M. Alexander and C. Fourie, Performance of sewer pipe concrete mixtures with portland and calcium aluminate cements subject to mineral and biogenic acid attack, Materials and Structures, vol.24, issue.251, pp.313-330, 2011.
DOI : 10.1617/s11527-010-9629-1

A. Allahverdi and F. Skvára, Acidic corrosion of hydrated cement based materials, Ceramics Silikáty, vol.44, issue.4, pp.152-160, 2000.

D. Allsopp, K. J. Seal, and C. Gaylarde, Introduction to biodeterioration, 2004.
DOI : 10.1017/cbo9780511617065

D. Apgar, J. Witherspoon, C. Easter, R. Corsi, B. Forbes et al., Minimization of Odors and Corrosion in Collection Systems, Water Intelligence Online, vol.7, issue.0, 2007.
DOI : 10.2166/9781780403724

A. Atkinson, J. A. Hearne, and C. F. Knights, O gels, J. Chem. Soc., Dalton Trans., issue.12, pp.2371-2379, 1989.
DOI : 10.1039/DT9890002371

S. Azam, Study on the geological and engineering aspects of anhydrite/gypsum transition in the arabian gulf coastal deposits. Bulletin of engineering geology and the environment, pp.177-185, 2007.

A. Bagreev and T. J. Bandosz, On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents. Industrial & engineering chemistry research, pp.530-538, 2005.

L. Barton and F. Tomei, Characteristics and Activities of Sulfate-Reducing Bacteria, Biotechnology Handbooks, vol.8, pp.1-1, 1995.
DOI : 10.1007/978-1-4899-1582-5_1

M. Bassuoni and M. Nehdi, Resistance of self-consolidating concrete to sulfuric acid attack with consecutive ph reduction. Cement and concrete research, pp.1070-1084, 2007.

R. E. Beddoe and H. W. Dorner, Modelling acid attack on concrete: Part I. The essential mechanisms, Cement and Concrete Research, vol.35, issue.12, pp.2333-2339, 2005.
DOI : 10.1016/j.cemconres.2005.04.002

D. Bentz, Cemhyd3d: A three-dimensional cement hydration and microstructure development modeling package. version 3.0, nistir 7232, 2005.

A. Bielefeldt, M. G. Gutierrez-padilla, S. Ovtchinnikov, J. Silverstein, and M. Hernandez, Bacterial Kinetics of Sulfur Oxidizing Bacteria and Their Biodeterioration Rates of Concrete Sewer Pipe Samples, Journal of Environmental Engineering, vol.136, issue.7, pp.731-738, 2009.
DOI : 10.1061/(ASCE)EE.1943-7870.0000215

E. Bock and W. Sand, Applied electron microscopy on the biogenic destruction of concrete and blocks. use of the transmission electron microscope for identification of mineral acid producing bacteria, 8th International Conference on Cement Microscopy, 1986.

M. Böhm, J. Devinny, F. Jahani, and G. Rosen, On a moving-boundary system modeling corrosion in sewer pipes, Applied Mathematics and Computation, vol.92, issue.2-3, pp.247-269, 1998.
DOI : 10.1016/S0096-3003(97)10039-X

S. Börjesson, A. Emrén, and C. Ekberg, A thermodynamic model for the calcium silicate hydrate gel, modelled as a non-ideal binary solid solution, Cement and Concrete Research, vol.27, issue.11, pp.1649-1657, 1997.
DOI : 10.1016/S0008-8846(97)00149-X

F. Bouchelaghem, A numerical and analytical study on calcite dissolution and gypsum precipitation, Applied Mathematical Modelling, vol.34, issue.2, pp.467-480, 2010.
DOI : 10.1016/j.apm.2009.06.004

H. Brouwers and R. Vaneijk, Alkali concentrations of pore solution in hydrating OPC, Cement and Concrete Research, vol.33, issue.2, pp.191-196, 2003.
DOI : 10.1016/S0008-8846(02)01022-0

J. Carey and P. Lichtner, Calcium silicate hydrate (csh) solid solution model applied to cement degradation using the continuum reactive transport model flotran, Transport Properties and Concrete Quality: Materials Science of Concrete, pp.73-106, 2007.

V. Chalupeck-`-chalupeck-`-y, T. Fatima, J. Kruschwitz, and A. Muntean, Macroscopic corrosion front computations of sulfate attack in sewer pipes based on a micro-macro reaction-diffusion model. arXiv preprint, 2012.

J. J. Chen, J. J. Thomas, H. F. Taylor, J. , and H. M. , Solubility and structure of calcium silicate hydrate, Cement and Concrete Research, vol.34, issue.9, pp.1499-1519, 2004.
DOI : 10.1016/j.cemconres.2004.04.034

X. Chen, S. Wu, and J. Zhou, Influence of porosity on compressive and tensile strength of cement mortar, Construction and Building Materials, vol.40, pp.869-874, 2013.
DOI : 10.1016/j.conbuildmat.2012.11.072

K. Cho and T. Mori, A newly isolated fungus participates in the corrosion of concrete sewer pipes, Water Science and Technology, vol.31, issue.7, pp.31263-271, 1995.
DOI : 10.1016/0273-1223(95)00343-L

M. D. Cohen and B. Mather, Sulfate attack on concrete: research needs, ACI Materials Journal, vol.88, issue.1, 1991.

G. Constantinides and F. Ulm, The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling, Cement and Concrete Research, vol.34, issue.1, pp.67-80, 2004.
DOI : 10.1016/S0008-8846(03)00230-8

B. Conway and B. Conway, Ionic hydration in chemistry and biophysics, 1981.

G. Cragnolino and O. H. Tuovinen, The role of sulphate-reducing and sulphur-oxidizing bacteria in the localized corrosion of iron-base alloys. a review, International biodeterioration, vol.20, issue.1, pp.9-26, 1984.

B. Cwalina, Biodeterioration of concrete, Architecture Civil Engineering Environment, vol.1, issue.4, pp.133-140, 2008.

J. Davis, D. Nica, K. Shields, and D. Roberts, Analysis of concrete from corroded sewer pipe, International Biodeterioration & Biodegradation, vol.42, issue.1, pp.75-84, 1998.
DOI : 10.1016/S0964-8305(98)00049-3

N. De-belie, J. Monteny, A. Beeldens, E. Vincke, D. Van-gemert et al., Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes, Cement and Concrete Research, vol.34, issue.12, pp.342223-2236, 2004.
DOI : 10.1016/j.cemconres.2004.02.015

D. Muynck, W. De-belie, N. Verstraete, and W. , Effectiveness of admixtures, surface treatments and antimicrobial compounds against biogenic sulfuric acid corrosion of concrete. Cement and Concrete Composites, pp.31163-170, 2009.

D. Windt, L. Devillers, and P. , Modeling the degradation of Portland cement pastes by biogenic organic acids, Cement and Concrete Research, vol.40, issue.8, pp.1165-1174, 2010.
DOI : 10.1016/j.cemconres.2010.03.005

URL : https://hal.archives-ouvertes.fr/hal-00557835

M. Diercks, W. Sand, and E. Bock, Microbial corrosion of concrete, Experientia, vol.5, issue.6, pp.514-516, 1991.
DOI : 10.1007/BF01949869

R. Edyvean, Biodeterioration problems of north sea oil and gas production?a review. International biodeterioration, pp.199-231, 1987.

S. Ehrich, Investigation into the corrosion of cement-bound construction materials by biogenic sulfuric acid, 1998.

S. Ehrich, L. Helard, R. Letourneux, J. Willocq, and E. Bock, Biogenic and Chemical Sulfuric Acid Corrosion of Mortars, Journal of Materials in Civil Engineering, vol.11, issue.4, p.340, 1999.
DOI : 10.1061/(ASCE)0899-1561(1999)11:4(340)

T. Fatima and A. Muntean, Sulfate attack in sewer pipes: Derivation of a concrete corrosion model via two-scale convergence, Nonlinear Analysis: Real World Applications, vol.15, 2012.
DOI : 10.1016/j.nonrwa.2012.01.019

N. Fattuhi and B. Hughes, The performance of cement paste and concrete subjected to sulphuric acid attack, Cement and Concrete Research, vol.18, issue.4, pp.545-553, 1988.
DOI : 10.1016/0008-8846(88)90047-6

H. Flemming, Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polymer degradation and stability, pp.309-315, 1998.

K. Fujii and W. Kondo, Heterogeneous equilibrium of calcium silicate hydrate in water at 30 ??C, J. Chem. Soc., Dalton Trans., issue.2, pp.645-651, 1981.
DOI : 10.1039/DT9810000645

A. Gabrisova, J. Havlica, and S. Sahu, Stability of calcium sulphoaluminate hydrates in water solutions with various pH values, Cement and Concrete Research, vol.21, issue.6, pp.1023-1027, 1991.
DOI : 10.1016/0008-8846(91)90062-M

J. Galíndez and J. Molinero, Assessment of the long-term stability of cementitious barriers of radioactive waste repositories by using digital-image-based microstructure generation and reactive transport modelling, Cement and Concrete Research, vol.40, issue.8, pp.1278-1289, 2010.
DOI : 10.1016/j.cemconres.2009.11.006

E. J. Garboczi, D. P. Bentz, K. A. Snyder, N. S. Martys, P. E. Stutzman et al., An electronic monograph: Modeling and measuring the structure and properties of cement-based materials. NIST, Materials and Construction Research Division, 2005.

C. Geuzaine, J. Remacle, and . Gmsh, A 3-d finite element mesh generator with built-in pre-and postprocessing facilities, International Journal for Numerical Methods in Engineering, issue.11, pp.791309-1331, 2009.

R. Gollop and H. Taylor, Microstructural and microanalytical studies of sulfate attack III. Sulfate-resisting portland cement: Reactions with sodium and magnesium sulfate solutions, Cement and Concrete Research, vol.25, issue.7, pp.1581-1590, 1995.
DOI : 10.1016/0008-8846(95)00151-2

S. Greenberg and T. Chang, Investigation of the Colloidal Hydrated Calcium Silicates. II. Solubility Relationships in the Calcium Oxide-Silica-Water System at 25??, The Journal of Physical Chemistry, vol.69, issue.1, 1965.
DOI : 10.1021/j100885a027

J. Gu, T. E. Ford, N. S. Berke, M. , and R. , Biodeterioration of concrete by the fungus Fusarium, International Biodeterioration & Biodegradation, vol.41, issue.2, pp.101-109, 1998.
DOI : 10.1016/S0964-8305(98)00034-1

J. Guezennec, O. Ortega-morales, G. Raguenes, and G. Geesey, Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents, FEMS Microbiology Ecology, vol.26, issue.2, pp.89-99, 2006.
DOI : 10.1111/j.1574-6941.1998.tb00495.x

M. G. Gutiérrez-padilla, A. Bielefeldt, S. Ovtchinnikov, M. Hernandez, and J. Silverstein, Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes, Cement and Concrete Research, vol.40, issue.2, pp.293-301, 2010.
DOI : 10.1016/j.cemconres.2009.10.002

M. G. Gutiérrez-padilla, A. Bielefeldt, S. Ovtchinnikov, M. Hernandez, and J. Silverstein, Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes, Cement and Concrete Research, vol.40, issue.2, pp.293-301, 2010.
DOI : 10.1016/j.cemconres.2009.10.002

C. Hall, J. Marchand, B. Gerard, and M. Sosoro, Transport of fluids in homogeneous isotropic cementitious materials, RILEM REPORT, pp.5-6, 1997.

H. Jr and A. P. , The acidophilic thiobacilli and other acidophilic bacteria that share their habitat, Annual Reviews in Microbiology, vol.38, issue.1, pp.265-292, 1984.

J. Herisson, Biodétérioration des matériaux cimentaires dans les ouvrages d'assainissement: étude comparative du ciment d'aluminate de calcium et du ciment Portland, 2012.

J. Herisson, E. D. Van-hullebusch, M. Moletta-denat, P. Taquet, C. et al., Toward an accelerated biodeterioration test to understand the behavior of Portland and calcium aluminate cementitious materials in sewer networks, International Biodeterioration & Biodegradation, vol.84, pp.236-243, 2013.
DOI : 10.1016/j.ibiod.2012.03.007

URL : https://hal.archives-ouvertes.fr/hal-00877540

E. Hudon, S. Mirza, and D. Frigon, Biodeterioration of Concrete Sewer Pipes: State of the Art and Research Needs, Journal of Pipeline Systems Engineering and Practice, vol.2, issue.2, pp.42-52, 2011.
DOI : 10.1061/(ASCE)PS.1949-1204.0000072

H. Hueck, The biodeterioration of materials-an appraisal Microbiological and allied aspects, Biodeterioration of materials Proceedings of the 1st international symposium. Southampton, pp.9-14, 1968.

B. Huet, J. Prevost, and G. Scherer, Quantitative reactive transport modeling of Portland cement in CO2-saturated water, International Journal of Greenhouse Gas Control, vol.4, issue.3, pp.561-574, 2010.
DOI : 10.1016/j.ijggc.2009.11.003

B. Hughes and J. Guest, Limestone and siliceous aggregate concretes subjected to sulphuric acid attack. Magazine of Concrete Research, pp.11-18, 1978.

P. Hughes, D. Fairhurst, I. Sherrington, N. Renevier, L. Morton et al., Microscopic study into biodeterioration of marine concrete, International Biodeterioration & Biodegradation, vol.79, pp.14-19, 2013.
DOI : 10.1016/j.ibiod.2013.01.007

T. Hvitved-jacobsen, J. Vollertsen, and N. Tanaka, Wastewater quality changes during transport in sewers ??? An integrated aerobic and anaerobic model concept for carbon and sulfur microbial transformations, Water Science and Technology, vol.38, issue.10, pp.257-264, 1998.
DOI : 10.1016/S0273-1223(98)00757-4

A. Idriss, S. Negi, J. Jofriet, H. , and G. , Effect of hydrogen sulphide emissions on cement mortar specimens, Canadian Biosystems Engineering, vol.43, issue.5, 2001.

R. L. Islander, J. S. Devinny, F. Mansfeld, A. Postyn, and H. Shih, Microbial Ecology of Crown Corrosion in Sewers, Journal of Environmental Engineering, vol.117, issue.6, pp.751-770, 1991.
DOI : 10.1061/(ASCE)0733-9372(1991)117:6(751)

N. Ismail, T. Nonaka, S. Noda, and T. Mori, Effect of carbonation on microbial corrosion of concretes., Doboku Gakkai Ronbunshu, vol.20, issue.474, pp.133-138, 1993.
DOI : 10.2208/jscej.1993.474_133

D. Israel, D. Macphee, and E. Lachowski, Acid attack on pore-reduced cements, Journal of Materials Science, vol.32, issue.15, pp.4109-4116, 1997.
DOI : 10.1023/A:1018610109429

F. Jahani, J. Devinny, F. Mansfeld, I. Rosen, Z. Sun et al., Investigations of Sulfuric Acid Corrosion of Concrete. II: Electrochemical and Visual Observations, Journal of Environmental Engineering, vol.127, issue.7, pp.580-584, 2001.
DOI : 10.1061/(ASCE)0733-9372(2001)127:7(580)

F. Jahani and J. Devinny, Investigations of Sulfuric Acid Corrosion of Concrete. I: Modeling and Chemical Observations, Journal of Environmental Engineering, vol.127, issue.7, pp.572-279, 2005.
DOI : 10.1061/(ASCE)0733-9372(2001)127:7(572)

H. Jennings, Colloid model of c-s-h and implications to the problem of creep and shrinkage, Materials and structures, vol.37, issue.1, pp.59-70, 2004.

H. Jensen, A. Nielsen, T. Hvitved-jacobsen, and J. Vollertsen, Modeling of Hydrogen Sulfide Oxidation in Concrete Corrosion Products from Sewer Pipes, Water Environment Research, vol.81, issue.4, pp.365-373, 2009.
DOI : 10.2175/106143008X357110

H. S. Jensen, Hydrogen sulfide induced concrete corrosion of sewer networks, 2008.

H. S. Jensen, A. H. Nielsen, T. Hvitved-jacobsen, and J. Vollertsen, Hydrogen sulfide initiated corrosion in concrete sewers?a conceptual approach for prediction, Proceedings from 11th International Conference of Urban Drainage, 2008.

A. P. Joseph, J. Keller, H. Bustamante, and P. L. Bond, Surface neutralization and H2S oxidation at early stages of sewer corrosion: Influence of temperature, relative humidity and H2S concentration, Water Research, vol.46, issue.13, 2012.
DOI : 10.1016/j.watres.2012.05.011

W. Kaempfer and M. Berndt, Polymer modified mortar with high resistance to acid to corrosion by biogenic sulfuric acid, Proceedings of the IXth ICPIC Congress, pp.14-18, 1998.

W. Kaempfer and M. Berndt, Estimation of service life of concrete pipes in sewer networks, Proceedings of the 8th Conference on Durability of Building Materials and Components, pp.36-45, 1999.

G. Kalousek, Application of differential thermal analysis in a study of the system lime?silica?water, Proceedings of the Third International Symposium on the Chemistry of Cement, pp.296-311, 1952.

K. Kawai, S. Yamaji, and T. Shinmi, Concrete deterioration caused by sulfuric acid attack, 10 th DBMC International Conference On Durability of Building Materials and Component, 2005.

E. S. Kempner, Acid production by thiobacillus thiooxidans, Journal of Bacteriology, vol.92, issue.6, pp.1842-1843, 1966.

M. Kersten, Aqueous solubility diagrams for cementitious waste stabilization systems. 1. the csh solidsolution system. Environmental science & technology, pp.2286-2293, 1996.
DOI : 10.1021/es950681b

D. Kulik and M. Kersten, Aqueous Solubility Diagrams for Cementitious Waste Stabilization Systems: II, End-Member Stoichiometries of Ideal Calcium Silicate Hydrate Solid Solutions, Journal of the American Ceramic Society, vol.69, issue.12, pp.3017-3026, 2001.
DOI : 10.1111/j.1151-2916.2001.tb01130.x

C. Lawrence, Sulphate attack on concrete. Magazine of Concrete Research, pp.249-264, 1990.
DOI : 10.1680/macr.1990.42.153.249

P. Lichtner, Flotran user's manual. Rep. LA-UR, 2001.

D. Lide, CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC Pr I Llc, 2004.

B. Lothenbach, T. Matschei, G. Möschner, and F. P. Glasser, Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement, Cement and Concrete Research, vol.38, issue.1, pp.1-18, 2008.
DOI : 10.1016/j.cemconres.2007.08.017

C. Magniont, M. Coutand, A. Bertron, X. Cameleyre, C. Lafforgue et al., A new test method to assess the bacterial deterioration of cementitious materials, Cement and Concrete Research, vol.41, issue.4, pp.429-438, 2011.
DOI : 10.1016/j.cemconres.2011.01.014

M. Mainguy, C. Tognazzi, J. Torrenti, and F. Adenot, Modelling of leaching in pure cement paste and mortar, Cement and Concrete Research, vol.30, issue.1, pp.83-90, 2000.
DOI : 10.1016/S0008-8846(99)00208-2

I. Maruyama and G. Igarashi, Hydration model of portland cement for structural integrity analysis, Proceedings of International Symposium on the Ageing Management & Maintenance of Nuclear Power Plant, pp.123-144, 2010.

K. Milde, W. Sand, W. Wolff, and E. Bock, Thiobacilli of the Corroded Concrete Walls of the Hamburg Sewer System, Microbiology, vol.129, issue.5, pp.1327-1333, 1983.
DOI : 10.1099/00221287-129-5-1327

R. Mitchell and J. Gu, Changes in the biofilm microflora of limestone caused by atmospheric pollutants, International Biodeterioration & Biodegradation, vol.46, issue.4, pp.299-303, 2000.
DOI : 10.1016/S0964-8305(00)00105-0

A. Morandeau, M. Thiéry, and P. Dangla, An original use of carbonation profiles to investigate kinetics, microstructurale changes and released water for type-i cement-based materials, 3rd International conference on the durability of concrete structures, 2012.

T. Mori, M. Koga, Y. Hikosaka, T. Nonaka, F. Mishina et al., Microbial corrosion of concrete sewer pipes, h2s production from sediments and determination of corrosion rate, Water Science & Technology, vol.23, pp.7-91275, 1991.

T. Mori, T. Nonaka, K. Tazaki, M. Koga, Y. Hikosaka et al., Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes, Water Research, vol.26, issue.1, pp.29-37, 1992.
DOI : 10.1016/0043-1354(92)90107-F

S. Nesic, S. Wang, H. Fang, W. Sun, L. et al., A new updated model of co2/h2s corrosion in multiphase flow, CORROSION, 2008.

D. Nica, J. Davis, L. Kirby, G. Zuo, and D. Roberts, Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers, International Biodeterioration & Biodegradation, vol.46, issue.1, pp.61-68, 2000.
DOI : 10.1016/S0964-8305(00)00064-0

A. Nielsen, T. Hvitved-jacobsen, and J. Vollertsen, Kinetics and stoichiometry of sulfide oxidation by sewer biofilms, Water Research, vol.39, issue.17, pp.4119-4125, 2005.
DOI : 10.1016/j.watres.2005.07.031

A. H. Nielsen, J. Vollertsen, H. S. Jensen, T. Wium-andersen, and T. Hvitved-jacobsen, Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers, Water Research, vol.42, issue.15, pp.42-4206, 2008.
DOI : 10.1016/j.watres.2008.07.013

A. H. Nielsen, T. Hvitved-jacobsen, and J. Vollertsen, Effect of Sewer Headspace Air-Flow on Hydrogen Sulfide Removal by Corroding Concrete Surfaces, Water Environment Research, vol.84, issue.3, pp.265-273, 2012.
DOI : 10.2175/106143012X13347678384206

S. Okabe, M. Odagiri, T. Ito, and H. Satoh, Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems, Applied and Environmental Microbiology, vol.73, issue.3, pp.971-980, 2007.
DOI : 10.1128/AEM.02054-06

W. Olmstead and H. Hamlin, Converting portions of the los angeles outfall sewer into a septic tank, Engineering News and American Railway Journal, vol.44, pp.317-318, 1900.

S. Pantazopoulou and R. Mills, Microstructural aspects of the mechanical response of plain concrete, ACI Materials Journal, vol.92, issue.6, 1995.

C. Parker, THE CORROSION OF CONCRETE, Australian Journal of Experimental Biology and Medical Science, vol.23, issue.2, p.81, 1945.
DOI : 10.1038/icb.1945.13

C. Parker, Mechanics of corrosion of concrete sewers by hydrogen sulfide, Sewage and Industrial Wastes, vol.23, issue.12, pp.1477-1485, 1951.

V. Pavlik, Corrosion of hardened cement paste by acetic and nitric acids part I: Calculation of corrosion depth, Cement and Concrete Research, vol.24, issue.3, pp.551-562, 1994.
DOI : 10.1016/0008-8846(94)90144-9

I. Perry, T. D. Mcnamara, C. J. , M. , and R. , Biodeterioration of stone, Scientific Examination of Art: Modern Techniques in Conservation and Analysis; Sackler National Academy of Sciences Colloquium, pp.72-86, 2005.

J. Racine, gnuplot 4.0: a portable interactive plotting utility, Journal of Applied Econometrics, vol.90, issue.1, pp.133-141, 2006.
DOI : 10.1002/jae.885

M. M. Rahman, S. Nagasaki, and S. Tanaka, A model for dissolution of CaO-SiO2-H2O gel at Ca/Si > 1, Cement and Concrete Research, vol.29, issue.7, pp.1091-1097, 1999.
DOI : 10.1016/S0008-8846(99)00092-7

E. Reardon, An ion interaction model for the determination of chemical equilibria in cement/water systems, Cement and Concrete Research, vol.20, issue.2, pp.175-192, 1990.
DOI : 10.1016/0008-8846(90)90070-E

J. Redner, E. Esfandi, and R. Hsi, Evaluation of protective coatings for concrete exposed to sulfide generation in wastewater treatment facilities, Journal of Protective Coatings and Linings, vol.8, pp.48-58, 1991.

J. Redner, R. Hsi, and E. Esfandi, Evaluating coatings for concrete in wastewater facilities: update, Journal of Protect Coatings Linings, vol.11, pp.51-61, 1994.

J. Rigdon and C. Beardsley, Corrosion of Concrete by Autotrophes, CORROSION, vol.14, issue.4, pp.60-62, 1956.
DOI : 10.5006/0010-9312-14.4.60

E. Robert, G. Thierry, R. , and H. , Finite volume methods of Handbook of Numerical Analysis, Solution of Equation in Rn Techniques of Scientific Computing, 2000.

D. Roberts, D. Nica, G. Zuo, D. , and J. , Quantifying microbially induced deterioration of concrete: initial studies, International Biodeterioration & Biodegradation, vol.49, issue.4, pp.227-234, 2002.
DOI : 10.1016/S0964-8305(02)00049-5

M. Sanchez-silva and D. Rosowsky, Biodeterioration of Construction Materials: State of the Art and Future Challenges, Journal of Materials in Civil Engineering, vol.20, issue.5, pp.352-365, 2008.
DOI : 10.1061/(ASCE)0899-1561(2008)20:5(352)

W. Sand, Microbial corrosion and its inhibition, Biotechnology Set, pp.265-316, 2008.
DOI : 10.1002/9783527620937.ch10

J. Shen, Reactive transport modeling of CO2 through cementitious materials under CO2 geological storage conditions, International Journal of Greenhouse Gas Control, vol.18, 2012.
DOI : 10.1016/j.ijggc.2013.07.003

URL : https://hal.archives-ouvertes.fr/hal-00905453

J. M. Soler, Thermodynamic description of the solubility of c-s-h gels in hydrated portland cement literature review, 2007.

C. Steefel, Gimrt, version 1.2: Software for modeling multicomponent, multidimensional reactive transport . User's Guide, 2001.

Y. Su, K. Cheng, J. , and Y. , Amplified potentiometric determination of pk(00), pk(0), pk(l), and pk(2) of hydrogen sulfides with ag(2)s ise e, Talanta, issue.10, pp.441757-1763, 1997.

M. Thiery, Modélisation de la carbonatation atmosphérique des matériaux cimentaires:(prise en compte des effets cinétiques et des modifications microstructurales et hydriques) École Nationale des Ponts et Chaussées, 2006.

B. Tian and M. Cohen, Does gypsum formation during sulfate attack on concrete lead to expansion? Cement and Concrete Research, pp.117-123, 2000.

R. Tich-`-tich-`-y, A. Janssen, J. Grotenhuis, G. Lettinga, R. et al., Possibilities for using biologically-produced sulphur for cultivation of Thiobacilli with respect to bioleaching processes, Bioresource Technology, vol.48, issue.3, pp.221-227, 1994.
DOI : 10.1016/0960-8524(94)90150-3

K. Torii and M. Kawamura, Effects of fly ash and silica fume on the resistance of mortar to sulfuric acid and sulfate attack, Cement and Concrete Research, vol.24, issue.2, pp.361-370, 1994.
DOI : 10.1016/0008-8846(94)90063-9

C. Tsonopoulos, D. M. Coulson, and L. B. Inman, Ionization constants of water pollutants, Journal of Chemical & Engineering Data, vol.21, issue.2, pp.190-193, 1976.
DOI : 10.1021/je60069a008

H. Ueda and H. Tatematsu, Deterioration mechanism of hardened cement paste by various acids, Proceedings of Japan Concrete Institute, pp.879-887, 1996.

T. Van-gerven, G. Cornelis, E. Vandoren, and C. Vandecasteele, Effects of carbonation and leaching on porosity in cement-bound waste, Waste Management, vol.27, issue.7, pp.977-985, 2007.
DOI : 10.1016/j.wasman.2006.05.008

E. Vincke, S. Verstichel, J. Monteny, and W. Verstraete, A new test procedure for biogenic sulfuric acid corrosion of concrete, Biodegradation, vol.10, issue.6, pp.421-428, 1999.
DOI : 10.1023/A:1008309320957

E. Vincke, J. Monteny, A. Beeldens, N. Belie, L. Taerwe et al., Recent developments in research on biogenic sulfuric acid attack of concrete. Environmental Technologies to treat Sulfur Pollution?Principles and Engineering, pp.515-541, 2000.

E. Vincke, N. Boon, and W. Verstraete, Analysis of the microbial communities on corroded concrete sewer pipes ? a case study, Applied Microbiology and Biotechnology, vol.57, issue.5-6, pp.776-785, 2001.
DOI : 10.1007/s002530100826

T. Voigt and S. P. Shah, Properties of early-age portland cement mortar monitored with shear wave reflection method, ACI Materials Journal, vol.101, issue.6, 2004.

J. Vollertsen, A. H. Nielsen, H. S. Jensen, T. Wium-andersen, and T. Hvitved-jacobsen, Corrosion of concrete sewers???The kinetics of hydrogen sulfide oxidation, Science of The Total Environment, vol.394, issue.1, pp.162-170, 2008.
DOI : 10.1016/j.scitotenv.2008.01.028

J. Vollertsen, A. H. Nielsen, H. S. Jensen, E. A. Rudelle, and T. Hvitved-jacobsen, Modeling the corrosion of concrete sewers, 2011.

T. Warscheid and J. Braams, Biodeterioration of stone: a review, International Biodeterioration & Biodegradation, vol.46, issue.4, pp.343-368, 2000.
DOI : 10.1016/S0964-8305(00)00109-8

R. Weast, M. Astle, and W. Beyer, CRC handbook of chemistry and physics, 1988.

J. Westall, J. Zachary, and F. Morel, MINEQL: A computer program for the calculation of chemical equilibrium composition of aqueous systems, 1976.

N. Wiberg, Holleman-wiberg's inorganic chemistry, 2001.

A. P. Wood, C. A. Woodall, K. , and D. P. , Halothiobacillus neapolitanus strain oswa isolated from " the old sulphur well " at harrogate (yorkshire, england) Systematic and applied microbiology, pp.746-748, 2005.

T. Xu, E. Sonnenthal, N. Spycher, and K. Pruess, Toughreact user's guide: A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media, v1. 2.1, 2008.

G. Ye, Z. Sun, T. Voigt, K. Van-breugel, and S. Shah, A micromechanic model for characterization of cement paste at early age validated with experiments, International Symposium: Advances in Concrete through Science and Engineering, 2004.

C. Yongsiri, J. Vollertsen, and T. Hvitved-jacobsen, Effect of Temperature on Air-Water Transfer of Hydrogen Sulfide, Journal of Environmental Engineering, vol.130, issue.1, pp.104-109, 2004.
DOI : 10.1061/(ASCE)0733-9372(2004)130:1(104)

M. Yudenfreund, I. Odler, and S. Brunauer, Hardened portland cement pastes of low porosity I. Materials and experimental methods, Cement and Concrete Research, vol.2, issue.3, pp.313-330, 1972.
DOI : 10.1016/0008-8846(72)90073-7

I. Zekker, T. Tenno, A. Selberg, and K. Uiga, Dissolution Modeling and Experimental Measurement of CaS-H2O Binary System, Chinese Journal of Chemistry, vol.9, issue.4, pp.2327-2336, 2011.
DOI : 10.1002/cjoc.201180399

T. Zherebyateva, E. Lebedeva, and G. Karavako, Microbiological corrosion of concrete structures of hydraulic facilities, Geomicrobiology Journal, vol.43, issue.2-3, pp.119-127, 1991.
DOI : 10.1007/BF00454856

V. Zivica and A. Bajza, Acidic attack of cement-based materials?a review part 2. factors of rate of acidic attack and protective measures. Construction and building materials, pp.215-222, 2002.