
HAL Id: pastel-00985468
https://pastel.hal.science/pastel-00985468

Submitted on 29 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Degradation modeling of concrete submitted to biogenic
acid attack
Haifeng Yuan

To cite this version:
Haifeng Yuan. Degradation modeling of concrete submitted to biogenic acid attack. Other. Université
Paris-Est, 2013. English. �NNT : 2013PEST1148�. �pastel-00985468�

https://pastel.hal.science/pastel-00985468
https://hal.archives-ouvertes.fr


THÈSE

Présentée pour obtenir le grade de

DOCTEUR DE

L’UNIVERSITÉ PARIS–EST

Domaine : Génie Civil

Présentée par :

Haifeng Yuan

Sujet de la thèse :

Degradation modeling of concrete submitted to biogenic acid
attack

Modélisation de la dégradation du béton due aux attaques acides biogéniques.

Mémoire provisoire

Jury :

Dr. Laurent de WINDT Maître de recherche HDR Mines-ParisTech Rapporteur

Prof. Gilles ESCADEILLAS Professeur INSA de Toulouse Rapporteur

Prof. Denis DAMIDOT Professeur Ecole des Mines de Douai Examinateur

Dr. Patrick DANGLA IFSTTAR, U. Paris-Est Directeur de thèse

Dr. Patrice CHATELLIER IFSTTAR Conseiller d’études

Dr. Thierry CHAUSSADENT IFSTTAR Conseiller d’études

16 septembre 2013



2 16 septembre 2013



Résumé

La biodétérioration du béton, très courante dans les systèmes d’égouts et de traitement des eaux usées,

entraîne une dégradation significative de la structure. Normalement, le processus peut être décrit par les

deux étapes suivantes : 1) Des réactions biochimiques produisent des espèces agressives dans les biofilms

qui tapissent la surface du béton. L’un des plus importants acides biogéniques que l’on trouve dans les

canalisations d’égout est l’acide sulfurique (H2SO4) que est produit par des bactéries sulfo-oxydante (BSO)

à partir de l’hydrogène sulfuré (H2S). 2) Les réactions chimiques entre les espèces agressives biogéniques

et les produits d’hydratation du ciment sont responsables de la détérioration du béton.

Un modèle de transport réactif est proposé afin de simuler les processus des détériorations chimique et

biochimique des matériaux cimentaires en contact avec les BSO et le H2S ou une solution d’acide sulfurique.

L’objectif de ce modèle est de résoudre simultanément le transport et la biochimie / chimie dans les biofilms

et les matériaux cimentaires par une approche globale couplée.

Afin de fournir un environnement approprié pour la croissance des BSO, la neutralisation de la surface du

béton (i.e., l’absorption de H2S et la corrosion aqueuse de H2SO4) est considérée. Pour obtenir la quantité

de H2SO4 biogénique, la bio-oxydation du H2S par l’activation des bactéries est simulée par un modèle

simplifié. Puis, pour alimenter un environnement convenable pour la croissance des BSO, la réduction

abiotique du pH du béton est introduite. Le taux de production de H2SO4 est régi par la valeur du pH

dans les biofilms et la quantité de H2S dans le gaz.

On fait l’hypothèse que tous les processus chimiques sont en équilibre thermodynamique. La dissolution

de la portlandite (CH) et du silicate de calcium hydratés (C-S-H), ainsi que la précipitation de gypse (CS̄H2)

et du sulfure de calcium sont décrites par la loi d’action de masse et le seuil des produits d’activité ionique.

Pour prendre en compte la décroissante continue du rapport Ca/Si lors de la dissolution de la C-S-H, une

généralisation de la loi d’action de masse est appliquée.

En simplifiant le processus de précipitation du gypse, un modèle d’endommagement est introduit pour

caractériser la détérioration du béton due au gonflement du gypse. Ainsi, l’évolution de la porosité et de

la profondeur de la détérioration pendant le processus de dégradation sont pris en compte.
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Seule la diffusion des espèces aqueuses est considérée. Différents coefficients de diffusion sont utilisés

pour divers ions et l’équation de Nernst-Planck est implémentée. L’effet, pendant la détérioration, de la

modification de la microstructure sur les propriétés de transport est aussi considéré. Pour les biofilms et

les matériaux cimentaires, les équations d’équilibre de masse totale de chaque atome (Ca, Si, S, K, Cl) sont

utilisées pour coupler les équations de transport et les réactions (bio) chimiques.

Le modèle est implémenté dans un code volumes finis, Bil. Grâce à l’introduction de la méthode des

volumes finis, on illustre le couplage du processus bio-chimie dans les biofilms et le processus de la chimie

des matériaux cimentaires.

Par ce modèle, certaines expériences rapportées dans la littérature, dont des tests d’immersion chim-

iques (condition de la solution statique et condition de la solution d’écoulement) et des simulations micro-

biologiques, sont simulées. Les résultats numériques et les observations expérimentales sont comparés et

discutés. L’influence des propriétés des matériaux cimentaires (porosité initiale, couche carbonatée, etc.)

et les facteurs d’environnement (concentration de H2SO4 quantité de H2S etc) sont aussi étudiés par ce

modèle. En outre, une prédiction à long terme est menée.

Mots-clés:

Bio-détérioration, Canalisations d’égout, Béton, Acide sulfurique, Biofilm, Modélisation du transport réac-

tif, Portlandite, C-S-H, Gypse



Abstract

Bio-deterioration of concrete, which is very common in sewer system and waste water treatment plant,

results in significant structure degradation. Normally, the process can be described by the two following

parts: 1) Biochemistry reactions producing biogenic aggressive species in biofilms which are spread on the

surface of concrete. As one of the most significant biogenic acid in sewer pipes, sulfuric acid (H2SO4) is

produced by sulfur oxidizing bacteria (SOB). 2) Chemical reactions between biogenic aggressive species

and cement hydration products which is responsible for concrete deterioration.

A reactive transport model is proposed to simulate the bio-chemical and chemical deterioration processes

of cementitious materials in contact with SOB and H2S or sulfuric acid solution. This model aims at solving

simultaneously transport and biochemistry/chemistry in biofilms and cementitious materials by a global

coupled approach.

To provide an appropriate environment for SOB to grow, the surface neutralization of concrete (i.e., the

absorption of H2S and aqueous H2S corrosion) is considered. To obtain the amount of biogenic H2SO4, the

bio-oxidation of H2S by the activation of bacteria is simulated via a simplified model. To provide a suitable

environment for SOB to grow, the abiotic pH reduction of concrete process is introduced. The production

rate of H2SO4 is governed by the pH in the biofilms and the content of H2S in gas.

It is assumed that all chemical processes are in thermodynamical equilibrium. The dissolution of

portlandite (CH) and calcium silicate hydrates (C-S-H) and the precipitation of gypsum (CS̄H2) and

calcium sulfide are described by mass action law and threshold of ion activity products. To take into

account the continuous decrease of the Ca/Si ratio during the dissolution of C-S-H a generalization of the

mass action law is applied.

By simplifying the precipitation process of gypsum, a damage model is introduced to characterize the

deterioration of concrete due to the swelling of gypsum. Thus, the porosity evolution and deterioration

depth during deterioration process are taken into account.

Only diffusion of aqueous species are considered. Different diffusion coefficients are employed for var-

ious ions and Nernst-Planck equation was implemented. The effect of the microstructure change during
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deterioration on transport properties is considered as well. For both biofilms and cementitious materials,

the balance equations of total mass of each atom (Ca, Si, S, K, Cl) are used to couple transport equations

and (bio-)chemical reactions.

The model is implemented within a finite-volume code, Bil. Following the introduction of principle of

the finite volume method, the coupling of the bio-chemistry process in biofilms and chemistry process in

cementitious materials is illustrated.

By this model, some experiments reported in literature, including chemical immersion tests (statical

solution condition and flow solution condition) and microbiological simulation tests, are simulated. The nu-

merical results and the experimental observations are compared and discussed. The influence of properties

of cementitious materials (initial porosity, carbonated layer, etc.) and environmental factors (concentration

of H2SO4, content of H2S, etc.) are investigated by this model as well. Furthermore, a long term prediction

is conducted.

Keywords:

Bio-deterioration, Sewer pipe, Concrete, Sulfuric acid, Biofilm, Reactive transport modelling, Portlandite,

C-S-H, Gypsum
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Chapter 1

Introduction

1.1 Background

During the service life of materials, biodeterioration is an important cause of the reduction of the

performance and durability of materials as well as physical and chemical deterioration. Hueck (Hueck,

1968) first proposed that biodeterioration is "any undesirable change in the properties of a material caused

by the vital activities of organisms".

In biodeterioration, the organisms vary widely, such as marine borers (including mollusks and crus-

taceans), insects, fungi, prokaryotes (including bacteria and archea) and plants (Sanchez-Silva and Rosowsky,

2008). They form specific communities that interact with materials and external environment in many dif-

ferent ways. As organisms exist everywhere, they can accelerate deterioration of a wide range of materials

(as shown in Fig. 1.1), including inorganic minerals (Mitchell and Gu, 2000), concrete (Gu et al., 1998;

Cwalina, 2008), stones (Warscheid and Braams, 2000; Perry IV et al., 2005), metals (Cragnolino and

Tuovinen, 1984), and natural and synthetic polymers (Guezennec et al., 2006; Flemming, 1998).

Figure 1.1: Examples of biodeterioration

Specifically, microorganisms play major role in deterioration. According to US estimation, the contri-

bution of microbiologically induced corrosion (MIC) to the deterioration of materials as a whole is about

30% (Sand, 2008). In many cases, MIC is due to the presence of a surface layer of microorganisms and
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their products. Such microbial layers are known as biofilms and are defined as surface accumulations of

the organic products of biological activity. Generally, biofilms are in direct contact with the material

rather than dispersed in the surrounding environment. Thus, the aggressive products of microorganisms

are concentrated and result in severe damage of materials. Some examples are shown in Table 1.1.

Table 1.1: Some problems associated with the presence of biofilms on materials (Allsopp et al., 2004)

.

Biofilm location Effects

Teeth Tooth decay, caries
Sewer pipe Decreased durability, reduced flow
Cooling towers Degradation of material, reduced heat transfer
Drinking water distribution systems Decreased water quality, health risks
Oil industry pipelines Blockage and corrosion

As one of the most widely used materials, concrete suffers from biodeterioration. The first mention of

microbiologically induced concrete corrosion (MICC) in literatures was by Olmstead and Hamlin (Olmstead

and Hamlin, 1900). Most of MICC were detected in constructions like sewer pipes (Diercks et al., 1991;

Mori et al., 1992; Cho and Mori, 1995), waste water treatment facilities (Redner et al., 1991), cooling towers

(Zherebyateva et al., 1991), gas and oil platforms (Edyvean, 1987), marine structures (Hughes et al., 2013),

and many others where various microorganisms (like bacteria, microscopic fungi, algae and lichen) are

usually present at high concentrations (Viitanen et al., 2010).

The most rapid cases of deterioration always occur in the places with high H2S concentration, moisture,

and oxygen in the atmosphere. Such conditions are commonly found in sewage collection systems (as shown

in Table 1.2).

Table 1.2: Biodeterioration rate of concrete in sewage systems

.

Location of samples Biodeterioration rate (mm/year) Reference

Sewer pipe in treatment plant 4.3-4.7 (Mori et al., 1992)
Manhole in treatment plant 5.7-7.6 (Hudon et al., 2011)
Urban sewer pipe in Houston 3.1 (Davis et al., 1998)
Urban sewer pipe in Hamburg 8-10 (Milde et al., 1983)

Besides sewer pipes, approximately 40% of a wastewater system is made up of concrete structures.

About 40% of the damage in concrete pipeline is caused by biodeterioration (Kaempfer and Berndt, 1999).

As shown in Fig.1.2, MICC in sewerage system can lead to fragmentation of pipe surface, debonding of

concrete, collapse of the physical and mechanical properties of structures. Thus, huge money is being spent

on the repair and maintenance of sewerage collection system. For Germany, a cost of approximately 100

billion Euros is estimated for maintenance and repair of private and public sewage systems (Kaempfer and

Berndt, 1998). ASCE’s report also estimates that the United States will need 390 billion dollars during
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the next 20 years to repair and replace the existing wastewater infrastructure and construct new facilities,

including collection systems (Gutiérrez-Padilla et al., 2010).

Figure 1.2: Examples of MICC of sewer pipe

Thus, there is great interest in predicting the corrosion rate and the service life of sewer pipes. To

simulate the biodeterioration process, it is necessary to understand the mechanisms of biodeterioration

of sewer pipe including the bio-activity in biofilm as well as the chemical reactions between concrete and

biogenic sulfuric acid.

1.2 Mechanisms of biodeterioration of sewer pipes

Because of the alkalinity of concrete and the acidity of environment in sewer pipes, the main cause

of biodeterioration of these structures is biogenic sulphuric acid attack (BSA). According to experimental

observations, the process of BSA of cementitious materials in sewer pipes can be divided into two parts

which are schematically indicated in Fig.1.3.

Figure 1.3: Schematic of biogenic sulphuric acid attack in a sewerage (Herisson et al., 2013)).

A) Hydrogen sulfide (H2S) formation in wastewater.

Sulfate is commonly present in wastewater. At the bottom of pipe where water is anoxic, sulfate can be

converted into hydrogen sulfide (H2S). This conversion is performed by sulfate-reducing bacteria (SRB),
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which are heterotrophic bacteria found in almost any environmental sample (Barton and Tomei, 1995).

SRB can use oxidized sulfur compounds as electron acceptor by following reactions (Wood et al., 2005).

SO2−

4 + 4H2O + 8e− SRB−−−→ S2− + 8OH− (1.1a)

SO2−

4 + organic substance
SRB−−−→ S2− + H2O + CO2 (1.1b)

HS−
⇋ H+ + S2− (1.1c)

H2S(aq) ⇋ H+ + HS− (1.1d)

In normal sewage, pH is between 5 and 6. Since H2S is poorly soluble (pK= 7.05), it is degassed in the

arcal part of the pipe following Henry’s Law.

B) Biodeterioration of concrete in the arcal part of pipes. The deterioration process can be described

by the following three steps as shown in Fig.1.4.

Figure 1.4: Theoretical changes in the biological and physical properties of concrete with time during the
deterioration process, (Islander et al., 1991).

Step 1: Abiotic pH reduction of concrete.

The pH of fresh concrete (11-13) is too high for the sulfur-oxidizing bacteria (SOB) to survive. CO2

and H2S are both present in the arcal part of sewer pipes. Experiment observations (Ismail et al., 1993;

Joseph et al., 2012) revealed that such acidic gases can reduce the pH of concrete surface to less than 9 as

described in reaction (1.2a) and (1.2b).

CH + CO2 ⇋ CaCO3 + H2O (1.2a)

CH + 2H2S ⇋ Ca(HS)2 + 2H2O (1.2b)
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Step 2: Microbial colonization and production of H2SO4 by biofilm.

Once the pH of the surface of concrete is reduced to 9, with sufficient nutrients (element sulfur),

moisture and oxygen, some species of SOB like Thiobacillus sp. can grow on the concrete surface and

form biofilms (Rigdon and Beardsley, 1956; Mori et al., 1992). Although the bio-activity in biofilms is not

fully understood, it is generally believed that firstly H2S in biofilms is oxidized to element sulfur by metal

catalyst (Zivica and Bajza, 2002) or neutrophilic sulfur-oxidizing microorganisms (NSOM) (Bielefeldt et al.,

2009) as follows:

H2S +
1

2
O2

NSOM−−−−−−−−→
metalcatalyst

S0 + H2O (1.3)

Not only element sulfur, but also a few sulfuric acid is produced by NSOM. After pH has decreased to 4-5,

acidophilic sulfur-oxidizing microorganisms (ASOM) like T.thiooxidans can use element sulfur to produce

large amounts of sulfuric acid as reaction (1.4), which makes the main contribution to the biodeterioration

of sewer pipe (Parker, 1945, 1951). With sufficient sulfur source, the pH of concrete surface can be reduced

to 1 by T.thiooxidans (Mori et al., 1992). That is destructive to concrete.

S0 + H2O +
3

2
O2

ASOM−−−−→ SO2−

4 + 2H+ (1.4)

Step 3: Chemical reaction between H2SO4 and concrete.

During the final step of the biodeterioration process, the biogenic sulfuric acid penetrates into concrete

and reacts with portlandite (CH) 1 and calcium silicate hydrate (C-S-H) which are the main Portland

cement hydrates. This step is characterized by the production of a corroded layer on the surface of concrete.

XRD patterns (Davis et al., 1998; Kawai et al., 2005), and other experimental observations (as Fig.1.5) of

corroded layer revealed that corrosion products consist of gypsum (CaSO4·2H2O, noted as CS̄H2), silica

gel (SiO2, noted as S) and moisture. Thus, during deterioration CH and C-S-H are dissolved, while gypsum

and silica gel precipitate as reactions (1.5a) and (1.5b).

CH + H2SO4 ⇋ CS̄H2 (1.5a)

CxSyHz + xH2SO4 ⇋ xCS̄H2 + ySiO2 + (z − x)H2O (1.5b)

Since gypsum is swelling while it has barely no strength, H2SO4 attack could reduce the performance

of concrete, and even lead to the eventual structural failure of the facility.

1. Cement chemistry notation is used throughout the paper: C = CaO, S = SiO2, H = H2O, S̄ = SO3.
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(a) (b)

Figure 1.5: (a) Concrete coupons exposed to the sewer atmosphere (Okabe et al., 2007); (b) Scanning
electron microphotograph of gypsum crystals in the cement paste (Monteny et al., 2000).

1.3 Recent research works about biodeterioration of

cementitious materials

To understand and to fight against such a biodeterioration process involving a succession of bacterial

in biofilms and resulting in a change of concrete properties, many research works were conducted focusing

on different aspects. Not only experimental (in-situ/laboratory) researches, but also modeling researches

were conducted.

Samples of biofilm taken from sewer or cultured in laboratory, were monitored. The type, number

and succession of SOB were measured by conventional culture-dependent techniques (Harrison Jr, 1984),

conventional cultivation techniques and molecular tools (Vincke et al., 2001), and gene-cloning analysis

(Herisson et al., 2013). The understanding of microbial community structures of SOB and their activities

in biofilm has been improving continuously. It is generally believed that five species of Thiobacillus

play important roles: T.thioparus, T.novellus, T.neapolitanus, T.intermedius and T.thiooxidans. The

characteristics of these SOB are listed in Table 1.3. Since (Kempner, 1966) has found that the activity of

T.thiooxidans is slowed at pH below 0.9, it is expected that if sulfur source is sufficient, the pH of biofilm

would be limited around 1.

Table 1.3: Characteristics of Thiobacillus in biofilm (Islander et al., 1991)

.

Species pH range for growth Products

T.thioparus 4.5-10 Sulfur, polythionic acids
T.novellus 5- 9.2 Sulfur
T.neapolitanus 4-9 Polythionic acids, sulfuric acid
T.intermedius 1.7-9 Polythionic acids, sulfuric acid
T.thiooxidans 0.5-4 Sulfur, sulfuric acid

To figure out the components of corrosion products, in the in-situ experiments carried out by Davis
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(Davis et al., 1998), samples of concrete were drilled from the Houston’s sewage collection pipes. Several

tests revealed that the average compressive strength of the concrete undergoing degradation was reduced

by more than 20%. The mineralogical analysis found that the corrosion layer of concrete contained large

amounts of gypsum, which is expansive and has no strength, and yet ettringite was not present. Such obser-

vations were reported by other experimental laboratory researches (Ehrich et al., 1999; Vincke et al., 2000)

as well. It was explained that ettringite forms at pH ranging from 12.5 to 12, while it starts decomposing

into gypsum when pH < 10.6 (Allahverdi and Skvára, 2000).

To study the consequences of gypsum precipitation, C3S mortar and paste specimens were exposed to

Na2SO4 solution (Tian and Cohen, 2000). The physical properties and chemical composition of samples

after corrosion were tested. The experimental results suggest that during gypsum formation tensile stresses

may play a role in expansion and subsequent cracking.

To study the behaviour of cementitious materials corroded by H2SO4 , researchers (Jahani et al., 2001;

Bassuoni and Nehdi, 2007; Kawai et al., 2005) conducted experiments to simulate the chemical corrosion

process of concrete in contact with H2SO4 solution.

In the experiment of (Kawai et al., 2005) ordinary Portland cement cubes were immersed in H2SO4

solution with pH=1 in order to simulate the chemical corrosion process in sewer pipe. To keep the con-

centration of H2SO4 in the solution constant, H2SO4 was added suitably to the solution, and the solution

was statical (Method 1) or circulated with a pump and flew into the tank (Method 2). In method 2, the

specimens were subjected to the shearing force of the solution flow. Therefore the reaction products were

driven out by the flow of solution without precipitating on the sample surfaces. During the tests, the

corrosion depth was measured. In Method 1, a layer of reaction products was observed on the surface of

the mortar samples. The XRD patterns of this degraded layer showed that reaction products of sulfuric

acid attack are mainly gypsum and silica gel. With method 2, few products can be seen on the sample

surfaces since most of the reaction products were swept by the solution flow. The solution flow washed

the new surface of reaction, thus the samples immersed with Method 2 degraded much deeper and faster

than those with the Method 1. In Kawai’s experiment, an immersion test using a solution with low H2SO4

concentration solution (pH=2) was carried out as well. It turned out that corrosion process is very sensitive

to H2SO4 concentration: all of the samples immersed in H2SO4 solution of pH=2 were almost uncorroded

either with Method 1 or Method 2.

In order to investigate the effect of biofilm on the bio-degradation process, some experiments have been

done to simulate the biodeterioration process of sewer pipe (De Muynck et al., 2009; Gutiérrez-Padilla

et al., 2010; Alexander and Fourie, 2011).

In the experiments conducted by (De Muynck et al., 2009), CEM I cement cylinders were subjected to
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8 cycles of accelerated test. Each cycle consisted in 4 steps: (1) incubation in H2S (200 ppm) for 2 days;

(2) submersion in 1.5 L of mixed cultures of SOB obtained from a sewer pipe biofilm (medium composition:

10 g/L element sulfur, 3 g/L KH2PO4, 0.1 g/L NH4Cl, 0.1 g/L MgCl·H2O) for 10 days; (3) submersion

in distilled water for 2 days; (4) drying at room temperature for 1 day. In the second and third steps,

the SOB suspension and water were rotated. The degradation products were removed at the third step.

The last step could eliminate SOB remaining on the concrete surface. During the second step, the pH in

the SOB suspensions was measured frequently. In the experiment, as a result of the conversion of element

sulfur to sulfuric acid by cultures of SOB, a decrease of pH was observed 3-4 days after submersion. The

pH continued to decrease to around 1 after 10 days of testing.

In the works of (Gutiérrez-Padilla et al., 2010), the biodeterioration of low and high quality concrete

under conditions simulating sewer pipes were compared with laboratory experiments. With the same

conditions of H2S and bacteria, the concrete with low W/C (0.33) showed higher resistance to biogenic

sulfuric acid attack than the concrete with high W/C (0.42). While in another research work (Ehrich, 1998),

the weight loss of mortar samples with different W/C ratio of 0.35, 0.40, 0.45, 0.5, 0.55 were measured

respectively. The results of that experiment stated that the lowest weight losses were determined on samples

with a W/C ratio of 0.5 and the resistance of mortars was reduced for both high and low W/C ratios. This

can be explained as the concrete with a high W/C has larger and more pores. The pores play the role of

a capacity to absorb expansion caused by the production of gypsum (Kawai et al., 2005). The influence of

W/C of concrete is discussed in Chapter 6 of this thesis as well.

It is necessary to improve the understanding of the specific influence of environmental variables, such

as H2S level, temperature, and relative humidity. (Joseph et al., 2012) examined changes in the surface

chemistry of concrete during the early stages of corrosion by exposing concrete coupons to thirty-six in-

dependent conditions in well-controlled laboratory chambers that simulated conditions typically found in

various sewer environments across Australia. The results indicated that the role of CO2 on initial surface

pH reduction is insignificant as compared to the influence of H2S. Within the first 12 months, a decrease

in surface pH by 4.8 units was observed for coupons exposed to 30◦C and 50 ppm H2S while significantly

lower pH reductions of 3.5 and 1.8 units were detected for coupons exposed to 25◦C and 18◦C respectively,

and 50 ppm H2S. However, (Ismail et al., 1993) claimed that under quite high CO2 gas concentration,

bio-corrosion rate would decrease due to formation of much calcite which could reduce the porosity of pipe

surface. The role of carbonation layer is investigated in Chapter 6.

Furthermore, some works have been done to improve the biodeterioration resistance of sewer pipes. A

set of in-situ experiments to determine the biochemical parameters influencing the behaviors of ordinary

Portland cement (OPC) and calcium aluminate cement (CAC) materials was conducted by (Herisson
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et al., 2013). It has been found that CAC materials perform better than those with OPC, and the biomass

that develops on the surface of the former is different and less abundant. The good behavior of CAC

materials could be due to their high aluminum content, which could inhibit the growth of microorganisms.

(De Muynck et al., 2009) investigated the effectiveness of different admixtures, and surface treatments

towards biogenic sulfuric acid corrosion of concrete. The best protective method is epoxy coating, while

the strongest degradation was observed for the cementitious coating. The addition of hydrous silicate failed

to improve the resistance performance.

In addition to experiments, some researches have been done on modeling. Existing models mainly focus

on the biochemical process or the chemical process separately.

For the chemical corrosion process, which directly results in the degradation of materials, (Jahani et al.,

2001) proposed a diffusion-reaction based model with a moving boundary to predict the corrosion rate.

(Chalupeckỳ et al., 2012) consider a two-scale reaction diffusion system containing one microscopic scale

(pore scale) and one macroscopic scale (sewer pipe scale). In both of them, only dissolution of portlandite

or calcite was considered. As another important solid component in cementitious materials, decalcification

of C-S-H gel was absent. In addition, only the front of acid neutralization and gypsum formation were

captured by the modeling.

In such a biogenic degradation process, the concentration of sulfuric acid is not constant or given, but

imposed by the biochemical reactions in the SOB community. Thus the modeling of biochemistry reactions

taking place in the biofilm is needed as well.

To simulate the biochemical process, models such as "Wastewater Aerobic/anaerobic Transformations

in Sewer (WATS)" model (Jensen et al., 2009) and sulfide oxidation modelling (Nielsen et al., 2005) were

developed. Based on experiment data, kinetics and stoichiometry of sulfur oxidation by biofilm were inves-

tigated, while rate equations and stoichiometry constants were proposed. These simulations indicated that

oxidation of accumulated slowly degradable element sulfur could cause a steady production of sulfuric acid,

even when hydrogen sulfide is not present. However, the relationship between pH and H2SO4 production

in biofilm is not found in previous research results.

Few modeling focus on the coupling of biochemical process and chemical corrosion process. With

HYTEC, (De Windt and Devillers, 2010) simulate a bioleaching test applied to ordinary Portland cement

pastes during 15 months. By coupling of (bio)chemical alteration, porosity and diffusion evolutions, the long

term performance of cementitious materials subjected to biodeterioration was assessed. Various species were

considered in this work, and yet their diffusion coefficient were uniform. Moreover, a continuous approach

of C-S-H dissolution is absent in this modeling and the effect of swelling of gypsum on the microstructure

of concrete was not considered either.
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1.4 Research objectives

Apparently, there is a lot of financial implications to change or reinforce the networks of pipes. Thus, it

is necessary to develop a tool to address questions such as the service life of current pipes, or the durability

of the new pipes made of other materials or protected by new methods. Since the present modeling are still

imperfect, the objectives of this PhD study are to improve the understanding of the biogenic acid attack of

concrete, and propose a method to predict the performance of concrete servicing in such extreme conditions.

The biochemistry process in biofilm and the chemical process in cement paste are investigated and coupled

with each other. A reactive transport model to predict the behaviour of cement paste in contact with

H2SO4 solution or sulfur-oxidizing bacteria community is expected to be proposed. Therefore, the main

parts of biogenical acid attack should be included in this model as follows:

1. Production variation of H2SO4 with pH in biofilm.

2. Dissolution and precipitation reactions of portlandite (CH) and gypsum (CS̄H2).

3. Continuous variation (decrease) of the Ca/Si ratio during the dissolution reaction of C-S-H.

4. Diffusion of different species and thermodynamical equilibrium.

5. Changes of porosity and damage of materials induced by the production of gypsum.

6. Coupling of H2SO4 production, transport equations and chemical reactions.

7. Effect of pore clogging resulting from carbonation on the biodeterioration rate during early time.

The model is implemented within a finite-volume code Bil (http://perso.lcpc.fr/dangla.patrick/bil).

Coupled with the H2SO4 degradation modeling of concrete, the change of pH in biofilm and the composition

of cement paste are expected to be calculated during the biodeterioration process. Furthermore, the

degradation rate of concrete submitted to biogenic acid attack will be predicted. Simulations results of

a set of chemical exposure tests (external sulfuric acid solution attack, conducted by (Kawai et al., 2005;

Vincke et al., 1999)) and accelerated micro-biological tests conducted by (De Muynck et al., 2009) are

presented and compared with experimental results. Due to the lack of bacteria activity data (such as

the relationship between H2SO4 production rate of various bacteria and pH in biofilm), this study only

simulates the biological process of biofilm by fitting on the measured experimental data.

1.5 Outline of thesis

Since this thesis focuses on the biodeterioration of cementitious materials induced by an existing SOB

community in an environment containing H2S gas, the incubation process of bacterial and the production

process of H2S in wastewater is not addressed. In Chapter 2, some details of the mechanisms of H2SO4

production in the biofilm are presented. The influence of environmental factors, such as temperature,
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concentration of H2S in atmosphere, pH are considered. The modeling of H2SO4 production in biofilm

is described in detail. The inhibition/promotion of H2SO4 production by the change of pH during the

microbial metabolic process is introduced in the modeling. The H2SO4 production modeling is verified at

the end of Chapter 2.

After H2SO4 production is described, the deterioration of cementitious materials subjected to H2SO4

attack is taken into account. Chapter 3 introduces the major chemical reactions taking place during H2SO4

attack. Since the cementitious minerals are expected to completely dissolve, dissolution and precipitation

reactions of CH and gypsum (CS̄H2) are described by mass action laws and threshold of ion activity

products. An innovative approach for the C-S-H is applied to explain the continuous decalcification and

facilitate the numerical modeling.

Resulting from the precipitation-dissolution of the various minerals, the porosity of cementitious ma-

terials will change. Thus the diffusion of species would be influenced as well. Regarding the swelling of

gypsum, Chapter 4 introduces a simplified damage model of the microstructure of cement paste. Based

on the balance of volume, the microstructure evolution is accounted for by adjusting the porosity using

different methods during different damage stages.

Chapter 5 introduces the reactive transport modeling and numerical procedures. To both of the biofilm

and cement paste, the field equations are presented. Different diffusion coefficients are employed for various

ions, yet only transport of aqueous species are considered. Following the introduction of principle of the

finite volume method, coupling of the bio-chemistry process in biofilm and chemistry process in cement

paste is illustrated.

In Chapter 6, several calculations are carried out to simulate experimental works from (Kawai et al.,

2005; Vincke et al., 1999) where cement samples are directly immersed in H2SO4 solution with constant

or cyclical variable concentrations. Simulation results of different conditions, e.g., statical solution and

circulated solution, are compared with experiment observations. The sensitivity of H2SO4 concentration,

initial porosity, and damage criterion are analyzed. The effect of initial porosity and carbonation layer in

early time are investigated as well.

After the modeling of chemical deterioration has been verified, in Chapter 7 the experiment conducted

by (De Muynck et al., 2009) is simulated to predict the bio-degradation process. The simulation results of

pH evolution in biofilm and the change of cement paste properties are compared with experimental results.

Effect of environmental factors (such as H2S content) is discussed and a long term prediction is presented.

Finally, the conclusion of this thesis and some future improvements are presented in Chapter 8.
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Chapter 2

The production of H2SO4 by

micro-organisms in biofilm

2.1 Introduction

For biogenic sulfuric acid attack, H2SO4 production is a fundamental process, which provides the strong

corrosion medium causing the deterioration of concrete. Thus, the first step to simulate the bio-deterioration

of sewer pipes is the calculation of the production of H2SO4 in biofilms. As the major issue associated

with the corrosion of concrete, the relationship between H2S gas level and the corrosion rate of the sewer

pipes is still a major research question (Apgar et al., 2007). As introduced in Chapter 1, H2S absorption

by biofilms and concrete surface provides the sulfur source of H2SO4 production, whose rate is controlled

by the oxidation of H2S in biofilms (see Fig.2.1). In this paper, the generation and emission of H2S from

wastewater is not considered and the level of H2S gas in sewer pipes is constant.

For sulfur-oxidizing bacteria (SOB), the initial pH of ordinary Portland cement concrete is too high to

grow. (Mori et al., 1992; Rigdon and Beardsley, 1956) proposed that the microbial activity on the concrete

surface is initiated at pH around 9 and thereafter, a succession of microbial communities develops, which

can utilize sulfide and/or its oxidized forms, such as element sulfur (Joseph et al., 2012). The abiotic

pH reduction of concrete surface results to an initial lag period before the start of active corrosion phase

(Islander et al., 1991).

Therefore, the primary stage is the reduction of pH at the concrete surface, where pH decreases from

about 12.5 to 9 by chemical acid reactions of CO2 and H2S with concrete. The experimental researches

of (Joseph et al., 2012) suggested that H2S gas is the major factor for the surface pH reduction in sewers

during early stages of exposure rather than carbonation.
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Figure 2.1: Schematic outline of the H2S production process. (Jensen et al., 2008)

According to literatures (Harrison Jr, 1984; Islander et al., 1991; Herisson et al., 2013), different types

of SOB are involved in H2S oxidation process which is influenced by various factors, such as the amount of

sulfur source, pH and temperature. For such a complex process, there is a lack of fundamental understanding

of the quantitative relationship among these factors. However, the kinetics and stoichiometry of sulfide

oxidation by biofilms can be described by Wastewater aerobic/anaerobic Transformations in Sewer (WATS)

model (Jensen et al., 2009; Nielsen et al., 2005) regardless the influence of pH. Yet, to our knowledge, no

attempt has been made to model both the neutralization of concrete surface and H2SO4 production in

biofilms.

This chapter studies first with the absorption of H2S gas by concrete surface. Then, the chemical

reactions of H2S and concrete with constant temperature and humidity is described. For the specific

biofilms, we model the production of H2SO4 by fitting the measurements of the pH evolution in biofilms.

For a more general condition with varying H2S content, we follow the WATS model to calculate the

production rate based on H2S content.

2.2 Neutralization of pipe surface during early stage

2.2.1 Absorption of H2S

Since only aqueous H2S can react with concrete or be oxidized by SOB, the transferring of H2S from

sewer gas to concrete surface or biofilms is a crucial step. H2S can be absorbed into pore solution of

concrete and biofilms from gas phase in sewer pipes. The adsorption of H2S governs the time of surface

neutralization and the production of H2SO4. (EPA, 1974) suggested that all released H2S from wastewater
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is immediately absorbed by concrete surface, resulting in zero H2S in the gas phase. However, experimental

results of (Vollertsen et al., 2008; Nielsen et al., 2008) revealed that transferring of H2S from the gas phase to

the concrete surface is not an instantaneous process and absorption kinetics should be taken into account.

By experiments with pilot-scale sewer reactors as in Fig. 2.2, (Vollertsen et al., 2008) found that the

absorption rate (FH2S) could be described as a power function in the gas phase H2S concentration (pH2S).

Figure 2.2: Schematics of the pilot scale reactors. (Vollertsen et al., 2008)

Furthermore, (Nielsen et al., 2012) presented an empirical relationship between the Reynolds (Re)

number of the gas flow and the absorption rate. For the sake of simplicity, the effect of gas flow regime is

ignored in this paper. The nth order kinetics of H2S absorption of concrete surface and biofilms is described

as follows:

FH2S = kabsp
n
H2S (2.1)

where, pH2S is the content of H2S gas (ppm). kabs is the surface specific H2S absorption rate constant,

which is reported to vary between 6.25×10−8 and 3.12×10−7 mol S m−2 s−1 (ppm H2S)−n depending on

temperature (Vollertsen et al., 2008). The reaction order n is correlated with kabs, with n approximately 0.5

for low kabs and 0.8 for high kabs. Since temperature is constant at 25 ◦C in this paper, kabs is determined

as 2×10−7 mol S m−2 s−1 (ppm H2S)−n and n = 0.75. Then the absorption rate of H2S versus content of

H2S in gas phase is plotted in Fig. 2.3.

2.2.2 Chemical reaction between aqueous H2S and concrete

Although the acidification of aqueous hydrogen sulfide is much weaker than that of H2SO4, it dissociates

in the same manner as sulfuric acid and releases H+ as follows (Tsonopoulos et al., 1976; Su et al., 1997):

H2S ⇋ HS− + H+ KH2S = 8.9 × 10−8 (2.2)

HS−
⇋ S2− + H+ KHS− = 1.2 × 10−13 (2.3)
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Figure 2.3: H2S absorption rate at different H2S gas content.

where the equilibrium constant is at 298K which keeps constant. Thus calcium hydroxide could be dis-

solved and calcium sulfide forms when H2S is absorbed by concrete surface. These global reactions can be

understood by combining three basic dissociation reactions Eq.(2.4)-Eq.(2.6), which involve the minerals

and the aqueous species in pore solution.

CH ⇋ Ca2+ + 2OH− (2.4)

CxSyHz ⇋ xCa2+ + 2xOH− + ySiO0
2 + (z − x)H2O (2.5)

CaS ⇋ Ca2+ + S2− (2.6)

Furthermore, CaS precipitation is not stable in acidic solution. When there is enough H2S, calcium

hydrogen sulfide, which is soluble, would be produced as follows (Idriss et al., 2001):

CaS + H2S ⇋ Ca(HS)2 (2.7)

The equilibrium condition of these dissociation reactions are depended on the concentration of H2S.

The dissolution of CH and the decalcification of C-S-H are the same as those with H2SO4 attack, which

are detailed in Chapter 3. Taking the equilibrium between CH and CaS for instance, we have

QCaS

KCaS
=
QCH

KCH

ρH2S

ρCH
H2S

(2.8)
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where, K and Q are the equilibrium constant and ion activity product of CH and CaS respectively. KCH

= 6.5 ×10−6 and KCaS = 7.9 ×10−7. ρCH
H2S is the value of ρH2S defined by the coexistence of CH , CaS

and aqueous phase. It can be calculated by a given function of the solubility constants of other species as

Eq.(2.9).

ρCH
H2S =

K2
H2OKCaS

KH2SKHS−KCH
(2.9)

With the help of the constants mentioned above, ρCH
H2S ≈ 8.90 × 10−10 mol/L. Hence, CaS would not

precipitate when ρH2S < ρCH
H2S, while dissolution of CH takes place when ρH2S > ρCH

H2S.

In the model, the CH dissolution process is governed by a simple kinetic law which is assumed to be

governed only by the difference of chemical potentials of H2S between the current state (µH2S(current)) and

the equilibrium state (µH2S(eq)). Details of the kinetic and decalcification of C-S-H is demonstrated in

Chapter 3, as well as an example of H2S attack.

2.2.3 pH reduction of concrete surface

With the absorption of H2S in gas phase and the chemical reaction of H2S with concrete mentioned

above, the pH reduction of concrete surface can be calculated.

(Roberts et al., 2002) experimentally reproduced a reduction of pH in pore water by exposing fresh

concrete samples to hydrogen sulfide gas concentrations of 50, 100, and 250 ppm. The pH reduction is

given by

4.4 × 10−5 pH unit/day/ppm of H2S · pH2S + 0.021 pH unit/day (2.10)

(Okabe et al., 2007) measured the pH reduction rate for mortar coupons placed in sewers with H2S of

30 ppm ± 20 ppm for a period of 56 days. The result was 0.06 pH unit/day, which is approximately 3

times of the result of Eq.(2.10). However, the experiment was in-situ, where microbial processes could be

involved in.

Thus, we simulate a set of experiments conducted and clearly described by (Joseph et al., 2012). In

the experiments, concrete coupons were exposed to different H2S gas level (4.5, 7.5, 15.8, 26.5, 48.9 ppm)

in well-controlled laboratory chambers, where the temperature is 25◦C, for 1 year. The surface pH of the

samples before exposure was 10.6 ± 0.3, which is near the pH of a carbonated sample, indicating that

the samples were carbonated during the manufacturing and/or transportion. Therefore, in our simulation

calcite is considered as the solid phase of samples instead of portlandite. After exposure of 1 year, the

simulation results and experimental results of the decrease of pH in surface are compared in Fig.2.4.
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Figure 2.4: Decrease in surface pH (pH(initial) - pH(exposed)) after 1 year.

For Fig.2.4, our modeling can predict the pH reduction of pipe surface during initial time fairly well. The

solid compositions evolution during H2S attack will be illustrated by a simulation example of representative

elementary volume (REV) in Chapter 3.

2.3 The production of H2SO4 by sulfur-oxidizing bacteria

When the environment of pipe surface is suitable for the microbial succession, biofilms starts to form.

With the supply of hydrogen sulfide, these microorganisms can produce biogenic sulfuric acid which attacks

the concrete. Some experimental results (Herisson et al., 2013) indicated that the oxidation rate of H2S

is controlled by the activity and the amount of SOB, which is determined by the pH in SOB media, H2S

content in sewer, temperature and the concentration of Al3+ in the biofilm. However, the quantitative

effect of these factors on H2SO4 production is not clear for now.

Different types of SOB are responsible to different deterioration degree of concrete as listed in Table

1.2. They are active in different ranges of pH (see Fig.2.5) and produce H2SO4 with different rates. Two

general categories of SOB can be differentiated based on their optimal pH for growth (Hudon et al., 2011):

Neutrophilic Sulfur-Oxidizing Bacteria (NSOB), which develops at pH near neutral and are found at the

beginning of biodeterioration; Acidophilic Sulfur-Oxidizing Bacteria (ASOB), which prefer acidic media.

Normally, the H2SO4 production rate of NSOB is much slower than that of ASOB. Thus, NSOB only can

cause slight deterioration.

Most types of SOB are not able to oxidize sulfide directly. Fig.2.6 summarizes the possible oxidation
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pathways in biofilms, which can occur concurrently (Hudon et al., 2011; Islander et al., 1991).

Figure 2.5: Succession of SOB in different pH range (Herisson, 2012)

Figure 2.6: Sulfur oxidation states typical in sewer. (Biologic pathway is shown with full lines; chemical,
with dashed lines.) (Islander et al., 1991)

For heavily deteriorated sewer pipes, Acidithiobacillus thiooxidans bacteria is normally detected in

biofilms (Okabe et al., 2007; Cho and Mori, 1995; Nica et al., 2000). Most of the present laboratory

researches are carried out based on the presence of Acidithiobacillus thiooxidans, whose oxidation process is

modeled by WATS model (Hvitved-Jacobsen et al., 1998; Nielsen et al., 2005; Jensen et al., 2009). (Jensen

et al., 2009) showed that in the corrosion products of concrete, H2S is rapidly oxidized to a mix of elemental

sulfur and H2SO4. They observed two fractions of elemental sulfur: a readily degradable fraction which

was oxidized almost as fast as the oxidation of H2S, and a slowly degradable fraction which was oxidized

much slower.
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If H2S is continuously present during the early time, slowly degradable elemental sulfur would accumu-

late and cause a delayed formation of sulfuric acid even if H2S is no longer absorbed later.

There is still a lack of the quantitative understanding of the H2SO4 production, the succession of

different types of SOB and the influence of environmental factors. Among them, Al3+ ion has bacteriostatic

effect Herisson (2012). Since we deal with the Portland cement based sewer pipes in this paper, Al3+ is

neglected. For sewer pipes degraded heavily, the temperature is normally 25◦C to 30◦C (Yongsiri et al.,

2004). Therefore, in our modeling the temperature and humidity is constant. In this paper, dealing with

different experimental conditions, H2SO4 production controlled by pH and H2S content are considered

respectively.

2.3.1 Modeling of H2SO4 production with given pH evolution in biofilm

In some experimental researches, the pH evolution in biofilms or SOB suspension with time were mea-

sured (Vincke et al., 1999; De Muynck et al., 2009). Thus, it is possible to model the H2SO4 production

process by fitting the pH evolution.

In the sewer pipes degraded heavily, the content of H2S gas in sewer could reach 400 ppm (Mori et al.,

1992). In some laboratory researches focusing on the deterioration process, element sulfur content in SOB

culture was quite high and the concrete samples were incubated by H2S gas or biological sulfur solution

(Vincke et al., 1999; De Muynck et al., 2009). For such conditions, we assume that element S source is

always enough for SOB. Thus, in this simplified modeling the production of H2SO4 is controlled by pH

which itself is determined by the amount of H2SO4. According to the experimental observations (Ehrich

et al., 1999), the activity of SOB increases until pH is reduced to a critical value, depending on the type of

bacteria species. When pH is lower than the critical value, H2SO4 production rate drops rapidly. In this

paper, the production process of sulfuric acid in SOB media is divided into two step:

NSOB dominating step: When pH in SOB media is higher than the value of pHNSOB, H2SO4 is produced

by NSOB, whose production rate is quite low.

ASOB dominating step: When pH in SOB media is lower than the value of pHNSOMB, H2SO4 is produced

by ASOB rather than NSOB which can’t survive in acidic environment. The production rate of H2SO4

keeps increasing until pH reaches pHASOB, where the metabolic activity of ASOB reaches peak value. With

pH below pHASOB, the metabolic activity of ASOB is limited. Consequently, H2SO4 production rate is

reduced.

Such process can be expressed by a function of pH as follows:
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NSOB : RH2SO4−NSOB =
α0

σ
√

2π
e

−

(pHNSOB − pHASOB)2

2σ 10pHNSOB−pH (2.11)

ASOB : RH2SO4−ASOB =
α0

σ
√

2π
e

−

(pH − pHASOB)2

2σ (2.12)

where, α0 and σ are constants depending on SOB numbers and activity. In this paper, the value of α0

and σ are determined by fitting experimental measurement. To simulate the experiments conducted by

(De Muynck et al., 2009), which will be introduced in Chapter 7, we set pHNSOB = 2.5 and pHASOB = 1.5.

When pH > pHASOB, α0 = 8 ×10−7mol/L·s, σ = 0.48; while α0 = 4 ×10−7mol/L·s, σ = 0.24, when pH <

pHASOB.

The relationship between H2SO4 production rate and pH is plotted in Fig.2.7, which indicates that few

H2SO4 is produced until pH decreases to 4. With further decreasing of pH, lots of H2SO4 is produced by

ASOB and the production rate rises sharply. Once pH was decreased below 1.5, the H2S production rate

drops rapidly. The verification of this relationship could be found in Chapter 7, where the experiment of

(De Muynck et al., 2009) is simulated and analysed.
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Figure 2.7: H2SO4 production rate and pH

2.3.2 Modeling of H2SO4 production with given H2S content in gas phase

Under in-situ conditions, H2S is not always at high level and it is easier to monitor H2S level in gas

phase than pH in SOB media. According to experimental researches (Jensen et al., 2008; Vollertsen et al.,
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2008, 2011) where H2S content was measured, content of H2S is an important factor which can control the

corrosion rate of sewer pipes.

With given H2S content in gas phase, WATS model is employed to calculate the H2SO4 production by

considering the kinetics of H2S oxidation. WATS concept was originally presented in 1998 and continuously

developed (Hvitved-Jacobsen et al., 1998; Vollertsen et al., 2008; Jensen, 2008). Based on experimental

observation, WATS model suggests that hydrogen sulfide is initially oxidized to readily biodegradable

elemental sulfur (Sf). This elemental sulfur is partly aged to slowly biodegradable elemental sulfur (Ss)

and partly oxidized to sulfuric acid. The slowly biodegradable elemental sulfur is also oxidized to sulfuric

acid, only at a lower rate (see Fig.2.8).

Figure 2.8: The pathway used to describe the hydrogen sulfide and oxygen consumption pattern observed
in the experiments on biotic hydrogen sulfide oxidation (Jensen, 2008).

However, biofilms are considered as containing a general mixture of SOB of A. thiooxidans, i.e., the

difference between NSOB and ASOB is neglected in WATS model. Thus, the effect of pH on H2SO4

production is neglected. The oxidation rate is governed by the concentration of biomass, the amount

of aqueous H2S and O2. In WATS model, the oxidation rate of H2S to Sf (RH2S,WATS), Sf to H2SO4

(RSf,WATS), Ss to H2SO4 (RSs,WATS) and the ageing rate of Sf to Ss (RSf−Ss,WATS) are described by

Eq.(2.13) - Eq.(2.16).

RH2S,WATS = koxi−H2SXSOB
ρH2S

ρH2S +HH2S

ρO2

ρO2 +HO2,H2S
(2.13)

RSf,WATS = koxi−SfXSOB
ρSf

ρSf +HSf

ρO2

ρO2 +HO2,Sf
(2.14)

RSs,WATS = koxi−SfXSOBρ
c
O2

(2.15)

RSf−Ss,WATS = kSf−SsρSf (2.16)

where all parameters are defined in Table 2.1. Obviously, the production rate of H2SO4 equals to the sum

of oxidation rate of Sf and Ss.

In our modeling, the oxidation pathways are simplified as H2S - element S - H2SO4, i.e., the slowly

biodegradable elemental sulfur is neglected. Oxygen is always sufficient for the sake of simplification. Thus,
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Table 2.1: Definition of the parameters in WATS model

Parameter Definition Unit

RH2S,WATS/RSf,WATS/RSs,WATS Oxidation rate of H2S/Sf/Ss in SOB media mol m−3 s−1

koxi−H2S/koxi−Sf/koxi−Ss Rate constant for biotic oxidation of H2S/Sf/Ss s−1

RSf−Ss,WATS Ageing rate of Sf mol m−3 s−1

kSf−Ss Rate constant for the ageing rate of Sf s−1

XSOB SOB concentration in SOB media g m−3

ρH2S/ρSf/ρSs/ρO2 Concentration of aqueous H2S/Sf/Ss in SOB media mol m−3

HH2S / HSf Half saturation constant for aqueous H2S/Sf mol m−3

HO2,H2S / HO2,Sf Half saturation constant for O2 in the oxidation of H2S/Sf mol m−3

c Reaction order for the oxidation of Ss /

the oxidation rate of H2S and S are expressed as follows:

H2S oxidation : RH2S−oxi = kH2S−oxiXSOB
ρH2S

ρH2S +HH2S
(2.17)

S oxidation: RS−oxi = kS−oxiXSOB
ρS

ρS +HS
(2.18)

To simulate the corrosion of sewer pipes in the experiments of (Jensen et al., 2008; Vollertsen et al.,

2011) , which is detailed in Chapter 7, the value of parameters in Eq.(2.17) and Eq.(2.18) are listed in

Table 2.2. The oxidation rate of H2S and S are plotted in Fig.2.9.

Table 2.2: Value of the parameters in H2SO4 production model. (Jensen et al., 2008)

Parameter Value

kH2S−oxi 1.1×10−8 s−1

kS−oxi 4.1×10−9 s−1

XSOB 1941 g/L
HH2S 8.0×10−4 mol/L
HS 2.8×10−5 mol/L

Combining the absorption of H2S and the oxidation of H2S, the pH evolution in pure SOB media with

different H2S level are plotted in Fig.2.10, which indicates that H2SO4 is produced faster with high H2S

level than that with low H2S level.
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2.4 Conclusions

This chapter starts with the introduction of the mechanisms of H2SO4 production by sulfide-oxidizing

bacteria (SOB). Before SOB starts to grow on the surface of sewer pipes, the concrete is neutralized by

H2S in gas phase. The absorption of H2S gas in pore solution of concrete or SOB media is considered.

The chemical reaction of H2S and concrete is introduced into our modeling as well. Thus, the surface

neutralization process of biodeterioration of sewer pipes can be simulated. The lag time of the start of

active corrosion can be predicted.

By simulating the experiment conducted by (Joseph et al., 2012), the pH reduction of carbonated con-

crete surface with different H2S gas level are calculated. The simulation results coincide with experimental

observations.

Dealing with different given conditions, the production rate of H2SO4 by SOB media is calculated by

fitting measured pH evolution or WATS model. With given pH evolution in SOB media with sufficient sulfur

source, H2SO4 production rate is governed by a function of pH. The succession and activity of ASOB and

NSOB with different pH range are considered. With given H2S level in gas phase, SOB is simplified as a

general type of bacteria with constant biomass and activity. H2SO4 is produced by oxidation of element

sulfur which accumulates in SOB media by oxidation of aqueous H2S. By WAST model, the oxidation rate

of H2S and that of element S are governed by functions of concentration of H2S and S respectively.

When the values of parameters in both methods are determined, the production rate of H2SO4 during

the experiments of (De Muynck et al., 2009) and (Vollertsen et al., 2011) are plotted. When biogenic

sulfuric acid is produced, it starts to corrode concrete. The chemical reaction of H2SO4 attack of concrete

will be introduced in the next chapter.
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Chapter 3

Degradation of cementitious

materials subjected to sulfuric acid

attack

3.1 Introduction

Once H2SO4 is produced by biofilms, cement-based materials are directly in contact with H2SO4 which

diffuses into the pores of concrete. As a strong acid, a series of homogeneous chemical reactions between

H2SO4 and concrete could result in the reduction of the concrete alkalinity and the dissolution of the

calcium hydroxide. In pore solution of concrete, the ionization of H2SO4 is influenced by other ions. Unlike

pure solution, it is difficult to determine the concentration of H2SO4 by pH in pore solution. Thus, the

concentration of unionized molecules of H2SO4 (noted as ρ0
H2SO4

) is employed to indicate the amount of

H2SO4 in pore solution of equilibrium state in this study. When ρ0
H2SO4

is high enough (≥ 3.9 × 10−32

mol/L at 298 K, i.e., pH≤ 12.4), portlandite (Ca(OH)2, noted as CH in this study) will start to dissolve. As

the concentration of H2SO4 getting higher, decalcification process of calcium silicate hydrate (xCaO·ySiO2·

zH2O, noted as C-S-H) will take place.

The sulfuric acid corrosion product is a layer of white precipitate that accumulates on the concrete

surface. This corroded layer consists of a combination of sand particles, unreacted cement particles and

calcium sulfate mineral. By electron microscopy, (Bock and Sand, 1986) identified the main part of the

corrosion products as gypsum (CaSO4·2H2O, noted as CS̄H2 in this paper) with no structural strength.

Some publications (Mori et al., 1992; Redner et al., 1994) claimed that the ample supply of sulfate and
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the intrusion of the acid may result in the formation of ettringite (3CaO·Al2O3·3CaSO4·32H2O) which is

expansive. However, in other experimental observations (Ehrich et al., 1999; Vincke et al., 2000) ettringite

was not present. According to the investigations conducted by (Gabrisova et al., 1991; Allahverdi and

Skvára, 2000), ettringite starts to form at pH ranging from 12.5 to 12. When pH decreases below 10.7,

ettringite starts to decompose into gypsum. Since normally pH in biofilms is less than 3, ettringite exists

temporarily and occasionally appears in the corrosion products during the biodeterioration of sewer pipes.

Therefore, in this paper only the precipitation of gypsum is considered during the sulfuric acid attack

process.

Not much modeling researches about the sulfuric acid attack of cementitious materials were reported for

now. Based on a moving-boundary system, (Böhm et al., 1998) firstly proposed a modeling of corrosion of

sewer pipes. In this modelling, the chemical reactions are simplified to the dissolution of calcite (CaCO3).

Such simplification was still employed in recent research (Fatima and Muntean, 2012). Dissolution of

portlandite and C-S-H gel were mentioned in the modeling research of (Beddoe and Dorner, 2005). However,

the quantities of portlandite and C-S-H gel were given by the total calcium content rather than taken into

account individually. In addition, the equilibrium between solid phases was not considered.

In the modeling of biogenic acid attack based on HYTEC, (De Windt and Devillers, 2010) studied the

thermodynamic equilibrium of the chemical reactions. The dissolution of portlandite and C-S-H gel were

described separately. However, a discrete approach of C-S-H dissolution was used by considering three end

members with Ca/Si ratio of 1.8, 1.1 and 0.8.

In this chapter, the approach of chemical reactions between H2SO4 and cement-based materials are

detailed. Chemical reactions taking place in aqueous phase and solid phases are profiled in the first section.

The effects of the chemical activity are disregarded as a first approximation (the activity coefficient is

assumed to be one throughout the paper). The dissolution of CH and C-S-H, and the precipitation are

thereafter described in the next two sections. A general approach to describe the C-S-H dissolution is

employed. The proposed approach provides a method to characterize the continuous decalcification of the

C-S-H during H2SO4 attack and facilitates the numerical modeling. With the help of chemical equilibrium

between portlandite and calcium sulfide (CaS) introduced in Chapter 2, an example of H2S attack is

conducted on representative elementary volume (REV). The evolution of pH and solid composition during

H2SO4 attack are illustrated via a REV example as well.

3.2 Chemical reactions in pore solution

For Portland cementitious materials, portlandite and calcium silicate hydrates are the solid components

which react with sulfuric acid to form gypsum (CS̄H2). These global reactions can be understood by com-
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bining three basic dissociation reactions Eq.(3.1)-(3.3), which involve the minerals and the aqueous species

in pore solution. The equilibrium condition of these dissociation reactions depends on the concentration of

H2SO4.

CH ⇋ Ca2+ + 2OH− (3.1)

CS̄H2 ⇋ Ca2+ + SO2−

4 + 2H2O (3.2)

CxSyHz ⇋ xCa2+ + 2xOH− + ySiO0
2 + (z − x)H2O (3.3)

Therefore the ingress of H2SO4 solution will cause a series of homogeneous chemical reactions gathered

in the Table 3.1, where the equilibrium constant are given at 298K. Throughout this paper, two points

should be noticed: 1) We use a superscript 0 in the chemical formula of any species (e.g. in SiO0
2) as a

convention to denote the dissolved form of this species; 2) We assume infinite dilution approximation for

aqueous species. Thus the activity of each aqueous species is equal to the molar concentration expressed in

mol/L, and that of each solid component equals to 1 (CH and CS̄H2) except the different poles of C-S-H.

Table 3.1: Chemical reactions taking place in the aqueous solution

Aqueous reactions Equilibrium constant=

H2O ⇋ H+ + OH− KH2O = 1.0 × 10−14

H2SO4 ⇋ HSO−

4 + H+ KH2SO4 = 1.0 × 106

HSO−

4 ⇋ SO2−

4 + H+ KHSO−

4
= 1.0 × 10−2

CaOH+
⇋ Ca2+ + OH− KCaOH+ = 1.66 × 101

Ca2+ + SO2−

4 ⇋ CaSO0
4 KCaSO0

4
= 1.4 × 103

Ca2+ + HSO−

4 ⇋ CaHSO+
4 KCaHSO+

4
= 1.276 × 101

Ca2+ + H2SiO2−

4 ⇋ CaH2SiO0
4 KCaH2SiO0

4
= 3.89 × 104

Ca2+ + H3SiO−

4 ⇋ CaH3SiO+
4 KCaH3SiO+

4
= 1.58 × 101

SiO0
2 + 2H2O ⇋ H4SiO0

4 KSiO0
2

= 1.94 × 10−3

H4SiO0
4 ⇋ H3SiO−

4 + H+ KH4SiO0
4

= 1.55 × 10−10

H3SiO−

4 ⇋ H2SiO2−

4 + H+ KH3SiO−

4
= 4.68 × 10−14

* The equilibrium constants are reported by (Galíndez and Molinero,
2010; Stronach and Glasser, 1997; Westall et al., 1976)

In Table 3.1, each ion, i, takes a valence number, zi , which depends on the charge carried by the ion.

Since electroneutrality must be kept in the medium and the solid phase is not charged, the total charge of

the aqueous solution is 0 as Eq.3.4.

∑

i

ziρi = 0 (3.4)
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where, ρi represents the concentration of ion i (mol/L). From Table 3.1, we can found that the concentration

of H2SO4, Ca2+ and H4SiO0
4 are key variables. With known value of ρH2SO4 , ρCa2+ and ρH4SiO0

4
, ρH+ can

be derived via Eq.3.4. Consequently, the concentration of the other species can be calculated from Table

3.1.

In addition, alkali K+/Na+ are included in the model. For the electroneutrality, the same amount

of anion (such as Cl− and OH−) should introduced as well. Since those species are not involved in any

chemical reaction in this study, an unified form as KCl is considered.

3.3 Dissolution of portlandite

The stability of the thermodynamical equilibrium of reactions (3.1) and (3.2) can be characterized by

a threshold of the ion activity products as follows:

QCH = ρCa2+ρ2
OH− ≤ KCH (3.5)

QCS̄H2 = ρCa2+ρSO2−

4
ρ2

H2O ≤ KCS̄H2 (3.6)

where, K and Q are the equilibrium constant and ion activity products of CH and CS̄H2 respectively.

KCH = 6.5 × 10−6 and KCS̄H2 = 2.5 × 10−5. According to Table 3.1, ρSO2−

4
is governed by three chemical

equilibriums:

KH2O = ρH+ρOH− (3.7)

KH2SO4 =
ρH+ρHSO−

4

ρH2SO4

(3.8)

KHSO−

4
=

ρH+ρSO2−

4

ρHSO−

4

(3.9)

Combining Eq.(3.7), Eq.(3.8) and Eq.(3.9), ρSO2−

4
can be derived as follows:

ρSO2−

4
=
KH2SO4KHSO−

4

K2
H2O

ρH2SO4ρ
2
OH− (3.10)

Substituting Eq.(3.10) into Eq.(3.6), the ion activity of gypsum can be expressed by the key variables

as Eq.(3.11).

QCS̄H2 = ρCa2+

KH2SO4KHSO−

4

K2
H2O

ρH2SO4ρ
2
OH− (3.11)

The relationship between the ion activity of portlandite and that of gypsum can be derived from Eq.(3.5)
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and Eq.(3.11) as follows:

QCS̄H2 = QCH

KH2SO4KHSO−

4

K2
H2O

ρH2SO4 (3.12)

Thus, the equilibrium relationship between CH and CS̄H2 can be written as:

QCS̄H2

KCS̄H2

=
QCH

KCH

ρH2SO4

ρCH
H2SO4

(3.13)

where, ρCH
H2SO4

is the value of ρH2SO4 defined by the coexistence of CH , CS̄H2 and aqueous phase. It can

be calculated by a given function of the solubility constants of other species as Eq.(3.14).

ρCH
H2SO4

=
K2

H2OKCS̄H2

KH2SO4KHSO−

4
KCH

(3.14)

With the help of the constants listed in Table 3.1, ρCH
H2SO4

≈ 3.90 × 10−32 mol/L. Hence, CS̄H2 would

not precipitate when ρH2SO4 < ρCH
H2SO4

, while dissolution of CH takes place when ρH2SO4 > ρCH
H2SO4

.

These stability domains are summarized in Fig.3.1. For the fresh ordinary Portland cement paste, pH

is approximately 12.4, which means ρH2SO4 < ρCH
H2SO4

. Thus portlandite is stable and no gypsum exists.

When H2SO4 penetrates into the pores of cement paste and further exceeds ρCH
H2SO4

, portlandite starts to

dissolve and CS̄H2 forms.

Figure 3.1: Stability domains of portlandite and gypsum

In this modelling, the sample is water saturated. The possibility that the precipitation of CS̄H2 occurs

around CH crystals is neglected. Thus we assume that CS̄H2 precipitation is homogeneous within the

porosity. The CH dissolution process is governed by a simple kinetic law in the model. To facilitate

numerical convergence, a characteristic time, τCH, is introduced to govern the dissolution rate of CH as
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follows:

dnCH

dt
= −nCH

τCH
(
µH2SO4(current) − µH2SO4(eq)

RT
) = −nCH

τCH
ln(

ρH2SO4

ρCH
H2SO4

) (3.15)

The kinetics is simplified to be governed only by the difference of chemical potentials of H2SO4 between

the current state (µH2SO4(current)) and the equilibrium state (µH2SO4(eq)). Since the pH of the biofilms may

be as low as 1, τCH should be set in practice small enough to oblige the reaction to be close to equilibrium.

Combined with sulfate ions, the dissolved calcium ions will precipitate as CS̄H2 with almost at the same

rate as that of the portlandite dissolution.

3.4 Decalcification of calcium silicate hydrates (C-S-H)

As a very important solid phase, C-S-H contributes to the strength of cement-based materials. The

dissolution of C-S-H gel during H2SO4 attack, is presented by reactions Eq.(3.3). Dissolution modeling of

C-S-H is important to understand the degradation process of cement hydrates.

Compared to CH, C-S-H is a very complex hydration product whose composition is not specific. Thus

the same approach as the one adopted for the CH dissolution is inappropriate for C-S-H. According to

the researches about the structure and stoichiometry of C-S-H (Greenberg and Chang, 1965; Chen et al.,

2004; Constantinides and Ulm, 2004), the ratio of calcium to silica (Ca/Si ratio), which is generally used

to characterize the C-S-H, is about 1.7 for fresh hydrated Portland cement and tends to decrease during

the dissolution process.

Literatures provide several methods to model the thermodynamic properties of C-S-H and its incon-

gruent behaviour as well. Comparing with the empirical or semi-empirical models of the early method

(Reardon, 1990) and solid solution method (Kulik and Kersten, 2001), a more general characterization

method is proposed to address the continuous change of the stoichiometric coefficients of C-S-H during

decalcification. For a better understanding of the new approach, the discrete model and solid solution

model are introduced in Appendix A.

Based on thermodynamics, the new approach encompasses the solid solution model. There is no explicit

mention of end-members in this approach. The Gibbs energy of C-S-H gel is eventually assessed directly by

experimental measurements as a function of the Ca/Si ratio rather than being assumed to fit a mixture of

given members. Thus, this approach is expected to be more general than solid solution model. The Ca/Si

ratio of C-S-H is taken as a variable in the model. Defining the unit mole content of C-S-H with a unit

mole content of Si (i.e., y = 1), the dissociation reaction of an infinitesimal small amount of C-S-H can be

written as:
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CxS1Hz ⇋ xCa2+ + 2xOH− + SiO0
2 + (z − x)H2O (3.16)

where, x stands for the current Ca/Si ratio and z for the Water/Si ratio. Obviously, the solid content of

Si (nSi) is equal to the content of C-S-H (nC-S-H). Thus, the molar Gibbs energy of C-S-H depends on x

and z which is assumed as a function of x. We write the molar Gibbs energy of C-S-H as g(x). During

an infinitesimal small variation of C-S-H content, dnSi, the reaction Gibbs free energy, G, must decrease

spontaneously:

dG = −µCa2+d(nx) − µOH− d(2nx) − µSiO0
2
dn− µH2Od(n(z − x)) + d(ng(x)) ≤ 0 (3.17)

where, µi is the chemical potential of each specie. At equilibrium condition, G is minimum. Therefore, for

arbitrary increment dn and C-S-H mole content n, Eq.(3.17) can be changed to Eq.(3.18).

[−x(µCa2+ + 2µOH−) − µSiO0
2

− (z − x)µH2O + g(x)]dn

+[−µCa2+ − 2µOH− − (z − 1)µH2O +
∂g

∂x
]ndx = 0

(3.18)

Since the chemical potential is independent on amount, both of the two terms of Eq.(3.18) are equal to

0. Thus,

A = x(µCa2+ + 2µOH−) + µSiO0
2

+ (z − x)µH2O − g(x) = 0 (3.19)

∂A
∂x

= (µCa2+ + 2µOH−) + (z′ − 1)µH2O − ∂g

∂x
= 0 (3.20)

where, z′ = dz/dx.

Eq. (3.19) indicates that the chemical affinity of reaction (3.16), A, vanishes at equilibrium. Eq. (3.20)

indicates that the chemical affinity keeps at 0. Thus, equilibrium must hold during the decalcification of

the C-S-H. Note that we have the expression of the chemical potential of CH and SHt as follows:

µCa2+ + 2µOH− = µ0
CH +RT ln

QCH

KCH
(3.21)

µSiO0
2

+ tµH2O = µ0
SHt

+RT ln
QSHt

KSHt

(3.22)

where, t is the hydration level of the amorpheous silica SHt which can be obtained after a complete
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decalcification of the C-S-H. KCH and KSHt
(QCH and QSHt

) are the equilibrium constants (ion activity

products) of portlandite and amorpheous silica. Combining Eq. (3.19), Eq.(3.21) and (Eq.3.22), a basic

relationship between the ion activity products of portlandite and that of amorphous silica is derived as

(Eq.(3.23) and Eq.(3.24).

x ln

(

QCH

KCH

)

+ ln

(

QSHt

KSHt

)

= ln a(x) (3.23)

ln

(

QCH

KCH

)

=
∂ ln a

∂x
(3.24)

where, ln a(x) = (g(x) − xµ0
CH − µ0

SHt
− (z − t − x)µH2O)/RT . Given that the molar Gibbs energy of the

amorphous silica in the form of g(0) equals to µ0
SHt

, ln a(0) = 0.

Eq. (3.24) indicates a constitutive-like equation as a one to one relationship between the Ca/Si ratio

and
QCH

KCH
: x = χ(

QCH

KCH
). Consequently, a general mass action law in the form of the differential equation

is then derived from Eq. (3.23) and Eq. (3.24) as follows:

d(ln
QSHt

KSHt

) + xd(ln
QCH

KCH
) = 0 (3.25)

entailing

ln
QSHt

KSHt

= −
∫

QCH
KCH

0

χ(q)

q
dq (3.26)

According to Eq.(3.26) , the relationship between
QSHt

KSHt

and
QCH

KCH
is shown in Fig. 3.2. In the following

parts of this study, note qCH =
QCH

KCH
as the saturation degree of dissolved CH.

To confirm this relationship, we employ the results of an experiment conducted by Greenberg and Chang

(Greenberg and Chang, 1965). In the experiment the solubilities of reaction mixtures of calcium oxide,

silica and water were investigated (0.805 g of SiO2 was poured in 100 mL of water with varying additions

of CaO). The calcium ion concentration, the silicic acid concentration (ρH4SiO4 + ρH3SiO−

4
+ ρH2SiO2−

4
) and

the pH were measured. In Fig.3.3, we plot
QSHt

KSHt

obtained from Eq.(3.26), and that from the Greenberg’s

results. To perform the latter calculation, the ion activity product of silica gel, QSHt
, is approximated by

the concentration of the monosilicic acid H4SiO0
4. The solubility constant, KSHt

, is 1.93 mM. The model

results fit the the experiments fairly well.

Furthermore, this theory encompasses the solid solution model involving any number of poles (detailed

in Appendix A).
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3.5 Examples of the evolution of pH and solid compositions

To illustrate the evolution of pH and solid compositions, the H2S attack and H2SO4 attack of homoge-

neous representative volume element (RVE) of hydrated cement paste are presented separately. The cement

paste contains initially 5.2 mol/L of portlandite (CH) and 3.5 mol/L of jennite (i.e. C1.66SH2.6), the same

value as a well hydrated Class H cement with water/cement ratio (W/C) of 0.38 (Huet et al., 2010). There

is no mass transport at the boundary due to diffusion. In the simulation, the model given by Eq. (3.26) is

employed to describe the dissolution of C-S-H and the Ca/Si ratio evolution is shown in Fig.3.2.

For H2S attack, a small value (about 1×10−9 mol/L) is assigned as the initial aqueous H2S concentration

in the pore solution to keep the portlandite stable. The aqueous H2S concentration increases to 0.19 mol/L

(the pH reaches about 9) in 86400 s (i.e., 1 day). There is no H2S absorption through the concrete surface.

Concentration of aqueous H2S, HS− and S2−, and pH evolution are shown in Fig.3.4. Since the ionization

constant of H2S is very low (8.9×10−8), the pH drops from 12.4 to 9 even if ρH2S reaches up to 0.19 mol/L.

Due to the lower ionization constant of HS− (1.2×10−13), ρHS− is always higher than ρH2S.
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Figure 3.4: Concentration of H2S species and pH vs. time in REV of cement paste

Solid composition evolution of cement paste versus aqueous H2S concentration is shown in Fig.3.5. The

characteristic time of the dissolution of CH, τCH , is 2000 s. Once ρH2S reaches 1.2×10−9, portlandite

starts to dissolve. Meanwhile, dissolution of C-S-H takes place as well. Compared to the dissolution of

portlandite, which is very quick, the Ca/Si ratio of C-S-H decreases gradually. When ρH2S exceeds 0.1

mol/L, the decalcification process of C-S-H is complete. With the dissolution of CH and C-S-H, calcium

sulfide keeps precipitating until ρH2S increasing to 0.0025 mol/L. In presence of excess aqueous H2S, calcium
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sulfide is decomposed.
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Figure 3.5: Evolution of the solid composition vs. H2S concentration in REV of cement paste

Similarly, for H2SO4 attack, 1×10−31.5 mol/L is assigned as the initial H2SO4 concentration in the pore

solution to prevent the dissolution of portlandite. The H2SO4 concentration increases to 1 × 10−8 mol/L

(the pH value is about 1) in 86400 s (i.e., 1 day). There is no mass transport at the boundary. Concentration

of H2SO4, HSO−

4 and SO2−

4 , and pH evolution are shown in Fig.3.6. As a very strong acid, only a few

amount (1 × 10−7.8 mol/L) of H2SO4 could reduce pH to 1.

Fig.3.7 profiles the evolution of solid compositions versus H2SO4 concentration. Due to the sufficient

supply of H+, Ca/Si ratio of C-S-H decreases faster than that during H2S attack. Thanks to the stability

of gypsum, at normal atmospheric temperature gypsum keeps depositing in pores rather than dissolving in

H2SO4 solution.
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Figure 3.6: Concentration of H2SO4 species and pH vs. time in REV of cement paste
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3.6 Conclusion

This chapter introduces the chemical reaction part of biogenic sulfuric acid attack modelling. Homoge-

neous chemical reactions are considered in the pore solution of cementitious materials. It is assumed that

all the aqueous reactions are in thermodynamical equilibrium governed by equilibrium constant.

The threshold of ion activity products are employed to determine the stability of CH and CS̄H2. With

mass action laws, the equilibrium between CH and CS̄H2 is calculated. A simplified chemical kinetics for

the dissolution of CH is introduced to facilitate numerical convergence. In heavily corroded sewer pipe,

the pH of biofilm is normally below 2. Thus the characteristic time of CH dissolution is chosen as small as

possible during simulation to achieve a quick dissolution.

Rather than discrete or solid solution methods, a general approach is applied to characterize the contin-

uous decalcification of C-S-H gel. A generalization of the mass action law is employed for C-S-H dissolution.

Comparing with discrete or solid solution methods, this approach encompasses the solid solution model

involving any number of poles of coefficient, and is easy to implement in a transport-reaction modelling.

The evolution of pH and solid composition during H2S and H2SO4 attack are illustrated by the study

of simple cases of representative volume element. Qualitatively, the profiles of simulation results coincide

with experimental observations. However, due to the lack of transport terms, the simulation results can not

be compared with the experimental results quantitatively. The influence of the decomposition of calcium

sulfide and the deposition of gypsum on the porosity of materials will be discussed in the next chapter.
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Chapter 4

Porosity evolution and damage of

cementitious materials

4.1 Introduction

As a porous media, the physical/chemical performance of cementitious materials depends not only on

solid compositions but also on pore structure, which plays important role in this model as well. Diffusion

of aqueous species is considered in this paper, then the diffusivity of all ionic species is governed by a

function of pore structure (given in Section 5.3). The corrosion depth is determined by the damage of pore

structure as well. The characteristic parameters of pore structure are various (such as porosity, pore size

distribution, specific internal area etc. (Hall et al., 1997)). However, the purpose of our study is to propose

a method to model the whole process of biodeterioration of cementitious materials rather than the specific

effect of pore structure. In this paper, our model accounts for the microstructure evolution by adjusting

the porosity.

During the abiotic pH reduction process of concrete surface and the sulfuric acid attack process, solid

phases such as portlandite and C-S-H gel are dissolved. For H2S attack, CaS, whose molar volume is

less than CH and C-S-H, precipitates in pores. Furthermore, when H2S is enough, CaS could be dissolved.

Obviously, when the phases which occupied the initial solid volume of materials disappear, the pore volume

would increase.

While for H2SO4 attack process, corrosion product is gypsum, which is expansive and insoluble. Ob-

servations revealed that the volume of solid substances increases largely (Okabe et al., 2007; Davis et al.,

1998). Compared to H2S attack, the evolution of porosity during H2SO4 attack process is much more

complex.
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Firstly, the molar volume of C-S-H and the porosity evolution during H2S attack will be introduced in

this chapter. The next section introduces the swelling of gypsum precipitation. Using different methods

for different conditions, the porosity evolution during H2SO4 attack process is calculated. In the last

section, two simple examples without transport are presented to illustrate the evolution of the solid volume

assemblage of H2S and H2SO4 attack separately.

4.2 Porosity change during H2S attack

Let us note the initial porosity of the sample materials and the porosity after deterioration as φ0 and

φH2S respectively. Induced by the precipitation/dissolution of the various solid compounds, the porosity

change can be easily addressed by a simple balance of volume as Eq.(4.1).

φH2S − φ0 = −VCH(nCH − n0
CH) − VCaS(nCaS − n0

CaS) − VC-S-HnSi + V 0
C-S-Hn

0
Si (4.1)

where, Vi is the molar volume of the solid compound i (L/mol). ni and n0
i represent the current and initial

solid content of i (mol/L). VCH = 33 cm3/mol is used for the molar volume of portlandite. For CaS, the

molar volume VCaS is chosen as 28 cm3/mol (Wiberg, 2001; Zekker et al., 2011).

However there is a lack of data regarding the molar volume of C-S-H, which is theoretically a function of

the Ca/Si ratio, x, and the H2O/Si ratio, z. According to (Jennings, 2004), the molar volume of C1.7SH1.4

is approximately 64.5 cm3/mol, that of C1.7SH2.1 is 78.8 cm3/mol and that of C1.7SH4 is 113.6 cm3/mol.

On the other hand, the molar volume of amorpheous silica is approximately 29 cm3/mol (Lothenbach et al.,

2008). In this paper, we choose the values provided by (Thiéry et al., 2011; Morandeau et al., 2012), i.e.,

VC1.67SH2.6 = 81.3 cm3/mol, VC0.83SH1.83 = 54.8 cm3/mol, VSH2 = 43 cm3/mol.

In absence of knowledge, assuming volume and H2O/Si ratio of three end members, linear functions for

VC-S-H(x) are used as follows:

VC-S-H(x) =















x− xTob

xJen − xTob
V Jen

C-S-H + (1 − x− xTob

xJen − xTob
)V Tob

C-S-H ,x ≥ xTob

x

xTob
V Tob

C-S-H + (1 − x

xTob
)VSHt

,x ≤ xTob

(4.2)

where, xJen = 1.667 and xTob = 0.8333 represents the Ca/Si of Jennite and Tobermorite respectively.

V Jen
C-S-H = 81.3 cm3/mol and V Tob

C-S-H = 54.8 cm3/mol are the molar volume of Jennite and Tobermorite.

Similarly, z(x) can be expressed as follows:

z(x) =















x− xTob

xJen − xTob
zJen + (1 − x− xTob

xJen − xTob
)zTob ,x ≥ xTob

x

xTob
zTob + (1 − x

xTob
)t ,x ≤ xTob

(4.3)



4.3 Expansion of gypsum precipitation 43

where, zJen = 2.6 and zTob = 1.83 represent the H2O/Si of Jennite and Tobermorite respectively, and t =

2. The change of VC-S-H and H2O/Si ratio with the change of Ca/Si ratio is shown in Fig.4.1.

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

V
C

-S
-H

 (
cm

3
/m

o
l)

H
/S

 r
at

io

C/S ratio

VC-S-H
H/S ratio

Figure 4.1: VC-S-H and H2O/Si ratio z vs. Ca/Si ratio x.

4.3 Expansion of gypsum precipitation

Lots of observations (Monteny et al., 2000; Ehrich et al., 1999) found that biodeterioration forms gypsum

with an increase in volume that results in significant expansion of concrete (as shown in Fig.4.2a). The

molar volume of gypsum is 75 cm3/mol, which is more than 2 times of that of portlandite. The volume of

the dissolution products of 1 mole Jennite (i.e., 1.67 mole CS̄H2 and 1 mole SH2) is about 168 cm3, while

the molar volume of Jennite is 81.3 cm3. Therefore, unlike H2S attack, H2SO4 attack leads to volume

expansion.

Furthermore, the gypsum forming during H2SO4 attack process is a kind of softy gel which provides no

structural strength (Vincke et al., 2000). Normally, it is a white-powder like deposition saturated with water

(having the consistency of “cottage cheese”) as shown in Fig.4.2b and loosely connected with uncorroded

concrete core (Israel et al., 1997). The porosity of the gypsum gel is about 0.85 - 0.92 (Jahani et al., 2005).

Although the formation of gypsum as a result of sulfuric acid attack of concrete has been reported

frequently, there is no agreement on its mechanism.

Since gypsum layer loosely connects with uncorroded concrete core and very few sulfur was detected

beyond this zone, (Beddoe and Dorner, 2005; Cohen and Mather, 1991) claimed that gypsum forms via

a through-solution mechanism. In this way, Ca2+ is depleted by an ion exchange reaction with H+, and
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(a) (b)

Figure 4.2: (a) OPC Mortar after 350 Days of biogenic sulfuric acid corrosion in simulation chamber.
Samples on left side is reference sample,whereas on right side sample exposed to corrosion condition.
(Ehrich et al., 1999); (b) The appearance of concrete coupons exposed to the sewer atmosphere for 1 year.
(Okabe et al., 2007)

thereafter diffuses towards the acid solution. By a reaction with sulfate anion from the acid solution, the

deposition of gypsum forms the corroding layer (illustrated by Fig.4.3a). Thus, the expansion and damage

process of pore structure can be dismissed.

On the other hand, (Lawrence, 1990) had found that substantial deposits of gypsum forms in concrete

and cause expansion. Similarly, (Gollop and Taylor, 1995) reported cracking and expansion in the gypsum

layer, and the spontaneous spalling of gypsum layer was observed by (Torii and Kawamura, 1994). There-

fore, sulfuric acid penetrates into mortar or concrete and reacts with calcium hydroxide of cement hydrates

to produce gypsum. The volume of solid substances increases largely, which causes expansion of reaction

products resulting in the damage of pore structure.

(a) (b)

Figure 4.3: Schematics of the microstructure of cementitous materials with uncompressed gypsum inclusion:
(a) Through-solution mechanism (Beddoe and Dorner, 2005); (b) Deposition in pores mechanism (Kawai
et al., 2005)

Moreover, some investigations mentioned the effect of w/c ratios of cement paste on the resistance to
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H2SO4 attack. It is well known that, a low w/c brings low porosity which normally leads to more durability.

However, researches revealed that H2SO4 solution showed greater degradation for low w/c ratio than for

high w/c ratio samples (Fattuhi and Hughes, 1988; Hughes and Guest, 1978; Kawai et al., 2005).

The possible reason is that samples with a high water cement ratio has larger and more pores than the

samples with a low water cement ratio. These pores play the role of a capacity to absorb expansion caused

by the production of gypsum. Hence samples with a high w/c ratio has a higher capacity to absorb the

expansion gypsum than samples with a low water cement ratio. Moreover, lower w/c ratio samples contain

more calcium hydroxide than that with high w/c samples. That is to say more gypsum is precipitated in

pores with low w/c samples. This mechanism is schematically illustrated in Fig.4.3.

Therefore, in this paper we consider that the pores will be filled with gypsum during the early time

of H2SO4 attack. Since gypsum gel is compressible (Azam, 2007), it is assumed that gypsum will be

compressed after a complete filling of pores. Under this condition, the sample can be treated as cementitious

pore structure with gypsum inclusion. The gypsum accumulation leads to pressure rising until the inner

pressure exceeds the ultimate bearing capacity of the materials. If so, the pore structure will be damaged.

The zone, where the pore structure is damaged by inner pressure, should be treated as uncompressed

gypsum with unreacted solid compounds inclusion (such as silica gel, remaining cement hydrates, etc.).

Our model accounts for the microstructure evolution by adjusting the porosity using different methods

for different conditions. The schematic figures of three conditions are shown in Fig.4.4,Fig.4.5 and Fig.4.8.

4.4 Porosity change during H2SO4 attack

4.4.1 Porosity of cementitous materials with uncompressed gypsum inclusion

The initial porosity of the sample materials is noted as φ0, and the porosity of uncompressed gypsum

is φ0
CS̄H2

. Resulting from the dissolution of the portlandite and C-S-H gel, the porosity of cementitious

materials will increase to φ0
C as follows:

φ0
C = φ0 − VCH(nCH − n0

CH) − VC-S-HnSi + V 0
C-S-Hn

0
Si (4.4)

If V s
CS̄H2

= 75 cm3/mol is the molar volume of the solid phase of gypsum, the molar volume of un-

compressed gypsum ,V 0
CS̄H2

, is V s
CS̄H2

/(1 − φ0
CS̄H2

). Before the saturation degree of gypsum has reached 1,

neither gypsum nor the pore structure are subjected to pressure. Therefore, during this phase VCS̄H2 and

φC is equal to V 0
CS̄H2

and φ0
C respectively. The porosity of the sample is therefore given by Eq.(4.5).

φ = φ0
C − V s

CS̄H2
(nCS̄H2 − n0

CS̄H2
) (4.5)
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Figure 4.4: Schematics of the microstructure of cementitous materials with uncompressed gypsum inclusion

4.4.2 Porosity of cementitous materials with compressed gypsum inclusion

After gypsum has filled the pore volume, the gypsum gel starts to exert pressure on the pore wall.

Subjected to the pressure p, the gypsum will be compressed while the pore volume will be expanded.

Figure 4.5: Schematics of the microstructure of cementitous materials with compressed gypsum inclusion

As gypsum precipitates in the pores, the saturation degree of gypsum can be written as:

SCS̄H2 =
nCS̄H2VCS̄H2

φC
(4.6)

where, VCS̄H2 and φC are the molar volume of gypsum gel and the porosity of cementitious material

respectively. The inner pressure is 0 until the saturation degree of gypsum reaches 1 (see Figure.4.6 ).

In the condition of gypsum saturated, the porosity of cementitious material and gypsum can be described

as
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Figure 4.6: Schematics of the relationship between the saturation degree of gypsum and inner pressure.

φC = φ0
C + ϕC (4.7a)

φCS̄H2 = φ0
CS̄H2 + ϕCS̄H2 (4.7b)

where, ϕC and ϕCS̄H2 represent the porosity changes of cementitious materials and gypsum caused by

pressure. It is assumed that the behaviour of the porous material is elastic linear and brittle as shown in

Fig.4.7. The relationship between pressure and porosity change is:

ϕC = φ0
C

p

KC
(4.8a)

ϕCS̄H2 = −φ0
CS̄H2

p

KCS̄H2

(4.8b)

where, KC and KCS̄H2 are the compression coefficients of cementitious material and gypsum respectively.

The elastic modulus of mortar, which is approximately 10 GPa, is employed as KC in the model. Regarding

the compression property of gypsum, few data can be found. However, the similar gypsum was found in

soil (Azam, 2007). Therefore, the compression coefficient of soil, which is approximately 5 MPa, is applied

as a first approximation of KCS̄H2.

Since a change of molar volume of gypsum gel is induced by the decreasing of the pore volume of

gypsum, according to Eq.(4.8b) it can be derived that:

VCS̄H2 − V 0
CS̄H2

V 0
CS̄H2

=
ϕCS̄H2

φ0
CS̄H2

= − p

KCS̄H2

(4.9)
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Figure 4.7: Elastic-Brittle behaviour of cementitious materials

Thus, the molar volume of gypsum gel under pressure p is given by:

VCS̄H2 = V 0
CS̄H2

(1 − p

KCS̄H2

) (4.10)

Note that the saturation degree of gypsum, SCS̄H2, is equal to 1 during this stage. Substituting Eq.(4.10)

into Eq.(4.6), pressure p can be obtained as:

p = KCS̄H2(1 − φC

nCS̄H2φ
0
CS̄H2

) (4.11)

Substituting Eq.(4.8a) into Eq.(4.11), the pressure can be further calculated by:

p =
(V 0

CS̄H2
nCS̄H2 − φ0

C)KCS̄H2KC

KCS̄H2φ
0
C + V 0

CS̄H2
nCS̄H2KC

(4.12)

Consequently, the porosity of gypsum and cementitious materials can be derived from the assembly of

Eq.(4.12), Eq.(4.4), Eq.(4.8) and Eq.(4.7).

For the whole sample, the porosity is the ratio of pore volume to the total volume. For SCS̄H2 = 1, the

pore volume of the whole sample is the pore volume in gypsum gel. Thus the porosity of the sample is:

φ = φCS̄H2φC (4.13)

4.4.3 Porosity of damaged cementitous materials

Along with the accumulation of gypsum in cementitious material pores, the inner pressure could exceed

the tensile strength of the cementitious material (pcr, which is 2-5 MPa for normal concrete (CEB-FIP,

1990) and set as 3.5 MPa in this paper). In that case, the pore structure is damaged. For now, the damage
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process is simplified in Fig.4.7 with abrupt softening.

Figure 4.8: Schematics of the microstructure of damaged cementitous materials

Once the failure criterion (p > pcr) is reached, the pore structure is fully damaged and characterized by

a compression modulus equal to 0. For the damaged materials, the inner pressure will be released (p = 0)

and gypsum gel will swell freely. The microstructure of such sample can be considered as uncompressed

gypsum gel with a porosity of φ0
CS̄H2

, and remained solid particles compounds such as unreacted portlandite

and C-S-H, quartz and other non-reactive phases. The volume of remained solid particle, Vremainedsolid, can

be calculated as follows:

Vremained−solid = (1 − φ0) − VCH(n0
CH − nCH) − (V 0

C-S-Hn
0
Si − VC-S-HnSi) (4.14)

Therefore, the pore volume of the whole sample equals to pore volume of the gypsum fraction of sample

and the porosity can be expressed as follows:

φ = (1 − Vremained−solid)φ0
CS̄H2 (4.15)

4.5 Examples of the evolution of porosity and solid volume

To illustrate the evolution of the porosity and solid volume, the H2S attack and H2SO4 attack are

simulated in a REV similar to the case in Section 3.5.

For H2S attack, solid volume assembling for calcium sulfide, CH and C-S-H is profiled in Fig.4.9. The

volume occupied by portlandite decreases with the fast dissolution of portlandite. On the other hand, the

space occupied by calcium sulfide, which starts to precipitate, increases. Since the molar volume of calcium

sulfide is slightly less than that of portlandite, porosity increases from 0.33 to 0.36 when portlandite is

completely dissolved. Compared to portlandite, the dissolution product of C-S-H (i.e., amorphous silica)
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occupies some space rather than decomposing in pore solution. Therefore, during the decrease of Ca/Si

ratio of C-S-H, porosity increases very little. However, after ρH2S exceeds 0.0025 mol/L, a fast rising of

porosity results from the dissolution of calcium sulfide. When calcium sulfide is fully dissolved, the only

solid phase occupying space is amorphous silica and porosity reaches 0.64.
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Figure 4.9: Evolution of the solid volume and porosity vs. H2S concentration in REV of cement paste

For H2SO4 attack, Fig.4.10 profiles the evolution of porosity and solid volume assembling versus H2SO4

concentration. Since the molar volume of gypsum is much bigger than that of portlandite, porosity decreases

since the very initial time of gypsum precipitation. Very soon, porosity starts to increase because the pore

structure damage by the inner pressure. The evolution of inner pressure is shown in Fig. 4.11. During

the precipitation of gypsum, the inner pressure increases very fast. Once the inner pressure exceeds the

strength of extension of sample, the pore structure fails. Consequently, the inner pressure is released and

porosity starts to rise.

After C-S-H is fully decalcified, 95% of initial volume of REV is occupied by gypsum and amorphous

silica, while porosity increases to 0.62. Hence, the total volume of corrosion products is 2.5 times larger

of the volume of initial sample. In the experiment conducted by (Okabe et al., 2007), a mortar sample

with thickness of 8 mm was exposed to the sewer atmosphere for 1 year. According to the measurement of

mortar surface, about 4 mm of mortar was corroded and the thickness of gypsum layer is 10 mm (as shown

in Fig.4.12). Thus, the simulation result agrees with experiment observation.



4.5 Examples of the evolution of porosity and solid volume 51

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1e-32 1e-30 1e-28 1e-26 1e-24 1e-22 1e-20
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

S
o

li
d

 v
o

lu
m

e 
an

d
 p

o
ro

si
ty

C
a/

S
i

H2SO4 concentration (mol/L)

Gypsum
CSH

Portlandite
Ca/Si ratio

porosity

Figure 4.10: Evolution of the solid volume and porosity vs. H2SO4 concentration in REV of cement paste
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Figure 4.12: Concrete coupons exposed to the sewer atmosphere [H2S, 30 ppm] for 42 days (A), 102 days
(B), and 1 year (C and D), showing the progression of concrete corrosion. (Okabe et al., 2007)
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4.6 Conclusion

This chapter introduces the porosity evolution induced by the precipitation and dissolution reactions

during H2S attack and H2SO4 attack. The molar volume of C-S-H depending on Ca/Si ratio is assumed

by a bilinear function. When reacting with H2S, the volume of sample does not change and the change in

porosity is calculated by the volume balance equation. Then the mechanism of the formation of gypsum

is discussed. Thereafter, the failure of pore structure is taken into account, and the change in porosity is

addressed by different methods for different conditions.

By simple cases of RVE without transport, the evolution of porosity and solid volume are illustrated.

Both of H2S and H2SO4 leads to the increase of porosity. During H2S attack, the smaller molar volume

and dissolution of CaS cause the reduction of solid volume which is responsible for the increase of porosity.

For H2SO4 attack, the expansion of gypsum fills pores to reduce the porosity during early time. When

the material is damaged, porous gypsum occupies most of the space and the sample expands to about 2.5

times of the initial volume.

Since no publication reports the porosity of the corrosion layer of H2S or H2SO4 attack, the simulation

results of porosity evolution can not be verified quantitatively and directly. On the other hand, the volume

of initial and corroded sample is much easier to measure. For the expansion of gypsum layer, the simulation

results are in good agreement with experimental observations.

In our study, we just applied a simplified damage model to determine the porosity change. To make a

more precise prediction, a more detailed description of the physical behaviour of gypsum precipitation may

be implemented. For example, according to Azam Azam (2007), the relationship between log of pressure

and reduction of porosity of gypsum gel is linear, and the compression index is 0.12. Furthermore, as more

and more cement hydrates dissolve, the cementitious materials is soften gradually, while in our study the

material is soften abruptly.



Chapter 5

Reactive transport modeling and

numerical procedures

5.1 Introduction

The deterioration process is not only controlled by the chemical equilibrium but also by the transport

of different species. In this paper, only diffusion of various species in saturated porous media is considered.

Furthermore, the change of porosity, which is the result of dissolution/precipitation of solid phases, leads

to the change of the diffusion rate of aqueous species. The coupling of transport and chemical equilibrium

could be approached by reactive transport modeling.

To simulate the whole process of biodeterioration of sewer pipe, two types of porous materials are

considered. One is cementitious materials which initially contains portlandite and C-S-H gel as hydration

products and some non-reactive solid parts. The other one is biofilm which contains bacteria producing

H2SO4. The chemical reactions and bio-chemical reactions are considered in cementitious materials part

and biofilm part separately. Yet the various species diffuse not only in the cement part and biofilm but

also across the interface between the two materials.

This work is implemented within the modeling platform, Bil 1, based on the finite volume methods.

Comparing with other reactive transport codes (Xu et al., 2008; Steefel, 2001; Lichtner, 2001), Bil can

solve the couplings between the chemical reactions and the transport equations in one step.

In this chapter, the explanation of the field equations governing the coupling of transport and reactions

is followed by the introduction of electro-diffusion equation of aqueous species. Then, the numerical tool Bil

is introduced briefly. Numerical procedures and the coupling of transport equations and reaction equations

1. Bil is developed by Patrick Dangla. The source code can be downloaded at http://perso.lcpc.fr/dangla.patrick/bil/
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are presented. By a simple biodeterioration example (a hydrated cement paste immersed in mixed culture

of SOB which produces H2SO4 at a constant rate), the coupling of biofilm and cementitious materials is

illustrated.

5.2 Field equations

5.2.1 Mass balance equation of element

The coupling of the transport and the chemical reactions is treated with the help of a set of mass balance

equations. In this paper, the mass balance equations are applied to atoms such as sulfur (S), calcium (Ca),

silicon (Si), potassium (K) and chlorine (Cl). The amount of each element A (A = S, Ca, Si, K, Cl) keeps

balance in the system as follows:

∂nA

∂t
= −div wA (5.1)

where nA represents the total molar content of element A per unit volume of porous medium (mol/L).

There are two contributions to nA associated to the liquid and solid (or gel) phases: nA = φρL
A + nS

A,

where ρL
A is the concentration of element A in pore solution (mol/L) and nS

A is the amount of element A in

solid phase per litre of porous medium (mol/L). The concentration of each element can be found in Table

5.1, where nC-S-H represents the amount of element Si in all types of C-S-H gel with different Ca/Si ratio.

Obviously, the total molar flow of A, wA (mol/m2·s), can be decomposed in the same manner as nA. The

transport of species will be given in the following sections.

Table 5.1: Concentration of each element

Element In the liquid phase(ρL

A) In the solid phase(nS

A)

S

H2SO4 attack
ρH2SO4 + ρHSO+

4
+ ρSO2+

4

+ρCaHSO+
4

+ ρCaSO0
4

nCS̄H2

H2S attack
ρH2S + ρHS− + ρS2−

+ρCaHS+ + ρCaS0
nCaS

Ca

H2SO4 attack
ρCa2+ + ρCaHSO+

4
+ ρCaOH+

+ρCaSO0
4

+ ρCaH3SiO+
4

+ ρCaH2SiO4

nCH + nCS̄H2 + xnC-S-H

H2S attack
ρCa2+ + ρCaHS+ + ρCaOH+

+ρCaS0 + ρCaH3SiO+
4

+ ρCaH2SiO4

nCH + nCaS + xnC-S-H

Si H2SO4/H2S attack
ρH2SiO2−

4
+ ρH3SiO−

4
+ ρH4SiO0

4

+ρCaH3SiO+
4

+ ρCaH2SiO4 + ρSiO0
2

nC-S-H
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5.2.2 Balance equation of charge

Each molecule, i, takes a fixed valence number, zi, hence carrying a constant charge. Beside mass

balance of elements, for each chemical reaction the charge keeps balanced (there is no source of charge in

the chemical reactions). Such hypothesis of null current is commonly used in reactive transport models to

take into account the ionic interactions (Xu et al., 2008; Steefel, 2001; Lichtner, 2001). As a consequence,

the charge is governed by a global balance equation as follows:

div i = 0 (5.2)

where i stands for the ionic current written as:

i =
∑

i

ziwi (5.3)

where the summation applies on the set of electrolyte ions. The ionic flow wi (mol/m2·s), is given by a

Nernst-Planck equation (Eq.(5.5)). Therefore an electric potential is generated in the medium providing

electrostatic force on each ion so as to form an electroneutral pore solution. It follows that electroneutrality

must be held in the medium:

∑

i

ziρi = 0 (5.4)

Eqs.(5.1-5.5) are the set of the field equations governing the coupling of transport and chemistry.

5.3 Transport of aqueous species

Concerning the transport equations, we only consider the diffusion of aqueous species in saturated

porous materials. The electro-diffusion (Nernst-Plank equation) as Eq.(5.5) is employed.

wi = −Di

(

∇ρi + ρi

Fzi

RT
∇ψ

)

(5.5)

where, Di represents the effective diffusion coefficient (m2·s−1) of species i. F is the Faraday’s constant

(96485 C·mol−1). R is the gas constant (8.31 J·mol−1K−1). T is the absolute temperature in K. zi and ρi

stand for the ionic valence and the concentration species i. The first term in Eq.(5.5) refers to the diffusion

effect due to the concentration gradient (in agreement with the Fick’s law), and the second part accounts

for the electrostatic effect.

For a saturated cement paste, Di of each species i depends on the porosity. According to an empir-
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ical relationship between the effective diffusion coefficient and the porosity of sound materials (Eq.(5.6))

(Mainguy et al., 2000), when φ < 0.92, Di can be calculated as follows:

Di = D0
i 2.9 × 10−4e9.95φ (5.6)

The diffusion coefficient in pure water, D0
i could be obtained from experimental measurement. When

experimental data is not available, D0
i is obtained from Stokes- Einstein equation (Eq.5.7) as follow:

D0
i =

kBT

6πµLri

(5.7)

where kB=1.3806488 10−23 J/K is Boltzmann’s constant. µL is liquid water viscosity (Pa·s). And ri is the

radius of the aqueous species i, which is taken from (Lide, 2004; Conway and Conway, 1981). The collected

diffusion coefficients of different aqueous species at T=298 K are listed in Table 5.2. Note that the diffusion

coefficients of Na+ and K+ are quite similar, it is thus acceptable to assimilate these two species.

Table 5.2: Diffusion coefficients of different aqueous species at T=298 K

Species Value (dm2/s) Reference

D0
OH− 5.273× 10−7 (Weast et al., 1988)

D0
H+ 9.311×10−7 (Weast et al., 1988)

D0
H2S(aq)

2.0×10−7 (Nesic et al., 2008)

D0
HS− 1.731×10−7 (Lide, 2004), r = 1.91×10−10 m

D0
S2− 9.55×10−8 r=1.89×10−10 m

D0
H2SO4

1.545×10−7 (Lide, 2004)
D0

HSO−

4

1.385×10−7 (Weast et al., 1988),r = 2.21×10−10 m

D0
SO2−

4

5.32×10−8 r=2.25×10−10 m

D0
Ca2+ 7.92×10−8 (Thiery, 2006)

D0
CaHSO+

4

1.07×10−7 r=2.×10−10 m

D0
CaHS+ 1.07×10−7 r=2.×10−10 m

D0
CaOH+ 1.07×10−7 r=2.×10−10 m

D0
CaSO4(aq)

1.43×10−7 r=1.5×10−10 m

D0
CaS(aq)

1.43×10−7 r=1.5×110−10 m

D0
H4SiO0

4
1.07×10−7 r=2.×10−10 m

D0
H3SiO−

4

1.07×10−7 r=2.×110−10 m

D0
H2SiO2−

4

1.07×10−7 r=2.×10−10 m

D0
CaH2SiO0

4
1.07×10−7 r=2.×10−10 m

D0
CaH3SiO+

4

1.07×10−7 r=2.×10−10 m

D0
K+ 1.957×10−7 (Weast et al., 1988)

D0
Cl− 2.032×10−7 (Weast et al., 1988)

D0
Na+ 1.334×10−7 (Weast et al., 1988)
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5.4 Introduction of numerical procedures

5.4.1 Introduction of finite volume method and Bil

To solve the coupling of chemical equations and transport equations, a modeling platform, Bil, based

on finite volume method is employed. The finite volume method is a discretization method which is well

suited for the numerical simulation of various types of conservation laws. Similar to the finite difference

method or finite element method, values are calculated at the nodes of a mesh. "Finite volume" refers to

the small volume surrounding each node point of a mesh. In the finite volume method, volume integrals

in a partial differential equation that contains a divergence term are converted to surface integrals, using

the divergence theorem. These terms are then evaluated as fluxes at the surfaces of each finite volume.

This method is widely used in computational fluid dynamics packages. In Appendix B, a more precisely

introduction of the finite volume method is conducted through a simple example.

The modeling platform Bil, which is based on finite volume method, is dedicated to couple prob-

lems involved in environmental engineering, geomechanical engineering, material sciences, etc.(it can be

downloaded on http://perso.lcpc.fr/dangla.patrick/bil). The structure of the code facilitates the

development of new models. Bil is written in C language and runs on Linux-based OS. This platform is

developed for 1D, 2D and 3D problems. It doesn’t include mesh generator for 2D and 3D problems or

post-processing treatment of outputs. However, it can read mesh files created by open-source software like

Gmsh (Geuzaine and Remacle, 2009). The output files created by Bil can easily be used by some plotting

programs such as Gnuplot (Racine, 2006). Compared to other numerical simulation tools used for the

(biogenic) sulfuric acid attack (Jahani et al., 2001; Chalupeckỳ et al., 2012; De Windt and Devillers, 2010),

Bil has two major advantages: first it solves the coupling of the chemical reactions and the transport equa-

tions in one step; second it uses different diffusion coefficients for each aqueous species. This is essential

since the change in composition of cement-based material is generally diffusion controlled under saturated

conditions. In addition, it handles the influence of the porosity changing on diffusion.

5.4.2 Numerical procedures of dissolution and precipitation of solid phases

As described in Chapter 3, dissolution and precipitation of any solid phases are controlled by a ther-

modynamical equilibrium. Out of the stability domain, solid component would dissolve completely. Thus

for the stable solid component, i, the ion activity products (Qi) is equal to the equilibrium constant (Ki).

While at Qi < Ki, the content of solid phase, ni (mol/L), is equal to 0. Thus Eq.5.8 can be obtained.

ni · log(
Qi

Ki

) = 0 (5.8)

http://perso.lcpc.fr/dangla.patrick/bil
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Obviously, ni is no less than 0, while log( Qi

Ki
) ≤ 0 at stable state. Then, a variable, ζi, can be introduced

to determine if a solid component i exists is dissolved as follows:

ζi =
ni

n0
i

+ log(
Qi

Ki

) (5.9)

where, n0
i is the initial content of solid component i (mol/L). At stable state, Qi is no bigger than Ki.

Thus, ζi > 0 means that i exists stable and ζi is noted as ζ+
i = ni

n0
i

. ζi<0 represents the dissolved i and ζi

is noted as ζ−

i = log( Qi

Ki
).

In this section, we take H2SO4 attack for instance to describe the numerical procedures of dissolu-

tion/precipitation progress. For the equilibrium between CH and CS̄H2, according to the equilibrium

equation (Eq.3.13), Table 5.3 can be obtained easily.

Table 5.3: The key parameters of CH-CS̄H2 equilibrium at different stable states

Stable phase
ρH2SO4

ρCH
H2SO4

QCH

KCH

QCS̄H2

KCS̄H2

Only CH
< 1 = 1 < 1

nCH ≥ 0

Only CS̄H2
> 1 < 1 = 1

nCS̄H2 ≥ 0

CH & CS̄H2
= 1 = 1 = 1

nCH ≥ 0, nCS̄H2 ≥ 0

Thus, it is possible to illustrate the dissolution of both CH and CS̄H2 with one variable ζCa, defined as

follows:

ζCa =
nCH + nCS̄H2

n0
Ca

+ log[max(
QCH

KCH
,
QCS̄H2

KCS̄H2

)] (5.10)

where n0
Ca is the initial CH content. Therefore, when ρH2SO4 > ρCH

H2SO4
, CH is not stable. ζCa is in the

form as:

ζCa =
nCH + nCS̄H2

n0
Ca

+ log(
QCS̄H2

KCS̄H2

) (5.11)

For ζCa > 0, gypsum can precipitate. If ζCa < 0, gypsum is not stable either.

If ρH2SO4 ≤ ρCH
H2SO4

, CS̄H2 is not stable. We have:

ζCa =
nCH + nCS̄H2

n0
Ca

+ log(
QCH

KCH
) (5.12)

For ζCa > 0, portlandite can precipitate and for ζCa < 0, portlandite is not stable.

Let’s assume that at time t, the system of CH/CS̄H2 contains nt
CH and nt

CS̄H2
. After a time difference,
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dt, the concentration of H2SO4 changes to ρH2SO4 . Using the simple kinetic law of the dissolution of CH

given by Eq.(3.15), as indicated in Chapter 3, the change in the amount of CH is dnCH as follows:

dnCH = −nCH
dt

τCH
ln(

ρH2SO4

ρCH
H2SO4

) (5.13)

Thus, after dt the amount of CH can be expressed as follows:

nt+dt
CH = nt

CH + dnCH (5.14)

With the help of ζCa, the amount of CS̄H2 is changed to nt+dt

CS̄H2
as follows:

nt+dt

CS̄H2
= ζ+

Can
0
Ca − nt+dt

CH (5.15)

where, ζ+
Ca = max(ζCa, 0) is the positive part of variable ζCa.

For the dissolution of C-S-H we can employ a similar variable ζSi, defined as:

ζSi =
nC-S-H

n0
C-S-H

+ log

(

QSHt

QSHt(eq)

)

(5.16)

where, nC-S-H is the molar content of C-S-H in the form of CxS1Hz including SHt. n0
C-S-H is the initial

molar content of C-S-H. QSHt is the ion activity product of the dissociation reaction of SHt. QSHt(eq) is

the equilibrium ion activity product of SHt at given Ca/Si ratio. QSHt(eq) can be calculated by Eq. (5.17)

discussed in Section 3.4:

ln

(

QSHt(eq)

KSHt

)

= −
∫

QCH

KCH

0

χ(q)

q
dq (5.17)

In Eq.(5.16),
nC-S-H

n0
C-S-H

represents the molar content of Si in solid phase. When ζSi > 0, QSHt=QSHt(eq),

which means that in equilibrium with C-S-H solid QSHt is a function of only
QCH

KCH
. When ζSi < 0, there is

no C-S-H solid. In such case, QSHt can be attained by ζ−

Si and
QCH

KCH
.

5.4.3 Governing equations and primary variables

As introduced in Chapter 3, with known value of ρH2SO4/ρH2S, ρCa2+ , and ρH4SiO0
4
, the concentration of

all aqueous species (except ρK+ and ρCl− ) can be calculated from Table.3.1. Through the primary variables

(pH2S, ρH2SO4 , ζCa and ζSi), the secondary variables such as ρ0
H2S, ρCa2+ and ρH4SiO0

4
can be computed.

ρK+ and ρCl− are considered as primary variables as well.

Governing equations versus primary variables in the model are listed in Table 5.4.
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Table 5.4: Governing equations and primary variables in the model

Governing Equations Primary Variables
Sulfur (S) ρH2SO4 / Gas pressure of H2S PH2S or ρ0

H2S

Calcium (Ca) ζCa

Silicon (Si) ζSi

Potassium (K) ρ+
K

Chlorine (Cl) ρ−

Cl

Charge Electric potential ψ

Taking H2SO4 attack for instance, according to section 5.4.2 QCS̄H2 can be expressed as follows:

QCS̄H2 = 10(ζ
−

Ca
)min(zH2SO4 , 1)KCS̄H2 (5.18)

where, zH2SO4 =
ρH2SO4

ρCH
H2SO4

. Thus, ρCa2+ can be calculated by the following equation:

ρCa2+ =
QCS̄H2

ρSO2−

4

(5.19)

where, ρSO2−

4
can be easily obtained with ρH2SO4 and Eq. (3.10).

Similarly, ρH4SiO0
4

can be attained as follows:

ρH4SiO0
4

= QSHt = 10ζ
−

SiQSHt(eq) (see Eq. (5.16)) (5.20)

where QSHt(eq) is defined in Eq. (5.17).

5.5 Examples of bio-deterioration modeling

5.5.1 Coupling of transport and chemical reactions

For a better understanding of the coupling of bio-chemistry process and chemistry process, it is necessary

to demonstrate the chemistry process firstly. A simple H2SO4 attack example is employed to illustrate the

coupling of transport and chemical reactions. A cement paste cube with side length of 1 cm is considered

and divided into 100 nodes. The cement paste contains initially 5.2 mol/L of portlandite and 3.9 mol/ of

jennite (i.e., C1.67SH2.6), with porosity 33%. The material is saturated with water and immersed in H2SO4

solution. To simulate a severe acid environment, the concentration of unionized molecules of H2SO4,

ρ0
H2SO4

, at the sample surface is constant at 1.0×10−8 mol/L (i.e., the concentration of total sulfate ions is

8.0×10−2 mol/L is and the approximate pH keeps at 1). Due to the high concentration of hydrogen ion, the

characteristic time τCH and τCS̄H2 is 2000 s. For the sake of simplicity, no alkali is added in the example.

Given the very small solubility of CS̄H2 and SHt in low pH condition, the leaching of calcium and silicon
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should be prevented at the sample surface. Thus, no diffusion is allowed at boundary. Considering that

the surface of sample is in contact with H2SO4 solution, the schematic of sample is summarized in Table

5.5 as well as the initial and boundary conditions. Due to symmetry, only half of the sample is discretized.

Table 5.5: Boundary and initial conditions of the H2SO4 attack example

Balance Boundary conditions Initial conditions
Equation Surface Cement paste

Sulfur (S)
diffusion allowed

ρH2SO4 = 10−31.5 mol/L
ρH2SO4 = 10−8 mol/L

Calcium (Ca) no diffusion ζCa=1
Silicon (Si) no diffusion ζSi=1

Sodium/Potassium no diffusion ρ+
K=0

Chlorine (Cl) no diffusion ρ−

Cl=0
Charge ψ=0 ψ=0

The distribution of H2SO4 concentration and the evolution of pH in the material from 0 to 60 days

are profiled in Fig.5.1 and Fig.5.2 Note that the direction of H2SO4 attack is from right to left. With

H2SO4 penetrating into sample, pH of the materials decreases form 12.4, which is the value of pH in the

uncorroded zone, to 1 gradually.
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Figure 5.1: H2SO4 concentration profiles from 0 day to 60 days.

While reacting with H2SO4, solid compositions of the sample starts to change. To illustrate the evolution

of solid compositions, some definitions should be made to indicate the fronts and zones. Taking the solid

volume profiles after 15 days immersion for instance (see Fig. 5.3):

Portlandite dissolution front, indicated by Pf: The place where CH starts to dissolve.

Gypsum precipitation front, indicated by Gf: The place where CS̄H2 starts to precipitate.
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Figure 5.2: pH value profiles from 0 day to 60 days.

C-S-H decalcification front, indicated by Cf : The place where the Ca/Si ratio of C-S-H starts to

decrease.

SHt precipitation front, indicated by Sf: The place where the decalcification process of C-S-H is

complete (i.e., only SHt remains).

Damage front, indicated by dash line: The place where the material is fully damaged.

With the help of these fronts, several zones can be distinguished:

Uncorroded zone: The zone between the core of the sample and portlandite dissolution front, where

the material remains intact.

C-S-H decalcification zone: The zone between C-S-H decalcification front and SHt precipitation

front, where the Ca/Si ratio decreases gradually.

Gypsum layer: The zone between gypsum precipitation front and the material surface in contact with

H2SO4, where gypsum accumulates. The volume of this layer is larger than the volume of uncorroded

material.

Damaged zone: The zone between damage front and the initial surface of material, where pore

structure is damaged and the material has no strength. In this study, we take the thickness of this layer as

the corrosion depth which is commonly measured to evaluate the deterioration in experiments.

Fully degraded zone: The zone between SHt precipitation front and the material surface in contact

with H2SO4, where only gypsum, amorphous silica gel and unreactable solid phased exists.

With the change in the solid compositions, the porosity changes as well. From Fig.5.3, the porosity

starts to increase at the same point of the portlandite dissolution front. In the damaged zone, porosity
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Figure 5.3: Solid profiles after 15 days immersion

reaches to 0.556. Since the characteristic time τCS̄H2 is very short and the pores fail abruptly, the process

of porosity change caused by inner pressure is not clear in Fig. 5.3. Thus, the evolution of porosity and

solid compositions at the position of 2 mm away from the right surface versus time are presented in Fig.5.4.
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Figure 5.4: Evolution of porosity and solid compositions of material versus immersion time.

From the CH dissolution front to the damage front, the porosity increases from 0.33 to 0.47 due to CH

dissolution as well as C-S-H decalcification. Along with gypsum forming, pores are filled up. Given that

gypsum gel is compressed by the inner pressure, the porosity decreases then sharply to 0.43. The inner
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pressure exceeds the strength of the material very fast. Thereafter, the pore structure is damaged and the

porosity turns back to rise until C-S-H is fully decalcificated indicated by Sf. In the fully degraded zone,

porosity reaches to 0.556.

As introduced before, the equilibrium between CH and CS̄H2 is controlled by the concentration of

H2SO4 and the content of CH and CS̄H2 can be addressed by ζCa. The relationship between the content

of CH and CS̄H2 and log(zH2SO4) (zH2SO4 =
ρH2SO4

ρCH
H2SO4

) is shown in Fig.5.5, where the CH dissolution front

doesn’t appear until zH2SO4 > 1. Thus, the region where log(zH2SO4) = 0 is the uncorroded zone. Resulting

from the CH dissolution, ζCa decreases from 1 at first. While at the CS̄H2 precipitation front, ζCa starts

to rise sharply. Along with the accumulation of CS̄H2, ζCa increases in gypsum layer.
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Figure 5.5: CH and CS̄H2 content, ζCa and log(zH2SO4) after 15 days immersion

It should be noticed that CS̄H2 starts to precipitate after CH dissolution front and lots of CS̄H2

accumulates at surface. Such phenomenon is related to the difference between the diffusion of different

aqueous species. As shown in Fig.5.6, SO2−

4 is consumed at CS̄H2 precipitation front, while not enough

SO2−

4 transports to the CH dissolution front to form CS̄H2. Thus, Ca2+ transports from CH dissolution

front to CS̄H2 precipitation front and meet the SO2−

4 which diffuses from acid solution into material (see

Fig5.7). At the initial time (1 day for example), the flux of sulfur at surface is fast due to high concentration

gradient. Therefore, more CS̄H2 accumulates at surface than that of inner part.

For the dissolution of C-S-H, Ca/Si ratio and molar volume of C-S-H are governed by the saturation

degree of dissolved CH, qCH. After 15 days immersion, log(qCH), Ca/Si ratio and molar volume of C-S-H

are plotted in Fig.5.8 and Fig.5.9. From Fig.5.8, the C-S-H dissolution front can be distinguished clearly

as the point where log(qCH) becomes negative. In the C-S-H decalcification zone, the Ca/Si ratio drops
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4 and Ca2+ and ζCa after 15 days immersion
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from 1.67 to 0, and the molar volume VC-S-H decreases from 0.081 L/mol to 0.043 L/mol.
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5.5.2 Coupling of bio-chemical process and chemical process

To illustrate the coupling of bio-chemistry process and chemistry process, we simply consider a cement

paste cube immersed in 500 mL of the solution containing idealized sulfur-oxidizing bacteria (SOB). The

cement paste sample is the same as in the previous section. And the idealized SOB solution is considered

as in contact with cement paste cube. Assuming an enough source of sulfur, the idealized SOB solution

produces H2SO4 at a constant volumetric rate. Initially, H2SO4, HSO−

4 and SO2−

4 are the only aqueous

species in SOB solution, where the initial concentration of H2SO4
0 is 1×10−25.5 mol/L (i.e., the approx-

imate pH is 7). Since the income of sulfur is neglected, there is no mass transfer at the boundary of the

solution, while aqueous species can diffuse across the interface between cement paste and SOB solution.

The schematic of the sample and the initial/boundary conditions are summarized in Table 5.6.

Table 5.6: Boundary and initial conditions of the biogenic H2SO4 attack example

Balance Boundary conditions Initial conditions
Equation Surface SOB solution Cement paste

Sulfur (S) no flow
ρH2SO4 = ρH2SO4 =

10−20 mol/L 10−31.5 mol/L
Calcium (Ca) no flow ζCa=0 ζCa=1
Silicon (Si) no flow ζSi=0 ζSi=1

Sodium/Potassium no flow ρ+
K=0 ρ+

K=0

Chlorine (Cl) no flow ρ−

Cl=0 ρ−

Cl=0
Charge no current ψ=0 ψ=0
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Figure 5.9: VC-S-H of C-S-H and log(qCH) after 15 days immersion

To provide a severe environment, the production rate H2SO4, aH2SO4 , keeps at 8×10−8 mol/L·s re-

gardless the change of pH in SOB solution. The evolution of pH and H2SO4 concentration in pure SOB

solution, where no cement paste is immersed, are plotted in Fig 5.10. Due to the high Ksp of H2SO4, pH

drops sharply during the early time. Since the production rate of H2SO4 keeps constant, it takes several

days to reduce pH below 1.
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4

When in contact with cement paste, H2SO4 in the SOB solution penetrates into material rather than

accumulates in solution. Thus, H2SO4 concentration in the SOB solution, where cement paste is immersed

in, does not increases until 1 day (see Fig.5.11). Consequently, pH increases during initial time caused by
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the alkalinity of cement paste. Longer time is taken to reduce pH to 1 compared to that of pure SOB

solution. At the interface between cement paste and SOB solution, the aqueous species related with sulfur

diffuses from SOB solution to cement paste as shown in Fig.5.12.
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Figure 5.11: pH and H2SO4 concentration in SOB solution containing cement paste

With the H2SO4 diffusion, the cement paste is acidified gradually as shown in Fig.5.13. Comparing

with that of H2SO4 solution attack (see Fig.5.2), the pH reduction rate of SOB solution attack is much

slower due to the lower H2SO4 concentration at the material surface during early time.

Fig.5.14 indicates the solid volume and composition in the cement paste after 15 days of immersion.

Almost the same fronts and zones can be observed in SOB solution attack as those in H2SO4 attack (see

Fig.5.3). However, a gypsum dissolution front (noted as Gdf) appears close to the cement surface. To make

sure neither CH nor C-S-H exist in SOB solution part, the initial ζCa in SOB solution is set to < 0. Thus,

a few of gypsum leaches out. The flux of aqueous species related with calcium from cement paste to SOB

solution can be found in Fig.5.12.
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5.6 Conclusion

In this chapter, the field equations which govern the mass and charge balance are introduced. The

transport of aqueous species are considered as diffusion in saturated porous media. The different diffusion

coefficients are employed for various species. Moreover, the effect of porosity on the diffusion coefficients

are taken into account.

Afterwards, the numerical procedures for the couplings between transport and reaction equations have

been introduced. Brief introductions of the principle of the finite volume method and the modeling platform,

Bil are given. The method to calculate the dissolution and precipitation of solid components, as well as

the kinetics effects, have been presented.

For a better understanding of our modeling, two simulation examples of cement paste in contact with

constant H2SO4 solution and idealized SOB solution are illustrated respectively. The evolution of pH in

cement paste and SOB solution is predicted. Suffering from H2SO4 attack, regardless pure H2SO4 solution

or biogenic H2SO4, similar solid dissolution/precipitation fronts are observed in cement paste via the profile

of solid compositions. The porosity evolution caused by the special properties of gypsum precipitation is

predicted. Furthermore, the damage position is identified by the method introduced in Chapter 4. With

the help of these fronts, several zones (e.g., uncorroded zone, C-S-H decalcification zone, gypsum layer,

damaged zone) can be distinguished.

Besides simple conditions, such as constant H2SO4 solution and idealized SOB solution, our model-

ing can work with complex boundary condition and real biofilms. In the following chapters, laboratory
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experiments with various conditions are simulated and long time predictions are conducted.
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Chapter 6

Simulation in the case of constant

H2SO4 solution

6.1 Introduction

In order to predict the deterioration rate of cementitious materials, some experiments have been done

to simulate the corrosion process of sewer pipe (Gutiérrez-Padilla et al., 2010; De Muynck et al., 2009;

Alexander and Fourie, 2011).

Based on laboratory tests where specimens are continuously immersed in acid solutions over a specified

period of time, it is understood that the depth of deterioration of concrete due to sulfuric acid attack is

proportional to the square root of the exposure time. But in actual structures, concrete is often exposed

to flowing water that contains an acid solution such as sewage. In other words, concrete is subjected to the

shearing force of fluid that erodes the surface areas of deteriorated concrete.

For cementitious materials in static solution environment and flowing solution environment, two calcu-

lations are carried out to simulate experimental works of Kawai, et al. (Kawai et al., 2005). The influence

of different H2SO4 concentrations of the solution on the corrosion is studied. Furthermore, in order to

understand the difference between the experimental results and simulation results, the effect of carbonated

layer and initial porosity of materials are analysed. At last, a long term prediction of H2SO4 attack is

conducted.
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6.2 High H2SO4 concentration condition (pH = 1)

In the experiment of (Kawai et al., 2005), mortar samples in size of 40×40×160 mm were made of

ordinary Portland cement (OPC) of various water/cement ratios. After cured for 28 days, the samples

were immersed in sulfuric acid of various concentrations. The sulfuric acid solution was static (noted as

Method 1) or circulated onto specimens (noted as Method 2). To keep the concentration of sulfuric acid

solution constant, sulfuric acid was added suitably to the solution. A pH meter was used to measure the

value of pH and during the experiment the concentration of sulfuric acid solution was adjusted to the initial

value of pH. In both instances, the depths of corroded zones were measured with a vernier micrometer every

seven days. The corrosion depth was defined as a distance between the initial surface and current surface.

Before every measurement, intentional removal of deteriorated zones on the surfaces was not carried out.

The zones of deteriorated concrete were analysed with XRD and ion chromatoanalyzer.

In this section, we simulate the experiments where mortar samples with W/C = 0.35 were immersed in

static and circulated H2SO4 solution whose pH is kept at 1 for 90 days.

To simulate the experiments, mortar samples with the same size as that in experiments are considered.

The samples are divided in 720 nodes. For numerical stability, the initial H2SO4 concentration in the

pore solution of sample is 1×10−31.5 mol/L, while at the right boundary the concentration of unionized

molecules of H2SO4, ρ0
H2SO4

, is set to 1×10−8 mol/L (i.e., pH = 1).

The content of sand and other composition information (such as the content of CH and C-S-H and the

initial porosity) were not given by the authors. By collecting and adjusting the data of Portland cement

hydration (Garboczi et al., 2005; Voigt and Shah, 2004; Maruyama and Igarashi, 2010), which can be

simulated by hydration models (e.g., CEMHYD3D (Bentz, 2005) and HYMOSTRUC3D (Ye et al., 2004)),

the solid compositions of samples can reasonably be assumed. For the OPC mortar with W/C = 0.35 of

28 days the cement hydrates contains initially 5.2 mol/L of portlandite and 5 mol/L of C-S-H as jennite.

The initial porosity is 30%.

From the measurement of experiments (Brouwers and VanEijk, 2003), the alkali concentrations (i.e., K+

and Na+) in the pore solution of cement paste cured for 28 days is about 0.5 mol/L. Since these two ions

have almost the same diffusion coefficient, K+ and Na+ are combined as one ion for the sake of simplicity.

For the electroneutrality, the same amount of anions which are not involved in any chemical reaction, is

introduced. Thus, an unified form as KCl is considered. Thus, 0.5 mol/L KCl is added in the simulated

pore solution, while no KCl exists in the external H2SO4 solution.
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6.2.1 Static solution environment (Method 1)

With Method 1, corrosion of specimens was visible after immersion of dozens of days. A white layer of

reaction products was observed on the surface of samples as Fig.6.1a. The XRD patterns of this degraded

layer (see Fig.6.1b) indicated that reaction products of sulfuric acid attack are mainly gypsum, portlandite

and quartz.

(a) (b)

Figure 6.1: After 90 days immersion test: (a) Observation of deterioration of sample; (b) XRD patterns of
surface area of sample. (Method 1, pH = 1) (Kawai et al., 2005)

To simulation the precipitating of the reaction products at the surface of specimen, no Ca2+ and Si4+

flow across the boundary. Boundary and initial conditions of our modeling are summarized in Table 6.1.

Table 6.1: Boundary and initial conditions of the H2SO4 attack with Method 1

Balance Boundary conditions Initial conditions
Equation Left surface Mortar

Sulfur (S)
diffusion allowed

ρH2SO4
0 = 10−31.5 mol/L

ρH2SO4
0 = 10−8 mol/L

Calcium (Ca) no diffusion ζCa = 1
Silicon (Si) no diffusion ζSi = 1

Potassium (K) diffusion allowed ρK+=0 mol/L ρK+ = 0.5 mol/L
Chlorine (Cl) diffusion allowed ρCl− =0 mol/L ρCl− = 0.5 mol/L

Charge no current ψ=0

After immersion of 90 days, the calculated penetration of H2SO4 and pH evolution are shown in Fig.6.2.

At the surface, the H2SO4
0 concentration is 1×10−8 mol/L as set in boundary conditions. The surface

pH keeps at 1 which was measured during experiments as well. As expected, H2SO4 penetrates into

sample and leads to the acidification of cementitious materials, whose pH decreases form 12.35 to 1. Due

to the low concentration and high ionization constant of H2SO4, the transition zone between the H2SO4

penetration front (where pH is less than 2), and the unneutralized zone (where pH is close to 12.4) is not

very remarkable.

The calculated profiles of the concentration and volume of solid compounds, as well as porosity profiles
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Figure 6.2: The calculated penetration of H2SO4 and pH evolution profiles from 0 days to 90 days: (a)
H2SO4 concentration; (b) pH value. (Method 1, pH = 1)

and damaged zone from 10 days to 90 days are plotted in Fig. 6.3 to Fig. 6.5. These figures present several

successive zones from the surface to the core of sample.

The corroded sample starts with a non-uniform gypsum-rich layer, which corresponds to the white

part in Fig.6.1a. At the surface, gypsum accumulates resulting from the diffusion of Ca2+ as described in

Section 5.5.1. Consequently, the volume of this layer expands more than the inner gypsum-rich zone. At

the place just below the surface, the content of gypsum decreases slightly due to deplete of Ca2+ which has

transported to the surface. In the gypsum layer, Ca/Si ratio of C-S-H is zero (Fig. 6.3b). Thus, only silica

gel and unreactive phases are contained in the gypsum layer, which is defined as the fully degraded zone in

Section 5.5.1. The porosity of this zone reaches nearly 0.6. The evolution of porosity is plotted in Fig.6.7a.

Following this layer, a region containing CS̄H2, CH and C-S-H is observed. The H2SO4 attack is taking

place in this region which represents the C-S-H decalcification zone, where Ca/Si ratio drops from 1.67

to 0, as well as the CS̄H2 precipitation front and CH dissolution front. With the change in solid phases,

porosity of this region increases from 0.3 to 0.56, and the sample starts to expands. The damage of pores

happens in this region as well. In this paper, the corrosion depth is defined as the distance between the

initial surface and the location where the pore structure is damaged following the simplified damage model

introduced in Chapter 4.

To illustrate the damage process of pore structure, the evolution of solid compositions and inner pressure

at 5 mm depth of sample are plotted in Fig.6.6. From 105 days, the porosity starts to increase due to the

dissolution of CH and C-S-H. From about 120 days, C-S-H and CH are dissolved completely, while CS̄H2

continues to form. At that time, the porosity decrease a little temporally until 120 days (see Fig.6.6a).

Indicated by Fig.6.6b, inner pressure rises sharply during this period due to the compression of gypsum.
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Figure 6.3: After 10 days of immersion: (a) Solid concentration and porosity ; (b) Solid volume and Ca/Si
ratio of C-S-H . DSimulation and DExperiment represent the degradation depth of the sample in simulation
and experiment individually. (Method 1, pH = 1)
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Figure 6.4: After 30 days of immersion: (a) Solid concentration and porosity ; (b) Solid volume and Ca/Si
ratio of C-S-H . DSimulation and DExperiment represent the degradation depth of the sample in simulation
and experiment individually. (Method 1, pH = 1)
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Figure 6.5: After 90 days of immersion: (a) Solid concentration and porosity ; (b) Solid volume and Ca/Si
ratio of C-S-H . DSimulation and DExperiment represent the degradation depth of the sample in simulation
and experiment individually. (Method 1, pH = 1)

During this period, the total volume of gypsum gel decreases while the amount increases. At 120 days,

the inner pressure drops to 0 once it reaches 3.5 MPa which is the strength of pores. The release of inner

pressure indicates the failure of pores. Meanwhile, the porosity and volume of gypsum gel increases again.
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Figure 6.6: At 5 mm depth of sample (a) Solid concentration, Ca/Si ratio of C-S-H and porosity ; (b) Solid
volume and inner pressure . (Method 1, pH = 1)

During the immersion time, the fronts of CS̄H2 precipitation, CH dissolution and the continuous decal-

cification of C-S-H, move from the surface to the core of the sample. Hence the corrosion depth increases

gradually (Fig.6.7b). In the experiments, corrosion was not visible until 10 days of immersion. Moreover,

the corrosion depth increased very slowly before 60 days. Our simulation results overestimate the corrosion

rate in the early time (see Fig.6.7b). However, at 90 days the simulation results are very close to the

experimental observation. The difference between the simulated corrosion rate and that of experimental
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measurements is discussed in detail in the next section.
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Figure 6.7: The predicted evolution of porosity and corrosion depth profiles from 0 days to 90 days: (a)
Porosity; (b) Corrosion depth. (Method 1, pH = 1)

6.2.2 Flowing solution environment (Method 2)

During the test with Method 2, the specimens were subjected to the shearing force of the solution flow.

Therefore, parts of the reaction products (e.g., CS̄H2 and silica gel) were driven out by the flow of the

solution and didn’t precipitate at the surface. Comparing with Method 1, the white layer at the sample

surface was almost invisible (see Fig.6.8a). The XRD patterns of the degraded layer (see Fig.6.8b) indicate

that compositions of the reaction products are still gypsum and quartz.

(a) (b)

Figure 6.8: After 90 days immersion test: (a) Observation of deterioration of sample; (b) XRD patterns of
surface area of sample. (Method 2, pH = 1) (Kawai et al., 2005)

However, both the values of the shear force on the sample surface and the strength of corroded layer

are not mentioned by (Kawai et al., 2005). To simulate the removing of corrosion products, we set the

saturation degree of dissolved gypsum (QCS̄H2/KCS̄H2) and that of dissolved silica gel (QSHt
/KSHt

) to a
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small value 0.01 at the boundary of sample. Thus, calcium and silicon will leach out and corrosion products

will be dissolved rather than accumulated at the surface. The rest of the conditions are the same as those

in the simulation of Method 1. Boundary and initial conditions are summarized in Table 6.2.

Table 6.2: Boundary and initial conditions of the H2SO4 attack with Method 2

Balance Boundary conditions Initial conditions
Equation Left surface Mortar

Sulfur (S)
diffusion allowed

ρH2SO4
0 = 10−31.5 mol/L

ρH2SO4
0 = 10−8 mol/L

Calcium (Ca) diffusion allowed ζCa = -2 ζCa = 1
Silicon (Si) diffusion allowed ζSi = -2 ζSi = 1

Potassium (K) diffusion allowed ρK+=0 mol/L ρK+ = 0.5 mol/L
Chlorine (Cl) diffusion allowed ρCl−=0 mol/L ρCl− = 0.5 mol/L

Charge ψ=0 ψ=0

Since reaction products are swept from the surface, the gypsum layer which could obstruct transport

is removed and more reactive surface is exposed. Hence, the penetration rate of H2SO4 and the reduction

rate of pH should increase. Our simulation results agree with such expectation (see Fig.6.9).
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Figure 6.9: The calculated penetration of H2SO4 and pH evolution profiles from 0 days to 90 days: (a)
H2SO4 concentration; (b) pH value. (Method 2, pH = 1)

From the boundary to the core of sample, successive zones different from those of Method 1 are observed

(see Fig.6.10, Fig.6.11 and Fig.6.12). A leaching effect is illustrated since there is neither gypsum nor silica

gel at the surface. Such result coincides with experimental observations. Moreover, the remaining unreacted

solid components result in a porosity of 0.88. This region is considered as the fully decomposed zone in the

simulation of Method 2.

Due to the difference between the leaching effect of gypsum and that of silica gel, a zone containing

only C-S-H, whose Ca/Si ratio is zero (as indicated by the blue line in the following plots), is observed

following the fully decomposed zone. Consequently, the porosity reaches 0.68. Following this region, a
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gypsum-rich layer is observed, where gypsum accumulates and the porosity is 0.56 which equals to the

porosity of gypsum layer in the simulation of Method 1. The Ca/Si ratio of C-S-H is still 0 in this zone.

Gypsum is formed at the gypsum precipitation front (the inner side of this layer) and is dissolved at gypsum

dissolution front (the outside of this layer) due to the leaching simulated at the boundary condition.

The subsequent zones such as damage zone and uncorroded zone are similar to that observed in the

simulation of Method 1.
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Figure 6.10: After 10 days of immersion: (a) Solid concentration and porosity ; (b) Solid volume and Ca/Si
ratio of C-S-H . DSimulation and DExperiment represent the degradation depth of the sample in simulation
and experiment individually. (Method 2, pH = 1)
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Figure 6.11: After 30 days of immersion: (a) Solid concentration and porosity ; (b) Solid volume and Ca/Si
ratio of C-S-H . DSimulation and DExperiment represent the degradation depth of the sample in simulation
and experiment individually. (Method 2, pH = 1)

To illustrate the leaching effect, Ca2+ concentration profiles and the total flux of calcium in the sim-

ulation of Method 1 and that of Method 2 are compared in Fig.6.13 and Fig.6.14. For both Method 1
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Figure 6.12: After 90 days of immersion: (a) Solid concentration and porosity ; (b) Solid volume and Ca/Si
ratio of C-S-H . DSimulation and DExperiment represent the degradation depth of the sample in simulation
and experiment individually. (Method 2, pH = 1)

and Method 2, there are positive concentration gradient of Ca2+ between the gypsum precipitation front

and the core of sample. Thus the diffusion of Ca2+ toward the gypsum precipitation front results in the

accumulation of gypsum. However, for Method 2, between the surface and dissolution front of gypsum

there is another positive concentration gradient of Ca2+, which is not observed in simulation of Method 1.

Ca2+ concentration in this region decreases from 0.003 mol/L, which is equal to Ca2+ concentration at the

surface of Method 1, to 0. The diffusion of Ca2+ toward the surface (see Fig.6.14) causes a leaching effect.
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Figure 6.13: The calculated Ca2+ concentration profiles during immersion: (a) Method 1 ; (b) Method 2 .
(pH = 1)

The corrosion depth calculated from the model and that measured from experiment are compared

in Fig.6.15b. Since the solution flow washes the reaction surface, the samples immersed with Method 2

degraded much deeper and faster than those with Method 1. Like simulation of Method 1, corrosion with
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Figure 6.14: The calculated diffusion of calcium during immersion: (a) Method 1 ; (b) Method 2 . (pH =
1)

Method 2 was not measured until 10 days of immersion, and the predicted corrosion rate is overestimated

during the early time. However, comparing with the experimental results, less material is corroded during

simulation from 70 days to 90 days. The difference probably results from the effect of the solution flow

which, in our model, was simulated by leaching out of gypsum and silica gel. Thus, some unreactive

solid phases still remain in the fully decomposed zone which were completely washed away in experiment.

Therefore, the porosity of fully decomposed zone is 0.88 rather than 1 (see Fig.6.15a). According to the

experimental measurements, the sulphate ions concentration around the uncorroded surface was equal to

that in the solution. But in our simulation, the sulphate concentration decreased gradually in the fully

decomposed zone as shown in Fig.6.16.
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Figure 6.15: The predicted evolution of porosity and corrosion depth profiles from 0 days to 90 days: (a)
Porosity; (b) Corrosion depth. (Method 2, pH = 1)
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6.3 Low H2SO4 concentration condition (pH = 2)

In Kawai’s experiment, another immersion test using a solution with lower H2SO4 concentration (pH =

2) was carried out as well. It turned out that corrosion process is very sensitive to H2SO4 concentration:

all of the samples immersed in a H2SO4 solution at pH = 2 was almost uncorroded with either Method 1

or Method 2.

We simulated this experiment by decreasing the H2SO4 concentration at the right boundary to achieve

pH = 2. Boundary and initial conditions are summarized in Table 6.3. Since the concentration of H2SO4

is low, the characteristic time (i.e., τCH and τCS̄H2) are extended to 200000 s.

Table 6.3: Boundary and initial conditions of the H2SO4 attack with (pH = 2)

Balance Boundary conditions Initial conditions
Equation Left surface Mortar

Sulfur (S)
diffusion allowed

ρH2SO4
0 = 10−31.5 mol/L

ρH2SO4
0 = 10−10 mol/L

Calcium (Ca)
Method 1:no diffusion

ζCa = 1
Method 2: diffusion allowed ζCa = -2

Silicon (Si)
Method 1:no diffusion

ζSi = 1
Method 2: diffusion allowed ζSi = -2

Potassium (K) diffusion allowed ρK+=0 mol/L ρK+ = 0.5 mol/L
Chlorine (Cl) diffusion allowed ρCl−=0 mol/L ρCl− = 0.5 mol/L

Charge
Method 1: no current

ψ=0
Method 2: ψ=0

The concentration of unionized molecules of H2SO4, ρ0
H2SO4

, is 1×10−10 mol/L in the solution with pH

= 2. Comparing with the solution with pH = 1, the penetration of H2SO4
0 with the solution with pH =

2 is much slower (see Fig.6.17). Therefore the acidification of cement paste is slow as shown in Fig.6.18.

For both Method 1 and Method 2, the acidification front of the solution with pH = 2 at 90 days does not
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even reach that of solution with pH = 1 at 30 days. For Method 2, the difference between the attack of pH

=1 and that of pH =2 is even bigger than that simulated with Method 1 due to the removing of reaction

products which obstructs the transport of H2SO4.
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Figure 6.17: The calculated penetration of H2SO4 with different pH: (a) Method 1; (b) Method 2.
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Figure 6.18: The evolution of pH with different pH: (a) Method 1; (b) Method 2.

For pH = 2, the same zones as those observed in the simulation of pH = 1 are presented in Fig.6.19

to Fig.6.21. Due to the low concentration of H2SO4, the corrosion rate are slow for both Method 1 and

Method 2. In the experiment, corrosion is almost undetectable with Method 1 and very little corrosion was

observed after 90 days of immersion of Method 2. The predicted corrosion rate is overestimated, yet much

slower than that of the simulation of pH = 1.

Due to the high first order ionization constant of H2SO4, the concentrations of HSO−

4 and SO2−

4 are

much higher than H2SO4 concentration. Hence the source of sulfur in gypsum is provided mainly by the

diffusion of HSO−

4 and SO2−

4 . Taking the immersion after 90 days for example, the concentration of HSO−

4
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Figure 6.19: The evolution of solid volume, Ca/Si ration of C-S-H and porosity after 10 days immersion :
(a) Method 1; (b) Method 2. (pH = 2)
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Figure 6.20: The evolution of solid volume, Ca/Si ration of C-S-H and porosity after 30 days immersion :
(a) Method 1; (b) Method 2. (pH = 2)
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Figure 6.21: The evolution of solid volume, Ca/Si ration of C-S-H and porosity after 90 days immersion :
(a) Method 1; (b) Method 2. (pH = 2)

and SO2−

4 of the immersion of pH = 2 are much less than that of the immersion with pH = 1 (see Fig.6.22).

For pH = 2, due to the smaller concentration gradients of both HSO−

4 and SO2−

4 , the flux of sulfur is much

lower than that under high H2SO4 concentration condition as shown in Fig.6.23.

For Method 2, in the zone where gypsum accumulates, the concentration gradients of both HSO−

4 and

SO2−

4 are negative. Thus sulfur diffuses from the gypsum dissolved front to the gypsum precipitate front.

For the condition of pH = 1, concentration gradient of SO2−

4 is positive in the fully decomposed zone, while

for pH = 2 condition it is negative. Therefore, when H2SO4 is few the SO2−

4 released from the gypsum

dissolution front is not sufficient for gypsum precipitation. The reason could be that the difference of Ca2+

concentration at pH = 2 condition and that at pH = 1 condition is smaller than the difference of SO2−

4

concentration.
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Figure 6.22: The concentration of HSO−

4 and SO2−

4 after 90 days immersion with different pH: (a) Method
1; (b) Method 2.
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Figure 6.23: The flux of sulfur after 90 days immersion with different pH: (a) Method 1; (b) Method 2.

For Method 1, comparing with the simulation results of pH = 1, more gypsum accumulates at the

surface. As discussed in Section 5.4.1, the saturation degree of CS̄H2 (QCS̄H2/KCS̄H2) in gypsum-rich

layer is 1. For the lower H2SO4 condition, the concentration of SO2−

4 is low (see Fig.6.22a). Thus, more

Ca2+ ion diffuse toward the surface. Consequently, more gypsum accumulate at surface portion. Taking

the simulation of Method 1 after 90 days for instance, the concentration of Ca2+ and flux of calcium for

different pH value are plotted in Fig.6.24.
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Figure 6.24: After 90 days immersion : (a) The concentration of Ca2+1; (b) Flux of calcium (Method 1)



6.4 Analysis of the discrepancy between simulation results and experimental results 89

6.4 Analysis of the discrepancy between simulation results and

experimental results

6.4.1 Effect of carbonated layer

The degradation depth measured in the experiment was about 4.2 mm and 7.2 mm with Method 1

and Method 2 respectively after 90 days immersion test which is close to our predictions (indicated by

vertical lines in Fig.6.5b and Fig.6.12b). However, predicted degradation depth is not always consistent

with experimental results as shown in in Fig.6.7b and Fig.6.15b. The corrosion rate in the experiments

increased during immersion time, while in the early time the predicted corrosion rate is much higher than

experimental results.

This may be justified by several reasons, such as inaccurate parameters in model, different conditions

between simulation and experiment and carbonation occurring during the initiation stage of biodeterioration

(Hudon et al., 2011; Magniont et al., 2011; Joseph et al., 2012). Normally, overestimated/ underestimated

diffusion coefficients would affect the corrosion rate during the whole process. However, in Fig.6.7b and

Fig.6.15b the corrosion rate of simulation is higher than that of experiment only during early time. This

suggests that carbonation must be taken into account in our model.

During the curing time the samples were subjected to carbonation, which could clog the pores of the

surface of sample. According to the experiments on the effect of carbonation on porosity (Thiéry et al.,

2011; Van Gerven et al., 2007), carbonation could decrease the average porosity of mortar by more than

15%. In some extreme cases, the pores of surface could be clogged (Shen, 2012). In that case, it would

have taken long time for H2SO4 to penetrate into pores at the early time. After the surface area was

corroded, more reactive surface was exposed, thus the degradation process accelerated. Therefore, we take

carbonation as the most suspected reason leading such discrepancy.

To verify this explanation, we conducted a preliminary investigation. From the experiment results shown

in Fig.6.7b, the degradation rate accelerated after corroded depth reached to 1 mm. Thus, a simulation of

the sample with a simplified carbonated layer, whose thickness is 1 mm, is carried out. During carbonation,

portlandite and C-S-H gel dissolves and calcite (CaCO3, noted as CC̄) precipitates as the reactions Eq.(6.1)

and Eq.(6.2). We assume that this layer is homogeneous and fully carbonated. Since the initial material

contains portlandite (5.2 mol/L) and C1.66SH2.6 (5 mol/L), the solid compositions of the fully carbonated

layer are calcite (13.3 mol/L) and silica gel (5 mol/L). Given that the molar volume of calcite is 37 cm3/mol

(Shen, 2012), the porosity of carbonated layer decreases from 0.3 to 0.166 by a simple balance of volume.

It is known that a reduction of porosity in cementitious materials increases its strength in general

(Yudenfreund et al., 1972; Pantazopoulou and Mills, 1995). The physical properties of carbonated layer
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is considered to be similar with that of normal cement paste for simplification. According to the study of

(Chen et al., 2013), the tensile strength of cement mortar whose porosity is 0.166 is about 1.4 times of that

of the cement mortar with porosity = 0.3. Therefore the damage criterion is set as 5 MPa.

CH + CO2 ⇋ CC̄ + H2O (6.1)

CxSyHz + xCO2 ⇋ xCC̄ + yH4SiO0
4 + (z − 2y)H2O (6.2)

Since the materials is saturated with water in our modeling, the H2SO4 attack product of the carbonated

layer is only gypsum.

Since we didn’t take the calcite into our modeling yet, we consider the reaction of H2SO4 and CC̄ as

same as that of CH in carbonated layer. Thus, the equilibrium concentration of H2SO4 in carbonated layer

is equals to that of initial cement paste. Boundary and initial conditions are summarized in Table 6.4.

Table 6.4: Boundary and initial conditions of the H2SO4 attack of the sample with carbonated layer

Balance Boundary conditions Initial conditions
Equation Left surface Carbonated layer Mortar

Sulfur (S)
diffusion allowed

ρH2SO4
0 = 10−31.5 mol/L ρH2SO4

0 = 10−31.5 mol/L
ρH2SO4

0 = 10−8 mol/L

Calcium (Ca)
Method 1:no diffusion ζCa = 1 ζCa = 1

Method 2: diffusion allowed CC̄ 13.3 mol/L CH 5.2 mol/L

Silicon (Si)
Method 1:no diffusion ζSi = 1 ζSi = 1

Method 2: diffusion allowed SHt 5 mol/L Jennite 5 mol/L
Potassium (K) diffusion allowed ρK+=0 mol/L ρK+ = 0.5 mol/L ρK+ = 0.5 mol/L
Chlorine (Cl) diffusion allowed ρCl−=0 mol/L ρCl− = 0.5 mol/L ρCl− = 0.5 mol/L

Charge
Method 1: no current

ψ=0 ψ=0
Method 2: ψ=0

The diffusion rate of species was expected to decrease during early time due to lower porosity. Therefore

the pH reduction rate of both Method 1 and Method 2 are slowed down as in Fig.6.25. Before 30 days, the

acidification front of carbonated sample is behind that of fresh sample. However, after 60 days the diffusion

of H2SO4 in carbonated sample catches up that of fresh sample due to the fully degradation of carbonated

layer.

The solid compositions of samples with carbonated layer at the early time of immersion are plotted

in Fig.6.26. At 10 days of Method 1, some Calcite still remains in the carbonated layer, where porosity

keeps at 0.166. For Method 2, all of the calcite is gone due to a faster corrosion rate. At 90 days, the solid

compositions are almost the same with that of normal samples.

The predicted degradation depth of the sample with carbonated layer (as shown in Fig.6.27) indicates

that the carbonated layer could reduce the degradation rate at early time. However, the carbonated layer
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Figure 6.25: The evolution of pH from 10 days to 90 days for the sample with carbonated layer: (a) Method
1; (b) Method 2. (pH = 1)

 0

 0.5

 1

 1.5

 2

 0  2  4  6  8  10
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

S
o
li

d
 v

o
lu

m
e 

(L
)

C
a/

S
i 

/ 
P

o
ro

si
ty

Distance to the surface (mm)

Attack direction

Method 1 (10 days)
C-S-H

Portlandite
Calcite

Gypsum
Ca/Si ratio

Porosity

(a)

 0

 0.5

 1

 1.5

 2

 0  2  4  6  8  10
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

S
o
li

d
 v

o
lu

m
e 

(L
)

C
a/

S
i 

 /
 P

o
ro

si
ty

Distance to the surface (mm)

Attack direction

Method 2 (10 days)
C-S-H

Portlandite
Gypsum

Ca/Si ratio
Porosity

(b)

Figure 6.26: The evolution of solid volume, Ca/Si ration of C-S-H and porosity of samples with carbonated
layer after 10 days immersion : (a) Method 1; (b) Method 2. (pH = 1)
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is still corroded too fast comparing with experimental observation. This difference may be caused by the

difference between the chemical reaction of CH and that of CC̄. To further address this discrepancy, a real

carbonated layer should be taken into account. In this study, all of the simulations in the other parts are

conducted on fresh cement paste.
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Figure 6.27: The corrosion depth profiles of simulation and experiments from 10 days to 90 days: (a)
Method 1; (b) Method 2

6.4.2 Effect of water-cement ratio of cemment paste

In Kawai’s experiments, the degradation rate of mortar samples with different W/C ratio were compared.

It is remarkable that the degradation depth of samples with low W/C ratios was deeper than those with

high W/C ratios. This phenomenon was explained as follows (Kawai et al., 2005):

Concrete with a high water cement ratio has larger and more pores than that with a low water cement

ratio. These pores play the role of a capacity to absorb expansion caused by the production of gypsum.

Therefore concrete with a high water cement ratio has a higher capacity to absorb the expansion of pro-

duction reaction of gypsum than that with a low water cement ratio, that is to say, concrete with a low

water cement ratio erodes earlier than that with a high water cement ratio.

Such results were found by other researchers as well: Attacks with 2% H2SO4 solution showed no

differences between degradation of high and low porosity mortar paste sample (Israel et al., 1997); 1%

H2SO4 solution showed greater degradation for low W/C ratios than high W/C ratios samples (Fattuhi

and Hughes, 1988); low H2SO4 concentration (0.0016 and 0.02%) showed greater deterioration depth for

samples with low W/C ratios than with high W/C ratios (Hughes and Guest, 1978).

For high H2SO4 concentration condition, we conducted two simulations of immersion test (Method 1

and pH = 0.5) of cement mortars whose W/C ratios are 0.35 and 0.5 respectively. For the sample with
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W/C ratio of 0.5, we consider that the cement hydration contains initially 3.9 mol/L of portlandite and

3.7 mol/L of C-S-H as jennite. The initial porosity is 0.45. The initial condition and boundary condition

is same with that in Table 6.1. The profiles of solid compositions after 30 days (see Fig.6.28) shows that

the predicted degradation rate for samples with high W/C ratio is greater than that with W/C ratio.
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Figure 6.28: Solid compositions, Ca/Si ratio of C-S-H and porosity profiles after 30 days of immersion
under high H2SO4 concentration condition (pH = 0.5): (a) W/C = 0.35; (b) W/C = 0.5

For low H2SO4 concentration condition, similar simulations (Method 1 and pH = 2) were conducted

to cement mortar with W/C ratios of 0.35 and 0.5. Fig.6.29 shows that under low H2SO4 concentration

condition the predicted degradation rate for samples with high W/C ratio is still greater than that with

low W/C ratio. When H2SO4 is few, the corrosion rate is slow. Thus the difference between low W/C and

high W/C is not as significant as that for high H2SO4 concentration condition.
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Figure 6.29: Solid compositions, Ca/Si ratio of C-S-H and porosity profiles after 30 days of immersion high
H2SO4 concentration condition (pH = 2): (a) initial porosity = 0.3; (b) initial porosity = 0.4
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The simulation results could be explained because the diffusion of sulfate species (H2SO4 , HSO−

4 , SO2−

4 )

is very fast and sensitive to the porosity. Thus the degradation process is diffusion controlled. However,

Ueda, et al. (Ueda and Tatematsu, 1996) claimed that sulfuric acid hardly penetrates into hardened

cement. The reactions of cement hydrates and sulfuric acid should occur just beneath the surface portion

of specimens. This may be caused by the production of gypsum in the surface portion which is faster than

the penetration rate of sulfate ions into the specimen. In other words, the corrosion process is governed

by reaction rather than diffusion. And in the simulation study of Jahani, et al. (Jahani et al., 2005), it

was indicated that the diffusion coefficient of sulphate ions in the corrosion products layer is 7.70×10−4

cm2/day, while the reaction rate constant of precipitation of gypsum is about 112 cm2/day according to the

simulation of Bouchelaghem (Bouchelaghem, 2010). Therefore, further investigations about the damage

mechanism and diffusion of sulfate ion in cementitious materials should be carried out.

6.5 Long-term prediction

Besides short-term predictions, long-term simulation should be conducted to assess the relevance of the

model. Kawai’s experiments only lasted 90 days, yet it is one of the longest experiments where enough

information is available for simulation. It is generally believed that the degradation depth of concrete due

to acid attack including sulfuric acid attack is proportional to the square root of the exposure time Pavlik

(1994) as follows:

y = b
√
t (6.3)

where, y is the degradation depth. t represents the exposure time in acid solution and b is constant.

According to this equation, the rate of degradation is dominated by the diffusion rate of acid under the

assumption that corrosion products remain on surface.

Two simulations of sulfuric acid attack (pH = 1 and pH = 2) of Method 1 was conducted for 2 years. The

carbonated layer is taken into account. The predicted corrosion depth versus time are shown in Fig.6.30,

where the relationship between exposure time and degradation coincides with Eq.(6.3). For the condition

of pH = 1, the constant b is about 2.5 mm/
√

month. For the condition of pH = 2, the constant b is 1.2

mm/
√

month, which is about 2 times less than that for pH = 1.

In sewer pipes severely corroded, the pH at the concrete surface is normally less than 2 (Okabe et al.,

2007; Islander et al., 1991). According to the long term prediction, under such condition the corrosion rate

is more than 4 mm/year, which is agreement with in-situ and laboratory observations (Mori et al., 1992;

Vincke et al., 1999; Okabe et al., 2007).
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Figure 6.30: Prediction of degradation depth of long exposure time.

6.6 Conclusion

In this chapter, the experiments of sulfuric acid attack of cement mortar conducted by (Kawai et al.,

2005) was simulated. The evolution of solid compositions and porosity of materials were addressed. More-

over, the model has provided a prediction of the deterioration depth.

Exposed to high concentration of sulfuric acid (pH = 1), cementitious materials would be corroded

heavily. In statical solution condition, a porous layer containing gypsum and silica gel can be found in both

of experiments and simulations. In the flowing solution condition, no corrosion products layer exists due

to the removing of corrosion products by the shear force of flowing solution. However, low concentration of

sulfuric acid (pH = 2) cannot cause significant corrosion. Indeed the solubility product of H2SO4 is so high

that when pH is 2, too few acid penetrating into concrete is available to form gypsum. Therefore, sewer

pipes will not be corroded unless enough H2SO4 is produced by bacteria.

The degradation depth measured in the experiments after 90 days immersion test are close to our

predictions. However, the modeled corrosion was faster than that measured in experiments during the

early time. According to experimental results, the corrosion rate is quite slow during the early time. Such

phenomenon draws attention to the effect of carbonation. We believe that carbonated layer slowed down

the corrosion. By adjusting the porosity and initial solid compositions in the surface region of the sample,

the effect of carbonated layer can be handled. Besides porosity, pH in carbonated layer is lower than that

in the core of sample, which can affect the H2SO4 flux into materials. Such influence should be investigated

as well as the influence of porosity.

Furthermore, according to the simulation results, the degradation rate of samples with high porosity is

greater than that with low porosity, thereby disagreeing with some experiment observations. Thus, more

accurate estimation of some parameters (e.g., the precipitation kinetics of gypsum, the diffusion coefficient

of sulfate ions) should be employed to investigate the possible reasons.
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For the long-term prediction of corrosion depth, the thickness of the corroded layer increases linearly

with the square root of time, which is typical of a diffusion-controlled acid attack profile. The long-term

predicted corrosion rate is roughly in agreement with experimental observations.

In the next chapter, a set of biogenic H2SO4 attack experiments are simulated in order to take into

account the bacterial activity producing sulfuric acid on the pipe surface.



Chapter 7

Simulation in the case of biofilms

condition

7.1 Introduction

In order to predict the deterioration rate of concrete subjected to bio-degradation, laboratory experi-

ments have been done to simulate the corrosion process of concrete in different environments (Ehrich et al.,

1999; Vincke et al., 2000; Gutiérrez-Padilla et al., 2010), as well as in-situ experiments (Monteny et al.,

2000; Herisson et al., 2013).

Comparing with chemical corrosion by constant H2SO4 solution, the supply of H2SO4 during the biode-

terioration process is neither given nor constant, but governed by SOB activity. Some laboratory experi-

ments were carried out with mixed culture of several types of SOB containing elemental sulfur, biomass and

other nutrient components (Tichỳ et al., 1994). The mixed cultures of SOB were produced from laboratory

or directly obtained from the biofilms of corroded sewer pipes (Vincke et al., 2000; De Muynck et al., 2009).

After incubation in H2S atmosphere, the cementitious samples were immersed in the aqueous solution of

the SOB suspension (see Fig.7.1). The pH evolution in SOB suspension was measured during immersion.

In some other laboratory experiments, simulation reactors were built to simulate the environment in

sewer pipes. In the simulation reactors, H2S gas and wastewater, which provides the strain of SOB, were

circulated (see Fig.7.2). The content of H2S gas was adjusted to different levels. The cementitious samples

were exposed to H2S atmosphere rather than immersed in SOB suspension. Thus, H2SO4 was produced

from biofilms which formed on the sample surface. After a certain time, the corrosion state was illustrated

by measurement of corrosion depth or weight loss.

In this chapter, the experiments of the immersion method (De Muynck et al., 2009) and the simulation
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(a) (b)

Figure 7.1: Experiment setup of immersion test of biodeterioration: (a) (Vincke et al., 2000); (b) (De Belie
et al., 2004).

(a) (b)

Figure 7.2: Experiment setup of biodeterioration by simulation reactors: (a) (Mori et al., 1992); (b)
(Herisson, 2012).
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reactor method (Mori et al., 1992) are simulated. The neutralization of sample surface by H2S gas is

considered. The H2SO4 production from biological activity is calculated by the methods introduced in

Chapter 2. Similar with the simulation of H2SO4 chemical solution corrosion in Chapter 6, the evolution

of solid compositions, corrosion depth and porosity of samples are illustrated. Furthermore, the effect of

different H2S gas level is studied.

7.2 Immersion test condition

To study the effectiveness of different admixtures and surface treatments against biogenic sulfuric acid

attack of concrete, the biodeterioration of different types of mortar were measured by means of microbio-

logical tests in lab (De Muynck et al., 2009), where the specimens were drilled from sewer pipe made with

CEM I cement, whose W/C = 0.37. The specimens with polished surfaces were cylinders with H = 15 mm,

D = 80 mm. In the experiments, the specimens with or without protection (e.g., epoxy coating, polyurea

lining) were subjected to 8 cycles of accelerate test. Each cycle consisted of 4 steps:

(1) As pH of fresh concrete specimen was too high to incubate SOB, specimens were subjected to

H2S-incubation in a vessel containing 200 ppm of H2S gas for 2 days at beginning;

(2) Immersion in a vessel containing 1.5 L of mixed cultures of SOB obtained from biofilms of in-

situ sewer pipe (medium composition: 10 g/L elemental sulfur, 3g/L KH2PO4, 0.1 g/L NH4Cl, 0.1 g/L

MgCl·H2O) for 10 days;

(3) Immersion in a vessel containing distilled water for 2 days;

(4) Drying at room temperature for 1 day.

During the second step of every cycle, the pH in SOB suspensions was measured at a regular basis.

Since water was rotated by a rotary shaker at 90 rpm, the degradation products were removed in the third

step. The last step could eliminate SOB remaining on the samples surfaces. The corrosion depth of the

specimens at the end of each cycle was measured using the automated laser measurement system.

Since the cycles are equal to each other, we simulate the first and second step in this section separately,

while the removing of corrosion products and SOB are neglected. To simulate the test, concrete samples

with the same size as that in experiments are considered. Comparing with the mortar specimens in Chapter

6, the concrete specimens in this experiment contains coarse aggregates. However, the amount of coarse

aggregates are unknown. From the visual observations (see Fig.7.3) of experiments, it can be seen that the

material loss was mainly attributable to the attack of the cement paste part. Thus, we neglect the corrosion

of aggregate and assume that the hydration products in the samples are 70% of those in the samples of

Chapter 6, i.e., 3.7 mol/L of portlandite and 3.5 mol/L of C-S-H as jennite. The initial porosity is 30%.
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Figure 7.3: A sample of the concrete before (A) and after (B) eight cycles of the microbiological test. A
loss of cement paste is clearly visible, while the aggregates remain relatively unaffected. (De Muynck et al.,
2009).

7.2.1 Neutralization process

To simulate the H2S attack, the samples are divided in 300 nodes. We consider the boundary conditions

of constant H2S gas level (200 ppm), while no H2SO4 is present. For numerical stability, the initial aqueous

H2S concentration in concrete sample is 1×10−9 mol/L, i.e., pH = 12.4. Boundary and initial conditions

of our modeling are summarized in Table.7.1.

Table 7.1: Boundary and initial conditions of the H2S attack (200 ppm)

Balance Boundary conditions Initial conditions
Equation Left surface Concrete

Sulfur (S)
Absorption allow

ρH2S0 = 10−9 mol/L
pH2S,gas = 200 ppm

Calcium (Ca) no diffusion ζCa = 1
Silicon (Si) no diffusion ζSi = 1

Potassium (K) no diffusion ρK+ = 0.5 mol/L
Chlorine (Cl) no diffusion ρCl− = 0.5 mol/L

Charge no current ψ=0

H2S gas is absorbed into pore solution of concrete from the left surface, and the absorption rate is

governed by Eq.(2.1). Since no H2SO4 is present during the neutralization process, CaS is considered as

the only corrosion products. The dissolution of CH and C-S-H, and the precipitation of CaS are described

by the model introduced in Chapter 2 and Chapter 3. After exposure of 2 days, the calculated absorption

of H2S and pH evolution of concrete sample are shown in Fig.7.4.

As expected, H2S in gas phase is absorbed into pore solution of concrete to neutralize the sample

surface, where pH decreases form 12.35 to 9.5 gradually. The change of aqueous H2S concentration and pH

in the pore solution of surface part are plotted in Fig.7.5a. Due to the low ionization constant of H2S, the

neutralization rate of surface is low even if the H2S gas level is quite high at surface. Since H2S gas level

keeps constant, the absorption of H2S at surface is constant (see Fig.7.5b).
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 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0  8  16  24  32  40  48
 9.5

 10

 10.5

 11

 11.5

 12

 12.5

C
o

n
ce

n
tr

at
io

n
 o

f 
aq

u
eo

u
s 

H
2
S

 (
m

o
l/

L
)

p
H

Time (h)

Surface neutralization
ρH2Saq

pH

(a)

-7e-08

-6e-08

-5e-08

-4e-08

-3e-08

-2e-08

-1e-08

 0

 1e-08

 0  0.1  0.2  0.3  0.4  0.5

w
S
 (

m
o

l/
d

m
2
s)

Distance to the surface (mm)

S

Surface neutralization
0 days
1 days
2 days

(b)

Figure 7.5: The calculated absorption of H2S profiles from 0 days to 2 days: (a) Aqueous H2S concentration
and pH evolution at surface; (b) Diffusion of sulfur. (H2S level = 200 ppm)



102 September 16, 2013Simulation in the case of biofilms condition

The change in the concentration and volume of solid compounds, as well as porosity profiles after 1

days and 2 days of exposure are plotted in Fig.7.6 and Fig.7.7. After 1 day, the sample surface turns to

a CaS-rich layer, where parts of CH and C-S-H are dissolved. Even if the molar volume of CaS is smaller

than that of CH and C-S-H, the porosity decreases due to CaS accumulation in pores, which results from

the diffusion of Ca2+ as described in Section 5.5.1. Thus, the solid volume at the surface increases. For

the position just under the CaS-rich layer, the porosity slightly increases due to the small molar volume of

CaS and the solid volume of concrete sample is slightly less than initial value.
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Figure 7.6: After 1 day of exposure: (a) Solid concentration and porosity ; (b) Solid volume and Ca/Si
ratio of C-S-H. (H2S level = 200 ppm)

After 2 days, the CaS-rich layer is thicker than that of 1 day exposure (see Fig.7.7). More CaS precipi-

tating deeper, causes the further reduction of porosity and the rising of solid volume of the CaS-rich layer.

Thus, about 0.1 mm of sample is neutralized by H2S. CH at surface is completely dissolved while C-S-H is

just partly decalcified because of the lack of aqueous H2S. However, the amount of aqueous H2S at surface

is enough to dissolve the CaS precipitation after 2 days of gas H2Sabsorption. Therefore, CaS at surface

starts to dissolve.

To illustrate the dissolution of CaS, the concentration of CaS and aqueous H2S at surface versus exposure

time are plotted in Fig.7.8. When aqueous H2S is absorbed into concrete, CaS starts to precipitate until

ρH2S0 increases to 7×10−4.9 mol/L. When aqueous H2S is more than that critical value, CaS starts to

dissolve.

Furthermore, a simulation of 10 days of exposure is conducted. According to the solid profiles in Fig.7.9,

the corroded sample starts with a completely degraded layer, where CH , CaS and C-S-H are fully dissolved.

Consequently, the porosity of the completely degraded layer is high, while that in the CaS-rich layer is below

0.1.
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Figure 7.7: After 2 days of exposure: (a) Solid concentration and porosity ; (b) Solid volume and Ca/Si
ratio of C-S-H. (H2S level = 200 ppm)
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Figure 7.9: After 10 days of exposure: (a) Solid concentration and porosity ; (b) Solid volume and Ca/Si
ratio of C-S-H. (H2S level = 200 ppm)

7.2.2 Evolution of pH in SOB suspensions

In the set of experiments conducted by (De Muynck et al., 2009), concrete samples with polyurethane

lining were immersed into SOB suspension. However, no degradation could be observed for the specimens

after 8 test cycles. Therefore, we consider that no mass exchange takes place between samples with

polyurethane lining and SOB suspension. In such SOB suspension, the pH evolution is equal to that

in pure SOB suspensions. Thus we simulate the SOB activity in a pure SOB suspension sample by the

model of H2SO4 production introduced in Section 2.3.1 (see Eq.(2.11) and (2.12)). The initial pH of SOB

suspension is 7. H2SO4 is produced in the SOB suspension is governed by Eq.(7.1) which is determined by

fitting measurements as follows:

RH2SO4 =



















































8 × 10−7mol/L · s

0.48
√

2π
× e

−

1

0.96 × 102.5−pH pH > 2.5

8 × 10−7mol/L · s

0.48
√

2π
× e

−

(pH − 1.5)2

0.96 1.5 ≤ pH ≥ 2.5

8 × 10−7mol/L · s

0.48
√

2π
× e

−

(pH − 1.5)2

0.48 pH < 1.5

(7.1)

The pH evolution obtained from both simulation and experiment are plotted in Fig.7.10. In the exper-

iment, as a result of the conversion of elemental sulfur to sulfuric acid by cultures of NSOB, pH decreases

slightly during early time. However, a sharp reduction of pH was observed after 4 days of submersion due

to the activity of ASOB. With H2SO4 production by ASOB whose activity is suppressed when pH is below

1.5, the pH continues to decrease to around 1 after 10 days of testing. The comparison between the results

of model and the experiment results is fairly good.
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Figure 7.10: The evolution of pH in pure SOB suspension from 0 days to 10 days

7.2.3 Biodeterioration of concrete immersed in SOB suspension

To simulate the second step of the experiment, we consider the concrete sample with neutralized surface

in contact with the SOB suspension where H2SO4 is produced and penetrates into concrete. For now, we are

not able to merge the process of H2S attack and H2SO4 attack into one modeling. Thus, neutralized layer

is considered as another material whose thickness and solid compositions are determined by the modeling

of H2S attack. According to the simulation results of the fist step in the previous section, after 2 days

of exposure to H2S gas of 200 ppm, the thickness of neutralized layer is 0.1 mm. For numerical stability,

the initial porosity of neutralized layer is equalized to 0.15, and the pH value and CaS concentration in

neutralized layer are simplified to vary linearly.

Therefore, the fresh concrete core, neutralized surface and SOB suspension are combined together as

Table.7.2. The solid compositions, pH and porosity of the initial concrete sample with neutralized layer

are indicated in Fig.7.11

Table 7.2: Boundary and initial conditions of biodeterioration by SOB suspension

Initial conditions

Balance Equation
SOB suspension Neutralized layer Concrete

Sulfur (S) ρH2SO4 = 10−20.3 ρH2SO4 = 10−31.5 - 10−20.3 mol/L ρH2SO4 = 10−31.5 mol/L
Calcium (Ca) ζCa = 0 ζCa = 1 ζCa = 1
Silicon (Si) ζSi = 0 ζSi = 1 ζSi = 1

Potassium (K) ρK+ = 0.5 mol/L ρK+ = 0.5 mol/L ρK+ = 0.5 mol/L
Chlorine (Cl) ρCl− = 0.5 mol/L ρCl− = 0.5 mol/L ρCl− = 0.5 mol/L

Charge ψ=0 ψ=0 ψ=0
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Figure 7.11: Initial concrete sample with neutralized surface: (a) pH and porosity ; (b) Solid volume and
Ca/Si ratio of C-S-H.

During immersion of 10 days, the alkalinity of concrete is reduced by the penetration of H2SO4 which

is produced in SOB suspension. The evolution of H2SO4 concentration and pH in both concrete and the

SOB suspension close to concrete surface are shown in Fig.7.12. Due to the low gradient of H2SO4 between

SOB suspension and concrete surface, pH in the concrete surface decreases very few until 8 days.
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Figure 7.12: The calculated H2SO4 and pH evolution profiles in SOB suspension and concrete from 0 days
to 10 days: (a) H2SO4 concentration; (b) pH value.

The pH evolution in bulk SOB suspension, which refers to that part of suspension not influenced by

concrete, is plotted in Fig.7.13a. Due to that NSOB produce H2SO4 very slow, pH in SOB suspension

decreases very few during early time. Since lower pH causes higher in-situ H2SO4 production rate, pH

starts to decrease sharply after several days. When pH reaches 1.5, H2SO4 production starts to slow down.

The change in pH of SOB suspension was measured during the experiments (see Fig.7.13). The simulation
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results coincide with experimental results.

pH is almost uniform in bulk SOB suspension where pH decreases from the very beginning. However,

during the early time pH in SOB suspension close to concrete surface increases from 7 to about 9 due to

the alkalinity of concrete and the low production rate of H2SO4 (see Fig.7.13b), i.e., the acid production is

slower than the acid consumption. A decrease of bacterial activity is expected. Thus, the production rate

of H2SO4 is too low to cause further deterioration of concrete. However, after about 8 days, pH starts to

decrease by the H2SO4 produced from bulk suspension.
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Figure 7.13: The pH evolution and production rate of H2SO4 from 0 to 10 days: (a) bulk SOB suspension;
(b) SOB closed to concrete surface.

After immersion of 10 days, similar zones as those in the simulation of H2SO4 solution condition are

observed in SOB immersion test (see Fig.7.14). Not only neutralized layer, but also concrete core is

degraded by biogenic H2SO4. Due to the diffusion of Ca2+ towards the gypsum precipitation front, lots of

gypsum accumulates at concrete surface. At the interface between neutralized layer and concrete core, the

amount of C-S-H is discontinuous. That is probably caused by the discontinuity of initial porosity in the

initial conditions.

In the experiments (De Muynck et al., 2009), shaking in the distilled water resulted in both the removal

of aggregate and reaction products. Drying removes all the remaining SOB at the concrete surface. Thus

we consider that all the cycles are identical. Consequently, the deterioration depth of all cycles are the

same. The predicted corrosion depth and that measured during experiments are compared in Fig.7.15. The

predicted corrosion rate is 0.22 mm/cycle, which coincide with experimental results. However, no corrosion

depth was measured out in the first cycle of the experiments. Carbonated layer is probably responsible for

that as described in Chapter 6.
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Figure 7.14: After 10 days of immersion in SOB suspension: (a) Solid concentration and porosity ; (b) Solid
volume and Ca/Si ratio of C-S-H. DSimulation represents the degradation depth of the sample in simulation
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7.3 Simulation reactor condition

In the real sewer pipes, heavy degradation was not observed in the part immersed in waste water but in

the part above the water level (Davis et al., 1998). As the deterioration of concrete is a slow process with

corrosion rate typically ranging from 1 mm/year to 5 mm/year (Mori et al., 1991), long time test which

simulate the real deterioration conditions are required to investigate the durability of concrete in sewer

environment. Furthermore, the biogenic H2SO4 attack is a very complex process, involving microbiological

factors (such as biomass and substrate available) and chemical factors (such as H2S gas level and solid

compositions of concrete). Therefore, (Mori et al., 1992) designed a simulation chamber, where optimal

conditions for the bacterial growth are controlled, to investigate the biodeterioration of concrete in sewer

pipes. The schematic diagram of the simulation chamber is shown in Fig.7.2a.

In the experiment conducted by (Mori et al., 1992), the chamber consisted of a plastic box with size of

44 cm × 30 cm × 30 cm. The H2S concentration was 400 ppm by regulating the flow rate of 4% of Na2S

solution and 1.5 N HCl solution. The mortar specimens with size of 4 cm × 4 cm × 16 cm were placed in

sewage of 6 cm depth and distilled water as reference. During the corrosion test of 6 months, Thiobacillus

thiooxidans isolated from corroded materials in the concrete sewer pipes were inoculated on the surface of

the mortar specimen every 2 weeks for the first 2 months.

After about 6 months, the pH of the corrosion products were determined using a pH meter after 1 g

of sample was suspended in 1 mL of distilled water. The corrosion depth at different places of mortar

samples were measured. The place under the sewage level was not corroded, while the portion just above

the sewage level was more corroded than portion further above the sewage level. No corrosion occurred

when mortar specimens were placed in distilled water (see Fig.7.16).

(a) (b)

Figure 7.16: Mortar specimens exposed to H2S gas: (a) Water; (b) Sewage. (Mori et al., 1992).

In this study, the corrosion process of the mortar near sewage level is simulated by our modeling.
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According to the analysis of (Mori et al., 1992), this location provided a constant supply of moisture and

nutrients by splashing, immersion and/or capillary action from the water. In addition, dissolved oxygen

from the atmosphere is provided at this location. Thus, we assume that the biofilm and mortar are both

saturated and nutrients and oxygen are both sufficient for the growth of SOB. Therefore, modeling of

H2SO4 production with given H2S content in gas phase introduced in Section 2.3.2 is employed. Since the

W/C ratio of mortar samples are 0.6, the solid compositions are assumed to be 3.7 mol/L of Portlandite

and 3.5 mol/L of C-S-H as jennite. The initial porosity is 0.35. Moreover, SOB was incubated on the

mortar surface during experiments. Thus, the succession of SOB is neglected and we assumed that SOB

species in biofilm starts to produce H2SO4 as long as the pH in mortar surface is reduced to 9.5 by H2S

gas.

The surface neutralization process is simulated firstly as described in Section 7.2.1. After 40 hours, the

pH in mortar surface decreases to 9.5 (see Fig.7.17a). As shown in previous section, with H2S of 200 ppm

the surface pH decreases to 9.5 after 48 hours. Higher H2S level results in faster surface neutralization rate.

However, the difference between 200 ppm and 400 ppm is not significant. The solid compositions of mortar

sample is plotted in Fig.7.17b which indicates a neutralized layer of approximate 0.1 mm.
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Figure 7.17: When surface pH decreases to 9.5: (a) Aqueous H2S concentration and pH evolution at surface;
(b) Solid concentration and porosity of mortar sample. (H2S level = 400 ppm)

Hereafter, H2S oxidation process is started by SOB in biofilms on the mortar surface. In this model,

biofilms are considered covering on the neutralized surface. In the initial biofilms, we assume a presence of

0.005 mol/L of element sulfur, which is formed by the chemical oxidation of H2S during the neutralization

process (Joseph et al., 2012). The initial and boundary conditions of the core part of mortar, neutralized

surface and biofilm are considered as Table.7.3.

According to the modeling of H2SO4 production with a given H2S content in gas phase as Eq.7.2
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Table 7.3: Boundary and initial conditions of biodeterioration by biofilms

Balance Boundary conditions
Equation Left surface
Sulfur (S) pH2S,gas = 400 ppm

Calcium (Ca) no diffusion
Silicon (Si) no diffusion

Potassium (K) no diffusion
Chlorine (Cl) no diffusion

Charge no current

Initial conditions
Biofilms Neutralized layer Mortar

Sulfur (S)
ρH2SO4 = 10−25.3 mol/L ρH2SO4 = 10−31.5 - 10−25.3 mol/L ρH2SO4 = 10−31.5

ρH2S0 = 0 mol/L / /
ρS = 0.005 mol/L / /

Calcium (Ca) ζCa = 0 ζCa = 1 - 0 ζCa = 1
Silicon (Si) ζSi = 0 ζSi = 1 - 0 ζSi = 1

Potassium (K) ρK+ = 0.5 mol/L ρK+ = 0.5 mol/L ρK+ = 0.5 mol/L
Chlorine (Cl) ρCl− = 0.5 mol/L ρCl− = 0.5 mol/L ρCl− = 0.5 mol/L

Charge ψ=0 ψ=0 ψ=0

and Eq.7.3, H2SO4 production directly depends on the amount of element S which is controlled by the

absorption and oxidation of H2S.

H2S oxidation : RH2S−oxi = 6.714 × 10−7mol/L · s × ρH2S

ρH2S + 8.0 × 10−4mol/L
(7.2)

S oxidation : RS−oxi = 2.526 × 10−7mol/L · s × ρS

ρS + 2.8 × 10−5mol/L
(7.3)

The oxidation rate of H2S and S in the biofilms during the first week are plotted in Fig.7.18. For

H2S, oxidation rate of H2S is zero because there is no H2S in biofilm at the very beginning. According

to the absorption kinetics, aqueous H2S increases sharply in biofilm with 400 ppm of H2S gas. Thus,

H2S oxidation rate rises until ρH2S0 reaches about 0.0017 mol/L. Since element S is produced before the

biofilm formation by chemical oxidation of H2S(Bagreev and Bandosz, 2005), we consider that the initial

concentration of element S is 0.005 mol/L. Thus H2SO4 is produced from the beginning, which results in

a slightly decreasing of element S during early time. Since H2S oxidation is faster than S oxidation, the

formation of element S is faster than its consumption. Hence, element S starts to accumulate in the biofilm

very soon and H2SO4 is produced at a constant rate after about 6 days.

Compared to the early time during the immersion test, biofilms in the simulation reactor starts to

produce H2SO4 with a higher rate as shown in Fig.7.18b. Thus, the pH in biofilms decreases from the

beginning (see Fig.7.19a) without the time lag observed in the simulation of immersion test of De Muynck

et al. (2009). pH in biofilms is rapidly reduced to 2. With H2SO4 production in biofilms, the alkalinity of
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Figure 7.18: The oxidation of H2S and S versus their concentration in the biofilms: (a) Aqueous H2S ; (b)
Element S. (H2S level = 400 ppm)

mortar is reduced by the penetration of H2SO4. After 1 year, the profile of pH in both mortar and biofilm

are plotted in Fig.7.19b.
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Figure 7.19: The calculated pH evolution profiles (a) pH evolution in biofilms ; (b) pH change in biofilms
and mortar. (H2S level = 400 ppm)

In the experiment, the pH at different depth of corroded specimens was examined. The surface portions

showed a very low pH of 1.9. In the middle portions and the portions close to the uncorroded core, acidic

conditions of pH 2-3 and 11-12 were present. From the simulation results, similar zones are observed in

Fig.7.19b. The solid compositions and porosity of these zones during test time are plotted in Fig.7.20 to

Fig.7.23

Due to the same mechanisms of chemical H2SO4 solution attack of cement hydrates, similar zones

can be observed. Corroded material starts with a gypsum - rich layer. Unlike immersion test, a gypsum
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Figure 7.20: After 40 days of test in simulation reactor: (a) Solid concentration and porosity ; (b) Solid
volume and Ca/Si ratio of C-S-H. (H2S level = 400 ppm)

accumulation peak is present at 0.1 mm from the surface rather than at the top surface. Such difference is

caused by the surface neutralization process. With a higher H2S gas level, more CaS dissolves. Therefore,

very few calcium solid phase is present at the top surface at the initial time of H2SO4 attack. In our modeling

the material is initially at equilibrium condition. Thus less calcium solid means less concentration of Ca2+,

which results in less gypsum accumulation.
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Figure 7.21: After 80 days of test in simulation reactor: (a) Solid concentration and porosity ; (b) Solid
volume and Ca/Si ratio of C-S-H. (H2S level = 400 ppm)

The change of thickness in the area around the sewage level were measured at 40, 80 and 180 days. The

predicted corrosion depth by our modeling agrees with the experimental results.

The experiments lasted for 180 days. Thus the maximum corrosion rate of the specimens exposed to

sewage was calculated to be 6.1 mm/year. By our modeling long term prediction is possible. After 1 year
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Figure 7.22: After 180 days of test in simulation reactor: (a) Solid concentration and porosity ; (b) Solid
volume and Ca/Si ratio of C-S-H. (H2S level = 400 ppm)

of test, about 6.8 mm of mortar was corroded (see Fig.7.23). Hence, the corrosion rate is 6.8 mm/year

which is close to the experimental calculation.
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Figure 7.23: After 1 year of test in simulation reactor: (a) Solid concentration and porosity ; (b) Solid
volume and Ca/Si ratio of C-S-H. (H2S level = 400 ppm)

7.4 Effect of H2S gas level

The difference of H2S gas level in sewer pipes could influence both of surface neutralization process and

H2SO4 production in biofilms.

However, in our modeling we consider constant biomass in biofilms where SOB produce H2SO4 at high

rate. In fact, the activity and the amount of SOB is controlled by the content of H2S in biofilms. Due to

the lack of quantitative relationship between the content of H2S and the activity of SOB, the effect of H2S
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gas level on the H2SO4 production process is difficult to illustrate by our modeling.

For the surface neutralization process, the decrease of pH at surface is directly governed by H2S level.

Lower H2S level leads to longer lag time of biogenic H2SO4 attack. For most of the in-situ conditions,

corrosion materials are removed by flow of sewage periodically and new surface where pH is too high for

SOB growth is exposed cyclically. Thus, the lag time is crucial for biodeterioration of sewer pipes. We

conduct simulations of surface neutralization with different H2S gas level. We consider the lag time as the

time of the decrease of surface pH from 12.4 to 9. The lag time of biogenic H2SO4 attack with different

H2S gas level is plotted in Fig.7.24.
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Figure 7.24: The lag time of surface neutralization process with different H2S level.

From Fig.7.24, it is clear that more time is needed to prepare the proper environment for SOB with

less H2S gas. For the condition of 10 ppm, biofilms even could not form if the period of flow is less than 80

days. When the H2S gas reaches more than 100 ppm, SOB could start to grow on the surface in few days.

7.5 Conclusion

In the cases where the activity of SOB is involved, our modelling coupled the process of surface neutral-

ization, the production of biogenic H2SO4 and the deterioration of concrete. We modeled the laboratory

experiments of biodeterioration of cementitous materials conducted by (De Muynck et al., 2009) and (Mori

et al., 1992). The decrease of surface pH and the depth of neutralized layer during the stage of H2S-

incubation were determined. For different test conditions, the production of H2SO4 in SOB suspension and

biofilms were calculated by different methods. With the amount of biogenic H2SO4, the evolution of solid

compositions and porosity of materials were addressed. Like the modeling of chemical H2SO4 attack, the

modeling of biogenic H2SO4 attack provides a prediction of the deterioration depth of materials.

Exposed to the gas with high H2S level, concrete surface would absorb H2S gas into pore solution very
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fast. Consequently, Portlandite and C-S-H are dissolved by aqueous H2S and CaS precipitates. Thus, the

alkalinity of concrete surface is neutralized in few days, which is called lag time in this paper. For the

same type of concrete, the lag time is controlled by the H2S gas level and temperature, which vary in sewer

pipes. The effect of H2S level on the surface neutralization process is studied by our modeling as well.

For the immersion test condition, H2SO4 is produced in SOB suspension where the activity of SOB is

governed by pH. pH in SOB suspension decreases very few until 4 days. However, during the later time of

immersion, pH in SOB suspension is reduced to 1 which could result in heavily corrosion of concrete. After

immersion of 10 days, the deterioration depth is about 0.22 mm. The predicted corrosion rate of each cycle

coincides with that of experimental measurements.

For the simulation reactor condition, the production of H2SO4 is calculated by the oxidation of H2S

in biofilms. Due to the continuously supply of SOB and high H2S gas level, H2SO4 is produced quite fast

from the beginning. Since the oxidation rate of element S is lower than that of H2S, element S accumulates

in biofilms. After simulation of 1 year, the predicted corrosion depth reaches about 6.8 mm which agrees

the experimental results.

However, the SOB activity in our modeling is still relatively crude. Further research is needed to get

the knowledge of the exact SOB ecology supporting long-term H2SO4 production and the growth of the

different types of SOB.



Chapter 8

Conclusions and further discussion

8.1 Summary of the thesis

In order to assess the deterioration process of sewer pipes, a reactive transport model is built. This

model could be used to predict the deterioration depth and solid compounds of cementitious materials in

contact with sulfuric acid solution or sulfur-oxidizing bacteria (SOB). In this study, the biodeterioration of

concrete are divided in three parts: the neutralization of concrete surface, the production of sulfuric acid

by SOB and H2SO4 attack of concrete.

- The neutralization of concrete surface is caused by H2S attack of concrete. The model of this attack

developed in the thesis considers the absorption of H2S gas in pore solution of concrete and the chemical

reactions between aqueous H2S and concrete. Thus, the times of neutralization and the thickness of

neutralized layer of concrete under different H2S levels can be calculated.

- For the production of H2SO4 by SOB, the quantitative understanding is still very poor. In this

study, the production rate of H2SO4 under different conditions are calculated by fitting experimental

measurements or WATS model. Thus, the amount of H2SO4 which could deteriorate concrete can be

determined.

- Dealing with H2SO4 attack process, the dissolution of portlandite and C-S-H gel, and the precipitation

of gypsum are considered. Due to the swelling of gypsum, a simplified damage model is employed to

calculate the porosity change during degradation. Thus, the solid composites evolution and deterioration

depth of concrete can be predicted.

The three parts of biodeterioration of concrete were programmed as a coupled process thanks to Bil

platform. Thus this platform is able to simulate the whole process of biodeterioration of concrete. Some

experiments were simulated by this model and the simulation results have been compared with experimental
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observations.

In the modelling, we consider homogeneous chemical reactions in the pore solution. The equilibrium

of different solid phases (i.e., portlandite, C-S-H gel, gypsum and calcium sulfide) and aqueous species in

concrete are considered as well. A generalization of the mass action law is used to describe the decalcification

of C-S-H. This theory encompasses the solid solution model and is easy to implement in transport-reaction

modeling. The diffusion of aqueous species is introduced into the model by Nernst-Planck equation, and

the numerical method couples the transport equations and the chemical reactions.

Precipitation and dissolution reactions could result in a porosity increase or drop, due to the volume

difference between cement hydrates and corrosion products. Thus, the changes in porosity have also been

taken into account by the balance of volume on the solid phases and a model was developed to handle

the swelling of gypsum induced by the damage of concrete. During H2S attack, the smaller molar volume

and the dissolution of CaS cause the reduction of solid volume which is responsible for the increase of

porosity. During the early time of H2SO4 attack, the porosity will decrease as the formation of gypsum,

whose molar volume is bigger than that of CH. Then the accumulation of gypsum could fill pores and

increase the inner pressure. When the inner pressure exceeds the strength of concrete, pore structure fails

and porosity increases. The formed gypsum could dissolve under peculiar boundary conditions and cause

a further increase in porosity.

Thus, the model can predict the chemical composites and corrosion depth of cementitious materials

immersed in static or flowing H2SO4 solution with different pH. By changes in the porosity of surface layer,

some differences between experimental observations and simulation results can be explained.

Not only chemical H2SO4 attack, but also biogenic H2SO4 attack can be simulated by this modelling.

We can deal with the biodeterioration of concrete in contact with two different SOB media: SOB suspension

where the evolution of pH is given and biofilm where the type of SOB and H2S gas level are given. For the

SOB suspension condition, H2SO4 production rate is modeled by a function of pH to fit the measurement

of pH evolution in suspension. The succession and activity of SOB in different pH range are considered.

For the biofilm, the amount and activity of SOB are constant. By WAST model (Jensen et al., 2009),

the oxidation rate of H2S and that of element S are governed by functions of concentration of H2S and S

respectively.

In this study, this model is applied to simulate the experimental works on the neutralization of concrete

surface (Joseph et al., 2012), chemical H2SO4 attack (Kawai et al., 2005) and biogenic H2SO4 attack

(De Muynck et al., 2009; Mori et al., 1992).

For H2S attack, a CaS-rich layer where CH and C-S-H are dissolved can be observed. When pH at the

surface decreases to 9, SOB could start to grow. Then the width of neutralized layer is about 0.1 mm. The
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accumulation of CaS could reduce the porosity at surface to protect inner part of the sample from aqueous

H2S penetration. However, if there is enough H2S the accumulated CaS would be dissolved. We consider

the time for pH at surface to decrease to 9 as the neutralization time which is governed by the H2S gas

level. When the amount of H2S gas is higher than 100 ppm, H2S is absorbed into pore solution of concrete

quite fast and pH at concrete surface could be reduced from about 12.4 to 9 in 2 days. While for H2S

gas less than 50 ppm, this time could be more than 1 month. Thus, the neutralization time is crucial for

biodeterioration of sewer pipes. By our model, the proper time of H2S incubation step of accelerate test

can be determined.

When immersed in a static H2SO4 solution, a porous layer containing gypsum and silica gel can by

observed at the surface of cement paste sample. Meanwhile, the C-S-H decalcification zone and CH disso-

lution zone are observed between the surface and the uncorroded zone. The diffusion of Ca2+ from the CH

dissolution front to the CS̄H2 precipitation front results in the accumulation of CS̄H2 at the surface. Hence

the volume of gypsum-rich layer expands a lot due to the accumulation of gypsum whose molar volume is

large. Due to the inner pressure caused by the precipitation of gypsum, damage of materials happens in

the overlap region of gypsum-rich zone and dissolution zone. Thus, the deterioration depth is defined as

the distance between the initial surface and the damage place of concrete sample.

In the flowing solution condition, the effect of flowing solution is modeled by the leaching effect which

removes the corrosion products. We consider that the external solution is free of calcium and silicon.

Consequently, calcium and silicon released from the dissolution front leave the material as a result of

concentration gradient. Thus, no significant gypsum layer can be observed at the surface where cement

paste is fully degraded. Compared to static solution condition, sample is corroded much heavier when it

is immersed in flowing solution which exposes more reactive surface for H2SO4 attack. Therefore, during

accelerate test the intensity of brush or flush is an important factor which should be controlled.

H2SO4 attack of concrete is very sensitive to the concentration of H2SO4. For the solution with lower

H2SO4 concentration, less acid penetrating into concrete is available to form gypsum. Thus the cement

paste is corroded slower. Long-term simulation showed that the corrosion rate of concrete under the

condition of pH = 2 is about 2 time less than that of pH = 1. The corrosion depth increases linearly with

the square root of time. Hence the environmental acidity in sewer pipes is a key factor which influence the

service life.

For biogenic H2SO4 attack, the activity of SOB and the cementitious material samples with neutralized

layer are involved. For the immersion test condition, pH in SOB suspension decreases very few during

early time due to the slow H2SO4 production rate of NSOB (Neutrophilic Sulfur-Oxidizing Bacteria). Due

to the alkalinity of concrete, pH in the SOB suspension near the concrete surface even increases at first.



120 September 16, 2013Conclusions and further discussion

During the later time of immersion, ASOB (Acidophilic Sulfur-Oxidizing Bacteria) rather than NSOB is

producing H2SO4 with a much higher rate. For the simulation reactor condition, H2S is absorbed into

biofilm where oxidation of H2S and element S are conducted by SOB. Since the oxidation rate of element

S is lower than that of H2S, element S accumulates in the biofilm. Due to the continuous supply of SOB

and H2S, H2SO4 is produced fast from the beginning. Hence pH in SOB suspensions or biofilms could be

reduced to 1-2 which results in heavy corrosion of concrete. Therefore, applying antibacterial materials in

sewer pipes (e.g., calcium aluminate cement) is a method to restrict the activity and amount of SOB in

biofilm (Alexander and Fourie, 2011; Herisson, 2012).

Under different conditions of biogenic H2SO4 attack, similar zones as those in chemical H2SO4 attack

condition are observed. Not only neutralized layer, but also concrete core is degraded by biogenic H2SO4.

Due to the diffusion of calcium towards the gypsum precipitation front, lots of gypsum accumulates at

concrete surface.

By adjusting the porosity and initial solid compositions in the surface region of the sample, the effect of

carbonated layer is investigated. Due to calcite accumulation at surface, the carbonated layer where porosity

is smaller than that of concrete core (Shen, 2012) protects the concrete core from H2SO4 penetration. In

this high density layer, the H2SO4 penetration is slowed down and the reactions are restricted. Thus the

corrosion rate is quite slow during the early time.

8.2 Further discussion and perspective

This model is able to predict the corrosion depth and service life of OPC concrete sewer pipes subjected

to biogenic H2SO4 attack. The change of solid compositions of concrete during biodeterioration can be

calculated. The influence of environmental and chemical factors can be indicated by this model. However,

there are still some developments could be conducted to improve the understanding of biodeterioration of

concrete.

Some modifies of modeling should be given priority for more accurate estimation:

- In this study, we assume infinite dilution approximation for aqueous species. Thus, the activity of

each aqueous species is equal to the molar concentration and that of solid component equals 1. Due to the

high ionization constant, this hypothesis is acceptable for H2SO4. However, for high H2S gas level such

approximation may be criticized since the concentrations of the aqueous species could become quite high.

An improved model considering the effects of the chemical activity could be developed in a future work.

- For now, we cannot address the coupling of H2S attack and H2SO4 attack in one step. Thus, the

effect of neutralization process is taken into account by considering the sample as fresh concrete with a

neutralized layer whose properties are determined by a separate simulation of H2S attack. Continuously
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simulation of the whole process of deterioration should be achieved in future work.

Due to the complex of biodeterioration process, we make some simplifying assumptions which should

be reconsidered in future works:

- For the neutralization process, the absorption of H2S gas is calculated by the empirical equation of

(Nielsen et al., 2012) rather than Henry’s law which is commonly used to describe the solubility of a gas

in a liquid. The exact mechanism of H2S absorption in sewer pipes should be studied. The temperature

dependence is neglected in the absorption of H2S gas in this study. According to (Vollertsen et al., 2008),

higher temperature accelerates H2S absorption. Such phenomena was tested by the experimental works

of (Joseph et al., 2012). Moreover, chemical oxidation of sulfide to element S may occur during the

neutralization process (Bagreev and Bandosz, 2005). Such reaction can provide the source of S for biofilm

formation during early time of biodeterioration. Thus, it is necessary to consider chemical oxidation of

sulfide in future modelling.

- For the failure of pore structure, we applied a simplified damage model. To make a more precise

prediction, a more detailed description of the physical behaviour of gypsum precipitation may also be

implemented. For example, according to (Azam, 2007), for gypsum gel the relationship between log of

pressure and reduction of porosity is linear. Furthermore, as more and more cement hydrates dissolve, the

cementitious materials is soften gradually, while in this study the materials is soften abruptly. Thus the

damage model part should be modified.

Due to the lack of understanding about the mechanism of H2SO4 attack of concrete, some experimental

observation can not be explained by this model:

- According to some experimental observations of H2SO4 attack (Kawai et al., 2005; Israel et al., 1997;

Fattuhi and Hughes, 1988), the corrosion rate of concrete with low W/C ratio is greater than that with high

W/C ratio, thereby disagreeing with our simulation results. In our model, the corrosion process is diffusion

controlled rather than reaction controlled which is claimed by (Ueda and Tatematsu, 1996). Furthermore,

diffusion coefficient of some species (e.g., SO2−

4 ) in concrete is not determined by measurement. Therefore,

the mechanism of H2SO4 attack should be investigated further. And more accurate parameters should be

collected.

To refine the model, more experimental results should be collected:

- To calculate the production of H2SO4 by SOB media, we employ a regression equation which is

only suitable for specific experiment condition and empirical model where the activity of SOB is constant.

Dealing with such a complex process, lots of work could be conducted to dispose of a more accurate

description of biodeterioration of sewer pipes. Further experimental study could be done to improve the

understanding of the biogenic oxidation of sulfide and get more quantitative information about the effect
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of microbiological/chemical factors (such as biomass, pH, temperature) on the production of H2SO4.

- To validate the modelling, the corrosion depth of simulation results is compared to experimental

results. Since change of solid compositions can be calculated by the model, some micro measurements of

the corroded layer, such as the solid phases profile and the porosity evolution of the samples, should be

conducted and compared with simulation results.

Moreover, the model could be used to describe the biodeterioration process of other types of concrete:

- The chemistry process of the biodeterioration of OPC concrete and that of concrete made by other

blended cement with additions (like slag, fly ash and silica fume) is similar. Thus modelling of the biodete-

rioration of other type of cementitious materials can be achieved by changing the content of CH and C-S-H

and the initial porosity. To provide assist in rational choice of adapted materials for sewage environment,

such study will be worth in future.
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Appendix A

Introduction of discrete and solid

solution models of C-S-H dissolution

There are different types of C-S-H, e.g. jennite with Ca/Si ratio of approximately 1.7, tobermorite with

Ca/Si ratio of approximately 0.83 and amorphous silica gel with Ca/Si ratio of 0. Table A.1 lists different

forms of C-S-H and their thermodynamical properties proposed by (Lothenbach et al., 2008).

Table A.1: Different C-S-H type proposed by (Lothenbach et al., 2008).

C-S-H type Ca/Si (x,y,z) logK
Amorphous silica gel 0 (0,1,0) -2.713
Tobermorite 0.83 (0.83,1,1.3) -12.19
Jennite 1.67 (1.67,1,2.1) -17.36

In discrete method, to describe the dissolution of C-S-H, we can use the same approach as the one

adopted for the CH dissolution (see Eq. (3.3) and Section 3.3),

QCxSyHz

KCxSyHz

=
(KCH)x(KSHt

)y

KCxSyHz

(

QCH

KCH

)x (

QSHt

KSHt

)y

(A.1)

where QSHt
= ρH4SiO0

4
is the activity product of amorphous silica. From Eq. (A.1), we can deduce the

stability domains for the amorphous silica SHt and the different types of C-S-H. Taking jennite as example

(see Table A.1), the equilibrium equation for jennite and amorphous silica is in the following form:

QJen

KJen
=

(KCH)1.67(KSHt
)

KJen

(

QCH

KCH

)1.67 (

QSHt

KSHt

)

(A.2)

The stability domains are shown in Fig. A.1. At the critical point (dashed line in the plot), log(QCH/KCH) =

−3.57. Combing with Eq. (3.13) we can get the threshold H2SO4 concentration ρSHt-Jen
H2SO4

≈ 1.3 ×
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10−22 mol/L.
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Figure A.1: Stability domains of jennite and amorphous silica gel.

Similarly we can calculate the stability domains with the system of jennite-tobermorite-silica gel, as

shown in Fig. A.2. The threshold H2SO4 concentration for tobermorite ρTob
H2SO4

≈ 6.2 × 10−20 mol/L and

for jennite ρJen
H2SO4

≈ 3.9 × 10−25 mol/L. When the H2SO4 concentration is lower than ρJen
H2SO4

, jennite is

stable, when it lays between ρJen
H2SO4

and ρTob
H2SO4

, tobermorite is stable, and when H2SO4 concentration

exceeds ρTob
H2SO4

, amorphous silica gel is stable.

Rather than the discrete model discussed above, a solid solution method which considers different solid

poles in equilibrium, is more appropriate to describe the continuous decalcification of C-S-H. Let’s consider

a solid solution composed of N end-members, Mi respectively (i = 1, ..., N). In the framework of the solid

solution theory, a reaction between the end-members (poles) to form a solid solution can be written as:

N
∑

i=1

niMi ⇋ (M1)n1(M2)n2 ...(MN )nN
(A.3)

Each end-member is assumed to be in thermodynamical equilibrium with the aqueous solution. The

chemical potential of the end-member i in the solid solution is given by:

µi = µ0
i +RT ln ai (A.4)

where µ0
i is the chemical potential of the pure end-member. The equilibrium between the end-member i

and the aqueous solution results in:
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Figure A.2: Stability domains of jennite, tobermorite and amorphous silica gel.

Ki =
Qi

ai

(A.5)

where

ai = λiXi (A.6)

In Eqs. (A.5) and (A.6), Ki denotes the equilibrium constant. Qi is the activity product. ai is the

chemical activity. Xi is the mole fraction of the component i within the solid solution and λi is the activity

coefficient. For a pure end-member, ai equals to 1, while in the framework of solid solution, ai follows Eq.

(A.6). Thus, for each end-member, the equilibrium between a solid solution and an aqueous solution can

be written as

Qi

Ki

= λiXi (A.7)

For an ideal solid solution, the chemical activity ai equals to the mole fraction Xi, i.e., λi=1. While

in the non-ideal solid solution, this two values are different. To accurately represent the C-S-H as a solid

solution, the end-members and the stoichiometric coefficients should be carefully chosen. Several possible

values are reported in the literature. (Atkinson et al., 1989) used two non-ideal solid solutions to describe

the behavior of C-S-H, based on experimental data from (Greenberg and Chang, 1965). For Ca/Si≤0.8,

end-members were chosen as S - nC·S·mH (amorphous silica - "tobermorite") and for Ca/Si>0.8, end-

members were chosen as nC·S·mH - CH ("tobermorite" - portlandite), where n = 0.833 and m = 0.917. For
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Ca/Si≥1.8, equilibrium with portlandite is added. (Börjesson et al., 1997) used an non-ideal solid solution

of CH - CaH2SiO4 for 1<Ca/Si≤1.43, based on data from (Kalousek, 1952). (Rahman et al., 1999) proposed

a similar model as (Börjesson et al., 1997), within the Ca/Si range from 1. to 1.5. (Kersten, 1996) proposed

a non-ideal binary solid solution CH - CaHSiO3.5·H2O based on the experimental data from (Greenberg

and Chang, 1965) and (Fujii and Kondo, 1981). (Kulik and Kersten, 2001) described the solubility of

C-S-H with a system of two ideal solid solutions: C-S-H-(I): S - tobermorite and C-S-H-(II): tobermorite

- jennite. The experimental data of (Greenberg and Chang, 1965) was used to calibrate the model, and

the applicable range of Ca/Si ratio is between 0 to 1.7. (Carey and Lichtner, 2007) proposed a non-ideal

binary solid solution (S - CH) calibrated with the experimental data from (Chen et al., 2004).

All the models above are able to reproduce the experimental results within the dispersion of experimental

data (Soler, 2007). Therefore it is hard to say which one is better. However, the models proposed by

(Atkinson et al., 1989), (Kersten, 1996), (Kulik and Kersten, 2001) and (Carey and Lichtner, 2007) are

applicable over a wider range of Ca/Si ratio than those of others.

Here we use an ideal solid solution with four poles, similar as that proposed by (Kulik and Kersten,

2001) with thermodynamical data from (Lothenbach et al., 2008). The stoichiometric and equilibrium

constants for the different poles are listed in Table A.2.

Combing Eq. (A.1) and Eq.(A.7), for each pole, we get

λiXi =
Qi

Ki

=
(KCH)xi (KSHt

)yi

KCxi
Syi

Hzi

(
QCH

KCH
)xi(

QSHt

KSHt

)yi (A.8)

Table A.2: Poles of a solid solution of C-S-H

C-S-H (pole) (x,y,z) logK 1

Amorphous Silica (0,1,0) -2.713
Tobermorite I (2,2.4,4) -28.26
Tobermorite II (1.5,1.8,3) -21.19
Jennite (1.5,0.9,2.4) -15.62

1 data from (Lothenbach et al., 2008)

With the hypothesis of ideal solid solution, λi = 1 and
∑

Xi = 1, we have the following equation:

∑

Ai(qCH)xi (qS)yi = 1 (A.9)

where,

Ai =
(KCH)xi (KSHt

)yi

KCxi
Syi

Hzi

, qCH =
QCH

KCH
, qS =

QSHt

KSHt

(A.10)

Eq. (A.9) indicates that qS is a function of qCH, qS(qCH), that we can solve. Thus, the mole fraction of

each end-member can be calculated by Eq. (A.8) as a function of qCH. The Ca/Si ratio can be attained as
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a function of qCH by using Eq. (A.11).

Ca/Si =

∑

Xixi
∑

Xiyi

= χ(qCH) (A.11)

The calculated mole fraction for each pole and the Ca/Si ratio as a function of qCH are illustrated in

Fig. A.3. We can see that for qCH=1, which means CH is in equilibrium with the aqueous solution, the

C-S-H is in the form of jennite. When qCH decreases, C-S-H will first decalcified to the form of tobermorite,

and finally to amorphous silica gel. Thus, Ca/Si ratio drops continuously as qCH decreases.
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Figure A.3: Mole fraction of different poles and Ca/Si evolution vs. qCH.

It is noteworthy that our new approach, which is introduced in Section 3.4, encompasses the solid

solution model involving any number of poles with coefficient (xi,yi,zi). Indeed, the solid solution theory

shows that Xi = Aiq
xi(F )yi , where F (q) =

QSHt

KSHt

. It is then easy to show that the average stoichiometric

coefficients are given by x = X(q) and y = Y (q) with

X(q) =
∑

i

(xiAiq
xiF yi) (A.12)

Y (q) =
∑

i

(yiAiq
xiF yi) (A.13)

Since the solid fraction has to satisfy
∑

Xi = 1, we obtain:

1 =
∑

i

(Aiq
xiF yi) (A.14)
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Hence deriving this last equation with respect to q leads to:

F ′

F
= −X/Y

q
(A.15)

which is akin to Eq. (3.26). Eq. (3.26) is a generalization of the mass action law for C-S-H with variable

Ca/Si ratio.



Appendix B

The finite volume method

The finite volume method is a discretization method well suited for the numerical simulation of various

types of conservation laws such as mass balance equations (Robert et al., 2000). Some of the important

features of the finite volume method are similar to those of the finite element method (arbitrary geometries,

structured/unstructured meshes). An additional feature is the local conservativity of the numerical fluxes

at the interface of two neighoring cells. conserved from one discretization cell to its neighbor. it is based

on a balance approach: a local balance is written on each discretization cell which is often called "control

volume" the boundary of the control volume is then obtained.

Let us introduce the method on a simple example. Consider a mass balance equation of the form

∂m

∂t
= −divw (B.1)

where m(ρ) is a mass content of a substance per unit volume of porous material and considered as a

function of a primary variable ρ which is typically of a concentration. The flow vector of that substance,

w, is assumed to be given by a transport’s law, typically a the Fick’s law:

w = −D∇ρ (B.2)

The finite volume method is obtained by a discrete balance in the elements of a mesh called "control

volumes". Integrating the previous equation over a control volume K yields the following balance equation

over K:

ΩK

mn+1
K −mn

K

∆t
+

∑

K′

wKK′ = 0 (B.3)
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where wKK′ expresses an approximation of
∫

∂ΩKK′

w · nds for any K and any neighor K ′ of K:

wKK′ = −|∂ΩKK′ |DρK′ − ρK

dKK′

(B.4)

where |∂ΩKK′ | is the surface area between K and K ′ and dKK′ is the distance between the "centers" of K

and K ′. The surface ∂ΩKK′ is also assumed to be perpendicular to the line joining the "centers" of K and

K ′ in order to be consistent with the Fick’s law. The resolution of the set of equations (B.3) is performed

by a Newton’s iteration method until the variation of ρn+1
K between two successive iterations, δρn+1

K , is

small enough and meets a convergence criterion of the form

δρn+1
K

∆ρobj
< ǫ (B.5)

where ∆ρobj is a given objective variation of ρ and ǫ a small positive number compared to unity, typically

10 −4.
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