10: Initial and deformed states for NEZ1.

Simulation hmin Nb elements CPU time Total CPU time
Full-field explicit NEZ1 0.25 mm 4.04 106 127 hours 64 days
Full-field explicit NEZ2 0.25 mm 4.13 106 48 hours 24 days

Table 3.3: Computation features for the simulations for NEZ1 and NEZ2 using real exper-
imental conditions, performed using 12 CPUs at 3GHz and 24 Go RAM.

The final deformed states are illustrated in Figs. 3.10b and 3.11b. The results are com-
pared to the deformed state that was obtained from X-ray microtomography and discussed
in the two following sections.
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TIME: 0000 |, H: 2440 NG 0

(a) Initial state of NEZ2

TIME: 3100 |, H: 7.200 NG 62

(b) Deformed state of NEZ2

Figure 3.11: Initial and deformed states for NEZ2.
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3.3 Samples NEZ1 and NEZ2

3.3.5 Results regarding NEZ1

The deformed void-matrix interface that was obtained from the simulation of NEZ1 is now
compared with the void-matrix interface that was obtained from the X-ray microtomogra-
phy image in Fig. 3.12. For each surface, a distinction between the material side and the
ezternal side was made.

external face
Computation
material face

external face
Tomography
material face

Figure 3.12: Comparison, for NEZ1, of final surfaces obtained from computation and from
3D-image.

The visualization software allows the choice of colors for one side of each surface, only.
The opposite side must have a gray color. It was preferred to set colors for the material
sides of each surface.

The material side of the surface from simulation is drawn in green color and the material
side of the surface from tomography is drawn in blue color. The ezternal faces of both
surfaces are drawn with gray color.
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Chapter 3 Experimental validation of full-field simulations

Indicating the external side shows interest as the presence of self-contact in the com-
putation surface can be observed. As self-contact is handled using the penalty method, a
very small penetration of both external surfaces (gray color) can be observed on void (b)
(see Fig. 3.12).

Final position of the voids

Regarding the sample’s boundaries, a lateral shift of about 4 mm along the sample’s axis
(zx—axis) was observed. This is due to the initial mesh generation for NEZ1. The initial
tridimensional void-matrix interface was defined according to the initial image from X-
ray microtomography, that had been performed on the entire specimen AD, i.e. before
extraction of the samples. As a consequence an incertitude regarding the position along
the z-axis was obtained. Nevertheless, relatively to the length of the sample, this shift is
about 4% and its potential effect on the comparison was ignored. The relative position of
both interfaces was thus manually shifted along the x-axis.

The final void position that was obtained from the simulation shows rather good agree-
ment with the X-ray examination. It is illustrated in Fig. 3.12. A similar comparison is
also given in Fig. 3.13 using a yz cutting plane. The z abscissa is indicated using a vertical
red line in Fig. 3.12. The agreement is very good regarding the position of the voids in the
yz plane as well.

Void (a)

Void (a) has a wvein-like shape. It is an open hole that is visible on the sample surface
as well (see green frame in Fig. 3.2a). The hole’s position was verified and shows very
good agreement. Unfortunately, the order of magnitude of the thickness of void (a) is sub-
millimetric and is nearly the one of the voxel size of the microtomography image. Due to
the rather low contrast of the image, a quantitative analysis would involve a large number
of incertitudes. As a consequence, the analysis was not further conducted using this void.

Void (b)

Void (b) is illustrated in Figs. 3.12 and 3.13 as well. It has a slanted band-like shape. In
Fig. 3.13c an outline of the void-matrix interface is also given on the yz cutting plane. The
outline is presented using a red line, and is plotted for both interfaces (from computation
in green and from the tridimensional image in blue).

The outline from the tridimensional image exhibits the presence of two voids. The
outline from computation exhibits the presence of two residual cavities, that are the result
of the partial closure of void (b). The presence of self-contact in the zone located between
the two cavities confirms the partial closure of the void.

The two outlines, which were obtained from the tridimensional image and from compu-
tation, are roughly concentric. This result illustrates the good agreement regarding the
final position of the voids.
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Computation
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(a) Cutting plane of sample NEZ1 (b) Cutting plane of void (b)
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(¢) Outline from computation (green) and from 3D-image (blue)
Figure 3.13: Comparison, for NEZ1, of final surfaces obtained from computation and from
3D-image, using a yz cutting plane. The material sides are colored with green

and blue, respectively, and the ezxternal sides and contact areas are indicated
on the figure to avoid confusion in the gray areas.
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3.3.6 Results regarding NEZ2

The same analysis was performed using NEZ2. The comparison between void-matrix inter-
faces from computation (green) and from tridimensional examination (blue) is presented
in Fig. 3.14. In this case, a cluster of tiny voids in zone (a) can be observed at the top
of the sample. A larger void (b) can be seen in the lower part of the sample, rather close
from the sample’s boundary.

The position of boundaries exhibits a slight difference in the x direction due to the initial
position of the voids in the sample’s mesh. It was manually corrected by a shift along x
axis as well.

Zone (a)

The global position of the voids in zone (a) shows rather good agreement. The very small
dimensions of the voids in this zone significantly affected the accuracy of the obtained
void-matrix interface from microtomography. Their average dimensions exhibit the same
order of magnitude as the voxel size. It is therefore difficult to clearly identify the different
voids in the porous zone (a). A slight error regarding the position of several voids was
measured. It did not exceed 1 mm.

Void (b)

Void (b) exhibits a roughly flat shape and is rather vertically oriented, as illustrated in
Fig. 3.15. However, the void is located close to the boundary of the sample. This position
unfortunately presents rather low interest in terms of closure, as the thermomechanical
state is not well adapted for void closure. The level of deformation is relatively low, due to
the "blacksmith cross" effect, see Fig. 3.16a. The stress triaxiality ratio is rather moderate
as well in this zone, see Fig. 3.16b. As a consequence, the void volume reduction is about
11% for void (b), according to the computation. On the other hand, the average reduction
of the voids that are located in zone (a) is about 80%.

The final global aspect shows good agreement between the void-matrix interfaces from
computation and from tridimensional examination.

3.3.7 Conclusions

Generally, a good agreement was obtained between void-matrix interfaces from full-field
explicit computations and from tridimensional examination. This was verified in terms of
position of the voids and their visual aspects.

Unfortunately, the analysis was strongly penalized by the low void-to-sample dimension
ratio, inducing small voxel size and very low contrast in the microtomography image. The
methodology yet demonstrated great potential in terms of feasibility, regarding the very
coherent results that were obtained between the simulation and microtomography images.

It was thus decided to perform a second campaign of compression tests using samples
with a greater void-to-sample dimension ratio.

96



3.3 Samples NEZ1 and NEZ2

e
P

o

e 17l

N e e i

Figure 3.14: Comparison of final void-matrix interfaces obtained from computation (green)
and from microtomography (blue) for NEZ2.
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(a) Perpendicular cutting plane (b) Detail of Void (b)

Figure 3.15: Comparison of final void-matrix interfaces obtained from computation (green)
and from microtomography (blue) for NEZ2, using a yz cutting plane.
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Effective strain [3D element] TRIAHIALITY [3D element]
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(a) Equivalent strain (b) Stress triaxiality ratio

Figure 3.16: Mechanical fields in the sample NEZ2 at the final state, using a cutting plane
yz at the abscissa that is defined with a vertical red line in Fig. 3.14.
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3.4 Samples JD20 and JDA47

Steel samples JD20 and JD47 were used for experimental validation. These extra-porous
samples were collected at Ascometal CREAS (Research center) according to their low den-
sity and, therefore, their large interest within this study. They were previously described
in Chapter 2, section 2.4.1.

Plane strain compression was chosen as it provides different stress states in the mate-
rial. It generally provides less compressive stress triaxiality ratio for non-porous samples.
Excellent accuracy in terms of height reduction is generally obtained, which is of great
interest for samples with small dimensions.

Note that, according to the experimental setup, the sample must have a rectangular
shape. The cylindrical sample JD20 was thus machined from @20 mm to a 10 mm x 10
mm square section. These dimensions were defined according to the tomograph capabilities
in terms of signal absorption and the available space inside the tomograph. This aspect
must obviously be considered for the initial sample, but also for the final deformed sample.

3.4.1 Preliminary simulations

For the first preliminary simulation, only a few voids were defined in the sample’s mesh,
see Fig 3.17. The void geometries were obtained from the initial tridimensional image of
JD20.

As in the previous section, classical friction and thermal conditions were defined in a
first approximation and are not detailed here for confidentiality reasons. Mesh size was set
to the value hp,;;, = 0.25 mm around the voids.

The evolution of void volume ws. height of reduction is plotted in Fig. 3.18. The
curves indicate that a reduction to a final height of 6 mm leads to complete closure of the
three voids. Over the range H = [8,10] mm, the closure rate shows the maximum value
and is relatively constant. Beyond the value 8 min, the void volumes are too small to
give adequate contrast using X-ray examination. Thus, the prescribed final height to be
reached was fixed to Hy = 8.8 £ 0.2 mm.
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Figure 3.17: Preliminary test simulation of sample JD20 (CPU time of 200 h using 10
CPUs, 3GHz, Windows x64, 24 Go RAM).
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Figure 3.18: Volume evolution for the three voids A, B and C defined in Fig. 3.17.

100



3.4 Samples JD20 and JD47

3.4.2 Compression tests

The tests were performed at Ascometal CREAS. Before performing the compression test
on samples JD20 and JD47, preliminary void-free samples were used in order to verify the
testing conditions in terms of reduction height and temperature evolution.

The samples are first enclosed in a container and are heated up using an induction
furnace to the desired temperature. The container helps maintaining the temperature
during transfer between the heating system and the press. Thermocouples (K-type) were
used to verify the temperature evolution during induction heating. The temperature drop
during transfer to the press was measured and was compensated by setting a slightly higher
temperature to the heating step. The temperature accuracy at the deformation’s starting
instant is therefore better controlled. An infrared camera was also used and the initial
temperature homogeneity at sample’s surface was verified.

The samples are deformed between the two dies using a screw press (Fig. 3.19) with a die
velocity of 400 mm.s~!. After deformation, the samples are placed in an argon atmosphere
to avoid oxidation during cooling.

Figure 3.19: Photograph of the induction heating system (left) and screw press with punch-
dies (right).
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The deformed samples are illustrated in Fig. 3.20. The actual reduction height for each
sample was measured at three positions on the deformed zone and was homogeneous. The
reduction height for JD20 was 8.70 mm and the one for JD47 was 9.00 mm. The samples
were then sent to Fraunhofer for microtomography examination. The resolution provided
a voxel size of 102 um.

The 3D images were filtered using the same methodology as the one presented in the
previous chapter, section 2.4.1. For each sample, a 3D surface mesh of the void-matrix
interface was extracted.

(a) Side view

(b) Upper view

Figure 3.20: Photographs of the samples JD20 and JD47 after deformation.
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3.4.3 Simulations under real experimental conditions

Simulation homin Nb elements CPU time Total CPU time
Full-field explicit JD20 0.25 mm 2.9 10° 12 hours 6 days
Full-field explicit JD47 0.25 mm 2.6 106 10 hours 5 days

Table 3.4: Computation features for the simulations for NEZ1 and NEZ2 using real exper-
imental conditions, using 12 CPUs at 3GHz and 24 Go RAM.

Two simulations were performed in order to obtain results under conditions that are com-
parable to the experimental ones. Both samples were meshed using the same methodology
as in section 3.3. The internal tridimensional surface mesh of the void-matrix interface was
obtained from the tridimensional image using the marching-cubes algorithm, and a bound-
ary surface mesh was generated using the sample’s dimensions. The 3D volume meshing
of the samples is performed using GLPre. They are illustrated in Figs. 3.21 and 3.22.

In the case of JD20, it was decided to ignore the void state in the undeformed part of
the sample (left part on Fig. 3.21) in order to reduce the total number of elements in the
mesh.

In Figs. 3.21a and 3.22a the contact area is shown using a binary red/blue scale. The
blue color represents the contact with the dies. In Figs. 3.21b and 3.22b, the mesh was
plotted for a central cutting plane. The mesh size at the internal void surface is given by
the voxel size, i.e. about A, ~ 0.1 mm. Mesh size at the surface of the sample is set to
the value hpq: = 0.5 mm. The strain-rate field is plotted as well. It illustrates the classical
deformation profile of the plane-strain compression test. The edges of the dies involve a
higher strain zone exhibiting a "V" shape.

Note that the initial raw image was obtained from the (initially) cylindrical sample JD20,
as it was done at the beginning of this PhD work. Due to the imaging artefacts at the
surface of the sample, the position of the boundaries was approximate and the absolute
position of the void-matrix interface is not strictly determined. In addition, the sample
had to be machined toward a square-base, according to the microtomography requirements.
The voix-matrix interface was thus placed to an arbitrary centerline position (relatively to
the sample boundaries).

As illustrated in Fig. 3.20, the position and direction of the die on the sample were
slightly different in both cases, due to manual experimentation. An angle of about 22° was
measured between the dies and the sample JD47. The actual position and direction of the
dies were therefore also properly defined according to visual observation of the deformed
samples. The angle can be seen on the contact zone on Fig. 3.22a.
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(b) Initial state (after first increment) Effective strain
Unit: 5_unit
Frin, Cut

(c¢) Final state

Figure 3.21: Simulation of JD20 using real testing conditions (2.9 10° elements).
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(a) Contact area in blue

(b) Initial state (after first increment) Effective strain
Unit: 5_unit
Frin, Cut

(c¢) Final state

Figure 3.22: Simulation of JD47 using real testing conditions (2.5 105 elements).
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3.4.4 Results regarding JD20

In this section, the final surface obtained from the simulation is compared to the 3D image
obtained for each deformed sample. It is worth noticing that the measured volume depends
on the chosen value of threshold. For each sample, a common threshold value was chosen
in order to fit the prediction results as good as possible.

The void-matrix interface was detected using the marching-cubes algorithm presented
in the previous chapter, section 2.4.1. A slice of the 3D image is presented in Fig. 3.23a.
For a cutting plane at the same position, a superposition of contours is given in Fig. 3.23b,
showing the matrix-void interfaces in both cases. The green line was predicted by the finite
element simulation, and the blue line was measured on the 3D image.

The comparison on this cutting plane shows an excellent agreement between the finite
element prediction and tridimensional observations. It is true regarding the final shape of
voids, as well as their final position.

(b) Contour superposition of final mesh (green) and detected void-matrix interface from raw image (blue)
(close-up from the right-hand half of (a))

Figure 3.23: Comparison of results using cutting plane of sample JD20.

Void C

Regarding final shapes, void C exhibits the best agreement. It can be seen on Fig. 3.23b,
and it is illustrated in Fig. 3.24 as well for a perpendicular cutting plane. The distance
between both lines remains in the order of magnitude of the voxel size, i.e. around 100
pm. The prediction of the final void shape seems therefore to be within the range of the
accuracy provided by X-ray microtomography measurements.

Void B

On Fig. 3.23b it can be seen that void B exhibits a zone of partial closure around its
upper—left part. It is visible on the computation contour (green line), but was not detected
on the contour from the raw image (blue line). Interestingly, a small residual void remains
on the left part of the contact zone and was not detected on the contour from the raw
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3.4 Samples JD20 and JD47

image neither. Yet, when looking at the grayscale raw image (Fig. 3.23a), a slightly darker
zone can be observed at this position, mentioning that this residual void actually exists in
the sample but was not detected by the marching-cubes algorithm due to its low contrast
and small size.

The contours are also compared for a perpendicular cutting plane in Fig. 3.25. Similarly,
the narrowest parts of the void may not have been detected from the tridimensional image.

These remarks confirms the fact that the accuracy of the measure using X-ray mi-
crotomography remains a limitation factor, particularly in the case of voids with small
dimensions (compared to the size of the sample). In spite of this, the agreement with
the prediction is very good. Apart from the undetected zones, the final contours show an
excellent agreement for void B, as for void C.

Void A

Similar conclusions can be made regarding void A. Both contours show excellent agreement
(Fig. 3.23b), except in the zones of partial closure (involving contact and small residual
voids).

Note the relative difference of position for the sample boundaries between simulation data
and measured data. This is due to the approximate initial positioning of the boundary in
the initial mesh for the simulation, as pointed out above. Fortunately, the samples present
a common undeformed zone that was used to manually readjust the relative position of
the simulation and the measure. This explains why the boundaries of the samples are
relatively different, while the void-matrix interface gives an excellent agreement.

O g 4 |

Figure 3.24: Cutting plane showing void C at the final height (H = 8.7 mm).

Figure 3.25: Cutting plane showing void B at the final height (H = 8.7 mm).
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3.4.5 Results regarding JD47

The results for JD47 are presented in a similar manner. A grayscale raw slice is given
in Fig. 3.26a, and the comparison is made in Fig. 3.26b using the superimposed contours
of void-matrix interfaces obtained from the simulation (green line) and measured from
the raw data (blue line). It is noteworthy that the contrast obtained for this sample was
lower than the one for the previous sample. This is due to the voids smaller dimensions.
The direct consequence is a lower accuracy of the void-matrix interface obtained by the
marching-cubes methods, as it is closely linked to the definition of a threshold value. The
determination of an adequate threshold value was harder for this sample.

. -
(a) Raw image from microtomography
: ]
. P z A v s . B
gt @ R o : L ¢ I
| — -

(b) Contour superposition of final mesh (green) and detected void-matrix interface from raw image (blue)

Figure 3.26: Comparison of results using cutting plane of sample JD47.

From a general point of view, the respective positions of the voids show very good
agreement. This is true in the deformed zone, as well as in the undeformed zone. For this
sample, the position of the sample’s boundaries show better agreement than for previous
sample. The reason is that the initial void state was obtained from the actual geometry,
after the machining step to a square-based bar. The position of the internal voids was
thus possible with better accuracy. The small remaining difference may be attributed to
the low accuracy of the boundary due to surface contrast artifacts, and to experimental
incertitudes (e.g. real thermal exchanges, effect of gravity, or manual positioning of the
sample on the die).

&

Lpu

Figure 3.27: Detail of void F in the deformed sample JD47.

When looking at the contours in Fig. 3.27, it can be observed that the predicted shape
exhibits three rather narrow peaks (see red arrows in zoom). These peaks result from
a partial closure of thin part of the void. Regarding the upper peak, contact was even
observed in the contour from computation. These narrow parts might not have been
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Figure 3.28: Detail of void G in sample JD47.

detected using the tomography-based technique. Nevertheless, let us note that, once the
narrow peaks ignored, the final shape is remarkably accurate.

A good agreement was also obtained in Fig. 3.28. The distance between prediction and
measured interface remains in the incertitude range of the measure.

3.4.6 Final void volumes

For each sample, the volume evolutions of four voids were studied and are plotted in
Fig. 3.29. The lines correspond to the prediction simulation and the dots are values mea-
sured on the measured void-matrix interface.

The initial value for the prediction coincides with the volume measured from the initial
microtomography image, as it was used to generate the initial mesh. The volumes of the
voids were measured from the microtomography images at the final reduction height using
the method described in Chapter 2, section 2.4.2.

The measured void volumes show excellent agreement with the prediction for sample
JD20 (see Fig. 3.29a). The relative error is about 1% for voids A, C and D, and raises
to 13% for void B. The perpendicular cutting plane in Fig. 3.25 illustrates the difference
of volume on void B. The difference of contours was discussed above, and pointed out the
fact that the narrowest part of the voids may not be detected by the tomography-based
technique. However, an excellent agreement was obtained for all other contours and it is
now also verified on the final void volumes.

35 " —— " " " 20— " i "
—— VOID A —— Computation —— VOIDH —— Computation
30 —— VOIDB e Tomo init —— VOID G e Tomo init
— VoibC B Tomo final —— VOID F ® Tomo final
VOID E

Volume (mm3)

H (mm)

(b) JD47

Figure 3.29: Volume evolution of four voids in both samples JD20 and JD47.
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In the case of sample JD47, the measured values are globally underestimated compared to
the prediction value (see Fig. 3.29b). This may be explained by particular small dimensions
of the voids. The initial void volumes for sample JD47 were in the range [2, 6] mm?, while
the ones of sample JD20 vary over the range [5, 30] mm3. The excessively small dimensions
may explain the discrepancy in the case of sample JD47.

Due to the low void-to-sample thickness ratio, the contrast obtained from microtomogra-
phy is rather low. Both sharpness and contrast are consequently lower and the void-matrix
interface is detected with less accuracy.

Secondly, some voids (or some part of voids) are nearly equal to the voxel size. These
voids might have been detected on the initial image, but not on the final image, as their
size reduced during compression. This was the case of void F, for example.

3.4.7 Conclusions

To conclude on both samples JD20 and JD47, the qualitative analysis exhibited excellent
agreement in terms of final position of the void-matrix interfaces. The main discrepancies
are most likely due to the tridimensional images, due to the small dimensions of the voids.

For the sample JD20, the void-to-sample dimensions ratio was larger and the quantitative
analysis exhibited excellent agreement in terms of void volume evolution.
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3.5 Conclusions

The experimental campaign that was performed at Ascometal involved two porous samples.
The samples exhibited a larger void-to-sample dimensions ratio than the samples used in
the previous campaign at Aubert&Duval.

From these compression tests, two main results can be pointed out:

e First, the feasibility of such testing was demonstrated. The combination of X-ray
microtomography and compression testing was successfully conducted and provided
accurate results. Nevertheless, full attention must be paid regarding the choice of
the sample’s dimensions. The void-to-sample dimension ratio is a key-parameter
for the accuracy of the X-ray imaging. Low values of void-to-sample dimension
ratio will significantly enhance the final contrast of the tridimensional image. Low
samples dimensions are generally required with respect to the spatial capabilities of
the tomograph.

On the other hand, reducing the sample’s dimensions may reduce the accuracy of
the compression test itself. It involves stronger gradients of temperature and requires
piloting the tools with high accuracy.

Preliminary simulations were very helpful for the definition of an adequate experi-
mental protocol, notably in terms of final height reduction.

e The final tridimensional examinations showed excellent agreement with the predic-
tion obtained from the full-field simulations. This agreement was shown in terms of
position, visual aspect and void volume of various voids.

The use of full-field explicit simulations with FORGE [2011] to model the local
behaviour of voids was therefore validated.

Full-field explicit simulations will be extensively used in the following chapters. In Chap-
ter 4, a wide campaign of full-field explicit simulations at the RVE-scale is performed in
order to build and calibrate the new prediction model. In Chapter 5, full-field macroscopic
simulations of processes containing voids are performed in order to compare and validate
the prediction model.
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Chapter 4

Construction of a new prediction model
for void closure
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Chapter 4 Construction of a prediction model
Résumé francais

Ce chapitre présente I’étude des mécanismes de refermeture de porosité a 1’échelle du VER,
ainsi que la construction du nouveau modeéle de refermeture de porosité. Le modeéle doit
étre construit a partir de grandeurs quantifiables dans un contexte industriel. La mor-
phologie réelle exacte de pores étant une donnée difficile & quantifier, car elle requiert une
étude systématique approfondie en microtomographie, 'utilisation de géométries éllipsoi-
dales équivalentes est proposée pour la construction du modeéle. La prise en compte de la
géométrie initiale de pore fait partie des avancées principales du nouveau modéle.

La premiére partie de ce chapitre est donc dédiée & une discussion relative & 1'utilisation
de ces géométries équivalentes. Il est montré que la taille absolue des pores n’a pas d’impact
sur le comportement en referemeture, a 'inverse des rapports de formes qui présentent un
impact majeur. L’erreur commise par l'utilisation de géométries équivalentes est discutée
& partir de quatre pores réels. Le gain obtenu par l'utilisation d’éllipsoides équivalentes
est démontré en comparaison a l'utilisation de spheéres (systématiquement utilisées dans la
littérature).

La seconde partie présente une étude de sensibilité aux différents parameétres identifiés
comme potentiellement influents sur la refermeture, afin de sélectionner les paramétres a
prendre en compte dans le modeéle. Il est montré que les paramétres de géométrie (rapports
d’aspect, orientation) ont un impact majeur, au méme titre que la triaxialité des contraintes
et la déformation équivalente cumulée. Concernant les paramétres matériaux, le coefficient
d’écrouissage/adoucissement, ainsi que le coefficient de sensibilité a la vitesse de déforma-
tion ont un impact non-négligeable sur le comportement en refermeture. Cependant, leur
influence reste de second ordre dans les plages de valeurs definies par la problématique
industrielle. Tls ne seront pas pris en compte dans le modéle. La consitance du matériau
et la vitesse de déformation n’ont aucune influence sur le comportement en refermeture.

La troisiéme partie présente la construction du modéle, le choix des expressions analy-
tiques pour chaque dépendance, ainsi que leur calibration par régression. L’ensemble des
influences a pu étre modélisée par une somme de polyndémes d’ordre 2. En utilisant les
quatres géométries issues de pores réels, et sous plusieurs conditions mécaniques, il est
montré que le nouveau modéle est capable de prédire I’évolution de leur volume avec une
précision inférieure 5% dans 90% des cas, et qu’elle reste inférieure a 17% dans le cas le
plus extréme.
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4.1 Introduction
4.1 Introduction

The first chapter demonstrated the lack of reliable existing model in the literature to pre-
dict void closure, notably regarding the influence of initial void geometry. The second
chapter showed that the use of RVE simulations at the meso-scale enables an accurate
tridimensional description of voids, and that boundary conditions can be accurately con-
trolled. The third chapter showed that the use of FORGE [2011] is capable of providing
accurate simulations of the actual behaviour of the voids during deformation.

The present chapter presents the results of a wide campaign of RVE simulations that was
performed using FORGE [2011] in order to study the influences of several parameters on
void closure. First, the use of geometrical parameters that were introduced in Chapter 2 is
discussed. Then, a global parametric sensitivity study is presented in order to qualitatively
understand the involved mechanisms and to identify which parameters must be further
quantified. In a third section, the quantification of the identified parameters is presented.
Semi-analytical equations are proposed to model the observed behaviours. A calibration
of the semi-analytical model is then presented using regression analysis. In a last section,
the prediction of the semi-analytical model is verified using several geometries coming from
real industrial data and the relative error is assessed.

4.2 Use of equivalent geometries

Spherical voids are often used in the literature [Budiansky et al., 1982, Lasne, 2008, Zhang
et al., 2009, Tanaka et al., 1986, Nakasaki et al., 2006]. In the present work, the use
of equivalent ellipsoids is proposed to additionally consider tridimensional information. In
Chapter 2, the use of morphology-equivalent ellipsoids was introduced. It was demonstrated
that it is possible to generate an equivalent ellipsoid that exhibits the same inertia matrix
than a real void. This possibility enables the dimensions and the orientation of a real void
to be faithfully represented. The objective of this section is to discuss this representativity.

The effect of the size of a void is first discussed. Then, comparisons in terms of closure
behaviours are performed between real voids, spherical voids and morphology-equivalent
ellipsoids.

4.2.1 Void size

The RVE dimensions are defined using the ratio n, i.e. with respect to the void’s dimensions
(section 2.5.2). Boundary conditions are imposed in order to apply a prescribed strain-rate
and stress triaxiality ratio, which are both dimensionless variables.

Studying a void at the RVE-scale is therefore a dimensionless problem.

Note that in the case of large void-to-workpiece dimensions ratios, the general hypotheses
of the meso-scale approach (section 2.2) might not be verified. The separation of scales
is no longer possible, neither the use of a mean-field model. In these particular cases,
the meso-scale may not be used, and the use of explicit full-field simulations are required,
such as the ones conducted by Chen et al. [2012], Lee et al. [2011], Banaszek et al. [2013].
This is however out of the scope of the present study. Within this work, according to
the industrial issues (Chapter 1) the void-to-workpiece dimensions ratio is small and the
meso-scale approach can be used.

As a consequence, the absolute void dimensions have no importance, neither has the
initial void volume Vj. The study is thus performed using a normalized volume V/Vj. On
the contrary, the relative void dimensions (aspect ratios) and the orientation of the void
(with respect to principal deformation direction) are key parameters.
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4.2.2 Comparison of closure behaviours
Limitations of the use of a sphere

A comparison was performed between void AD (obtained from X-ray microtomography),
the case of a sphere, and the case of the void’s geometry-equivalent ellipsoid, as previously
described in Chapter 2, section 2.4.3. Void volume evolutions are plotted in Fig. 4.1. The
volume evolution of the spherical void is clearly not representative of the one obtained
using void AD, as the slope of the curve is lower by a factor around two over the range
V/Vo = [0.2,1]. On the contrary, the use of a geometry-equivalent ellipsoid shows great
interest, as the curve shows very good agreement with the actual closure of void AD.

— Real void

1.0 — Sphere |

— Ellipsoid

1 2 3 4 5 6
Time (s)

Figure 4.1: Void volume evolution of void AD, compared to a sphere and to its geometry-
equivalent ellipsoid under arbitrary constant boundary conditions

Evaluation of the use of morphology-equivalent ellipsoids

In order to better illustrate the ability of an equivalent ellipsoid to model a real void, a
comparison was performed using four different cases and are presented in Figs. 4.2 and 4.3.
The real voids (obtained from X-ray microtomography) are compared to their geometry-
equivalent ellipsoid in terms of void volume evolution. Void volume evolution is plotted
under three various stress triaxility ratios, covering the range of interest within this work.

Regarding voids 3 and 4, the curves show good agreement on the range V/Vy = [0.2,1].
The major difference is observed in the final closure stage.

For the case of Void A, the use of an equivalent ellipsoid shows larger discrepancies, due
to the extreme tortuosity of the real void. Regarding Void AD, the agreement is better
for more compressive stress states. The largest discrepancy occurs for T'x = 0. Let us also
note a slightly positive slope at the early stage of closure for the ellipsoidal void. This
highlights a slight opening of the void. The value Tx = % =0 (i.e. 0y, = p = 0) indicates
that the RVE is submitted to shearing stresses only. The values of boundary conditions
Ozz = Oyy = —7%* thus impose tensile stresses on the faces perpendicular to the main
deformation direction z. A maximum value of void volume of V/V{ = 1.021 is reached
around & = 0.1. The opening behaviour thus remains very low and closure occurs after
€ > 0.1. This observation can be attributed to the particular geometry of the void, as it is

very elongated and its orientation is very different from the three other voids.
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) Void 3 ) Void 4
) Void A ) Void AD

Figure 4.2: Initial RVEs containing real voids, superimposed with their geometry-equivalent
ellipsoids.

Nevertheless, the observed discrepancy remains relatively low compared to the variation
range of the curves over the range of interest Tx = [—1,0]. The agreement for high
compressive states is excellent.

Comparison of closure states of Void 3

In order to better understand the differences of closure behaviour between a real void and
its equivalent ellipsoid, various void states are illustrated in Fig. 4.4 for Void 3 and its
equivalent ellipsoid under Tx = —0.4. The field of equivalent strain is plotted at various
stages of the closure, € =0, 0.2, 0.4 and 0.5.

First, the presence of local contact can be observed at earlier stages in the case of the
real void than for the ellipsoidal void. Contact can be already seen at € = 0.2 with a red
arrow in Fig. 4.4c, while no contact has occurred at this instant in the case of the ellipsoid.
At £ = 0.4, contact can be observed at the periphery of the ellipsoidal void (red arrows in
Fig. 4.4f). Note that, at € = 0.4, the ellipsoidal void is nearly closed and its volume V/Vj
is lower than 0.1 in Fig. 4.3a. At € = 0.5, the ellipsoidal void is completely closed (see
Fig. 4.4h) and its volume is equal to zero.

It is noteworthy that the change of slope due to contact occurs around € = 0.4, i.e. when
contact starts to occur at the periphery of the void.

In the case of real void 3, the change of slope occurs ealier. This result is the consequence
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Figure 4.3: Void volume evolution of real voids and of their geometry-equivalent ellipsoids,
under various stress triaxiality ratios.

of two phenomena. First, contact occurs earlier, and therefore slows down the closure rate.
Secondly, as the void deforms, its shape changes due to the deformation, and the geometry-
equivalence of the ellipsoid may be affected.

This effect is illustrated in the case of Void 3, with the presence of a residual cavity at
the final stage. This residual cavity can be observed in Fig. 4.4g (indicated with a red
circle).

In fact, this residual cavity results from an incomplete closure of a particular sub-part
of the void that can be seen on the initial void (red circle in Fig. 4.4a). According to
its particularly elongated and vertical aspect, the volume evolution of this sub-part is
significantly lower than the rest of the void. The consequence is a decrease of the total
closure rate of the void. At the final stages, as the rest of the void is quasi-entirely closed,
the contribution of the sub-part is more important and becomes the main contribution
to the total closure rate of the void. The slope of the void volume evolution thus drops.
The change of slope is smoother than in the case of the ellipsoidal void, and occurs before
£ = 0.4, i.e. when the rest of the void is quasi-completely closed (green circle in Fig. 4.4e).

To better represent the real void using simple geometries, it would be possible to replace
the equivalent ellipsoid by a series of several equivalent ellipsoids. Each ellipsoid could be
generated using the inertia matrix of several segmented parts of the initial complex void.
However, the definition of several ellipsoidal voids involves the problem of proximity of
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(a) Void 3at =10 (b) Equivalent ellipsoid 3 at € =0

(c) Void 3 at £ = 0.2 (d) Equivalent ellipsoid 3 at € = 0.2
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(g) Void 3 at €= 0.5 (h) Equivalent ellipsoid 3 at € = 0.5

Figure 4.4: Field of equivalent strain around Void 3 and around its equivalent ellipsoid at
various stages of deformation, under Ty = —0.4 and £ = 1 571,
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the voids to be considered. Within this work, using the meso-scale approach and by the
choice of the value n = 3 (the RVE-to-void dimensions ratio), the case of isolated voids are
exclusively considered.

In addition, the main goal of using equivalent geometries is to identify simple geometry
parameters in order to supply a mean-field prediction model. The definition of several
ellipsoids for a void would significantly complicate the quantification using geometry pa-
rameters. [t would also naturally require an advanced knowledge of the actual void state.
A tridimensional measurement of actual void state would systematically be required when
using the model during simulation of any industrial process. Yet, it was shown that there
is at present a lack of technique to systematically obtain a sufficiently accurate description
of voids in large workpieces.

The definition of one equivalent ellipsoid (including aspect ratios and orientation) thus
appeared as the most reasonable way to consider void morphology. It represents a good
compromise between its ability to describe real voids behaviour, and its ability to be
implemented in a mean-field model.
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4.3 Parametric sensitivity study

The objective of this section is to identify the parameters that exhibit an influence on void
closure and that might be considered for the prediction model. According to literature, void
volume evolution is systematically presented as a function of equivalent strain [Budiansky
et al., 1982, Tanaka et al., 1986, Ragab, 2004, Lasne, 2008, Zhang et al., 2009]. It is
explained by the fact that plastic deformation is naturally required in order to obtain
deformation of the void, and thus a possible volume evolution.

Some other parameters can be added to characterize the ability of a void to close un-
der various conditions. Stress triaxiality ratio is often considered as a major parameter
regarding void growth [e.g. Rice and Tracey, 1969, Lemaitre, 1992]. Stress triaxiality ratio
is also taken into account in all existing models for void closure [Budiansky et al., 1982,
Tanaka et al., 1986, Lasne, 2008, Zhang et al., 2009]. Material parameters were studied by
several authors [Budiansky et al., 1982, Duva and Hutchinson, 1984| according to various
hypotheses that were detailed in Chapter 1, and are considered in the model of Zhang
et al. [2009].

According to literature [Lee and Mear, 1994, Kakimoto et al., 2010, Chen et al., 2010,
Chen and Lin, 2013] and to previous work [Saby et al., 2013b], void morphology also
appears as a key parameter in void closure mechanisms. Yet, there is at present a lack of
studies regarding quantitative influence of void morphology in the literature. In this work,
tridimensional morphology is studied in terms of orientation and dimensions of voids.

The influence of material parameters is first studied in terms of strain hardening and
strain-rate sensitivity. Then, using an ellipsoid with arbitrary dimensions, thirteen various
orientations are defined and the effect of spatial orientation is studied. Seven various
ellipsoidal geometries are then defined using various aspect ratios in order to study the
effect of geometry. Finally the effect of mechanical state is studied within the ranges of
interest defined in Chapter 1. For each geometrical case, eight different stress triaxiality
ratios are successively applied on the RVE over the range Tx = [—1,0].

4.3.1 Sensitivity to material parameters

A dependence to material behaviour was pointed out in the literature. For visco-plastic
materials, Budiansky et al. [1982] and Duva and Hutchinson [1984] studied the effect of
strain-rate sensitivity coefficient using various stress triaxiality conditions for the evolution
of a spherical void. They used a power-law matrix without strain hardening og = A£™ and
proposed an analytical dependence of void evolution to strain-rate sensitivity coefficient m.
Duva and Hutchinson [1984] and Lee and Mear [1992] stated that the effect of strain-rate
sensitivity for such materials can also be applied for the case of strain hardening materials
obeying g9 = A&™. In fact, the involved mechanisms are the same and the same analysis
can be conducted by simply replacing & by &.

Li et al. [2003] and Ragab [2004] studied the effect of strain hardening on void open-
ing, dealing with damage prediction. They found out that strain hardening mainly affects
the coalescence phenomenon. A slight effect was observed on void evolution (in this case,
growth) as well. This results is in good agreement with the remark from Duva and Hutchin-
son [1984] and Lee and Mear [1992].

In this section, the effect of strain-rate sensitivity and the effect of strain hardening are
assessed using the RVE containing a sphere. The first objective is to verify the results
from literature regarding the methodology of the present work. Then, as most material
laws depend on both strain hardening and strain-rate sensitivity, the combined effect of
both coefficients n and m is assessed as well.
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A power-law equation is used, the so-called Hansel-Spittel law:
00 = A (84 go)" Emema/ (EFe0), (4.1)

where A is the material consistency (in MPa), m the strain-rate sensitivity, (n,my4) the
strain hardening and softening coefficients, and g a regularization term that enables initial
rigidity of the material. This law is widely used in the field of hot metal forming. In
addition, it presents the advantage of being coherent with the law used in Budiansky et al.
[1982] and Tvergaard [1984] when n = my = g9 = 0, as it reduces to o9 = Ag™.

Influence of material consistency

The influence of material consistency A, was first studied. The void volume evolution
was plotted for several values of A. Using an arbitrary strain hardening coefficient (n =
1), material laws with different values of A were compared. The stress-strain curves are
illustrated in Fig. 4.5a. These curves illustrate the wide range of stresses that are obtained.
The resulting void volume evolution is plotted in Fig. 4.5b. In spite of the wide range of
stresses that are obtained, the closure behaviour is identical in all cases.

A second case was thus defined using another value of strain hardening coefficient n =
0.1. The stress-strain curves and the resulting void volume evolution are plotted in Fig. 4.5¢
and Fig. 4.5d, respectively. As both void volume evolutions are superimposed, the same
conclusion can be made. The material consistency A has no influence on void closure. An
arbitrary value A = 1 MPa is thus set for the following analyses.

Note that a difference can be observed in terms of void volume evolution between the
cases n = 1 and n = 0.1. The influence of n is studied in a forthcoming paragraph.

Pure effect of m

First, the results of Zhang et al. [2009] in terms of void volume evolution of a spherical
void were reproduced. The behaviour law that is used in the work of Zhang et al. [2009]
is viscoplastic without strain hardening, given by oo = A&™. As already pointed out, this
law can be obtained using the Hansel-Spittel law by setting the parameters n = my = ¢g =
0. However, due to convergence difficulties when using rigid perfectly plastic behaviour
(n = 0), the value n = 0.01 was used instead.

Several values of m were defined on the range [0.01, 1] and the resulting void volume
evolutions are plotted in Fig. 4.6. The curves show very good agreement with the values
obtained by Zhang et al. [2009].

The influence of m is thus verified using the present approach. The effect is rather
significant on the tested range m = [0.01, 1]. Nevertheless, values of strain-rate sensitivities
for hot metals rarely exceeds the value m = 0.25. Over the range m = [0.01, 0.2], the
influence of m on void volume evolution is moderate.
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Figure 4.5: Effect of material consistency A on void volume evolution, under & = 1s~!
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Tx = —1/3, for different values A = {1,2,10,100} MPa, using n = 1 in (a,b)
and using n = 0.1 in (c,d).
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Figure 4.6: Effect of strain-rate sensitivity m on void volume evolution, using n = 0.01
under £ = 1s7! and Ty = —1/3.
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Pure effect of n

The pure effect of strain hardening n is now studied. The range n = [0.01, 1] was initially
defined to cover a large variety of material behaviours.

Yet, hot metals often exhibit softening behaviours. Softening can be introduced in
the Hansel-Spittel law using negative values of n. An additional case with the values
(n,m4) = (—0.1,—-0.001) was thus introduced in order to qualitatively represent a material
with softening behaviour. Note that in that special case, a non-zero value of m4 was used
in order to avoid the presence of an infinite value of og at € = 0. (It was verified that
the introduction of the non-zero value of my4 has no significant impact on the material
behaviour.) Although this special case may not physically represent a typical behaviour
(see Fig. 4.8), it is a simple qualitative example exhibiting a negative slope of the stress—
strain curve and is comparable to the other cases.

Throughout this paragraph, the effect of strain-rate sensitivity is ignored by setting the
value m = 0. The behaviour law is thus reduced to oo = &".

The stress-strain curves are presented in Fig. 4.7a and illustrate the large variety of
material behaviours that is considered. The resulting void volume evolutions are plotted
in Fig. 4.7b.
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Figure 4.7: Effect of strain hardening on the evolution of a spherical void, using strain-
rate sensitivities m = 0 under £ = 1s7! and Tx = —1/3 (*For negative strain
hardening values, the value my4 = —0.001).

The curves indicate that strain hardening has a non-negligible effect on void volume
evolution on the tested range n = [—0.1,1]. Void volumes were measured at & = 0.4 for
the boundary cases n = —0.1 and n = 1. They exhibit a difference of about 40% on void
closure. This difference tends to decrease at the final stages, as the slope drops due to
internal contact.

The effect of internal contact is illustrated in Fig. 4.8. In the case of a linear material
n = 1, the shape remains ellipsoidal throughout the deformation. When reducing strain
hardening n, the curvature is changed and contact between internal surfaces appears earlier.
This effect induces a faster void closure at the beginning, and, on the contrary, reduces the
final slope to complete closure.

However, it is noteworthy that the required deformation for complete closure is com-
parable for all cases. The value of strain hardening for hot metal rarely exceed the value
n = 0.2. The difference reduces to about 15% over the range n = [—0.1,0.2].
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(c) n=0.01 (d) n=-0.1

Figure 4.8: Cutting plane illustrating the von Mises equivalent stress field, for an initially
spherical void at & = 0.4, under £ = 1s~!, Tx = —1/3 and for different values
of strain hardening coefficient n.

When comparing this effect to the ones described later regarding void morphology or
stress triaxiality ratio, the influence of strain hardening can be considered as second order
within the considered range n = [0.01,0.2].

The result regarding the negative value n = —0.1 also suggests that the general tendency
that is obtained for the influence of n seems coherent over negative values. Similarly, the
curve using n = —0.1 shows a relative difference around 5% with the case n = 0.01, and
the required deformation for complete closure remains similar.

As mentioned by Lee and Mear [1992], the effect of strain hardening and the effect of
strain-rate sensitivity are driven by the same mechanisms. The resulting influence of n can
therefore be used for the one of m and vice-versa.

Combined effects of n and m

The analysis was further conducted to the case of materials that present both strain hard-
ening and strain-rate sensitivity (n # 0 and m # 0). Let us now consider the value of the
sum n +m. Three values for the sum were chosen: n4+m =1, n4+m = 0.5 and n+m = 0.
The results of simulations are plotted in Fig. 4.9. For each value of n + m, two different
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combinations were used and are indicated in the plot.
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Figure 4.9: Effect of the sum m +n, under & = 1s~! and Tx = —1/3 (*For negative strain
hardening values, the value my = —0.001).

The superimposed curves suggest that the effects of n and m are in fact additive. For
each value of n + m, both void volume evolutions are identical, although the stress-strain
curves are significantly different. This is due to the fact that the effect of strain hardening
is visible on the stress-strain curve, whereas the effect of strain-rate sensitivity is not visible
as all curves are plotted for a common value of strain-rate & = 1s~!. Note that the void
volume evolution for the case (n,m) = (0.01,0) that was used in first approximation for a
quasi-perfectly plastic material, is identical to the evolution in the case (n, m) = (—0.1,0.1),
as the sum m + n is approximately equal to zero. This remark illustrates the validity of
the observed additivity of the effects, even at the bounds of the range of tested values.

The value of n + m might thus be seen as a single material parameter regarding its
influence on void closure.
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4.3 Parametric sensitivity study

4.3.2 Sensitivity to void morphology

In this section, the Hansel-Spittel law (Eq. 4.1) is used with constants that are typical for
the behaviour of hot steel:

e A =31.23 MPa is the material consistency at the given temperature,

e m = (.153 the strain-rate sensitivity,

e n = —0.135,m4 = —0.055 the strain hardening/softening coefficients, and

e o = 0.025 a regularization term that enables initial rigidity of the material.

The stress—strain curve is illustrated in Fig. 4.10.
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Figure 4.10: Stress-strain curve of the the material used for the calibration (Eq. 4.1).

Sensitivity to void orientation

Let us define the canonical basis (e, €,,€2). The three principal vectors of deformation
(€1,€3,€3) can be obtained by diagonalizing the strain-rate tensor. Similarly, the three
principal vectors for the void can be obtained by diagonalization of the inertia matrix,
and the principal vectors are called (u7,uz,u3). An example is given in Fig. 4.11 for the
particular case (e7,€3,e3) = (—€2,€,,€z).

— — —;)

Figure 4.11: Definition of the orientation using void’s principal axes (u3, u3, u3

According to the current methodology (that was defined in Chapter 2), void closure
is studied at the RVE-scale. Let us recall that the mechanical state at the RVE-scale is
imposed using a vertical velocity ‘7; and lateral stresses 0., and oy,. As a consequence, the
main deformation direction remains constant during all RVE simulations and e] = —é,
as it is illustrated in Fig. 4.11. Vertical axisymmetry is also assumed by the choice of
Ozz = Oyy (defined in Chapter 2). This assumption will be discussed later in Chapter 5.
The obtained results are therefore invariant by rotation around the z-axis, i.e. around ej.
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Chapter 4 Construction of a prediction model

Yet, in real process conditions, the main deformation direction may vary during process,
and the final prediction model must be able to take into account this effect. It is thus
chosen to define the orientation of a void with respect to the main deformation direction
€1, using parameters (p1, p2, p3) such as:

This definition verifies p; + p2 + p3 = 1.

When using the final mean-field prediction model, it will thus be possible (at each
integration point) to update the orientation parameter according to the local current de-
formation state.

In Fig. 4.11, the particular configuration (1,0, 0) is illustrated, meaning that the principal
direction u] of the ellipsoid is colinear with the principal deformation direction €j.

Orientation cases Several orientations were defined in order to study the influence of
orientation on void closure. A given ellipsoid of dimensions ry/ry = 2 and r3/r = 1.5 was
used. The cases presented in Fig. 4.12 and 4.13 were obtained by rotating the void around
the €, axis and the ¢; axis, respectively.

Angle (degrees) 30 45

LQOOO

Parameters (p1,p2,p3) (1, 0,0) (0.75, 0, 0.25) (0.5, 0, 0.5) (0.25, 0, 0.75) (0, 0, 1)

Figure 4.12: Various ellipsoids, obtained by rotation around e,.

Angle (degrees) 30 45 60 90

/Laaaaa

Parameters (p1,pa,p3) (1, 0, 0) (0.75, 0.25, 0) (0.5, 0.5, 0) (0.25, 0.75, 0) (0, L, 0)

Figure 4.13: Various ellipsoids, obtained by rotation around €.
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4.3 Parametric sensitivity study

Void volume evolutions The void volume evolutions for each series of cases are presented
in Fig. 4.14. The orientation is given using the couple of values (pi,p2), as p3 can be
deduced from p3 = 1 — p; — po. From the curves, it can be seen that orientation has a
significant influence on void volume evolution. Three particular cases can be pointed out:
the case (p1,p2) = (1,0), the case (p1,p2) = (0, 1) and the case (p1,p2) = (0,0). Each case
corresponds to a compression along uj, s and u3, respectively. The curves indicate that
compression along u] involves the fastest void closure, as the void is compressed along its
smallest dimension ;. On the contrary, compression along u3 involves the slowest void
closure, as compression is made along the void’s longest dimension r3. These two cases can
be seen as upper and lower bounds for this ellipsoid. Void evolution under compression
along u3 is naturally between both boundaries, as well as for any other orientation.
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Figure 4.14: Influence of orientation parameters.
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Sensitivity to void’s aspect ratios

The upper and lower bounds obtained previously using a given ellipsoid evidently depends
on the initial geometry. In order to assess the influence of geometry on these bounds,
several ellipsoids were defined according to various aspect ratios. The aspect ratios are

defined by (é 72)

r1’ry

Ellipsoids cases using various aspect ratios Various aspect ratios were used and are
presented in Fig. 4.15 (using the orientation (pi,p2) = (1,0)). Ellipsoids A and B are
prolate, as 11 = r9 < r3. Ellipsoids C and D are oblate, as vy < ro = r3. Ellipsoids E
and F are defined such as r; < ro < r3. For each ellipsoid, the RVE was generated and
identical deformation conditions were applied in order to obtain void volume evolutions
along the three principal directions of each ellipsoid.

Sphere Ell-A Ell-B El-C Ell-D Ell-E Ell-F

@O Qleee

<:§7 1 3)

Figure 4.15: Various ellipsoids with given aspect ratio (ﬁ Q), for (p1,p2) = (1,0).

717 7r]

Void volume evolutions The void volume evolutions are given in Fig. 4.16. In the case
of ellipsoids A, B, C and D, two of the three curves are superimposed. This is due to the
particular symmetry of such geometries. For the prolate ellipsoid A, identical behaviours
are obtained for compressions along the u] and w3 axes. This result is observed for the
prolate ellipsoid B as well. For the oblate ellipsoids C, identical behaviours are obtained
for compressions along the w5 and u3 axes. It is also is observed for the oblate ellipsoid D.
For ellipsoids E and F, the closure rates along one direction depends on the geometry.

By comparing the pairs of ellipsoids (A, B), (C, D) and (E, F), it is observed that larger
aspects ratios tend to increase the difference in terms of closure rate between the minor
axis and the major axis.

By comparing the triplet of ellipsoids (A, C, E) in the orientation (1,0), different closure
rates are observed, although their first aspect ratio are identical ;—5’1’ = 2. This remark
shows that void closure not only depends on one aspect ratio but also on the tridimensional
morphology.
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Figure 4.16: Void volume evolution for various initial geometries, and for three different
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Chapter 4 Construction of a prediction model

Final stages of closure When looking at the curves in Fig. 4.14, 4.16 and 4.18, it can be
observed that void volume generally exhibits a slight change of slope at final stages. This
phenomenon was already observed in section 4.2, and is due to the presence of contact
between internal void surfaces at the final stage of closure, as shown in Fig. 4.17. This
phenomenon was also observed by Zhang et al. [2009] for spherical voids.

P vV o9

E=0 e=0.1 €=0.2 E=0.3 €=20.35

Figure 4.17: Evolution of the void Ell-E during closure for the orientation (p1,p2) = (1,0)
under T'x = —1/3. The blue color shows the contact between internal surfaces.

4.3.3 Sensitivity to mechanical state
Influence of stress triaxiality ratio on the closure of Ellipsoid E

As described in section 2.3, boundary conditions are applied in order to impose a constant
stress triaxiality ratio. Void closure was studied under various stress triaxiality ratios and
the curves are presented in Fig. 4.18.

The curves confirm that compressive stress states have a favorable effect on void closure.
This result is in good agreement with the conclusions obtained in Chapter 1 regarding
the bibliographic state-of-the-art. The studies using a macroscopic approach concluded
that process conditions (e.g. die shapes, temperature gradients, friction) must be chosen
in order to induce more compressive states in the material. Empirical models, as well
as analytical and semi-analytical models that are described in Chapter 1, systematically
include a dependence to stress triaxiality ratio. It is thus verified here, and the value of
T'x will be considered in the prediction model within the present work.
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Figure 4.18: Void volume evolutions of Ell-E, under various values of stress triaxiality
ratios.
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Influence of remote strain-rate and stress triaxiality ratio on a real void

The notion of remote strain-rate deals with the velocity boundary condition that is ver-
tically applied on the RVE, as it is described in section 2.3.2. The influence of remote
strain-rate was tested in the case of real void coming from X-ray microtomography (de-
fined in Chapter 2). More details about this configuration can be found in Saby et al.
[2013D].

Description of the cases The RVE containing the real void A (obtained from X-ray
microtomography from the steel sample JD20, previously described in section 2.5.1) was
used to perform a sensitivity study to both strain-rate and stress triaxiality ratio. Similarly,
a constant strain-rate was applied and the stress triaxiality ratio was controlled during
deformation. Different values of stress triaxiality ratios over the range [-0.82, -0.15] and
various values of strain-rate over the range [0.001, 100] s~! were used.

Void volume evolutions Void volume evolutions are plotted in Fig. 4.19 for three values
of T'x and three values of £. The curves confirms the strong influence of stress triaxiality
ratio on void closure. This result is verified for all tested strain rates.

For each value of stress triaxiality ratio, the quasi-perfect superposition of the curves at
various strain-rates indicates that strain-rate has no influence on void closure.

Local mechanical state around the void To explain this result, the field of equivalent
stress around the voids is illustrated in Fig. 4.20 for several tested values of strain-rate. Due
to the strain-rate sensitivity of the material (m=0.153 in the present case), the global flow
stress varies from about 24 MPa to 140 MPa over the range of tested strain-rates. These
values were measured at a position that is sufficiently far from the void to be considered
as homogeneous. The positions are indicated in Fig. 4.20, for each case, at the bottom-
right corner. This measured value is approximately equal to the remote value, as it is not
affected by the local modifications of the mechanical field around the void.

Fig. 4.20 also illustrates the shape of the void at & = 0.24. For the four presented cases,
the shape is identical. This result is coherent with the identical void volume evolution of
the different cases.
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Figure 4.19: Void volume evolution of void A under five constant stress triaxiality ratios,
and for six values of strain-rate.
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Figure 4.20: Von Mises equivalent stress around void A at &€ = 0.24 under Tx = —0.41, for
various strain-rate values.
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Chapter 4 Construction of a prediction model
4.4 Prediction model for void closure

This section presents the construction steps for the new prediction model for void closure.
First, the choice of an analytical function that is able to model void closure as a function of
equivalent strain is presented. Then the dependence to void orientation is quantitatively
studied in order to extend the analytical function to any orientation of ellipsoid (for a
given ellipsoid). The dependence to aspect ratios is then quantitatively studied in order
to extend the analytical function to any ellipsoid (geometry and orientation). Finally,
the dependence to stress triaxiality ratio is quantitatively studied in order to extend the
analytical function to any ellipsoid and to any stress triaxiality ratio. The final equation
is verified using the four geometry-equivalent ellipsoids (from real observations) that were
presented in the previous section.

The analytical functions are calibrated using the RVE simulations presented in the pre-
vious section using regression analysis. The quality of the regressions is systematically
illustrated using the R?-correlation coefficient. The final difference that is obtained be-
tween the calibrated prediction model and the reference states (from RVE simulations) is
given using the L?-norm.

4.4.1 Choice of an analytical function

A relationship between void volume and equivalent strain is sought here. According to the
parabolic aspects of the curves obtained in the previous section for various geometries and
under various conditions, a second order polynomial function is proposed. The analytical
function can be expressed as:

V/Vo = A+ B + C&. (4.3)

where A, B and C are fitting parameters. The initial condition leads to A = 1. This
expression can be reduced to a linear expression:

V/Vg_l ~B+Ck (4.4)
in which the two coefficients B and C can be fitted using linear regression analysis. This
is of great interest regarding the large quantity of parameters to be assessed within this
study.

As pointed out in the previous section, the final void evolution may not be representative
of void closure in the general case, as it is driven by the particular ellipsoidal shape. As
a consequence, interest is rather focused on the range V/Vy = [0.2,1]. Values below the
threshold value 0.2 will therefore be ignored in the regression analysis (see example in
Fig. 4.21). The first 10 increment steps are ignored as well due to the presence of a vertical
asymptote at € = 0 on the linearized curves, and in order to accurately capture the linear
evolution using linear regression analysis.

4.4.2 Dependence to orientation

For all orientation cases, the curves of void volume were fitted using linear regression
analysis. It is illustrated for several particular orientations in Fig. 4.21. Values of B and C
coefficients were obtained with very good correlation (using R%—correlation coefficients).
The values for B and C are plotted with dots in Fig. 4.22 versus orientation parameters
p1 and po. Each coefficient exhibits a linear dependence to orientation parameters. Linear
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4.4 Prediction model for void closure

regression is thus used to fit this dependence and R?—correlation showed very good values
as well. As a consequence, the following expression is proposed:

B = ])1Bw1 —l—pr@ +p3Bu§ (45)

C = p1C"1 + poC™2 + ps O™ .
In this equation, B% and C% are geometry-dependent parameters that correspond to void
evolution under compression along ;. They can be obtained using the three particular
cases (p1,p2) = (1,0), (p1,p2) = (0,1) and (p1,p2) = (0,0), respectively. According to the
analytical expression in Eq. 4.5, for a given ellipsoid, knowing its volume evolution along
its three principal directions is sufficient for predicting its volume evolution in any random
orientation. The values of B and C* are thus obtained from the regression shown in
Fig. 4.21.

‘ ‘ ‘ ‘ ‘ ‘ 0.0
1.2t e (p1p2)=(10,0.0) |l
Fit (R* =0.99998)
10 * (p1,p) =(0.0,1.0) |]
Fit (R* =0.99982)
= (p,p,)=(0.0,00)
0.8 o 1
—— Fit (R* =0.99984)
o —| 1
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08— 01 o0z 03 04 05 06 -38

Figure 4.21: Curve fitting (with R?—correlation factor) performed on RVE results (Ell-E
for the three principal orientations) by linear regression using the linearized
expression (Eq. 4.4).

Based on BY% and C% coefficients that were obtained with EI-E for (p1,p2) = {(1,0);
(0,1); (0,0)}, the validity of Eq. 4.5 was checked using randomly oriented ellipsoids. Four
orientations were defined using successive rotations around €; and €;. The resulting pairs
of orientation parameters (p1, p2) are (0.56,0.19), (0.19,0.56), (0.19,0.06) and (0.06,0.19).
The model was computed using Egs. 4.3 and 4.5 for each orientation. A comparison is given
in Fig. 4.23, together with bound cases (1,0) and (0,0). For the six curves, a very good
agreement was obtained between the model and the values obtained from RVE simulations.
The average L?> norm error was computed over the whole deformation, between the RVE-
values and the model in Eq. 4.5, and remains under 3% for all cases. As a consequence,
the model is suitable to take into account the effect of orientation. Together with Eq. 4.3
the model is suitable for predicting void evolution for any orientation.
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Figure 4.22: Influence of orientation parameters on B and C coefficients.
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Figure 4.23: Void volume evolution obtained using RVE simulations (dots) and model pre-
dictions (lines) given by Eqgs. 4.3 and 4.5, for various orientations, with average
L%-norm error.
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4.4 Prediction model for void closure

4.4.3 Dependence to geometry

The dependence to aspect ratios is now studied using the same methodology as described
above. Void evolution coefficients B and C' are obtained from curves in Fig. 4.16 using
linear regression analysis. The linearized form of void volume evolution is used as well,
such as shown in Fig 4.24. The R%—correlation coefficient was excellent again, meaning
that Eq. 4.3 is suitable to model closure of ellipsoidal voids.

For each ellipsoid, three coefficients B% (and C™) were obtained, respectively along
their three principal directions i = {1,2,3}. The values obtained for B% (and C™) are
plotted in Fig. 4.25 versus a geometry parameter defined as

3
=% (46)

Ti

This parameter represents an apparent geometry parameter according to the u; direction.
It is a non-dimension parameter that considers tridimensional features of the geometry
with respect to each principal direction. For example, in the case of the first principal
direction u}, the parameter can be expressed as:

3/4m 4
- Vo v 3 17273 3 —3”7*17“27“3 _ gl4mrars (@7)
1— p— _— - a  — - T T . -
1 1 T‘:l)’ 3 1T

The ~1 parameter is proportional to the cubic root of the product of aspect ratios. In this
manner, this parameter contains the information relative to tridimensional geometry. This
parameter was chosen as it provided a bijective relation with the B% and C% coefficients,
regardless of the value of i.

As expected, due to axisymmetrical features, it is verified that for prolate ellipsoids,
BW = B% and C% = C%2. Regarding oblate ellipsoids it is found that B¥> = B% and
CY2 = O Finally, for the spherical void B¥ = BY2 = BY and C¥% = C" = C".

On Fig. 4.25, all cases are presented on the same plot in order to establish a unique
relationship b(~;) (and ¢(y;)) between void closure and the apparent geometry parameter.
This is done because, for a given apparent geometry parameter, the same mechanisms are
involved whether the apparent geometry corresponds to the first, the second or the third
principal direction. Eq. 4.5 thus becomes:

B = b(y1)p1 + b(y2)p2 + b(73)p3

O = cln)pr + e(i)p2 + clvs)ps. (48)

From Fig. 4.25, a bijective monotonously decreasing evolution was observed. A quadratic
polynomial function is proposed such that:
b(7i) = bo + b1vi + b2}

0 (4.9)
c(vi) = co+ c1vi + a7

The values plotted in Fig. 4.25 were used to identify coefficients by, by and be (and cy,
c1 and c3) using polynomial regression analysis. The R?—correlation factor is very good
again.
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Figure 4.24: Curve fitting (with R?—correlation factor) performed using RVE results for
various geometries and orientations (given in Fig. 4.16), by linear regression

Figure 4.25: Influence of the geometry parameter v; on B and C coefficients, obtained from
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using the linearized expression (Eq. 4.4).
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Figure 4.26: Comparison, for several values of stress triaxiality ratio T'x, of the influence
of the geometry parameter v; on B and C coefficients, obtained from curve
fitting (see legend for the dots in Fig. 4.24).
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4.4.4 Dependence to stress triaxiality ratio

All expressions in this section up to Eq. 4.9 were obtained for the particular value Tx =
—1/3, i.e. under uniaxial compression (using the boundary conditions o, = o, = 0).

In order to quantitatively assess the influence of stress triaxiality ratio and to extend
Eq. 4.9, the analysis was repeated under various stress triaxiality ratios over the range
Tx = [-1,0]. The evolution of b(~;) and c(vy;) (i.e. the dependence to geometry) is
plotted for various stress triaxiality ratios in Fig. 4.26. The curves exhibit a rather linear
dependence to the geometry parameter -; for low compressive stress states. Non-linearity
occurs when decreasing the value of Tx.

In Fig. 4.26, it can be seen that the fitting accuracy also decreases for compressive
stress triaxiality ratios. The case that is plotted using a red square exhibits rather large
discrepancy. It corresponds to Ellipsoid B when it is deformed perpendicularly to its
longest direction (see Fig. 4.15).

The coefficients b; and ¢; (i € {0,1,2}) were obtained using polynomial regression anal-
ysis for each case and are plotted in Fig. 4.27.

0 .......................................................................................................................
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Figure 4.27: Influence of stress triaxiality on the b; and ¢; coefficients (i € {0,1,2}) from
Eq. 4.9.

A linear dependence is observed for the b; coefficients over the whole range of Tx. For
the ¢; coefficients, a linear dependence is observed as well on the range —0.4 < Tx < 0,
and a quadratic dependence is observed on the range —1 < Tx < —0.4. The regression was
therefore split and two batches of calibration constants were obtained, one for each range
of Tx. The good values of R?>-correlation coefficients indicate that the chosen analytical
functions are suitable to model these dependences.

142



4.4 Prediction model for void closure
The final dependence to ~; and to stress triaxiality ratio T'x can be written as:

b(vi) = boo + brovi + b207;  +Tx (bor + br1vi + b2177)
(i) = coo + c10%i + 2077 +Tx (co1 + c11%i + ean17]) + T (co2 + c12% + c2277)
(4.10)
The values of constants are given in the confidential Appendix D.1. The coefficients
B and C are called closure coefficients. In fact, B can be seen as the initial closure
coefficient, providing the initial slope of the void volume evolution at € = 0. The coefficient
C can be seen as a deformation-dependent coefficient, translating the change of shape
during deformation. This is in good agreement with the results of Lee and Mear [1994].
The authors pointed out the necessity to consider the change of shape of a void during
deformation.
In the present work, the coefficient is calibrated under constant loadings. The value of
C thus contains the information of the change of shape during a uniform loading.
For a better prediction, the current evolution of the void must be known throughout the
deformation. For a given pass, it is correct as the material is generally loaded along one
main axis.

4.4.5 Final expression of the prediction model

Finally, the crossed dependences to orientation, to geometry and to stress triaxiality ratio
can be summarized in a single expression:

3 2 1
B = Z Z Z bjn(Tx )" (7:)pi

i=1 j=0k

o

V_ 1+ Bz + C&? with
Vo

(4.11)

vl
ISIN|

C = cin(Tx )" (i) pi

NE

i=1 j=0 k=0

where the numerical values of the six constants bj; and the nine constants c;; are given in
the confidential Appendix D.1.
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4.5 Validation of the prediction model

In order to verify the reliability of the proposed model, predicted evolutions are compared
to the void volume evolutions that were measured for several ellipsoidal voids, under various
mechanical conditions. The four morphology-equivalent ellipsoids that were presented in
section 4.2 are used. The RVEs containing these ellipsoidal voids are illustrated in Fig. 4.28.
Various stress triaxiality values are imposed on the range Tx = [—1,0].

Dimensions (mm) Orientation
"1 2 T3 p1 P2 p3
Ellipsoid 3 1.35 1.62 2.36 0.97 0.01 0.02
Ellipsoid 4 1.20 1.42 2.10 0.67 0.10 0.23
Ellipsoid A 1.34 1.63 3.17 0.88 0.21 0.01
Ellipsoid AD 0.47 1.61 3.97 0.20 0.22 0.58

Table 4.1: Geometrical features of the ellipsoids used for the validation of the calibration.

[= ][~ |

a) Ellipsoid 3 b) Ellipsoid 4

P 4

‘ 62
e’J\ey

(c) Ellipsoid A (d) Ellipsoid AD
Figure 4.28: Initial RVEs containing morphology-equivalent ellipsoids.

Void volume evolution is thus plotted for each ellipsoid in Fig. 4.29. For each plot, the
predicted volume evolution is plotted as well. It is computed using Eq. 4.11, according to
the geometrical features given in Table. 4.1 and the prescribed stress triaxiality ratio Tx.

The objective here is to assess the ability of the model to predict the behaviour of
ellipsoids. This is directly related to the efficiency of the chosen model, as well as the
calibration step.
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Figure 4.29: Tllustration of the L?-norm error made by the prediction model on the actual
closure of an ellipsoidal void.

Ellipsoid 3

The aspects ratios of ellipsoid 3 can be obtained from its dimensions and are (r3/r;) = 1.75
and (re/r1) = 1.20. The orientation parameter p; is close to unity and ps = p3 ~ 0. These
values of orientation indicate that the principal vector of the void w7 is colinear with the
main deformation direction e7 . In other words, the void is mainly deformed along its
smallest dimension r1. As a consequence, according to Eq. 4.8, the closure coefficients b
and c are respectively equal to b(y1) and ¢(v1).

The L?norm error was computed between the model and the result from RVE simula-
tion. For all tested values of stress triaxiality ratio, the error remains lower than 5%. In
the case of Ellipsoid 3, the model is capable of predicting its void volume with very good
accuracy.

Ellipsoid 4

The aspect ratios of ellipsoid 4 are (r3/r;) = 1.75 and (r2/r1) = 1.18. Note that, by
chance, the values are roughly identical to the ones of ellipsoid 3. Regarding its orientation,
ellipsoid 4 is slightly tilted compared to ellipsoid 3. As a consequence, the values of closure
coefficients B (respectively coefficients C') are given by a linear combination of b(+1), b(72)
and b(vy3) (respectively ¢(71), ¢(y2) and ¢(73)), according to Eq. 4.8.
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For the lowest triaxiality ratios, the prediction is excellent, with a L?norm error about
3%. When increasing the value of stress triaxiality, the prediction slightly underestimates
void closure, the L?-norm error remaining lower than 9% over the whole range of T'x. The
obtained error is mainly due to the fact that the closure rates are relatively small for low
compressive states. When looking at Fig. 4.26, the relative error that is made by regression
for the value of B is higher for the value Tx = —0.04 than for the value Tx = —0.94, due
to the fact that the values are close to zero when Tx tends to zero. As a consequence,
the error made on the value of B is visible on the initial slope of the volume evolutions
in Fig. 4.29. Nevertheless, since the error remains lower than 9%, the prediction can be
reasonably considered as good.

Ellipsoid A

The aspect ratios of ellipsoid A are (r3/r;) = 2.37 and (r2/r1) = 1.22. In this case, the
second aspect ratio is relatively similar to the previous ones as well. However, the first
aspect ratio is larger, indicating that the void is more elongated along its third principal
direction. Its orientation parameters exhibit the particular value of ps &~ 0, meaning that
the third principal direction is perpendicular to the z-axis (the deformation axis). The
behaviour of the void is thus driven by a combination of the closure coefficients b(7;) and
b(72) (and c(v1) and ¢(y2)), only.

The L?>-norm error remains lower than 5%. The accuracy of the prediction for ellipsoid
A is as good as the one obtained for ellipsoid 3.

Ellipsoid AD

The aspect ratios of ellipsoid AD are (rs/r;) = 8.45 and (r2/r1) = 3.43. The orientation
parameters indicate that the void does not show any particular orientation.

Regarding Eq. 4.10, the apparent geometrical parameters v = 4.95 and 3 = 0.59 of
ellipsoid AD are situated at the boundaries of the range of tested values for the calibration
(see Fig. 4.26). The accuracy of the regression is therefore lower for such values, and the
resulting error is visible on the final prediction of void volume in Fig. 4.29d. This case can
therefore be considered as an extreme case for the validation of the model.

The same comment can be made regarding the fact that the maximum discrepancy is
obtained for low compressive values of stress triaxiality ratio. The L?>norm error rises to
17% in the case Tx = 0. For more compressive triaxiality ratios, the error remains rather
low, with the best prediction obtained for the value Tx = —0.58, with an error of about

3%.
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4.6 Conclusions

Based on a wide campaign of numerical simulations at the RVE-scale, a parametric sensi-
tivity study has demonstrated the following statements.

e Material parameters exhibit a certain influence on void closure. Both the strain
hardening and the strain-rate sensitivity parameters have a comparable influence on
void closure, as comparable mechanisms are involved. The main effect is observed
in the shape evolution of the void during deformation. The deformation that is
required for complete closure remains rather comparable though. Finally, in the case
of materials with both stain hardening and strain-rate sensitivity dependences, the
effect on void closure can be deducted from the sum of the effects of both parameters.
Nevertheless, the influence remains moderate in the range of values for hot metal
behaviours and was thus not considered in the proposed model.

e Voids orientation and dimensions have a first order influence on void closure.

e Stress triaxiality ratio also has a first order influence on void closure. On the contrary,
void closure is not influenced by the remote strain-rate.

e The use of equivalent ellipsoids shows great interest to model the closure of a real
void, by comparison to the use of a sphere. The main discrepancies are obtained at
the final stages due to the presence of contact at the internal faces of the void. This
effect is accentuated by tortuosity and is not addressed within the present work. The
use of an equivalent ellipsoid faithfully represents the behaviour of a real void until
contact is encountered, i.e. over about at least 80% of the closure process.

The prediction model was built based on the wide campaign of simulations at the RVE-
scale. A quadratic polynomial function is proposed to model void volume evolution. The
dependence of void orientation, void dimensions and stress triaxiality ratio were successfully
modeled using analytical functions and calibrated using regression analysis. The capabil-
ity of the model to predict void volume evolution was tested using geometry parameters
obtained from real voids that were previously observed using X-ray microtomography. For
the four tested cases, the prediction was excellent. A maximum error of 17% was observed
for the extreme case, and generally remained lower than 5%. This result indicates that the
proposed model is suitable to predict void closure according to void’s initial orientations
and dimensions, and under various stress triaxiality ratios.
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Chapter 5 Application of the new prediction model
Résumé francais

Ce chapitre présente une validation du nouveau modéle présenté au chapitre précédent. Ce
modéle & champ moyen est d’abord implémenté dans le logiciel de simulation par éléments
finis FORGE [2011] en tant que routine utilisateur. De la méme fagon que le modéle basé
uniquement sur la triaxialité des contraintes (STB) existant dans la version commerciale
du logiciel, le modéle est implémenté sous une forme différentielle par un schéma explicite
en temps. Un champ initial de volume de pore est donc actualisé a chaque incrément de
la résolution éléments finis au moyen du modéle de prédiction en fonction des variables
mécaniques et des parametres initiaux du modéle. Le modéle de Zhang est également
implémenté suivant la méme méthodologie.

Les trois modéles sont confrontés & des simulations explicites en champ complet pour
deux procédés industriels : un cas de forgeage libre et un cas de laminage. Les évolutions
du volume de pore prédites par les trois modéles sont comparées et discutées a plusieurs
positions, et pour plusieurs géométries initiales de pores. Il est montré que les évolutions
prédites par le nouveau modéle sont bonnes dans ’ensemble. Les bénéfices apportés par le
nouveau modéle par rapport aux modéles existants sont : la prise en compte de la géométrie
initiale (rapports d’aspect et orientation) des pores ; 'expression analytique permettant de
prédire I’évolution du volume avec meilleure précision que les modéles actuels. Certaines
différences sont malgré tout observées et les hypothéses sont discutées afin de les évaluer.
Des pistes d’amélioration concrétes au modéle sont proposées afin de lever les limitations
actuelles.
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5.1 Introduction
5.1 Introduction

In Chapter 1, it was demonstrated that although explicit macroscopic descriptions might
be particularly accurate, they remain rather costly as heavy meshes are required. In
addition, they provide results for particular cases, exclusively. Using mean-field models,
the prediction of void closure can be directly obtained at every position in the workpiece
without requiring any specific mesh refinement. In this chapter, the new prediction model
is implemented as a mean-field model, and is compared for several particular cases to
macroscopic explicit simulations.

Prediction models are implemented in the finite-element computation software FORGE
[2011], as post-processing subroutines. The computed field is the normalized void volume
V/Vy. During computation, at each increment step, the value of the field V/V} is evaluated
at every integration point of the finite element mesh using the prediction model according
to the current mechanical fields and the initial parameters.

Several assumptions are implicitly made when using mean-field models. They are re-
called for the forthcoming discussion.

e First, general assumptions are made using the meso-scale approach (section 2.2)
regarding the separation of scales. It is considered that the presence of voids has a
negligible impact on the global behaviour of a workpiece. Note that this assumption
enables prediction models to be implemented as post-processing subroutines, as they
do not modify the current mechanical fields.

e The second main assumption considers that the local (i.e. at the RVE-scale) be-
haviour of the void is subjected to homogeneous mechanical conditions.

e The method used to impose boundary conditions at the RVE-scale also assumes
axisymmetry around the main deformation axis.

e The use of morphology parameters also involves certain assumptions regarding the
actual morphology of voids. In Chapter 4, it was shown that the use of geometrical
parameters of the voids (dimensions and orientation) enables a good representation
of the behaviour of real voids, and that an error of about 5% is generally made.
It was also shown that this error might significantly rise in the case of extremely
tortuous voids. Nevertheless, by comparing with the use of spherical voids that is
generally made in the literature, the use of morphology-equivalent ellipsoids shows
great advantage in terms of void volume evolution. In addition, a systematical tridi-
mensional examination of void state is hardly conceivable at an industrial level. The
use of equivalent ellipsoids emerges as a reasonable choice as it provides a good
compromise between the required information and the available information. For
example, statistical industrial studies might provide sufficient information in terms
of geometrical parameters.

First, the implementation of the mean-field models as subroutines in the finite element
software FORGE [2011] is described. The second section presents an evaluation of the
model for a case of open die forging. The third section presents an evaluation of the
model for a case of hot rolling. For both simulation cases, the new prediction model is
systematically compared to existing models from the literature (the STB model, the Zhang
model [Zhang et al., 2009]) and to the explicit simulations at the workpiece scale. The
discrepancies are measured at the end of a pass (or blow). Their values are given in percent,

Vinodel— Vexplici
and are computed by —2eee SRRt
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Chapter 5 Application of the new prediction model

5.2 Implementation of the prediction models in a finite
element code

The STB model currently exists in the commercial version of FORGE [2011] and its im-
plementation is briefly recalled first. For comparison purposes, the Zhang model was
implemented as well and is presented in a second paragraph. Finally, the implementation
of the new model Cicaporo is detailed.

The models are implemented using a differential form AV. The void volume V* at the
time increment ¢ is obtained using an explicit scheme

Vi=VIh L AVY (5.1)

in which AV? is the predicted variation of volume that is given by the prediction model,
and V=1 is the void volume at previous time increment ¢t — 1. At each time increment ¢ of
the finite element resolution, the variation of volume AV is evaluated at every integration
point of the mesh.

As the volume evolution is expressed using a differential form, an initial value is required.
The initial variable field (V/V5)!=° = 1 can be defined throughout the mesh. It is also
possible to load a previous field (e.g. incoming from previous simulation), or to manually
define different values of (V/V)=" per spatial areas.

The models also require a set of initial parameters, that are fixed at the beginning of
simulation.

5.2.1 Stress triaxiality-based (STB) models

In FORGE |2011], the existing prediction model for void closure is based on the integral
of the stress triaxiality ratio over the cumulated equivalent strain, such as described in
Chapter 1, section 1.3.1. A proportionality coefficient is given such as:

t
AV KcTx'AZ vV Tx <0, (5.2)
Vo

where the value of K¢ is an initial parameter and can be user-defined. A default value

K¢ = 5 was proposed by Lasne [2008|. This value was obtained by a calibration using

simple compression cases of a billet containing an initially spherical void. An extension was

proposed for positive triaxiality ratios by replacing the value K¢ by Kp = 5/3, obtained

by a calibration using tension cases.

It was shown that Eq. 5.2 with K¢ = 5 is roughly equivalent to the criterion of Kaki-
moto et al. [2010]. This criterion states that void closure is reached when the value
Q= [y (=Tx)de > 0.21.

In these models, void closure depends on the evolution of stress triaxiality, only. They
will be called stress triaxiality-based (STB) models in the following, and the example of
the existing model in FORGE [2011] will be used.

The algorithm for the STB model is given in appendix B.1.

5.2.2 Zhang model

The prediction model proposed by Zhang et al. [2009] was identified as the currently most
accurate existing model in the literature. The model is based on micro-analytical solutions
that were obtained by Duva and Hutchinson [1984] for the volume evolution of a sphere
in a viscoplastic material (without considering the change of shape of the void during
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5.2 Implementation of the prediction models in a finite element code

deformation). Corrective terms were added by Zhang et al. [2009] using a polynomial
function with four parameters ¢i, g2, g3 and ¢4 in order to consider the change of shape
of the sphere during deformation. The model assumes that the change of void shape
during deformation depends on the cumulated equivalent strain, only. The parameters
were calibrated using finite element simulations in an RVE containing an initially spherical
void. The incremental volume change is expressed as:

—_— = [f(m*,TX) — 1Tx + 3q282 + 5gze + qd AE. (5.3)

where ¢1, g2, g3 and ¢4 are corrective terms and are tabulated for several values of m* in
Zhang et al. [2009], and f(m*,Tx) is an analytical function given by:

. 3 3 (n* =) +2)\" .., 1
T = — — T h - . .4:
f(m*, Tx) 5 < o 1 X + 5(n")? withn s (5.4)

The algorithm for the Zhang model is given in appendix B.2.

The model takes into account a dependence to a material parameter m*. This material
parameter corresponds to the strain-rate sensitivity coefficient in the case of a visco-plastic
material without strain hardening.

In the case of materials with strain hardening, softening, or further mechanical be-
haviours, the Zhang model is undefined. Further work, as the one regarding the effect
of strain hardening (section 4.3.1) is required in order to accurately predict the quanti-
tative dependence to material parameters. This was not pursued within this work as the
qualitative influence was second order with respect to the morphology and mechanical
state.

Nevertheless, according to the qualitative results obtained with strain hardening, the in-
fluence of material parameters seemed comparable to the influence of m* that is considered
in the Zhang model. As a consequence, an arbitrary value of m* may reasonably be chosen
in order to assess the capabilities of the Zhang model, in a first-order approximation. The
choice of the arbitrary value will be made and discussed in section 5.3.1.

Note that the incremental volume change is expressed as AV/V, whereas the incre-
mental volume change of the STB model is expressed as V/Vy. When integrating both
models under constant boundary conditions (7Tx = constant), the Zhang model exhibits
an exponential equation, whereas the STB model exhibits a linear evolution.

5.2.3 New void closure model Cicaporo

According to previous discussion, the absolute value of the volume of a void V has no
influence on its closure behaviour. On the contrary, the geometry of the void exhibits
a first-order influence. In the Zhang model, the corrective terms are calibrated in order
to contain the information of the effect of shape change during deformation. However,
according to Eq. 5.3 the model also depends on the current absolute volume V' of the void.

In the proposed new model Cicaporo, the use of V/V{ was preferred. The information
regarding the change of shape during deformation is contained in the value of the closure
coefficient C.
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Chapter 5 Application of the new prediction model

The differential form is expressed as:

3 2 1
Z D) bik(Tx) (w)pi

B =
AV o . i=1 j=0 k=0
7 [B + 2C¢] Aég, with 5 o g | (5.5)
C=) cir(Tx)* (i) pi,
i=1 j=0 k=0

with Tx the stress triaxiality ratio, 7; = /Vo/r; the geometry parameters, and p; the
orientation parameters. The values of the calibration constants bj; and cj; are given in
the confidential appendix D.1. The value of stress triaxiality 7% is considered at each
integration point and increment time.

Initial dimensions The geometry parameters -; are obtained using the three initial di-
mensions rq, ro and r3. The values of r1, ro and r3 are set by the user as input parameters
in the subroutine. They are defined at the beginning of computation.

Initial orientation Void orientation is also defined at the beginning of computation in the
canonical basis using the initial principal vectors (u1,u2,u3) of the void. These vectors
correspond to the eigen-vectors of the inertia matrix of the void, as previously defined in
Chapter 2. Several methods may be used to define these three vectors.

The use of three rotations angles 0x, 0y and 0z is proposed here. From the canonical
basis (ez, €y, €2), the void can be oriented towards any spatial direction by imposing suc-
cessive rotations around the €,, e, and e, directions. The three vectors (uf,u3,u3) can
be directly obtained by the product of three rotation matrices. Note that the proposed
method might be easily modified according to users’ preference. Different conventions re-
garding the successive rotations can be used, such as the Euler convention, for example. It
is also possible to set directly the coordinates of two of the three vectors (u7, uz, u3). In the
latter, attention must be paid on orthogonality of the vectors when setting the coordinates.

According to the meso-scale approach, the definition of the orientation parameters
P1,P2,p3 is defined between the void’s principal vectors and the main compression di-
rection. Yet, the latter may vary in time and space during computation.

The main compression direction is computed for each increment ¢ and at each integration
point of the mesh. By diagonalizing the strain-rate tensor, the eigen-vectors (e1t, es!, e3t)
and eigen-values €}, €5, €} are obtained. They are sorted such that et < el < &b,

According to the incompressibility of the plastic material, e! 4 &4 4+ 5 = 0. The lowest
eigen-value is thus negative ¢} < —(eb+¢%) <0, and can be seen as the main compression.
As a consequence, the direction e1? is defined as the main compression direction.

The three orientation parameters can thus be obtained at each integration point by:

Pl = (ur.e1h)?,
ph = (uz.e1")?, (5.6)
ph = (u3.e1)?,

where u; are the eigen-vectors of the initial void.
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5.3 Case of open die forging

Change of void shape during deformation As the mean-field models predict the evo-
lution of the volume only, the evolution of geometry and orientation of the void are not
known in the void-free simulations. In the new prediction model Cicaporo, the information
regarding the change of shape of the initial void is contained by the term C& of Eq. 5.5.
It is thus a function of cumulated equivalent strain, initial geometry, and current stress
triaxiality ratio. In the Zhang model, the change of shape is assumed to depend on the
equivalent strain only. The STB model does not consider this information.

However the value of C' is determined with the constants c;;, that were calibrated under
uniform deformation (the deformation direction being constant in the RVE simulations).
As a consequence, it is rather good approximation in the case of processes with almost
uniform deformation, but might become a limitation in the case of multi-pass processes,
as the deformation direction may significantly vary.

In order to better consider the change of shape during non-uniform deformation, it would
be necessary to predict the tridimensional evolution of the void. This is one of the main
perspectives to this work and will be discussed in the general conclusion of this document.

The algorithm is given in appendix B.3.

5.3 Case of open die forging

This section gives several validation cases regarding the new prediction model. The process
simulation is a case of multi-blow open die forging and was provided by Industeel.

The workpiece is a bottom-cast ingot and is deformed between a vertical hammer-die
and a flat-die, see Fig. 5.1. The total sequence is composed of several passes. Each pass
has a proper height reduction ratio AH/Hy, and is divided into several blows at different
positions of the workpiece.

The first pass is an equalization pass, which involves very low deformation in the material.
As a consequence, it shows rather low interest for studying void closure, and will not be
discussed. On the contrary, the second pass is defined with a significant reduction ratio
(AH/Hy = 0.27). Tt is divided in three blows at different positions of the ingot. Two of
the three blows are considered in the present section and are noted blow 1 and blow 2
in the following figures. The deformation of the workpiece during blow 1 and blow 2 is
illustrated in Fig. 5.2.

Various initial void states were defined and are described in Table. 5.1. Four different
explicit meshes containing voids were generated.

e Explicit case 1 contains three spherical voids. Spherical voids are studied in order
to verify the reliability of the new model Cicaporo with respect to the STB and the
Zhang model, as both STB and Zhang models were developed for spherical voids.
Then, ellipsoidal voids are inserted at various locations in the ingot in the explicit
cases 2, 3 and 4.

e In case 2, all ellipsoids are oriented such that their principal vectors coincide with
the canonical basis (a1, u3,u3) = (&5, &y, €2).

e In case 3, all ellipsoids are oriented such that their principal vectors are defined as
(ul,u3,u3) = (€2, ey, —€z), i.e. obtained by a rotation of 90° around e,.

e In case 4, various orientations are defined and will be detailed in the discussion.
Note that the required computation time for the explicit cases are rather high (see
Table 5.1).
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Chapter 5 Application of the new prediction model

The prediction models are evaluated using a void-free simulation. The explicit cases
naturally require longer computation times, as the number of elements in the mesh is
larger. Handling of self-contact also involves additional computation time.

The benefit in terms of computation time rose up to a factor 23 between the void-free
simulation and the explicit case 2.

The predicted values of V/V} are collected from the void-free simulations using sensors
at the positions that correspond to the center of the voids in the explicit simulations. It is
illustrated in Fig. 5.1 for the case containing spherical voids.

Simulation Voids Orientation Nb elements CPU time Total CPU time
Explicit case 1 3 spheres - 180 000 3 hours 30 min 1 day 18 hours
Explicit case 2 5 ellipsoids  (ez, &y, €2) 266 000 15 hours 20 min 7 days 16 hours
Explicit case 3 5 ellipsoids (€2, €,, —€z) 256 000 12 hours 50 min 6 days 10 hours
Explicit case 4 5 ellipsoids various 259 000 5 hours 20 min 2 days 16 hours

Void-free - - 70 000 40 min 8 hours

Table 5.1: Performed simulations for the validation case of open die forging, performed
using 12 CPUs (3GHz, 24Go RAM).

In this chapter, the material behaviour is the same as the one used in the previous
chapter for the model calibration. It is given by the Hansel-Spittel law which is recalled
here:

op=A (§+ Eo)n §m6m4/(§+50), (57)

where A = 31.23 MPa is the material consistency at the given temperature, m = 0.153
the strain-rate sensitivity, n = —0.135,m4 = —0.055 the strain hardening/softening coef-
ficients, and €9 = 0.025 a regularization term that enables initial rigidity of the material.

5.3.1 Case of spherical voids

The workpiece containing three explicit spherical voids is illustrated in Fig. 5.1a. It is
compared to the void-free simulation in Fig. 5.1b. As defined in the previous chapter, void
closure prediction is made at each integration point of the workpiece, providing fields of
predicted void volume at any point of the mesh (by interpolation). The values obtained
from the prediction models will be compared for a few positions only. The positions are
defined using sensors (indicated using red points in Fig. 5.1b), and correspond to the
position of the explicit voids center that are defined in Fig. 5.1a.

Regarding the x abscissa, position 1 is approximately located under the hammer-die
during the first blow, whereas position 3 is roughly located under the hammer-die during
the second blow. Finally, position 2 is located between these two positions. Position 1
and Position 2 have the same vertical location, whereas position 3 is located slightly lower.
Dimensions are expressly not given for confidentiality reasons of the presented data.

Results

The results in terms of void volume evolution are plotted in Fig. 5.3. The values that were
measured from the explicit simulations are plotted using dots. The prediction that was
obtained from each model is plotted with lines. The STB model is plotted using a black
continuous line. The Zhang model is plotted using dashed black lines, for three various
virtual values of material parameter m* = 0.1, m* = 0.3 and m* = 0.5. The new prediction
model Cicaporo is plotted using a red line.
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Figure 5.1: Cutting planes from the two simulations at beginning of PASS2 — blow 1.
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Figure 5.2: Equivalent strain in the workpiece containing spherical voids during PASS 2.
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5.3 Case of open die forging

According to its definition, the Zhang model is undefined for the present material, as its
behaviour contains strain-rate sensitivity, strain hardening and strain softening. However,
as pointed out above, a virtual value m* can reasonably be found in order to provide a first-
order approximation of the model according to the qualitative results obtained regarding
material influence. Thus, several arbitrary virtual values were defined m* = 0.1, m* = 0.3
and m* = 0.5 in order to observe whether it is possible to find out a suitable value for this
case.

Explicit volume evolutions Let us first focus on the values that were measured from the
explicit simulation and plotted using black dots in Fig. 5.3. At the end of the equalization
pass (PASS1), a very low reduction of void volume is obtained. The main contribution
to void closure occurs during PASS2. The following analysis is thus focused on PASS2,
blows 1 and 2, i.e. in the interval ¢ = 26 — 85 s. The transition between blow 1 and blow
2 occurs at t = H7 s.

The main reduction of void volume at position 1 occurs during blow 1. The main
reduction in void volume at position 3 occurs during blow 2. At position 2, blow 1 and
blow 2 roughly bring the same contribution to void closure. This result is directly due
to the position in the workpiece, whether the void is placed in a deformed zone or not.
Deformed zones are located under the hammer-die during each blow (see Fig. 5.2).

The mechanical loading paths are given for the three positions in Fig. 5.4. The evolutions
of equivalent strain confirm the previous remarks. At position 1 the main deformation
occurs during blow 1. At position 3, the main deformation occurs during blow 2. At
position 2, a comparable deformation is obtained during blows 1 and 2. Note that the
profile of stress triaxiality ratio systematically decreases during each blow. The most
compressive values are thus obtained at the end of each blow, whereas the less compressive
values are obtained at the beginning of each blow, especially at the beginning of blow 2.
This is in good agreement with the change of slope of the void volume evolution in Fig. 5.3
at the beginning of blow 2.

Finally, due to the mesh size that was defined around the voids, a slight underestimation
of void closure may be observed. Nevertheless, according to the sensitivity study that was
presented in Chapter 2, section 2.5.1, the underestimation might not exceed a few percent.

Choice of a virtual parameter m* for the Zhang model As discussed above, the value
of m* cannot be strictly defined according to the present material. The several virtual
values of m* that were used within this case are discussed now.

Very good agreement, is observed between the new model Cicaporo and the Zhang model
using the virtual value m* = 0.3 (see Fig. 5.3). The final discrepancy relative to the explicit
case is about 23%. This common disrepancy can be explained by the fact that both models
are based on similar assumptions relative to their common approach at the meso-scale.

It is worth noticing that the virtual value m* = 0.5 provides a lower discrepancy. Nev-
ertheless, the gain in terms of final volume prediction is rather moderate, as it reduces the
discrepancy of about 5% compared to the new model Cicaporo. On the other hand, the
choice of a value m* = 0.1 increases the discrepancy of about 15%.

These remarks suggest that, for this given case, an adequate value of m* might eventually
be determined in order to reduce the discrepancy with the explicit case. However, the
determination of such a value would require additional explicit cases in order to ensure its
accuracy, and thus might become costly.

In the following, the value of m* = 0.3 will be considered only. This choice was made as
the obtained prediction is coherent with the model Cicaporo for a sphere.
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Figure 5.3: Void volume prediction for an initially spherical void, compared to STB and
Zhang models, and the values measured in the explicit simulation, given for
several positions in the workpiece.
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Figure 5.4:

5.3 Case of open die forging
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Evolution of equivalent strain and stress triaxiality ratio for the three different
positions in the workpiece.
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Change of shape of the voids The prediction that is obtained by the STB model shows
rather large discrepancies with the measured actual volume in the explicit simulation.
The STB model predicts a quasi-complete closure for the three positions. Void closure is
therefore significantly overestimated by the STB model (about 57%), although this model
was calibrated using spherical voids. This result can be explained by the fact that the
STB model does not consider the change of shape of the voids during deformation. The
discrepancy thus increases with cumulated equivalent strain.

Both the Zhang model and the new model Cicaporo take into account the change of
shape of the void during deformation. They are expressed as functions of equivalent strain
and were calibrated using homogeneous and uniform deformation cases at the RVE-scale.
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(a) Position 3 (b) Position 2 (c) Position 1

Figure 5.5: Enlargement of Fig. 5.2 at the end of blowl.

Effective strain
Unit: &_unit
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(a) Position 3 (b) Position 2 (c) Position 1

Figure 5.6: Enlargement of Fig. 5.2 at the end of blow2.

Change of compression direction In the new prediction model Cicaporo and in the
Zhang model, the effect of the change of shape of the void was calibrated using RVEs
that were uniformly deformed. As a consequence, it might present certain limitations in
the case of non-uniform loadings. In the case of position 3, the main deformation axis
remains rather colinear to €., as it is located under the hammer-die (during blow 2). In
the case of position 1, and particularly in the case of position 2, the main deformation axis
might exhibit a rather non-uniform evolution during PASS2. When looking at positions 1
and 2 (in Fig. 5.5), the current shape of the void at the end of blow 1 suggests that the
deformation axis was not perfectly vertical, but rather tilted. This is coherent with the
fact that the void is located on the left of the main deformed zone of blow 1.
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5.3 Case of open die forging

During blow 2, the main deformation direction that is induced by the hammer-die seemed
to have erased the previous tilted shape, as it is observed in Fig. 5.6. This mentions that
the main deformation direction has changed between the end of blow 1 and blow 2. The
change of shape that is predicted by the models is therefore slightly different than the
explicit case, and contributes to the obtained discrepancy.

This effect is illustrated in Appendix C using several extreme non-uniform loadings on a
spherical void. The fact of switching perpendicularly the compression direction significantly
modifies the void evolution, due to a different shape change evolution. This effect cannot be
considered within the present model, as the current evolution is not strictly known during
deformation. The effect of shape change is empirically considered using the coefficient C
of the model, which was obtained using uniform compression cases (RVE simulations).

Homogeneity of the mechanical fields In Fig. 5.5, it can be observed that the level of
equivalent strain around position 1 is higher than the one of position 2, which is higher
than the one of position 3. This result is coherent with the values of equivalent strain that
were measured at the three sensors in the void-free simulation (see Fig. 5.4). Nevertheless,
a certain gradient of equivalent strain can be locally observed around the void. The whole
void is therefore not completely submitted to a homogeneous mechanical field. This gra-
dient is ignored by the models, as homogeneity of the mechanical fields is assumed at the
RVE-scale.

Axisymmetry of the stress state The calibration using RVE simulations was performed
using axisymmetrical boundary conditions around the main compression direction (o,=0y
in the case of compression along the z-axis). This choice was made in a first approach for
the imposition of boundary conditions. It was made by Zhang et al. [2009] as well.

Yet, the use of Tx only may obviously be insufficient to fully represent the tridimen-
sional stress state. Several recent studies dedicated to ductile damage showed that the
stress state can be fully described by the use of the Lode parameter (function of the third
stress invariant), in addition to the stress triaxiality ratio [Bai and Wierzbicki, 2008|. The
choice of axisymmetrical boundary conditions may thus also contribute to the observed
discrepancy. Taking into account the Lode angle as an additional parameter for the pre-
diction of void closure is another perspective to this work and is discussed in the general
conclusion.

Conclusions

Finally, it can be concluded that the new model Cicaporo is capable of predicting the
evolution of a sphere with a similar accuracy than the most advanced model from literature,
as similar assumptions are used.

The obtained discrepancy with the explicit simulation in terms of final void volume is
reduced from 57% (STB model) to 23% (Zhang model and new model Cicaporo). The
greatest advantage is taken from the fact that both the Zhang model and the new model
Cicaporo consider the change of shape of the void during deformation, whereas the STB
model does not. The final discrepancy that is observed with both the Zhang model and
the new model Cicaporo may be attributed to the assumptions that were used at the meso-
scale to calibrate each model, such that the homogeneity of mechanical fields, axisymmetry
of the imposed boundary conditions, or the change of compression direction.

Finally, the use of the Zhang model requires the determination of a virtual material
parameter, as it is not strictly defined in the case of materials with strain hardening and/or
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softening behaviours. The final obtained prediction exhibited a variation of about 20% over
the tested range of values for the presented case. Special attention must therefore be paid
on the determination of m* when using the Zhang model in further process simulations.

On the contrary, the new model Cicaporo does not require the choice of a material
parameter. The calibration was performed using one typical material behaviour, according
to the small influence of material parameters within the range of interest regarding hot
metal forming processes.
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5.3 Case of open die forging

5.3.2 Case of ellipsoidal voids

The reliability of the proposed model is now assessed regarding its dependence to the
voids’ initial geometry. In this section, five positions in the workpiece are studied. They
are illustrated in Fig. 5.7 on the void-free workpiece.

Positions 1, 2 and 3 are identical to the ones defined in the previous section. Two
additional positions 4 and 5 were introduced in order to extend the current study to other
positions that are located further from the centerline.

Three explicit simulations were performed. Numerical features are given above in Ta-
ble 5.1. For each explicit simulation, five ellipsoidal voids are placed according to the
five positions. All ellipsoids have the same dimensions (r1,72,73) = (4,3,2). Various
orientations are introduced and are summarized in Table 5.2.

In the first explicit case, the ellipsoids are all oriented along the canonical basis such
that (ui,us,u3) = (e, €y, €2). The three rotation angles are equal to zero. In the second
explicit case, the ellipsoids are all oriented such that (uf,us3,u3) = (€2, e,, —e), i.e. using
a rotation angle around the y-axis 6y =90". In the third explicit case further orientations
are defined using several rotations around x and y-axes.

A few ellipsoidal voids are illustrated in Fig. 5.8. As the displacement of the hammer die
occurs along the e, direction, the first orientation case can be seen as a rather favorable
case in terms of void closure. It is expected that the voids are mainly deformed along
their smallest dimension r3. On the contrary, the second case may be seen as a rather
unfavorable case, since the voids are expected to be mainly deformed along their longest
dimension 1.

.. Dimensions Successive rotation angles (°)
Position
(7‘1, T, ?"3) 9}(, Hy, QZ
4, 3, 2) 0, 0, 0
Position 1 4, 3, 2) 0, 90, O
4, 3, 2) 0, 30, 0
4, 3, 2) 0, 0, 0
Position 2 4, 3, 2) 0, 90, O
4, 3, 2) 30, 0, 0
4, 3, 2) 0, 0, 0
Position 3 4, 3, 2) 0, 90, 0
4, 3, 2) 45, 30, 0
4, 3, 2) 0, 0, 0
Position 4 4, 3, 2 0, 90, 0
4, 3, 2) 45, 60, 0
4, 3, 2) 0, 0, 0
Position 5 4, 3, 2) 0, 90, 0
4, 3, 2) 60, 60, 0

Table 5.2: Initial definition of dimensions and orientation of the ellipsoids at the five posi-
tions in the workpiece.

Although the STB model and the Zhang model might not be adapted in the case of

non-spherical voids, they will be plotted for comparison purposes, in order to highlight the
benefits that are obtained using the new model Cicaporo, with respect to existing models.
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Figure 5.7: Definition of the five positions of interest in the process case of open die forging
at beginning of PASS2 — blow 1.
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5.3 Case of open die forging

(a) Ox =0y =0z=0 (b) 0X:0,0y=90°,9220

(c) Ox = 45°,0y =30°,07 =0

Figure 5.8: Detail of explicit ellipsoidal shapes of dimensions (4, 3, 2), using various rotation

angles.
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Position 1

Void volume evolution for position 1 is plotted in Fig 5.9a. Two orientation cases are
plotted using blue and red dots, respectively. The STB model is plotted using a black solid
line. The Zhang model is plotted using a black dashed line. The new model Cicaporo is
plotted using blue and red solid lines, for each orientation respectively.

Void volumes for the two orientation cases exhibit a significant difference in their evolu-
tion. This difference can thus be mainly attributed to the difference of initial orientation.
The prediction that is provided by the Zhang model is located between both cases. This
is coherent with the fact that this model was defined based on a spherical void.

The prediction that is provided by the STB model appears rather similar to the evolution
of the ellipsoid in its first orientation case (red curve). This is the result of a coincidence, as
the STB model is calibrated based on the evolution of a spherical void. On the other hand,
the STB model is unable to predict the behaviour of the void in the second orientation
case (blue dots).

Effect of initial orientation The new model Cicaporo gives a good prediction of void
evolutions for both orientations. At the end of blow 1, discrepancies of about 7-8% are
obtained for both orientation cases (see Fig 5.9b). The final discrepancy at the end of
blow 2 is slightly higher for the blue line (about 19%).

This discrepancy is very similar to the one obtained in the case of the spherical voids
and that was discussed in the previous section. It can thus also be mainly attributed to
the assumptions that were used at the meso-scale.

At the end of blow 2, the predicted difference of final volumes between both orientation
cases is 0.43, while the difference obtained in the explicit cases is 0.57. The effect of initial
orientation is thus predicted with an accuracy of 14%, while none of other models is capable
of predicting this effect.

The void volume evolution in the third orientation case is plotted with yellow color in
Fig 5.9b. It is rather similar to the evolution in the first orientation case (red curves).
This is due to the fact that the rotation angle of the third orientation case was too low to
induce a significant effect on void closure. It is verified with the explicit values, as well as
with the predicted values, over the whole duration of blow 1.

The difference that is observed at the beginning of blow 2 is probably due to the steep
slope of the curve at end of blow 1, inducing a rather high sensitivity to the value of
equivalent strain.

The predicted evolution during blow 2 mainly suffers from the assumption of uniform
deformation direction that is made by the model.

Finally, in spite of the global overestimation of the model, the final tendency of the three
cases at the end of blow 2 is very well respected.
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Figure 5.9: Void volume evolution for ellipsoidal void, measured at position 1 (explicit sim-

ulation), compared to the STB model, the Zhang model and the new prediction
model Cicaporo.
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Position 2

The results regarding the ellipsoids at position 2 are presented using the same methodology
than the one for position 1. In Fig. 5.10a, the prediction of the Zhang model is located
between the explicit values of the two orientation cases of the ellipsoidal void. The STB
model significantly overestimates the closure about 23% compared to the first orientation
case (blue dots), and up to 60% for the second orientation case (red dots). In other words,
the use of the STB model indicates that the void is nearly closed at the end of blow
2 (Vy/Vv=0.06), while the final measured void volume varies from Vy/Vp = 0.29 — 0.65
depending on initial orientation.

The new model Cicaporo overestimates void closure at position 2 as well. This might
be again explained by the assumptions that are made using the meso-scale.

At this position, the STB model predicts a final void volume that is even lower than the
prediction that is made by the new prediction model, considering the initial orientation
that is rather favorable for void closure.

The predicted difference in terms of final void volume between both orientation cases is
0.53. It shows that the effect of initial orientation is predicted with excellent accuracy in
this case, as this difference is 0.54 in the explicit cases. The dependence to orientation is
thus predicted with very good accuracy, despite the global overestimation of closure around
20%.

This result is verified using the comparison of the three orientations presented in Fig. 5.10b.
The final overestimation at the end of blow 2 is about 20% with respect to the explicit
simulation.

As for the case of spherical voids, the largest overestimation is obtained at position 2 for
ellipsoidal voids using several orientations. The discrepancy is therefore most likely due to
the assumptions made at the meso-scale. Position 2 is located in a particular zone that is
affected by both blows (see Fig. 5.2). The significant change of main deformation direction
is thus particularly important in this zone. It might thus significantly contribute to the
discrepancy, as the model was calibrated using uniform deformation cases.

170



5.3 Case of open die forging

1.0 Blow1l Blow2

0.8

: -~o

V/VO

1
1
1
1
®
r
L]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0.4

e Explicit (432, 6, =0, 6,=0)
e Explicit (432, 6, =0, 6,=90)
0.2 STB model
- -- Zhang model (m* =0.3)
—— New model Cicaporo (432, 6y =0, 6,,=0)
—— New model Cicaporo (432, 6 =0, 6,,=90) : :
0%— 10 20 30 40 50 60 70 80 90
Time (s)
(a) Comparison with existing models
PASS1 ! PASS2
1.0b-o—e-on ! Blow1l Blow2
N :
®
1
0.8/ 5
1
1
|
1
o 0.6f !
Z I
> I
1
1
0.4} |
1
e  Explicit (432, 0, =0, 6,=0)
e  Explicit (432, 0, =0, §,=90)
0.2 e Explicit (432, 6, =30, 6,,=0)
—— New model Cicaporo (432, 6y =0, 6,,=0)
—— New model Cicaporo (432, 65 =0, 6,,=90)
New model Cicaporo (432, 6, =30, 6,,=0) : :
0%~ 10 20 30 40 50 60 70 80 90

Time (s)
(b) Dependence to initial orientation
Figure 5.10: Void volume evolution for ellipsoidal void, measured at position 2 (explicit

simulation), compared to the STB model, the Zhang model and the new
prediction model Cicaporo.
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Position 3

Position 3 is vertically located under the hammer-die of blow 2 (see Fig. 5.2). The main
deformation is therefore rather uniformly orientated along the z-axis during the whole
deformation. The main contribution to void closure is coming from the second blow. The
curves are plotted in Fig. 5.11.

Again, the Zhang model predicts a void evolution that is between both explicit cases in
each orientation with relatively large discrepancies with explicit cases.

As for position 1, the evolution that is predicted by the STB model is rather similar to
the explicit measure in the first orientation case (red dots), and overestimates the closure
about 0.6 compared to the explicit measure in the second orientation case (blue dots).

On the contrary, the new model Cicaporo provides an excellent prediction, as it remains
lower than 10% for all presented orientations at the end of blow 2, and does not generally
exceed 2%. It is also verified for the third orientation case that is presebted in Fig. 5.11b.
The discrepancy slightly increases at the end of blow 2, as the slope of void volume is
relatively elevated at this instant.

The low discrepancies that are obtained can be explained by the fact that the assump-
tions are better verified at this position. First, as pointed out above, the position is located
in a zone where the deformation occurs rather uniformly and homogeneously.

Second, blow 1 has a relatively low effect on void closure, due to the low level of equivalent
strain that comes from blow 1 (see Fig. 5.4c). The resulting change of shape of the void is
relatively moderate at position 3, compared to the one observed for the previous studied
positions 1 and 2.

These remarks are thus very coherent with the discussion regarding the assumptions in
the case of spherical voids.
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Figure 5.11: Void volume evolution for ellipsoidal void, measured at position 3 (explicit

simulation), compared to the STB model, the Zhang model and the new
prediction model Cicaporo.
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Positions 4 and 5

Previous positions 1, 2 and 3 were defined close to the centerline of the workpiece. Two
additional positions were also defined further from the centerline, i.e. in areas that are
closer to the edges of the workpiece. This enables verifying the reliability of the model for
different mechanical conditions. The mechanical loadings at positions 4 and 5 are given
in Fig. 5.12. The loading path at position 4 is roughly similar to the one at position 3
in terms of equivalent strain, although the final equivalent strain at the end of blow 2 is
lower at position 4 than at the three centerline positions. At position 5, the final value of
equivalent strain is significantly lower.
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Figure 5.12: Evolution of equivalent strain and stress triaxiality ratio for positions 4 and 5
in the workpiece.

In terms of stress triaxiality ratio, the values are less compressive than the ones obtained
at previous centerline positions. It is remarkable in the case of position 5, as the stress
triaxiality ratio is even positive during blow 1.

These observations have a direct consequence on void volume evolution, according to
the dependence of void closure to the stress triaxiality ratio, as illustrated in Figs. 5.13
and 5.14. Regarding position 4, the void volume reduction is globally lower than for the
previous positions 1, 2 and 3. This tendency is predicted by all models, as the effect of
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stress triaxiality is considered in all of them. The final discrepancies thus remain low as
well.

At position 4, the STB model predicts a void volume evolution that is comparable to
the one predicted by the Zhang model (see Fig. 5.13a). It can be explained by the fact
that the level of equivalent strain remains lower that previous positions. The effect due
to the change of shape of the void is thus moderate in this case. The discrepancy of the
STB model that is mainly due to the non-consideration of this effect is therefore lower
at this position than at the previous ones. Yet, both models predict the evolution of a
spherical void and the final predicted volumes exhibit rather large discrepancies with both
orientation cases.

On the contrary, the new model provides a reliable prediction, as the maximum discrep-
ancy that is obtained remains lower than 10% for both orientation cases.

At position 5, the stress triaxiality ratio exhibits positive values during blow 1 (see
Fig. 5.12). Since these values are not combined with a large deformation rate, the resulting
effect on void closure remains very low (see Fig. 5.13a)). Nevertheless, the void volume
evolution exhibits a slight increase during blow 1. This increase of volume is predicted
by the prediction models. The accuracy of the prediction is rather good, as the void
deformation is very low.

The effect of initial orientation is predicted with excellent accuracy using the new pre-
diction model Cicaporo. This result can be verified in Figs. 5.13b and 5.14b, in which the
additional orientation cases are plotted. For positions 4 and 5, the initial orientation of
the third void is significantly different, as the greater angles were used to set the initial
ellipsoids.

The void volume predictions now demonstrate the reliability of the model for the case
of multiple orientations, and under very different mechanical loadings.

5.3.3 Conclusions

The slight overestimation that is generally observed among all orientation cases is most
likely due to the general assumptions that were made for the calibration of the model at
the meso-scale. The overestimation has the same order than for the case of spheres. In
spite of this, the effect of initial orientation is predicted with excellent accuracy using the
new prediction model Cicaporo. For various mechanical loading paths, it was verified that
the difference in terms of void volume that is due to initial orientation shows very good
agreement with the explicit simulations.
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Figure 5.13: Void volume evolution for ellipsoidal void, measured at position 4 (explicit

simulation), compared to the STB model, the Zhang model and the new
prediction model Cicaporo.
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5.4 Case of hot rolling

A second validation case was performed using a simulation of hot rolling. The process
simulation was provided by Ascometal. Using a similar methodology as in the previous
section, two simulations were performed: an explicit simulation, and a void-free simulation.

The explicit simulation contains a series of 9 ellipsoids that are located close to the
centerline position. It is illustrated in Fig. 5.15. Although the use of symmetry planes
for the definition of the voids might significantly reduce the required number of elements
of the mesh, this was not done because the contact between voids’ internal faces during
computation would be impossible in this case.

Numerical features are given in Table 5.3. The void-free simulation was about 60 times
faster than the explicit simulation.

Simulation Voids Nb elements CPU time Total CPU time
Explicit 9 ellipsoids 3 865 000 5 days 13 hours 66 days 12h
Void-free - 59 000 2 hours 1 day

Table 5.3: Simulations for the validation case of hot rolling, performed using 12 CPUs
(3GHz, 24Go RAM).

Various geometries and orientations were defined at several positions and are described
in Table 5.4. The geometries are identical to the ellipsoidal voids that were previously
defined in Chapter 4. Two orientations are defined using the rotation angle fy. The other
rotation angles 0x and 0z are equal to zero. For each ellipsoid, two cases are thus obtained:
the case (uf,u3,us3) = (&5, ey, €2), for by = 0 and the case (u7, uz,u3) = (€2, &y, —ey), for
Oy = 90°.

. Dimensions Rotation angles (°)
Positions
(ri, 72, 73) Ox, Oy, 0z

Position 1 Sphere (1, 1, 1) 0, 0, O
Position 2 El-A (2, 1, 1) 0, 0, O
Position 3 Ell-A (2, 1, 1) 0, 90, O
Position 4 EI-B (4, 1, 1) 0, 0, 0
Position 5 ElI-B (4, 1, 1) 0, 90, O
Position 6 El-C (2, 2, 1) 0, 0, O
Position 7 El-C (2, 2, 1) 0, 90, 0
Position 8 EI-E (4, 3, 2) 0O, 0, O
Position 9 El-E (4, 3, 2) 0, 90, O

Table 5.4: Initial dimensions and orientation of the ellipsoids placed at the 9 positions in
the workpiece.

The mechanical loading paths for the first position and for all positions are presented
in Fig. 5.16. The values are obtained by point tracking using sensors at the 9 positions in
the void-free simulation.

The evolutions of equivalent strain and stress triaxiality ratio are comparable for all
positions, with a slight shift in the time-scale. This shift is due to the displacement of
the workpiece along the x-axis. A slight difference is obtained in the values of final strain
at the end of the pass, between the different positions. The final strain is larger for the
positions that are following from the extremity of the workpiece. This difference is due to
the fact that the positions were defined relatively close to the extremity of the workpiece.
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Figure 5.15: Initial explicit mesh of the hot rolling case.

The typical steady state that is classically obtained in rolling processes was not reached
yet. Yet, this remark will not hinder the further analysis, as the two compared cases
(explicit /void-free) are observed in identical conditions.

An illustration of the strain field is given in Fig. 5.17. Let us note that, conversely to
the case of open die forging, the maximum strain values are obtained at the edges of the
workpiece. The core is a zone where the equivalent strain remains rather low.

Regarding the values of stress triaxiality ratio in Fig. 5.16a, it is verified that the value
remains in the range of validity of the model (Tx = [—1,0]) when deformation occurs, i.e.
over t = 0.05 — 0.19 s. Lower and higher values can also be observed, but as they are not
related to deformation rate, these values have no impact on void closure.
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Figure 5.17: Equivalent strain at t=0.28 s for the explicit case of hot rolling.
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Chapter 5 Application of the new prediction model

5.4.1 Spherical void

Void volume evolution of the spherical void (position 1) is plotted in Fig. 5.18 for the explicit
simulation, the STB model, the Zhang model and the new prediction model Cicaporo. The
closure behaviour exhibits a change of slope around ¢ = 0.13 s, which is a direct consequence
of the change of slope in the strain evolution (Fig. 5.16a). When the main deformation
occurs, (over t = 0.13 — 0.19 s), stress triaxiality ratio varies from -0.2 to -0.5.

The general tendency of all models is a slight overestimation of the closure with respect
to the values from the explicit simulation This was already observed in the previous case
of open die forging. Similar reasons are pointed out.

Underestimation of void closure in the explicit cases First, the void closure in the
explicit simulation might be slightly underestimated due to the mesh size that is set in
the surrounding of the void. Due to memory limitations, difficulties were encountered
when meshing the workpiece according to the prescribed value hy,;;, = 0.25 mm (Chapter
2, section 2.5.1). For several voids (e.g. ellipsoid 5 in Fig. 5.15), coarse elements are
relatively close to the upper part of the void. However, the resulting error regarding the
measured volume shall not exceed 2%, according to the sensitivity study in Chapter 2.

The general assumptions on which are based the prediction models may also be pointed
out and are discussed now.

Homogeneity of the mechanical fields Let us focus first on the assumption of homo-
geneous mechanical fields around the voids. In Fig. 5.19a, the field of equivalent strain
at t = 0.13 s is presented. The gradient is illustrated by plotting the equivalent strain
values vs. a segment length in Fig. 5.19¢. The values of equivalent strain exhibits a certain
gradient in the z direction, about 0.025 over the whole segment length. The boundary
conditions that are used at the RVE-scale do not consider this gradient, as a vertical dis-
placement is homogeneously applied along the z direction. The final shape can be observed
in Fig. 5.19b. Contact between internal faces was obtained at the left part of the void,
while the right part of the void was not completely closed up. This effect was not taken
into account in the simulation at the RVE-scale using homogeneous boundary conditions.

Presence of voids in the macroscopic explicit simulation The assumption regarding
the absence of impact of the presence of voids on the macroscopic mechanical fields is also
discussed now. The evolution of equivalent strain is plotted for the void-free simulation
and the explicit simulation in Fig. 5.20. For the explicit simulation, the mechanical fields
are unknown at the exact position of the void, as the voids are not meshed (see Fig. 5.19).
The value was thus assessed at the center of the void using a linear interpolation of the
gradient, in a first approximation.

Note that the explicit simulation was interrupted when the level of equivalent strain
reached a constant value (after t = 0.23 s in Fig. 5.20), as void closure already reached
its final state at this instant. In the range of interest ¢t = 0.05 — 0.19 s for void closure,
the evolution of mechanical fields exhibit a non-negligible difference. A shift is observed
for both values (equivalent strain and stress triaxiality ratio). This indicates that the
assumption is not strictly verified in this case. Note however that the tendencies of both
curves, as well as the minimum and maximum values, are nearly identical in both cases.
The observed shift in the mechanical fields can consequently be observed in the predicted
evolutions, as they are based on the mechanical fields of the void-free simulation. This can
be observed in Fig. 5.18a. The predicted closure is thus overestimated for all models.
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Figure 5.19: Detail of equivalent strain field around the spherical void at various instants
of deformation.
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Figure 5.20: Comparison of mechanical fields obtained from the void-free simulation, and
the extrapolated value from the explicit simulation, for position 1.
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5.4 Case of hot rolling

In Fig. 5.18b, the void volume is plotted ws. equivalent strain in order to hide the
time shift. The value of equivalent strain in the explicit case is obtained by the spatial
interpolation, as presented above. As expected, the predicted evolution of closure with
respect to the equivalent strain shows better agreement than the evolution in time. This
remark indicates that the main difference that is observed on the evolution in time is due
to the time shift of the values, but that the mechanical loading path is nearly identical.

Finally, note that the final change of slope in the evolution in time is due to the slope of
equivalent strain. It is not due to the final closure stages as it was described in the previous
chapter, regarding the presence of contact at the internal faces of the void. In the cases
presented in the previous chapter, the change of slope was observed on the evolution in
equivalent strain, and occurred when the void volume was very low (typically V/Vy < 0.2).
In Fig. 5.18b, the final void volume is greater than 0.2, and the change of slope is not
observed regarding the evolution in equivalent strain. As a consequence, the final value of
void volume can be obtained from both plots (evolution in time or evolution in equivalent
strain).

Closure prediction for the spherical void In Fig. 5.18, both the new model Cicaporo and
the Zhang model provide the best prediction of void closure at the beginning of deformation
(t =0.05—0.13 s). This is due to the fact that both models are based on RVE simulations
using similar assumptions. The difference that is obtained at the end of deformation
(further than ¢ = 0.13 s) is explained by the different analytical functions that are used to
model void volume evolution, especially regarding the final stages.

Note that the void volume that is predicted using the STB model shows relatively good
accuracy at the end of deformation. This is most likely the result of a compensation
between overestimation and underestimation during the loading path. The STB model
generally overestimates void closure for low-compressive triaxiality ratios and generally
underestimates void closure for large equivalent strain values, as it does not consider the
change of void shape.

Over the whole deformation range, the new prediction model Cicaporo predicts void
closure with excellent accuracy (lower than 6%) in spite of the assumptions that were
discussed above.
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Chapter 5 Application of the new prediction model

5.4.2 Prolate ellipsoid A

In the case of ellipsoid A, the void evolution is studied for the two orientation cases. The
shapes of voids during deformation are illustrated in Figs. 5.21 and 5.22. In the first
orientation case, the initial void is oriented such that its longer dimension is colinear to
x-axis, i.e. the principal displacement direction of the workpiece in the rolling process.
The main deformation direction is roughly applied along z, i.e. perpendicular to the
longest dimensions of the void. Its volume evolution is plotted in Fig. 5.23a. In the second
orientation case, the void is oriented such that its longer dimension is almost colinear to
z-axis, i.e. the main deformation direction. Its volume evolution is plotted in Fig. 5.23b.

() t=0.14s (b) Final state t = 0.28 s

Figure 5.21: Detail of equivalent strain field around ellipsoid A (fy = 0) at various instants
of deformation.

(a) t=0.15s (b) Final state t = 0.28 s

Figure 5.22: Detail of equivalent strain field around ellipsoid A (fy = 90°) at various
instants of deformation.

Effect of initial orientation A significant difference in terms of final closure is observed
for the explicit simulation, between the two orientation cases. The final void volume for the
first orientation (Fig. 5.23a) is Vy/Vy = 0.19 and is much larger in the second orientation
case (Fig. 5.23b) with V;/Vh = 0.65. The difference is 0.46 and directly results from the
effect of initial orientation.

This difference is not considered by the STB model, neither by the Zhang model. As a
consequence, the prediction of each model is independent on the initial orientation. The
resulting discrepancies are thus rather large, especially for the second orientation case
(Fig. 5.23b). The STB and the Zhang models overestimate final closure of about 35% and
60%, respectively. The overestimation by the new model Cicaporo is about 3% for the
second orientation case.
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Figure 5.23: Void volume prediction for a prolate ellipsoidal void (71, r2,73) = (2,1,1) with
two different orientations, compared to the STB model, the Zhang model, and
to the values measured in the explicit simulations.
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Assumptions The new model Cicaporo predicts complete closure in the first orientation
case Fig. 5.23a, while the explicit final volume is Vy/Vy = 0.19. Fig. 5.21b illustrates
the final shape of this void. In fact, a similar tendency is observed as for the case of the
spherical void: the left part of the void is completely closed, while a residual cavity remains
on the right part of the void. The discrepancy is thus mainly due to the assumptions of
the model in terms of homogeneity of the mechanical fields.

Regarding the beginning of the curves, the overestimation is significant for all models.
This was already observed for the spherical case. The same explanation can be given,
relatively to the time shift that was observed in the mechanical loading paths (Fig. 5.20).

The final discrepancy that is obtained by the new prediction model is 19%.

5.4.3 Prolate ellipsoid B

The case of the prolate ellipsoid B is very similar to the previous one. The aspect ratio
r1/rs of ellipsoid B is twice the one of ellipsoid A. The shapes of voids during deformation
are illustrated in Figs. 5.24 and 5.25.

(a) t=0.16 s (b) Final state t = 0.28 s

Figure 5.24: Detail of equivalent strain field around ellipsoid B (fy = 0) at various instants
of deformation.

(a) t=0.17s (b) Final state t = 0.28

Figure 5.25: Detail of equivalent strain field around ellipsoid B (fy = 90°) at various in-
stants of deformation.

As the initial void geometry is comparable to the previous case, the results in terms of
void volume evolution is very similar to the ones presented above.

Due to the fact that the aspect ratio is larger, the effect of orientation is emphasized.
As a result, the difference in terms of final void volumes between both orientation cases is
greater. For ellipsoid B, the difference due to initial orientation is 0.84.

The explicit simulation predicts a nearly complete closure in the case of Fig. 5.26a,
as the final volume is very low V;/Vy = 0.07. This overestimation is coherent with the
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Chapter 5 Application of the new prediction model

general overestimation that was observe in previous cases, which is explained by the general
assumptions of the meso-scale approach.

In addition, according to the calibration that was made in the previous chapter (sec-
tion 4.4.4), the case of ellipsoid B was the case in which the fitting exhibited the largest
overestimation of closure coefficients. The values of closure coefficient may also contribute
to the overestimation in this case.

For the same reasons as previously described, the STB model and the Zhang model
show rather large discrepancies with the explicit case, as none of both considers the effect
of initial orientation. On the contrary the new model Cicaporo is able to predict this
dependence, as the predicted final void volume difference is 0.85.

For each orientation cases, the final void volume is predicted with 0.05 discrepancy with
each explicit case.

It is noteworthy that for this ellipsoid, a slight increase of the void volume can be observed
for the second orientation case in Fig. 5.26b. This effect was not predicted by any model.
This particular behaviour may be explained by the actual mechanical conditions that a void
undergoes. The particularly non-symmetric shape of the final void in Fig. 5.25b indicates
that the deformation of the void did not occur in the same conditions than in the RVE
simulations.

5.4.4 Oblate ellipsoid C

In the case of the oblate ellipsoid C, two orientation cases are studied as well. The same
methodology is used as for previous voids.

The shapes of voids during deformation are illustrated in Figs. 5.27 and 5.29. In the
first case, the void is oriented such that its shortest dimension is colinear to the main
deformation axis z. Void volume evolutions are presented in Fig. 5.28a. In the second
case, the void is oriented such that its shortest dimension is perpendicular to the main
deformation axis z. The main deformation thus roughly occurs along one of the longest
dimensions of the ellipsoidal void. Void volume evolutions are presented in Fig. 5.28b.

(a) t=0.18s (b) Final state ¢t = 0.28 s

Figure 5.27: Detail of equivalent strain field around ellipsoid C (fy = 0) at various instants
of deformation.

In the first orientation case, the closure is particularly efficient, and the final volume is
nearly equal to zero. The final shape of the void is illustrated in Fig. 5.27b and shows
that contact was encountered over almost the entire internal surfaces of the void. This is
in very good agreement with the new model, as complete closure is predicted.

In the second orientation case, the final void volume is predicted with an excellent
accuracy.
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Figure 5.28: Void volume prediction for an oblate ellipsoidal void (r1,r2,73) = (2,2, 1) with
two different orientations, compared to the STB model, the Zhang model, and
to the values measured in the explicit simulations.
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Chapter 5 Application of the new prediction model

Due to the strong dependence to initial void morphology, the STB model and the Zhang
model exhibit relatively large discrepancies. Note that for the first orientation case, the
Zhang model shows rather good agreement with the explicit case, although the model
supposedly predicts the evolution of a spherical void. On the other hand, its prediction
gives a discrepancy of 41% with the explicit case for the second orientation.

The prediction of final void volume given by the new model Cicaporo shows a discrepancy
lower than 5% for both orientation cases.

(a) t=0.19s (b) Final state t = 0.28 s

Figure 5.29: Detail of equivalent strain field around ellipsoid C (fy = 90°) at various
instants of deformation.

5.4.5 Ellipsoid E

The ellipsoidal void E is defined such that r1 > r9 > r3. As for previous ellipsoids, two
orientation cases are studied for this void. The shapes of voids during deformation are
illustrated in Figs. 5.30 and 5.32.

() t=0.20s (b) Final state t = 0.28 s

Figure 5.30: Detail of equivalent strain field around ellipsoid E (fy = 0) at various instants
of deformation.

The first case is oriented such that its shortest dimension is colinear to the main defor-
mation axis z, and the results are given in Fig. 5.31a. The second case is oriented such
that its longest dimension is colinear to the main deformation axis z, and the results are
given in Fig. 5.31b.

Very similar comments can be made as for the previous prolate and oblate ellipsoids.

The Zhang model shows a very good agreement with the explicit case for the first ori-
entation Fig. 5.31a, although it is calibrated using a spherical void. The prediction of
the Zhang model exhibits a discrepancy of 50% on the final void volume for the second
orientation.
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Figure 5.31: Void volume prediction for an ellipsoidal void (r1,72,73) = (4,3,2) with two
different orientations, compared to the STB model, the Zhang model, and to

the values measured in the explicit simulations.
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Chapter 5 Application of the new prediction model

The STB model underestimates final void closure with respect to the first orientation
case, and overestimates the value with respect to the second orientation case. The discrep-
ancy is 256% in both cases.

Although the new model Cicaporo overestimates void closure in both cases, the final
void volume is predicted with very good accuracy, as the final discrepancy remains lower
than 6%.

(a) t=0.21s (b) Final state t = 0.28 s

Figure 5.32: Detail of equivalent strain field around ellipsoid E (fy = 90°) at various in-
stants of deformation.
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5.4.6 Conclusions

The discrepancies that were obtained in terms of final void volume are synthetized in
Fig. 5.33. The discrepancies are given for each prediction model, and for all presented void
cases. Negative values indicate that a model overestimates void closure compared to the
explicit simulation, as the predicted volume is lower than the explicit one. Positive values
indicate that the model underestimates void closure.

The STB model significantly overestimates void closure for the second cases of orientation
(A2, B2, C2, E2), while it underestimates void closure for the first cases of orientation (A1,
B1, C1, E1). The discrepancies are larger for larger aspect ratios. The lowest discrepancy
is obtained for the spherical case.

The largest discrepancies were obtained for the Zhang model. From all presented cases,
the Zhang model generally exhibits a stronger overestimation of void closure. The second
orientation cases (A2, B2, C2, E2) lead to very high discrepancies, between 40% to 88%
overestimation. On the other hand the first orientation cases (Al, B1, Cl1, E1) were
predicted with rather good accuracy, as the discrepancy does not exceed 10%.

Since the new model Cicaporo was built according to similar assumptions as the Zhang
model, this general tendency is observed as well. The new model Cicaporo generally
overestimates the final void volume. From all tested voids, the model did not exhibit any
underestimation of void closure.

Nevertheless, the largest discrepancy was obtained for the ellipsoid A in its first orien-
tation case (A1), with about 19% difference with respect to the explicit simulation. In
all other cases, the discrepancy remained lower than 7%. This remark demonstrates the
ability of the new model Cicaporo to take into account the effect of initial geometry of the
void.
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Figure 5.33: Final discrepancies in terms of void volume obtained with the STB model,
the Zhang model and the new model Cicaporo for the hot rolling case (the
nomenclature relates to the name of the ellipsoid A—E and its orientation case
1-2).
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Chapter 5 Application of the new prediction model
5.5 Conclusions

The new void closure model Cicaporo was implemented in the finite element software
FORGE [2011] as a post-processing subroutine, and was compared to the existing STB
model proposed by Lasne [2008], and to the model of Zhang et al. [2009]. The models
were confronted to explicit simulations. The comparisons were performed for two different
industrial processes: a case of open die forging, and a case of hot forging. Various ellipsoidal
voids were used, using different dimensions and different orientations, and were submitted
to different mechanical loading paths.

The benefits of the new model Cicaporo were demonstrated regarding the dependence
to initial geometry (initial dimensions and orientation). The effect of initial geometry of
a void is significant on its volume evolution. The STB model and the Zhang model are
unable to take into account this effect. The new void closure model Cicaporo is able to
predict the effect of initial geometry with excellent accuracy.

A general overestimation of all models was observed, and is mainly explained by the
assumptions that are used at the meso-scale to calibrate these models:

e homogeneity of boundary conditions,
e axisymmetry of boundary conditions,
e uniformity of the deformation direction.

The observation of final void shapes in the explicit process simulations indicated that
behaviour of voids in the industrial process is rather different from the one observed at
the RVE-scale. From the two first assumptions, the available information was insufficient
to clearly determine whether it is the homogeneity, or the axisymmetry which leads to the
largest discrepancy. The improvement of boundary conditions at the RVE-scale according
to both aspects constitutes a perspective to this work.

The third assumption regarding the uniformity of the main deformation direction results
from the fact that the current orientation of the void is unknown when using the mean-field
model. Using the presented approach, the current orientation parameters are obtained
between the current deformation direction and the 4nitial orientation of the void. In
other words, it is assumed that the initial orientation of the void remains constant during
deformation, in a first approximation. Predicting the evolution of the void orientation
would be thus of great interest to enhance the model.

In fact, the prediction of the full tridimensional evolution of a void (dimensions and
orientation) during closure is a very interesting perspective to the present work. The
evolution of the six components of the inertia matrix could be predicted, using the same
methodology as the one presented in this work using the void volume (scalar variable).
Knowing the current orientation and dimensions of a void shows a double interest. First,
as pointed out above, the current orientation parameters can be obtained from the actual
state of the void, instead of the initial orientation. Second, knowing the actual dimensions
of the void may also spare the use of the term which contains the information regarding
the change of shape due to deformation. The current geometry would directly be obtained
by the prediction itself.

Finally, it was shown that general overestimation that is observed with all models is
also significantly due to the assumption made by the use of a mean-field model (regarding
the fact that the presence of voids has no impact on the global mechanical fields at the
macroscopic scale).
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General conclusion and perspectives

A new model for void closure was developed in order to get a better prediction of void
volume evolution within an industrial context.

The framework was defined according to an extensive study of industrial requirements
(materials, processes and void states) and according to existing models from the literature.
The latter are generally based on hypotheses that are too restrictive for a sustainable
industrial application. Stress triaxiality based (STB) models are classically used in a first
approximation using finite element process simulations, such as the one proposed by Lasne
[2008]. These models are mainly limited by the fact that they do not take into account
the shape change of the void during deformation. The recent Zhang model [Zhang et al.,
2009] exhibits more accurate results, but remains limited to the prediction of spherical
voids only.

The industrial observation of voids generally exhibits complex morphologies. The effect
of initial void morphology on void closure behaviour is significant. In order to consider the
quantitative effect of initial void morphology in the model, the use of equivalent ellipsoids
was presented. Although the void behaviour is not strictly identical to the one of a real
tortuous void, the use of equivalent ellipsoids showed great advantage compared to the use
of spheres that is classically made in the literature.

It was chosen to study void closure at the meso-scale in order to define a mean-field
model for void volume evolution. This approach enables the closure mechanisms to be
accurately studied at the micro-scale using full-field finite element simulations in a rep-
resentative volume element. Boundary conditions were applied in order to represent the
thermomechanical remote conditions from the macroscopic scale. The use of a mean-field
model shows great advantage as it does not require additional computation time during
the macroscopic simulations of hot forming processes.

The finite element software FORGE [2011] was used to perform the full-field simulations.
Real void morphologies were obtained using X-ray microtomography examinations using
several samples. An experimental validation was carried out by comparing numerical and
experimental results for several samples after hot compression tests.

The feasibility of such an experimental validation was demonstrated. It was shown that
the quality of the results can be significantly enhanced with a relevant choice of the void-to-
sample dimension ratio. This choice may provide a good compromise between the quality
of the tridimensional images and the control of experimental conditions.

Very good agreement was obtained between full-field simulations and tridimensional
examinations.

A sensitivity study was performed using full-field simulations at the micro-scale and
numerous parameters were studied regarding their influence on void closure:

e The most influent parameters are the cumulated strain, the stress triaxiality ratio
and the initial morphology of the void.

197



General conclusion and perspectives

e The material parameters m (strain-rate sensitivity coefficient) and n (strain harden-
ing coefficient) exhibit a certain influence on void closure. However, in the range of
values for hot metal forming, these parameters have a second order influence.

e The material consistency A, the remote strain-rate &, the temperature 7' and the
initial void volume Vj have no influence on void closure.

The most influent parameters were attentively studied using a wide campaign of full-field
simulations at the RVE-scale. This numerical campaign was used to build a new mean-field
model for void closure. A new analytical function for the void volume was defined and
calibrated.

The new model was assessed using four ellipsoids (defined from real industrial voids),
under five mechanical conditions. Among these twenty cases, the L?—norm error remained
under 5% in eighteen cases, and raised to 17% for one void under low compressive stress
states (T'x =~ 0).

The mean-field model was finally implemented in the finite element software FORGE
[2011] as a user subroutine. Two industrial processes were considered: a case of multi-blow
open die forging and a case of hot rolling. The predicted volume evolution was assessed by
comparison with full-field simulations of these processes containing explicit voids placed at
various positions. The prediction of the new model was also compared to the STB model
and the Zhang model in order to highlight the benefits with respect to the most advanced
models from the literature.

It was pointed out that the use of the Zhang model requires the choice of a material
parameter that is not strictly defined in the case of materials with strain hardening. The
values of the Zhang model that were obtained using the virtual value m* = 0.3 showed
good agreement with the new prediction model in the case of spherical voids.

The benefits of the new model Cicaporo were shown using ellipsoidal voids. The pre-
dicted values were compared in terms of final void volume for both industrial processes.
The effect of initial geometry (relative dimensions and orientation) was predicted with
good accuracy, while it cannot be predicted by any of the STB or the Zhang models.

A general overestimation of the prediction was observed with respect to the full-field
explicit cases. This was explained by the the assumptions that are made using a mean-
field model and the use of the meso-scale.

The main perspectives to this work are summarized in the following.

e The overestimation of void closure by the mean-field models may remain a significant
issue from an industrial point of view. It was demonstrated that this overestimation
is partially due to the assumption that considers that the presence of voids has no
impact on the global behaviour of the workpiece. The mechanical loading paths
observed in the full-field explicit case were slightly different than the ones in the
void-free case (with the mean-field models). The level of cumulated equivalent strain
was higher in the void-free case, leading to an overestimation of void closure. This
effect might be corrected by adding corrective terms, or by modifying the values of
the calibration constants in the model.

e Regarding the boundary conditions at the RVE-scale, the assumption of homogeneity
of the mechanical fields, as well as the axisymmetry of the stress state were discussed.
They could mainly explain the differences of final void shapes that were obtained
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between the full-field explicit process simulation and the full-field RVE simulations.
Additional boundary conditions might be defined in order to better represent the
mechanical state. For example, the stress triaxiality ratio is insufficient to fully
describe the tridimensional stress state. The introduction of non-symmetrical stress
boundary conditions may be of great interest to observe the effect on void closure.
A quantification would be possible using the Lode angle parameter.

The model was limited by the fact that the main compression direction may vary
during real processes, whereas the model was calibrated using uniform compression
cases. The uniformity of the main compression direction may become a strong as-
sumptions in some industrial processes. The effect of non-uniformiry was illustrated
in Appendix C.

This limitation to uniform loadings is in fact due to the definition of the mean-
field model itself. As a scalar variable is computed (the void volume), the current
geometry and orientation of the void is unknown during void closure. The effect of
shape change is empirically considered by the coefficient C' of the new model. Since
the model was built using uniform cases, the validity of this empirical dependence is
no longer valid using non-uniform cases.

In order to get rid of this first approximation, a full prediction of the current geometry
and orientation of the void would be required. A prediction of the six components
of the inertia matrix during void closure might show great interest.

The material parameters were not addressed in the Cicaporo model, as they exhibited
a second order influence in the range of interest. However, their influence was not
negligible and considering the influence of material parameters might be a relevant
amelioration to the present model. Attention must be paid to the choice of the
material law that is considered. In this work, the Hansel-Spittel law was exclusively
considered. This law was convenient since the simple power-law expression can be
easily obtained by simplifying the Hansel-Spittel law. However, material behaviour
of hot metals are also represented using different laws, such as the Norton-Hoff law,
the GNHB-type, or using tabulated data.

The choice of using equivalent ellipsoids instead of real void morphologies was made
according to the definition of morphology parameters (aspect ratios and orientation)
in the model. However, it was qualitatively shown that the tortuosity may have a
significant influence on the closure behaviour, particularly at the final stages of void
closure. However, considering tridimensional tortuosity is delicate for two reasons.
Firstly, the quantitative parameters to quantify tortuosity are numerous and remain
often subjective [Bullitt et al., 2003]. The definition of an apparent tortuosity with
respect to the observed mechanisms might thus be of interest [Thorat et al., 2009].
Secondly, even with an accurate description of the void tortuosity, its use in a mean-
field model requires an accurate tridimensional knowledge of the voids morphology.
This can be obtained by X-ray microtomography, but this technique is costly and is
limited to small samples. A sufficiently accurate and systematic examination of the
internal void state is thus impossible at present within the industrial framework.

Within this work, isolated voids were exclusively considered. This assumption was
implicitly made by the determination of RVE dimensions. By defining the RVE
dimensions three times larger than the void’s dimensions, it can be considered, in a
first approximation, that the presence of another void can be neglected if the distance
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between both voids centers is greater than three times the average size of the voids.
Nevertheless, if this distance is shorter, the effect might eventually become significant.
This proximity effect was not addressed within this work, but might be a perspective
of interest as well.

Voids generally result from shrinkage during cooling of an ingot, and are thus con-
sidered as empty. A potential presence of gas inside the voids is however sometimes
mentioned [Keife and Stahlberg, 1980, Toda et al., 2009]. An industrial unpublished
study also revealed a non-negligible quantity of gas inside several voids. However,
experimental measurements of the quantity of gas is still relatively complex due to
the small volumes of the considered voids.

Within this work, the presence of an internal pressure was neglected. Indeed, free
boundary conditions were used on the internal surfaces of the voids (apart from the
self-contact zones).

Nevertheless, the presence of a quantity of gas might significantly increase the pres-
sure inside a void, as its volume tends to zero. In addition, at the typical temperatures
for the considered hot forming processes, gas diffusion might not be neglected. Con-
sidering the presence of internal gas could thus be of great interest in getting a more
accurate understanding of void closure mechanisms.

Finally, as pointed out in introduction, the final elimination of voids requires healing
of the internal surfaces in contact, involving diffusion mechanisms [Park and Yang,
1996]. The present work was restricted to the mechanical closure phenomena, only.
Final healing thus rises as a great perspective as well.
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Appendix A

Finite element simulations using the
software FORGE

All finite element simulations in this document are performed using the finite element
software FORGE [2011]. This software is widely used in the hot metal forming industry,
as it is particularly well suited to large deformation and visco-platic materials. A large
variety of behaviour laws can be used, such as various power-laws, the Hansel-Spittel law,
or GNHB-type laws.

The main features are:
e resolution of tridimensional thermo-mechanical problems;
e velocity-pressure mixed formulation;

e spatial discretization using linear P1+/P1 tetrahedral elements (with a bubble func-
tion at the element’s center for the velocity field);

e tridimensional automatic remeshing;
e parallel computation;
e multi-body contact and self-contact capabilities using penalization.

The mechanical and thermal resolutions are briefly recalled in the following.

A.1 Mechanical resolution

The mechanical resolution consists in finding the velocity field ¥ and the pressure field 7 at
the increment ¢, using two fundamental equations of mechanics, and boundary conditions.

A.1.1 Fundamental principle of dynamics

The fundamental principle of dynamics is expressed as:
div(a) + p (7 - 7) =0, (A.1)

where o is the stress tensor, p the mass density, 7 represents gravity forces and 7 the ac-
celeration vector. The effects of gravity and of inertia are usually neglected in conventional
forming process simulations, such that:

div(e) = 0. (A.2)
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Appendix A Finite element simulations using the software FORGE

A.1.2 Mass conservation

The equation of mass conservation is expressed as:

Op | o
yn + div(pv) =0, (A.3)

where ¥ is the velocity vector. According to the incompressibility condition of the material
p is constant and the equation of mass conservation is expressed as:

div(T) = 0. (A4)

A.1.3 Boundary conditions
At the boundaries of a body, several conditions may be encountered.

Free boundary condition The free boundary condition is applied when the part of a
body’s surface is stress-free.

o =0, (A.5)

where 7 is the outward normal.

Prescribed—velocity boundary condition The prescribed—velocity boundary condition is
applied when the surface is submitted to a prescribed velocity field o).

T =1 (A.6)

Prescribed—stress boundary condition The prescribed—stress boundary condition is ap-
plied when the surface is submitted to a prescribed stress 7.
0'.7_1) = 00- (A?)

Contact condition Contact is defined according to the Signorini’s conditions for the non-
penetration of two bodies A and B:

(va —vg).na <0 (non-penetration)
oAP <0 (mechanical contact) (A.8)
B (01 —1B) mA=0 (tangent sliding)
where 048 = (oan4).nx = (opnp).np. The penalty method is used to solve these

equations. This method consists in applying a repulsive force to a infinite small authorized
penetration between the two bodies A and B. Further details can be found in [Fayolle,
2009].

Three types of contact may be encountered:

e Contact between a deformable body A and a rigid body B, which classically occurs
in process simulation, between a deformable workpiece and a rigid tool [Mocellin,
1999|.

e Contact between two deformable bodies A and B, which may occur in the case of
simulations involving several deformable bodies (joining of several workpieces, or
using deformable tools). The condition is handled using a master-slave description
of bodies A and B [Mocellin, 1999, Barboza, 2004].
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A.2 Thermal resolution

e Self-contact of two subsets of a single body A, which typically occurs for void clo-
sure simulations. The condition is handled using a pseudo-symmetrical slave-slave
description of the two subsets of the body A [Fourment et al., 2003, Barboza, 2004].

Friction When contact is encountered, friction can also be handled [Mocellin, 1999, Fay-
olle, 2009]. Several friction laws (e.g. Coulomb, Tresca) can be used in FORGE [2011].

Note that the self-contact is over-constrained and a sticky condition is implicitly consid-
ered, as friction cannot be handled in this case [Fourment et al., 2003].

A.2 Thermal resolution

The thermal resolution consists in finding the temperature field 7" using the heat equation:
oT .

peay = div(EAT) + W, (A.9)

where ¢ is the specific heat capacity, k the thermal conductivity, A the gradient operator

and W = o : & the internal energy dissipation.
Boundary conditions are also handled using:

e radiation (prescribed heat flow);
e conduction and convection with other bodies/environment (prescribed heat flow);

e friction (prescribed temperature).

A.3 Formalisms

The actualized Lagrangian formalism is used.

The geometrical problem is spatially discretized using linear tetrahedral elements P14+ /P1
(see Fig. A.1). The pressure field is computed at the four vertices of the tetrahedron. The
velocity field is enriched using an additional degree of freedom at the center (called "bub-
ble") of the tetrahedron.

(a) Velocity (P1+ element) (b) Pressure (P1 element)
Figure A.1: Degrees of freedom for each element.

For more information about the software FORGE [2011], the reader can refer to Fayolle
[2009, chap. 3].
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Appendix B

Subroutines

B.1 The STB model

The STB model is currently available in FORGE [2011]. The required input parameters
are the values of constant closure coeflicients K¢, K, the initial field of predicted volume
V0. The volume increment AV? is computed at each increment ¢, for every integration
point of the tridimensional mesh of the workpiece, and the new field of predicted volume
is obtained using an explicit scheme V* = AV? + V*~1 The algorithm is given below, and
a snapshot of the interface in the the software GLPre is given as well.

Initial parameters (user-defined):
K¢, K (constant closure coefficients)
VY (initial void volume field)

At each time increment ¢: begin

Data: At! (increment time step)

p' (isostatic pressure)

o' (von Mises equivalent stress)

g’ (equivalent strain-rate)

Vi1 (void volume from increment ¢ — 1)

For each integration point: begin
if 6/ >0 and & > 0 and V'~ > 0 then
_mt
T - F
if p' > 0 then
| V=Vl 4 KeTEE AL

else
\ Vt=vt-1 4 KrTé et At
end
end
Vt = max(0, V)
end
end

Result: V! (void volume at increment )

Algorithm 1: Computation of the STB model
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I:': Transvalor GLPre 3.3 for Forge 2011 - ValidationProcess
File Edit View Displsy Tools Simulation Object Property Help

ey HORUE SRS 9 B[] == R N=F:: AP
S EE AN e PR L EREDE B W
=l
WalidationProcess |
Structure Infa 1
: ~BF Initial Settings 1 field
: -Bf Define Symmetries 1 field
: -Bf Define Friction 1 field
: -Bf Define Themal E... 1 field
: -Bf Define Interface .. 1 field
: B} Define Sensors 1 field
-Bf Define UserVana.. 5 fields |
™

Marme: Ijefine Llzer \-"ar.iables
Field: | Uzer Variable 3 [
Show as: | Scalar Result [Fringes) | || Show Field

User Variable File ]

File: | FASABY\Calculs\Forge20114 D Clear
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Figure B.1: Caption of the subroutine for the STB model in GLpre.
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B.2 Implementation of the Zhang model
B.2 Implementation of the Zhang model

The implementation of the model is based on the same methodology as for the STB model.
The volume increment AV? is computed at each increment ¢, for every integration point of
the tridimensional mesh of the workpiece, and the new field of predicted volume is obtained
using an explicit scheme V! = AVt + Vi~1,

The required input parameters are m* (constant material parameter) and the initial
field of predicted volume VY. The model constants are automatically obtained according
to Table B.1 and the value of m*.

The algorithm is given below, and a snapshot of the interface in the the software GLPre
is given as well.

m* 1.0 0.5 0.2 0.3 0.1 0.01
Q1 0.5048 0.4911 0.6016 1.1481 2.9132 6.5456
) 6.4675 0.8002 -0.6981 -4.2026 -11.6464 -15.3775
q3 14.2610 53.8018 72.6397 108.2114 185.5622 324.4417
qa -0.3379 -0.2314 -0.1243 -0.2480 -0.6511 -1.9575

Table B.1: Values of coefficients q1, g2, g3 and g4 proposed by Zhang et al. [2009]

Initial parameters (user-defined):
m* (constant material parameter)
VY (initial void volume field)

Initialization:
41,92, q3, q4 (obtained from Table B.1 for the adequate value of m*)

m*

At each time increment ¢: begin

Data: At! (increment time step)

p! (isostatic pressure)

o' (von Mises equivalent stress)

&' (equivalent strain-rate)

Vi1 (void volume from increment t — 1)

For each integration point: begin
if ' >0 and & > 0 and V'~ > 0 then

t
t _ =P
Ty =

5-t
Vi=vi-ly
({g [22 T%|+ ‘(n*_(l,zbgg))ig*ﬂ)} + 1| T%| + 3q2(€")2 + 5ga(e")* + Q4§tAtt}> yi-t
end

Vt = max(0, V)
end

end
Result: V! (void volume at increment t)

Algorithm 2: Computation of the prediction model of Zhang et al. [2009]
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Appendix B Subroutines
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Figure B.2: Caption of the subroutine Zhang in GLpre.
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B.3 Implementation of the new model Cicaporo

A similar methodology was used as for the other models. Here, the required input param-
eters are the three principal dimensions of the initial void, three rotation angles, and the
initial field of predicted volume V0.

The volume increment AV? is computed at each increment ¢, for every integration point
of the tridimensional mesh of the workpiece, and the new field of predicted volume is
obtained using an explicit scheme V! = AV? 4+ V*#=1 The algorithm is given below, and a
snapshot of the interface in the the software GLPre is given as well.

Note here the definition of a modified value of void volume V3. A new condition is
added for the computation of V}, with respect to the one of V. When stress triaxiality
ratio is positive, the evolution of void volume is ignored. The value thus remains constant
VE = Véﬁl at increments for which the stress triaxiality ratio is positive.

Indeed, during a process, positive stress triaxialty values may be encountered, even
temporarily. As the model comes out (temporarily) from its validity domain, a value is
obtained but its accuracy is not ensured. This comes from the definition of the initial
framework, as void opening was not addressed within this work.

e The value of Vp indicates the value of void volume that would be obtained by ne-
glecting void opening.

e The value of V indicates the value of void volume by extrapolating the validity of
the model towards positive values.

By comparing the values of V' and of Vp, information can be obtained. If both values are
different, positive values of stress triaxiality were encountered during the process. The dif-
ference between the values gives a first approximation of the void opening that is predicted
by extrapolating the model towards positive values.

A dedicated variable for cumulated equivalent strain is also defined in the subroutine.
In the model, the value of cumulated equivalent strain is used to compute the change of
void shape during computation (with the coefficient C). The cumulated equivalent strain
must therefore be reset to zero for each definition of void morphology.
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Figure B.3: Caption of the subroutine Cicaporo in GLpre.
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B.3 Implementation of the new model Cicaporo

Initial parameters (user-defined):

r1,72, 73 (initial void dimensions)

0x,0y, 0z (initial rotation angles around each direction)

V9. V3 (initial void volume field, initial modified void volume field)
g% = 0 (initial cumulated equivalent strain is reset to zero)

Initialization: V, = %777’17“27"3 ;11 =V Vo/r1 ;5 v2 = Vo ra; v3 = Vo/rs

1 0 0 cos(fy) 0 sin(fy)
Rx =0 cos(fx) —sin(fx)| ; Ry = 0 1 0 ;
0 sin(fx) cos(fx) —sin(fy) 0 cos(by)
cos(fz) —sin(fz) O
Rz = | sin(dz) cos(fz) O

0 0 1
(17{ Us 175) = Rz Ry Rx (void’s orthonormal basis)

At each time increment ¢: begin

Data: At' (increment time step)

p! (isostatic pressure)

o' (von Mises equivalent stress)

g! (equivalent strain-rate)

gt~ (equivalent strain from increment t — 1)
¢' (strain rate tensor)

V=1 (void volume from increment t — 1)

VA (modified void volume from increment ¢ — 1)

For each integration point: begin

gl = gt=1 + 2 At' (cumulated equivalent strain)

(e1' €' e3') by diagonalizing ¢* such that &1 < &y < é3
pi=(ui.e1")?; ph = (w.e1")? ; ph = (u3.e1")?

if 6 >0 and & > 0 and V=1 > 0 then

=

3 2 1 _
Bt =30 3 3 bj(T%)* () p}

i=17=0k=0

3 2 2 )
Ct=3 % 3 eulTh)F ()it

@
i
—
<
Il
=)
e
Il
o

end

AV = (Bt +20"eh)Et At
V= Vil 4 AV
Vt = max(0,V?)

if T% > 0 then
| AVt=0
end
VhE =V + AV
VE = max(0,V};) (modified volume, ignoring the positive stress triaxiality values)

end

end
Result: V!, V£ (void volume and modified void volume, at increment ¢)

Algorithm 3: Computation of the prediction model
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Appendix C
Cases of non-uniform loadings

In order to illustrate the effect of non-uniform loadings on void closure, multi-axial com-
pression cases were performed using a spherical void.

On a cubic RVE, the velocity boundary condition was successively imposed along the z-
and z-axes, as presented in Tab. C.1. Case A corresponds to a constant compression along
z-axis. In the case B, compression along z-axis is interrupted at £ = 0.1 and is switched to
z-axis. In the case C, compression direction is successively switched from z- to - and back
to z-axis. Cases D, E and F are similar to case B, but switching compression direction
later at € = 0.2, € = 0.3 and € = 0.5 respectively. The prescribed stress triaxiality ratio
was T'x = —1/3.

Interval £=[0-0.1] [0.1 —0.2] [0.2 —0.3] [0.3 —0.5] [0.5 —1.0]
Case A Z Z A 7 Z
Case B Z X X X X
Case C Z X Z Z Z
Case D Z Z X X X
Case E Z Z Z X X
Case F Z Z Z Z X

Table C.1: Compression axes for all tested cases for non-uniform loadings

Void volume evolutions in Fig. C.1 exhibit significant changes of slope at each switching
direction. The z-axis compression deforms the initially spherical shape into an oblate
shape, which therefore becomes harder to close in a perpendicular direction (see Fig. C.2).
The change of slope is stronger when the switch occurs at larger values of deformation.
This effect is illustrated in Figs. C.3, C.4, C.5 and C.6.
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Appendix C Cases of non-uniform loadings
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Appendix C Cases of non-uniform loadings
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Compréhension et modélisation des mécanismes de refermeture de
porosité dans les procédés de mise en forme des métaux a chaud

RESUME : Lors de I'élaboration de piéces métalliques de grandes dimensions, la présence
interne de pores est habituellement observée. Ces défauts internes sont généralement
refermés lors des premiéres passes de transformation a chaud. Ce travail vise a mieux
comprendre les mécanismes de refermeture en identifiant les paramétres procédés, matériaux
et morphologiques clés. Les deux approches (explicite en champ complet, et micro-analytique)
classiqguement utilisées dans littérature sont discutées. Il est montré que ces deux approches ne
sont pas suffisantes pour établir un modeéle de prédiction dont la précision réponde aux enjeux
industriels. Une nouvelle approche est donc proposée dans cette thése a [I'échelle
mésoscopique. Les mécanismes de refermeture sont étudiés a I'échelle d'un volume
élémentaire représentatif (VER), permettant une description 3D particuliérement précise des
mécanismes locaux, tout en appliquant des conditions aux limites représentatives des états
mécaniques mis en jeu a I'échelle macroscopique. Les mécanismes locaux ont été étudiés au
moyen d’'une vaste campagne de simulations éléments-finis 3D a I'échelle d’'un VER. Les
parameétres étudiés sont : les parameétres matériaux, la morphologie du pore, et le chargement
thermomécanique subi durant la déformation. L'étude a montré que la morphologie et I'état de
contraintes sont de premier ordre sur le comportement en refermeture. Ces influences ont
ensuite été quantifiées afin de proposer un modéle de prédiction de refermeture robuste. Le
modéle a finalement été implémenté dans un code éléments finis et une validation sur cas
industriels est présentée afin d’évaluer les bénéfices de nouveau modele. Une validation
expérimentale a été menée par des essais d’écrasements d’échantillons poreux dont I'état de
porosité a été mesuré par micro-tomographie aux rayons X avant et aprés les essais.

Mots clés : refermeture de porosité, modéle moyenné, éléments finis, échelle mésoscopique

Understanding and modeling of void closure mechanisms
in hot metal forming processes

ABSTRACT: During production of large metal workpieces, an internal presence of voids is
usually observed. Such internal defaults are generally closed up during the first passes of hot
forming processes. The present work aims to better understand void closure mechanisms with
respect to the involved materials, processes and voids’ morphological parameters. An extensive
study regarding existing models in the literature is first presented. Two main approaches are
discussed: the explicit full-field approach and the micro-analytical approach. It is shown that
none of both approaches is sufficient to precisely predict void closure according to the industrial
issues. A new approach is thus proposed at the mesoscale. Void closure mechanisms are
studied using a representative volume element (RVE). Local mechanisms of void closure are
studied using a large campaign of 3D finite element simulations at the RVE-scale. The studied
parameters are: the materials parameters, the void’s morphology and the thermomechanical
loading during hot forming processes. Both the void’'s morphology and the stress state exhibit a
first-order influence on void closure. A new reliable prediction model is proposed with respect to
these parameters. The void’s morphology is quantitatively studied in terms of equivalent
dimensions (tridimensional aspect ratios), and orientation (with respect to principal deformation
direction). The stress state is expressed using the stress triaxiality ratio. The proposed model
was finally implemented in a material forming finite element software. Validation cases are
presented using industrial processes in order to highlight the benefits of this new model. An
experimental validation was also performed using compression tests of porous samples. The
samples were examined using X-ray micro-tomography before and after compression.

Keywords : void closure, mean-field model, finite element, meso-scale
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