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1. INTRODUCTION 

 The stress state is a characteristic parameter of the material state, together with the 

microstructure and the texture, it influences the material properties. That is why the stress 

analysis is of the great significance in industry and technology and became an important 

part of materials science. Progress in materials science and technology brought new 

challenges for stress analysis and various destructive and nondestructive methods have 

been developed. 

 Residual stresses are the stresses that remain after the original cause of the stresses 

(external forces, heat gradient) has been removed [1]. They can result from temperature or 

deformation gradients which are present in almost every step of material processing. 

Residual stresses can occur as a consequence of various technological treatments and 

manufacturing processes, but they can also arise in the component during its service life. 

Both the magnitude and the spatial distribution of residual stresses play key role in the 

behaviour of the material subjected either to heat treatment or plastic deformation. The 

strain - stress analysis is of particular utility for elucidating causes of failure. Depending on 

the orientation and value of the residual stresses superimposed by the external loads they 

can be unfavorable or beneficial for the component. The failure of a component in most 

cases starts in the near-surface area and occurs due to the initiation of plastic deformation 

or fracture when material is subjected to tensile loads. What is more all kinds of scratches, 

notches, etc. concentrate additional applied tensile stress near the surface which can cause 

the initiation of a crack. That is why; usually it is favorable with respect to the component 

lifetime to create compressive residual stresses in the near-surface area, which can stop 

fatigue crack propagation [2]. The basic mechanical surface treatments which allow 

gaining compressive residual stresses are deep-rolling and shot-peening [2, 3].  
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 One of the ways to improve surface properties of the material are coatings. They 

can be beneficial in example for corrosion or wear resistance and can provide the long-

term surface protection. The lifetime of a coating is strongly dependent on the residual 

stresses profile in the surface area. 

 Residual stresses influence the strength and fatigue behavior of the materials, but 

also they affect the chemical, electrical behavior of the thin films and can be very 

important in stress corrosion process [2, 3]. That is why residual stresses have to be taken 

into account while designing the structural parts especially in view of the improvement of 

their properties and increase of their lifetime. Stress analysis is important for constructions 

of and especially after various mechanical surface treatments. Studying the residual 

stresses of these materials is challenging issue due to depth gradients of micro and macro 

residual stresses and the influence of different parameters on their stability or relaxation. 

Consequently, reliable experimental methods for residual stress determination are of great 

practical importance. That is why diffraction method, which allow to separate micro- and 

macro-residual stresses and to study stress distribution in the sample are an indispensible 

tool. Despite great progress in stress analysis there are many questions which remain 

unsettled. 

 In the first part of this thesis (chapters 1-3), the diffraction methods of stress 

determination are introduced. The principles of lattice distortion, crystallite size and stress 

analysis based on the diffraction peak profile and measured lattice strain are described in 

chapter 2. Next, chapter 3 is devoted to a short characterization of different methodologies 

for stress determination using X-ray radiation (classical and synchrotron). The 

experimental methods are divided into two groups, i.e.: these in which the penetration 

depth of X-rays is constant or these for which penetration varies during measurement. On 

the basis of first three chapters the aims of the thesis are specified in chapter 4.  

 In chapters 5 – 7 the original results of this work, concerning development and 

testing of the multireflection grazing incidence X-ray diffraction (MGIXD) method for 

stress determination are presented. At first, the most important corrections of experimental 

data and tests of experimental setups are described (chapter 5). 

 In chapter 6 two important theoretical developments of the MGIXD method are 

presented. The first one enabling determination of c/a parameter and significantly 
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improving quality of experimental data analysis for hexagonal structure has been proposed 

and tested. The second one in which density of stacking faults is taken into account is 

applied. What is more a verification of different types of X-ray stress factors (XSF), which 

can be applied to interpret the experimental data obtained using MGIXD method, is 

presented. Finally, examples of stress determination in surface layer for materials having 

high and low single crystal elastic constants anisotropy are shown.  

 In chapter 7 the methodology of data interpretation is developed in order to treat 

data obtained not only for different incident angles but also using simultaneously different 

wavelengths. It is shown that the new elaborated method is not only ‘multi-reflection’ but 

also ‘multi-wavelength’. Moreover, application of different wavelengths enables 

verification of the MGIXD measurements. 

 Chapter 8 concludes all the results presented in the thesis and formulates practical 

recommendations for the users of MGIXD method. 
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2. STRAINS AND STRESSES MEASURED BY DIFFRACTION 

 The advantage of the diffraction method is its non-destructive character and the 

possibility of direct measurements of strains in precisely defined volumes of the material. 

Not only stresses can be determined from the diffraction methods. Intensities of the 

diffraction lines gives us the information about the crystallographic texture and the 

broadening of the diffraction lines allows to determine the size of the diffracting domains 

and the content of the crystalline defects such as dislocations and stacking faults [1]. 

Presence of stacking faults causes the diffraction peak shift and it depends on the 

probability of finding fault (Wagner 1966) [4].  

 The great need of precise stress determination has involved the introduction of new 

measuring methods and devices into experimental world. This progress would not have 

been possible without a detailed understanding of the theoretical principles of the used 

methodologies. In this work the diffraction methods of stress measurement will be used 

and developed. Because these methods are based on measurements of crystallographic 

lattice strains, the present chapter is devoted to explain how diffraction sees the strains 

caused by different kinds of stresses. 

 

2.1. RESIDUAL STRESSES AND STRAINS 

 All solid materials are deformed when subjected to external loads. The deformation 

is manifested in displacement of points in the body under load from their initial positions. 

When a body underlies certain stresses, the strain response depends on the elastic 

properties of the material. The strain can be of elastic and of plastic kind. As long as the 

forces acting on the body are below a certain limit, the deformation is reversible and is 

called elastic deformation. For this kind of deformation, when the load is removed the 

displacements vanish and the body returns to its unloaded configuration. However, when 
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the forces acting on the material are higher than the limit, the material undergoes plastic 

deformation. In this case some permanent deformation remains after the load is removed. 

If the deformation of the material is homogeneous the deformation of all points of the body 

is the same. However, when the deformation varies from point to point along any direction 

in the material volume, the deformation distribution is considered heterogeneous [1, 3].  

 The relation between the stresses and elastic strain tensor for elastic body is given 

by generalized Hooke’s law [1]: 

 or  
       

(2.1) 

where:  and are the components of stress and elastic strain tensors, while  ( ) 

are the components of stiffness (compliance) tensor.  

 The stress component σij is defined to be the force per area acting on the i-face in 

direction j (Fig. 2.1). The σii components for which i-forces are normal to the i-faces are 

called normal components, and the σij components (where i≠j) for which j-forces are 

parallel to the i-faces are called shear components. Stresses form a 9 component 

symmetrical 2nd rank tensor which can be written in the matrix notation [1]: 

11 12 13

21 22 23

31 32 33

ij

σ σ σ
σ σ σ σ

σ σ σ

 
 =  
 
 

         (2.2) 

 

 

Fig. 2.1. Orientations of stress tensor components with respect to definition surfaces 

 

ij ijkl klcσ ε= kl klij ijsε σ=

ijσ klε ijklc klijs
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 In static conditions, the principle of conservation of angular momentum implies 

that σij = σji and only 6 of the 9 components are independent [1].  

 The external forces acting on the material causes the deformation which can be 

described by the strain tensor: 

11 12 13

21 22 23

31 32 33

ij

ε ε ε
ε ε ε ε

ε ε ε

 
 =  
 
 

          (2.3) 

where: 

0 0 0

1
lim lim lim

2i i j

ji i
ii ij

x x x
i i j

vw v
and for i j

x x xδ δ δ

δδ δε ε
δ δ δ→ → →

 
= = + ≠  

 
 

while i, j = 1, 2, 3 (the displacements for two dimentions are defined in Fig. 2.2). 

 

Fig. 2.2. Displacement of the body used in strain definition. 

 

 The proportionality constants cijkl in Eq 2.1 describe physical property of the elastic 

substance under load. The cijkl  tensor relating strains and stresses (Eq. 2.1) is a 4-th rank 

tensor of elastic stiffnesses, and it has 81 components. Because of stress and strain 

symmetries it is possible to reduce the number of the components to 36 independent ones. 

In the case of monocrystal this number furthermore can be reduced taking into 

consideration the symmetry of the crystal lattice [1]. For isotropic body the cijkl  constants 

depend only on two parameters (E – Young’s modulus and Poisson's ratio), and they do 

not change with direction in the body. However, for anisotropic materials these properties 

vary with orientation and more elastic constants are needed to describe elastic properties 

[3]. 
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 By definition, the residual stresses are self-equilibrated stresses [2]. The residual 

stresses must fulfill the equilibrium condition in each point of the material [2, 3]: 

           (2.4) 

And surface condition: 

 i.e.  0ij inσ ⋅ =          (2.5) 

where  is the normal versor to sample surface.  

 When flat samples are taken into consideration the ‘plane stress’ condition can be 

assumed. It is possible due to their small expansion in one direction (e.g., x3) as compared 

to the other two directions, so often stresses in the x3-direction can be assumed to be 

negligible (σ13= σ23 = σ33 = 0). The stress equilibrium conditions imply that tensile residual 

stresses in a certain direction within one part of a body are always balanced by matching 

compressive residual stresses in another part. Thus, the residual stress state of a component 

can never be expressed by a single residual stress tensor, but only by residual stress 

distribution. This also implies the presence of residual stress gradients. Strong residual 

stress gradients are often present in the near-surface area of components, due to surface 

treatment, or because the residual stress component normal to the surface needs to vanish 

but stress continuity has to be observed in the bulk material [2].  

 Due to granular structure of polycrystalline aggregates, the stress and strain states 

in these materials should be considered and described at different scale. It is possible to 

distinguish residual stresses of Ist type (macrostresses) and IInd type, IIIrd type 

(microstresses). The residual stress distribution in a material is the sum of type I, type II, 

and type III residual stresses: 

( ) ( )I II IIIr rσ σ σ σ= + +
� �

        (2.6) 

         

(2.7) 

where: Vtot  is the total volume of the sample and  describes position.  

0ij

ix

σ∂
=

∂

0nσ ⋅ =� �

n
�

( ) 0
totV

r dVσ =∫
�

r
�
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 Type I residual stresses Iσ  represent the average residual stresses acting within all 

phases and crystallites in the gauge volume Vga. These stresses are defined by mean value 

over volume of considered part of the sample (Vga, for example gauge volume in 

diffraction experiment), i.e.: 

1
( )

ga

I

ga V

r dV
V

σ σ= ∫
�

          (2.8) 

The gauge must be large enough to represent macroscopic material containing a sufficient 

number of crystallites and all phases present in the material.  

Type I residual stresses (or first order) result from long range strain incompatibilities 

introduced, e.g., by strain or temperature gradients in a manufacturing process. The 

distribution and magnitude of type I residual stresses often can be controlled by modifying 

the process parameters of a production process [2]. 

 Type II residual stresses (IIσ , second order) describe the mean deviation from the 

macroscopic residual stress level Iσ  calculated over the volume of individual 

polycrystalline grain (Vgr), i.e.: 

1
[ ( ) ]

gr

II I

gr V

r dV
V

σ σ σ= −∫
�

         (2.9) 

In a multiphase material type II residual stresses (or second order) are taken as the volume 

weighted average residual stresses ασ  calculated over the volume of crystallites belonging 

to a phase α (Vα) or as the average residual stresses for those crystallites of the phase α 

which contribute to the measurement: 

1
[ ( ) ]I

V

r dV
V

α

α

α

σ σ σ= −∫
�

         (2.10) 

Type II residual stresses arise for instance due to deformation misfits between neighboring 

grains and due to temperature or deformation induced misfits between different phases in 

a multiphase material [2]. 

 Type III residual stresses  represent the local deviation of the residual 

stresses within an individual crystallite from its average residual stresses in the grain 

( )III rσ
�
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(variation on the atomic scale). Thus, the average type III residual stresses does not result 

in macroscopic distortions. Type III residual stresses are caused, e.g., by voids, solute 

atoms, or dislocations in the crystal lattice [1, 2].  

 The all three types are present, for example, in mechanically machined samples. 

The microstructure of materials subjected to plastic deformation changes significantly. Due 

to twinning mechanism and slips occurring on the crystallographic planes plastic 

deformation of the grain occurs. In general, this irreversible deformation it is slightly 

different for neighboring grains, which leads to compression or stretching of single grains. 

This mechanism is a primary source of internal second order stresses. In addition, during 

the plastic deformation, a large amount of point defects and dislocations is generated. The 

latter phenomena lead to creation of internal stress fields. Accumulation of dislocation 

inside the grains produces the third order stresses. 

 Each type of stresses existing in material influences crystallographic lattice causing 

its distortion. The first and second order stresses cause mean elastic lattice strains for 

particular polycrystalline grains. The third order stresses leads to distortion and strain 

heterogeneity within grains. Both effects can be seen in diffraction experiment as the shift 

and broadening of the diffraction peaks. To present methods for strain measurement, at 

first the diffraction phenomenon must be described. 

 

2.2. DIFFRACTION 

 Diffraction on crystallographic lattice is associated with certain phase relationships 

between waves scattered in all directions by the atoms. The phases of the scattered rays are 

relatively shifted in the most of directions. However, in some particular directions the 

reflected waves exhibit the same phase and due to constructive interference they are 

strengthened, creating a diffracted beam.  

 In order to describe the diffraction phenomenon using kinematic theory, crystal can 

be treated as a periodic arrangement of atomic planes, which act like a mirror for the 

incident radiation [5]. The incident beam strikes the crystallographic planes at an angle 

θ and it is reflected from them also at an angle θ (see Fig. 2.3b). Therefore, the total angle 

of deflection of the diffracted beam is equal 2θ. If the distance between adjacent planes is 



15 

 

equal to ‘d’  the difference of the paths for the rays reflected from these planes is equal to 

2d sinθ (Fig. 2.3a). Constructive interference will occur when the waves have the same 

phase, so when the path difference between them will be equal to an integer multiples (m) 

of the wavelength (λ), so when the equation: 

2 sinm dλ θ=           (2.11) 

is fulfilled. The above equation is called Bragg’s law [1] and it is a basic geometrical 

diffraction condition. 

 

Fig. 2.3. Difference between paths of the beams reflected from neighboring 

crystallographic planes (a) and construction of the scattering vector (b), where  and  

denotes wave vectors for the incident and diffracted beams, respectively.  

 

Bragg’s equation can be expressed also in an equivalent way. Let us denote by  a wave 

vector of the incident beam and by  a wave vector of diffracted beam. Diffraction vector 

can be defined as:  and it is perpendicular to the plane of reflection (Fig2.3 b). 

The length of the diffraction vector is given by:  

        (2.12) 

 

 

 

ik
�

dk
�

ik
�

dk
�

d ik k k∆ = −
� � �

4 sin
d ik k k

π θ
λ

∆ = − =
� � �
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Considering Bragg’s law, the above equation can be rewritten as: 

          (2.13) 

where: hkl are the indices of reflection which for the first order reflection (i.e., for the 

lowest hkl and m=1 in Bragg’ law) are equal to Miller indices of the of the reflecting 

planes, while for the m-th order of reflections =d/m where d is the interplanar space. 

Because  (where is the reciprocal lattice vector), so the general condition 

for the occurrence of diffraction (when both vectors and  have the same 

orientations, i.e., they are perpendicular to the reflecting plane) can be written as:  

          (2.14) 

Expressing the  vector by primitive translation vectors of the reciprocal lattice 

 and multiplying both sides of Eq. (2.14) by primitive translation 

vectors  (where the latter basis vectors are defined for the real lattice) the Laue 

equations can be obtained [7]: 

       and     (2.15) 

 The Miller indices of crystallographic plane in the real space (h,k,l) correspond to 

the coordinates of lattice point in the reciprocal space. 

 Bragg or Laue equations give the geometrical condition of the diffraction; however, 

they do not contain the information about the intensity of the diffracted beam. The 

intensity will depend on the kind of the diffracting atoms and their arrangement in the unit 

cell. In the case of X-ray diffraction electrons are responsible for coherent scattering of the 

electro-magnetic wave. During the diffraction each of the electrons in the atom scatters 

elastically part of the incident beam. In order to describe the ability of diffraction for each 

atom the atomic factor f depending on the Z (atomic number) of the element is used [8]. In 

the direction of diffraction, specified by the Bragg condition, the ability of diffraction by 

the unit cell is described using the structural factor Fhkl. The complex value of this factor is 

2

hkl

k
d

π∆ =
�

hkld

2
hkl

hkl

d
G

π= � hklG
�

k∆
�

hklG
�

hklk G∆ =
� �

hklG
�

1 2 3hklG hb kb lb= + +
� � ��

1 2 3, ,a a a
� � �

1 2a k hπ∆ =
��

2 2a k kπ∆ =
��

3 2a k lπ∆ =
��
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calculated as a sum of the amplitudes of the coherently diffracted rays from the atoms in 

the unit cell (assuming unit amplitude of the incident beam) [8]. For unit cell having M 

atoms at positions described with the coordinates (xn, yn, zn), the structural factor can be 

expressed as [6]: 

       (2.16) 

where: hkl are the indices of considered reflection, fn is the atomic factor of the n-th atom 

and M denotes number of atoms in unit cell 

 The intensity of the beam diffracted from all the atoms in the unit cell in the 

direction described with the Braggs law is proportional to the square of the amplitude of 

the resultant beam, and consequently, it is proportional to | Fhkl |2. The above equation 

allows calculating the intensity of each hkl reflection when the atomic positions are known. 

Analyzing intensities of the beams diffracted on different plains (i.e., knowing the values 

of | Fhkl |
2 from experiment) the arrangement of the atoms in unit cell can be refined. In this 

aim the numerical Rietveld method can be used [9].  

 In description of diffraction experiment it should be remembered that the crystals 

are not ideal and the incident beam is not strictly parallel and monochromatic. The actual 

X-ray beam contains rays divergent and convergent as well as parallel, so the intensity of 

diffracted beam will be registered not only for the Bragg angle but also in same small 

range around this angle. This effect is known as the instrumental broadening of registered 

diffraction peak. Also, the microstructure of the material significantly influences the 

profile of the measured peak, i.e. the broadening of the peak is affected by the size of 

diffracting crystal and its real internal structure containing defects of the lattice.   

To explain the role of finite crystal size the ideal crystallite having N points (equal to 

number of unit cells) can be considered. The positions of n-th point of the real lattice can 

be defined by the vector:  

        (2.17) 

where:  are the basis translation vectors and m1, m2 , m3 are the integer or zero 

numbers.  

2 ( )

1

n n n

M
i hx ky lz

hkl n
n

F f e π + +

=

=∑

1 1 2 2 3 3n m a m a m aρ = + +� � � �

1 2 3, ,a a a
� � �
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 Next, the diffraction vector  can be expressed as the linear combination of the 

basis vectors in reciprocal space:  

         (2.18) 

where h1, h2, h3 are the vector coordinates given by real values. These values are chosen 

close to the point of reciprocal lattice corresponding to the considered reflection hkl, 

i.e. h1=h, h2=k, h3=l  when Eq. 2.14 is fulfilled and  determines the position of the 

reciprocal lattice point.  

 If the point of the observation (detector counting intensity of diffracted beam) is far 

away from the crystal the phase difference of the waves from two scattering centers is 

equal: . Assuming amplitude of incident beam equal to unity, the amplitude 

An of the wave diffracted on a lattice point (representing unit cell) in the position  can be 

expressed as : 

     (2.19) 

where Fhkl stands for an amplitude of the beam diffracted on the unit cell which is equal to 

the structural factor defined by Eq. 2.16 and Ae is an amplitude of wave scattered by one 

electron. In order to gain the amplitude from all scattering centers it is necessary to sum up 

over all lattice points [:  

       (2.20) 

Following the calculations given by for example Kittel [10], the dependence of diffracted 

intensity on the length and direction of scattering vector (  ) can be 

derived: 
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where: N1, N2 and N3 are the numbers of real lattice point in directions of ,  and 

N= N1 N2 N3. 
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 Integrating the above equation around point of reciprocal lattice 

(e.g.  the total diffracted intensity proportional to the number of 

unit cells (N) can be calculated, i.e.: 

   (2.22) 

 To see the intensity distribution around given point in reciprocal lattice the 

particular reflection 00l can be considered. If we follow the intensity variation only in the 

direction of vector we can put  and  in Eq.2.21, i.e.:  

        (2.23) 

Using Eqs. 2.12, 2.13 and 2.18 the value of can be related with 2θ angle: 

         
(2.24) 

In Fig.2.4 the one dimensional function  vs.  for l=1 is shown. Also, this 

function vs. 2θ is presented assuming = =1Ǻ. The calculation were performed for 

 =500 and =1000 atoms (or crystallographic planes) in the direction along the 

scattering vector. This situation corresponds to the crystallite size of 50 nm and 100 nm 

along the direction of scattering vector. 

 

Fig. 2.4. Function  vs.  (for l=1) and the same function vs. 2θ 

(assuming  = =1A) are shown. 
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 The following conclusion can be drawn from the above equations illustrated in 

Fig. 2.4:  

•  intensity at the point of reciprocal lattice (or for 2θ0 angle which fulfill strictly 

Bragg low) is proportional to the square from numbers of reflecting planes being 

perpendicular to the scattering vector (
3

2
23 3
320

3

sin
lim

sinh

N h
N

h

π
π→

= ),  

•  broadening of intensity given by width of the peak is proportional to 1/ , 

i.e. number of reflecting planes in the direction of scattering vector ,  

•  total (integrated) intensity is proportional to , 

•  broadening of the intensity around the point of reciprocal does not depend on the 

reflection order (the same profile of peak be obtained for different l, because the 

period of function defined in Eq. 2.23 with respect to h3 is equal to1). 

The above conclusions can be generalized for any hkl reflection. 

 More general derivation of the intensity distribution in the diffraction peak for 

crystallites with lattice distortion was given by Warren and Averbach [11]. In this case also 

the partial waves diffracted on scattering centres are considered but the calculations were 

performed for a powder sample and contributions of diffracted intensity from grains having 

different orientations was integrated. Moreover, the scattering centres are shifted from the 

points of nets. The result of calculations is given as the Fourier series (presented also for 

the 00l reflection):  

     (2.25) 

which can be also written with respect to 2θ angle substituting  by relation 2.24. The 

coefficients of expansion are [11]:    

  (2.26 a)  and  
 

 (2.26 b) 

where and < > are the square mean and mean values of the lattice microstrains in 

the direction of scattering vector, inside a crystallite (those which are caused by defects 
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and associated with the third order stresses), and  is the factor depending on the 

crystallite size (also in the direction of scattering vector). 

 The  coefficients represent nonsymmetrical distribution of strains within the 

crystallite. However, if we consider only effect of the third order stresses and the 

distribution of defects is random (or in more general case if the probability of  and -

occurrence is equal) the  coefficients vanish. 

 It is clear that, the coefficients bring an important information about size of 

crystallite ( ) and square mean strain of its lattice strains caused by the third order 

stresses. The  factors do not depend on the order of reflection (00l), and it can be shown 

[11] that: 

          (2.27) 

where  is an average number of reflecting plains along scattering vector. 

 On the other hand the function of  vs.  depend the order of reflection 

(00l). Therefore the analysis of size and strain by Warren-Averbach is based on the 

expansion of diffraction peak profile into a Fourier series and then calculation of 

and  (or rather , i.e., size of crystallite) in direction of scattering vector from 

An coefficients. In this method two diffraction peak must be measured for two orders of 

reflections (usually the first and second order for example 111 and 222). 

 Next step in analisis of peakprofile, after single crystal and powder sample is it the 

case of polycrystalline aggregate which is built from crystallites having different 

orientations (like in powder but often some orientations are preferred in the case of 

crystallographical texture). Moreover, in real structure of polycrystalline material mosaic 

microstructures of grains can have a significant impact on diffraction (especially after large 

plastic deformation). Such a crystal do not have atoms arranged in a perfectly regular 

network, but a large number of small blocks, each of which is slightly disoriented with 

respect to its neighbors [6]. Diffraction peak results from the coherent scattering of the 

incident beam on the so-called domains which in fact represent crystallites considered by 
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Warren and Averbach [11, 12]. The size of such domains is of tents or hundreds 

nanometres, so their effect on the peak broadening is comparable with that shown in 

Fig. 2.4. In the case of polycrystalline material usually the same methods of profile 

analysis are used as for powder sample, however, in this case such properties as 

crystallographic texture, complex microstructure and moreover presence of residual 

stresses should be considered in interpretation of the obtained results. 

 The polycrystalline grains are not free as in the powder sample but they interact 

elastically with their neighbours. Therefore, the first and second order stresses causing 

mean elastic deformation of the lattice which can be observed as a shift of the diffraction 

peak position. Using diffraction methods the mean lattice strain can be determined as the 

relative change of interplanar spacing and can be calculated from the relative shift of the 

peak: 

         (2.28) 

or using Bragg’s relation (Eq. 2.11): 

        (2.29) 

where is the mean interplanar spacing for {hkl} crystallographic planes 

determined in the studied sample,  is interplanar spacing for these planes but in stress 

free crystallite, 2( ) is a shift of diffraction peak with respect to the position in 

stress free material (2θ0). 

 It should be underlined that the <...>{hkl} is the volume of the crystallites (in fact 

domains in polycrystalline grains) which take part in diffraction, i.e., they have such lattice 

orientations for which the scattering vector  is perpendicular to symmetrically 

equivalent {hkl} planes (or strictly: as close to the normal as diffracted intensity appears), 

see Fig. 2.5. Therefore, diffraction gives us information about average lattice strains for 

group of grains, but not directly about stress in particular grain. Further analysis is 

necessary to relate these strains with stress of Ist and IInd type [13, 14]. Also it should be 

mentioned, that the <...>{hkl} average is calculated over different grains exhibiting different 

strains (due to different lattice orientations or second order stresses), thus their contribution 
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in diffraction peak cause additional broadening (however in most cases much smaller than 

this produced by the third order stresses). 

 

 

Fig. 2.5. The selective character of diffraction. 

Only the grains for which the scattering vector  

is normal to the reflecting planes {hkl} and Bragg’s 

law is fulfilled contribute to diffracted intensity.  

 

 Concluding it should be underlined that the peak broadening of the diffraction peak 

measured for polycrystalline material brings an important information about the size of so 

called coherent domain and mean square internal strains  (caused by defects and 

third order stresses), while the shift of diffraction peak can be related to mean lattice strains 

caused by the external or residual stresses acting on the grains embedded in polycrystalline 

aggregate (caused both by the first and the second order stresses). In the next chapters the 

method for extracting such information from experimental data will be shown. 

 

2.3. DETERMINATION OF STRESSES FROM DIFFRACTION DATA 

 The residual stress state analysis is based on the diffraction measurements of the 

interplanar spacings in different directions of the scattering vector  [1]. In order to 

describe the geometry of measurements it is necessary to introduce two coordinate 

systems: the coordinate system connected with the specimen (S) and the coordinate system 

connected with the scattering vector. The latter frame is called the laboratory system L, 

because scattering vector is often fixed with respect to laboratory and sample is rotated 

(e.g. Eulerian cradle). These systems are defined as follows (Fig. 2.6): 

The specimen reference system (S): The S3 axis is orientated perpendicular to the specimen 

surface. Axes S1 and S2 lie in the surface plane. If a preferred direction within the plane of 

the surface exists, e.g. the rolling direction, the S1 direction is usually orientated along this 

preferred direction. 
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The laboratory reference system (L): L3 axis coincides with the diffraction vector , and 

L2 axis lies in the surface plane. 

 Then the orientations so defined L system with respect to S system can be described 

by two angles ψ and φ defined in Fig. 2.6, i.e. ψ is between S3 and L3 axes, while φ is 

between L3 and its projection on the sample surface. These angles also determine 

orientation of the scattering vector 3||k L∆
�

. 

 

Fig.2.6. Orientation of the scattering vector with 
respect to the sample system S. The ψ and φ 
angles define the orientation of the L system (the 
L2 axis lies in the plane of the sample surface). 
Additionally, η – rotation of the L system around 
scattering vector is shown (this rotation will be 
used I the scattering vector method, section 
3.1.3). 

  

2.3.1. DETERMINATION OF FIRST AND SECOND ORDER STRESSES  
To analyse first order stresses, the mean lattice strains has to be determined from measured 

shifts of the diffraction peak (Eqs. 2.28 or 2.29). Because the exact position of the 

diffraction peak must be determined with high accuracy it is necessary to take into account 

phenomena influencing the profile [1, 6] or position of the peak. To do this the following 

depending on 2θ factors are introduced in strain analyses: 

•  Lorentz-polarization factor - LP(2θ),  

•  absorption factor - Ab(2θ), 

•  refraction factor (in the case of small incidence angles) – R(2θ). 

 Usually, the dependence of atomic factor fn (see Eq. 2.15) and temperature factor do 

not significantly influence peak profile, and they are not taken into account in corrections. 

The LP(2θ), Ab(2θ) factors are described in Culity [6] or Noyan [3], while the R(2θ) factor 

is in detail considered in this work.  

k∆
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 Also, the asymmetry of the background may be an imortant problem in the peak 

position determination. In order to make the correction for the background it is necessary 

to apply function Ibcg(2θ) which can be obtained by fitting a low degree polynomial 

function (usually simply linear function) to the background intensities on both left and 

right hand sides of the diffraction peak [1]. To introduce all corrections the background 

must be subtracted from the measured intensities, the result must be divided by LP(2θ) and 

Ab(2θ) factors for every 2θ angle and next peak must be shifted by the - 2θR angle (in the 

case of small angle of incident beam), i.e.: 

        (2.30) 

where the Iexp(2θ) and Icor(2θ) are the experimental and corrected intensities, respectively.  

 After correction and proper preparation of data the precise position of the 

interference-peak can be determined calculating center of gravity of the peak or fitting 

theoretical functions to the intensity profile (e.g.: Gauss, Person VII, Lorentz or Pseudo-

Voigt functions) [1]. Although the displacement of the diffraction peak is generally small, 

the fitting procedures with, e.g., Lorentz, Gauss or Voigt functions allow to determine 

a very precise position of the peak. 

 

Centre-of-gravity method. In this method the intensities of Kα1-Kα2 lines are averaged out 

in the result. The peak position is calculated by [1]: 

         (2.31) 

Usually the integration is performed over some threshold value assumed relatively to the 

maximum peak-intensity. 
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Fitting of the Gauss function. In this method the diffraction peak is fitted by [9]: 

        (2.32) 

where:  and 

 

, w is the full width at half maximum (FWHM 

defined as the full angular width at half-maximum intensity of the diffraction peak [1]), 

related with integral breath by equation:  (β is defined as the ratio of the peak 

area to the peak maximum [1]). 

 

Fitting of the Lorentz function [9]: 

         (2.33) 

where: ,  and w can be related with β by equation:  

 For better resolution of determined position it is recommended to use Pearson VII-

functions or Voigt-functions instead of Gaussian or Lorentz distributions. Those functions 

are much more flexible in describing the peak profile and fits better to the measured 

intensities [1]. 

 

The Pearson VII-function is given by [9]: 

        (2.34) 

where: , , Γ(m)=(m-1)!, and m is the shape 

parameter. 
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The Pseudo-Voigt function [15, 16, 17] is superposition of Gaussian (G’) and Lorentzian 

(L’) functions, given by the expression [9, 17]: 

    (2.35) 

where: η is the relative contribution of Gaussian component. 

If Lorentzian and Gauss components are normalized than pseudo-Voigt is also normalized. 

  

 It should be stated that from X-ray diffraction experiments performed on laboratory 

diffractometers (it is not the case of synchrotron radiation) the intensity of the incident 

beam is composed from two emission lines Kα1 and Kα2 exhibiting very similar 

wavelengths. The contribution of both lines cannot be experimentally separated totally and 

it has to be done at the stage of data analysis using one of two possible methods: 

•  influence of Kα2 intensity can be removed using Rachinger method [18] assuming 

theoretical ratios of intensities I(K α1)/I(K  α2)=0.5 and knowing difference between 

wavelengths λKα1 and λKα1. Next, the center of gravity is calculated for one peak or 

peak profile is fitted by above defined functions, 

•  doublet of two measured is treated together: 

o superposition of defined above functions: 

    (2.36)
 

is fitted to experimental points (where  is the distance between 

two peaks resulting from two lines for given theoretical difference of 

wavelengths 2λKα1 and 2λKα1) ratio I (K α1)/ I (K α2)=0.5 is assumed, 

o or the centre of gravity is calculated for the doublet but mean next mean 

wavelength must be used in Bragg’s law, i.e.: λmean=(2λKα1+λKα2)/3 

 In Fig. 2.7 examples of peak position determination were presented. Peaks were 

measured for Al powder using Kα Cu radiation (λKα1=1.54056 Å and λKα2=1.54433Å) on 

PANalytical - X’Pert MRD diffractometer (AGH, Kraków) with Göbel mirror using 

' '
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parallel beam configuration, described in Table 5.4 (chapter 5). Different peak broadenings 

are seen and high accuracy of measured peak position were obtained when doublet Kα1 and 

Kα2 (two peaks) was fitted using the pseudo-Voigt function. 

a) b)  

c) d)  

Fig. 2.7. Examples of different methods for position determination: calculation of center of 
gravity (a), and fitting of Gauss (b), Lorentz (c), pseudo-Voigt (d) functions. Experimental 
peak was measured for Al powder using PANalytical - X’Pert  MRD diffractometer (AGH, 
Kraków - configuration given in Table 5.4.). 

 

Table 2.1. Comparison of the determined positions for Al powder using 4 different 

methods. 

Fitting position 2θ (°) 

Pseudo-Voigt 65.1000a ± 0.0003 

Lorentz 65.0982a ± 0.0002 

Gauss 65.1007a ± 0.0002 

center of gravity    65.1023a (65.1620b) 

where: a is the position of Kα1 component, while b is the position of Kα1 + Kα2 dublet.  
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 When the positions of diffraction peaks are determined the stress analysis can be 

performed. The diffraction strain  measured along L3 direction (see Eq. 2.28 

and Fig. 2.6) are defined as the average strain over diffracted grains volume (Fig. 2.5) 

which is calculated as [19, 20]: 

     (2.37) 

where  is the strain along L3 direction for (hkl)  plane, ψ and  are the 

angles describing the orientation of the diffraction vector (along L3) ith the respect to the 

specimen reference system, ξ – the rotation around the diffraction vector (see Fig. 2.8), 

 is the function representing crystallographic texture, i.e. orientation 

distribution function ODF (defined in [21]) expressed in terms of measurement parameters 

and the rotation angle ξ. Summation is over all symmetrically equivalent planes {hkl}. 

 

 

 

Fig. 2.8. Definition of lattice rotation 

around the scattering vector  normal to 
(hkl) plane. 

 

 

 In the above average only the criterion for selection of grain orientations is 

considered, but also the average must be calculated over the gauge volume using weight of 

the intensity scattered by different grains (accounting for absorption). 
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 For polycrystal composed of elastically isotropic crystallites (for example tungsten) 

Hooke’s law [19] can be applied to relate the macrostrains with the first order stresses: 

     (2.38) 

where:  and  are the first order stresses and strains (mean over whole diffraction 

gauge volume),  and  are crystal compliances (equal for isotropic material), S1 and 

S2 are the only independent components of Sijkl for elastically isotropic specimen and  is 

the Kroneckers delta (all tensors are defined in S system). 

In this case the elastic strain tensor is identical for all crystallites and also for diffracting 

group of grains [19]: 

         (2.39) 

where L superscript means that the strain is expressed in L system (tensor in S system have 

not additional superscripts as in Eq. 2.38). 

Then it is possible to calculate  (L system) strain from tensor  (S system) [19]: 
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where: is strain tensor in the specimen system of reference, is the unit vector, in the 

direction of the scattering vector, expressed in the specimen system of reference (S). 

          (2.41) 
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Taking into consideration the Hook’s law (Eq. 2.1) and Eq. 2.40 it is possible to gain 

[19, 22]: 

  (2.42) 

 The above equation is a general expression relating first order mean stresses (full 

tensor) with  strains measured for different directions of scattering vector described by 

ψ and ϕ angles and it is called sin2ψ law, because the measured strains are plotted vs. sin2ψ 

(with constant ϕ). If the shear stresses are equal to zero, i.e. the sample system (S) 

coincides with principal axes of stress tensor, the latter plot is a straight line and the 

components of the stress tensor can be extracted from the slope of the line plotted for 

constant ϕ. 

 Usually a polycrystal is composed of elastically anisotropic crystallites (anisotropic 

), stresses and strains vary over the differently oriented crystallites in the specimen as 

a result of the elastic grain interaction [19]. Even then the whole specimen can be 

macroscopically elastically isotropic (quasi-isotropic) when the crystallographic texture 

does not occur and the grain interaction is isotropic. For quasi-isotropic specimens the 

S1 and 1/2S2 in Eq. 2.42 need to be replaced by hkl-dependent X-ray elastic constants 

(XEC) S1
hkl and 1/2S2

hkl [19], i.e.: 

  (2.43) 

In this case the XEC depends on the reflection hkl [23]. 

 The most complex case is the textured polycrystalline material when macroscopic 

elastic anisotropy is present. For such specimen the dependence of the X-ray-averaged 

strains on the mean stresses is described by the X-ray stress factors (XSF) Fij depending 

not only on hkl but also on texture [1, 19, 24]: 

        (2.44) 

where f represents ODF function.  
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 For textured materials or in the case of direction dependent grain interaction the 

sin2ψ plots are generally non-linear and the X-ray analysis can be challenging. The first 

works on stress analysis for sample having crystallographic texture were performed by 

Dole & Hauk (1978, 1979) [19].  

 The X-ray elastic constants S1
hkl and 1/2S2

hkl and the stress factors  

can be evaluated experimentally by a uniaxial tension or bending test. It is also possible to 

calculate stress factors from single-crystal elastic constants using a model of crystallite 

coupling (Voigt, Reuss, Eshelby-Kröner) and the ODF as the weight function [1, 19]. 

Because the verification of  used in grazing incident method is one of the 

aims of this work, the different models for calculation of these constants will be presented 

in next chapters. 

 It should be stated that using the diffraction methods, the lattice strain are not 

directly measured but in fact the interplanar spacings are determined from 

diffraction peak positions. These positions are measured for different orientations of the 

scattering vector with respect to the sample, defined by the φ and ψ angles. Using Eq. 2.44, 

after simple transformation the interplanar spacings can be expressed by the macrostresses 

 and  stress free interplanar spacing: 

     (2.45) 

or in the case of quasi-isotropic material: 

        (2.46) 

 The calculation of the stresses using Eqs. 2.45 or 2.46 can be performed using least 

square method and adjusting components of stress tensor as well as . However, the 

whole stress tensor (principal stresses) can be calculated only if  (stress free 

parameter) is known. Fortunately, in the case of X-ray diffraction penetrating thin surface 

layer (due to high absorption) we can assume that the forces normal to the surface are 
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equal to zero and also =0. Because one of principal stresses is known,  can be 

adjusted and its value can be also determined. 

 The least square procedure used in this work is based on minimising of the merit 

function called which is defined as:  

     (2.47) 

where:  and are the experimental and calculated 

interplanar spacings , δn=δn( ) is the measurement error (standard 

deviation) of the determined spacing for the n-th measurement, N and M are the number of 

measured points and fitting parameters, respectively. 

 The value of χ² is a measure of goodness-of-fit, i.e. [25]: 

•  χ² = 1 means that the “good fit” was obtained (it corresponds to the fitting exactly 

within the limits of experimental uncertainty), 

•  χ² < 1 the uncertainties of experimental data δn( ) are overestimated, 

•  χ² > 1 the uncertainties of experimental data are underestimated or calculated 

(theoretical) values 
 
depending on stress factors Fij(hkl,ϕ ,ψ) are 

not accurate enough. 

 An example of stress calculation for the simplest case when elastic constants are 

isotropic (for tungsten) will presented in the next chapter when two standard 

methodologies are compared (Fig.3.6). 

 Finally it should be mentioned, that also the methods for determination of the 

second order stresses were developed using the elasto-plastic models [13, 14]. From these 

models the theoretical values of plastic incompatibility stresses (  - model values) 

and the corresponding strains  can be predicted (where mod is used for the 

theoretical values). Assuming that stress variation with the ψ and  angles is correctly 

described by models, the measured strain can be expressed by the theoretical value, i.e.: 
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; where: q - is a constant scaling factor. Finally, Eq. 2.45 

takes form: 

   (2.48) 

When the value of q parameter is determined (as additional adjusting parameter) the plastic 

incompatibility stresses ( ) can be found for all grain orientations, i.e.: ; 

where are the model predicted values. Thus, the macrostresses ( ) the mismatch 

second order stresses ( ) can be determined simultaneously. 

 

2.3.2. DETERMINATION OF THIRD ORDER STRAINS AND CRYSTALLITE SIZE 

 One of the features that decide about physical and mechanical properties of a solid 

body is its microstructure, such as lattice distortion or mosaic structure of grains. Using 

enough resolved diffractometers it is possible to observe the broadening of the diffraction 

peak due to the sample microstructure. The width of the diffraction peaks is also dependent 

on the size of the coherently diffracting domains, faulting on certain (hkl) planes, and 

microstrains within the coherently diffracting domains [26]. Peak broadening is further 

complicated by strain anisotropy, which can be taken into account by using contrast factor 

[27]. Not only sample but also instrument contribution convolute into the observed 

diffraction peak profile. Instrumental aberrations depend on the measuring technique and 

geometry. This effect can be taken into account by measuring a standard powder sample. 

 It is possible to separate the peak broadening originated from different causes. The 

broadening produced by small crystallite sizes and faulting is independent of the order of 

reflection, whereas the strain broadening depends on the order of reflection. Two methods 

are usually applied to separate these effects from each other [28].  

 The first, Warren and Averbach method (1950), based on the Fourier expansion of 

the intensity function and separation of size and strain series coefficients using diffraction 

peaks measured for at least two orders of reflection. The second is Williamson-Hall 

method (1953). It allows determine the domain size and the mean squared lattice strain by 

the analysis based on full width half maximum values or the integral breadths [28, 26]. 
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It should be stated that the presented methods of analysis can be applied for crystallites 

having the size D < 100 nm and lattice distortions  grater than 10-3. 

Warren and Averbach method  

 This method is based on the expansion of peak profile into Fourier series. In the 

case of X-ray diffraction (on laboratory apparatus) it is necessary to remove the influence 

of the Kα2 line from measured intensity. It can be done numerically with Rachinger 

method [29] or analytically with the assumption of theoretical function describing the 

shape of the diffraction line [30] in which it is assumed that the intensity of line Kα2  is 

twice smaller than the intensity of line Kα1 and both of the lines have the same shape and 

the same width. Next, the effect of instrumental influence on the peak profile must be 

taken into account using proposed by Stokes [31] harmonic analysis of diffraction line 

profiles of the sample and reference sample and on the basis of them it is possible to obtain 

the actual intensity distribution function of the diffraction peak. The diffraction peak G(2θ) 

for reference is measured with the same conditions as this registered for the studied sample 

H(2θ). The latter profile can be expressed as the convolution of instrumental G(2θ) and 

structural functions I(2θ): 

        (2.49) 

If both functions G(2θ) and H(2θ) are expanded into Fourier series (the coefficients of such 

series are ,  and , ), the coefficients of the series given by Eqs. 2.26a and 

2.26b can be calculated: 

   (2.50 a)  and  
  

 (2.50 b) 

where c is a constant factor.
 
 

 Finally the size of domain (D) in the direction of scattering vector and the square 

mean third order strain  can be calculated applying Eqs. 2.26a, 2.26b and 2.27 for 

peak intensities measured for two orders of reflections. 
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Williamson-Hall method 

 The crystallites size D along the direction perpendicular to the {hkl} diffracting 

planes can be related with the width of the diffraction peak using Scherrer formula: 

coss

K

D

λβ
θ

⋅=
⋅

          (2.51) 

where K is a constant close to unity, dependent from method of the peak width 

determination as well as from geometric shape of the crystallites [27]. 

 Using the above equation the crystallite size (coherent domain) D can be 

determined from the peak width measured by X-ray diffractometer. This equation assumes 

that all the crystallites have the same size and the strains of the lattice are not present. In 

fact usually crystallites have some size distribution and additionally lattice distortion 

limiting application of this formula. 

 Broadening of the diffraction peak connected with the presence of the third order 

lattice distortion and can be calculated from Taylor formula: 

24T tgβ ε θ= < >           (2.52) 

where  is the root mean square value of the lattice distortion. 

 According to Hall [32] the observed total structural broadening of the diffraction 

line β is a superposition of the broadening caused by lattice distortion and crystallite size 

so it can be expressed as: 

        (2.53) 

 In order to evaluate the D and  values it is necessary to approximate the 

diffraction profiles of the studied specimen and of the reference sample (for example strain 

free powder with grains having at least a few µm). There are two main methods of analysis 

which are in use. The first assumes that both of the profiles (specimen and reference 

sample) can be approximated by Cauchy function. Then the total line broadening can be 

expressed as: 
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   (2.54 a)       and              (2.54 b) 

where: B and b are the peak widths of the investigated sample and of the reference sample, 

respectively. 

After simple transformation the above formula can be written as: 

           (2.55) 

where:  and  

 The second method assumes that both of the profiles can be approximated by 

Gaussian function. Then the general formula can be expressed as: 

     
 (2.56 a)  and        (2.56 b) 

and after transformation: 

        (2.57) 

where:      and     

 In all of this methods by plotting β*  as a function of d* for several diffraction lines 

the root mean square value of the lattice distortion and the crystallite size can be 

determined from the slop and the intercept of the plotted curve, respectively. In this aim 

the linear regression is used.  

 The width of the diffraction peak in the above formulas may be determined as 

a integral breath or as the full width at half maximum (FWHM) [33].  

 An example of size-strain analysis using Gauss and Cauchy is presented in Fig. 2.9. 

The measurements were performed for mechanically polished W sample using the same 

experimental conditions as for peak measurement presented in Fig. 3.7. As the reference 

the LaB6 powder was used. In Table 2.2 the results of analysis are shown.  
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a) b)  

Fig. 2.9. The linear function fitted to the experimental data in Williamson-Hall method for 
polished W sample using Gauss approximation (a), Cauchy approximation (b).  

 

Table.2.2. The slope and the intercept of the fitted linear function to the experimental data 
for polished W sample. Calculated with Williamson-Hall method values of the root mean 

square of the third order strain ( ) and crystallite size (D). 

α (°) function slope [·10-4] intercept [·10-4]  D (Å) 

5 Gauss 1.0 ± 0.2 0.01 ± 0.09 0.0025 ± 0.0002 1678 ± 8626 
15 Gauss 0.51 ± 0.05 0.05 ± 0.02 0.0018 ± 0.0001 667 ± 133 
5 Cauchy 90 ± 20 -16 ± 10 0.0023 ± 0.0004 -957* ± 648 
15 Cauchy 62 ± 6 -9 ± 4 0.0016 ± 0.0002 -1629* ± 653 

* large negative values of D means that the intercept point is negative but it is close to zero. 

 

 If the instrumental peak width is large in comparison with the broadening due to 

crystallite size, than it is not possible to determine properly the coherently diffracting 

domain size (some values of D are negative because intercept is negative and close to 

zero). When the peak profile is either pure Gaussian or pure Lorentzian the simplified 

breadth methods work well but when the peak shape is a convolution of Gaussian and 

Lorentzian than these methods cannot accurately determine the crystallite size. The 

Williamson-Hall analysis of polished W sample showed that on the basis of MGIXD 

measurements with classical diffractometer (PANalytical – Empyrean diffractometer, 

configuration is given in Table 5.4.) it is possible to estimate the value of root mean square 

of third order strain but the resolution of the diffractometer is not sufficient for crystallite 

size determination. 

2ε
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3. METHODOLOGY OF STRESS MEASUREMENTS USING X-

RAYS 

 Although the neutron diffraction methods of stress measurement were significantly 

developed, X-ray diffraction remains the most important tool of stress analysis which can 

be used in industry or in laboratory.  X-ray diffraction in residual stress measurements of 

polycrystalline materials were applied for the first time in 1930 [34, 35, 36]. It is worth to 

emphasise that introduction of the sin2ψ method by Macherauch and Müller in 1961 

[22, 36] was one of the greatest achievements in X-ray stress analysis (XSA).  

 

 

Fig. 3.1. Information depth of the diffractive stress analysis [37] 

 

 Due to high absorption of the X-rays (on laboratory diffracrometers) the stress 

measurements are performed using reflection method, i.e., the beam is reflected from the 

surface of the sample and penetrates the volume below the surface. The other methods 

based on the transition mode can be used only for high energy synchrotron radiation or 

neutron radiation. In all cases, the intensity of the beam penetrating the studied sample 

depends on the linear absorption of the material (µ) according to the exponential law: 
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I(x) = I0 exp (-µx)         (3.1) 

where x is the length of the ray path in the material and I0 is the intensity of the incident 

beam. 

 In the present work only the reflection mode is considered for which the 

information depth can be estimated using the above law. In this case, if the strain free 

lattice parameters  as well as stress factors do not depend on depth [36] 

the mean lattice strain  at information depth z , calculated over reflecting 

grains (as in Eq. 2.33) must be also averaged with the weight of beam intensity over depth 

z under surface. It was aaumed that so calculated strain is related with the mean first order 

stress and also averaged with the intensity weight (see Fig. 3.5):  

   (3.2) 

where:        (3.3) 

and t is the sample thickness, τ is the “penetration depth” defined as the distance from the 

surface of bulk material ( ), for which  part of total intensity of the 

incident beam is absorbed. 

 The above average corresponds to so called ‘information’ or ‘effective’ depth , 

which can be understood as the mean value of  z-depth weighted by an attenuation factor:  

  

     (3.4)
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A general formula for penetration depth τ in the case of bulk material or thick coatings 

(i.e., t>> τ) is given by [38]: 

        (3.5)
 

where η is an angle of rotation of the sample around the diffraction vector i.e., L3 axis 

shown in Fig. 2.6. 

 In the case when the incident angle of X-ray beam (α – angle between incident 

beam and sample surface, see Fig. 3.7) is close to the critical angle (αcr – angle for which 

total external reflection occurs), the expression for penetration depth takes form [36]: 
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where λ is the wavelength and . 

In this case, as it can be seen in Fig. 3.2 small changes in α angle causes significant 

changes in τ. 
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Fig. 3.2. Penetration depth as a function of incident angle for aluminum and titanium. 
Curves changes significantly close to the critical angle. 
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 In should be stated that for  (bulk materials) in Eq. 3.3, the upper limit of 

the integral can be replaced by the infinity and the equation takes the form of the Laplace 

transformation with respect to 1/τ (see Eq. 3.3 in which should be replaced by τ). In 

order to reveal the real depth profile of stress  it is necessary to perform inverse 

Laplace transformation for the data gained experimentally ( )I
ij zσ τ=  [39].  

 Introducing a new variable: 
 
mean stresses ( )I

ijσ τ  determined with absorption 

weight can be expressed as: 

0

0

( )

( )

s
ij

I
ij

s

e z dz

s

e dz

τ

τ

σ
σ

∞
−

∞
−

=
∫

∫
        (3.7) 

where z is the real depth under the surface. 

It can be noticed that the denominator of the above formula is a Laplace transform of 1, 

while the numerator is a Laplace transform of stress function ( )I
ij zσ . Thus, Eq. 3.7 can be 

rewritten as: 

        (3.8) 

and 

          (3.9) 

where denotes Laplace transform of the macrostrain function ( )I
ij zσ .  

 In order to reveal the real depth profiles (z-profiles) of the macrostresses, the 

inverse Laplace transform of  have to be calculated. However, it should be noted 

that usually only a few values of the mean stresses  within limited range of τ can be 

determined experimentally. The fragmentary knowledge about  function causes that 

the inverse Laplace transform cannot be easily determined. Thus the experimental 

functions  are usually approximated by functions for which the inverse Laplace 
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transform can be easily designated. For example, it is possible to use the piecewise 

polynomials allowing dividing the Laplace space into small sections in which it is possible 

to describe the stress profile. Usually the polynomials of the first and second degree are 

used [40]. 

 Another method for determination of the stress in depth profile ( )I
ij zσ  was 

proposed by Genzel et al. (1996). In this work the inverse Laplace transform is calculated 

numerically by the methods of orthogonal polynomials. Several sets of orthogonal function 

were used but the best results were achieved with use of Jacobi polynomials. It seems that 

this method is mostly suitable in the case of steep gradients. If necessary it is possible to 

divide the depth profile into intervals and then calculate inverse transforms for each 

interval separately [39]. 

 To reveal the stress profile ( )I
ij zσ  Huang et al. (1997) used the constrained linear 

inversion of the  profile. This analysis showed that the significant advantage of the 

numerical method is that there is no major restriction on the form of the penetration depth 

profile. What is more it is more likely to achieve the better fit to the experimental data 

numerically than with the inverse Laplace method [41].  

 In present work the z-profile of stress is determined using method based on 

expansion into Taylor series of the quested stress function ( )I
ij zσ , i.e.: 
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The Laplace transform of the above function is given by equation: 

        
 (3.11) 

and the measured profile of the stresses can be expressed as: 

          (3.12)  
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         (3.13) 

where  . 

In the above equation the function of mean macrostress  gained from measurements 

is expressed by polynomial with variable τ. If the polynomial coefficients are determined, 

also the coefficients of Taylor expansion of macrostress ( )I
ij zσ can be calculated, i.e.: 

           (3.14) 
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Fig. 3.3. Experimental stresses for polished Al2017 alloy with polynomial fitted to 

the measured values (a) and corresponding profiles ( )I
ij zσ obtained by using inverse 

Laplace transform (b). 

 

 At present, there are two basic types of carrying out the experiment: 

- in angle dispersive diffraction mode (AD) or 

- in energy-dispersive diffraction mode (ED). 

In the case of the AD method one uses a monochromatic radiation, while a white X-ray 

beam is diffracted by a polycrystalline material in ED mode. The later method was 

introduced both by Giessen & Gordon (1968) and Buras et al. (1968) and it was firstly 

used in 1970 by Nagao & Kusumoto, 1977 [42].  
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 AD diffraction methods with conventional X-ray tubes allow investigating the 

material only for the penetration depth of a few up to some tens of microns. It is also 

possible to get information on deeper regions below the surface of the sample in AD 

techniques by applying layers removal. This method, however, is a destructive method and 

it cannot be always used. On the other hand neutron diffraction allows getting the 

information for more than hundreds of microns. The high energy ED diffraction is the non-

destructive method which gives the opportunity of the sample investigation for such depth 

(up to tents or hundreds µm) which are not reached by monochromatic radiation on 

laboratory diffractometers. In the ED diffraction, in reflection mode, the white radiation in 

the energy range from about 10 up to 150 keV with a continuous photon energy spectrum 

is used. In this method the scattering angle 2θd can be chosen freely and remains constant 

during the measurement [2, 43]. In this case, the lattice spacing  expressed as 

a function of the diffraction line  on the energy scale is given by: 

        (3.15) 

where: h is Planck’s constant and c the velocity of light.  

 A great advantage of this method, in comparison with AD diffraction techniques, is 

the multitude of reflections recorded simultaneously in one energy spectrum. Each of them 

differ in energy so it provides additional depth information [2, 42]. The penetration depth 

in ED method is given by Eq. 3.5 but in this case µ denotes the linear absorption 

coefficient which depends on the energy E of the radiation. In the symmetrical case of 

diffraction (η=90°), the penetration depth for hkl reflection [43]: 

         (3.16)
  

where 
 
for absorption between the absorption edges. 

 In this chapter a few geometries used for stress measurement by X-rays will be 

shortly presented and for each the problem of information depth will be discussed. This 

problem is certainly very important in the case of in depth stress gradient. Also, the 

principles of multireflection grazing incidence X-ray diffraction (MGIXD) developed in 
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the present work will be introduced. The described below method will be divided in two 

types: methods in which the penetration depth is variable or is constants during 

measurement. In the first case complex analysis should be used in order to extract the 

stress in-depth profiles, while the latter methodologies are concentrated on designing of 

special geometries in which the lattice strains are measured for constant penetration of X-

rays (this simplifies analysis of the data).    

 

3.1. METHODS WITH VARIABLE PENETRATION DEPTH 

 

3.1.1. STANDARD GEOMETRIES OF STRESS MEASUREMENT 

 In the standard sin2ψ method, the <d(ϕ,ψ)> {hkl} vs. sin2ψ functions are measured 

using X-ray diffraction for a single reflection hkl and constant φ angle. As shown in 

Fig. 3.4, the ψ angle can be changed in two different ways, i.e. by tilting diffraction plane 

(ψ-geometry) or rotating both incident and diffracted beams in diffraction plane being 

perpendicular to the sample surface (ω-geometry). In both cases the diffraction peak for 

the same reflection hkl is measured, thus the 2θ angle remains approximately constants 

(excluding small shifts caused by lattice strains). The measurements of 

<d(ϕ,ψ)> {hkl} vs. sin2ψ functions are repeated for different φ angles. To set desired angles 

ψ and ϕ the instrumental angles χ, ω and φ are varied applying conditions defined in 

Fig. 3.4. 

 

Fig. 3.4. Two different geometries used in standard measurements of residual stresses. The 
instrumental angles are indicated by: χ, ω and φ, while ψ and ϕ are the desired angles. 
Orientation of diffraction plane, scattering vector, incident (i.b.) and reflected beam (r.b) 
are shown. 
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 The standard method for stress measurement is not advised for the analysis of 

heterogeneous stress states because the penetration depth of X-ray radiation varies 

significantly during measurement when both orientations of incident and reflected beams 

are varied (Fig. 3.5). The effective penetration depth can be calculated for the ψ and ω-

geometry:  

        (3.17) 

      (3.18) 

where , and 2θ angles are defined in Fig. 3.4. 

 

Fig. 3.5. Penetration depth calculated from Eqs. 3.17. and 3.18. for polished tungsten 

(τ = 3313 cm-1, Cu Kα1 radiation) in function of sin2ψ . 

 

 Consequently, the volume for which the measurement is performed is not well 

defined and the interpretation of the results is not unique. Using the standard X-ray sin2ψ 

method, the stress gradient can be estimated only if a special character of stress evolution 

is assumed (for example exponential or linear variation with depth). Moreover, this 

estimation is based on the curvature of the sin2ψ plot [3, 44], which can also be influenced 

by other effects (presence of the  or  shear stresses or sample anisotropy).  
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 The example of sin2ψ  plots for different ϕ angles measured using ω and 

ψ geometries (mechanically polished tungsten was measured for the same experimental 

conditions as peaks presented in Fig. 2.9, details are given in Table 5.4 for PANalytical – 

Empyrean diffractometer). The linear behaviour of the functions means that the stress 

gradient is not present in the penetration depth reached by diffraction. The results 

presented in Table 3.1 show the same stresses determined using both methods. 

a) b)  

Fig. 3.6. Interplanar spacings <d(ϕ,ψ)> {hkl} vs. sin2ψ for mechanically polished tungsten 
sample. Results for ψ – geometry (a) and ω – geometry (b). 

 

Table 3.1. Comparison of the results obtained for two different geometries. 

geometry σI
11 (MPa) σI

22 (MPa) χ2 τ (µm) 
ω -660 ± 23 -787 ± 23 4.8 0.9 
ψ -657± 17 -774± 16 4.2 1.0 

 

 Finally it should be stated that the standard method can be used to measure stress 

gradient using ED method with synchrotron radiation. In this case the ψ-geometry is used 

with constant 2θ angle and the reflection are obtained for different energies <E>{hkl} 

corresponding to interplanar spacings <d>{hkl} according to Eq. 3.15. Because the 

absorption coefficient µ depends on the energy, also so measured <d>{hkl} vs. sin2ψ 

function will be determined for different depths (Eq.3.16). Therefore, the mean stresses 

obtained for different reflections will be defined also for different τ (see Eq. 3.16). The 

problem is that the penetration depth for each plot <d>{hkl} vs. sin2ψ (Fig. 3.5) changes 

significantly and in the case of significant stress gradient these functions are far from 
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linearity. Consequently the ED standard method can be used only in the case of small in 

depth variation of the stress.  

 

3.1.2. UNIVERSAL PLOT METHOD 

 An interesting modification of the standard diffraction experiment introduced in 

order to find  in depth profile was proposed and developed by Genzel [36, 43, 

45, 46]. In this method, an original treatment of standard sin2ψ  plots was performed, 

assuming biaxial residual stress in the quasi-isotropic sample. With these assumptions the 

mean value from lattice strains measured for φ = 00 and φ = 900 can be related with so 

called in-plane residual stresses ( ) at τ depth by an equation [36]: 

        (3.19) 

where:
   

,
 

 and 

  (3.19 a) 

 Then the principal stress component can be expressed by [36]: 

    (3.20) 

where (for quasi-isotropic polycrystalline materials): 

 

and

 

   

 Assuming a biaxial residual stress state ( =0) the stress free parameter 

 = can be measured in the strain-free direction ψ∗ of the biaxial stress 

state, i.e. for =0 ( ). Therefore if  is known, the 

right hand side of the Eq. 3.8 contains only the experimental information and the unknown 

in-plane stresses is on the left hand side. As the result the profiles of biaxial stresses can be 
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easy determined. However, in the presence of  stress fields in the eq. 3.20 the 

additional term occurs. It can falsify the in-plane stress depth distribution by a certain 

amount [43]. 

In this method the stress distribution vs. penetration stress can be directly computed from 

single standard sin2ψ  plot and presented as a plot versus penetration depth [36]. Moreover, 

applying high energy with ED mode the universal plots for different ranges of penetration 

depths can be determined and shown together as an ‘universal plot’.  

 

3.1.3. SCATTERING VECTOR METHOD 

 Another method used for determination of in depth stress gradient is the scattering 

vector method [38, 43, 45]. In this method the components of the stress tensor  (in 

function of penetration depth ) are determined from a series of measured 

 depth profiles. The interplanar spacings  are measured 

for constant ϕ and ψ angles, with stepwise rotation η of the sample around the scattering 

vector (i.e., L3 axis in Fig. 2.6). To calculate penetration depths  (for given ϕ and ψ) 

corresponding to different η angles Eq. 3.5 is applied. Using the AD diffraction, 

measurements are performed for at least two ψ angles. Next the self-consistent calculations 

of triaxial residual stress gradient are performed. In this variation procedure [45], 

perpendicular stress expressed by: 

     (3.21) 

(where:  is the same mean strain as in Eq. 3.19 a but in “strain-free 

direction of the biaxial residual stress state” defined by ) and the in-plane stress 

components  given by Eq. 3.20 are calculated for varying value of . The 

calculations are repeated for strain profiles obtained for two or more inclinations 

 receiving different profiles of triaxial stress  (or mean stress ). If the 

procedure is convergent, the same profiles of  (or ) must be gained for 

different  inclinations (the difference between such profiles determines criterion of 

33( )Iσ τ

( )I
ijσ τ

τ

{ }, , hkl< d( )>φ ψ τ { }, , hkl< d( )>φ ψ τ

τ

* * 0
{ } { } { }

33
33 33

( , ) ( , )
( )

( , ) ( , )
hkl hkl hklI d d

F hkl F hkl

ε ψ τ ψ τ
σ τ

ψ ψ

+ +< > < > −
= =

*
{ }( , ) hklε ψ τ +< >

*ψ

11/22( )Iσ τ 0
{ }hkld

ψ ( )I
ijσ τ || ( )Iσ τ

( )I
ijσ τ || ( )Iσ τ

ψ



51 

 

convergence). Finally, when the convergence is reached, the triaxial residual stress state 

within the accessible penetration depth and the strain-free lattice parameter are determined, 

without the need of some stress-free reference sample (assuming does not change 

with depth due to structure heterogeneity).  

 The above described method was also applied using ED measurements with 

synchrotron radiation [43]. The advantage of this improvement is certainly increased 

number of strain profiles measured at different penetration depths (for different energies). 

This provides more available input data used for stress calculations. Moreover, the stresses 

can be studied for significantly increased depth in comparison with laboratory apparatus 

(with X-ray tubes).  

 

3.2. METHODS WITH CONSTANT PENETRATION DEPTH 

 The geometry based on the grazing incidence X-ray diffraction can be applied to 

measure gradient of residual stresses in surface layers [14, 19, 38, 45, 47, 48, 49]. The 

principle of this method is the use of a small incidence angle (α in Fig. 3.7) for which the 

path in the material of the incidence beam is much longer than the path of diffracted beam 

(a>>b in Fig. 3.7). To perform stress measurements for constant penetration depth (τ), the 

orientation of scattering vector characterized by ψ angle must be varied, while small α is 

kept unchanged. To do this, different methods were proposed [19]: (a) multiple reflection 

and single wavelength – multi-reflection method [14, 47, 50, 51], (b) single reflection but 

multiple wavelengths – multi-wavelength method [52]; (c) single reflection and single 

wavelength - multiple χ method [53, 54]. 

 

3.2.1. MULTI-REFLECTION GRAZING INCIDENCE X-RAY DIFFRACTION 

 The multi-reflection grazing incidence X-ray diffraction (MGIXD) geometry [14], 

called also multiple {hkl} grazing incidence [19], is characterized by a small and constant 

incidence angle α and by different orientations of the scattering vector (variable 2  

angle for a constant wavelength; see Fig. 3.7) given by the equation: 

          
(3.22)  

0
{ }hkld

}{ hklθ

αθψ −= }{}{ hklhkl
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where 2 are the diffraction angles corresponding to those reflections hkl for which 

diffraction peaks are measured [14, 48, 55]. 

 In this geometry the diffraction plane (defined by incident and diffracted beam) is 

always perpendicular to the sample surface.  

 

Fig. 3.7. Geometry of MGIXD-sin2ψ method. The incidence angle α is fixed during 

measurement while the orientation of the scattering vector is characterised by the angle ψ{hkl}. 

  

 Analogically to the standard method stresses can be determined from the 

interplanar spacings measured in direction of the scattering vector, i.e. in this case, for 

different  (and consequently various angles) and for constant α angle 

(Fig. 3.7). However, in the case of multi-reflection method instead of { }, hkl< d( , z )>φ ψ , the 

so called equivalent lattice parameters { }, hkl< a( , z )>φ ψ  are expressed by the macrostresses 

( )I
ij zσ  and strain free  lattice constant [14]:  

{ } 0 0, ( )I
hkl ij ij< a( , z )  = [ F (hkl, , ) z ] a a>φ ψ φ ψ σ +

     
  (3.23) 

where:  

for cubic crystal structure: 2 2 2
{ } { }, ,hkl hkl< a( , z )  = < d( , z )  h k l> >φ ψ φ ψ + +             (3.24 a) 

or for hexagonal structure: 
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where  can be chosen arbitrary, while  depends on the diffraction angle for given 

reflection hkl (Eq. 3.22).  
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 In the case of MGIXD method the measurements of interplanar spacings 

are performed in the near surface volume, which is limited by radiation 

absorption. To define this volume, the path of the X-ray beam through the sample must be 

considered (Fig. 3.7). The measured average interplanar spacings  are 

equal to:  

0
{ }

0

( , , , )exp[ ( )]
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d hkl z l z dz
< d( z )   

l z dz
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> =

−

∫

∫

   and       (3.25) 

where the above formula can be used if α >> αcr (αcr is the critical angle for total external 

reflection), z is a depth below the surface and the average is calculated over the volume of 

all reflecting grains in the beam path, i.e. from surface ( z = 0 ) to the thickness of the 

coating ( z = t ). If the stresses are measured in a monolithic sample or in a thick coating 

. 

 For α >> αcr, Eq. 3.25 is usually expressed in the equivalent corresponding to 

effective depth  given by Eq. 3.4:  
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    and          (3.26)  

By using a long incident beam path for small α angle (a(x)>>b(x) in Fig. 3.7), the above 

equation can be simplified, i.e.: , where τ nor  does not depend on the θ{hkl} 

(or ψ{hkl}) angle. What is more the penetration depth can be changed by appropriate 

selection of α angle to investigate materials on different depths below sample surface 

(order of µm or even below 1 µm).  

 Using Eq.3.23 and assuming  the other parameters of stress tensor and 

a0  parameter can be determined from least square fitting procedure (as described in the 

case of Eq. 2.45 and 2.46). On the other hand, if the value a0  is known full stress tensor 

can be found for given τ or . This gives a possibility to measure a stress gradient as well 
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as the in-depth dependence of a0. It should be stated, that till now, in the case of hexagonal 

structure the value of c/a was substituted from the tables [14, 47], and however in the next 

part of this work an original method for determination of c/a in depth profile will be 

proposed. 

 In Fig. 3.8 the dependence of effective penetration depth for different geometries 

and two materials (Al and Ti) are presented. Calculations were performed for absorption 

coefficients µAl = 135.6 cm-1 and µTi = 918.9 cm-1 occurring for Cu X-ray radiation and for 

thick sample (i.e. for t>>τ, when z τ= ). Accordingly to the above discussion strong 

dependence of τ on ψ angle is seen in the case of standard ω and ψ - geometries, while 

almost constant value of τ was determined for MGIXD method. Moreover, grazing incident 

geometry allows investigating much shallower depths, which can be changed by setting 

different α angles. 

 

Fig. 3.8. The penetration depth (τ) vs. sin2ψ for classical ψ and ω geometries (shown for 2θ 

corresponding to 422 reflection in the case of Al) and for MGID-sin2ψ method (shown for 
four incidence angles). Two scales of τ corresponding to Al and Ti material are shown. 

 

 In present work the MGIXD method is significantly developed, tested and applied 

to measure in-depth profile of stresses and stress free lattice parameter as well as c/a 

parameter in the case of hexagonal crystal structure. A great advantage of this method is 

the possibility of using Williamson-Hall method for crystallite size and the root mean 

square of lattice strain determination [56, 57]. 
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3.2.2. MULTI-WAVELENGTH METHOD  

 Multi-wavelength method allows to perform measurements of stresses at a constant 

penetration depth by applying X-rays having different energies (wavelengths) by using 

synchrotron radiation or different tubes at laboratory equipment [19, 52]. The experimental 

configuration is similar as this used in the above described multireflection method 

(diffraction plane is perpendicular to the sample surface as shown in Fig. 3.5) but in this 

case peaks for the selected single hkl reflection are measured. In order to gain the proper 

set of data, i.e. to change ψ angles (determining inclination of the scattering vector), for 

a given hkl reflection the scattering angle 2θ is varied by changing value of the 

wavelength. The constant penetration depth is kept unchanged adjusting additionally the 

incident angle α. In this method the relation between ψ, 2θ and α angles is given by 

Eq. 3.22. 

 

3.2.3. MULTIPLE Χ - METHOD (PSEUDO-GRAZING) 

 Pseudo-grazing incident X-ray (p-GIXD) method, called also multiple χ [19] allows 

evaluation of the average level of stresses and their distribution below the surface by 

setting the desired penetration depth which can be done choosing the proper incident angle 

α (angle between incident beam and sample surface) [58]. In this method only one hkl 

reflection is used but additional rotation of the sample by χ angle (Fig. 3.4) is performed. 

To keep α angle constant, for different inclinations of the scattering vector (defined by 

ψ angle) the orientations of the sample and the angles of diffraction cannot be chosen 

independently. The values of these angles must be calculated from the directions of the 

incident beam, diffracted beam and diffraction vector as well as from the penetration depth 

which need to be constant when the sample is rotated. A combination of ω and χ tilting 

angles (see Fig. 3.4 a) allows to achieve the constant penetration depth of X-rays.  

 In this method the penetration depth can be expressed as [53]: 

       (3.27) 

where:  and . 
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 For each value of desired ψ angle and given penetration depth it is necessary to 

select proper values of the instrumental angles ω and χ according to Eq. 3.27. Next, in 

order to set desired angle ϕ, the sample must be rotated around normal to the surface by 

instrumental angle  which can be calculated from the following relation (see Fig. 3.4): 

         (3.28) 

 The main disadvantage of this method is the limitation of the accessible range of 

specimen tilt angles ψ for reflections having large 2θ angles (over 100°). This limits are 

define by the limit of both ω (lower limit) and χ (upper limit) geometries. Table 3.2 

summarizes the example of the results for polished Al2017 and Ti6Al4V samples showing 

the possible range of the ψ angle in p-GIXD. Furthermore, this method can be applied only 

on the diffractometers with the Euler cradle. 

 

Table 3.2. Possible range of the ψ angle in p-GIXD method for Cu Kα radiation. 

hkl 2θ (°) ψ range (°) sin2ψ 

Ti6Al4V 
{103} 71 26-65 0.2-0.8 
{014} 93 37-68 0.4-0.9 
{114} 115 48-71 0.6-0.9 

Al2017 
{220} 64 23-64 0.2-0.8 
{311} 77 29-66 0.2-0.8 
{331} 111 46-71 0.5-0.9 
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3.3. X-RAY DIFFRACTION ELASTIC CONSTANTS AND STRESS FACTORS 

 To study the stress state in a polycrystalline material the stresses must be related to 

the measured lattice strains using the X-ray elastic constants or stress factors, as shown in 

Eqs. 2.43 and 2.44. In the present work X-ray diffraction methods are applied to measure 

residual stresses in materials and the problem of X-ray stress factors (XSF) used for the 

interpretation of results will be studied in chapter 5. To show the influence of the X-ray 

stress factors on the interpretation of MGIDX results, polycrystalline materials having low 

(W, Ti alloy) and high elastic anisotropy of crystallites (Ni alloy, CrN coating) are 

investigated. The information about elastic anisotropy of a monocrystal is given by so-

called Zener anisotropy factor A, defined as [59]: 

          (3.29) 

where: c44 and (c11-c12)/2 represent the shear stiffness in a [100] direction on a (100) plane 

an in a [110] direction on a (110) plane, respectively (cij are single crystal stiffnesses 

written using matrix convention). For perfectly isotropic crystal A=1. Values of single 

crystal elastic constants and Zener factor for materials studied in this work are given in 

Table 3.3. 

 

Table 3.3. Single crystal elastic constants (cij) and Zener factors (A) for studied materials 

[60, 61, 62, 63, 64, 65, 66]. 

     Cij (GPa) 
             or A 
material 

c₁₁ c₁₂ c₁₃ c₃₃ c₄₄ c₆₆ A 

W 501 198 198 501 151 151 1.01 
Ti 162 92 69 180 47 35 1.34 
Ni 245 148 148 245 134 134 2.76 

CrN 542 27 27 542 88 88 0.34 
Austenite 

stainless steel 
197 122 122 197 124 124 3.3 

 

 X-ray as well as macroscopic elastic constants can be calculated from single-crystal 

elastic constants by adopting a grain-interaction model [19, 67]. The commonly used 

44
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methods for calculation of the diffraction elastic constants are Voigt [68], Reuss [69] and 

Kröner [70] models or so called direction dependent Vook–Witt [19] or recently proposed 

free- surface models [71, 72]. The difference between the models is the type of assumed 

intergranular elastic interaction. 

 

 

Fig. 3.9. Scheme of interaction between grains for four different models: a) Reuss - 
homogeneous stress, b) Voigt -homogeneous strain and c) Kröner – (sc – self consistent) 
ellipsoidal inclusion within homogeneous medium and d) free surface – (sc-fs – self 
consistent free surface) ellipsoidal inclusion placed near the surface of the homogeneous 
medium [20]. 

 

The Voigt model 

 In the Voigt [68] model the uniform grain elastic strain is assumed to be equal to 

the elastic macro-strain value [73]. The strain distribution is homogenous in the sample so 

there is a continuity of the strain at the grain boundaries. Stress tensor for each differently 

orientated crystallite will not be the same [19]. 

 The X-ray stress factors (independent from hkl) can be calculated from [73]: 

        (3.30) 

where  is the macroscopic stiffness tensor expressed in the sample coordinate system 

S (Fig. 2.6) and versor  is defined in Eq. 2.41. 
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 The macroscopic stiffness tensor is calculate from single crystal stiffnesses 

 having orientations  expressed in S system, using orientation 

distribution function : 

    (3.31) 

where  are the Euler angles describing lattice orientation of polycrystalline grain 

[74]. 

 In the absence of texture, i.e. for =1, the polycrystal is macroscopically 

isotropic, and X-ray elastic constants S1
hkl and 1/2S2

hkl  can be used instead of the stress 

factors. The XECs, according to the Voigt model do not depend on hkl and thus are equal 

to the mechanical constants. Following Welzel [19], the X-ray elastic constants S1 and 

1/2S2 can be calculated from the components of the single-crystal compliances defined 

with respect to the lattice (sij – two indexes convention). For cubic crystals: 

;          and     s0=s11-s12-s44/2 (3.32) 

 

The Reuss model 

 In Reuss model [73, 75] the stress is assumed to be uniform across the sample for 

all polycrystalline grains. For each crystallite the strain tensor is different so at the grain 

boundaries the strain mismatch will occur [19]. 

 The X-ray stress factors can be calculated [1, 19]: 

   (3.33) 

where the same mean value as in Eq. 2.28 is calculated for sS – single crystal elastic 

compliance tensor expressed in S system, i.e., average over volume of diffracting grains. 
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Both  and  values for given reflection hkl are expressed as 

functions of orientation angles defined in Fig. 2.8.  

 In the absence of texture i.e. when f(hkl,ξ,φ,ψ)=1, the  S1
hkl and 1/2S2

hkl can be used 

instead stress factors. For cubic crystal, the X-ray elastic constants S1
hkl and 1/2S2

hkl can be 

calculated from the components of the single-crystal compliances [19]: 

,          (3.34) 

where Γ(hkl)=(h2k2+h2l2+k2l2)/(h2+k2+l 2) is the orientation factor for cubic materials. 

XECs according to the Reuss model are hkl - dependent. 

 

The Eshelby – Kröner model 

 In the self-consistent [70] method the grain is approximated by an ellipsoidal 

inclusion [76], which is embedded into a homogenous and isotropic medium with the 

elastic properties of the entire polycrystal. In this model the inclusion has an elastic 

property of cubic symmetry [77]. Kneer (1965) [78] extended the model for textured 

specimens [19]. 

 Following Welzel [19] the elastic strain of a single-crystalline inclusion is given by: 

         (3.35) 

where tijkl is the tensor which describes the deviation of the elastic properties of an 

individual grain from the average elastic properties of the entire polycrystal/surrounding 

matrix. It depends on the shape of the inclusion, the single-crystal elastic constants and the 

macroscopic mechanical compliance tensor Sijkl of the aggregate. Usually, spherical 

inclusions are considered.  
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The X-ray stress factors can be calculated from: 

      (3.36) 

 In the absence of texture the f(hkl,ξ,ϕ,ψ)=1, the X-ray elastic constants S1
hkl and 

1/2S2
hkl can be defined. For cubic crystallites the XEC’s can be calculated from [19, 79]: 

   and   
  

 (3.37) 

where T0=T11-T12-2T44,   , 

, 3K=1/(S11+2S12), µ=1/S44 ,  2ν=1/(S11-S12) and  

K is the bulk modulus, G is the shear modulus and Sij are the macroscopic compliances 

(two indexes convention). 

 

Free surface model 

 Free surface model [71, 72] treats grain as an ellipsoidal inclusion placed near the 

surface of the homogeneous medium. This is direction dependent model in which the 

interaction between grains is changing with the direction with respect to the sample. 

 In this model the grains close to the surface interact differently for the forces 

normal and parallel to the surface. For the direction perpendicular to the surface the grains 

exhibit a Reuss type of interaction behaviour and for the in surface plane they follow 

Kröner model. This idea is similar to that used in Vook-Witt model in which combination 

of Reuss and Voigt approaches is applied [19]. Therefore the elastic interaction between 

grains is neglected in the direction normal to the surface. Grains on the surface can freely 

deform in normal direction.  
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 The X-ray stress factors can be calculated from: 

     

(3.38)

 

where: 

( , , , ) for k 3 or l 3 as in Reuss model
( , , , )

( , , , ) ( , , , ) for k 3 and l 3 as in Kroner model

s
klijS

klij s s
klij klij

S hkl
X hkl

S hkl t hkl

ξ φ ψ
ξ φ ψ

ξ φ ψ ξ φ ψ

 = == 
+ ≠ ≠ ɺɺ

 

 It should be underlined that the presented above models approximates real 

polycrystalline aggregate and in fact, the grain to grain interactions depend on the grain 

size distribution, grain boundary misorientation distribution and a Zener anisotropy factor. 

It is well known that the high crystal anisotropy together with crystallographic texture 

leads to nonlinearity of the sin2ψ plots obtained from standard methods of stress 

measurement [14, 19, 73]. One of the aims of this work is a verification of XEF calculated 

by different models and their application for interpretation of the results obtained using 

MGIXD method. In this case the difference between XEF calculated for different 

reflection hkl is very important especially for high single crystal anisotropy.  
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4. AIMS OF THE THESIS 
 The aim of this work is to develop one of the methodologies for stress 

measurements based on the grazing incidence X-ray diffraction, namely: multireflection 

grazing incidence method. On the basis of present knowledge and due to numerous 

advantages of this method it seems that it is a valuable tool for in-depth stress analysis, 

especially important for samples having stress gradient. That is why this method will be 

considerably developed and applied for coatings and surface layers of the materials 

subjected to different processes. Moreover one of the main purposes of the thesis is to 

investigate the mechanical properties of the polycrystals such as: elastic constants and their 

elastic anisotropy. Different theoretical grain elasto-plastic interaction models will be 

considered and applied in X-ray stress analysis in the thesis. 

 Till now the multireflection grazing incidence diffraction is not commonly used 

method for X-ray stress analysis. The commercial companies applied this method in their 

software but without taking into account the elastic anisotropy. What is more the 

systematic verification of this method with synchrotron radiation was not presented as well 

the precise limits of application were not summarized in the literature. That is why the 

main interests in the thesis will be concentrated on method development. Firstly, physical 

and geometrical effects influencing X-ray stress analysis will be taken into consideration. 

Secondly, elastic anisotropy and proper choice of the grain interaction models will be 

analysed in order to perform the valuable in-depth stress analysis. Thirdly, MGIXD 

method will be compared with standard methods, in effect new possibilities of this method 

will be highlighted. What is more method will be verified with synchrotron radiation. For 

the first time MGIXD method will be applied for EDDI (energy dispersive diffraction) 

experiment. Finally method will be applied to measure in-depth profile of stresses in 

materials subjected to different kinds of surface treatment. 

 At the end of the thesis the conclusions and practical recommendations for the users 

of this method will formulated. 
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5. TESTS, LIMITS AND EXPERIMENTAL DEVELOPMENTS OF 

THE MGIXD  METHOD 

 The MGIXD method, proposed and developed by Skrzypek et al. [14, 48, 80], is an 

indispensable tool for non-destructive analysis of the heterogeneous stresses for different 

(well defined) volumes below the surface of the sample. There are important benefits in 

using different reflections to measure residual stresses. The most important is the wide 

range of scattering vector inclinations enabling sufficient range of measured 

>),a( < hkl}{ψφ  vs. sin2ψ plot which is used to calculate stress tensor from linear regression 

or least square method. The main disadvantage of multi-reflection method is that the 

interplanar spacings must be measured using also the low 2θ reflections (for example about 

40o-50o). In this case the resolution of the strain obtained from measured peak shift is low 

(see Eq. 2.29) and this is why the peak position must be precisely determined. Precise 

measurement is possible due to simple experimental geometry in which the orientation of 

the scattering vector is changed in diffraction plane being perpendicular to the sample 

surface (like in ω geometry presented in Fig. 3.4). This configuration enables to use linear 

focus of the X-ray tube and application of the parallel beam geometry in which the parallel 

plate collimator (soller collimator) is used in the reflected beam optics (Fig. 5.13). 

Moreover, the incident beam can be collimated for example by Göbel mirror or multi-

capillary collimator. The advantage of parallel beam is its high resolution in determination 

of peak position and minimisation of the error caused by sample displacement in z-

direction (see Fig. 5.13). Till now, the parallel beam geometry used in MGIXD method 

was realised without collimation of the incident beam which was limited by slits [14, 48]. 

In the present work the geometry with Göbel mirror will be applied for stress 

measurements using MGIXD method. This experimental setup will be described and 

tested. The reproducibility of the results of XSA will be tested for different diffractometes 

on the powder sample [81]. 
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 In this chapter also some new developments of the methodology, most important 

corrections of experimental data and tests will be presented.  

 

5.1. CORRECTIONS OF DETERMINED PEAK POSITION  

 In the case of stress measurement, it is of the highest importance to know the exact 

position of the diffraction peak. To do this a few factors [1, 6] should be taken into account 

[82]. Hence, these factors for MGIXD are discussed below. 

 

5.1.1. INTENSITY CORRECTIONS 

 As mentioned in section 2.4 there are different reasons of peak asymmetry which 

should be corrected before determination of peak position. The appropriate correction 

factor used for standard and MGIXD methods are summarised in Table 5.1. These factors, 

depending on 2θ angle, should be used to correct each peak accordingly to Eq. 2.30, after 

background subtraction. The LP(2θ) correction is the same for all methods, Ab(2θ) 

correction is not necessary for ψ – geometry, while the absorption correction is the same 

for ω – geometry and MGIXD methods. However, in the latter case different angles are 

kept constant during peak scanning (i.e. ψ  and α  for ω – geometry and MGIXD method, 

respectively). 

 

Table 5.1. The intensity correction factors for different methods of stress measurements 

[3, 6], where the angles: ψ , α
 
and 2θ are defined in Fig. 3.7.  

 
ψ – 

geometry 
ω – geometry MGIXD 

Lorentz-polarization: 
LP(2θ) 

2

2

1 cos 2

sin

θ
θ

+

 
 

Absorption:      Ab(2θ) 1    (1 tan cot ) / 2ψ θ+  
.constψ =  

(1 tan( ) cot ) / 2θ α θ+ −  
.constα =  
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Fig. 5.1. Dependence of LP(2θ) (a) factor and Ab(2θ) (b) factors on the scattering angle 2θ. 
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Fig. 5.2. Dependence of LPA= LP * Ab factor on the scattering angle 2θ. A small range of 
variation for relatively low 2θ (about 30o) is shown in figure b. 

 

 As seen on Figs. 5.1 and 5.2 the most important variation of intensity (LPA = 

LP*Ab) factor occurs for small 2θ angles. However, even in this range the relative changes 

of intensity are very small for the range of about 1 degree corresponding to the width of the 

measured peak (in the case of high density of defects).  
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Fig. 5.3. The influence of LPA correction on the peak position for Al 2017 (a) and Ti grade 
2 (b) polished sample. The peak position without and with correction for Kα1Cu lines are 
indicated by dashed lines (in same cases the lines overlap). The PANalytical - X’Pert MRD 
(AGH, Kraków) diffractometer was used for ground Al2017 measurements while the 
PANalytical - X’Pert MRD (ENSAM, Paris) was used for polished Ti measurements. 
The configuration of both diffractometers is given in Table 5.4.  

 

 Examples of the diffraction peak shifts (∆2θ) and corresponding strains (ε) 

calculated from Eq. 2.29 caused by the LPA correction are shown in Fig. 5.3. The peaks at 

low and high 2θ angles for ground Al and Ti samples having significant structural peak 

broadening were chosen. Also, the values of stresses and lattice parameters determined 

with and without corrections for the studied samples are presented in Table 5.2. It can be 

concluded that even in the case of relatively broad diffraction peaks the influence of LPA 

correction on the measured peak position, corresponding strain and consequently value of 

determined stress or strain free lattice constants is very small. 
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Table 5.2. The stresses (σ) and lattice constants (a0) determined for ground Al2017 and 

polished Ti grade 2 samples from the experimental data with and without LPA correction.  

 
calculation without LPA 

correction 
calculation with LPA 

correction 
difference 

 
ground Al 2017 (cubic) 

σ11(MPa) 204.2  ± 4.8 206.9 ± 5.7 2.7 

σ22(MPa) 126.4  ± 4.8 129.4 ± 5.7 3.0 

a0 (Ǻ) 4.04697 ± 0.00008 4.04698 ± 0.00010 0.00001 

 
polished Ti grade 2 (hexagonal) 

σ11(MPa) -411±11 -405.4  ±12.2 5.6 
σ22(MPa) -405±11 -397.7 ±12.1 7.3 

a0 (Ǻ) 2.9506 ±0.0001 2.9506 ± 0.0001 - 

c/a 1.5881 ± 0.0003 1.5881 ± 0.0003 - 
 

 

5.1.2. PEAK SHIFT DUE TO REFRACTIVE INDEX SMALLER THAN 1 

 The refraction of the X-rays on the boundary between two different media can 

significantly influence the position of the diffraction peak. The deviation of wave direction, 

described by Snell–Descartes law, causes a change in the value of the diffraction angle ∆2θ 

and additionally a small inclination ∆ψ of the scattering vector orientation. So far the only 

solutions for a refraction correction are given in the case of a smooth surface.  

 In this section the change of diffraction angle caused due to refractive index n < 1 is 

considered. The derived formulas are compared with those found in literature. Assuming 

a perfectly smooth surface, the influence of the refraction on the position of the diffraction 

peak can be studied by taking into account: 

•  the change of the wavelength value inside the studied material and its influence on 

the Bragg’s law, Eq. 2.11,  

•  the refraction of the beam on the boundary between two different media described 

by Snell–Descartes law. 
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Fig. 5.4. Influence of refraction on the value of diffraction angle 2θ  (where 2 eθ  is the 
measured diffraction angle). 

 

 The complex value of refractive index is defined as: n=1- δ +iκ. The imaginary part 

κ indicates the amount of absorption loss when the electromagnetic wave propagates 

through the material, while the real part determining the refraction of the rays is slightly 

smaller than unity. The refractive index can be expressed by [83, 84]:  

n=1-δ ,   where:   
2

0

2 at re

r
N f

λδ
π

=  ,                                                                     (5.1) 

where: Nat – number of atoms per volume, r0 – classical electron radius (2.82·10-15 m),  

fre – real part of atomic scattering factor and λ – wavelength of X-ray radiation. 

 When the wave propagates from vacuum to the medium its length is changing: 

'
1n

λ λλ
δ

= =
−

          (5.2) 

where: λ  and 'λ  are the wavelength values in the vacuum and in the material, 

respectively.  

 Inside the considered material, the Bragg’s law (Eq. 2.11) can be written for 'λ  

wavelength: 

' 2 sin '
1

m
m d

λλ θ
δ

= =
−

        (5.3) 

where: '2 Bθ  is the diffraction angle inside the material defined in Fig. 5.4 and m is the 

reflection order .
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By simple comparison of the above formula with that written for the wavelength λ  in the 

vacuum (i.e.: 2 sinm dλ θ= ), we get: 

1sin( ' )sin
1

sin ' sin '

θ θθδ
θ θ

− ∆− = =          (5.4) 

where: 1 'θ θ θ∆ = − .  

When assuming small value of ∆θ1 angle the above formula can be transformed: 

1 1
1

sin 'cos cos 'sin
1 1 cot '

sin '

θ θ θ θδ θ θ
θ

∆ − ∆− = ≈ − ⋅ ∆      (5.5)
 

Finally, the correction of diffraction angle due to change of wavelength in Bragg law is 

given by: 

12 2 tan 'θ δ θ∆ =
          

(5.6) 

 The second correction can be calculated from Snell–Descartes law. For refractive 

index n less than 1, the relation between directions of the incident and diffracted beams is 

described by equations:  

sin(90 ) cos
1

sin(90 ') cos '

o

o

α α δ
α α

− = = −
−

  (5.7 a)     
sin(90 ) cos

1
sin(90 ') cos '

o

o

β β δ
β β

− = = −
−

    (5.7 b)
 

where the angles are defined in Fig 5.4. 

 Next, the deviations of the incident and diffracted beams 'α α α∆ = −  and 

'β β β∆ = −  can be determined using two approximations: 

a)    
0

0

α
β

→
→

       or      b)      
0 '

0 '

and

and

α α α
β β β

∆ → ∆ <<
∆ → ∆ <<

     (5.8) 

In the first case (a), which will be applied for ' 5oα <  or/and ' 5oβ < , we can write 

(calculations are presented for α  angle, but the same transformations could be done for 

smallβ ) : 

2 2 2 2' '
(1 )cos ' cos (1 ) 1 1 1 1

2 2 2 2

α α α αδ α α δ δ   
− = ⇒ − − ≈ − ⇒ − − ≈ −   

   
  (5.9) 
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and 

2α α α δ∆ = − −       or/and     2β β β δ∆ = − −      (5.10) 

where 2crα δ=  is an critical incident angle for total external reflection (below this angle, 

i.e. when crα α<  only the reflected beam exists and 2 crα α∆ = ).  

The second approximation (b) is used for angles ' 3oα >  or/and ' 3oβ > : 

cos cos( ' ) cos 'cos sin 'sin
1 1 tan ' 1 tan

cos ' cos ' cos '

α α α α α α αδ α α α α
α α α

+ ∆ ∆ − ∆− = = = ≈ − ⋅∆ ≈ − ⋅ ∆  

and consequently 

cotα δ α∆ =       or/and     cotβ δ β∆ =        (5.11) 

 The change 22θ∆  of the scattering angle caused by refraction is equal to the sum of 

α∆  and β∆  deviations (see Fig. 5.4), i.e.: ∆2θ2=∆α+∆β. 

 Finally, the total shift of the diffraction peak 1 22 2 2θ θ θ∆ = ∆ + ∆  caused by the 

passing of the wave through a boundary between two different media and change of the 

wavelength, can be expressed by: 

2 2 cot 2 tan 5

2 cot cot 2 tan 3

o

o

for

for

θ α α δ δ β δ θ α
θ δ α δ β δ θ α

∆ = − − + + <


∆ = + + >
    (5.12) 

where: 2θe=2θ+∆2θ, 2θe is the measured diffraction angle and 2θ  is the value which 

should be used in Bragg’s relation written for the vacuum (Eq. 2.11). The value 2θ  was 

used in the above equation instead of 'θ  because in good approximation ' eθ θ θ≈ ≈

(angles defined in Fig. 5.4). In the above formula 5oβ > was considered (to keep constant 

information depth for MGIXD method the conditionβ α>> must be fulfilled) and in the 

intermediate range 3o  < α < 5o  both functions are convergent having practically the same 

value.  
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 It should be underlined that the choice of the boundary angles 3o  and 5o  is not very 

strict and it was checked that for all studied materials the range of functions convergence is 

much wider. This choice has been suggested by Genzel [36] and it can be applied for any 

other material analyzed by conventional X-rays and also synchrotron radiation.  

 The above derived formulas can be compared with that given by James (1993) and 

applied for grazing incidence geometry by Hart [85]: 

sin sin(2 )
2 2

sin 2 sin(2 ) sin

δ α θ αθ
θ θ α α
 −∆ = + + − 

      (5.13) 

 

and another one derived by Genzel [36]: 

]

cos( )cos( )
2 arccos (cos2 sin sin )

cos cos

sin( )sin( ) 2

α α β βθ θ α β
α β

α α β β θ

 − ∆ − ∆∆ = + −


− − ∆ − ∆ −     
(5.14 a) 

where:  

2 52 5
/

cot 3 cot 3

oo

o o

forfor
and or

for for

β β β β βα α α δ α
α δ α α β δ β β

 ∆ = − − <∆ = − − < 
 
∆ = > ∆ = >  

(5.14 b) 

 After elementary transformations it can be shown that the first formula (5.13., given 

by Hart) is equivalent to the derivation done in the present work but only for higher range 

of deformation (indicated by α > 3o in Eq. 5.12). To demonstrate graphically this 

equivalence the shift of peak position predicted by different approaches are shown in 

Fig. 5.5a, where the wavelength for Cu radiation and Al sample where considered (values 

of δ and αcr are given in Table 5.3). The results obtained with the second part of Eq. 5.12 

but applied for high and low ranges of α perfectly coincide with that obtained from Hart 

equation but they do not agree with the results obtained from Genzel approach.  

 On the other hand comparing Genzel approach (Eq. 5.14) with the incomplete 

Eq. 5.12 (i.e. setting 2 tan 0δ θ = ) we get perfect convergence as shown in Fig. 5.5b. This 

means that in the case of Genzel approach the effect of wavelength change in Bragg’s law 

is not taken into account (as seen also in Eq. 5.14a). Finally, the complete formula derived 
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in the present work (Eq. 5.12) is compared with Hart (Eq. 5.13) and Genzel (Eq. 5.14) 

approaches in Fig. 5.6. It can be concluded that Eq. 5.13 is accurate for higher α angles 

where 2 tanδ θ term is relatively more important but fails for angles close to αcr. In the case 

of Eq. 5.14 the shift of peak position is underestimated for all range of α (this effect is not 

well visible for low α because the shift caused by refraction is relatively large). 
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Fig. 5.5. Peak shift caused by refractive factor 1n δ= −  for δ =0.85 and crα =0.24o and 

2 132.5oθ =  (Al sample and Cu radiation). Genzel and Hart approaches compared with the 
formula 5.12, i.e. assuming (a) 2 (cot cot 2 tan )θ δ α β θ∆ = + +  for whole range of α and 

(b) 2 tan 0δ θ = . 
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Fig. 5.6. Peak shift caused by refractive factor 1n δ= −  for the same parameters as in 
Fig. 5.5 compared for Genzel, Hart approaches and complete formula 5.12 (‘New 
formula’). 
  

 Although in Figs. 5.5 and 5.6 the shift of peak position is shown, the most 

important for stress analysis is to estimate the lattice strain corresponding to that shift. 

Therefore in Fig. 5.7 the pseudo-strain (i.e. fictitious strain which would be measured if the 

refraction effect is not corrected) calculated as cotε θ θ= − ⋅∆  (see Eq. 2.29) is shown for 

the same conditions as in previous Figs. 5.5 and 5.6 Moreover, the peak shift 2θ∆  and 

strain ε  calculated for other materials and wavelengths given in Table 5.3 are presented in 

Fig. 5.8. 

 Interesting conclusions can be drawn from the comparisons done in Figs. 5.7 and 

5.8. The use of the MGIXD method is limited for small values of α angle due to significant 

shift of peak position (important pseudo-strainε ) caused by the refractive index 1n< . This 

is especially important for low 2θ  angles. The effect of wavelength change 

(term 1 2 tanθ δ θ∆ = ) is significant for large diffraction angle (2θ ) and decreases for 

smaller 2θ . However, in the case of strain we can write: 1 ( cot )(2 tan ) / 2ε θ δ θ δ= − = − , 

i.e. the wavelength change causes constant (for all angles α , β  and 2θ ) and not 

significant negative pseudo-strain equal δ−  (compare Genzel approach and ‘New formula’ 

in Fig. 5.7). Thus the most important influence on the measured strain is caused by the 

refraction effect, i.e. 2 2cotε θ θ= − ⋅ ∆  (where 22θ α β∆ = ∆ + ∆ , see Eqs. 5.10 and 5.11). 

Because 2θ∆  is positive and does not depend on the 2θ angle, the pseudo-strain 2ε is 
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negative and its absolute value strongly increases for low diffraction angle (see Figs. 5.7 

and 5.8). 

 It should be emphasized that effect of the refractive index 1n<  on the strain 

measurement depends strongly on value of the δ  parameter, i.e. in the case of Al the 

pseudo-strain is about 4
2 1.5 10ε −≈ − ⋅  for 5oα =  and for low diffraction angle 2 35.5oθ = , 

while 3
2 1 10ε −≈ − ⋅  for 5oα =  and 2 40.2oθ =  in the case of tungsten (see Fig. 5.8). 

Moreover the pseudo-strains varies for different 2θ  angles what leads to pseudo-stress 

(because ψ θ α= − ), depending also on the value of X-ray diffraction constants. The 

pseudo-strains will cause also an erroneous value of determined stress free lattice 

parameter. Therefore the correction should be done for the experimentally determined peak 

position 2 eθ  according to the equation: 2 2 2eθ θ θ= − ∆ .  
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Fig. 5.7. Peak shift 2θ∆ and pseudo-strain ε caused by refractive factor 1n δ= −  for Al 
sample and Cu radiation (the same parameters as in Fig. 5.5 and 5.6; also given in 

Table 5.3) compared for Genzel approach (and 1 2 tan 0θ δ θ∆ = = ) and the ‘New formula’ 

with different 2θ  angles. 
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Fig. 5.8. Peak shift 2θ∆ and pseudo-strain ε caused by refractive factor 1n δ= −  for 
different materials and chosen wavelengths (see Table 5.3). Calculations were performed 

by the ‘New formula’ applied for low and high 2θ  angles corresponding to available 
hkl reflections. 
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Table 5.3. The αcr and δ values calculated for the studied materials and used wavelengths 

using X-ray database of Lawrence Berkeley National Laboratory's Center for X-Ray 

Optics [86]. 

Material Al Ti Ni CrN Fe W 
Wavelength (Ǻ) 

X-ray tube 
1.54 
Cu 

1.54 
Cu 

1.54 
Cu 

1.54 
Cu 

1.94 
Fe 

1.54 
Cu 

δ·10-5 0.85 1.35 2.73 2.15 3.42 4.63 
αcr (

o) 0.24 0.30 0.40 0.38 0.47 0.55 
 

 It was already mentioned above, that the refraction of the X-rays not only shifts the 

diffraction angle 2θ, but also leads to a change of the orientation of the diffraction vector 

∆ψ. This deviation is relatively small and practically does not influence the values stress 

determined from sin2ψ plot. The value of eψ ψ ψ∆ = −  (where eψ  and ψ  the correct 

values respectively) can be calculated from formula given by Genzel [36]:  

arccos[sin( )sin cos( )cos cos ]eψ ψ β β θ β β θ ξ∆ = − − ∆ − − ∆     (5.15) 

where:  

1 1
sin ( ) sin (

2 2
cos 2 1

cos cos

π θ β ψ π θ β ψ
ξ

θ β

    − − + − − −        = − 
 
  

  

or simply (see Fig. 5.4): 

( ) / 2ψ α β∆ = ∆ − ∆

                                                                                            

(5.16) 
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Fig. 5.9. Deviation ψ∆ caused by refraction for different materials and chosen 

wavelengths (see Table 5.3) according to Eq. 5.15. 

 

 Because the deviation ψ∆ is smaller than 0.1o for all considered ranges of α and all 

materials given in Table 5.3, the influence of refraction on the value of determined stress is 

negligible (such small deviation practically has not influence on the slope of sin2ψ plot). 

 The above derived formulas for correction of experimental data were derived for 

the case of perfectly smooth surface. The main difficulty of the application of such 

correction is that the surface roughness can significantly reduce value of the peak shift 

(∆2θ) calculated for perfectly flat sample. A first model for an explanation of how surface 

roughness could influence the refraction effect was given by Ely et al. [87]. Ott M.H and 

Löhe D [88], showed that for smooth surface theoretical corrections agree very well with 

experiment and what is more Snell’s law describes this effect with good accuracy at least 

down to incidence angles of 0.8°. It was also proven that with increasing surface roughness 

the refraction correction effect decreases.  

 To take into account that refractive index is smaller than unity, the analysis of the 

experimental data should be performed twice (i.e. with and without correction), to see the 

boundary values of stresses and determined strain free lattice constant a0. The example 

results of such calculations are shown in Figs. 5.7, 5.8 and 5.9, and such comparison will 

be later done for each sample studied in this work. The example of the results (Figs. 5.7 

and 5.8) were obtained using Kröner model and applying fitting procedure based on 
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Eq. 3.23 (the c/a parameter for hexagonal Ti samples was determined using a new self-

consistent method described in the next chapter). When the calculations are performed 

without correction, the value of a0 decreases for decreasing α incident angle, while the 

correction for smaller than unity refractive index leads to higher values of a0, and the 

increase is more significant close to the sample surface. After correction the lattice 

parameter is approximately constant in function of the incident angle α and such result was 

expected for the powder and mechanically polished samples in which the crystal structure 

should not change in function of the depth below the surface (and consequently on 

α angle). The stress values determined with and without correction are also different and 

this difference is certainly larger for Ti in comparison with Al, as expected comparing 

δ values in Table 5.3. As we see in Fig. 5.10, in the case of powder sample, the refraction 

effect influences significantly stress determined for small incidence angle (see α = 1o), 

i.e. compressive pseudo-stress is obtained without correction (this value is fictitious 

because zero stress is expected in the powder sample). However, applying correction we 

change the calculated stress to significant positive value. This would suggest that the 

assumption of smooth samples can be not exactly fulfilled and the correction of peak 

position is overestimated. Finally, we can see that refraction does not influence value of 

determined c/a parameter (Fig. 5.18). This is due to the fact that variation of c/a will cause 

the shifts of relative peaks positions depending on hkl reflections which is not monotonic 

in function of 2θ. Therefore, the determined in fitting procedure c/a value is not influenced 

significantly by the monotonic with respect to 2θ shifts of the diffraction peaks caused by 

smaller than unity refractive index. In the contrary, both strain free lattice constant a0 and 

stresses determined using MGIXD method depend (indirectly) on the monotonic variation 

of the peak position in function of 2θ angle, what leads to sensitivity of these values on the 

value of refractive index. 

 Summarizing, it should be stated that the influence of non-unit refractive index on 

the on the determined a0 parameter and residual stresses depends on the type of material, 

wavelength of X-rays, incident angle and moreover on the roughness of the surface. It is 

known that roughness reduces the refraction effect [88]. Therefore the interpretation of the 

experimental results performed with correction for flat surface and without correction 

establishes limits for the values of the stresses and a0 parameter in the studied sample. 

Such calculations must be always compared in order to see the range of incident angle for 
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which the correction is not significant (as for the samples presented in Figs. 5.8 and 5.9). 

If we want to analyze data for the range where the influence of refraction is significant we 

will know only the limits of the determined values. To verify the obtained results for 

mechanically machined surface it is important to follow changes of determined 

a0 parameter, which should not change significantly with incidence angle. In the case of 

presented results we can say that after correction we obtained reasonable values of stresses 

and a0 parameter for the incidence angles 3oα ≥  (for both Al and Ti samples using Cu Kα 

X-ray radiation).  
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Fig. 5.10. Residual stress and strain free lattice parameter ao in function of the incidence 
angle α determined with and without correction for smaller than unity refractive index. The 
MGIXD method was applied for mechanically polished aluminium alloy (Al 2017) and for 
Al powder, using -PANalytical - X’Pert diffractometer (configuration described in 
Table 5.4) with Cu Kα X-ray radiation. In calculations the Kröner XEC calculated from 
single crystal elastic constants given in Table 3.3 were used. 
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Fig. 5.11. Residual stress, c/a and ao parameters in function of the incidence angle 
α determined with and without correction for smaller than unity refractive index. The same 
experiment as described in caption of Fig 5.10 was used for mechanically polished 
titanium alloy (Ti6Al4V) and for Ti powder. 

 

5.2. TESTS OF THE EXPERIMENTAL CONFIGURATION  

 In diffractometry, both peak shape and angular resolution are influenced by the 

optical properties of the devices in the primary and reflected beam optics [89]. The main 

disadvantage of MGIXD method is its low accuracy in stress determination (about 

±50 MPa for steel sample) when the classical line focus (with slit in incident beam optics) 

and parallel plate collimator (soller collimator) in the reflected beam optics were used [49]. 
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Fig. 5.12. Parallel beam configuration with Göbel mirror (incident beam optics) and soller 
collimator (diffracted beam optics). Shift of the sample in z direction moves the diffracted 
beam across the soller slits collimator, but the rays always reach the detector for the same 
value of 2θ position [90]. The X-ray source is located in the focus of the mirror.   

 

 The accuracy of measurements can be considerably improved by using collimating 

X-ray optics realized by parabolically bent graded multilayer mirrors [89]. The multilayer 

is bent to parallelize the divergent beam of an X-ray tube and monochromatize the 

radiation to its Kα-contents [90]. The graded multilayer monochromators (Göbel mirrors) 

are composed as a combination of layers made of two materials having different atomic 

number (Z), which allows gaining high total reflectivity [91]. The distance of layers from 

each other as well as their slope depends on the wavelength and on the localization of the 

mirror in relation with the position of the source.  

 

 

Fig. 5.13. Göbel mirror composed from the 
layers having different atomic numbers.  

 

 Typically used Göbel mirrors are composed from tungsten and silicon (W/Si). 

Göbel mirror W/Si is composed from the layers having low atomic number (silicon, 

ZSi=14) and layers having high Z (tungsten, ZW=74) which are arranged alternately. Both 

elements have similar linear coefficient of thermal expansion. Using this kind of mirrors 



84 

 

reduces influence of sample misalignment and surface topography on the reflex positions. 

If Göbel mirror is located on the parabola in such a way that the X-ray beam incidence on 

it from the source located at the focal point of the parabola (with the accuracy of 1°), then 

the divergence radiation of the source is converted to monochromatic and parallel beam 

with an accuracy of about 0.8°-0.05°. 

 In parallel-beam geometry the angle of the diffraction must be measured directly. 

The soller slit (collimator) with blades perpendicular to the diffraction plane and 

a divergence of about 0.15° prevents radiation penetrating under a different angle from 

reaching the detector (Fig. 5.12) [90]. 

 Although Göbel mirror and the plate collimator parallelizes the primary beam in 

direction of diffraction plane it is still divergent in direction perpendicular to the diffraction 

plane. It can cause the asymmetry of the diffraction peak which is dependent on the value 

of primary beam divergence. In order to reduce the asymmetry, the second soller slit, in the 

primary beam or/and in the front of the other soller slit, may be used. It reduces the 

divergence perpendicular to the diffraction plane [90].  

 In diffraction methods it is very important to be able to perform measurements in- 

depth of the sample with a very good accuracy. Gross M. et al. [90] showed that the 

parallel-beam geometry achieved by a Göbel mirror allows measurements with varying 

angle of incidence in high accuracy. 

 In the present work the X-ray measurements were performed on four 

diffractometers described in Table 5.4 using parallel beam configuration.  
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Table 5.4. Configurations of the laboratory X-ray diffractometers used in preset work. 

Diffractometer 

PANalytical - 
X’Pert MRD 

(AGH, 
Kraków) 

PANalytical – 
Empyrean 

(AGH, 
Kraków) 

PANalytical    
– X’Pert MRD 

(ENSAM, 
Paris) 

Seifert  -  
PTS MZ VI 
(ENSAM, 

Paris) 
Divergence of Göbel 

mirror (o) 
0.02 0.02 > 0.05 no mirror 

Type and size of slit 
forming incident beam 

rectangular 
(1/2o x 4 mm) 

rectangular 
(1/2o x 4 mm) 

rectangular 
(1/2o  x 4 mm 

slits width : 
0.5mm 
vertical 

limitation : 
1.5 

Divergence of Soller 
collimator  in reflected 
beam optics – plates 

perpendicular to 
diffraction plane (o) 

0.18 0.18 0.27 0.30 

Soller collimators – 
plates perpendicular to 

diffraction plane 
present present not present not present 

X-ray tube focus line line point          
(1.2x0.4 mm²) 

point          
(1x1 mm²) 

Type of radiation used Cu Kα Cu Kα Cu Kα Fe Kα 

Monochromator not present not present 

for the 
reflected 
beam: 

graphite (cut 
the Kβ) 

not present : 
not 

necessary 
thanks to the 

type of 
detector 
(energy 

resolution) 

Type of detector proportional semiconductor proportional 
solid 

detector 
 

 The first three diffractometers presented in Table 5.4 gave very similar results 

(it has been tested on powder samples), and the third configuration was used to measure 

stresses in austenitic steel (in this case Cu Kα radiation is not convenient due to high 

fluorescence causing high background and absorption). The reproducibility of the 

experimental setup with the Göbel mirror was tested repeating measurements for different 

powder specimens. It was found that the difference between the stresses measured using 

the MGIXD method was about 10 MPa for the Al powder [92, 55] (Table 5.5). 
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Table 5.5. Comparison of results for Al powder for three different diffractometers. 

diffractometer α (°) σ (MPa) a0 (Å) χ² 

PANalytical - X’Pert MRD  
(AGH, Kraków)  

5 -0.7 ± 7.3 4.0493 ± 0.0002 0.06 

15 -6.9 ± 13.3 4.0493 ± 0.0001 0.7 

PANalytical – Empyrean 
5 -0.2 ± 4.9 4.04904 ± 0.00008 0.5 

15 -2.3 ± 7.5 4.04935 ± 0.00009 1.0 

PANalytical – X’Pert MRD 
(ENSAM, Paris) 

5 -10.2 ± 2.0 4.04949 ± 0.0001 0.2 

15 -1.4 ± 2.0 4.04969 ± 0.0001 0.2 

 

 One of the aims of this work is testing of the parallel configuration of the 

diffractometer containing Göbel mirror in the incidence beam optics. The test were 

performed on Al – powder sample having low elastic crystal anisotropy (Zenner factor 

A= 1.2) and relatively low absorption (µλ=1.54 Å = 136 cm-1) enabling measurements at 

different depths shown in Fig. 3.8. The results of the tests and the analysis of experimental 

uncertainty used in the MGIXD method are described below.   

 

5.2.1. UNCERTAINTY OF PEAK POSITION   

 In the analysis of experimental data it is important to take the different sensitivity of 

the measured lattice strain on the value of scattering angle 2θ  into account. In this work 

the fitting procedure is based on Eq. 3.23, in which the uncertainties of equivalent lattice 

parameters { }( , )hkln < a( )>δ φ ψ are treated as the weight in the calculation of the 2χ  value 

(compare Eq. 2.47): 

{ }

( , ) ( , )

( , )

2exp calN
n n {hkl} n n {hkl}2

n 1 hkln n

a  a  1
 = 

N M < a( )>

φ ψ φ ψ
χ

δ φ ψ=

 < > − < >
  −  

∑      (5.17) 

where ( , ) exp
n n {hkl}a φ ψ< >  and ( , ) cal

n n {hkl}a  φ ψ< > are the experimental and calculated lattice 

parameters and the { }( , )hkln n< a( )>δ φ ψ  uncertainty is calculated directly from the 

uncertainty of peak position δn(2θ{hkl}), i.e.:  
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{ } { } { }( , ) ( , ) cot(2 ) (2 )exp
hkln n n n {hkl} hkl n hkl< a( ) a>δ ϕ ψ ϕ ψ θ δ θ=< >     (5.18)  

 In the data analysis it can be assumed that that the δn(2θ{hkl}) uncertainty is equal to 

the standard deviation of the peak position obtained from procedure of peak adjustment. 

However, these values are very small (smaller than 0.01o) and other experimental errors 

play a more significant role, for example those due to the misfit of the sample position, 

defocusing or misalignment errors. Errors having different reasons are in fact unknown; 

therefore it was decided (if the standard deviation from peak adjustment is smaller than 

0.01°) to assume a reasonable value of peak position uncertainty, the same for all 

reflections. As shown in Fig. 5.14 (see error bars) the values of { }( , )hkln n< a( )>δ φ ψ , 

calculated using Eq. 5.18 with δn(2θ{hkl}) = 0.01o, are different for different 2θ{hkl}. This 

ensures different influences of measured equivalent parameters exp
{hkl}nna >< ψφ ,(  on the 

fitting quality criterion (Eq. 5.17) and consequently on the values of the determined 

stresses. As seen in Fig. 5.14 the uncertainties { }( , )hkln n< a( )>δ φ ψ  are larger for lower 

a value of 2θ{hkl} scattering angle, i.e., the low 2θ{hkl} angle reflections affect the fitting 

results less than those for which 2θ{hkl} is higher (cf. Eq. 5.18). It is also important to 

estimate the uncertainty of the determined stresses in the case of unknown the δn(2θ{hkl}) 

value. Therefore, regardless of the reasons of the experimental errors or inaccuracy of the 

data treatment the stress uncertainties were calculated assuming a ‘good fit’ for which 

1= 2χ  [25]. 
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5.2.2. TESTING INCIDENT BEAM OPTICS  

 MGIXD method and standard method (with 422 reflection) were applied to 

determine stress in Al powder sample. The measurements were performed on the 

PANalytical X’Pert MRD (AGH, Kraków) diffractometer in parallel beam mode 

(configuration in Table 5.4) [92]. The tests for Al powder were repeated twice, i.e., using 

the Göbel mirror or slit with divergence of 1/2° for the primary optic. Moreover, the data 

treatment for XGIXD method was repeated applying two different conditions, i.e., using all 

measured reflections presented in Fig. 5.15 or excluding two low 2θ  reflections (111) and 

(200), for which exp
{hkl}nna >< ψφ ,(  deviate significantly from the theoretical values. 

Table 5.6. Residual stress component 11σ  determined for Al powder using two optics of 

incidence beam: Göbel mirror or slit (stresses calculated excluding 111 and 200 reflections 

compared with results obtained from all reflections). In calculations the free surface XEC 

calculated from single crystal elastic constants given in Table 3.3 were used. 

method 
α (o) 
or hkl 

z  
(µm) 

primary 
beam config. 

σ 11(MPa) 

all 
reflections 

reflections 111, 200 excluded 

σ 11 (MPa) a0 (Ǻ) χ² 

MGIXD 

α=5o 5.8 

Göbel mirror -5.0± 3.0 -1.6± 1.5 
4.04936 

± 0.00003 
0.05 

Slit -22.1± 5.3 -16.0± 5.3 
4.04973 

± 0.00009 
0.55 

α=10o 10.8 

Göbel mirror -3.1± 3.2 -0.4± 1.1 
4.04948       

± 0.00002 
0.02 

Slit -28.1± 6.4 -33.3± 5.6 
4.04995        

± 0.00008 
0.64 

α=15o 
14.9 

 

Göbel mirror -3.0± 4.4 0.4± 3.8 
4.04945 

± 0.00006 
0.29 

Slit -7.3± 6.1 -8.6± 7.3 
4.04914 

± 0.00011 
1.07 

Standard 422 
12-

34 

Göbel mirror -2.1± 0.5 
4.04946 

± 0.00001 
0.65 

Slit -0.5± 1.4 
4.04903 

± 0.00004 
3.08 
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Fig. 5.14. Measured lattice parameters (points) and theoretical results of fitting (continuous 
lines) vs. sin2ψ for Al powder sample. Results of grazing incidence method for three angles 
α and for two different beam geometries are shown. 



90 

 

{422} standard sin2ψ

sin2ψ
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

<
a(

φ,
ψ )

>
{4

22
} 

  (
A

)

4.046

4.048

4.050

4.052

4.054
experimental
theoretical 

Göbel mirror 

 

{422} standard sin2ψ

sin2ψ
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

<
a(

φ,
ψ )

>
{4

22
} 

  (
A

)

4.046

4.048

4.050

4.052

4.054
experimental
theoretical 

slit

 

Fig. 5.15. Similar comparison as in Fig. 5.14 but for standard method (ω – method). 

 

 Results of stress analysis in Al powder are shown in Table 5.6. and the sin2ψ plots 

for grazing incidence method (MGIXD) and standard method are shown in Figs. 5.14 and 

5.15, respectively. All calculations were performed with assumption δ(2θ{hkl} ) = 0.01°. 

Comparing the results obtained using MGIXD method with and without two low 

2θ  reflections (i.e. 111 and 200) it can be stated that a small improvement of the results 

(lower fictitious stress and its uncertainty) was obtained when the latter reflections were 

excluded. As seen in Table 5.6 the values of χ2 are much lower when the Göbel mirror was 

used (for both MGIXD and standard methods). Small, but significant, values of fictitious 

stresses (between -8 and -33 MPa) were found, when the slit was used. As the real stress 

for the powder sample is equal to zero, the determined non-zero stresses can be treated as 

the values of systematic uncertainty caused by the diffractometer or sample misalignments. 

The latter uncertainties can be minimized using parallel optics of the incident beam. The 

near zero values of stresses measured in the Al powder (values lower than -5 MPa, see 

Table 5.6) show that the experimental errors were significantly reduced by use of the 

Göbel mirror. In the case of standard method almost zero stress was determined for both 

used configuration of the incident beam optics. 

 Finally it should be stated that using MGIXD method (especially with) a good 

accuracy of a0 determination was achieved. When the Göbel mirror is applied, the 

differences between a0 measured at different depths is in the order of about 10-4 Ǻ. 
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5.2.3. INFLUENCE OF 2Θ - ZERO POSITION ON THE MEASURED STRESS 

 In order to precisely designate the stress value it is necessary to take into account 

the 2θ-zero position. MGIXD method was applied to determine stress in Al powder sample 

and to verify the influence of the 2θ-zero position on the measured stresses and lattice 

parameter. The measurements were performed on the PANalytical – X’Pert MRD 

(configuration in Table 5.4) in parallel beam mode (Göbel mirror). In calculations the 

Kröner XEC calculated from single crystal elastic constants given in Table 3.3 were used. 

The tests of the 2θ direct beam position on the measured stresses and lattice parameter for 

Al powder are presented on Fig. 5.16. To investigate the effect of 2θ-zero position on 

measured quantities different values of deviation from 2θ - zero position were assumed 

(Fig. 5.16). 

 

Fig. 5.16. Influence of 2θ – zero position on the measured stress for powder sample. 

 

 In the light of presented results it can be concluded that deviation from 2θ - zero 

position equal to 0.01° causes about 10 MPa deviations of the measured stress value 

(for Al sample) and about 0.0003 Å deviation for a0 lattice parameter. 
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5.2.4. INFLUENCE OF Z- POSITION ON THE MEASURED STRESS 

 Precise determination of the stresses is also dependent on the z - position of the 

sample. In order to investigate this effect for MGIXD method the measurements were 

performed on the PANalytical - X’Pert MRD (ENSAM, Paris - configuration in Table 5.4) 

in parallel beam mode (Göbel mirror). In calculations the Kröner XEC calculated from 

single crystal elastic constants given in Table 3.3 were used. Different deviations from z - 

zero position (in direction normal to the surface) were introduced and the values of stresses 

and lattice parameter for each z -position deviation were determined and compared. 

Results of the test are presented on Fig. 5.17. 

          

Fig. 5.17. Influence of z – zero position on the measured stress for powder sample 

 

 On the basis of the presented results it can be concluded that the deviation from z-

 zero position equal to 0.01 mm causes about 5 MPa deviation of calculated value of 

stresses and less than 0.0002 Å for a0 lattice parameter. 
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 Summarizing results obtained in section 5.2, it can be concluded that application of 

Göbel mirror collimating incident beam decreases uncertainty of the determined peak 

position and it is possible to achieve accuracy even of a few MPa for the stresses in Al 

sample (the accuracy in of the stress determination in another materials can be easily 

estimated comparing Young modulus of Al and this of the studied material). The accuracy 

of determined strain free lattice parameter a0 is in order of 10-4 Å. Moreover it was shown 

that using parallel optics minimises errors connected with displacement of the sample in 

the z direction (normal to sample surface). Experimental error of about 5 MPa for stress 

and less than 0.0002 Å for lattice parameter a0 corresponds to shift of 0.1 mm. It was also 

found that the more important source of systematic error is caused by the shift of 2θ - zero 

value. The misalignment of the diffractometer equal ∆2θ = 0.01o leads to the fictitious 

stress of about 10 MPa and change of 0.0002 Ǻ for lattice parameter a0 determined for the 

Al stress-free powder. This error can be minimised by the careful alignment of the 

diffractometer or the results obtained for the studied sample can be corrected by using the 

powder diffraction data. Concerning the statistical uncertainty it will depend on the quality 

of measured peak, and for the studied samples it was about 1.5-5 MPa for stress and less 

than 10-4 Ǻ for a0, and the latter value is significantly smaller than the errors caused by 

misalignment of the sample position and diffractometer alignment. 

 The performed tests confirmed that we can expect the reproducibility of 

measurements for different experimental setups containing the Göbel mirror is about 

10 MPa and a 0.0005 Ǻ for lattice parameter a0 in the case of Al elastic constants. These 

values were confirmed in the performed experiments. Also, it is reasonable to assume that 

the position of peak is determined with accuracy not better ∆2θ = 0.01o (see the error bars 

corresponding to this value in Fig. 5.14). Finally, it should be stated that the above values 

of expected systematic and statistical errors are calculated for particular sample and they 

can be different for another set of measured reflection. However, the presented results give 

a view on the accuracy of the experimental setup and the applied methodology.  
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5.3. CONCLUSIONS 

 In the light of presented results the LPA correction does not influence the XSA 

significantly. Even in the case of relatively broad diffraction peak the influence of LPA 

correction on the measured peak position, corresponding strain and consequently value of 

determined stress or strain free lattice constants is relatively small. On the other hand the 

refraction correction can significantly influence the results of the XSA. Comparing the 

‘New formula’ developed in the thesis with the approaches proposed by Genzel and Hart it 

can be concluded that for high incident angles the ‘new approach’ is consistent with the 

one proposed by Hart, but it differs in comparison with Genzel’s (in which the effect of 

wavelength change was neglected). For small incident angles the Genzel’s approach and 

the one proposed in thesis are consistent but the Hart’s formula do not reflect the effect 

properly. It is caused by not precise approximation for small incident angles. The effect of 

refractive index n<1 on the stress measurement strongly depends on value of the 

δ parameter (and thereby the type of material), wavelength, incident angle and surface 

roughness. On the basis of considered results, if MGIXD method is used, it is advised to 

perform the stress analysis with and without refraction correction and when the difference 

of obtained results is significant for designated parameter than these results should be 

rejected. This effect is the limitation of MGIXD method. 

 Results presented in this chapter confirmed that both statistical error and the 

misalignment error can be significantly reduced when the Göbel mirror is used in the 

primary optic of the diffractometer. In the case of parallel beam geometry used for 

MGIXD method the z-position imprecisions do not significantly influence the obtained 

results of XSA, however the 2θ-zero position should be precisely adjusted. 
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6. NEW INTERPRETATIONS OF MGIXD  MEASUREMENTS 

AND VERIFICATION OF X-RAY STRESS FACTORS (XSFS)  

 In this chapter two important theoretical developments of the MGIXD method are 

presented. The first one enabling determination of c/a parameter and significantly 

improving quality of experimental data analysis for hexagonal structure has been proposed 

and tested. The second one in which density of stacking faults is taken into account 

(originally proposed by Baczmański [20]) will be applied to the case of tensile and 

compressive stresses in austenitic sample. Second part of the chapter concerns verification 

of different type of XSF, which can be applied to interpret the experimental data obtained 

using MGIXD method. Finally, examples of determination of stresses in surface layer for 

materials having high and low single crystal elastic constants anisotropy are presented. 

 

6.1. SELF - CONSISTENT FITTING OF C/A PARAMETER 

 In the case of cubic crystal structure the experimental >),a( < hkl}{ψφ  lattice 

parameters are calculated directly from measured >),d( < hkl}{ψφ  spacings (Eq. 3.24a). 

Subsequently, the I
ijσ  and 0a  fitting parameters can be found by adjusting the 

>),a( < hkl}{ψφ values obtained from Eq. 3.24a to the measured ones (Eq. 3.23), as in the 

standard method. However, more complex procedure of experimental data must be applied 

for hexagonal structure since the value of c/a parameter must be known a priori to 

calculate the experimental >),a( < hkl}{ψφ  from Eq. 3.24a. To overcome this difficulty the 

iteration method can be applied. In the first step of this procedure we substitute the 

theoretical value of c/a into Eq. 3.24b and the least square method is used to find out 

I
ijσ  and 0a  from Eq. 3.23. The result of the first adjustment is usually poor because the 
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experimental >),a( < hkl}{ψφ  are not correctly calculated using approximate value of c/a. 

Consequently the experimental >),a( < hkl}{ψφ   do not agree with those obtained from 

Eq. 3.23 for optimized 
I
ijσ and 0a fitting parameters. Thus the procedure must be developed 

in order to correct the value of c/a for the studied material, taking into account the 

macrostresses present in the sample. In this aim Eq. 3.24b can be rewritten in the following 

form: 

xpy =                                                                 (6.1) 

where: 




 ++−



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4 22
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}{ khkh
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 ,     2lx =    and 2)/(
1
ac

p = . 

 The above linear equation vs. l2 allows us to determine p and consequently 

c/a parameters using simple linear regression method. In calculations the measured 

>),d( < hkl}{ψφ  spacings and values of  >),a( < hkl}{ψφ  calculated from Eq. 3.23 (for 
I
ijσ

and 0a  optimized in the first step for approximate value of c/a) are substituted. It should 

be stated that the so obtained c/a parameter is still approximate, but it can be applied in the 

second step of iteration to calculate >),a( < hkl}{ψφ  used in the least square procedure 

based on Eq. 3.24b. As the result the new values of 
I
ijσ and 0a  are determined. It will be 

shown that two iteratively applied simple fitting procedure leads to convergence allowing 

determination of macrostresses 
I
ijσ ,  strain free lattice parameter 0a and moreover more 

accurate value of c/a.  Finally, if the self-consistent iterative calculations are convergent 

a very good agreement between theoretical values of >),a( < hkl}{ψφ  (obtained from 

Eq. 3.23) and experimental ones (determined from Eq. 3.24b) can be reached. 

 As an example the results obtained with the new method for ground and polished 

samples are presented. These samples were chosen due to different sign of stresses 

generated in surface region. Measurements were performed in two directions (i.e. for ϕ=0o 

and ϕ=90o) and for two incidence angles (i.e. for α = 5o and α = 15o), with Cu X-ray tube 

and Göbel mirror in the incidence beam optics. The PANalytical - X’Pert and PANalytical 

- X’Pert MRD diffractometers were used for ground and polished samples, respectively 

(see Table 5.4). The diffraction peaks having 2θ higher than 40o were taken into analysis.  
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 At first the calculation of the stresses in polished and ground Ti (grade 2) was 

performed using assumed values of c/a parameter indicated in Figs 6.1a, b and Fig. 6.2a, b, 

respectively. In this case the value of c/a was not varied during data treatment. It can be 

noticed that the experimental points are spread far from the lines obtained by fitting 

Eq. 3.23 with the XSF calculated using Kröner model (see >),a( < hkl}{ψφ  vs. sin2ψ plots 

in Figs. 6.1a, b and Figs. 6.2a, b from single crystal elastic constant given in Table 3.3 and 

orientation distribution functions (ODFs) given in Fig. 7.1 (in the next chapter when these 

sample are described). The correction for beam refraction was taken into account, 

however, this effect is reliable (smaller than uncertainly) for α = 5o and α = 10o, as it was 

shown in Fig. 5.11, where the results with and without refraction corrections were 

compared. 

 Next, the self-consistent procedure was used and the value c/a was also adjusted. 

The resulting >),a( < hkl}{ψφ  vs. sin2ψ plots exhibit significantly better agreement between 

theoretical and experimental points (Figs. 6.1c and 6.2c). The values of c/a parameter and 

goodness of fitting χ2 determined using the presented above procedure are given in these 

figures. It can be seen that value of χ2 decreases significantly when experimental points 

approach the theoretical curves.  
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Fig. 6.1. The >),a( < hkl}{ψφ  vs. sin2ψ plots for mechanically polished Ti sample (under 

pressure of 5 N), measured with α = 5o. In figures (a) and (b) the theoretical plots were 
fitted to experimental points determined with assumed c/a values, while in the case of 
figure (c) the c/a  parameter was adjusted. Uncertainty of peak position o0102 .)( =θδ  was 
assumed. 
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Fig. 6.2. Similar results as in Fig. 6.1 but for ground Ti sample. 
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Fig. 6.3. The results of self-consistent fitting for mechanically polished Ti sample, 
measured with α = 5o and α = 15o. The following values are presented: a) and b) - stresses 
in two directions, c) χ2 - goodness of fitting as defined in Eq. 4.17, d-e) lattice parameters. 
The horizontal lines indicates mean value calculated over all models for both samples 
(polished and ground). 
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Fig. 6.4. Similar results as in Fig. 6.3 but for ground Ti sample. 

 

 The quantitative results of fitting using different XSF models are presented in 

Figs. 6.3 and 6.4 for polished and ground samples, respectively. It can be concluded that 

the biaxial stress was found for the both studied samples (compression after polishing and 

tensile after grinding as shown in Figs. 6.3a, b and 6.4a, b) and the stress values calculated 

using different models of diffraction elastic constants are not significantly different. Small 

difference between models is expected because the elastic anisotropy of Ti single crystal is 

low (Zener anisotropy factor A= 1.34). Also, there is no large difference between goodness 

parameter χ2 for different models and all results fit well to almost linear measured 

functions >),a( < hkl}{ψφ  vs. sin2ψ. The determined lattice parameters show some regular 

differences between models. In Figs. 6.3 d, e, f and 6.4 d, e, f the values of determined a0, 

c/a and c0 (where the two first parameters are obtained from fitting, while the third one is 

calculated as ( )0 0
cc aa= ⋅  are compared with mean parameters calculated for both 

samples and both incidence angles (α = 5o and α = 15o). These averages: 

a0 = 2.9514 ± 0.0008 Å, c/a = 1.5872 ± 0.0008 and c0 = 5.6845 ± 0.0014 Å, can be 

calculated because samples are made from the same material (Ti grade 2) and different 

mechanical treatment should not influence strain free lattice parameters. It should be 

underlined that the obtained lattice parameters are very close to the accurate values for 

high purity Ti [93]: a0 = 2.95111 ± 0.00006 Å, and c0 = 4.68433 ± 0.0001 Å and 
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c/a = 1.5873 (similar values can be found in [94]). It can be also noticed that when the 

Kröner and Voigt XSF were used the determined lattice parameters were similar for the 

ground and polished sample. Moreover they are very close to the average values and these 

which are found in literature. On the other hand the a0, c/a parameters obtained with XSF 

calculated by free surface or Reuss model are slightly overestimated for polished sample 

and underestimated for ground sample (opposite tendency occurs for c0).  

 It can be concluded that the elastic properties of the studied titanium sample are 

almost isotropic and this is why fitting results obtained with XSF calculated by all models 

give very similar results. The most accurate values are obtained when Kröner or Voigt 

method were applied. Finally it should be stated that the new methodology of experimental 

data treatment enables determination not only strain free a0 constant but also the 

c/a parameter. This method is unambiguous for materials having low elastic anisotropy, 

however in the case of anisotropic materials the determined lattice parameters depend on 

the model used for calculation of XSF. Thus the problem of verification of XSF is a crucial 

one, not only for correct determination of the stresses but also to find out correct strain free 

value lattice parameters for hexagonal structure (XSF will be tested in this chapter).       

 

6.2. PEAK DISPLACEMENT CAUSED BY STACKING FAULTS  

 Not only residual stresses are the reason of diffraction peak shift with respect to the 

position corresponding to the perfect lattice. The diffraction lines can be influenced by 

stacking faults in the material. Two types of stacking faults can be distinguished: 

deformation stacking faults and twin stacking faults. Both of them may cause the peak shift 

[1]. Typically the twin stacking faults occurs during the growth of a crystal. Wagner [95] 

showed that that when the peak shift originates from high twin stacking fault density the 

shift of the peak is negligibly small. Deformation stacking faults may cause shift of the 

different diffraction lines in different directions. First work concerning this effect was done 

by Paterson [96], Warren et al [97] and Wagner [95]. Wagner and Velterop et al. showed 

[4, 98] that stacking faults can significantly change the position of the diffraction lines. 

This effect is especially important for the fcc crystals having low stacking fault energy 

(e.g. austenitic steels) [20]. In this case the magnitude of the displacement depends on the 
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probability of finding the stacking fault and on the reflection hkl used in the experiment. 

In the absence of the second order incompatibility stresses [20, 99]:  

{ } 0 0, [ , , ( )]I
hkl ijij< a( )  = F (hkl, f)  + G hkl a a>φ ψ φ ψ ρσ +                          (6.2) 

                             with   ∑ ++
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where ρ =ρs -ρd, ρs and ρd are the probabilities of finding the single and the double layer 

stacking fault, respectively, between neighboring planes {111}, )(hklG  is the coefficient 

the reflecting relative change of the interplanar spacings caused by stacking faults for the 

diffracting {hkl} planes, while b and u are the numbers of peak components which are 

affected and not affected, respectively, by the stacking faults, respectively [20]. 

 For a quasi-isotropic sample the above equation can be written as: 

( ) ( )

( )

2 2 2
{ } 1 11 22 33 2 11 22 12

2
2 33 2 13 23 0 0

1
( , ) [ cos sin sin 2 sin

2
1 1

cos cos sin sin 2 ( )]
2 2

hkl I I I hkl I I I
hkl

hkl I hkl I I

a S S

S S G hkl a a

φ ψ σ σ σ σ φ σ φ σ φ

σ ψ σ φ σ ϕ ψ ρ

< > = + + + + +

+ + + + +
(6.3) 

As it can be seen in a Fig. 6.5 both the macrostress (Fig. 6.5a) and stacking faults 

(Fig. 6.5b) cause the nonlinearities of the <a(φ,ψ)> {hkl} vs. sin2ψ{hkl} plots. Macrostresses 

(500 MPa) influence the slope as well as the nonlinearites of the curve. In contrast the 

stacking faults increase only the nonlinearities of these plots. This fact allows to separate 

the effect originated from the stresses from the one connected to the stacking faults [20] 

and perform the calculation of stresses values and the probability of stacking faults in 

polycrystal. The idea of fitting is similar to that used by Baczmanski [20] in the case of 

determination of second order stresses, when q scaling factor was used in Eq. 6.2 as 

additional adjusting parameter. In the case of Eqs. 6.2 and 6.3 value of ρ is varied in fitting 

procedure in order to receive the best agreement of theoretic and experimental results. The 

optimized ρ parameter has meaning of probability of finding stacking fault between 

neighboring planes {111}. 
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Fig.6.5. Lattice strains calculated for different hkl reflections as the effect of (a) uniaxial 
stress and (b) presence of stacking faults on the planes {111} for austenitic sample (XSF 
were calculated using free surface model with elastic constants given in Table 3.3 and 
assuming random texture [20]).  

a)  

b)  

Fig. 6.6. The <a(φ,ψ)> {hkl}  lattice parameters fitted to the experimental points using 

Eq. 6.3 (assuming ρ ≠ 0 - continuous line or ρ = 0 - dashed line) for polished austenitic 
stainless steel (AISI 316L, Table 6.1) and ground Ni alloy (Inconel 690, Table 6.1). XSF 
were calculated with free surface model using texture functions given in Fig. 6.19. 
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 In light of these results it appears that for Ni alloy it is not necessary to take into 

consideration the presence of stacking faults in stress analysis. The value of the 

ρ parameter is in the margin of error equal to 0. On the contrary for austenite stainless steel 

having low energy of stacking faults it would appear likely that taking into account the 

presence of stacking faults in stress analysis can be beneficial. Admittedly the stacking 

fault effect improves the fit of the theoretical curve (calculated from the chosen grain 

interaction model) to experimental points but it seems possible that this effect causes the 

change in XSF values, which now may differ from the real ones. On the other hand it is 

worth to emphasize that the ρ parameter determined for austenitic samples always have 

a positive value regardless whether the sample is in tensile (Fig. 6.7) or in compression 

(Fig. 6.6b). It means that the deviation of the experimental points from theoretical values is 

always in the same direction independently from the applied load. 

 
Fig. 6.7. The <a(φ,ψ)> {hkl}  lattice parameters fitted to the experimental points using 

Eq. 6.3 (assuming ρ ≠ 0 - continuous line or ρ = 0 - dashed line) for the ground austenitic 
steel - AISI 316L, Table 5.1 XSF were calculated with free surface model. This result is 
taken from [20]. 
 

 

 

 

 

 

sin2ψ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3.585

3.590

3.595

3.600

3.605

experimental
calc. ρ = 0.9 10−2

calc. ρ = 0

α=10o, φ=0o

Cu radiation

{111}

{200}

{220}

{311}

gr_316

{331}

{420}

<
a>

{h
kl

}  
(A

)

gr_316_1

sin2ψ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

<a
> {

hk
l}  

 (
A

)

3.585

3.590

3.595

3.600

3.605
experimental
calc. ρ = 0.9 10−2

calc. ρ = 0

α=10o, φ=90o

Cu radiation

{111}

{200}

{220}

{311}

{420}

{331}



104 

 

6.3. VERIFICATION OF XSF USED IN MGIXD 

 A correct choice of model for calculation of XSFs is significant for materials 

exhibiting high elastic anisotropy. In order to select the proper model of XSF it is valuable 

to evaluate an agreement of theoretical >),a( < hkl}{ψφ vs. sin2ψ curve with experimental 

results [100].  

 To show the influence of the diffraction elastic constants on the interpretation of 

XSF results, polycrystalline materials having low (Ti, W) and high elastic anisotropy of 

crystallites (Ni, CrN, austenite stainless steel) were investigated. Zener factors for listed 

samples are gathered in Table 3.3. Compositions of the studied samples are given in 

Table 6.1. The orientation distribution functions were taken into account in XSF 

calculations for all investigated samples (Figs. 6.9 and 6.19). 

 Two samples exhibiting low (Ti) and high (austenite stainless steel) elastic 

anisotropy were investigated during tensile test, for other samples: polished W, ground Ni 

alloy, CrN coating and polished austenite stainless steel the residual stresses after surface 

treatment or coating deposition were measured. 

 

Table 6.1. Composition of the materials used in thesis (wt.%).  

Material Components 
Ti 

grade 2 
Ti 

bal. 
O 

0.131 
Fe 

0.109 
Ni 

0.020 
C 

0.010 
N 

0.010 
    

Ni alloy 
Inconel 690 

(sample 
prepared by 
AREVA) 

Ni 
bal. 

Cr 
29.91 

Fe 
10.61 

Si  
0.38 

Ti 
0.33 

Mn 
0.29 

C 
0.022 

Cu 
0.01 

P 
0.009 

S 
0.002 

Austenite 

stainless 
steel 

AISI316L 

Fe 
bal. 

Cr 
17.24 

Ni 
11.14 

Mo 
1.96 

Mn 
1.67 

Cu 
0.35 

Si 
0.056 

P  
0.04 

S  
0.04 

C   
0.02 

Al 2017 
Al 
bal. 

Si  
0.5 

Fe 
0.7 

Cu 
4.0 

Mn 
0.65 

Mg 
0.6 

Cr 
0.1 

Zn 
0.25 

Ti 
0.15 

 

Ti6Al4V 
Ti 

bal. 
Fe 

0.25 
C 

0.008 
O  
0.2 

N 
0.05 

Al 
6.0 

V  
4.0 
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6.3.1. TENSILE TEST 

 The lattice strains were measured ‘in situ’ during tensile test in elastic range of 

deformation for austenite stainless steel (AISI316L) and titanium (grade 2) samples. The 

MGIXD method and standard method (ψ-mode for austenite and ω-mode for titanium) 

were used to determine stress in the sample under applied known stress (sample orientation 

with respect to incident and reflected beams is shown in Fig. 6.8. Measurements for Ti 

sample were performed on the PANalytical - X’Pert MRD (AGH, Kraków) and for 

austenite stainless steel on the Seifert - PTS MZ VI. The configuration of both 

diffractometers is given in Table 5.4. To prepare the sample the surface layer of 200 µm 

was removed by electropolishing. In order to avoid the influence of unknown residual 

stresses or/and systematic errors of determined peak positions, the measurements were 

performed for the non-loaded sample and a sample under uniaxial stress. The relative 

differences between interplanar spacings for loaded sample (i.e. { }
load
hkld( , )φ ψ< >  ) and non-

loaded specimen (i.e. initial: { }
init
hkld( , )φ ψ< >  ) were calculated.  

{ } { }
{ }

{ }

load init
hkl hklrel

hkl init
hkl

d( , ) d( , )
( , )

d( , )

φ ψ φ ψ
ε φ ψ

φ ψ
< > − < >

< > =
< >

      

 (6.3) 

In the above equation the exact value of interplanar spacing for a stress free material is not 

needed and the strain { }
rel
hkl( , )ε φ ψ< >  corresponding directly to the applied stress 11Σ  is 

calculated and the effect of residual stresses or/and systematic errors of determined peak 

positions is avoided. The main challenge of this part of work is to verify if the value of 

applied stress 11Σ  can be recalculated from diffraction data and what type of XSF allows 

determining the stress accurately. Moreover, it will be tested which model of XSF 

calculation properly describes grains interaction, especially for elastically anisotropic 

crystallites. 
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Fig. 6.8. Orientation of the sample during tensile test. The uniaxial stress 11Σ  was applied 

along ϕ= 0° direction. 

a) b)  

Fig. 6.9. Orientation distribution function (ODF) determined using Mn radiation for 
austenitic (a) and Cu radiation for Ti (b) samples (these samples were used in tensile tests). 

The sections through Euler space [74] with the step of 5° are presented along 2φ  axis: 

a) 0o ≤ 1ϕ , Φ , 2ϕ ≤ 90o for austenite stainless steel and b) 0o ≤ 1ϕ , Φ≤ 90o and 0o ≤ 2φ ≤ 60o 

for Ti (grade 2).  

 

High anisotropy – austenitic sample 

 In order to investigate the influence of the grain interaction model on the values of 

calculated stresses austenite stainless steel (Table 6.1) having high elastic anisotropy 

(A=3.3, see Table 3.3) was subjected to a controlled tension (11Σ = 50 MPa, 180 MPa and 

300 MPa) during loading and unloading in the tensile test. For each value of given load the 

stress measured by X-ray diffraction was determined using the XSF calculated by four 

models with ODF function presented in Fig. 6.9a. In the case of MGIXD method the 
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measurements were performed for α=20° (corresponding to penetration depth τ =2.9 µm). 

Initial value of calculated stresses and lattice parameters for non-loaded sample are 

gathered in Table 6.2. The { }
init
hkl< a( , )φ ψ > vs. sin2ψ plots for initial sample are presented 

in Fig. 6.10. Small compressive and tensile stresses (comparable with their uncertainties) 

were found for ϕ = 0° and ϕ = 90°, respectively. In calculation least square fitting 

procedure was applied using Eq. 3.23.  

  

Table 6.2. The initial values of stresses and lattice parameters for non-loaded austenite 

stainless steel. 

model α [°] σ11 (MPa) σ22 (MPa) a0 (Å) χ² 
free surface 

20 

-29± 18 27± 18 3.5937 ± 0.0001 1.5 
Kröner -27 ± 24 25 ± 23 3.5937 ± 0.0001 1.7 
Reuss -26 ± 16 25 ± 17 3.5937 ± 0.0001 1.5 
Voigt -26 ± 33 24 ± 31 3.5937 ± 0.0001 1.9 
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Fig. 6.10. The { }
init
hkl< a( , )φ ψ > vs. sin2ψ plots for initial non-loaded austenite stainless steel 

(uncertainty of peak position o0102 .)( =θδ  was assumed). 
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 The relative lattice strains { }
rel
hkl( , )ε φ ψ< > vs. sin2ψ  (for α=20°) calculated 

according to Eq. 6.3 for each load and four grains interaction models during loading and 

unloading are shown in Figs. 6.11 and 6.12, respectively. In these figures the experimental 

data are compared with the results of least square fitting based directly on the relation: 

{ } 11 11 22 22( , , , ) ( , , , )rel I I
hkl( , ) F hkl f F hkl fε φ ψ φ ψ σ φ ψ σ< > = +      (6.4)  

where the adjusted values of 11
Iσ and 22

Iσ  stresses can be compared with the values of 

applied stress 11Σ  and 22 0 MPaΣ = , respectively. 

 The non-linearity of the sin²ψ plots in Figs. 6.11 and 6.12 is associated with 

a strong elastic anisotropy of the sample. As it can be deduced from these plots the lattice 

strains are smallest in direction <111> and largest in direction <200> for loaded the 

austenitic sample. This result qualitatively agrees with evolution of ½s2 and s1 values for 

different reflections hkl (in the approach of quasi-isotropic material), which explains the 

observed tendency. If the interaction between grains is well predicted the nonlinearities of 

the theoretical curves should reflect this dependence.  
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Fig. 6.11. Relative lattice strains { }

rel
hkl( , )ε φ ψ< > vs. sin2ψ  (for α=20°) during loading of 

the austenitic sample. Experimental results are fitted using Eq. 6.3 with XSF calculated by 
four tested models.  
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Fig. 6.12. Similar comparison as in Fig. 6.12 but for unloading of the austenitic sample. 

 

 From the sin²ψ plots in Figs. 6.11 and 6.12 it is seen that the experimental values 

and thereby the elastic anisotropy are well approached by Reuss, Kröner and free surface 

model. The linear dependence of lattice strains vs. sin²ψ predicted by Voigt model cannot 

be applied for austenite stainless steel having strong elastic anisotropy. Quantitative 

comparison of fitting quality is given by goodness parameter χ2 which value is compared in 

Fig. 6.13 for all applied loads and four tested models. Analysing Eq. 2.47 it can be stated 

that χ2 must increase if the differences between experimental values and theoretical results 
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increases. If a given model perfectly predicts XSF, the χ2 value is determined only by 

experimental uncertainties and it should not increase for larger applied stresses (the lattice 

strain due to stress increases by the same value as the theoretically predicted strain and 

consequently distance between them does not change). However, if the XSF values are not 

correctly calculated by model (even for some orientations) the difference between 

theoretical and experimental interplanar spacings enlarges with increasing applied load 

causing significant increase of the χ2 value (due to squaring in definition of χ2).  

 

Fig. 6.13. Comparison of the values of χ² for four different grain interaction models during 

tensile of austenitic sample (loading and unloading). 

 

 Comparing values χ2 and its dependence on the applied load it can be concluded 

that Reuss and free surface model correctly predict elastic anisotropy of XSFs (Fig. 6.13). 

For these models χ2 is small and constant for all applied external stresses. In contrast 

χ2 obtained with Kröner and Voigt models are larger and rise with applied stress. This 

effect is especially significant for linear dependence of lattice strains vs. sin²ψ predicted by 

Voigt model and it is also evidence that any models giving linear sin²ψ plot should not be 

used to interpret results of MGIXD measurements.         

 In order to determine which of these models is the best the comparison of the 

stresses re-calculated from diffraction data (Eq. 6.4) with the values of applied load is 

presented in a Fig. 6.14, for loading and unloading sample. The measurements were done 

using two methods: MGIXD (α=20° shown in Fig. 6.14a) and standard ψ -geometry 
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(Fig. 6.14b). It can be seen that the loading and unloading processes are exactly reversible 

(points for the same applied stress overlap for both experimental methods), i.e., the 

measurements were performed within elastic range of deformation. Also the stress after 

unloading is very close to zero value (within the uncertainty range). The stresses state in 

the sample was successfully determined from diffraction data i.e. the re-calculated stress 

11
Iσ  approaches applied stress 11Σ , while 22

Iσ  is close to zero value, especially for larger 

loads (180 MPa and 300 MPa). It must be underline that good agreement between results 

obtained with both standard and MGIXD methods and values of applied stress 11Σ  was 

found in the case of Reuss and free surface models, while 11
Iσ  obtained with Kröner and 

Voigt models deviate from the value of applied stress 11Σ .  For the latter models especially 

large deviation between applied and re-calculated stresses is seen in the case of standard 

measurements (Fig. 6.14b). The worst results i.e., the largest deviation between applied 

and recalculated stress was obtained when the Voigt model was used. 

 Summarizing the presented results concerning quality of strain fitting (Figs. 6.11-

6.13), as well as from the comparison of the calculated stresses and applied loads 

(Fig. 6.14) it appears that the Reuss and free surface models fit the best the experimental 

data in the case of anisotropic austenite stainless steel. 
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Fig. 6.14. Comparison of the values of 11
Iσ and 22

Iσ  re-calculated stresses compared with 

the applied stress 11Σ  and 22 0 MPaΣ = , respectively (dashed line indicates value of the 

stress  11
Iσ = 11Σ  or 22

Iσ = 22 0 MPaΣ = ). Results of loading and unloading are shown and 

the point for 11Σ = 0 MPa corresponds to the state after unloading. The MGIXD method 

(a) and standard method - ψ mode (311 reflection) (b) were used. 
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Low anisotropy – Ti sample 

 Second investigated sample was Ti (grade 2; see Table 5.1) sample having low 

elastic anisotropy (A=1.34, see Table 3.3). Ti was subjected to a controlled tension 

(50 MPa, 150 MPa, 210 MPa) during loading in the tensile test. For each value of given 

load the stress measured by X-ray diffraction was determined using the XSF calculated by 

four models with ODF function presented in Fig. 6.9b. In the case of MGIXD method the 

measurements were performed for α = 10° and α = 20° (corresponding to penetration 

depths: τ = 1.6 µm and τ = 2.5 µm), while the ω-geometry was used for standard 

measurements. Initial value of calculated stresses and lattice parameters for non-loaded 

sample are gathered in Table 6.3, while the { }
init
hkl< a( , )φ ψ > vs. sin2ψ  plots for initial 

sample are presented in Fig. 6.15 (MGIXD method). Compressive stresses of about minus 

30 MPa was found for ϕ = 0° and almost zero stress for ϕ = 90°, respectively. 

In calculation least square fitting procedure was applied using self-consistent method 

described in section 6.1.  

 

Table 6.3. The initial values of stresses, strain free lattice constants and c/a parameters for 

non-loaded Ti (grade 2) sample - MGIXD method. 

model σ11 (MPa) σ22 (MPa) a0 (Å) c/a χ² 
α = 10° 

free 
surface 

-30.9 ± 5.4 -4.7 ± 5.6 2.9511 ± 0.0001 1.5872 ± 0.0001 1.3 

Kröner -31.9 ± 5.4 -4.9 ± 5.6 2.9511 ± 0.0001 1.5872 ± 0.0001 1.3 
Reuss -30.2 ± 5.3 -4.4 ± 5.5 2.9511 ± 0.0001 1.5872 ± 0.0001 1.3 
Voigt -33.5 ± 5.6 -5.3 ± 5.7 2.9511 ± 0.0001 1.5872 ± 0.0001 1.4 

α = 20° 
free 

surface 
-33.1 ± 8.2 10.7 ± 8.6 2.9514 ± 0.0001 1.5869 ± 0.0001 2.9 

Kröner -35.3 ± 8.2 10.4 ± 8.6 2.9514 ± 0.0001 1.5869 ± 0.0001 2.9 
Reuss -32.3 ± 8.0 11.4 ± 8.4 2.9514 ± 0.0001 1.5869 ± 0.0001 2.9 
Voigt -38.2 ± 8.4 9.4 ± 8.8 2.9514 ± 0.0001 1.5869 ± 0.0001 3.0 
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Fig. 6.15. The { }
init
hkl< a( , )φ ψ > vs. sin2ψ plots for initial non-loaded Ti (grade 2) sample 

measured measured using MGIXD with α = 20° (uncertainty of peak position 
o0102 .)( =θδ  was assumed).  

 

 The results obtained for tensile test are presented in the following figures: 

•  Fig. 6.16 - the relative experimental lattice strains { }
rel
hkl( , )ε φ ψ< > vs. sin2ψ  for 

α=20° (MGIXD method), 

•  Fig. 6.17 - values of goodness parameter χ² for α=10° and α=20° 

(MGIXD method); 

•  Fig. 6.18 - values of re-calculated stresses compared with applied ones. 

 

 As it is sheen in Fig. 6.16, in the case of Ti sample having low elastic anisotropy 

the nonlinearities of the { }
rel
hkl( , )ε φ ψ< > vs. sin2ψ  plots are very small in comparison with 

austenitic sample. However, for the largest applied stress 11Σ = 210 MPa we can see that 

the experimental points are approached by theoretical lines when Reuss and free surface 

methods are used and slightly worse result was obtained for Kröner model. Again, the 

linear { }
rel
hkl( , )ε φ ψ< > vs. sin2ψ  plots obtained with Voigt XSF do not match the 

experimental points. The same conclusions can be drawn from Fig. 6.17 where values of 

χ² are compared. It should be also stated that the goodness parameter slightly increases 
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with increasing value of applied stress (of course the effect is strongest in the case of Voigt 

model). Thus, the XFS are not as well predicted as in the case of Reuss or free surface 

model applied for austenite stainless steel. 

 Finally, comparing the re-calculated stress 11
Iσ  with applied stress 11Σ  and the 11

Iσ  

stress with zero value, it can be concluded that a very good agreement was obtained for the 

largest stress 11Σ = 210 MPa. If smaller load is applied the re-calculated value 11
Iσ  is 

overestimated, especially for 11Σ = 150 MPa. It should be underlined that exactly the same 

values of the recalculated stress were obtained for both incident angles α = 10° and α = 20° 

(MGIXD method) and for standard method (ω-mode). Hence, we can conclude that 

MGIXD method gives reasonable results (comparable with standard method) and the 

disagreement between recalculated 11
Iσ  and applied 11Σ  stresses can be caused by sample 

heterogeneity or non-uniaxiality of the stress in the sample. Finally, it should be stated, that 

the stresses obtained with different models for calculation of XSFs are almost identical. 

This is evidence that the elastic anisotropy plays a minor role in interpretation and any 

model can be applied to calculate XSFs. 
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Fig. 6.16. Relative lattice strains { }

rel
hkl( , )ε φ ψ< > vs. sin2ψ  (for α=20°) during loading of 

the Ti sample. Experimental results are fitted using Eq. 6.3 with XSF calculated by four 
tested models.  
 

a)          b)  
Fig. 6.17. Comparison of the values of χ² for four different grain interaction models during 
tensile of Ti sample for α=10° (a) and α=20° (b) – MGIXD method. 
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Fig. 6.18. Comparison of the values of 11
Iσ and 22

Iσ  re-calculated stresses compared with the applied stress 11Σ  and 22 0 MPaΣ = , respectively 

(dashed line indicates value of the stress  11
Iσ = 11Σ  or 22

Iσ = 22 0 MPaΣ = ). The MGIXD method for α=10° (a) , α=20° (b) and standard method 

with ω-mode (213 reflection) (c) were used to measure stresses in loaded Ti sample. 
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6.3.2. MEASUREMENTS OF RESIDUAL STRESSES 
 Next samples having significant surface residual stresses and not subjected to the 

external load were investigated. The pole figures were measured for polished W (high-purity), 

CrN coating and ground Ni alloy, and the determined ODF functions are presented in 

Fig. 5.19. In the case of polished W sample and deposited CrN coating the fiber type of 

texture was found, while ground sample does not exhibit significant sample symmetry. These 

textures were used in calculations of XSF from single crystal elastic constants given in 

Table 3.3. 

          a)          b)  

c)  
6.19. Orientation distribution function (ODF) determined using Cu radiation for polished 
W (a), CrN coating (b) and ground Ni alloy (c) samples for which residual stresses were 
measured. The sections through Euler space [74] with the step of 5° are presented along 

2φ  axis and ranges 0o≤ 1ϕ ,Φ, 2ϕ ≤ 90o for W and CrN (a, b) and 0o ≤Φ, 2ϕ ≤ 90o, 0o ≤ 1ϕ ,≤ 360o 

for ground Ni alloy.  
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 Firstly, elastically isotropic sample (A=1, see Table 3.3) tungsten (W) was 

investigated. To generate stress in surface layer sample surface was manually polished (paper 

2000 grit, non-directional polishing) causing roughness equal Ra=0.16 µm. The MGIXD 

method for different incident α angles as well the standard method (ω and ψ geometries with 

321 reflection) were applied to measure lattice strains. In order to calculate stresses the fitting 

procedure based on Eq. 3.23 and two components σ11 and σ22 of biaxial stress were 

determined. Comparison of stresses determined using different XSFs (calculated using single 

crystal elastic constants from Table 3.3 and texture shown in Fig. 6.19 a) and the values of 

χ² parameter obtained in this analysis are presented in Fig. 6.19. The { }hkl< a( , )φ ψ > vs. sin2ψ  

plots for an example incident angle α = 5° (MGIXD method) and for standard methods are 

shown in Fig. 6.20, while the comparison of the sin2ψ plots for different incident angles α is 

shown in Fig. 6.21 (XSFs given by free surface model were applied in calculations). 

 

Fig. 6.19. Values of determined stresses in polished W sample using MGIXD method and 
standard method (a) and comparison of χ² parameter values (b) for four grain interaction 
models (refraction correction was not introduced). 

 

 



121 

 

a)

{1
10

}

{2
00

}

{2
1

1}

{2
20

}

{3
10

}

{2
22

}

{3
21

}

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
3.160

3.161

3.162

3.163

3.164

3.165

3.166

3.167

3.168

3.169

3.170
 

            MGIXD α=5o

 experimental φ=0° 
 experimental φ=90° 
 free surface φ=0°
 free surface φ=90°
 Kroner φ=0°
 Kroner φ=90°
 Reuss φ=0° 
 Reuss φ=90° 
 Voigt φ=0° 
 Voigt φ=90° 

 
 
 

 
sin2ψ

a<
φ

,ψ
> hk

l

 

 

 

b)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

3.160

3.161

3.162

3.163

3.164

3.165

3.166

3.167

3.168

3.169

3.170

a<
φ,

ψ>
hk

l

sin2ψ

           ψ -mode {321}
experimental φ=0o 
 experimental φ=90o

 free surface φ=0o

 free surface φ=90o

 Kroner φ=0o

 Kroner φ=90o

 Reuss φ=0o

 Reuss φ=90o

 Voigt φ=0o

 Voigt φ=90o

 

c)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

3.160

3.161

3.162

3.163

3.164

3.165

3.166

3.167

3.168

3.169

3.170

a<
φ,

ψ>
hk

l

sin2ψ

          ω-mode {321}
 experimental φ=0o

 free surface φ=0o

 experimental φ=90o

 free surface φ=90o

 Kroner φ=0o

 Kroner φ=90o

 Reuss φ=0o

 Reuss φ=90o

 Voigt φ=0o

 Voigt φ=90o

 

 

Fig. 6.20. Experimental points and theoretical { }hkl< a( , )φ ψ > vs. sin2ψ for polished 

W sample. Measurements presented for MGIXD (α=5°) (a) and standard ψ-mode (b) and ω-

mode (c) methods (uncertainty of peak position o0102 .)( =θδ  was assumed). 

 

 

Fig. 6.21. Example of the { }hkl< a( , )φ ψ >  vs. sin2ψ plots for polished W sample. Results 

presented for MGIXD method for incident angles α=5° and α=15°. 
 

 In the light of these results it is clearly seen that in the case of elastically isotropic 

sample there is no any difference in the values of calculated stresses, for MGIXD and 

standard method, for any of chosen grain interaction models. In the case of isotropic 

W sample the { }hkl< a( , )φ ψ >  vs. sin2ψ plots are straight-lines for each of considered models. 

This is certainly due to perfect elastic isotropy of W crystals and consequently equal values of 

XSF for all reflections. 
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 Presenting the stresses determined by MGIXD method (Fig. 6.22), it is also important 

to define the range of information depths z τ=  (or α angles) for which the results of analysis 

are reasonable. In the case of studied sample we can assume that real values of the stresses as 

well as strain free lattice parameter are between those obtained with and without refraction 

correction. We can see that the uncertainty of the obtained results increase significantly for 

incident angle α ≤ 10o (τ ≤ 0.4 µm), because the difference between results with and without 

correction increases. As shown in Fig. 6.22, the value of strain free parameter does not change 

significantly with the information depth. The stress in the mechanically polished W is 

compressive, biaxial and approximately fulfils relation σ11 ≈ σ22. The stress value determined 

by MGIXD method is almost constant for the studied penetration depth (slowly decreasing 

with depth), and perfectly agree with the results of both standard methods. The stresses 

obtained with the latter method were presented for an average value of penetration depth for 

all ψ-inclination angles.  
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Fig. 6.22. Residual stresses and strain free lattice parameter in function of the information 

depth  (equal to τ, see Eq. 3.4) determined with and without correction refraction effect for 
polished W sample.  
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 Secondly, samples having high elastic anisotropy were investigated: ground Ni alloy 

(A=2.76), polished austenite stainless steel (A=3.3) and CrN coating (A=0.34). The Ni alloy 

(composition given in Table 6.1) was ground manually in one direction (angle 5°; effort 80N 

and advance 88 mm/s). Such surface treatment cause rough surface (Ra = 3.3 µm) having 

topography presented in Fig. 6.23, showing regular ‘ridges and furrows’ with amplitude of 

10 µm distributed with the period of about 100 µm. It was found that after crystallographic 

texture after grinding does not exhibit sample symmetry (the ODF is shown grinding). The 

stress measurements were performed using Cu radiation on PANalytical - X’Pert MRD 

(ENSAM, Paris) diffractometer having configuration given in Table 4.4. 

a)      b)   

Fig. 6.23. Surface topography of ground Ni alloy sample with orientations of measured 
stresses (a) and roughness characterisation in the direction perpendicular to direction of 
grinding (b). The measuring area is indicated in figure (a). 

 

 The CrN coating (6 µm thickness) was deposited at high temperature on a 4H13 steel 

substrate deposited on the 4H13 steel substrate. The coating was obtained by means of the 

arc-vacuum method in a nitrogen atmosphere at the pressure of N2 equal to 3.5x10-2 mbar and 

the temperature of 450° C [101, 102]. The average speed of deposition was 60 nm/min. As 

a result, the coating exhibiting the average surface roughness Ra = 0.33 µm and fibre 

crystallographic texture (Fig. 6.19 c) was produced. The stresses were measured using 

Cu radiation on PANalytical - X’Pert diffractometer MRD (AGH, Kraków) with 

configuration given in Table 5.4. 

 In the case of austenite stainless steel (the same material as used in tensile test - 

AISI316L with composition given in Table 6.1) the sample surface was mechanically 

(manually) polished in all two directions, changing orientations of the sample during 

polishing. In this case average roughness equal Ra = 0.13 µm was obtained. The stress 

measurements were performed on Seifert - PTS MZ VI using Fe radiation (Table 5.4).  
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 The MGIXD method and standard method were applied to determine stresses in 

aforementioned samples. Fitting procedure based on Eq. 6.2 showed that only in the case of 

austenitic sample the determined probabilities of finding stacking fault between neighbouring 

planes (ρ value) has significant influence on the results and its value exceeds the uncertainty. 

Therefore ρ parameter was adjusted in the case of polished austenite stainless steel, while for 

the other samples ρ = 0 was assumed. The result of stress analysis for different considered 

grain interaction models and for all samples is presented in a Fig. 6.24 while the values of 

χ² test are shown in Fig. 6.25. The example of { }hkl< a( , )φ ψ > vs. sin2ψ plots, compared all 

for analysed samples are presented in Fig. 6.26 (for different grains interaction models) and in 

Figs. 6.26 – 6.29 (for different α incident angles). 

 

a)   

b) c)  

Fig. 6.24. Comparison of influence of four models of the grain interaction model on the 
results of X-ray stress analysis for ground Ni alloy (a), polished austenite stainless steel (b), 
and CrN coating (c). The results for different incident angle α are compared with standard 
method for hkl reflections. 

 



125 

 

 

Fig. 6.25. Comparison of the values of χ² parameter for different grain interaction model for 
ground Ni alloy (a), polished austenite stainless steel (b), CrN coating (c). The results for 
different incident angle α are compared with standard method for hkl reflections. 

 

 The results presented for all considered samples show that the theoretical curves do 

not matches experimental points when Voigt model is used to calculate XSF. Comparing 

values of stresses determined using different models of XSF calculation we can notice large 

discrepancies, especially for Ni alloy and austenitic stainless steel (Fig. 6.24). On the basis of 

the values of χ² parameter (Fig. 6.25), it can be concluded that for Ni alloy as well as polished 

austenite stainless steel we cannot decide which of those three: Reuss, Kröner and free surface 

models is the best one. In such a case we must accept larger uncertainty of measured stress 

values due to difference between these three models if the XSF are not verified in tensile test 

as for Ni alloy. Certainly, in the case of austenite stainless steel the results presented in 

Fig. 6.25 confirms conclusion drawn previously from tensile tests, that the Reuss and stress 

free models correctly predict XSFs. For CrN sample it would appear that free surface model 

fit the best the experimental data. It is worth to emphasize that the considered uncertainty of 

determined peak position o0102 .)( =θδ  is much too small, relative to the actual value, also 

for the models which seems to correctly fit the experimental points. This is due to the fact that 

even slight misalignment of the model to the experimental values will increase with 

increasing stress value. For example, if goodness of fit caused by model discrepancy is on the 

level χ² =1-2 for 300 MPa (as for austenite stainless steel or Ti the tensile tests) it will 

increase proportionally to squared stress, reaching value χ² =16-32 for 1200 MPa (as in the 

case of ground Ni alloy, excluding Voigt method), χ² =4-8 for 600 MPa (as for polished 

austenite stainless steel, excluding Voigt method and all methods for α = 5o) and χ² =100-200 

for 3000 MPa (as for CrN coating, excluding Voigt method and standard method for 

422 reflection). Therefore, in spite of large values of χ² the discrepancy of the models 

(excluding Voigt) is on the same level for the tensile tests as well as for samples with residual 

stresses almost for all measurements. 
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Fig. 6.26. The { }hkl< a( , )φ ψ > vs. sin2ψ plots, compared for different grain interaction 

models, for MGIXD α=5° for ground Ni alloy (a), polished austenite stainless steel (b), CrN 
coating (c). Only in the case of austenitic sample ρ parameter was fitted and determined 
(ρ =0.014±0.006). 
  

 In the sight of presented results it seems that free surface as Reuss model are in a very 

good agreement with experimental results in comparison with other models (see Fig. 6.26). In 

particular the Voigt model cannot be taken into account stress analysis because it does not 

reflect the anisotropy of XSF, which is seen as the nonlinearities { }hkl< a( , )φ ψ > vs. sin2ψ 

plots. In the case of polished austenite stainless steel (A=3.3) and ground Ni (A=2.76) alloy 

the lattice strains in direction <111> are relatively smaller than in the direction <200>, while 

opposite tendency occur for CrN coating (A=0.34). It can be deduced form Figs. 6.26 -6.29 

analysing shift of the experimental points from straight line and considering the sign of stress 

(compressive for austenite stainless steel and CrN coatingand, tensile for Ni alloy). This 

confirm opposite type of single crystal anisotropy for crystal having A >1 and A<1 (Young 

modulus is smaller in <200> direction in comparison with <111> for A>1 and the opposite 

tendency occurs for A<1). The latter results can be compared with elastically isotropic 
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(W) sample for which the { }hkl< a( , )φ ψ > vs. sin2ψ experimental plots are linear and the 

experimental point lie (in a margin of error) on the straight line. 

 For more precise analysis of the influence of the chosen model for investigated 

stresses the { }hkl< a( , )φ ψ > vs. sin2ψ  plots are presented in Figs. 6.26 - 6.28 for different 

incident angle α in MGIXD method for free surface model, which is in the best agreement 

with experimental results, and for Kröner model which does not reflect fully the experimental 

results. 

 

a)  

b)     

Fig. 6.27. Example of the { }hkl< a( , )φ ψ > vs. sin2ψ  plots for ground Ni alloy. Measurements 

presented for incident angles: 5°, 15° (MGIXD). The theoretical curve obtained using XSF 
calculated from single crystal data using free surface (a) and Kröner (b) models. 
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a)  

b)  

Fig. 6.28. Example of the { }hkl< a( , )φ ψ > vs. sin2ψ plots for polished austenite stainless steel. 

Measurements performed by MGIXD for incident angles: 5°, 15°. The theoretical curve 
obtained using XSF calculated from single crystal data using free surface (a) and Kröner (b) 
models. 

a)  

b)  

Fig. 6.29. Example of the { }hkl< a( , )φ ψ > vs. sin2ψ plots for CrN coating. Measurements 

performed by MGIXD for incident angles: 5°, 15°. The theoretical curve obtained using XSF 
calculated from single crystal data using free surface (a) and Kröner (b) models. 
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 Finally, the results of residual stress analysis in anisotropic samples are presented in 

Fig. 6.30 where the dependence of stresses and strain free parameters vs. information depth is 

shown (Eq. 3.4). Analysis was performed applying XSF calculated by the free surface model 

with refraction correction or without this correction. 
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Fig. 6.30. Residual stresses, strain free lattice parameter and ρ parameter (in the case of 

austenitic sample) in function of the information depth  (see Eq. 3.4) determined with and 
without correction refraction effect index for ground Ni alloy (a), CrN coating (b) and 
polished austenite stainless steel (c).  
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 Analysing the results from Fig. 6.30 it can be conclude: 

•  Tension stresses were found in the ground Ni alloy sample (such stress is generated 

due to temperature gradient during grinding). Residual stresses are large and constant for 

different incident angles in the direction of grinding (22
Iσ - along ridges and furrows), while it 

is much smaller and decreasing to zero value at surface for perpendicular direction ( 11
Iσ ), see 

Fig. 6.23. This effect can be easily explained due to shadows for the X-ray beam causing from 

the ridges which are important when the measurement is performed in transfers direction 

( 11
Iσ  are measured for the top ridge where its relaxation close to the surface is very large). 

The stress 22
Iσ  is measured for the ridges and furrows as well (no shadow) and it does not 

relax significantly at the top of ridge (in direction of grinding). The standard measurements 

confirm tendency of stress evolution in larger depth. It should be also emphasised that no 

significant difference was observed for the stresses determined taking into account refraction 

correction and without correction. This is because the shift of the diffraction peak is very 

small in comparison large shift caused by large stress (strain). However, we can see influence 

of refraction on the value of strain free lattice parameter a0. It should be underlined that 

determined value of a0 is constant for different depths (even for so large stresses) if the 

refraction correction is not applied and the correction causes unexpected variation of a0. 

It means that refraction should not be taken into account due to very rough surface 

(Ra=3.3 µm). 

•  Compressive very large stress was found in CrN coating (11
Iσ  = 22

Iσ  was assumed 

because of fibre sample and process symmetry). It results from different shrinking amplitudes 

of the CrN layer and the steel substrate during cooling (their thermal expansion coefficients 

are, respectively 6 x 10-6 K [103] and 11-12 x 10-6 K [104, 105]). It should be noted that the 

observed important compressive stress is caused not only by the temperature effect but also 

due to the peening of the growing coating by accelerated atoms, interdiffusion and the 

reactions with the substrate [105, 106]. A similar level of the stresses in the CrN coating 

deposited on the steel base was previously observed in [101, 105, 106]. For this sample the 

stresses are so large that the effect of refraction correction is relatively small (Fig. 6.30b). 

•  Compressive stress was determined in polished austenitic sample. Higher value of 

compressive stress was found in the direction in which the last polishing was applied 

(i.e. 22 11| | | |I Iσ σ> ) and the stress in transverse direction (11
Iσ  ) relaxes close to the surface. 



131 

 

This effect is very similar to this observed in ground Ni alloy taking into account that ridges 

and furrows were created in austenitic sample (with small roughness Ra=0.13 µm) along 

direction of the last polishing. The dependence of a0 vs. depth is not constant but the variation 

is rather small. Concerning probability of stacking fault finding it can be seen that it decreases 

with penetration depth. Fitting or not fitting of the ρ parameter does not change the results of 

calculated stresses and a0 (but quality of fitting is better, see Fig. 6.31). This is because 

ρ influence only deviation of points from the straight line in { }hkl< a( , )φ ψ > vs. sin2ψ  plot 

but does not change its slope. Finally, it can be concluded that results difference between 

results corrected and not corrected for reflection effect increase significantly for incident 

angle α ≤ 10o (τ ≤ 2.4 µm). 
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Fig. 6.31. The influence of fitting or not fitting of the ρ parameter on the results of calculated 

stresses and a0 parameter. 

 

6.4. CONCLUSIONS 

 In this chapter the interpretation of the MGIXD was significantly developed in order 

to determine c/a parameter in hexagonal materials and the probabilities of finding stacking 

fault ρ between neighboring planes {111}. The method of c/a determination was tested on 

polished Ti (grade 2) sample showing that for the material having low elastic anisotropy the 

stresses, strain free parameter a0 as well as c/a value can be determined using presented in this 

work self-consistent iteration method (the experimental values determined in the case of 

tensile as well compressive stresses were compared with literature). Significantly better fitting 

of the theoretical values to experimental ones was obtained when c/a was adjusted. It should 

be underlined the c/a value can be estimated in good approximation for elastically isotropic 

material (as Ti) or if the XSF are known (measured or verified). The second case was not 

considered in the present work but this test is an important issue for further development of 

MGIXD method (using for example elastically anisotropic Zr alloy sample). 
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 Probability of finding stacking fault ρ was determined for polished austenitic stainless 

steel (alloy having low stacking fault energy). Reasonable values were of ρ was determined in 

the case compressive stress in the polished sample. Similar calculation has been done 

previously for ground sample (the same austenitic steel) by Baczmanski [20] receiving similar 

value of ρ. This methodology also requires knowledge of XSF for anisotropic material (like 

austenite stainless steel). This is why it is important to verify different models of XSF 

calculations what has been done in the second part of this chapter. 

 The best verification of the XSF can be done measuring lattice relative strains during 

tensile test (we avoid influence of initial residual stresses, stacking faults, systematic errors 

due to misalignments, refraction and other effects). From the performed tests it is evident that 

both the experimental and the calculated { }
rel
hkl< ( , )ε φ ψ > vs. sin2ψ  functions based on 

different hkl reflections exhibit nonlinerities in the case of sample having elastic anisotropy 

(austenite stainless steel), in contrary for elastically isotropic sample (like Ti) this dependence 

is almost linear. Anisotropy of XSF was also observed on the {hkl} < a(ϕ,ψ) > vs. sin2ψ plots 

obtained when the residual stresses were measured in Ni alloy, austenite stainless steel and 

CrN samples. In view of the nature of presented results obtained using MGIXD and standard 

method, it can be concluded that Reuss and free surface grain interaction models are in the 

best agreement with the experimental results. These models reflect in the best way the elastic 

anisotropy of the studied samples. This conclusion does not agree with the previous studies 

[1] in which the Kroner type XEC/XSFs were positively verified for quasi-isotropic materials 

(without texture) or in some cases for textured samples [1]. However, it was also shown that 

in the case of textured samples the anisotropy of XSF is better predicted by Reuss or free 

surface models than by the Kroner approach [1,100]. The coupling of the grains in the 

measured sample depends on the material but also on the depth above the sample surface. 

Indeed in the case of  MGIXD method the penetration depth is usually lower than in the case 

of standard measurement, thus the conditions of free surface are better fulfilled for the 

measured volume.  

 Concluding, reliable diffraction stress analysis is only possible when an appropriate 

grain interaction model is applied for anisotropic sample. Therefore the free surface model 

(having physical explanation in contrast to Reuss model) was applied to determine probability 

of finding stacking fault (ρ) in polished austenite stainless steel. In this chapter the examples 

of stress analysis for isotropic (W) as well anisotropic samples samples (Ni alloy, austenite 

stainless steel, CrN) were performed taking into accounts uncertainty due to refraction effect. 
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7. MGIXD  METHOD USING DIFFERENT WAVELENGTHS OF 

SYNCHROTRON RADIATION  
 In the previous chapter the role of XSF, refraction and other effect influencing results 

of MGIXD measurements were considered. In this part the attention will be paid on the 

possibility of measuring stress evolution vs. depth below the sample surface. Moreover the 

methodology of data interpretation is developed in order to treat data obtained not only for 

different incident angles but also using simultaneously different wavelengths. Finally, it will 

be shown that using our software also the results of energy dispersion diffraction 

measurements can be successfully treated. Therefore, the new elaborated method is not only 

‘multi-reflection’ but also ‘multi-wavelength’. The advantage of the method is that more 

experimental data are available to calculate the stresses. Moreover, application of different 

wavelengths enables verification of the MGIXD measurements. 

 The preliminary experiments were performed for two samples exhibiting low crystal 

anisotropy: Al – fcc structure and Ti – hcp structure, using X-Pert Philips X-ray 

diffractometer (Cu Kα radiation) equipped with a Göbel mirror in incidence beam optic 

(Table 5.4). The results obtained using classical X-ray diffraction were verified by 

synchrotron radiation in order to test the MGIXD method and to precisely designate the 

variation of stresses in function of depth. Measurements were performed at G3 beamline at 

the DORIS III (HASYLAB) storage ring. For selected samples, MGIXD geometry was used 

to measure stresses at different depths below the surface.  

 Secondly, selected samples which did not exhibit the stress gradient when measured 

on the classical diffractometer, were investigated using EDDI method with the synchrotron 

radiation at BESSY (EDDI beamline). This method was used to perform the measurements in 

the deeper regions of the sample in order to reveal if the stress gradient occurs. 
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7.1. X-RAY MEASUREMENTS 
 At first measurements were performed using MGIXD method on a PANalytical – 

X’Pert MRD (AGH, Kraków) and PANalytical - X’Pert MRD (ENSAM, Paris) both equipped 

with a Göbel mirror in incidence beam optic (configuration given in Table 5.4). The Al2107 

alloy and Ti samples were ground or polished. In the case of grinding the speed of rotation of 

the grinding wheel (external diameter equal to 300 mm, internal diameter equal to 127 mm 

and width equal to 40 mm) was 2000 rpm while the work speed was 9 m/min. Several passes 

were carried and in each pass the layer of 20 µm was removed. Such treatments were applied 

for Al2017 alloy and Ti (grade 2) samples (compositions are given in Table 6.1). Two types 

of mechanical two-directional manual polishing were applied for other samples:  

I) with 5 steps using emery papers: 800, 1200, 2000, 2500, 4000 grit and the last 

treatment was performed with pressing force of 5 N, next polishing paste was used for final 

treatment (size of the polished surface: 1.5 mm per 1.5 mm);  

II)  one polishing with emery paper 2000 grit and without any pressing.  

 Polishing type I was applied for the Al2017 and Ti (grade 2) samples, while polishing 

II was performed for Al2017 and Ti6Al4V alloys (composition given in Table 5.1). The 

surface roughness Ra parameter for all mechanically treated samples was gathered in 

Table 7.1. 

   

Table 7.1. Values of surface roughness parameter (Ra) for investigated sample. 

Surface treatment Ra (µm) 
Al2017 

Polishing type I  (5 N) 0.13 
Polishing type II 0.27 
Grinding 1.18 

Ti (grade 2) 
Polishing type I  (5 N) 0.04 
Grinding 1.87 

Ti6Al4V 
polishing type II 0.29 

 

 The orientation distribution functions were determined using Cu radiation for all 

mechanically treated samples (Fig. 7.1). It can be seen that grinding process change texture 

significantly for both Al 2017 and Ti (grade 2) samples. Initial texture (before grinding) for Ti 

sample is given in Fig. 6.9, while the initial texture of Al2017 was almost random. These 

texture has not sample symmetry and the ODFs are presented for 0o≤ ϕ1 ≤ 360 o. Polishing 

also modifies texture but the changes are smaller, i.e. the texture of Al 2017 remains almost 

isotropic after both types of polishing, while the preferred texture orientations in Ti (grade2) 
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are shifted with respect to the initial after polishing type I. Polished Ti and Ti6Al4V samples 

exhibit orthorhombic sample symmetry, and the range 0o≤ ϕ1  ≤ 90 o was shown. 

        

    

  
a)                                                                      b) 

Fig. 7.1. Orientation distribution functions (ODF) determined using Cu radiation for ground 
and polished Ti, Ti6Al4V and Al2017 samples. The ranges of Euler angles depending on 
sample and crystal symmetry are given.  

 

Al samples 

 The example peak profiles for powder Al, polished (type II) and ground aluminum 

alloy obtained using pseudo-Voigt function, are presented in Fig.7.2 while the example 

<a(φ,ψ)> {hkl} vs. sin2ψ plots are shown in Figs. 7.3 for polished (type II) and ground Al2017, 

respectively. 
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Fig. 7.2 Example of the peak profiles for ground Al powder (a), Al2017 polished type II (b) and ground (c) samples, fitted by pseudo-Voigt function. 
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Fig. 7.3. Example of the <a(φ,ψ)> {hkl} vs. sin2ψ  plots for polishing type II (a) and grinding (b) Al2017 samples, for different penetration depths. Significant 
difference between plots for ϕ = 00 and ϕ = 900 is shown in the case of ground sample. 
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Fig. 7.4. The in-depth profile of stress and a0 parameter for mechanically polished (type I and II) and ground Al2017 samples, as well as the reference 
powder sample, obtained by MGIXD method (Cu Kα radiation). 

  

 

Fig. 7.5. The stress in-depth profile for mechanically 
polished Al2017 sample (type II) measured by MGIXD 
method. The peak position determined a) by fitting of 
pseudo-Voigt function and b) using center of gravity 
method. 
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Analyzing peak profile it can be concluded that the polished as well as ground samples 

exhibit significant broadening of diffraction peaks in comparison with those obtained for 

recrystallized Al powder. The peak profiles can be successfully fitted by two pseudo-Voigt 

functions corresponding to Kα1 and Kα2 lines. The <a(φ,ψ)> {hkl} vs. sin2ψ  plots were fitted 

using procedure based on Eq. 3.23, in which the XSF calculated by Kröner method from 

single crystal elastic constants given in Table 3.3. Because of low crystal anisotropy for Al 

samples all methods of XSF calculation give almost the same results, moreover effect of 

texture is also not significant. As shown in Fig. 7.3 significant difference between ϕ = 00 and 

ϕ = 900 was found, while no such difference was observed in the case of polished samples.  

The in-depth stress and a0 lattice parameter profiles as a function of penetration depth 

(τ) determined for different incident angles (α) for all studied Al2017 samples are compared 

with measurements performed for Al powder sample (Fig. 7.4). Refraction correction was 

taken into account; however it is not significant for the studied range of incident angles as 

shown in Fig 5.10. Moreover, the stresses obtained using two methods for determination of 

peak positions were compared in the case of sample for which stress gradient occurs 

(polishing type II), i.e., fitting by pseudo-Voigt function (Fig. 7.5a) and center of gravity 

method (Fig.7.5b). Analyzing Figs. 7.4 and 7.5, it can be concluded that: 

•  Stresses close to zero were measured in Al powder. 

•  Tensile stresses were generated after grinding. This is caused due to temperature 

gradient effect because of interaction between sample body and the heated surface 

layer (this layer contracts during cooling). The stress along direction of grinding σ11 is 

higher than in the transverse direction (σ22). No significant evolution of stresses occurs 

in the depth penetrated by X-rays. 

•  Compressive stresses σ11 ≈ σ22 were found in the polished samples. No significant in-

depth evolution was found for polishing type I (5N pressing force), while stress 

gradient occurs after type II of polishing. 

•  No significant in-depth evolution was found for a0 lattice parameter. Large difference 

was found between a0 determined for Al powder and Al2017 alloy.  

•  Approximately the same stresses were obtained using both method for determining of 

peak position (fitting with pseudo-Voigt and center of gravity - CG). 
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 Finally, the Williamson-Hall method was used for investigation of the in- depth 

evolution of root mean square of the third order strain and crystallite size (coherent domain). 

The fitted linear functions to the experimental points in Williamson-Hall method for both 

polished and ground Al2017 are presented on Figs. 7.6. The calculated results are summarized 

in Table 7.2. As the reference the LaB6 powder was used. 

 

 

a) b)  

Fig. 7.6. The linear function fitted to the experimental data in Williamson-Hall method for 
polished – type II (a) and ground (b) Al2017 samples (analysis with Gaussian approximation, 
see chapter 2.3.1). 

 

 

Table 7.2. The root mean square of the third order strain (2ε ) and crystallite size (D) 

calculated with Williamson-Hall method for Al 2017 ground and polished (type II) samples. 

α (°) τ (µm) 2ε< >  D (Å) 

Al2017 polished (type II) 

5 5.8 0.0017 ±0.0002 619 ±231 

15 14 0.0015 ±0.0001 540 ± 94 

Al2017 ground 

5 5.8 0.0019 ±0.0001 --- ---- 

15 14 0.0016 ±0.0001 791 ±168 

 

 It can be concluded that similar values of the third order strains ( 2ε ) were found 

for polished (type II) and ground samples. The strain 2ε  decreases with depth. Large 

uncertainties of the determined crystallite size (D) unable study of D evolution with depth. 
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Measurement of D is close to the limit of method sensibility, i.e. only D smaller than about 

500 Å can be measured using applied configuration of the diffractometer (instrumental 

broadening is about FWHM2θ=90° ≈ 0.3° verified using LaB6 powder). 

 

Ti samples 

 As it was mentioned the second series of samples was prepared from Ti and Ti alloy. 

The example of peak profiles for all investigated samples and Ti powder, obtained with 

pseudo-Voigt fitting function are presented in Figs. 7.7 and 7.8. The example <a(φ,ψ)> {hkl} 

vs. sin2ψ plots for polished (type I) Ti6Al4V  alloy are shown in Figs. 7.9, while similar plots 

for Ti (grade 2) sample were already presented in Figs. 6.1 and 6.2 (chapter 6).  
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Fig. 7.7. Example of the peak profiles for ground Ti powder (a); and Ti (grade2) polished type I (b) and ground (c), fitted by pseudo-Voigt function. 
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Fig. 7.8. Example of the peak profiles for polished (type 2) titanium alloy (Ti6Al4V), fitted by pseudo-Voigt function. 
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Fig. 7.9. Example of the <a(φ,ψ)> {hkl} vs. sin2ψ  plots for polished (type II) titanium alloy (Ti6Al4V), for different penetration depths. 
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Fig. 7.10. The in-depth profiles of stress, a0 and c/a parameters for mechanically polished (type I) and ground Ti- grade 2 samples and polished (type II)  
Ti6Al4V alloy, as well as the reference powder sample, obtained by MGIXD method (Cu Kα radiation and pseudo-Voigt profile used for fitting). 
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Fig. 7.11. The stress in-depth profiles (stress, a0 and c/a parameters) for mechanically polished Ti6Al4V alloy (type II) measured by MGIXD method. 
Comparison of the results obtained: a) using Kröner and stress free XSF (peaks are fitted by) pseudo-Voigt function and b) the peak position determined by 
fitting of pseudo-Voigt function and using center of gravity method (are compared for XSF calculated with Kröner method). 
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 Similarly like for Al2017 samples, the polished and ground Ti samples exhibit 

significant broadening of diffraction peaks in comparison with recrystallized powder. The 

pseudo-Voigt functions fit correctly the experimental peaks measured for ground or 

polished (with pressing force equal 5 N - type I) Ti (grade 2) sample while disagreement 

between theoretical and experimental profiles was found in the case of polished Ti6Al4V 

alloy (type II); see asymmetries indicated by arrows in Fig. 7.8. The disagreement is 

particularly evident for high 2θ angles. The <a(φ,ψ)> {hkl} vs. sin2ψ  plots were fitted using 

procedure based on Eqs. 6.1 and 3.23, in which the XSF are calculated by Kröner method 

from single crystal elastic constants given in Table 3.3 and c/a parameter was adjusted. 

Similarly, as in the case of Al sample low crystal anisotropy causes that the choice of 

XSF model and crystallographic texture is not significant. It should be stated that the 

a(φ,ψ)> {hkl} vs. sin2ψ  plots were limited to the range of sin2ψ for which acceptable fitting 

of pseudo-Voigt function was obtained (Fig. 7.9). 

The in-depth stress and lattice parameters (a0 and c/a) profiles as a function of 

penetration depth (τ) were determined from measurements performed for different incident 

angles (α), and compared with analogical measurements performed for the Ti powder 

sample (Fig. 7.10). Refraction correction (taken into account) is not significant for the 

studied range of incident as shown in Fig. 5.11. The stresses obtained using two methods 

(fitting by pseudo-Voigt function and center of gravity) for determination of peak positions 

were compared in the case of polished Ti6Al4V alloy (type II) exhibiting significant stress 

gradient (Fig. 7.11). Analyzing the presented above results concerning residual stresses for 

Ti and Ti alloy samples, it can be concluded that (see Figs. 7.10 and 7.11): 

•  Stresses close to zero were measured in Ti powder. 

•  Different types of stresses were generated after application both surface treatments, 

i.e. tensile stresses after grinding (higher stress along direction of grinding) and 

compressive stress after polishing. No significant evolution of stresses occurs in the 

depth penetrated by X-rays for ground and polished (with pressing force) samples, 

while the significant gradient of stresses occurs for polished Ti alloy in accessible 

on the classical diffractometer range of penetration depth. 

•  No significant in-depth evolution was found for a0 and c/a parameters for all 

measured samples. The values of a0 lattice parameters for Ti (grade 2) polished and 

ground samples are comparable with each other and are close to the lattice 

parameters of powder sample (similar to the values characterizing pure material: 
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a0 = 2.95111 ± 0.00006Å, and c/a = 1.5873 [93]). On the other hand the value of 

the lattice parameters of Ti6Al4V alloy, as it was expected, is significantly different 

from those obtained for Ti (grade 2) sample (Ti6Al4V parameters are close to 

a0 = 2.9323 Å and c/a = 1.5957, obtained by Bernier et al. [107] for similar alloy, 

using synchrotron radiation).  

•  The determined c/a parameter does not depend on depth if stress gradient does not 

occur, thus for Ti powder and polished or ground Ti (grade 2). However, in the case 

of stress gradient in polished Ti6Al4V alloy, c/a exhibits small monotonic in depth 

dependence which is slightly more significant in the case of XSF given by Kröner 

than in the case of free surface model (Fig. 7.11a). On the other hand, also a0 shows 

small deviation close to the surface, which in turn, is smaller for Kröner model 

(Fig. 7.11a). Because the deviations of a0 are c/a are small and could be caused by 

another reasons, it is not possible to decide which model better describes grain 

interactions in the studied sample. However, the hypothesis that stress relaxation 

close to the surface causes different grains interaction at different depths should be 

in future verified. 

•  Different values of stresses and a0 and c/a parameters were obtained depending if 

the peak positions were determined by fitting pseudo-Voigt function or calculating 

the center of gravity (Fig. 7.11b). This important problem will be considered in this 

work and it is expected that such difference is due to asymmetry of peak caused by 

stress gradient (the measured peak is integrated from different depths exhibiting 

different lattice strains).   

 

 Williamson-Hall analysis was used for investigation of the in- depth evolution of 

root mean square of the third order strain and crystallite size (coherent domain). The fitted 

linear functions to the experimental points in Williamson-Hall method for investigated Ti 

samples are presented in Fig. 7.12 (as the reference the LaB6 powder was used). The 

calculated results are summarized in Table 7.3.  
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a) b)  

Fig. 7.12. The linear function fitted to the experimental data in Williamson-Hall method 
for Ti (grade 2) polished – type I (a) and for polished (type II) Ti6Al4V alloy (b) - 
Gaussian approximation. 
 

Table 7.3. The root mean square of the third order strain (2ε ) and crystallite size (D) 

calculated with Williamson-Hall method for Ti and Ti6Al4 samples. 

α (°) τ (µm) 2ε< >  D (Å) 

Ti6Al4V polished – Type II 

5 0.9 0.0018 ± 0.0003 438 ± 143 

15 2.1 0.0006 ± 0.0006 408 ± 66 

Ti (grade 2) polished – type I 

5 0.9 0.0025 ± 0.0001 501 ± 123 

15 2.1 0.0016 ± 0.0002 430 ± 83 

Ti (grade 2) ground 

5 0.9 0.0039 ± 0.0008 238 ± 152 

15 2.1 0.0020 ± 0.0002 474 ± 163 

 

 The values of the third order strains ( 2ε ) in polished (type I) and ground 

Ti (grade 2) samples are higher than in Ti6Al4 alloy, for which polishing type II was 

applied. In all samples the strain 2ε  decreases with depth. In the case of slightly 

polished Ti6Al4 alloy very small value of strain 2ε
 
was measured in the depth 

τ = 2.1 µm where material is not deformed plastically. Similarly as for Al sample due to 

large uncertainty of the determined crystallite size the study of D evolution is not possible. 
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 As mentioned before, the clasicall X-ray measurements were an introduction to the 

study performed with synchrotron diffraction. X-ray measurements enabled to choose 

appropriate samples, i.e. the samples having important in-depth gradients (Al2017 and 

Ti6Al4 - type II of polishing). Next these samples were studied using similar wavelengths 

(energies), as used on the laboratory diffractometers, with synchrotron radiation. 

Additionally for the ground and polished (with pressing force) Ti (grade 2) samples much 

higher energies was used (EDDI – energy dispersion diffraction) to study stress behavior in 

deeper layers.  

 

7.2. SYNCHROTRON MEASUREMENTS USING MGIXD  WITH DIFFERENT 

WAVELENGTHS AND INCIDENT ANGLES.  
The results for samples exhibiting a high in-depth stress gradient (the results 

obtained using classical X-ray diffraction) were verified using synchrotron radiation. The 

experiment was performed at HASYLAB, DORIS III storage ring, on beamline 

G3 spectrometer, using soller collimator (with divergence 0.15°) and scintillation detector. 

The double-crystal germanium monochromator was used. The beam dimension at 

monochromator was about 5 mm per 10 mm. All monochromator movements were driven 

by stepper motors. The tilted gold mirror was used for suppression of the higher 

harmonics. The advantages of synchrotron radiation are its perfect collimation, 

monochromatization, high intensity and possibility of wavelength variation. Moreover, 

very valuable advantage is that penetration depth can be change for the same incident angle 

by changing wavelength. In Fig. 7.13 the penetration depths for different wavelengths are 

shown. Three different wavelengths (λ=1.2527 Å, λ =1.5419 Å and λ =1.7512 Å) were 

chosen and the incidence angles (α), for which the penetration depth is the same, were 

calculated. The important question verifying the methodology was if the same stresses will 

be determined for such combination of wavelengths and incident angles. The sets of 

incident angles and wavelengths corresponding to the same penetration depths were 

determined drawing horizontal lines in Fig. 7.13.  
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Fig. 7.13. The penetration depth vs. incidence angle α for Al (a) and Ti (b) samples. Curves 
for three, different, selected wavelengths are shown. Horizontal lines are drawn for 
constant penetration depths. 
 

 

Al2017 sample 

Fist studied sample was mechanically polished (type II) Al 2017 alloy for which the 

significant gradient of stresses was determined using classical X-ray diffractometer. The 

MGIXD method with radiations having three different wavelengths: λ=1.2527 Å, 

λ =1.5419 Å and λ =1.7512 Å were applied. Synchrotron radiation enabled to extend the 

penetration depth (τ) for which the stresses are determined. The measured peaks were fitted 

by the pseudo-Voigt function. The example of peak profiles are presented in a Fig. 7.14.  
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Fig. 7.14. Example peak profiles fitted with the pseudo-Voigt function presented for 
different incident angle and different wavelengths: a) λ=1.2527 Å, b) λ =1.5419 Å and 
c) λ =1.7512 Å. 
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 In the case of synchrotron radiation having better resolution (FWHM2θ=90° ≈ 0.1°) in 

comparison with X’Pert PANalitical diffractometer (FWHM2θ=90° ≈ 0.3°) the diffraction 

data measured at G3 spectrometer shows more accurate peak profiles. Consequently peak 

asymmetry occurs when peaks are fitted by pseudo-Voigt function and the physical reason 

of this asymmetry will be discussed later (Fig. 7.14). 

 In order to check agreement of the in-depth profiles obtained for different 

absorption of synchrotron radiation (depending on energy), the stresses and a0 parameter as 

the functions of penetration depth (τ), were determined for each wavelength independently. 

The positions of peaks were found by fitting of pseudo-Voigt function (Fig. 7.15a) or 

calculating the center of gravity (Fig. 7.15b), and next the fitting procedure based on 

Eq. 3.23, with Kröner, XSF was applied to calculate the values of stresses 11 22
I Iσ σ=

 
(this assumption was previously confirmed by X-ray measurements) and a0 parameter. 

When peaks were fitted by pseudo-Voigt function, a very good agreement was achieved 

between data obtained using synchrotron radiation (for three different wavelengths) as well 

as classical diffractometer (preliminary measurements on PANalytical – X’Pert MRD 

(ENSAM, Paris)). If the peak positions are calculated as center of gravity (Fig. 7.15b) the 

agreement is worse but the stresses are still equal, in the margin of uncertainty, for 

different wavelengths and classical diffractometer. Both methods (pseudo-Voigt and center 

of gravity) give very similar results. To confirm that the determined stresses really depend 

on the penetration depth and not on the geometrical conditions also the stresses as the 

function of incident angle α were drawn in Fig. 7.16. As expected, due to different 

absorption significant difference of stresses measured with different wavelengths are seen 

for the same value of α angle.     
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Fig. 7.15. The in-depth profiles of stresses and a0 lattice parameter for polished Al2017 
sample. Comparison for different peak position determination between pseudo-Voigt 
function (a) and center of gravity (b). The results for different wavelengths of synchrotron 
radiation and for laboratory diffractometer are shown. 

 

 

 

 

 

 

Fig. 7.16. Stress values for 
polished Al2017 sample as 
a function of incident angle 
(α) for different wavelengths 
using synchrotron radiation 
and for laboratory X-rays. 
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Fig. 7.17. The <a(φ,ψ)> {hkl} vs. sin2ψ  plots for polished Al2017 sample obtained with 
three wavelengths and different incident angle (α). In each figure experimental data 
corresponding to the same penetration depth are shown together with fitted theoretical line. 
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The agreement between results obtained with different wavelengths allows 

developing the MGIXD. The idea is to collect <a(φ,ψ)> {hkl} values corresponding to the 

same penetration depth τ on the same sin2ψ  plot. Therefore <a(φ,ψ)> {hkl} vs. sin2ψ  curves 

(containing information obtained using different wavelengths) are presented on separate 

plots corresponding to chosen penetration depths (Fig. 7.17). Subsequently, for the first 

time the MGIXD method based on Eq. 3.23 was simultaneously applied for all 

<a(φ,ψ)> {hkl} values measured at the same penetration depth and being combination of 

chosen wavelength and incident angle (XSF calculated by Kröner method). As seen in 

Fig. 7.17 the experimental points are close to the fitted lines and systematic decrease of the 

negative slope of the <a(φ,ψ)> {hkl} vs. sin2ψ  plot (representing compressive stress) with 

penetration depth is seen for both experimental and fitted results. The stress in-depth 

profile obtained with the developed method is presented in Fig. 7.18a. The advantage of 

this approach is that each point on the in depth dependence was obtained not only with 

different reflections hkl corresponding to different incident angles (multi-reflection) but 

also with different wavelengths (multi-wavelengths).   

Having values of mean stress vs. penetration depth τ the variation of stress vs. z – 

‘real depth’ can be calculated using the inverse Laplace transform applied to polynomial 

function (see chapter 3). It was found that the solutions (11( )I zσ ) are similar for polynomial 

of 2nd and 3rd degree as presented in Fig. 7.18b. 
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Fig. 7.18. The stress profile for polished Al2017 sample for all experimental points 
obtained for three different wavelengths as a function of τ - penetration depth (a) and z - 
real depth in sample (b). The uncertainty bounds are given for polynomial of 2nd degree. 
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Although the stress profile was found and presented in Fig. 7.18b two important 

questions must be answered, i.e.: 

a) for which maximum z- depth the presented approximation can be applied, and 

b) does the determined stress gradient explains asymmetry of diffraction peak 

measured using synchrotron radiation? 

 

To answer the above question the inverse analysis was performed, i.e., assuming the 

determined stress distribution 11( )I zσ
 
the experimental results were simulated.  

 

a) The mean stress denoted by 11( )Iσ τ  and calculated using equation: 

/ /

0 0

( ) ( )
x x

I I z z
ij ij z e dz e dzτ τσ τ σ − −= ∫ ∫       (7.1) 

up to different limits x , instead of x → ∞  as in the real thick sample (where 11( )I zσ  

is the dependence of stress vs. real depth z). The results were compared with the 

measured mean stresses which should correspond to the recalculated 11( )Iσ τ  values. 

It was found that the recalculated profiles does not change significantly and agree 

with experiment if the integration is performed at least up to x = 40 µm, i.e. the 

stresses over 40 µm does not influence significantly measured values. Therefore, 

the distribution of stresses 11( )I zσ
 

up to the depth of 40 µm was correctly 

determined, however it was not proved that the solution is unique.  
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Fig. 7.19. The stress profiles for polished Al2017 sample: 11( )I zσ calculated from inverse 

Laplace transform, 11( )Iσ τ  measured or recalculated from 11( )I zσ using Eq. 7.1. Polynomial 

of 2nd (a) and 3rd (b) degree were applied to fit the 11( )Iσ τ experimental values. 
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b) The experimental diffraction peak profiles were simulated. Each peak was modeled 

as superposition of pseudo-Voigt functions having positions corresponding to the 

interplanar spacing modified by different stresses 11( )I zσ at different depths z. 

In calculation of lattice strains the XSF (Kröner method) were used. The main 

problem of such modeling is that both FWHM and η (contribution of Lorentz 

component) are unknown and they can depend on the depth z. Only the dependence 

of peak intensity is known and described by absorption law. In this work the 

η parameter was assumed constant for different depths and it was determined by 

fitting pseudo-Voigt function to experimental peak for given hkl reflection (and 

corresponding 2θ ). In the simulation, the superposed pseudo-Voigt profiles were 

weighted by intensity depending on absorption (corresponding to the depth z) and 

different dependences of FWHM on the depth were assumed in order to reproduce 

one of the most asymmetric peaks (λ =1.5419 Å, 2θ ≈ 38.6o and α = 15o). 

The following in-depth profile of FWHM = b was assumed: 

0 1exp( / )b b b z ξ= + −                                              (7.2) 

where b0 is the FWHM for z → ∞  and ξ, b1 describes the evolution of FWHM for 

decreasing depth z, caused by microstructure variation due to polishing.  

 The evolution of FWHM described by Eq. 7.2 and arbitrarily assuming 

b0 = b1 with different ξ parameters is shown in Fig. 7.20. It was found that the 

experimental asymmetrical peak (λ =1.5419 Å, 2θ ≈ 38.6o and α = 15o) is correctly 

modeled for ξ=10 µm and b0 = b1. In calculations the determined 11( )I zσ  

dependence was used and the model peak profiles were compared with 

experimental points as well as with calculations assuming zero stress 

(see Fig. 7.21a). In Fig. 7.21b similar comparison but assuming constant FWHM is 

shown. Important question is if the other peaks (at different α, 2θ and for 

different λ) are also correctly reproduced for the FWHM evolution described by 

ξ=10 µm. In this aim different peaks were modeled assuming the same variation of 

microstructure (described by ξ=10 µm) and stress dependence 11( )I zσ . Only the 

values of b0 (assuming b0 = b1) was adjusted for different reflections hkl 

(see Table 7.4). In Fig. 7.22 the experimental profiles were compared with the 

modeled ones assuming stress variation 11( )I zσ  or stress equal to zero. Very good 

agreement between experimental and theoretical peaks confirms that the 11( )I zσ
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function correctly describes in-depth stress dependence. Moreover, it can be also 

seen that the stress gradient differently influences the diffraction peaks measured 

for different penetration depth. If penetration depth τ is relatively small (in 

comparison with stress variation distance), compressive stress causes significant 

shift of the diffraction peak (τ = 3.7 µm, τ = 5.9 µm in Fig. 7.22 and τ = 2.6 µm in 

Fig. 7.23), while for deeper penetration depth (τ = 14.5 µm, τ = 17.5 µm in 

Fig. 7.22 and τ = 31 µm in Fig. 7.23) the peak is not much shifted but significant 

asymmetry appears due to superposition of the intensities from regions where 

compressive stress decreases and next change to tensile one.   

 

 
 
 
 
 
Fig. 7.20. Variation of FWHM described by 
Eq. 7.2 with different values of ξ parameter 
(assuming b0 = b1). 
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Fig. 7.21. Comparison of diffraction peak profiles: experimental, simulated for 11( )I zσ  

stress function and assuming zero stress (λ=1.5419 Å, 2 θ ≈ 38.6o and α = 15o). Results for 
FWHM variation described by Eq. 7.2 with ξ=10 µm (a) and for constant FWHM (b) are 
shown. 
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 It can be concluded that inverse analysis (integration of stress 11( )I zσ  with intensity 

weight) allowed to determine range of the depth from which the stresses influence 

diffraction results (about 40 µm), i.e., for which the 11( )I zσ  was determined. Moreover, the 

inverse analysis applied for peak profiles confirmed the stress distribution given by 11( )I zσ . 

In the latter calculation increase of FWHM for the peaks coming from the regions closer to 

the surface was assumed. This effect is due to microstructure change caused by mechanical 

polishing (increase of number of defects and decrease of crystallite in deformed material). 

It should be mentioned that similar simulation of peak profile was also done by 

Genzel et al. [36] in order to explain influence of stress gradient on the profile asymmetry. 

However, calculations were performed for one peak in the case of the deposited coating, 

i.e. when constant FWHM can be assumed.  

 

Table 7.4. Values of b0 (assuming b0 = b1) used in modeling of the peaks for different 

2θ  angles and wavelengths. 

 λ=1.5419 Å λ=1.7512Å λ=1.2527Å 
2θ (o) 38.6 82.7 138.2 44.0 91.6 151.5 31.15 84.8 132.7 
b0 (

o) 0.12 0.20 0.75 0.12 0.26 0.90 0.115 0.22 0.65 
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Fig. 7.22. Comparison of diffraction peak profiles: experimental, simulated for 11( )I zσ  

stress function and assuming zero stress. For all peaks (λ=1.5419 Å) the same variation of 
FWHM described by Eq. 7.2 with ξ=10 µm was used in calculations (b0 = b1 is given in 
Table 7.4). 
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Fig. 7.23. Similar comparison as in Fig 7.18 but for example peaks measured with 
λ =1.7512Å (a) and λ=1.2527Å (the same variation of FWHM as in Fig. 7.18, described by 
Eq. 7.2 with ξ=10 µm was used in calculations and b0 = b1 given in Table 7.4). 
 
   

 

 Finally the root mean square strains >< 2ε corresponding to density of 

dislocations but also influenced by stress gradient 11( )I zσ
 

were calculated using 

Williamson-Hall method for polished Al2017 sample. Fitted linear function to 

experimental data is shown in Fig. 7.24. The results of calculation are summarized in 

Table 7.5. As the reference the LaB6 powder was used. 
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a)  

b)  

Fig. 7.24. The linear function fitted to the experimental data using Williamson-Hall 
method for polished Al2017 (Gauss approximation). Results compered for different 
wavelengths but for the same penetration depth (a) and for the same wavelength but 
different incidence angle α (different penetration depth) (b). 
 

 

Table 7.5. The root mean square of the third order strain (2ε ) and crystallite size (D) 

calculated with Williamson-Hall method for Al 2017 polished samples 

(different wavelengths and incident angles). 

λ(Å) α (°) τ (µm) 2ε< >  D (Å) 

1.2527 2.6 5.9 0.0015 ± 0.0001 596 ±   96 

1.7512 7.6 5.9 0.0015 ± 0.0001 747 ± 261 

1.5419 5 5.9 0.0016 ± 0.0001 915 ± 413 

1.5419 10 10 0.0015 ± 0.0001 868 ± 330 

1.5419 15 15 0.0014 ± 0.0001 438 ±   55 

1.5419 20 17 0.0012 ± 0.0001 553 ±   48 

 

It can be concluded that results obtained using Williamson-Hall analysis are in 

a good agreement for the data collected with different wavelengths and comparable with 
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those obtained using classical diffractometer (in the margin of uncertainty). As expected 

the third order strain systematically decreases with the depth in the sample (this supports 

the above analysis concerning simulation of peak profiles), however the uncertainty of D is 

too large to determine the variation of the coherently diffracting domain size with depth. 

The results of Wiliamson-Hall analysis have rather qualitative character, showing tendency 

of variation, because it should be underlined that the >< 2ε  strain is influenced not only 

by the defects (third order stresses) but also by the gradient of stress 11( )I zσ integrated over 

diffracting volume.  

 

 

 

Ti6Al4V sample 

 Second studied sample was polished Ti6Al4V alloy (polishing type II) for which 

the gradient of stresses was observed for data obtained from classical diffractometer 

(Fig. 7.11). The example peak profiles obtained using synchrotron radiation is presented in 

Figs. 7.25-7.27 (for the comparison the diffraction peak profile from classical 

difractometer is presented on a Fig. 7.28). In this case strong asymmetry of diffraction 

peak suggest that two irradiated regions of the sample have different microstructure, 

i.e. layer of about 0.5-1 µm which has been severely plastically deformed (region of high 

density of dislocations) and the base material, under this layer, having much lower density 

of dislocations (smaller plastic deformation). Indeed the diffraction peaks can be easily 

separated into two pseudo-Voigt functions having different integral widths and position 

(Figs. 7.25-7.27). This effect was not clearly visible for diffraction peak from the classical 

diffractometer because of larger divergence of the beam and the presence of CuKα2 line. 

But still it is possible to separate two peaks for chosen profiles as shown in Fig. 7.28 

(compare also the same peak measured by synchrotron radiation, shown in Fig. 7.25b). 

It should be underlined that in this case the separated peaks represent different regions in 

the sample and they can be treated independently. The broad peak (representing ‘hard’ 

deformed material in the layer) shifts relatively to the narrow one (coming from ‘soft’ base 

material), i.e. when ψ=θ-α angle increases (together with 2θ, for constant α) the broad peak 

shifts from the left to the right site of the narrow one (see Fig. 7.25). It was also found that 

the relative contribution of the narrow peak increases for deeper penetration depths when 
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larger volume under the layer is irradiated. This effect is presented for chosen 

measurements, showing: 

•  almost constant intensity ratio for different 2θ, but constant λ and α  (Fig. 7.25a and 

b), as well as for combinations of λ and α giving the same τ  (Fig. 7.27); 

•  increase of the severely deformed (‘hard’) layer contribution when penetration 

depth decreases, i.e. when α decreases for constant λ (compare Fig. 7.25a with 

7.25b) or when λ increases for approximately the same α (Fig. 7.26). 

The above qualitative analysis shows that upper layer is more deformed (‘hard’) than the 

deeper base material. 
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b) 
Fig. 7.25. Comparison of fitted with pseudo-Voigt function peak profiles for λ=1.5419 Å 
and for two incident angles: 5° (a) and 15° (b). 
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Fig. 7.26. The example peak profiles for more less the same incident angle α but for 
different wavelengths and penetration depths. Two pseudo-Voigt functions were fitted to 
the experimental data. 
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Fig. 7.27. The example peak profiles for the same penetration depth τ = 1.5 µm. 
 

 

 

 

 

 

Fig. 7.28. The example peak profile obtained using 
classical diffractometer and fitted by two peaks. 
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 At first, the residual stresses were determined using lattice parameters 

>),a( < hkl}{ψφ  vs. sin2ψ measured by three different wavelengths. Due to the presence of 

heterogeneity of the layers in sample the peak position was determined by centre of gravity 

method (one pseudo-Voigt function cannot be fitted to the measured peaks). The in-depth 

profiles of the determined stresses 11( )I zσ , lattice stress free a0 and c/a parameters are 

compared with those obtained using laboratory diffractometer (Fig. 7.29). The Kröner XSF 

was used in procedure based on Eqs. 6.1 and 3.23) 
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Fig. 7.29. The in-depth profiles of the stresses 11( )I zσ , a0  and c/a parameters, for Ti6Al4V 

sample. Comparison for three different wavelengths (synchrotron) and laboratory 
diffractometer using pseudo-Voigt fitting (p-V) and centre of gravity method (CG) for 
determining of peak position. 
 

 The in-depth profile of stresses presented on Fig. 7.29 is similar for the three 

different wavelengths used in experiment. Furthermore the results obtained from 

synchrotron measurements are not far from those obtained on classical diffractometer. 

The largest uncertainty and significant shift disagreement of the results (with other data) 

was obtained when centre of gravity method was used to determine peak position 

measured on laboratory diffractometer. 
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 The above results represent an average values weighted by absorption, but more 

superior analysis can be performed for synchrotron data. As it was mentioned before the 

diffraction peaks can be easily separated into two pseudo-Voigt functions and the 

calculation of stresses can be performed for both of the regions in sample. To do this 

>),a( < hkl}{ψφ  vs. sin2ψ  functions were determined independently from the positions of 

broad (‘hard’ region) and narrow (‘soft’ region) peaks. The sin2ψ plots are almost linear 

(Fig. 7.30) and they allow to determine stresses 11( )I zσ , a0 and c/a parameters for each 

region, independently. Significant negative slope of the curves suggests large compressive 

stress in the ‘hard’ region and almost horizontal lines correspond to small stress in the 

‘soft’ region.  
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a)                                                           b) 
 

Fig. 7.30. The example <a(φ,ψ)> {hkl} vs. sin2ψ  plots for polished Ti6Al4V sample 
obtained with three wavelengths and different incident angle (α) (the same penetration 
depth τ=0.84 µm). The plots for the ‘soft’ (a) and ‘hard’ (b) regions are separated. In each 
figure experimental data are shown together with fitted theoretical lines. 
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Fig. 7.31. The in-depth profiles of the stresses 11( )I zσ , a0 and c/a parameters, for Ti6Al4V 

sample. Results after peak separation are plotted as the function of penetration depth τ. 
The results are compared with those obtained using center of gravity method for peak 
position. 
 

 In-depth profiles of the measured values for ‘hard’ and ‘soft’ regions of the sample 

are presented in Fig. 7.31. High compressive stress of about 500-700 MPa has been found 

in the layer (irradiated for all wavelengths and geometrical conditions), while in the base 

material a small tensile stress increases with penetration depth within the range of about 0-

120 MPa. The stress determined using centre of gravity method is approximately equal to 

the average from the values measured in the layer and base material, weighted by the 

intensity of reflected beam. For smaller penetration depth contribution of the layer causes 

relatively higher value of the measured stress, while for deeper penetration stress value 

approaches to this measured in the base material. It should be also noted that using 

synchrotron radiation (λ=1.2527 Å) the stress was determined for much deeper regions in 
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comparison with classical X-ray results (in this case stresses in the layer cannot be 

determined because of very low contribution of the broad peaks). It should be underline 

that almost the same values of a0 and c/a parameters were obtained both for ‘soft’ and 

‘hard’ regions (after separation of two peaks), as well as for the mean results calculated 

using centre of gravity method. These parameters do not vary with penetration depth.  

 

 Now, it is possible to evaluate the thickness of the deformed layer. As it was 

mentioned before, the information gained from the diffraction experiment is weighted by 

the absorption of X-ray in the material. On the basis of the exponential attenuation law it is 

possible to find the thickness of the layer from the relative intensities of the diffraction 

peaks. The intensities of the separated pseudo-Voigt profiles corresponding to the ‘hard’ 

(Ihard) and ‘soft’ ( softI ) regions of the sample, respectively can be expressed as: 

0 0

0 0

1
t z z t

hardI I e dz e dz I eτ τ τ
∞

− − − 
= = − 

 
∫ ∫       (7.3) 

0 0

0

z z t

soft

t

I I e dz e dz I eτ τ τ
∞ ∞

− − −
= =∫ ∫        (7.4) 

where t is the thickness of the severely deformed (‘hard’) layer and I0 is the total peak 

intensity.  

By dividing both sides of above equations by each other and after simple transformation 

the thickness of the layer is given by: 

ln 1hard

soft

I
t

I
τ

 
= +  

 
.         (7.5) 

Using Eq. 7.5 the values of t- thickness were determined from hard

soft

I

I
for all peaks for which 

separation of two peaks is possible (for some peaks the position of both peaks is the same 

and separation cannot be done, however the positions of both peaks can be determined). 

The results presented in Fig. 7.32 show that the uncertainty of t thickness increases for low 

2θ as well as for decreasing wavelength λ and not all peaks can be used to determine 

thickness of the ‘hard’ layer. In order to precisely estimate the thickness of the layer peaks 
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with the smallest uncertainty were chosen for each wavelength. The ratio Ihard/Isoft as 

a function of penetration depth for chosen diffraction peaks is presented on a Fig. 7.33a, 

where an increase of contribution of hardI  intensity with decreasing penetration depth is 

seen. The results obtained for three different wavelengths and incident angles α coincide 

when they are plotted vs. τ. This proves that the Ihard/Isoft ratio really depends on the 

absorption phenomenon.  

 Knowing the ratio Ihard/Isoft ratios the layer thicknesses were calculated. Fig. 7.33b 

shows the estimated size of the layer as a function of the penetration depth. As it can be 

seen the thickness of the layer is about 1.38 µm and does not change for the data obtained 

with different experimental conditions (determined t thickness is constant for various depth 

τ, penetrated by the beam). 
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Fig. 7.32. The thickness of the layer calculated for all used wavelengths: 1.2527 Å (a), 
1.5419 Å (b) and 1.7512 Å (c) and for different diffraction peaks. 
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Fig. 7.33. The ratio Ihard/Isoft (a) and calculated layer thickness t (b) as a function of 
penetration depth for chosen diffraction peaks fitted with two pseudo-Voigt profiles. 

  

 After estimation of the layer thickness it is possible to present results from the 

synchrotron measurements as a function of the information depth z  defined by Eq. 3.4. 

Fig. 7.34 presents the in-depth profile of stresses and lattice parameters. The results 

coming from both parts of the sample are gathered separately. As it can now be clearly 

seen there are two regions in the sample: the ‘hard’ region, where z  is calculated for 

a layer having thickness t =1.38 µm and the ‘soft’ material for which z τ=  is defined for 

the infinite base material, starting at depth of 1.38 µm. The high compressive stresses is 

present in the layer of the thickness up to 1.38 µm, on the other hand the part of the 

sample, deeper than 1.38 µm, exhibits a small value of increasing tensile stress. Values of 

calculated lattice parameters a0 and a/c are nearly constant in both parts (Fig. 7.34).  

In the above analysis the sample was divided into two different parts having 

different properties and stresses. The reason of such treatment was that two peaks were 

seen and well separated from the diffraction profile. However, this approximation is 

artificial because the properties of the sample and stresses (for example FWHM) changes 

more or less smoothly. Therefore, it is necessary to compare the obtained results with 

another approach in which the stresses change gradually. It can be done, by using inverse 

Laplace transformation for the data obtained from the peak positions determined by the 

center of gravity method (presented in Fig. 7.29). The assumption of this approach is that 

the evolution of the stresses can be approximated by polynomial i.e., the step change of 

stress is not possible. Therefore, the results are ‘smoothed’ too much and the separation of 
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two profiles should not be seen in the diffraction peak. The result of the invert Laplace 

transform (using polynomial of 2 degree) together with the results of peak separation 

method are shown in Fig. 7.35. A quantitative agreement of both methods is seen, 

i.e. compressive stress close to the surface, zero stress at the same depth (2-3 µm) and 

tensile stress in the base material were obtained for both approaches. Also, the values of 

stresses are not very different. Concluding it can be stated that the results of the method 

with separation of two peaks are more reasonable because they have confirmation in peak 

profiles and some smoothing of the stress distribution between two separated parts of the 

sample should not introduce significant errors (a shown using invers Laplace method). 
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Fig. 7.34. The in-depth profiles of the stresses 11( )I zσ , a0 and c/a parameters, for Ti6Al4V 

sample. Results for different wavelengths after peak separation and with division into two 
regions in the sample separated by dashed vertical line.  
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Fig. 7.35. The in-depth profiles of stresses for Ti6Al4V sample. Results after peak 

separation and with division into two regions in the sample (points, 11( )I zσ
 
) are compared 

with the in-depth stress profile (lines, 11( )I zσ ) as a function of real depth obtained with 

Laplace method (center of gravity for peak position). 
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Finally the root mean square strains >< 2ε corresponding to density of defects 

and influenced by the stress gradient were calculated using Williamson-Hall method 

independently for two separated peaks obtained from polished Ti6Al4V alloy (the LaB6 

powder was used as reference). As expected higher value of %3.0%2.02 −=>< ε  was 

obtained from the severely deformed layer in comparison with the base material 

( 2 0.08% 0.1%ε< > = − ). For the ‘hard’ region the 2ε< >  strain does not depend on 

the value of penetration depth τ (in the margin of uncertainty), while small but systematic 

decrease of 2ε< > appears in the ‘soft’ region (Table 7.6). Indeed, the whole volume of 

‘hard’ layer always contribute in the broad diffraction peak, while the gauge volume of the 

‘soft’ part increases with larger penetration depth τ, showing small decrease of 2ε< >  in 

deeper volumes measured using narrow peak.  

The size of coherently diffracting domain was determined only in the case of the 

broad peak coming from ‘hard’ region, but still with large uncertainty (Table 7.6). Some 

results are not shown because uncertainty exceeds D value. In the case of the ‘soft’ part, 

the D size is too large to be determined in this experiment for all results, i.e., the 

experimental uncertainty exceeds few times the obtained D values. 
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Fig. 7.36. The linear function fitted to the experimental data in Williamson-Hall method 
for polished Ti6Al4V (Gauss approximation). Results compared for different wavelengths 
but for the same penetration depth from the ‘hard’ (a) and ‘soft’ (b) regions of the sample. 
 



175 

 

a)
0.0 0.2 0.4 0.6 0.8 1.0

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014
           λ=1.54, τ=1.5µm, α = 10o

 MGIXD experimental points 
 linear fit

β2 co
s2 θ 

(r
ad

2 )

sin2θ

 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014
λ=1.54 A, τ=2.1 µm, α = 15o

 MGIXD experimental points 
 linear fit 

β2 co
s2 θ 

(r
ad

2 )

sin2θ

 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014
           λ=1.54, τ=2.5µm, α = 20o

 MGIXD experimental points 
 linear fit

β2 co
s2 θ 

(r
ad

2 )

sin2θ

 

 

 

b)
0.0 0.2 0.4 0.6 0.8 1.0

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014
λ=1.54 A, τ=1.5 µm, α = 10o

 MGIXD experimental points 
 linear fit

β2 co
s2 θ 

(r
ad

2 )

sin2θ

 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014
λ=1.54 A, τ=2.1µm,  α = 15o

 MGIXD experimental points
 linear fit

β2 co
s2 θ 

(r
ad

2 )

sin2θ

 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014
λ=1.54 A, τ=2.5 µm, α = 20o

 MGIXD experimental points 
 linear fit

β2 co
s2 θ 

(r
ad

2 )

sin2θ

 

 

 

Fig. 7.37. Similar presentation as in Fig. 7.36, but the results are compared for the same 
wavelength (1.5419 Å) and for different incident angles α (i.e. for different depths in the 
sample). Plots for ‘hard’ (a) and ‘soft’ (b) regions are shown separately.  
 

Table 7.6. The root mean square of the strain (2ε ) and crystallite size (D) calculated 

with Williamson-Hall method for Al2017 polished samples (different wavelengths and 

incident angles). 

λ Å α (°) τ (µm) 2ε< >  D (Å) 

Hard region 

1.2527 2.4 0.8 0.0020 ±0.0005 441 ±280 

1.7512 7.4 0.8 0.0023 ±0.0003 406 ±149 

1.5419 5 0.8 0.0029 ±0.0004 --- ---- 

1.5419 10 1.5 0.0020 ±0.0003 478 ±217 

1.5419 15 2.1 0.0021 ±0.0001 --- ---- 

1.5419 20 2.5 0.0022 ±0.0004 --- ---- 

Soft region 

1.2527 2.4 0.8 0.0011 ±0.0002 --- ---- 

1.7512 7.4 0.8 0.0010 ±0.0002 --- ---- 

1.5419 5 0.8 0.0013 ±0.0001 --- --- 

1.5419 10 1.5 0.0010 ±0.0001 --- --- 

1.5419 15 2.1 0.0009 ±0.0001 --- ---- 

1.5419 20 2.5 0.0008 ±0.0001 --- ---- 
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On the basis of presented results obtained measuring mechanically polished 

samples with synchrotron radiation on G3 spectrometer (DESY, HASYLAB), it appears 

that for three different wavelengths the same in-depth profiles of stresses 11( )I zσ
 
were 

obtained analyzing shifts of the peak positions. What is more the results perfectly agree 

with those obtained previously using classical X-ray diffraction (λCuKα1=1.54056 Å). 

As the result, it was verified that absorption phenomenon limits the penetration depth of X-

rays and stress gradient can be measured using MGIXD method. Furthermore, synchrotron 

radiation (λ=1.2527 Å) allowed to measure the stress profile for deeper regions in 

comparison with classical X-rays (λCuKα1=1.54056Å). In all measurements constant and 

independent on the depth values of a0 and c/a were determined. 

The analysis of peak profiles brings more information concerning dependence of 

the stress vs. real depth (11( )I zσ ). In the case of polished Al2017, the asymmetry and/or 

shift of the peak correctly reflects the stress gradient calculated applying inverse Laplace 

transform for the 11( )I zσ function. On the other hand, two different regions having different 

microstructure were separated when diffraction peak was fitted by two pseudo-Voigt 

function. (it was clearly seen that the diffraction peak is composed from two profiles). 

Finally, the Wiliamson - Hall method was applied to determine evolution of the root mean 

square of the strain ( 2ε ) from the depth. A small decrease of this value was found for 

polished Al 2017 sample and in the soft region of. Significantly, larger 2ε  strain was 

measured in the severely deformed upper layer of polished Ti6Al4V alloy. The size of 

coherently diffracting domain (D) cannot be determined, because of large uncertainty. 
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7.3. ENERGY DISPERSION MEASUREMENT USING SYNCHROTRON RADIATION. 
 In the next experiment multireflection method was applied for the energy 

dispersion method in which white beam containing radiation having different wavelengths 

was used (λ (Ǻ): 0.3–0.18/ E (keV): 40-68). The measurements were performed in polished 

(type I) and ground Ti (grade 2) samples on the EDDI beamline at BESSY synchrotron 

(Berlin, Germany). These specimens did not exhibit stress gradient when measured using 

laboratory diffractometer (see section 7.1). The synchrotron white beam was generated by 

the 7T-Wiggler and passed about 30 m through few optical components up to the place of 

the experiment. An absorber mask limits the beam diameter to 3.9 mm per 3.9 mm. 

In order to gain required characteristics of the beam, system of slits and filers is provided. 

The stress analysis was performed using three different methods (the XSF were 

calculated by Kröner model): 

•  The first was the standard sin2ψ method (ψ - geometry) in which constant 2θ = 16° 

was used. Each >),a( < hkl}{ψφ  vs. sin2ψ  plot was measured for different reflection 

hkl using appropriate wavelengths. Due to various absorption corresponding to 

different energies (and wavelengths) of radiation, each plot was determined for 

different average penetration depth. However, the penetration depth is not constant 

and varies  vs. sin2ψ .  

•  Universal plot method (described in section 3.1.2) was applied for 100 reflection and 

stresses close to the surface were determined. 

•  Using multireflection analysis it was possible to separate the data for chosen and 

constant penetration depth (within interval ±1µm). In this method only values 

>),a( < hkl}{ψφ  for the same penetration depth (different wavelengths and 

hkl reflections) were chosen to create one sin2ψ plot. Using iteration fitting procedure 

based on Eqs. 3.23 and 6.1 the stresses were determined for constant depths.  

 

The example >),a( < hkl}{ψφ  vs. sin2ψ plots for standard analysis are shown in 

Figs.7.38 and 7.39, while similar plots for multireflection method are presented in 

Figs. 7.40 and 7.41. The comparison of the in-depth stress profiles determined with all 

used methods of analysis, is presented in the Fig. 7.42.  

 



178 

 

sin2ψ
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

<
d>

{h
kl

} 
(A

)

2.540

2.542

2.544

2.546

2.548

2.550

2.552

2.554

2.556

experimental φ=0o

theoretical φ=0o

experimental φ=90o

theoretical φ=90o

experimental φ=180o

theoretical φ=180o

experimental φ=270o

theoretical φ=270o

{100}
Ti grade 2 
polished

o

sin2ψ
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

d {h
kl

} 
(A

)

2.230

2.232

2.234

2.236

2.238

2.240

2.242

2.244

2.246

experimental φ=0o

theoretical φ=0o

experimental φ=90o

theoretical φ=90o

experimental φ=180o

theoretical φ=180o

experimental φ=270o

theoretical φ=270o

{101}
Ti grade 2 
polished

o

sin2ψ
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

<
d>

{h
kl

} 
(A

)

1.462

1.464

1.466

1.468

1.470

1.472

1.474

1.476

experimental φ=0o

theoretical φ=0o

experimental φ=90o

theoretical φ=90o

experimental φ=180o

theoretical φ=180o

experimental φ=270o

theoretical φ=270o

{110}
Ti grade 2 
polished

o

sin2ψ
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

<
d>

{h
kl

} (
A

)

0.904

0.906

0.908

0.910

0.912

0.914

0.916

0.918

0.920

experimental φ=0o

theoretical φ=0o.
experimental φ=90o

theoretical φ=90o

experimental φ=180o

theoretical φ=180o

experimental φ=270o

theoretical φ=270o

{114}
Ti grade 2 
polished

o

 

Fig. 7.38. The example of sin2ψ plots for polished (type 1) Ti sample for standard analysis. 
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Fig. 7.39. The example of sin2ψ plots for ground Ti  sample for standard analysis. 
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Fig. 7.40. The example of sin2ψ plots for polished Ti  sample for multireflection analysis. 
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Fig. 7.41. The example of sin2ψ plots for ground Ti (grade 2) sample for multireflection 
analysis. 
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Fig. 7.42. The in-depth profile of stresses for polished (type I) and ground Ti (grade 2) 
sample. Comparison of the results from classical diffractometer (MGIXD) and synchrotron 
EDDI experiment, for which tree different methods of analysis were used (standard sin2ψ, 
multireflection, universal plot). Two different ranges of penetration depth are compared: 
a) 0-50 µm and b) 0-15 µm. 

 

 In the light of presented results (Fig. 7.42) it is visible that for the range of the 

penetration depth 0-50 the relevant spread of experimental points occurs. In view of the 

nature of these results it appears that the spread of the experimental points is caused by 

rather weak intensity of the large energy line which leads to poor experimental data fitting. 

Furthermore the deeper the penetration depth, the number of available reflections is 

decreasing since the small energy lines are no longer sensitive in this region. Narrowing 

the analyzed range of penetration depth to 0-15 µm shows the convergence of the results 

obtained from different methods in smaller depths. Moreover the synchrotron data 

perfectly agree with the results obtained on laboratory diffractometer (Cu Kα radiation) 

close to the surface. The results obtained for larger depth that 14 µm the experimental 

points exhibit significant spread and do not agree with the results of standard method.  
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Concluding, for the range of penetration depth 0-15 µm the results of different methods 

agree. Results obtained using with synchrotron radiation confirmed values of stresses 

measured close to surface using Cu Kα radiation. Moreover, it was shown, that the 

multireflection method, in which the experimental data are collected for the same depth in 

one plot, can be used for data obtained with white beam (EDDI).  

 

7.4. CONCLUSIONS 
 Summarizing the results obtained with synchrotron radiation (MGIXD) it can be 

stated that using different wavelengths (energies) of radiation the same similar in-depth 

stress profiles were obtained. In addition the determined values of ao and c/a vs. depth do 

not vary significantly with depth. For the first time also the multireflection method in 

which the data for the same penetration depth are selected was successfully used to analyze 

the EDDI data.    

Perfect agreement was obtained between the measurements performed using 

synchrotron radiation as well as Cu Kα radiation on laboratory diffractometer (for MGIXD 

and also for EDDI methods). Certainly, synchrotron radiation with higher energies allowed 

measurements for larger depths in comparison with laboratory X-rays. 

Synchrotron radiation (with better resolution) shows asymmetry of diffraction peak 

caused by stress gradient. If the asymmetry is small (polished Al2017) the analysis of this 

effect is difficult to analyze directly but inverse analysis, i.e. simulation of peak profile 

with stress gradient can be used as the confirmation of the stress measurements. It also 

happens that two regions exhibiting significant difference of microstructure can produce 

big asymmetry of the peak which can be fitted by two peaks. In this case the data can be 

separately treated for these regions.  

The stress in-depth distribution vs. real depth z can be determined from stress 

profile measured as the function of information (or penetration) depth using inverse 

Laplace transform. In this work the limit of z for which the stress dependence is calculated 

was established using inverse analysis, i.e. comparing function 11( )I zσ  integrated with the 

weight of intensity with experimental 11( )I zσ . It should be also underline that it was not 

proven that the result of Laplace transform is unique. In the case of separated two peaks 
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corresponding to two regions in the sample, the thickness of the upper layer having 

different stress and microstructure can be determined analyzing contribution of intensities 

of these regions in the diffraction peak. 

Finally the Wiliamson Hall analysis allowing determination of the root mean square 

strains >< 2ε  and size of coherent domain D was used. It was found that the uncertainty 

of D  is too large to obtain reasonable results when parallel geometry is used in 

MGIXD method. The values of >< 2ε  measured using synchrotron and Cu Kα radiations 

agree very well. It should be stated that in the case of stress gradient, the >< 2ε  value is 

influenced by third order stresses but also by the stress heterogeneity in the measured 

volume.  
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8. GENERAL CONCLUSIONS  

The MGIXD (multireflection grazing incident X-ray diffraction) is one of the 

methods used for determination of in-depth stress distribution. Such measurement is 

possible due to small angle between incidence beam and sample surface, and consequently 

constant penetration depth of X-ray radiation in the studied material. The information 

depth can be changed by setting different angles of incidence. As it was presented in the 

thesis the MGIXD method has very important advantages in comparison with other 

diffraction methods of stress determination. The important feature of this method is that the 

lattice strains are measured in different crystallographic direction and next simultaneously 

used in analysis. This enables study of elastic anisotropy and choice of appropriate model 

of grains interaction for the interpretation of the experimental results. Furthermore not only 

stresses but also strain free a0 and also c/a (for hexagonal structure) parameters and their 

in-depth variation can be determined. Finally in-depth evolution of the root mean square 

strain 2ε< >  and crystallite size (coherent domain) can be studied using Williamson-

Hall method. The main disadvantage of the MGIXD method is the requirement of perfect 

adjustment of the experimental setup. To obtain reasonable results the measurements must 

be performed using parallel beam configuration of the diffractometer.   

In this work the MGIXD was developed and applied to measure in-depth stress 

distribution in coating and surface layers of the materials subjected to different mechanical 

treatments. The effect of physical and geometrical factors on the XSA was considered. 

The method of c/a parameter determination was proposed for hexagonal samples and the 

influence of stacking faults on the XSA was taken into account. Moreover in the thesis the 

mechanical properties of the polycrystals such as: elastic anisotropy of elastic constants 

and grain interactions were investigated. Different theoretical grain elasto-plastic 

interaction models were considered and applied in XSA. Finally, the MGIXD method was 

verified using synchrotron radiation and for the first time it was applied for EDDI 

experiment. 

 In the light of presented in thesis results, the following conclusions can be drawn: 
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•  for the samples investigated in the thesis, the LPA correction did not influence 

significantly the results of XSA, even in the case of relatively broad diffraction 

peak. However this correction should be always applied when MGIXD is used 

beacause diffraction peaks having different 2θ positions are measured..  

•  The refraction can significantly influence the results of the MGIXD method. 

The new approach, presented in this thesis, takes into account the refraction effect 

as well as the accompanying wavelength change. It was shown that the effect of 

refractive index n<1 on the stress measurement strongly depends on value of the 

δ parameter (and thereby the type of material), wavelength, incident angle. 

The study of the literature indicates that also surface roughness can strongly affect 

the influence of refraction correction on XSA. This problem was not analysed in 

the thesis but study of the problem would be a valuable addition to the research.  

•  In the case of parallel beam geometry used for MGIXD method z-position 

imprecision does not significantly influence the obtained results, however special 

attention should be paid to adjust accurately the 2θ-zero position. Moreover, both 

statistical error and the misalignment error can be significantly reduced when the 

Göbel mirror is used in the primary optic of the diffractometer or synchrotron 

radiation is applied for measurements. 

Secondly in the thesis following issues were developed: 

•  the method of c/a determination was proposed and tested for hexagonal samples 

with residual stresses (polished Ti - grade 2). It was shown that for the material 

having low elastic anisotropy the stresses, strain free parameter a0 as well as c/a 

value can be determine using presented in this work self-consistent iteration 

method (the experimental values determined in the case of tensile as well 

compressive stresses were compared with those found in literature). Significantly 

better fitting of the theoretical values to experimental ones was obtained when c/a 

was adjusted.  

•  Probability of finding stacking fault ρ was determined for polished austenitic 

sample (alloy having low stacking fault energy). Reasonable values of ρ but with 

very large uncertainty were determined in the case compressive stress in the 

polished sample. 
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•  The influence of XSF (X-ray stress factors) anisotropy on XSA was considered. 

Verification of the XSF was done by measuring lattice relative strains during 

‘in situ’ tensile test. From the presented results it is evident that both experimental 

and calculated { }
rel
hkl< ( , )ε φ ψ >  vs. sin2ψ functions based on different 

hkl reflections exhibit nonlinearities in the case of elastically anisotropic samples 

(austenite stainless steel) but for elastically isotropic sample (titanium) this 

dependence is almost linear. Anisotropy of XSF was also observed on the 

{ }hkl< a( , )φ ψ >  vs. sin2ψ plots obtained when the residual stresses were measured 

in ground Ni alloy, polished austenite stainless steel and CrN coating. The results 

presented in thesis, obtained using MGIXD and standard method, shows that Reuss 

and free surface grain interaction models are in the best agreement with the 

experimental results. Both models reflect in the best way the elastic anisotropy of 

the sample but the free surface model has a physical explanation in contrast to 

Reuss model. 

Thirdly, in thesis the MGIXD method was verified using synchrotron radiation. In this aim 

two experiments were performed. 

•  In the first measurement performed at G3 spectrometer (DESY, Hamburg) three 

different wavelengths (energies) of radiation were used in MGIXD method. 

As the result: 

o almost the same in-depth stress profiles were obtained for all applied 

wavelengths. 

o The determined values of ao and c/a vs. depth do not vary significantly with 

depth. 

o Due to its very good resolution of applied synchrotron radiation it was 

possible to observe the diffraction peak asymmetry caused by stress gradient.  

o The stress in-depth distribution vs. real depth z was determined from stress 

profile measured as the function of information (or penetration) depth using 

inverse Laplace transform. It should be underline that it was not proven that 

the result of Laplace transform is unique.  

o In the case of sample having strong diffraction peak asymmetry (polished 

Ti alloy) the separation of two peaks, corresponding to two regions in the 
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sample, was performed and the thickness of the upper layer having different 

stress and microstructure was determined analyzing contribution of intensities 

of these regions in the diffraction peak. 

o The Wiliamson-Hall analysis showed that the uncertainty of D is too large to 

obtain reasonable results when parallel geometry is used in MGIXD method. 

The values of >< 2ε  measured using synchrotron and Cu Kα radiations 

agree very well. It should be stated that in the case of stress gradient, the 

>< 2ε  value is influenced by the third order stresses but also by the stress 

heterogeneity in the measured volume.  

•   For the first time also the proposed multireflection method (data selected for the 

same penetration depth) was successfully used to analyze the EDDI data. Very 

good agreement was obtained between the measurements performed using 

synchrotron radiation as well as Cu Kα radiation on the laboratory diffractometer 

(for MGIXD and also for EDDI methods). The great advantage of using high-

energy synchrotron radiation was the possibility to measure stresses for larger 

depths in comparison with laboratory X-rays. 

 Concluding, it can be stated that MGIXD method is indispensable tool to study the 

distribution of stresses in the surface layers, but the applicability of this method is limited 

by factors such as refractive correction or interpretation problem associated with the 

anisotropy of elastic constants. On the basis of considered results, if MGIXD method is 

used, it is advised to perform the stress analysis with and without refraction correction and 

when the difference is significant the results should be rejected or accepted with so 

estimated large uncertainty. This is one of the limitations of MGIXD method which is 

significant for small incidence angle α. What is more, the special attention must be paid to 

accurate adjustment of the diffractometer (parallel beam configuration) and the 2θ - zero 

position must be carefully verified. It should be also underlined, that the reliable diffraction 

stress analysis is only possible when an appropriate grain interaction model is applied in 

calculation of XSF for anisotropic sample. On the bases of the results presented in this 

thesis it appears that free surface model is the one which not only correctly reflects the 

anisotropy of XSF well but also has a physical explanation concerning elastic interaction 

of the grains.  
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Ètude par diffraction des propriétés mécaniques et des contraintes 
résiduelles résultant de la transformation de matériaux polycristallins 

 

RESUME : Les contraintes résiduelles sont les contraintes qui subsistent après 

l’élimination de la cause originelle des contraintes (forces externes, gradient 

thermique). L'ampleur et la répartition spatiale des contraintes résiduelles 

jouent un rôle primordial dans le comportement de la matière. Par conséquent, 

les méthodes expérimentales fiables pour la détermination des contraintes 

résiduelles sont d'une grande importance. Parmi les méthodes de détermination 

de ces contraintes, les techniques de diffraction détiennent une place spéciale. 

Leur spécificité la plus marquante est qu'elles sont non destructives et 

permettent de séparer les micro et macro contraintes résiduelles et d'étudier la 

répartition des contraintes dans l'échantillon.  

 Dans la première partie de cette thèse (chapitres 1-3), les méthodes de 

détermination des contraintes de diffraction sont introduites. Les principes de la 

distorsion du réseau, la taille des cristallites, l'analyse des contraintes en 

fonction du profil de pic de diffraction ainsi que la déformation du réseau 

mesurée sont décrits dans le chapitre 2. Ensuite, le chapitre 3 est consacré à 

une courte caractérisation de différentes méthodes pour la détermination des 

contraintes résiduelles en utilisant des rayons X (classique et synchrotron). Les 

méthodes expérimentales sont divisées en deux groupes, à savoir : le groupe, 

dans lequel la profondeur de pénétration des rayons X est constante ou 

deuxième pour lequel la pénétration varie au cours de la mesure. Sur la base 

des trois premiers chapitres, des objectifs de la thèse sont précisés dans le 

chapitre 4. 

 Les chapitres 5 - 7 présentent les résultats originaux de ce travail, en 

matière de développement et de test de la méthode de multireflection en 

incidence rasante (MGIXD) pour détermination des contraintes résiduelles sont 

présentés. Tout d'abord, les corrections les plus importantes des données 

expérimentales et des essais de dispositifs expérimentaux sont décrits (chapitre 

5). 



 

 Le chapitre θ présente deux développements théoriques importants de la 

méthode MGIXD. Le premier, qui permet la détermination du paramètre c/a et 

qui améliore de manière significative la qualité de l'analyse des données 

expérimentales pour la structure hexagonale a été proposé et testé. Le second, 

dans lequel la densité des défauts d'empilement est prise en compte est 

appliqué. Qui plus est, une vérification de différents types des facteurs de 

contraintes (XSF) qui peuvent être appliquées pour interpréter les données 

expérimentales obtenues à l’aide du procédé MGIXD, est présentée. À la fin, le 

chapitre illustre des exemples de détermination des contraintes dans la couche 

de surface pour des matériaux ayant une haute et basse anisotropie des 

constantes élastiques monocristallines. 

 Dans le chapitre 7 la méthodologie de l'interprétation des données est 

développée afin de traiter les données obtenues non seulement pour différents 

angles d'incidence, mais aussi simultanément en utilisant différentes longueurs 

d'onde. Il est démontré que la nouvelle méthode élaborée est d’une part « multi- 

réflexion », et d’autre part « multi- longueur d'onde ». En outre, l'application de 

différentes longueurs d'ondes permet la vérification des mesures de MGIXD. 

 Le chapitre 8 rassemble tous les résultats présentés dans la thèse et 

formule des recommandations pratiques pour les utilisateurs de la méthode 

MGIXD. 

Pour analyser les contraintes de premières ordre67, les déformation 

moyenne du réseau doit être déterminée à partir des changements de la 

position du pic de diffraction. C'est pour cela que la position exacte du pic de 

diffraction doit être déterminée avec une grande précision [1]. 

Il convient de préciser qu’avec l'utilisation des méthodes de diffraction, la 

déformation du réseau n’est pas mesurée directement mais, en fait, les 

distances interréticulaires 
 
sont déterminées à partir de la position 

des pics de diffraction. Ces positions sont mesurées pour différentes 

orientations du vecteur de diffusion par rapport à l'échantillon, défini par les 

angles ĳ et ψ (Fig. 1). 
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Fig.1. τrientation du vecteur de diffusion en ce qui concerne le système 

de l'échantillon S. Les angles ψ et ϕ définissent l'orientation du système de L (L2 

de l'axe est dans le plan de la surface de l'échantillon). En outre, Ș - rotation du 

système de L autour de vecteur de diffusion est affichée. 

 

Après la transformation simple les distances interréticulaires peuvent être 

exprimées par les macrostresses  et  - espacement réticulaire sans 

stress [1, 2, 3]: 

        (1) 

où Fij(hkl,ϕ,ψ) sont XSF et dans le cas d'un matériau quasi-isotrope : 

      (2) 

Le calcul des contraintes en utilisant les équations affichées ci-dessus 

peut être effectué grâce à la méthode des moindres carrés et à l’ajustement des 

composantes de tenseur de contraintes ainsi que de . Toutefois, 

l'ensemble du tenseur des contraintes (des contraintes principales) ne peut être 

calculé que si  (sans stress paramètre) est connu. Heureusement, dans le 

cas de diffraction des rayons X pénétrant la mince couche de surface (grâce à 

une absorption élevée), nous pouvons supposer que les forces normales à la 

surface sont égales à zéro et de même = 0. Puisque l'une des contraintes 
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principales est connue, 
 
peut être ajusté et sa valeur peut également être 

déterminée. 

La procédure des moindres carrés utilisée dans ce travail est basée sur 

la minimisation de la fonction de mérite appelée  qui est définie comme [4]: 

          (3) 

où : 
 
et 

 
sont les expérimentaux et la 

distance interréticulaire δn=δn( ) est l'erreur de mesure (écart-

type) de la distance déterminée pour la mesure de la n-ième, N et M sont 

respectivement le nombre de points de mesure et des paramètres d'ajustement. 

La valeur de Ȥ ² est une mesure de la qualité de l'ajustement, c'est à direμ 

• Ȥ² = 1, signifie que le « bon choix » a été obtenu (il correspond à 

l'ajustement exactement dans les limites de l'incertitude expérimentale), 

• Ȥ² < 1, les incertitudes de données expérimentales (  ) 

sont surestimées , 

• Ȥ² > 1, les incertitudes de données expérimentales sont sous-estimées 

ou des valeurs  (théoriques) calculées en fonction des facteurs 

Fij(hkl,ĳ,ψ) ne sont pas assez précises. 

 

La présente thèse porte aussi sur, la méthodologie de mesures des 

contraintes en fonction de l’incidence d’un faisceau rasant de rayons X, à 

savoirμ la méthode de multiréflection en incidence rasante (MGIXD) qui a été 

étudiée et développée. Cette technique est caractérisée par un angle 

d'incidence α faible et constant et par des orientations différentes du vecteur de 

diffusion (Fig. 2) [5-9]. 
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Fig.2. Géométrie de la méthode MGIXD-sin2ψ. L'angle d'incidence α est 

fixé lors de la mesure alors que l'orientation du vecteur de diffusion est 

caractérisée par l'angle ψ{hkl}. 

 

Dans cette géométrie, le plan de diffraction est toujours perpendiculaire à 

la surface de l'échantillon. Le grand avantage de la méthode MGIXD (en 

comparaison avec les méthodes classiques) est que la profondeur de 

pénétration ne change pas pendant la mesure pour un angle d'incidence donné 

(α) (Fig. 3). En plus, la profondeur de pénétration peut être modifiée par un 

choix approprié de l'angle α, pour étudier les matériaux à différentes 

profondeurs en sous-couches de l'échantillon. Cela donne la possibilité de 

mesurer un gradient de contraintes dans les échantillons.  

 

Fig. 3. La profondeur de pénétration (Ĳ) vs sin2ψ pour les géométries ψ et 

Ȧ classique (montrée pour 2ș correspondant à 422 réflexions dans le cas d’Al) 

et pour la méthode MGIXD-sin2ψ (représentée pour quatre angles d'incidence). 

Deux échelles de Ĳ correspondant à Al et Ti sont présentées. 

 



 

Analogiquement à la méthode standard, des contraintes résiduelles 

peuvent être déterminées à partir des distances inter-réticulaires mesurées 

dans la direction du vecteur de diffusion, c'est-à-dire à condition que les angles 

soient différents ψ{hkl}, ș{hkl} et que d’un angle α soit constant. Toutefois, dans le 

cas de la méthode multi- réflexion, au lieu de { }, hkl< d( , z )>  , les paramètres 

équivalents de maille sont exprimés par macrostresses et constante a0  pour les 

treillis libre de souche [9]: 

{ } 0 0, ( )I
hkl ij ij< a( , z )  = [ F (hkl, , ) z ] a a>     

                              (4)
 

où : 

pour la structure cristalline cubique: 

2 2 2
{ } { }, ,hkl hkl< a( , z )  = < d( , z )  h k l> >               (4a) 

pour la structure hexagonale :  
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 (4b). 

Dans le cas du procédé MGIXD, les mesures de distances inter-

réticulaires sont effectuées dans le volume près de la surface, qui est limité par 

l'absorption du rayonnement. Pour définir ce volume, le trajet du faisceau de 

rayons X à travers l'échantillon doit être considéré. Les espacements 

interplanaires moyenes mesurés  égalent à: 
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et          (5) 

où la formule ci-dessus peut être utilisée si une  >>  cr (cr est un angle 

critique de réflexion totale externe), z est la profondeur au-dessous de la 

surface et la moyenne est calculée par rapport au volume de tous les grains qui 

reflètent dans la trajectoire du faisceau, c’est-à-direà partir de la surface (z = 0) 

de l'épaisseur du revêtement (z = t). Si les contraintes sont mesurées dans un 

échantillon monolithique ou dans un revêtement d'épaisseur . 
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Le principal inconvénient de la méthode MGIXD est la résolution. La 

position du pic doit être déterminée avec précision. C'est pourquoi la géométrie 

du faisceau parallèle a été appliquée pour la détermination des contraintes. Le 

faisceau incident, sur diffractomètres classiques, a été collimaté par le miroir 

Göbel et les tests en configuration parallèle ont été réalisés pour la poudre 

d’aluminium. Les résultats présentés dans la thèse confirment que les erreurs 

statistiques et l'erreur d'alignement peuvent être considérablement réduites 

lorsque le miroir Göbel est utilisé dans l'optique primaire du diffractomètre 

(Tableau 1). 

 

Tableau 1. Composante de contrainte résiduelle déterminée pour la 

poudre Al utilisant deux optiques de faisceau d'incidence μ miroir Göbel ou fente 

(contraintes calculées excluant 111 et 200 réflexions comparées avec les 

résultats obtenus à partir de toutes les réflexions).  

method 
 (

o
) 

or hkl 
z  

(ȝm) 

primary 

beam 

config. 

 11(MPa) 

all 

reflections 

reflections 111, 200 excluded
 

 11 (MPa)
 a0 (Ǻ) Ȥ² 

MGIXD 

=5
o
 5.8 

Göbel mirror -5.0 3.0 -1.6 1.5 
4.04936 

 0.00003 
0.05 

Slit -22.1 5.3 -16.0 5.3 
4.04973 

 0.00009 
0.55 

=10
o
 10.8 

Göbel mirror -3.1 3.2 -0.4 1.1 
4.04948       

 0.00002 
0.02 

Slit -28.1 6.4 -33.3 5.6 
4.04995        

 0.00008 
0.64 

=15
o
 

14.9 

 

Göbel mirror -3.0 4.4 0.4 3.8 
4.04945 

 0.00006 
0.29 

Slit -7.3 6.1 -8.6 7.3 
4.04914 

 0.00011 
1.07 

Standard 422 
12-

34 

Göbel mirror -2.1 0.5 
4.04946 

 0.00001 
0.65 

Slit -0.5 1.4 
4.04903 

 0.00004 
3.08 

 



 

Dans le cas de la géométrie du faisceau parallèle utilisé pour la méthode 

MGIXD, les imprécisions sur la position z n'influencent pas de manière 

significative les résultats obtenus avec la méthode d’analyse par diffraction des 

rayons X (DRX). Afin de déterminer avec précision la position du pic de 

diffraction, des facteurs physiques doivent être pris en compte [1,2,3] : Lorentz-

polarisation et le facteur d'absorption ainsi que la correction de réfraction. À la 

lumière des résultats présentés, l'influence de la correction LPA est 

généralement négligeable dans la méthode MGIXD (Tableau 2). 

 

Tableau 2. Les contraintes (ı) et des constantes de réseau (a0) déterminées 

pour rectifié Al2017 et polies Ti grade 2 échantillons à partir des données 

expérimentales avec et sans correction LPA.  

 

calcul sans correction 

LPA 

calcul avec correction 

LPA 
différence 

 
rectifié Al 2017 (cubic) 

ı11(MPa) 204.2  ± 4.8 20θ.λ ± 5.7 2.7 

ı22(MPa) 126.4  ± 4.8 12λ.4 ± 5.7 3.0 

a0 (Ǻ) 4.04θλ7 ± 0.00008 4.04θλ8 ± 0.00010 0.00001 

 
poli Ti grade 2 (hexagonal) 

ı11(MPa) -411±11 -405.4  ±12.2 5.6 

ı22(MPa) -405±11 -3λ7.7 ±12.1 7.3 

a0 (Ǻ) 2.λ50θ ±0.0001 2.λ50θ ± 0.0001 - 

c/a 1.5881 ± 0.0003 1.5881 ± 0.0003 - 

 

La réfraction des rayons X entre deux milieux différents peut influencer 

de manière significative la position du pic de diffraction. La déviation de la 

direction des vagues décrite par la loi de Snell-Descartes, provoque un 

changement dans la valeur de l'angle de diffraction Δ2ș et en plus une petite 

inclinaison Δψ de l'orientation du vecteur de diffusion. Jusqu'à présent, les 

seules solutions pour une correction de réfraction sont données dans le cas 

d'une surface lisse. Dans la thèse, la variation de l'angle de diffraction due à 

l’indice de réfraction n <1 est considérée, et la question de la correction de la 

réfraction a été examinée et comparée à des considérations présentées dans la 

littérature (par Hart et par Genzel) [10, 11]. Suite à la confrontation de « 



 

nouvelle formule » développée dans la thèse avec les approches proposées par 

Genzel et Hart (Fig. 4), on peut conclure que pour les grands angles 

d'incidence la «nouvelle approche» est conforme à celle proposée par Hart, 

mais elle en diffère par rapport à Genzel où l'effet de changement de longueur 

d'onde dans la réfraction a été négligé). Pour les petits angles d'incidence 

l'approche de la Genzel et celle proposée dans la thèse sont conformes, mais 

la formule de la Hart ne reflète pas correctement l’effet. Elle est causée par 

l’approximation imprécise pour les petits angles d'incidence.  
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Fig. 4. Changement de la position du pic causé par la réfraction comparé 

pour Genzel, Hart approches et «Nouvelle formule» (αcr=0.24o, Al échantillon et 

le rayonnement Cu). 

 

L'effet de l’indice de réfraction n <1 sur la mesure de contrainte dépend 

fortement du type de matériau, la longueur d'onde,  de l'angle d'incidence et de 

la rugosité de surface. Sur la base des résultats considérés, si la méthode 

MGIXD est utilisée, il est conseillé d'effectuer l'analyse des contraintes avec et 

sans correction de la réfraction et lorsque la différence entre les résultats 

obtenus est importante pour le paramètre désigné, les résultats doivent être 

rejetés. Cet effet est la limitation de la méthode MGIXD. Par conséquent, 

l'interprétation des résultats expérimentaux effectués avec la correction pour 

surface plane et sans correction fixe des limites pour les valeurs des contraintes 

et pour le paramètre a0 dans l'échantillon étudié. Ces calculs doivent être 

toujours comparés afin de voir la gamme de l'angle d'incidence pour lequel la 

correction n'est pas significative (comme pour les échantillons présentés dans 

la figure 5). 
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Fig. 5. Contrainte résiduelle et le paramètre ao en fonction de l'angle α 

d'incidence déterminé avec et sans correction de la réfraction. La méthode 

MGIXD a été appliquée pour un alliage d'aluminium polie mécaniquement (Al 

2017) et pour la poudre d'Al (Cu Ka rayonnement X-ray).  

 

 Dans ce travail, deux développements théoriques de la méthode MGIXD 

ont été présentés. Tout d'abord la procédure de détermination du paramètre de 

maille c/a a été proposée, ce qui améliore considérablement la qualité de 

l'analyse des données expérimentales dans le cas des échantillons de structure 

hexagonale. La méthode de détermination de ce paramètre a été testée sur un 

échantillon de Ti poli (grade 2) montrant une faible anisotropie élastique des 

contraintes. Le paramètre a0 ainsi que c/a, peut être déterminé en utilisant la 

méthode présentée dans le travail μ  itérative d'auto- cohérent (les valeurs 

expérimentales déterminées dans le cas de contraintes en traction comme en 

compression ont été comparées avec la littérature).  

 Dans le cas de la structure cristalline cubique, des paramètres 

>),a( < hkl}{  expérimentaux de maille sont calculés directement à partir des 

distances mesurées >),d( < hkl}{ . Par la suite, les paramètres d'ajustement 

I
ij  

et 0a  peuvent être trouvés en ajustant les valeurs >),a( < hkl}{  obtenues à 

partir de l'équation à celles mesurées, comme dans la méthode standard. 

Toutefois, la procédure plus complexe de données expérimentales doit être 

appliquée pour la structure hexagonale puisque la valeur de paramètre c/a doit 

être connue a priori pour le calcule expérimental >),a( < hkl}{  de l'équation 



 

théorétique. Cette difficulté peut être surmontée quand le procédé d'itération 

sera appliqué. Un meilleur ajustement des valeurs théoriques et expérimentales 

ont été obtenues de façon significative en cas c/a ajusté. Il convient de 

souligner que la valeur du c/a  peut être estimée avec une bonne approximation 

pour le matériau élastique isotrope (Ti) ou si la XSF sont connus (mesurée ou 

contrôlée) [12].  

 Au début, le calcul des contraintes stressantes poli et rectifié Ti (grade 2) 

a été réalisée suite à l’utilisation des valeurs hypothétiques de c/a (le paramètre 

c/a est indiqué sur les figures θ et 7). Dans ce cas-là, la valeur de c/a n'a pas 

été modifiée pendant la le traitement de données. Il est à remarquer que les 

points expérimentaux sont répartis loin des lignes obtenues en ajustant. Les 

XSF calculées grâce à l’application du modèle Kröner. Ensuite, la procédure 

d'auto-cohérent a été utilisé et la valeur c/a a été également ajustée. Les 

diagrammes >),a( < hkl}{  vs. sin2ψ ci-dessous démontrent une meilleure 

entente entre les points théoriques et expérimentaux. Les valeurs du paramètre 

c/a et la Ȥ2, déterminées en utilisant la procédure présentée, sont données 

dans les figures 6 et 7. On peut apercevoir que la valeur de Ȥ2 diminue de 

manière significative lorsque les points expérimentaux se rapprochent aux 

courbes théoriques. 
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a)                                          b)                      
c) 

Fig.6. Le >),a( < hkl}{  vs. sin2ψ graphes pour polie mécaniquement 

échantillon Ti (sous pression de 5 N), mesurées avec α = 5o. Sur les figures (a) 

et (b) les graphes théoriques ont été ajustés aux points expérimentaux 

déterminés avec valeur assumée de c/a, tandis que dans le cas de figure (c) c/a 

a été réglé. L'incertitude de la position de pointe a été supposée o0102 .)(  . 
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    a)                   b)                   c)  

Fig.7. Résultats similaires à la figure θ, mais pour rectifié échantillon Ti. 

 

 Deuxièmement, le développement prend en considération la présence de 

défauts d'empilement. Il a été montré que dans le cas des échantillons ayant 

une faible énergie de fautes d'empilement (cas d’acier inoxydable austénitique), 

la prise en compte de ces fautes d'empilement et la correction effectuée peut 

être bénéfique pour l’analyse par DRX. La probabilité de trouver le défaut 

d'empilement ρ a été déterminée pour l'acier inoxydable austénitique poli. Des 

valeurs raisonnables de ρ ont été déterminées dans la contrainte de 

compression dans le cas de l'échantillon poli. Le calcul similaire a été fait au 

préalable pour l'échantillon de sol (même en acier austénitique) par 

Baczmanski (2005) [9], qui a recu une valeur similaire de ρ. Cette méthode 

exige également la connaissance de XSF pour matériau anisotrope (comme 

l'acier inoxydable austénitique). C'est pourquoi il est important de vérifier les 

différents modèles de calculs XSF ce qui a été fait dans la thèse. 

À part des contraintes résiduelles qui sont la raison du décalage du pic 

de diffraction par rapport à la position correspondante au réseau parfait, les 

raies de diffraction peuvent être influencées par l'empilement de défauts dans le 

matériau. Cet effet est particulièrement important pour les cristaux fcc ayant 

une faible énergie de défaut d'empilement (par exemple, les aciers 

austénitiques). Dans cette situation, l'amplitude du déplacement dépend de la 

probabilité de trouver le défaut d'empilement et de la réflexion hkl qui a été 

utilisée dans l'expérience. En l'absence des contraintes de seconde ordre 

d’incompatibilité : 



 

{ } 0 0, [ , , ( )]I
hkl ijij< a( )  = F (hkl, f)  + G hkl a a>                               (6) 

                             avec    



b

222 lkh

lkh

bu4

3
hklG

)(

)(
)(   

où  =s -d, s et d sont les probabilités de trouver respectivement la simple et 

la double couche du défaut d'empilement, entre les plans voisins {111}, G(hkl) 

est le coefficient de la variation relative reflétant des distances intercausées par 

les défauts d'empilement pour les surfaces {hkl} de diffraction, tandis que b et u 

sont les numéros des composants de pointe qui sont respectivement affectés et 

non affectés par les défauts d'empilement.. 

 À la fois la macrostress (Figure 8) et les défauts d'empilement 

provoquent les non-linéarités de la <a(,)>{hkl} vs. sin2{hkl} graphiques. Les 

macrostresses (500 MPa) influencent la pente ainsi bien que les non-linéarités 

de la courbe. En revanche, les défauts d'empilement augmenteent seulement 

les non-linéarités des graphique. Ce fait permet de séparer l'effet provenant des 

contraintes stressantes de celui relié aux défauts d'empilement et d’effectuer le 

calcul des valeurs de stress des contraintes et la probabilité de défauts 

d'empilement en polycristallin. 

Fig.8. Déformation du réseau calculées pour différentes réflexions hkl que l'effet 

de (a) contrainte uniaxiale et (b) la présence de fautes d'empilement sur les 

plans {111} pour l'échantillon austénitique (XSF ont été calculées en utilisant le 

modèle de surface libre [9]. 

 



 

À la lumière des résultats présentés dans la thèse (Fig.9) il apparaît qu’ il n'est 

pas nécessaire, pour un alliage de Ni prendre en considération la présence des 

défauts d'empilement dans l'analyse des contraintes. La valeur du paramètre ρ 

est dans la marge d'erreur égale à 0. Contrairement à l'acier inoxydable 

austénitique ayant une faible énergie de défauts d'empilement, il semble 

probable que la prise en compte de la présence de défauts d'empilement dans 

l'analyse des contraintes peut être bénéfique. Sans doute l'effet de défaut 

d'empilement améliore l'ajustement de la courbe théorique (calculée à partir du 

modèle d'interaction de grain choisi) aux points expérimentaux, mais il semble 

possible que cet effet entraîne le changement de la valeur XSF, qui peut 

maintenant différer de la valeur correcte. 

 

a)  

b)  

Fig.λ. Les paramètres <a(,)>{hkl}  ajustés aux points expérimentaux (en 

supposant   0 - ligne continue ou  = 0 - pointillés) pour l'acier poli inoxydable 

austénitique (AISI 31θL) et d'alliage rectifié Ni (Inconel θλ0). XSF ont été 

calculés avec le modèle de surface libre en utilisant les fonctions de texture. 

 



 

 Pour étudier l'état des contraintes dans les matériaux polycristallins, les 

constantes d’élasticité radio-cristallographiques (CER ou XRayC) ou les 

facteurs de contraintes (XSF) doivent être déterminés [9, 12]. Dans le présent 

travail, les méthodes de diffraction des rayons X ont été appliquées pour 

mesurer les contraintes résiduelles dans les matériaux. Et outre, les CER et les 

facteurs XSF ont été utilisés pour interpréter des résultats. Les différents 

modèles théoriques d'interaction élasto-plastique entre les grains (Krӧner, 

reuss, Voigt, surface libre) ont été pris en considération et appliqués dans 

l'analyse des contraintes (Fig. 10) [9].  

 

 

Fig. 10. Schéma de l'interaction entre les grains pour quatre modèles différentsμ 

a) Reuss - contrainte homogène, b) Voigt - déformation homogène c) Kröner - 

inclusion ellipsoïdale dans milieu homogène d) surface libre - inclusion 

ellipsoïdale placée près de la surface du milieu homogène [9]. 

 

 La vérification des valeurs des XSF a été faite par les mesures des 

variations des distances interréticulaires lors des essais de traction dans le 

domaine élastique, pour l'échantillon anisotrope (en l'acier inoxydable 

austénitique) et pour l'échantillon isotrope (en titane). L’anisotropie des XSF a 

été également observée lors de la mesure des contraintes résiduelles dans un 

alliage de nickel réctifié, dans un acier inoxydable austénitique poli et dans un 

revêtement en CrN.  

 



 

L'échantillon anisotrope (l'acier inoxydable austénitique). 

 Aux besoins de notre étude l'influence du modèle d'interaction des grains 

sur les valeurs de contraintes calculées en acier inoxydable austénitique 

(présentant une forte anisotropie élastique) a été soumise à une tension 

contrôlée (Σ11= 50 MPa, 180 MPa et 300 MPa) pendant le chargement et le 

déchargement de la traction test. Pour chaque valeur de la charge, les 

contraintes résiduelles mesurées par la diffraction des rayons X ont été 

déterminées en utilisant le XSF calculé par quatre modèles (Krӧner, Reuss, 

Voigt, surface libre) avec la fonction de distribution des orientations FDO ou 

ODF (orientation distribution function). Dans le cas du procédé MGIXD, les 

mesures ont été effectuées pour α = 20 ° (correspondant à la pénétration de 

profondeur Ĳ = 2,λ um). La valeur initiale des contraintes calculées et des 

paramètres de maille pour l'échantillon non chargé sont rassemblés dans le 

tableau 3. Les { }
init
hkl< a( , )    vs. sin2ψ graphiques pour l'échantillon initial sont 

présentées dans la figure 11. Une petite compression et des contraintes de 

traction (comparables avec leurs incertitudes) ont été trouvées respectivement 

pour ĳ = 0 ° et ĳ = λ0 °. 

 

Tableau 3. Les valeurs initiales des contraintes et des paramètres de maille 

d'acier inoxydable austénitique non chargé. 

modèle α [°] ı11 (MPa) ı22 (MPa) a0 (Å) Ȥ² 
surface libre 

20 

-2λ± 18 27± 18 3.5λ37 ± 0.0001 1.5 

Kröner -27 ± 24 25 ± 23 3.5λ37 ± 0.0001 1.7 

Reuss -2θ ± 1θ 25 ± 17 3.5λ37 ± 0.0001 1.5 

Voigt -2θ ± 33 24 ± 31 3.5λ37 ± 0.0001 1.9 
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Fig. 11. Les graphiques
 { }

init
hkl< a( , )   vs. sin2ψ pour l'acier inoxydable 

austénitique initial non chargé (incertitude de la position du pic o0102 .)(   a 

été prise en charge). 

 

 Les déformation relatifs du réseau { }
rel
hkl( , )     vs. sin2ψ (pour α = 20 °) 

pour chaque charge et de quatre modèles grains d'interaction durant le 

chargement et le déchargement sont représentées respectivement sur les 

figures 12 et 13. Dans ces figures, les données expérimentales sont comparées 

avec les résultats de l'ajustement des moindres carrés basé directement sur la 

relation :  

{ } 11 11 22 22( , , , ) ( , , , )rel I I
hkl( , ) F hkl f F hkl f             

où les valeurs 11
I  et 22

I  ajustées des contraintes peuvent être comparées  

respectivement avec les valeurs de contrainte appliquée 11  et 22 0 MPa  . 

 



 

 

 

 
Fig. 12. Les défromations moyenne du réseau { }

rel
hkl( , )     vs sin2ψ (pour α = 

20°) pendant le chargement de l'échantillon acier inoxydable austénitique. Les 

résultats expérimentaux sont équipés de XSF calculés par quatre modèles 

testés. 

 



 

 

 

 
Fig. 13. Comparaison similaire comme dans Fig. 12 mais pour le déchargement 

de l'échantillon en acier inoxydable austénitique. 

 

 La non-linéarité des graphiques sin2ψ dans les figures 12 et 13 est 

associée à une forte anisotropie élastique de l'échantillon. Comme on peut le 

déduire de ces graphiques, les déformations du réseau sont les plus faibles 

dans la direction <111> et les plus grandes dans la direction <200> pour 

charger l'échantillon austénitique. Ce résultat est en accord qualitatif avec 

l'évolution de ½ s2 et s1 valeurs pour différentes réflexions hkl (dans l'approche 

de matériau quasi-isotrope), ce qui explique la tendance observée. Si 



 

l'interaction entre les grains est bien prédite les non-linéarités des courbes 

théoriques doivent refléter cette dépendance. 

 Nous voyons sur les graphiques sin2ψ (figures 12 et 13) que les valeurs 

expérimentales ainsi que l' anisotropie élastique sont bien approchées par 

Reuss, Kröner et par le modèle de surface libre. La dépendance linéaire 

{ }
rel
hkl( , )   

 
vs. sin²ψ prédite par le modèle Voigt ne peut être appliquée pour 

l'acier inoxydable austénitique ayant une forte anisotropie élastique. La 

comparaison quantitative de la qualité appropriée est donné par paramètre Ȥ2 

dont la valeur est comparée à la figure 14 pour toutes les charges appliquées et 

quatre modèles testés.  

 

 

Fig. 14. Comparaison des valeurs de Ȥ² pour quatre modèles d'interaction de 

différents grains pendant l'essai de traction de l'échantillon austénitique 

(chargement et déchargement). 

 

 τn peut affirmer que Ȥ2 doit augmenter à condition que les différences 

entre les valeurs expérimentales et les résultats théoriques augmentent. Si un 

modèle donné prédit parfaitement XSF, la valeur de Ȥ2 est déterminée 

uniquement par les incertitudes expérimentales et il ne devrait pas augmenter 

pour des contraintes plus importantes appliquées (la déformation du réseau en 

raison de stress augmente par la même valeur que la souche prédite par la 



 

théorie et en conséquence la distance entre elles ne change pas). Toutefois, si 

les valeurs de XSF ne sont pas correctement calculées par le modèle (même 

pour certaines orientations) la différence entre les distances interréticulaires 

théoriques et expérimentales agrandie avec l'augmentation de la charge 

appliquée provoque l'augmentation importante de la valeur de Ȥ2 (en raison de 

la quadrature dans la définition de Ȥ2). 

 Afin de déterminer le meilleur modèle  la comparaison des contraintes 

recalculé à partir des données de diffraction avec des valeurs de la charge 

appliquée est présentée dans la Fig. 15, pour le chargement et le 

déchargement de l'échantillon. Les mesures ont été effectuées en utilisant deux 

méthodes suivantes μ MGIXD ( α = 20 ° ) et ψ géométrie standard. τn peut voir 

que les processus de chargement et de déchargement sont exactement 

réversibles (points pour la même contrainte appliquée de chevauchement pour 

les deux méthodes expérimentales), c'est-à-dire, les mesures ont été 

effectuées dans la plage de déformation élastique. Il faut souligner que la 

bonne concordance entre les résultats obtenus avec les deux méthodes et des 

valeurs de la contrainte appliquée standard et MGIXD a été constatée dans le 

cas de la Reuss et du modèle à surface libre, il s’ensuit que les résultats 

obtenus avec les modèles obtenus avec Kröner et Voigt modèles s'écartent de 

la valeur de la contrainte appliquée. Pour les derniers modèles en particulier un 

grand écart entre les contraintes appliquées et re - calculé est vu dans le cas de 

mesures standard. Les pires résultats c’est-à-dire, le plus grand écart entre la 

contrainte appliquée et recalculée a été obtenu en cas du modèle Voigt utilisé. 

 

 

 



 

applied load 
11

 (MPa)

0 50 100 150 200 250 300

  
(M

P
a
)

-100

0

100

200

300

400

500
free surface

Kroner

applied load 

MGIXD =20
o

applied load 
11

 (MPa)

0 50 100 150 200 250 300

  
(M

P
a
)

-100

0

100

200

300

400

500
Reuss

Voigt

applied load 

MGIXD =20
o

 

a) applied load 
11

 (MPa)

0 50 100 150 200 250 300

  
(M

P
a
)

-100

0

100

200

300

400

500
free surface

Kroner

applied load 

MGIXD =20
o

applied load 
11

 (MPa)

0 50 100 150 200 250 300

 
M

P
a
)

-100

0

100

200

300

400

500
Reuss

Voigt

applied load 

MGIXD =20
o

 

applied load 11 (MPa)

0 50 100 150 200 250 300

 
 (M

P
a
)

-100

0

100

200

300

400

500
free surface

Kroner

applied load 

standard-mode

applied load 
11

 (MPa)

0 50 100 150 200 250 300

  
(M

P
a
)

-100

0

100

200

300

400

500
Reuss

Voigt

applied load 

standard-mode

  

b) applied load 
11

 (MPa)

0 50 100 150 200 250 300

  
(M

P
a
)

-100

0

100

200

300

400

500
free surface

Kroner

applied load 

standard-mode

applied load 
11

 (MPa)

0 50 100 150 200 250 300

  
(M

P
a
)

-100

0

100

200

300

400

500
Reuss

Voigt

applied load 

standard-mode

 

Fig. 15. Comparaison des valeurs de contraintes 11
I  et 22

I  de re-calculé par 

rapport à la contrainte appliquée 11  et 22 0 MPa  , respectivement (ligne en 

pointillés indique la valeur de la contrainte 11
I = 11  ou 22

I = 22 0 MPa  ). Les 

résultats de chargement et de déchargement sont présentés et le point 11 = 0 

MPa correspond à l'état après le déchargement. La méthode MGIXD (a) et la 

méthode standard - mode ψ (311 de réflexion) (b) ont été utilisées. 



 

L'échantillon isotrope (titane). 

 Nous avons étudié comme le second échantillon étudié était Ti (grade 2), 

l'échantillon ayant une faible anisotropie élastique. Le titane a été soumis à une 

tension contrôlée (50 MPa, 150 MPa, 210 MPa) pendant le chargement dans 

l'essai de traction. Pour chaque valeur de la charge les contraintes mesurées 

par diffraction des rayons X ont été déterminées en utilisant le XSF calculé par 

quatre modèles avec la fonction τDF. Dans le cas du procédé MGIXD, les 

mesures ont été effectuées pour α = 10 ° et α = 20 ° (correspondant à la 

pénétration des profondeurs μ Ĳ = 1,θ et Ĳ = um 2,5 um), tandis que le Ȧ-

géométrie a été utilisé pour les mesures classiques. La valeur initiale des 

contraintes calculées et des paramètres de maille pour l'échantillon non chargé 

sont rassemblés dans le tableau 4, tandis que les contre sin2ψ graphiques pour 

l'échantillon initial sont présentés dans la figure 1θ (méthode MGIXD). Les 

contraintes de compression de l'ordre de moins 30 MPa ont été trouvées pour ĳ 

= 0 ° et presque zéro stress pour ĳ = λ0 °, respectivement. 

 

Tableau 4. Les valeurs initiales des contraintes, des constantes de réseau de 

contrainte libre et c/a paramètres pour un échantillon non-chargé Ti (grade 2) - 

méthode MGIXD. 

 modèle ı11 (MPa) ı22 (MPa) a0 (Å) c/a Ȥ² 
α = 10° 

Surface 

libre 
-30.9 ± 5.4 -4.7 ± 5.θ 2.9511 ± 0.0001 1.5872 ± 0.0001 1.3 

Kröner -31.9 ± 5.4 -4.9 ± 5.θ 2.9511 ± 0.0001 1.5872 ± 0.0001 1.3 

Reuss -30.2 ± 5.3 -4.4 ± 5.5 2.9511 ± 0.0001 1.5872 ± 0.0001 1.3 

Voigt -33.5 ± 5.θ -5.3 ± 5.7 2.9511 ± 0.0001 1.5872 ± 0.0001 1.4 

α = 20° 
Surface 

libre 
-33.1 ± 8.2 10.7 ± 8.θ 2.9514 ± 0.0001 1.5869 ± 0.0001 2.9 

Kröner -35.3 ± 8.2 10.4 ± 8.θ 2.9514 ± 0.0001 1.5869 ± 0.0001 2.9 

Reuss -32.3 ± 8.0 11.4 ± 8.4 2.9514 ± 0.0001 1.5869 ± 0.0001 2.9 

Voigt -38.2 ± 8.4 9.4 ± 8.8 2.9514 ± 0.0001 1.5869 ± 0.0001 3.0 

 



 

 

Fig. 16. Les { }
init
hkl< a( , )    vs. sin2ψ graphiques pour l’échantillon non chargé 

Ti (grade 2) mesuré à l'aide de MGIXD avec α = 20 ° (incertitude de la position 

du pic a été prise en charge). 

 

Les résultats obtenus pour l'essai de traction sont représentés sur les figures 

suivantes :  

• Fig. 17 - les déformation du réseau expérimentales relatives à treillis contre 

{ }
rel
hkl( , )     vs. sin2ψ  pour α = 20 ° (méthode MGIXD),  

• Fig. 18 - les valeurs du paramètre de bonté Ȥ² pour α = 10 ° et α = 20 ° 

(méthode MGIXD) ;  

• Fig. 19 – les valeurs des contraintes de re-calculé comparées avec celles 

appliquées. 

 

 



 

 

   

 
Fig. 17. { }

rel
hkl( , )   

 
vs sin2ψ (pour α = 20 °) pendant le chargement de 

l'échantillon de Ti. Les résultats expérimentaux sont ajustés avec XSF calculé 

par quatre modèles testés. 

 

 



 

a)          b)  
Fig. 18. Comparaison des valeurs de Ȥ ², quatre modèles d'interaction du grain 

au cours de la traction de l'échantillon de Ti pour α = 10 ° (a) et α = 20 ° (b) - 

méthode MGIXD. 
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c) 

Fig. 19. Comparaison des valeurs de contraintes 11
I  et 22

I  de re-calculé par 

rapport à la contrainte appliquée 11
 
et 22 0 MPa  , respectivement (ligne en 

pointillés indique la valeur de la contrainte 11
I = 11

 
ou 22

I = 22 0 MPa  ). La 

méthode MGIXD pour α = 10 ° (a), α = 20 ° (b) et la méthode standard avec Ȧ-

mode (213 réflexion) (c) ont été utilisées pour mesurer les contraintes dans 

l'échantillon chargé Ti. 

 



 

 Ensuite, les échantillons ayant des contraintes de surface résiduelles 

importantes et non soumises à la charge externe ont été étudiés. 

Tout d'abord, le tungstène élastiquement isotrope de l'échantillon (W) a 

été étudié. Pour générer le stress en surface de l'échantillon la surface a été 

polie manuellement (article de 2000 grains, polissage non directionnel). La 

méthode MGIXD et la méthode standard (géométries Ȧ et ψ avec 321 réflexion) 

ont été appliquées à mesurer les déformations du réseau. 

 La comparaison des contraintes déterminée en utilisant de différentes 

XSFs et les valeurs du paramètre Ȥ² obtenu de cette analyse est présentée 

dans la Fig. 20. Les sin2ψ graphiques pour un exemple d’un angle incident α = 

5° (méthode MGIXD) et des méthodes standards sont présentées dans la figure 

21, tandis que la comparaison des graphes sin2ψ pour différents angles α est 

démontrée sur la Fig. 22 (les XSF donnés par le modèle de surface libre ont été 

appliqués dans les calculs). 

 

 

Fig. 20. Les valeurs de contraintes déterminées dans l'échantillon W poli en 

utilisant la méthode MGIXD et la méthode standard (a) et la comparaison des 

valeurs du paramètre Ȥ² (b) pour quatre modèles d'interaction de grain. 
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Fig. 21. Points expérimentaux et théoriques { }hkl< a( , )    vs sin2ψ pour 

l'échantillon W poli. Les mesures présentées pour MGIXD (α = 5°) (a) et ψ-

mode standard (b) et Ȧ-mode (c) méthodes (incertitude de la position du pic 

o0102 .)(   a été prise en charge). 

 

Fig. 22. Exemple de { }hkl< a( , )  
 
vs sin2ψ graphiques pour l'échantillon W 

poli. Les résultats présentés pour la méthode MGIXD pour les angles 

d'incidence α = 5 ° et α = 15 °. 

 

 Deuxièmement, les échantillons ayant une forte anisotropie élastique ont 

été étudiés : réctifié Ni alliage, acier inoxydable austénitique poli et revêtement 

CrN. La méthode MGIXD et la méthode standard ont été appliquées pour 

déterminer les contraintes dans les échantillons mentionnés ci-dessus. 



 

Seulement dans le cas de l'échantillon austénitique, les probabilités 

déterminées pour trouver le défaut d'empilement entre les plans voisins (ρ 

valeur) ont une influence significative sur les résultats et la valeur de 

l'incertitude. Par conséquent, le paramètre ρ a été réglé dans le cas de l'acier 

inoxydable austénitique poli, tandis que pour les autres échantillons ρ = 0 a été 

supposé. Le résultat de l'analyse des contraintes pour différents modèles 

d'interaction des grains considérés et pour tous les échantillons est présenté 

dans la Fig. 23, tandis que les valeurs de test de Ȥ² sont présentées dans la 

Fig.24. L'exemple de graphiques sin2ψ, comparé pour tous les échantillons 

analysés est présenté dans la figure 25 (pour des modèles différents de grains 

d'interaction). 

a)   

b)  

c)  
Fig. 23. Comparaison de l'influence de quatre modèles de l'interaction de grain 

appuyée sur les résultats des rayons X l’analyse des contraintes pour rectifié 

alliage de Ni (a), en acier poli inoxydable austénitique (b) et le revêtement CrN 

(c). Les résultats pour les angles différents d'incidence α sont comparés avec la 

méthode standard pour des réflexions hkl. 



 

 

Fig. 24. Comparaison des valeurs du paramètre Ȥ² pour différents modèles 

d'interaction de grain pour rectifié alliage de Ni (a), poli acier inoxydable 

austénitique (b), le revêtement CrN (c). Les résultats pour les différents angles 

d'incidence α sont comparés avec la méthode standard pour des réflexions hkl. 
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c)  

Fig. 25. Le sin2ψ graphiques, comparé aux différents modèles d'interaction de 

grain, pour MGIXD α = 5° pour rectifié alliage de Ni (a), de l'acier inoxydable 

austénitique poli (b), le revêtement CrN (c). Seulement dans le cas de 

l’échantillon l’austénitique, le paramètre de ρ a été aménagé et déterminé (ρ = 

0.014 ± 0.006). 

 

 Les résultats présentés dans la thèse, obtenus en utilisant la méthode 

MGIXD et la méthode standard, montrent que les modèles d'interaction de 



 

grains de types Reuss et de surface libre sont en meilleur accord avec les 

résultats expérimentaux. Ces modèles décrivent de la meilleure façon 

l'anisotropie élastique de l'échantillon, cependant le modèle de surface libre a 

une explication physique contrairement au modèle de Reuss. 

 Enfin, la méthode MGIXD a été vérifiée en utilisant le rayonnement 

synchrotron. La méthodologie de l'interprétation des données a été développée 

afin de traiter les données obtenues non seulement pour différents angles 

d'incidence, mais aussi simultanément en utilisant différentes longueurs 

d'ondes. Les résultats pour les échantillons présentant un gradient élevé de 

contrainte en profondeur (les résultats obtenus par diffraction des rayons X 

classique) ont été vérifiés en utilisant le rayonnement synchrotron. Trois 

longueurs d'ondes différentes (Ȝ = 1.2527 Å, Ȝ = 1.541λ Å et Ȝ = 1.7512 Å) ont 

été choisies et les angles d'incidence (α), pour lesquels la profondeur de 

pénétration est la même, ont été calculés. Le premier échantillon étudié a été 

un échantillon en alliage Al2017 poli. Lorsque les pics ont été ajustés par la 

fonction de pseudo-Voigt, une très bonne concordance a été obtenue entre les 

données obtenues quand le rayonnement synchrotron (pour trois longueurs 

d'ondes différentes) a été utilisé ainsi que sur diffractomètre classique (Fig. 26) 
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Fig. 26. Les profils en profondeur des contraintes et paramètre de maille sans 

contraintes a0 pour l'échantillon Al2017 poli. Les résultats pour les différentes 

longueurs d'onde du rayonnement synchrotron et pour laboratoire 

diffractomètre sont présentés. 

 



 

L'accord entre les résultats obtenus avec les différentes longueurs d'ondes 

permet de développer la méthode MGIXD. L'idée était de recueillir <a(ϕ,ψ)> {hkl} 

les valeurs correspondant à la même profondeur de pénétration τ sur la même 

tracé en sin2ψ. L'avantage de cette approche est que chaque point 

correspondant à une profondeur soit obtenu non seulement avec différentes 

réflexions hkl correspondant à différents angles d'incidence (multi-réflexion), 

mais aussi avec différentes longueurs d'ondes (multi-longueur d'onde). Ayant 

les valeurs moyennes des contraintes en fonction de la profondeur de 

pénétration, la variation de la contrainte en fonction de z – ‘la vraie profondeur’ 

peut être calculée en utilisant la transformée de Laplace inverse appliquée à la 

fonction polynomiale. Il a été constaté que les solutions ( 11( )I z ) sont similaires 

pour des polynômes de 2ème et 3ème degré (Fig. 27). 
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Fig. 27. Le profil de contrainte pour l'échantillon Al2017 poli pour tous les points 

expérimentaux obtenus pour trois longueurs d'onde différentes en fonction de Ĳ 

- profondeur (a) et z pénétration - une réelle profondeur dans l'échantillon (b). 

Les limites d'incertitude sont données pour polynôme de degré 2. 

 

Dans le but de révéler si le gradient de contrainte déterminé explique 

l’asymétrie des pics de diffraction obtenus en utilisant le rayonnement 

synchrotron, l'analyse inverse a été réalisée, c'est à dire, en supposant que la 

distribution des contraintes est déterminée, et les résultats expérimentaux ont 

été simulés. τn peut en conclure que l'analyse inverse (intégration de la 

contrainte 11( )I z  avec le poids de l'intensité) a permis de déterminer la 



 

profondeur à partir de laquelle les contraintes influent sur les résultats de la 

diffraction, c'est à dire, pour laquelle, la contrainte 11( )I z  été déterminée. En 

outre, l'analyse inverse appliquée pour les profils des pics a confirmé la 

répartition des contraintes données par 11( )I z . 

 Le deuxième échantillon étudié a été un échantillon poli en alliage 

TiθAl4V, présentant une forte asymétrie de pic de diffraction (Fig. 28).  
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Fig. 28. Les profils exemple des pics pour plus moins les mêmes incidents 

angle α mais pour différentes longueurs d'onde et des profondeurs de 

pénétration. Deux fonctions pseudo-Voigt ont été ajustées aux données 

expérimentales. 

 



 

Cela suggère que deux régions irradiées de l'échantillon ont deux 

microstructures différentes, par exemple une couche de l'ordre de 0.5 à 1 ȝm, 

qui a été sévèrement déformée plastiquement (région de forte densité de 

dislocations) et, sous cette couche, le matériau de base ayant une densité de 

dislocations beaucoup plus faible (petite déformation plastique). Les pics de 

diffraction peuvent être aisément séparés en deux fonctions pseudo-Voigt ayant 

des positions et des largeurs intégrales différentes. Le profil en profondeur des 

contraintes est similaire pour les trois longueurs d'ondes différentes utilisées 

dans l'expérience. En outre, les résultats obtenus à partir de mesures au 

synchrotron ne sont pas loin de ceux obtenus sur diffractomètre classique (Fig. 

29).  
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Fig. 29. Les profils en profondeur des contraintes, a0 et c/a paramètres, pour 

l'échantillon TiθAl4V. Comparaison pour trois longueurs d'onde différentes 

(synchrotron) et laboratoire diffractomètre en utilisant le réglage pseudo-Voigt 

(PV) et le centre de gravité (CG) pour déterminer la position du pic. 

 



 

Sur la base de la loi d'atténuation exponentielle, il est possible de trouver 

l'épaisseur de la couche à partir des intensités relatives des pics de diffraction. 

Après l'estimation de l'épaisseur de couche (t = 1.38 ȝm), il est possible de 

présenter les résultats des mesures de rayonnement synchrotron en fonction de 

la profondeur de l'information estimée. De fortes contraintes de compression 

sont présentes dans la couche dont l’épaisseur atteint 1.38 ȝm, au-delà de 1.38 

ȝm une légère augmentation de la contrainte de traction a été trouvée. Une 

autre approche dans laquelle les contraintes changent peu à peu a pu se faire, 

en utilisant la transformation de Laplace inverse. L'hypothèse de cette approche 

est que l'évolution des contraintes peut être approchée par un polynôme. Un 

accord quantitatif de ces deux méthodes a été noté, c'est à dire, une contrainte 

de compression à proximité de la surface, et une contrainte nulle à la même 

profondeur (2-3 ȝm) et une contrainte de traction dans le matériau de base ont 

été obtenues par ces deux approches. Aussi, les valeurs de contraintes ne sont 

pas très différentes. 

 L’analyse Wiliamson-Hall a été appliquée pour les données collectées, 

permettant de déterminer la moyenne quadratique des déformations  2  et 

la taille des domaines cohérents D. Il a été constaté que l'incertitude sur D est 

trop grande pour obtenir des résultats raisonnables lorsque la géométrie 

parallèle est utilisée dans la méthode MGIXD. Les valeurs de  2  

mesurées en utilisant le rayonnement synchrotron et la radiation Cu Kα  

présentent une très bonne corrélation. Il convient de préciser que dans le cas 

de gradient de contrainte, la valeur  2  est influencée par les contraintes 

d'ordre III mais aussi par l'hétérogénéité des contraintes dans le volume 

mesuré. 

 Ensuite, la méthode de multireflection a été appliquée avec la technique 

de dispersion d'énergie dans laquelle le faisceau blanc contenant un 

rayonnement ayant différentes longueurs d'ondes a été utilisé (Ȝ (Ǻ) μ 0.3 à 0.18 

/ E (keV) : 40-θ8). L'analyse des contraintes a été réalisée en utilisant trois 

méthodes différentes μ la méthode des sin2ψ standard, la méthode de tracé 

universel basée sur l'analyse en multireflection. Pour des profondeurs de 

pénétration de l’ordre de 0-15 ȝm, les résultats montrent une convergence des 



 

valeurs obtenues à partir de différentes méthodes dans les petites profondeurs 

(Fig. 30). En outre, les données du synchrotron sont en parfait accord avec les 

résultats obtenus sur le diffractomètre du laboratoire (radiation Cu Kα) près de 

la surface. Les résultats obtenus pour des profondeurs supérieures à 14 ȝm, 

les points expérimentaux montrent une dispersion importante et ne sont pas en 

accord avec les résultats de la méthode standard (Fig. 30). 
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Fig. 30. Le profil en profondeur des contraintes pour poli et réctifié Ti (grade 2) 

échantillon. La comparaison des résultats de diffractomètre classique (MGIXD) 

et expérience de EDDI synchrotron, dont trois méthodes d'analyse différentes 

ont été utilisées (sin2ψ standard, multireflection, ‘universel plot’). Deux gammes 

différentes de la profondeur de pénétration sont comparées μ a) de 0 à 50 um, 

et b) de 0 à 15 um. 

 

Conclusion. 

Pour conclure, on peut dire que la méthode MGIXD est un outil indispensable 

pour étudier la distribution des contraintes dans les couches de surface, mais 

l'application de cette méthode est limitée par des facteurs tels que la correction 

de réfraction ou le problème d'interprétation associée à l'anisotropie des 



 

constantes élastiques. Sur la base des résultats considérés, si la méthode 

MGIXD est utilisée, il est conseillé d'effectuer l'analyse des contraintes avec et 

sans correction de la réfraction et lorsque la différence est significative les 

résultats devrait être rejetés ou acceptés à une grande incertitude. Il s'agit d' 

une des limitations de la méthode MGIXD qui est importante pour les petits 

angles d'incidence α . Qui plus est, l'attention particulière doit être accordée à 

un réglage précis du diffractomètre (configuration de faisceau parallèle) et la 2ș 

- position zéro doit être soigneusement vérifiée. Il faut également souligner que 

la fiabilité de l’analyse des contraintes de diffraction n'est possible que si le 

modèle d'interaction de grain approprié est appliqué dans le calcul des XSF 

pour l'échantillon anisotrope. Sur la base des résultats présentés dans cette 

thèse, il semble que le modèle de surface libre est celui qui reflète non 

seulement de manière correcte l'anisotropie de XSF, mais a aussi une 

explication physique concernant l'interaction élastique des grains . 

 

Mots clés : contraintes résiduelles, diffraction des rayons X, méthode de 

l’incidence rasante, miroir Göbel 
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Diffraction study of mechanical properties and residual stresses resulting from 
surface processing of polycrystalline materials 

ABSTRACT : Methodology of stress measurements with multireflection grazing incidence method (MGIXD) 

was investigated and developed. The parallel beam geometry was applied. The incident beam in classical 
diffractometers was collimated by Göbel mirror and the tests of parallel configuration were performed for Al 
powder. Results confirmed that both statistical error and the misalignment error can be reduced when the 
Göbel mirror is used. Physical factors were taken into account in XSA (X-ray stress analysis): Lorentz-
polarization and absorption factor (LPA) and also refraction correction (RC). Results showed that the 
influence of LPA correction is minor in XSA but the RC can significantly influence analysis. In the thesis 
the issue of RC was considered and compared with approaches presented in the literature. In the thesis 
two theoretical developments of the MGIXD method were presented: the procedure of c/a parameter 
determination and the influence of stacking faults on the results was taken into account. It was shown that 
both developments significantly improves the quality of experimental data analysis. In the present work the 
problem of X-ray stress factors (XSF) used for the interpretation of XSA results was studied. Different 
theoretical grain elasto-plastic interaction models were considered and applied in XSA. Verification of the 
XSF was during tensile test for austenitic stainless steel and for the isotropic sample. Anisotropy of XSF 
was also observed in: ground Ni alloy, polished austenitic stainless steel and CrN coating. The results 
shows that Reuss and free surface grain interaction models are in the best agreement with the 
experimental results. Finally the MGIXD method was verified using synchrotron radiation and 3 different 
wavelengths. The methodology was developed to treat data not only for different incident angles but also 
using simultaneously different wavelengths. Stresses vs. z – ‘real depth’ was calculated using the inverse 
Laplace transform applied to polynomial function. Wiliamson-Hall analysis was applied for collected data. 
Next multireflection method was applied for the energy dispersion diffraction measurements in which white 
beam containing radiation having different wavelengths was used (Ȝ (Ǻ)μ 0.3–0.18/ E (keV): 40-68). The 
stress analysis was performed using three different methods: standard sin

2ψ method, Universal plot 
method and by using multireflection analysis. In the range of penetration depth to 0-15 ȝm the 
convergence of the results obtained from different methods was gained. Moreover the synchrotron data 
perfectly agree with the results obtained on laboratory diffractometer (Cu Kα radiation) close to the surface.  
For depth larger than 14 ȝm the experimental points exhibit significant spread and do not agree with the 
results of standard method . 
Keywords : residual stresses, X-ray diffraction, grazing incidence method, Göbel mirror. 

 

Etude par diffraction des propriétés mécaniques et des contraintes résiduelles 
résultant de la transformation de matériaux polycristallins 

RESUME : Méthodologie de mesures de contraintes avec la méthode multireflection pâturage d'incidence 
(MGIXD) a été étudié et développé. La géométrie du faisceau parallèle a été appliquée pour mensurations 
de stress. Le faisceau incident dans diffractomètres classiques a été collimaté par le miroir Göbel et les 
essais de configuration en parallèle ont été effectuées pour Al poudre. Les résultats confirmé que le erreur 
statistique et l'erreur d'alignement peuvent être réduits lorsque le miroir Göbel est utilisé. Facteurs 
physiques ont été prises en compte dans la CSX (analyse aux rayons X du stress): Lorentz - polarisation 
et facteur d'absorption (LPA) et aussi correction de la réfraction (RC). Les résultats montrent que 
l'influence de LPA est mineur dans CSX, mais la RC peut influencer de manière significative l'analyse. 
Dans la thèse de la question de RC a été examiné et comparé avec les approches présentées dans la 
littérature. Dans la thèse de deux développements théoriques de la méthode MGIXD ont été présentés: la 
procédure de détermination de paramètre c/a et l'influence des défauts d'empilement sur les résultats. Il a 
été montré que les deux développements améliore de manière significative la qualité de l'analyse des 
données expérimentales. Dans le présent travail le problème de la X -ray facteurs de stress (XSF) utilisés 
pour l'interprétation des résultats CSX a été étudiée. Différents modèles théoriques de grains élasto- 
plastique interaction ont été envisagées et appliquées dans la CSX. Vérification de la XSF durant l'essai 
de traction pour l'échantillon élastique anisotrope (en acier inoxydable austénitique) et pour l'échantillon 
isotrope (Ti - note2). Anisotropie de XSF a également été observée dansμ rectifié alliage Ni, acier 
inoxydable austénitique poli et revêtement CrN. Les résultats montre que Reuss et modèle de la surface 
libre sont en meilleur accord avec les résultats expérimentaux. Enfin, la méthode MGIXD a été vérifiée en 
utilisant le rayonnement synchrotron et 3 longueurs d'onde différentes. La méthodologie a été développée 
pour traiter les données non seulement pour les différents angles d'incidence, mais aussi en utilisant 
différentes longueurs d'onde simultanément. Contraintes en fonction de «vraie profondeur» a été calculée 
en utilisant la transformée de Laplace inverse. Analyse Wiliamson-Hall a été appliquée pour les données. 
Méthode MGIXD a été appliqué pour les mesures de diffraction de dispersion d'énergie dans lequel le 
faisceau blanc a été utiliséμ 0,3 à 0,18 Å. L' analyse des contraintes a été effectuée en utilisant trois 
méthodes différentes μ la méthode de sin2ψ norme, la méthode de terrain universelle et en utilisant 
multireflection analyse . Dans la gamme de profondeur de pénétration à 0-15 um de la convergence des 
résultats obtenus à partir de différentes méthodes a été acquise . En outre, les données de synchrotron 
parfaitement en accord avec les résultats obtenus en laboratoire sur diffractomètre (rayonnement Cu Ka) à 
proximité de la surface . Pour profondeur supérieure à 14 um points expérimentaux présentent des 
variations importantes et ne sont pas d'accord avec les résultats de la méthode standard. 
Mots clés : contraintes résiduelles, diffraction des rayons X, méthode de l’incidence rasante, miroir Göbel 


