Champs aléatoires et problèmes statistiques inverses associés pour la quantification des incertitudes : application à la modélisation de la géométrie des voies ferrées pour l'évaluation de la réponse dynamique des trains à grande vitesse et l'analyse

Abstract : High speed trains are currently meant to run faster and to carry heavier loads, while being less energy consuming and still ensuring the safety and comfort certification criteria. In order to optimize the conception of such innovative trains, a precise knowledge of the realm of possibilities of track conditions that the train is likely to be confronted to during its life cycle is necessary. Simulation has therefore a big to play in this context. However, to face these challenges, it has to be very representative of the physical behavior of the system. From a general point of view, a railway simulation can be seen as the dynamic response of a non-linear mechanical system, the train, which is excited by a complex multivariate spatial function, the track geometry. Therefore, the models of the train, of the wheel/rail contact forces have thus to be fully validated and the simulations have to be raised on sets of excitations that are realistic and representative of the track geometry. Based on experimental measurements, a complete parametrization of the track geometry and of its variability would be of great concern to analyze the complex link between the train dynamics and the physical and statistical properties of the track geometry. A good approach to characterize this variability is to model the track geometry as a multivariate random field, for which statistical properties are only known through a set of independent realizations. Due to the specific interactions between the train and the track, this random field is neither stationary nor Gaussian. In order to propagate the track geometry variability to the train response, methods to identify in inverse, from a finite set of experimental data, the statistical properties of non-stationary and non-Gaussian random fields were analyzed in this thesis. The train behavior being very non-linear and very sensitive to the track geometry, the random field has to be described very precisely from frequency and statistical points of view. As a result, the statistical dimension of this random field is very high. Hence, a particular attention is paid in this thesis to statistical reduction methods and to statistical identification methods that can be numerically applied to the high dimensional case. Once the track geometry variability has been characterized from experimental data, it has to be propagated through the model. To this end, a normalized multibody model of a high speed train, whose mechanical parameters have been carefully identified from experimental measurements, has been made run on sets of realistic and representative running conditions. The commercial software Vampire was used to solve these dynamic equations. At last, three applications are proposed to illustrate to what extent such a railway stochastic modeling opens new possibilities in terms of virtual certification, predictive maintenance and optimization of the railway system
Document type :
Theses
Complete list of metadatas

https://pastel.archives-ouvertes.fr/pastel-01001045
Contributor : Abes Star <>
Submitted on : Wednesday, June 4, 2014 - 2:22:38 PM
Last modification on : Thursday, January 11, 2018 - 6:25:23 AM
Long-term archiving on : Thursday, September 4, 2014 - 12:05:36 PM

File

TH2013PEST1137_complete.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : pastel-01001045, version 1

Collections

Citation

Guillaume Perrin. Champs aléatoires et problèmes statistiques inverses associés pour la quantification des incertitudes : application à la modélisation de la géométrie des voies ferrées pour l'évaluation de la réponse dynamique des trains à grande vitesse et l'analyse. Other. Université Paris-Est, 2013. English. ⟨NNT : 2013PEST1137⟩. ⟨pastel-01001045⟩

Share

Metrics

Record views

844

Files downloads

369