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Chapter 1

Introduction

1.1 Active Flow Control

Active Flow control is the field of research that aims at manipulating fluid flows. Typi-

cally a set of actuators interacts with a flow in order to induce some desired properties.

If energy is added to the flow then the control is referred to as active control. The main

targeted applications of active flow control can be found in the fields of aeronautics and

automobiles. Usual control objectives are for instance the reduction of a vehicle’s drag,

the regulation of its lift or the attenuation of the noise generated by an aircraft jet. A

more specific target may be to improve vehicle performance by delaying the transition to

turbulence in the boundary layers. Active flow control is certainly not new in aeronau-

tics. In 1904, Prandtl already observed that applying suction to a separated boundary

layer around a cylinder can lead to reattachment (Schlichting, 1987). Photographies

taken in the 40’s (Stüper, 1943), and shown in figure 1.1, illustrate this effect on an air-

plane wing. In fact, controlling lift using wing flaps may already be considered as a first

example of active flow control. In addition, numerous applications of flow control may

also be found in chemical engineering. For instance, enhancing the mixing of two fluids

or accurately controlling chemical reactions are two common industrial issues. Finally,

an emerging field of research in biomedicine is the use of flow control to regulate drug

delivery in the circulatory system.

From a semantical point of view, flow control can be seen as an interdisciplinary field

of research at the intersection of control theory and fluid mechanics. In fact, fluids are

so complex to manipulate that a very wide range of concepts and techniques developed

by either community has to be involved. From a mathematical point of view, looking

for an optimal control theory capable of dealing with the full Navier-Stokes equations

1



2 Introduction

Figure 1.1: Flow around the wing of the experimental airplane of the Institute in Goet-
tingen, a) without suction, b) with suction (Stüper, 1943). Taken from Boundary-Layer
Theory, Hermann Schlichting, Seventh Edition 1987.

is certainly ambitious. From a classical hydrodynamics point of view, it would be delu-

sive to base a control strategy solely on physical considerations while neglecting all the

fundamental tools developed in control theory. Thus, flow control requires at the same

time, the understanding of the physical mechanisms involved in a specific flow and the

use and adaptation of the available classical control techniques.

1.2 Flow Instabilities in Convection-Dominated Flows

In this presentation, convection-dominated flows refer to fluid flows in which convection

is the dominant feature. For example, pipe or channel flows, co-flowing mixing layers,

homogeneous jets, flows over streamlined bodies are typical convection-dominated flows.

The purpose of this thesis is to look for a common and realistic control strategy that
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applies to all these configurations. In its most general sense, the quantity to control is

any mathematical scalar or vector that is transported by the flow but, in most cases,

this quantity is a flow perturbation (i.e a small variation in pressure or velocity). It

may be noted that apart from the dominating convection, other physical mechanisms

may also play a role in the flow perturbations behavior and in particular, the control

becomes very meaningful when perturbations are also amplified while they are convected

downstream. Most of the flows under consideration in this thesis will be convection-

dominated amplifier flows.

The “experimental“ point of view

An amplifier denotes a flow which is very sensitive to external perturbations within a

rather broadband frequency range (Strykowski & Niccum, 1991). In contrast, oscillator

flows are insensitive to external excitations and display a self-sustained oscillation at a

very definite frequency. The frequency at which an oscillator beats and the amplitude

of the oscillations are both intrinsic and they do not depend on any low-level external

excitation. Typically, the flow past a cylinder at sufficiently large Reynolds numbers

is an oscillator whereas a co-flowing shear layer is an example of an amplifier. Note

that the behavior of an amplifier is usually more difficult to predict than that of an

oscillator since its dynamics can only be obtained if external perturbations are known.

As illustrated in figure 1.2, the characteristics of convection-dominated amplifiers may

also be described by adopting a local or a global point of view.

Convection Dominated Amplifier

 Flows

Local point of 

view

Global point of 

view

'Experimental' point 

of view

Amplifier flow

Oscillator flow

Absolute instability

Convective instability

Unstable flow

Stable flow

Normal 

Non-Normal

Figure 1.2: Characteristics and mathematical description of amplifier and oscillator
flows.
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The local point of view

Adoption of a local point of view (left column of figure 1.2) consists of a mental picture

of the flow where the local properties at a given location have been extended to the entire

fluid domain as if the flow were perfectly parallel. For instance, figure 1.3, from Brown

& Roshko (1974), illustrates the Kelvin-Helmholtz instability. Two fluids are flowing

from left to right at different velocities. In the shear layer separating the two flows, large

structures are generated and amplified as they are convected downstream. In fact, the

shear layer thickness itself is also spatially growing as it moves downstream. Studying

this flow with a local point of view would consist of studying a parallel shear layer

(instead of a growing shear layer) where the velocity profiles and pressure gradients are

those measured at a given fixed location. This intellectual experiment may be repeated

at any streamwise station. Note that studying this mental flow representation allows the

use of a spatial Fourier transform, which may significantly simplify the problem. The

local point of view is particularly relevant in describing flows that are slowly evolving

in the streamwise direction so that the relative changes in velocity profiles are small.

This approach has been successful in studying numerous configurations such as shear

layers (Huerre & Monkewitz, 1985), boundary layers (Gaster, 1965, 1968, 1975), jet flows

(Monkewitz & Sohn, 1986; Lesshafft & Huerre, 2007), channel flows (Deissler, 1987),

etc. Typically, a local linear framework is used to study hydrodynamic instabilities.

Flow instabilities refer to physical mechanisms that lead to a transfer of energy from a

basic state (steady or unstready) to an infinitesimal perturbation field. The amplifier

behavior of the dynamics may be assessed by determining the absolute or convective

nature of the instability. These two notions were initially invoked in the context of fluid

mechanics by analyzing the impulse response of parallel flows (Huerre & Monkewitz,

1985). The absolute or convective characteristics of the instability define whether some

flow perturbations stay and grow in place or whether they are convected and washed

away downstream. A (parallel) flow is absolutely unstable if the impulsive excitation

of the flow at a given location generates growing perturbations at the same location.

If the perturbations do not grow at this fixed station but there exists a moving frame

of reference in which they grow, then the flow is said to be convectively unstable. If

in all reference frames, the impulse response eventually decays to zero, then the flow is

stable. It may be remarked that the local absolute/convective nature of an instability

depends on the competition between the instability mechanism and the local convection

of perturbations. Therefore, if a flow is dominated by convection, the local instability
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is likely to be convective (see figure 1.2). For instance, in the configuration presented

in figure 1.3, following each structure individually as it is convected downstream leads

to the conclusion that perturbations are indeed growing and therefore that the flow is

convectively unstable. However, the instability is not absolute since perturbations do

not grow when they are observed in a stationary frame of reference, at a fixed location1.

Figure 1.3: Brown and Roshko (1974) Kelvin Helmholtz instability experimentally ob-
served in the shear layer separating the two co-flowing fluids.

The global point of view

From a global point of view (right column of figure 1.2), the eigenvalues of the linearized

Navier-Stokes equations determine the stability of the flow. The base flow is no longer

parallel but may be highly non-parallel and the entire problem is treated as one block,

without any local assumption. This may be mathematically cumbersome for complex

problems but the development of numerical tools have made this approach feasible. It

leads to the determination of all the eigenvalues and eigenfunctions which characterize

the flow dynamics. In practice, the flow problem is usually linearized and discretized.

Then, the mathematical properties of the resulting linear operator are investigated nu-

merically. Studying these properties and their physical origins is the subject of the global

approach. For instance, note that, in contrast to oscillators, any external forcing has a

1Note that some amplifier flows exhibit absolutely unstable regions, as is the case of flow about a

cylinder at a Reynolds number of 40. Although the results may be more general, this thesis focuses

attention on amplifiers that do not display any absolutely unstable region, and this is guaranteed if

convection is the dominant feature everywhere in the flow
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direct impact on the behavior of amplifiers. In particular, if the forcing is switched off,

an amplifier flow eventually relaxes to its original basic state. Such flows are therefore

globally stable with negative real parts for all the eigenvalues of the corresponding lin-

earized Navier-Stokes operator. Thus, paradoxically, amplifier flows are locally unstable

but globally stable. In order to resolve this paradox, one must appeal to the notion of

non-normality and its corresponding transient growth. A linear operator is non-normal

if at least two of its eigenvectors are non-orthogonal. It is known that the long-time

dynamics of a linear system is driven by the least stable eigenmodes of the correspond-

ing operator. However, over short time the question is more complex. If an operator is

stable, it is natural to think that the perturbation energy has to decrease monotonically

with time. Yet, it can be shown that this is only true for normal systems (i.e orthogonal

eigenvectors) (Schmid & Henningson, 2001). If a system is non-normal, possible tran-

sient growth may lead to significant transient amplification of the perturbation energy.

For instance, energy amplification by a factor of the order of 80 × 103 was found for

the flow over a backward-facing step at a Reynolds number of 500 (Blackburn et al.,

2008). In amplifier flows, the mathematical property that is responsible for the am-

plification is therefore not the (in)stability of the operator but its non-normality. The

non-normality of the Navier-Stokes operator is hard to predict and may have several

origins. In particular, the convection term in the Navier-Stokes equations is a strong

source of non-normality (Cossu & Chomaz, 1997; Chomaz, 2005). Thus, strong convec-

tion of perturbations implies, at the same time, local convective instability and global

non-normality which are two signatures of amplifier flows.

Implications for the control strategy

For an active controller to be efficient, only a very small amount of input energy should

be sufficient to have a global effect on the flow and in this respect, flow instabilities may

be exploited to save control energy. For instance, in figure 1.3, the “virtual origin“ on

the left plays a particular role. Indeed, it can be shown that the entire flow downstream

is very sensitive to any perturbation applied in this small region. Hence, this location

is a natural candidate for the placement of a control actuator. This flow illustrates how

the convective/absolute nature of the instability may guide the choice of the control

strategy.

Since oscillator flows are not affected by external disturbances, the control objective

amounts to the dampening of a limit cycle. The performances are usually not very
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sensitive to sensor and actuator placements since the oscillator behavior implies spatial

synchronization in the entire domain. The flow dynamics can therefore be captured by

sensors at many different places. By contrast, in amplifier flows, the external excitations

as well as the system dynamics are both relevant to reach the control objective. Accord-

ing to figure 1.3, the perturbation field displays strong asymmetry along the streamwise

direction (strong spatial amplification). Such a feature has to be taken into account for

the placement of sensors and actuators. A first step towards the control of perturba-

tions in convection-dominated flows consists of the design of models that capture the

flow dynamics, as detailed below.

1.3 Model Design

Designing an optimal controller directly from the full Navier-Stokes equations is cer-

tainly very challenging. The problem may however be formulated as a set of direct and

adjoint equations (Gunzburger, 1995; Bewley et al., 2000; Kim & Bewley, 2007) and this

system may be solved numerically by an iterative algorithm. This attractive approach

has been applied successfully in several numerical studies (e.g. Chevalier, 2004; Zuccher

et al., 2004; Pralits et al., 2002). Its major drawback is that it requires several computa-

tions of the direct and adjoint equations. In real-time closed-loop control, the numerical

computation has to be several times faster than the real flow evolution. For most fluid

systems and present computers, this procedure is currently not feasible. Accordingly,

one must resort to the design of a model that captures the relevant flow dynamics. The

control strategy is then applied to the real flow but it is designed based on the more

tractable model. The choice of an appropriate model is discussed in the next section.

Linear versus non-linear models

The goal of control is the suppression of flow perturbations. In their initial stage, these

perturbations are infinitesimal and they are therefore governed by linear equations as

routinely expressed in linear instability theory. The use of linear models is therefore

natural. Note also that in convection-dominated flows, as considered in the present

work, a linear model is particularly relevant provided that the perturbation velocity is

significantly smaller than a typical convective velocity. Furthermore, linear model are

computationally very easy to handle, and the computational cost involved in the design

and use of the optimal controller is significantly reduced. For real-time control, the

iterative direct-adjoint algorithm (made on-line) can be replaced by a single algebraic



8 Introduction

Riccati equation, possibly solved off-line, thereby reducing the on-line procedure to a

unique direct computation. For these reasons, only linear models are considered in this

dissertation.

Physics-based models

It seems natural to design models from physical or empirical arguments. In some cases

such as in boundary layers, the transport of perturbations from one sensor to another

may be modeled by a simple time delay, or a phase shift if the signals are periodic

(e.g. Milling, 1981; Lundell, 2007). In more sophisticated configurations, each individ-

ual portion of the flow may be modeled separately. All resulting models may then be

combined to build a global description. This approach constitutes the essence of the

work of Rowley et al. (2006) and Illingworth et al. (2012) for the flow over a cavity.

In many configurations, however, the flow mechanisms are very complex and strongly

coupled so that the physical design of a model is usually not feasible. For this reason,

a methodology capable of generating a model for any arbitrary flow is highly desirable.

Mathematically, this problem amounts to transforming a system of infinite order into

one of finite and sufficiently small order, typically smaller than one thousand degrees

of freedom. Two classical approaches may be followed: The first one is numerical and

consists of an order-reduction of the linearized Navier-Stokes operator. The second one,

referred to as system identification, is based on experimental data only.

The order-reduction approach

The infinite-order fluid system may be reduced numerically to a finite (but high) order

one by using proper numerical discretization techniques such as finite differences, finite

volumes, or spectral methods, etc. In what follows, it is assumed that a linear model

is sought and that the equations have already been linearized. The previous high-order

system may then be further simplified, for instance, by truncating the operator so that

only the most unstable modes are retained. Keeping only the most unstable dynamics,

however, is a rough approximation since the flow behavior may be governed by more sta-

ble modes that have been excited. Another approach consists of projecting the equations

onto a low-dimensional subspace that reproduces the available flow states as accurately as

possible. This technique is referred to as the Proper Orthogonal Decomposition (POD)

or the Principal Component Analysis (PCA) (Rowley, 2005; Bagheri et al., 2009). Its
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main drawback is that it preferentially describes structures of high energy which may

not be of primary interest in the system. For instance, pressure feedback typically con-

tains a small amount of energy but is essential in maintaining cavity flow oscillations.

To remedy this problem, the input/output system description was introduced. In the

flow control context, inputs typically refer to actuators or noise sources and outputs to

the measurement provided by sensors. The quantity to minimize by the control may

also be described by one or several outputs. Hence, only the input/output dynamics

(or transfer functions) are of interest and the model does not necessarily need to take

into account all the most energetic flow features. Such input/output descriptions are

achieved by introducing a balanced truncation scheme such as in the computationally

efficient balanced POD technique (Moore, 1981; Bagheri et al., 2009). Alternatively, the

input/output transfer function may be obtained by recording the impulse responses of

the system. The latter may then be transformed into a more convenient state-space

description through an Eigensystem Realization Algorithm (ERA) (Ma et al., 2011).

Several numerical implementations of such methods have been successfully achieved in

Barbagallo (2011); Semeraro et al. (2011); Ahuja & Rowley (2010). Applications of the

approach to real experiments have, however, not been attempted. The difficulties en-

countered in all these techniques is that they rely on numerical descriptions of reality.

Actuators and set-up uncertainties are particularly hard to describe faithfully in numer-

ical simulations. For this reason, it appears essential to consider approaches which rely

directly on experimental data as part of an application to real flow control.

System identification techniques

System identification techniques are algorithms that aim at building a model from a

set of input/output data. In contrast to other techniques that rely on numerical sim-

ulations, system identification seeks to construct models from experimental data only

and, therefore, the resulting identified model also captures all fluid system peculiarities

and possible imperfections. Typically, a flow is excited by one or several actuators (in-

put signals). At the same time, the corresponding sensor signals are recorded (output

signals). Then, several candidate models are tested to reconstruct the output signal

from their input counterpart. In fact, system identification techniques are algorithms

that select an optimal model out of a possibly infinite set of candidates. Comprehensive

presentations of system identification may be found in Ljung (1999); Van Overschee &

De Moor (1996); Verhaegen & Verdult (2007); Juang (1994). Classical system identi-
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fication schemes are usually divided into two categories: the so-called prediction-error

approach and the family of subspace identification techniques. Other methods identify

the system transfer function directly from its harmonic responses. The latter methods

are not discussed here. For more details, please consult Ljung (1999).

In the prediction-error approach, a model structure is chosen. The set of possible

models is usually described by varying a finite set of parameters. For instance, a possible

structure might be to express the outputs as a time-invariant linear combination of the

past inputs. This formulation called Finite Impulse Response (FIR) establishes a linear

and causal link between inputs and outputs. A description of the likely measurement

noise may also be included. This is usually achieved by adding a filtered white noise.

This results in a so-called moving-average model with exogenous inputs (MAX). Alterna-

tively, the prediction of the future output measurements may be improved by taking into

account the past output measurements. If the latter are included in a model structure

then the corresponding terms are referred to as the autoregressive part of the model.

Hence, depending on the assumptions, one refers to the FIR , MAX, the Autoregressive

models with exogenous inputs (ARX), the Autoregressive-moving-average models with

exogenous inputs (ARMAX), etc. In fact, the set of possibilities is very large and one

usually defines the model depending on the application and on the physical specifics of

the system. Once the proper model structure has been chosen the identified model is

the one that minimizes the distance between the prediction of the model and the actual

output measurements. For the structures described above, the prediction error can be

minimized by simple least-squares techniques. More details on the prediction-error ap-

proach may be found in Ljung (1999) and for the case of an FIR structure in the second

paper of this thesis.

Subspace identification is another class of system identification techniques (Van Over-

schee & De Moor, 1996). In these methods the model is obtained in state-space form. In

addition to the system dynamics, subspace identification techniques provide a descrip-

tion of the noise dynamics. This is convenient since this noise model may be used to

design a Kalman estimator. Moreover, the order of the model is not specified a pri-

ori but is rather identified as a parameter. For these reasons, subspace identification

techniques are very attractive. However, the involved mathematical framework is more

cumbersome than in the prediction-error approach. In addition, for some fluid systems,

a state-space form may not be the best suited model structure. In particular, delays

are better described by finite impulse response (FIR) models. Among the family of

subspace identification techniques, the most commonly used are the Canonical Variate

Analysis algorithm (CVA) (Larimore, 1983, 1990), the Multiple-inputs and multiple-
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outputs Output-Error State sPace algorithm MOESP (Verhaegen & Deprettere, 1991)

and the Numerical algorithms for Subspace State Space System IDentification N4SID

(Van Overschee & De Moor, 1994). A technical presentation of system identification by

subspace techniques is given in the appendix of the first paper of this thesis.

All the previous models are essentially relevant for the identification of Linear-Time-

Invariant (LTI) systems. Many other models exist for the identification of non-linear

systems. However, identifying an optimal model with a non-linear structure requires

more sophisticated optimization algorithms and the returned solution may correspond to

a local minimum of the prediction error. By contrast, in the context of linear models, only

least-squares techniques need to be used, which provides a guarantee of mathematical

uniqueness and numerical efficiency. If the system is not time-invariant, adaptive versions

of the above algorithms exist. The model is identified and modified in real-time in order

to follow the evolution of the dynamics.

1.4 Controller Design

General notions

The controller is the central component of a control strategy. It is a physical device that

commands the actuators in real time to reach a desired objective output (reference). To

do so, it may use information on the system provided by several sensors. Three families

of classical controllers may be distinguished.

The first one, referred to as open-loop controller, computes the actuator signal based

on the desired output only. This controller establishes a direct link between the reference

and the actuator signal. The output error (defined as the distance between the desired

and the actual objective function output) is not used so that an open-loop controller

relies only on the accuracy of the model for reaching its objective. In this approach,

external noise disturbances are not taken into consideration and they may excite the

system dynamics without being controlled. Turning up the volume of a radio is an

example of open-loop controller.

In contrast, a feed-forward controller assumes knowledge of the external disturbances

to compute the actuator signal. In the feed-forward framework the disturbances are

known even before they excite the system. However, in practice only an image of the

external disturbances is provided by sensors. As in open-loop control, the output error is

not used to improve the actuator signal. Increasing the heating at twilight in someone’s

house, just before the temperature drops, is a typical example of feed-forward control.
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Finally, closed-loop (or feedback) controllers are characterized by the fact that they

take into consideration the output error for the computation of the actuator signal. The

control uses the knowledge of how far the objective output is from a reference value.

Hence, if the targeted reference is not reached, the controller may adjust the inputs

to reduce the mismatch. In this sense, closed-loop controllers are usually considered

as more robust than their open-loop counterparts. In contrast to open-loop and feed-

forward control, closed-loop control can stabilize a system if it is unstable. A classical

feedback law may consist of choosing the inputs as being proportional to the output

error. An even simpler on-off strategy for temperature control may involve switching on

heating when temperature is below a given threshold and switching it off above a certain

value.

Linear Quadratic Gaussian (LQG) Control

Once a given actuator-sensor configuration has been chosen, it is natural to seek the

best controller that minimizes the output error. Within a linear framework, this optimal

control is referred to as Linear Quadratic Gaussian (LQG) control (Lewis & Syrmos,

1995; Skogestad & Postlethwaite, 1996; Friedland, 1986; Zhou et al., 1996). In the

LQG theory, the design of the controller is divided into two sub-problems. In the first

sub-problem, the entire flow state is assumed to be known together with the system’s

governing equations. Under these assumptions the optimal actuator command can be

written at any time as a linear combination of the flow-state variables. This constitutes

the so-called Linear Quadratic Regulator (LQR). In real problems, however, the actual

state is unknown and only sensor observations are available. Hence, one needs to con-

sider a second sub-problem that consists of constructing the best approximation of the

full flow-state from sensor measurements only. The resulting optimal state estimator,

referred to as Kalman estimator, can be built from the system’s governing equations and

from a statistical description of the noise. In a final stage, these two sub-problems are

recombined and the LQG control is given by the linear combination obtained in the first

sub-problem applied to the estimated state of the second sub-problem. The optimality

of this approach is guaranteed by the so-called separation principle (Friedland, 1986).

LQR or LQG controllers have been used extensively in the numerical flow control

literature. These formulations have proven successful in controlling perturbations in

boundary layers (Semeraro et al., 2011), cavity flows (Barbagallo, 2011), separated flows

over a flat plate at high angle of attack (Ahuja & Rowley, 2010), plane channel flows
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(Högberg et al., 2003b,a), Rayleigh-Bénard convection (Or et al., 2001), etc. In contrast,

successful applications of the same procedure to experimental flow instabilities are rare.

An example is the LQG control of combustion oscillations in a Rijke tube achieved by

Illingworth et al. (2011). As explained in the previous section, the modeling of actuators

is certainly a major difficulty that has to be overcome. Another obstacle also comes from

the LQG framework itself, since the design of a Kalman estimator requires a description

of the noise statistics and this information is usually not available in real applications.

Hence, for industrial purposes, other control design approaches have been developed.

Linear Model Predictive Controller (MPC)

The LQG framework may not be optimally suited for experimental implementations as

emphasized in Qin & Badgwell (2003) when it is compared to other industrial control

strategies (figure 1.4). Although the optimal LQG framework was invented in the 60’s,

Figure 1.4: Approximate genealogy of linear Model Predictive Controllers, Qin & Badg-
well (2003).

other families of control algorithms have continued to be developed to respond to indus-

trial needs. These control algorithms involve model prediction of future states and are

referred to as Model Predictive Controller (MPC). This introduction does not aim at

describing all MPC algorithms; more details can be found in, for instance, Camacho &
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Bordons (1999) and Qin & Badgwell (2003). Only the general ideas are presented here.

At each control time step a model gives a prediction of the future outputs over a given

time horizon. This prediction depends on the past inputs and outputs that are known,

as well as on the future control inputs that one seeks to determine (figure 1.5). The

problem then consists of finding the future inputs that minimize a cost functional over

the future time horizon. Hence, at each time step a sequence of future control inputs

is computed and only the inputs of the first time step in this sequence are effectively

applied. The same procedure is then repeated at the next time step. This optimiza-

tion process is represented schematically in figure 1.5. In fact, an LQG controller with

Figure 1.5: Schematic structure of a Model Predicitive Controller, Camacho & Bordons
(1999).

a finite time horizon could probably be considered as part of the MPC family. The

MPC approach has however been conceived as an on-line optimization of the problem.

In doing so, a greater flexibility is achieved as the problem may for instance include

constraints on the control inputs. Typically, the actuator may be restricted to operate

within a given range. The optimization problem then takes the form of a Quadratic

Programming (QP) problem which can be solved by numerical iterative algorithms (No-

cedal & Wright, 2006). The possibility of adding constraints to the control problem is

certainly a strong asset that has contributed to the attraction of MPC in an industrial

context. Within the family of MPC’s, several types of controllers may be considered.

They mainly differ by the type of model that is used or by their ability to adapt the

model during the control process (adaptive control). For instance, the Model Algorithmic

Control (MAC), also known as Model Predictive Heuristic Control (MPHC), formulates
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the model in terms of its impulse responses whereas the Dynamic Matrix Controller

(DMC) is based on the system’s (Heaviside) unit-step responses. Alternatively, other

descriptions in terms of transfer functions or state-space formulations may be found:

Generalized Predictive Control (GPC), Extended Horizon Adaptive Control (EHAC).

The set of available model predictive controllers is rather large, and the advantages of

one approach over another are usually not easy to determine. Some of these algorithms

are currently commercialized. In order to respond to the industrial demand they have

been modified, thereby leading to numerous versions. This thesis does not try to explore

all possible MPC algorithms, but it is shown that the ideas used in MPC can lead to

realistic and efficient alternatives to LQG control.

1.5 Outline

The objective of this thesis is the numerical development and the experimental im-

plementation of a control procedure that applies to convection-dominated flows. Hence,

throughout the three main chapters of the thesis, the focus moves progressively from the-

oretical to more applied considerations. A motivation for and summary of the present

work is given in chapter 2. It is followed by conclusions and outlook in chapter 3.

In chapter 4, the main concepts involved in convection-dominated flows are intro-

duced, and from this analysis, the best sensor placements are deduced. In order to obtain

a description of the fluid system, subspace system identification techniques are consid-

ered. From a numerical and theoretical point of view, the advantages of feed-forward

control over classical LQG techniques are presented.

Based on the theoretical conclusions of chapter 4, an identification and control pro-

cedure is developed in chapter 5. This technique has been sought as being directly

applicable to experiments and for this reason, impulse responses are used to model the

system. In particular, these responses have clear physical interpretations and lead to

a straightforward control design procedure. The technique is validated on channel flow

with obstacles at Re = 500.

Chapter 6 presents an experimental application of the previous procedure. The

configuration is a simple channel flow at Reynolds number Re = 870 where natural

upstream perturbations have to be controlled. The feed-forward control, implemented

with hot-film sensors and a blowing-and-suction device, yields a significant reduction in

the standard deviation of the downstream sensor signal.
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Chapter 2

Summary of the articles

2.1 Paper 1: Control of amplifier flows using subspace

identification techniques

In this paper an efficient, realisitic, and robust control strategy is presented for the

case of convection-dominated amplifier flows. The efficiency of the technique is achieved

by selecting appropriate sensor placements. A subspace system identification technique

is used to attain a realistic control implementation. Finally, a feed-forward approach

is found to be most appropriate since it leads to a robust identification and control

procedure.

2.1.1 An efficient control approach: The need for an upstream sensor

A central issue in flow control is the estimation of the present and future flow states

from sensor observations. Indeed, the efficiency of the controller strongly relies on this

estimation process. This is feasible if a state-space description of the system is available.

If only an input-output description is available, the state estimation problem amounts

to the prediction of the present and future outputs. In what follows, the particular case

of convection-dominated flows is considered. It is shown that an appropriate estimation

imposes restrictions on sensor placements. Interestingly, classical control tools such as

the observability concept may produce very misleading results.

To better understand the intrinsic properties of convection-dominated flows, a shift

operator A is introduced as an idealized model. By definition, this operator transforms

a state vector Xk = (x1, x2, x3, x4, x5, x6)
T , at discrete time k, into a shifted vector

Xk+1 = (0, x1, x2, x3, x4, x5)
T , at discrete time k+1. Such an operator may for instance

17
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be encountered in flow simulations when a transport equation is discretized with a unit

Courant-Friedrichs-Lewy (CFL) coefficient. In this section, it is used to model flows

where convection is the dominating feature. In addition, a white-noise perturbation wk

excites the system at its most upstream location. The governing equations may then be

written in state-space form as

Xk+1 = AXk + Bwwk, (2.1)

where

A =























0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0























, and Bw =























1

0

0

0

0

0























. (2.2)

In addition, a model equation for sensor measurements yk has to be included in the

description: it takes the form of a simple product of the state (column) vector with a

row vector C according to

yk = CXk. (2.3)

As illustrated in figure 2.1, two cases may be considered. The sensor measurements

are performed either upstream or downstream. The upstream sensor placement gives

the best state estimation as evidenced by a smaller estimation error ek, defined as the

difference between the optimal (Kalman) state estimation and the actual state vector.

This conclusion is rather intuitive. Detecting perturbations before they pass through

the system provides useful information for the present and future state estimation. In

contrast, measuring perturbations downstream just before they are swept away is rather

futile1. Note however, that observability is usually essential in classical control theory but

that in the present instance it leads to opposite and therefore misleading conclusions: if

a system is observable, the eigenvalues of the operator that governs the estimation error

can be chosen arbitrarily; in the present configuration, a downstream sensor results

in an observability matrix of rank 6, which indicates full observability, and yet the

estimation error is very high. This paradox is due to the fact that tuning the eigenvalues

of the Kalman estimator only defines the long-time dynamics. However, in convection-

1Sensors may also be used to evaluate the control efficiency and a typical control objective may be

to minimize a particular sensor measurement. In that case, this sensor must be placed downstream to

measure the effectiveness of the actuator and therefore of the control.
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dominated systems, the short-time dynamics of the operator is of crucial interest since

any useful information is eventually swept away by advection. In fact, more generally,

the asymptotic notion of observability is not suitable for non-normal systems where

transient effects may be significant and of crucial interest.

Figure 2.1: Comparison between the upstream and downstream sensor placement in
convection-dominated flows. The analysis is performed on a 6 × 6 shift operator as a
system model.

Hence, in convection-dominated flows, sensors are essentially able to describe the

flow state further downstream but they provide very little information on the present

and future state upstream. This aspect may be further quantified as illustrated on the

complex linearized Ginzburg-Landau equation.

∂q

∂t
= −(Ur + iUi)

∂q

∂x
+ (1 + icd)

∂2q

∂x2
+ µ(x)q (2.4)

for the state q(x, t). It contains convective, diffusive/dispersive, and instability terms

weighted by the parameters (Ur, Ui), (1, cd) and µ(x), respectively. The parameters of

the Ginzburg-Landau equation are the same as in Bagheri et al. (2009) and Chen &

Rowley (2011); only the convection coefficient Ur may differ as specified.

As presented in figure 2.2, a sensor y and an actuator u have been added in order to

compensate the upstream perturbations generated by the noise w. In the left figure, the

flow is dominated by strong convection (Ur = 3) whereas, on the right, the convection

is rather moderate (Ur = 2). The continuous black line represents the relative state

estimation error which is defined as the estimation error standard deviation divided by
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the state standard deviation. A ratio of 0% indicates an exact estimation of the state,

whereas a value of 100% corresponds to the case where the estimator merely returns the

zero solution. It can be seen in both figures (left and right) that the estimator provides

a very faithful description of the state downstream of the sensor (i.e., a small estimation

error). In contrast, upstream of the sensor the estimation error increases rapidly with

the distance to the sensor. To quantify the ability of a sensor to estimate the flow

upstream of its location, the concept of a visibility length is introduced, defined as the

maximum upstream distance from the sensor for which the relative estimation error is

less than 50%. This visibility length decreases as convection increases. For instance, it

is equal to 9.8 for Ur = 2 and only 5.2 for Ur = 3. This observation further supports the

idea that the best sensor location in convection-dominated flows is obtained by placing

sensors upstream of the area of interest. Hence, the final actuator/sensor configuration

for control of convection-dominated flows is presented in figure 2.3. Perturbations are

generated by the upstream noise source w; these perturbations are then measured by

the upstream sensor ys (sometimes referred to as spy sensor) and they are subsequently

controlled by the actuator u. The downstream sensor y is used here to define the control

objective. More precisely, the standard deviation of the signal measured by sensor y has

to be minimized. Throughout this thesis, the actuator/sensor placement is inspired by

the configuration presented in figure 2.3.
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Figure 2.2: Ratio of the standard deviation of the estimation error to the standard
deviation of the state as a function of streamwise position x for a convection speed of (a)
Ur = 3 and (b) Ur = 2. In both figures, the visibility length (see text) has been added.
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Figure 2.3: Sensor and actuator placement. The symbol w represents the noise source at
xw = −14, u is the actuator (the control) at xu = 0, y is the objective sensor at xy = 7,
and ys is the spy sensor placed at xs = −7.

2.1.2 A realistic procedure: Subspace Identification

Most of the classical control design techniques resort to a model to describe the fluid sys-

tem under consideration. This model may be obtained from numerical simulations, even

though they are idealizations of reality. For instance, set-up imperfections and particular

actuator specifics are typically difficult to take into account in simulations. Hence, due

to possible differences between model and reality, the control may be suboptimal, inef-

ficient or, in the most critical cases, even unstable. To remedy this problem, the model

may be designed based directly on experimental measurements. This procedure, referred

to as system identification, is presented in figure 2.4 for the case of subspace techniques.

A first stage consists of exciting the system from its input (u) and of simultaneously

recording the output (y). Note that u and y may be vectors if the system has multiple

inputs or multiple outputs. In a second stage, the resulting input/output signals are

used to fit a model in innovation form

qk+1 = Aqk + Buk + Lek, (2.5)

yk = Cqk + ek, (2.6)

where qk is the state vector at time k, A the state matrix, B the input matrix, C the

output matrix and L the Kalman gain. In addition, ek is a Gaussian white noise with

second-order moment (covariance) E(eke
H
p ) = Rδpk. Finally, the last procedural stage

is the design of a controller based on the previously identified model. This may be

achieved by using, e.g., a Linear Quadratic Control framework or any other control

design approach.

Hence, the realistic aspect of the technique presented in this article rests on the use of

system identification. This methodology has the strong advantage of being directly ap-
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Figure 2.4: Procedural steps of control design based on system identification. Step 1:
excitation of the system with a known input signal and simultaneous measurement of
the output. Step 2: subspace identification of the model. Step 3: design of the LQG
regulator and compensation of the system.

plicable to real experiments. In convection-dominated flows, however, some precautions

have to be taken to ensure robustness of the results.

2.1.3 A robust strategy: The feed-forward approach

As illustrated in section 2.1.1 using the concept of a visibility length, information in

convection-dominated flows essentially travels downstream. Hence, the actuator exci-

tation u has no significant effect on the upstream sensor ys presented in figure 2.3.

Applying the system identification procedure directly, as described in the previous sec-

tion, i.e. with ys treated as an output, would therefore either fail or be very non-robust.

For this reason, the feed-forward approach consists of treating the upstream sensor ys

as an input in the identification and control procedure. In other words, the spy sensor

ys provides information about the incoming perturbations generated by w. Since the

input w is unknown, the feed-forward strategy consists of replacing w by ys in both the
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identification and control designs.

More precisely, a system is identified with inputs ys and u and with output y. This

identified model can directly be used for the estimation since all inputs are assumed to

be known (w has been replaced by ys). The controller may then be obtained from the

solution of an algebraic Riccati equation as for instance in the Linear Quadratic Regu-

lator (LQR) framework. Following this formulation, the control was applied for varying

spy sensor locations and the resulting efficiency (reduction factor of the objective sen-

sor amplitude due to the control) is displayed in figure 2.5. Fifty realizations of system

identification and control were performed for each spy sensor placement, and the average

is represented by a continuous black line. The standard deviation is also indicated in

the form of error bars. In this figure, it is observed that the control efficiency drops

precipitously as the spy sensor is placed downstream of the actuator, which is in line

with the previous results of section 2.1.1. In addition, the feed-forward identification

and control may be compared with optimal, but unrealistic, results obtained from an

LQG control (red plus symbols) and an LQR implementation (green horizontal line).

When the sensor is placed sufficiently upstream, the realistic technique presented in this

article gives a control efficiency of the same order as optimal controllers that assume

either full knowledge of the system (LQG) or even full knowledge of the state (LQR).

Finally, we note that the standard deviation of the efficiency, indicated by the error bars,

is rather small when compared to the total efficiency, indicated by the continuous blue

line. A robust implementation of this approach is therefore ensured. To proceed to more

realistic configurations, the technique is now applied numerically to the flow over a two-

dimensional backward-facing step at Re = 350. Perturbations are generated by three

independent noise sources upstream of the step. They are convected by the flow and

are amplified as they travel through the strong shear region downstream of the step (ex-

hibiting Kelvin-Helmholtz instabilities). This phenomenon, visualized by the averaged

perturbation norm, is illustrated in figure 2.6a. In order to reduce this amplification an

actuator is placed just upstream of the step. Two spy sensors, upstream of this actuator,

describe the incoming perturbations. They are located, respectively, on the upper wall

and on the lower wall. Finally, the control is intended to minimize the fluctuations of

the signal measured downstream of the step by an objective sensor. To this end, the

previously described feed-forward identification and control procedure is applied and the

resulting averaged perturbation norm is shown in figure 2.6b. Perturbations downstream

of the step have been reduced by approximately one order of magnitude.
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Figure 2.5: Control efficiency based on identified models versus position of the spy sensor
ys for the case of large convection Ur = 3. The identification follows the spy approach
whereby the upstream sensor ys is considered as an input in the model. Fifty realizations
of identification and control were performed, and the average and one standard deviation
are indicated. In practice, all controllers were stable. These curves are compared with
the optimal LQG control designed from the full-order system (continuous line with plus
symbols) and the full-state control (horizontal green line). The actuator is located at
xu = 0.

Figure 2.6: Time average of the perturbation norm for the uncontrolled (top) and con-
trolled (bottom) case.

2.2 Paper 2: Data-based model-predictive control design

for convection-dominated flows

In this paper, an alternative feed-forward identification and control formulation is pre-

sented, which is more amenable to a practical implementation in experiments. Rather
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than resorting to a state-space representation of the input-output relationship, the im-

pulse response is first identified and an appropriate control strategy is then applied.

This technique relies on a least-squares minimization procedure in order to determine

the impulse response of the system. It has the advantage of manipulating quantities that

have clear physical meanings such as perturbation convective speeds and characteristic

frequencies. The intermediate validation of the results is therefore easier, which a key

advantage regarding a physical implementation of the method. In the sequel, a Finite

Impulse Response (FIR) model is adopted. This formulation is typically used in the

general class of Model Predictive Controllers (MPC).

2.2.1 Choice of model structure and identification

/////////////////////////////////////////////////

flow

u ys

w

Figure 2.7: Feed-forward control set-up for convection dominated flows. An unknown
disturbance environment w is convected past the spy sensor s in order to estimate the
properties of w. The actuator u then manipulates the flow so that the control objective
obtained from the downstream sensor y is met.

In figure 2.7, the sensor-actuator configuration, obtained in paper 1 for convection-

dominated flows, is described. For the sake of clarity, only one spy sensor s, one actuator

u and one objective sensor y are considered in this summary but, as presented in the full

paper, the results may readily be extended to the case of multiple sensors and actuators.

In the convection-dominated flow of figure 2.7, the noise sources w are unknown. Instead,

a substitute of the noise-induced perturbations is provided by the upstream sensor signal

s. In the feed-forward approach, this signal is considered sufficiently accurate to be used

as a replacement for the noise w itself. Hence, the output y may linearly be described

by the two inputs s and u, leading to the relation

y = Guyu+Gsys, (2.7)

where Guy and Gsy are two linear operators (transfer functions) that link the signal u

and s to the signal y. More precisely, the impulse responses (or Green functions) Hu,

from u to y, and Hs, from s to y, may be introduced. Then, the output signal y(k) at
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time k can be expressed more explicitly as

y(k) =

∞
∑

j=0

Hu
j u(k − j) +

∞
∑

j=0

Hs
j s(k − j). (2.8)

In practice, we assume that Hu
j = Hs

j = 0 for j sufficiently large, i.e. for j greater than a

given (large) number µ. Physically, a convection-dominated flow relaxes to zero after a

sufficiently long time, when all perturbations have been swept downstream. Hence, the

formulation presented in this section is appropriately refered to as the Finite Impulse Re-

sponse (FIR) model. As a result, the final model structure obtained from equation (2.8)

reads

y(k) =

µ−1
∑

j=0

Hu
j u(k − j) +

µ−1
∑

j=0

Hs
j s(k − j), (2.9)

where 2µ model parameters have to be determined, i.e. Hu
j and Hs

j for j < µ. To do

so, equation (2.9) may be arranged in matrix form and the recorded signals y(k), s(k)

and u(k) may be used to compute the impulse responses Hu and Hs via a least-squares

minimization procedure. More specifically, one is lead to express the impulse response

H as

H = Y Φ† (2.10)

with

Y = (y(µ), y(µ+ 1), . . . , y(N)) , (2.11)

H = (Hu,Hs) =
(

Hu
0 , . . . , Hu

µ−1, Hs
0 , . . . , Hs

µ−1

)

(2.12)

and

Φ =



































u(µ) u(µ+ 1) · · · u(N)

u(µ − 1) u(µ) · · · u(N − 1)
...

...
...

u(0) u(1) · · · u(N − µ)

s(µ) s(µ+ 1) · · · s(N)

s(µ− 1) s(µ) · · · s(N − 1)
...

...
...

s(0) s(1) · · · s(N − µ)



































. (2.13)



Paper 2: Data-based model-predictive control design for convection-dominated flows 27

2.2.2 Control Design

Once the impulse responses Hu and Hs have been identified using equation (2.10), they

may serve as a basis for the feed-forward control design procedure. More precisely, when

a perturbation is detected by the upstream spy sensor the controller has to provide

the appropriate actuator signal to compensate the incoming disturbances. Hence, the

control design aims at finding the optimal transfer function, i.e. its counterpart impulse

response L in physical space, that links the spy measurement s to the actuator signal

u. Since the control objective consists of minimizing the output measurement y , the

following objective function is defined:

J =

∞
∑

k=0

y(k)2 + α

∞
∑

k=0

u(k)2. (2.14)

Note that a penalty term, weighted by α > 0, has been added in order to penalize exces-

sive actuator amplitudes. If the previously identified model (2.9) is combined with (2.14),

the objective functional becomes

J =

∞
∑

k=0





µ−1
∑

j=0

Hs
j s(k − j) +

µ−1
∑

j=0

Hu
j u(k − j)





2

+ α

∞
∑

k=0

u(k)2. (2.15)

As mentioned before, the controller design amounts to the computation of its impulse

response L. By definition, it is given by the actuator signal when an impulse is measured

by the spy sensor, that is s(0) = 1 and s(j) = 0 for j > 0. Based on this assumption,

the observed actuator signal is then L and the objective functional may be rewritten as

J =

µ−1
∑

k=0



Hs
k +

µ−1
∑

j=0

Hu
j Lk−j





2

+ α

µ−1
∑

k=0

L2
k. (2.16)

In this equation it has further been assumed that the controller impulse response L(k)

is zero for k > µ, which is intuitive if µ is sufficiently large. Finally, equation 2.16 may

be recast in the matrix form

J(L) = ‖S + T L‖2 + α‖L‖2, (2.17)
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with

T T =













Hu
0 Hu

1 · · · Hu
µ

Hu
0 · · · Hu

µ−1

. . .
...

Hu
0













, (2.18)

S = (Hs
0 ,H

s
1 , . . . ,H

s
µ−1)

T , (2.19)

and

L = (L0, L1, . . . , Lµ−1)
T . (2.20)

The least-squares minimization of the objective functional (2.17) leads to the controller

impulse response

L = −(T TT + αI)−1T TS. (2.21)

Note that equation (2.21) provides the controller impulse response directly from the

knowledge of the identified quantities Hu and Hs.

2.2.3 Results

In order to assess the efficiency of the technique, the procedure is now applied on a chan-

nel flow with obstacles, comprising several actuators and sensors. The simulations are

linear and the Reynolds number based on the channel width is 500. The corresponding

base flow is displayed in figure 2.8.
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Figure 2.8: Steady base Flow and sensor/actuator locations. The colors provide a mea-
sure of the velocity norm.
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The average perturbation norm is presented in figure 2.9. An amplification of the

disturbances may be observed downstream of the obstacles and the aim of the control is

to diminish this amplification. As illustrated at the bottom of figure 2.9, the perturbation

norm is reduced by approximately a factor of 5 to 10 when the control is switched on.

It may be mentioned that the control procedure is flexible: appropriate weights applied

to the different terms in the objective functional may single out one type of actuator

over another, and the relative importance of the different objective sensors may also be

taken into consideration.
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Figure 2.9: Average perturbation norm when the flow is excited by the three noise
sources without control (top) and with control (bottom).

2.3 Paper 3: Experimental control of natural perturba-

tions in channel flow

In this article the feed-forward control procedure, described in the previous paper, is

applied to the quenching of natural disturbances in a plane channel flow at Re = 870.

The experimental facility consists of air flow through an open return channel. Two

hot-film sensors are placed at the wall, and a blowing and suction device is used for

the actuation. In a first step, the flow dynamics between input and output devices

is identified by using the least squares technique based on a Finite Impulse Response

(FIR) model. This identified model then forms the basis for the design of a feed-forward

controller. When applied to the channel flow, the measurement signal magnitude at the

downstream objective sensor location could be reduced by 45%.
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2.3.1 Experimental set-up

The experiments are carried out in an open return wind tunnel at GALCIT, Caltech.

The tunnel has a total length of 2.60 meters and an inside width and height of 15.6 cm

and 1.2 cm, respectively. The air, driven by a simple computer fan, is passed through a

fine grid followed by a smooth contracting nozzle of inlet-to-outlet ratio 8.3. Downstream

of the nozzle, the flow exits into a constant cross-section duct of length 186 cm. Two

hot film sensors are placed on the channel wall at locations x = 0 cm and x = 29 cm.

The upstream sensor provides information about the incoming disturbance field, while

the second downstream sensor is used to evaluate the control objective. A blowing and

suction device is composed of a syringe pump controlled by a computer via a stepper

motor. The syringe is connected to the lower channel wall located at x = 16.5 cm. The

full set-up is sketched in figure 2.10. The sensors are operated by a Wheatstone bridge

which in turn is connected to the data acquisition card of a computer. The control signal

is generated by the computer, transmitted to a Voltage/Frequency Converter and passed

via a Motor Controller to the stepper motor of the syringe pump.

M / / / / / / / / / / / / / / / / / / / / / / / / / / / /

Channel flow

Syringe pump

Motor controller

Voltage/Frequency 

Converter Computer (controller)

Wheatstone 

Bridge

s u y

Figure 2.10: Sketch of the full experimental set-up including channel flow, all actuation
and measurement devices, and data acquisition and processing units.

2.3.2 Controller design and results

The convective nature of the flow configuration suggests the use of a feed-forward con-

troller design Juillet et al. (2013). More specifically, a Model Predictive Control (MPC)

framework (Camacho & Bordons, 1999; Qin & Badgwell, 2003) is employed to reduce the
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standard deviation of naturally occurring disturbances, as measured by the downstream

sensor. The full control design proceeds in two steps. First, a linear model, linking

upstream sensor information and control input to the downstream sensor output, has

to be postulated. In the present, a simple Finite Impulse Response (FIR) model Ljung

(1999) is used whose coefficients have been determined directly from the observed data

by a least-square fitting technique. The final result of the identification phase consists

of two transfer functions: from the actuator to the downstream sensor, and from the

upstream to the downstream sensor. The second step consists of using these two trans-

fer functions to design a control law so that the signal at the downstream (objective)

sensor is minimized. More intuitively, the actuator counteracts the incoming perturba-

tions, as measured by the upstream sensor, in order to lead to a minimum signal at the

downstream sensor.

Representative results of the controlled and uncontrolled flow are shown in figure 2.11,

visualized by a time trace of the downstream objective sensor output. The control

experiment has been repeated more than 25 times to gather statistics on the controller’s

performance. For the specific realization shown in figure 2.11, the uncontrolled signal is

characterized by a standard deviation of σ = 0.0625, which is reduced by 44%, to a value

of σ = 0.0348, once the control is activated. Averaged over all sample runs, a robust

45% reduction in standard deviation is obtained. Despite the fact that only a reduction

of the downstream objective sensor signal is targeted by the controller, a 30% reduction

in standard deviation can still be measured by an additional sensor placed 14 cm further

downstream from the objective sensor. The present results support the use of a combined

system identification and feed-forward framework; within an experimental setting, these

techniques have been shown to be effective and robust in controlling disturbances arising

in a natural noise environment.
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Figure 2.11: Representative time traces of the downstream (objective) sensor signal.
Left: uncontrolled case. Right: controlled case. A 44% reduction in standard deviation
may be observed.
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Conclusions and Outlook

In this thesis, a realistic feed-forward identification and control technique was developed

for convection-dominated flows. The procedure was justified theoretically, validated nu-

merically and finally implemented experimentally. The initial motivation for the present

work was the observation that Linear Quadratic Gaussian control leads to very promis-

ing numerical results (Bewley, 2001; Semeraro et al., 2011; Illingworth et al., 2012) but,

in contrast, to very few experimental implementations.

Several reasons may be put forward to explain this lack of experimental confirma-

tion. First, the LQG control design requires quantities that are usually difficult to

obtain experimentally. This is for instance the case of noise covariances. In addition,

the representative models used in the LQG-framework are typically based on numerical

computations, but faithful simulations of the experimental flow and of the actuator’s pe-

culiarities are usually very difficult to obtain. Finally, this framework formulates models

in state-space form, but the latter may not be the best suited representations to describe

systems with intrinsic delays. To overcome these obstacles, this thesis proposes to resort

to feed-forward controllers where the noise dynamics is directly measured by appropri-

ate sensors. System identification algorithms may also be used to build realistic models

from experimental measurements. Lastly, for convection-dominated flows, using impulse

responses as a model representation may appear more appealing, from a physical point

of view, than the more classical state-space formulations.

Feedback versus feed-forward

It has been shown in this work that feed-forward is the most appropriate approach

for controlling convective instabilities (or, more generally, convection-dominated flows).

33
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Note that the potential of this approach applied to a Blasius boundary layer has been

recently studied by Belson et al. (2013). The effectiveness of the feed-forward controllers

has also been observed. In addition, the authors suggest to place the sensors as close

as possible to the actuator, possibly just downstream of this one, to better capture all

the incoming disturbances. As a natural counterpart to convective instabilities, one may

wonder which approach would be suitable for the control of absolute instabilities. In par-

allel flows, local absolute instabilities directly lead to globally unstable flows. However,

a severe limitation of the feed-forward approach is that it is unable to stabilize systems

that are initially globally unstable. Hence, to control absolute instabilities, one must

resort to feedback controllers that are capable of stabilizing unstable global modes. In

practice, however, the most efficient solution may be a combination of both approaches

as illustrated on the flow over a cavity (Sipp, personal communication). For sufficiently

high Reynolds numbers, this flow is globally unstable and therefore only a feedback

control can stabilize it. At the same time, the cavity flow also exhibits a convective

instability due to the strong shear between the cavity and the adjacent free-stream.

Only a feed-forward control can reduce the amplification mechanism. Hence, to achieve

optimal control performances, both approaches may have to be combined. The relative

merits of the different system identification techniques and control design procedures are

discussed in the next two paragraphs.

System identification

Building models from system identification techniques appears to be both practical and

efficient. Subspace algorithms were first considered in this work because of their abil-

ity to describe the noise dynamics. Yet, if a feed-forward strategy is chosen, the noise

description is obtained from a devoted upstream sensor and the identification of noise

dynamics is not needed. Hence, the sophisticated subspace techniques implemented in

paper 1 may not be the most appropriate tool in practice. Simpler system identification

algorithms based on, for instance, the Finite Impulse Response (FIR) model may be

easier to apply. More generally, such a formulation falls within the general class of Pre-

diction Error Methods (PEM), which may be the most suitable. Although this aspect

has not been quantified explicitly, the latter methods seem to be more robust than the

more complex subspace techniques. Throughout this work, the robustness of the identi-

fication algorithm had to be traded off against its sophistication. For this reason, within

the family of prediction error methods, the simple Finite Impulse Response (FIR) model
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structure was chosen to describe the flow. Note however, that in configurations where

a feedback is required, identifying the noise statistics with subspace techniques may be

necessary. Finally, it should be mentioned that linear system identification is essentially

relevant to describe globally stable flows; it is neither able to model the nonlinear satu-

ration mechanism of oscillator flows nor the governing physics of turbulence. To do so,

one may resort to nonlinear identification techniques. These methods, based on iterative

solvers, are very flexible. The main difficulty, however, is probably the choice of a proper

physically based nonlinear model. In addition, an appropriate control design framework

should then be designed to handle such nonlinear structure.

Control formulations

Model Predicitive Control (MPC) has proven to be a valuable alternative to classical

LQG control. These techniques are not new, and they have already been implemented

in fluid mechanics for the control of convection-dominated flows (Rathnasingham &

Breuer, 2003; Lundell, 2007; Goldin et al., 2013). This thesis, however, has proposed a

clear comparison of MPC with the optimal LQG theory. First, the use of feedback from

downstream sensors in convection-dominated configurations is pointless as put forward

by the concept of a visibility length. In addition, in the same context, feed-forward MPC

was shown to be theoretically as efficient as LQG control while being far more realistic.

In other words, even though the LQG framework is attractive, especially in numerical

simulations, it may be seen as over-sophisticated when applied to convection-dominated

flows. Further exploring the family of MPC techniques, including adaptive and cou-

pled feedback and feed-forward approaches, seems promising. These control algorithms

have often been developed in combination with system identification techniques and are

therefore particularly suitable for experimental implementations.

Future experimental investigations

The experimental application presented in this thesis further supports the use of model

predictive control (MPC). A significant reduction of the perturbations measured by two

downstream wall-sensors was achieved in channel flow. All actuator and sensor devices

were aligned in the streamwise direction and the control is therefore only relevant along

this particular direction. It is natural to try to extend this study by adding other actua-

tors and spy sensors in the spanwise direction. In paper 2, the control design presented
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has already been developed for the case of multiple actuators and multiple spy sensors; it

has however not yet been applied to the control of three-dimensional instabilities. The

3D flow over a backward-facing step may be a good candidate for this type of study

since the first unstable mode is three-dimensional (Barkley et al., 2002). Applying the

MPC framework, with a large array of actuators and sensors, may be seen as a natural

extension of this current work.
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Stüper, J. 1943 Flight experiments and tests on two airplanes with suction slots. NACA

TM 1231 (1950). English translation of ZWB Forschungsbericht 1821.

Van Overschee, P. & De Moor, B. 1994 N4sid: Subspace algorithms for the iden-

tification of combined deterministic-stochastic systems. Automatica 30 (1), 75–93.

Van Overschee, P. & De Moor, B. 1996 Subspace Identification For Linear Systems.

Kluwer Academic Publishers.

Verhaegen, M. & Deprettere, E. 1991 A fast, recursive mimo state space model

identification algorithm. In Decision and Control, 1991., Proceedings of the 30th IEEE

Conference on, pp. 1349 –1354 vol.2.

Verhaegen, M. & Verdult, V. 2007 Filtering and System Identification. Cambridge

University Press.

Zhou, K., Doyle, J. C. & Glover, K. 1996 Robust and Optimal Control . Prentice

Hall.

Zuccher, S.e, Luchini, P. & Bottaro, A. 2004 Algebraic growth in a blasius bound-

ary layer: optimal and robust control by mean suction in the nonlinear regime. Journal

of Fluid Mechanics 513, 135–160.



42 Bibliography



Chapter 4

Control of amplifier flows using

subspace identification techniques

43



44 Control of amplifier flows using subspace identification techniques

J. Fluid Mech. (2013), vol. 725, pp. 522-565. Cambridge University Press 2013
doi:10.1017/jfm.2013.194

1

Control of amplifier flows using subspace
identification techniques

FABIEN JUILLET, PETER J. SCHMID
AND PATRICK HUERRE

Laboratoire d’Hydrodynamique (LadHyX), CNRS-Ecole Polytechnique, 91128 Palaiseau,
France

(Received 31 May 2012; revised 31 January 2013; accepted 10 April 2013;

first published online 17 May 2013)

A realistic, efficient and robust technique for the control of amplifier flows has been inves-
tigated. Since this type of fluid systems is extremely sensitive to upstream environmental
noise, an accurate model capturing the influence of these perturbations is needed. A sub-
space identification algorithm is not only a convenient and effective way of constructing
this model, it is also realistic in the sense that it is based on input and output data
measurements only and does not require other information from the detailed dynamics
of the fluid system. This data-based control design has been tested on an amplifier model
derived from the Ginzburg-Landau equation, and no significant loss of efficiency has been
observed when using the identified instead of the exact model. Even though system iden-
tification leads to a realistic control design, other issues such as state estimation, have
to be addressed to achieve full control efficiency. In particular, placing a sensor too far
downstream is detrimental since it does not provide an estimation of incoming perturba-
tions. This has been made clear and quantitative by considering the relative estimation
error and, more appropriately, the concept of a visibility length, a measure of how far
upstream a sensor is able to accurately estimate the flow state. It has been demonstrated
that a strongly convective system is characterized by a correspondingly small visibility
length. In fact, in the latter case the optimal sensor placement has been found upstream
of the actuators and only this configuration was found to yield an efficient control perfor-
mance. This upstream sensor placement suggests the use of a feed-forward approach for
fluid systems with strong convection. Furthermore, treating upstream sensors as inputs in
the identification procedure results in a very efficient and robust control. When validated
on the Ginzburg-Landau model this technique is effective and it is comparable to the
optimal upper bound, given by full-state control, when the amplifier behavior becomes
convection-dominated. These concepts and findings have been extended and verified for
flow over a backward-facing step at a Reynolds number Re = 350. Environmental noise
has been introduced by three independent, localized sources. A very satisfactory control
of the Kelvin-Helmholtz instability has been obtained with a one order of magnitude
reduction in the averaged perturbation norm. The above observations have been further
confirmed by examining a low-order model problem that mimics a convection-dominated
flow but allows the explicit computation of control-relevant measures such as observabil-
ity. This study casts doubts on the usefulness of the asymptotic notion of observability for
convection-dominated flows, since such flows are governed by transient effects. Finally, it
is shown that the feed-forward approach is equivalent to an optimal LQG-control for spy
sensors placed sufficiently far upstream or for sufficiently convective flows. The control
design procedure presented in this paper, consisting of data-based subspace identification
and feed-forward control, was found to be effective and robust. Its implementation in a
real physical experiment may confidently be carried out.
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2 F. Juillet, P.J. Schmid and P. Huerre

1. Introduction

In this article, different approaches for the control of amplifier flows are presented and
compared. A technique consisting of a data-based feed-forward controller is designed and
evaluated. It is shown to be at the same time realistic, efficient and robust.

Flow control aims at acting on a fluid system at a few selected locations to induce
and enforce a predefined, desired behavior. Research in this area has received increasing
interest fueled by a large number of potential technological applications in science and
engineering. Areas of interest include, among others, drag reduction, control of separation
or reattachment, mixing enhancement and the delay of transition to turbulence. Since
the way of controlling a fluid critically depends on specific details of the system, a large
number of strategies have been designed to manipulate fluid flows. To give a few examples:
the actuation may be steady, for instance, constant suction through a flat surface as
presented in the review of Joslin (1998), or harmonic, for instance, periodic excitation
at a very specific mode frequency as in Greenblatt & Wygnanski (2000), or it may be
based on sensor measurements via a direct feedback, in the simplest case, specified by
proportional control.

More generally, a successful control strategy depends equally on the control objective
and on the intrinsic flow dynamics. Two flow classes have to be distinguished. Fluid
system known as oscillators are characterized by a periodic behavior at a sharply defined
frequency that is unresponsive to environmental noise sources. Typical examples of this
sort of behavior can be found in hot or swirling jets, mixing layers with sufficiently
large counter flow or flow around a cylinder for a sufficiently high Reynolds number. In
contrast, if the flow is strongly influenced by the external disturbance environment, the
fluid system is referred to as an amplifier. Pipe or channel flows, co-flowing mixing layers,
boundary layers on a flat plate represent typical examples. If the external noise that
drives an amplifier flow is sufficiently small, the fluid system can be described within a
linear framework. The classification of fluid flows according to their amplifier or oscillator
behavior was introduced in Huerre & Monkewitz (1990). The one-dimensional Ginzburg-
Landau equation was used as a convenient surrogate for the Navier-Stokes equations. This
particular model equation has been popular in addressing a range of related phenomena
in fluid mechanics and in flow control such as in Chomaz et al. (1987) and Lauga &
Bewley (2004).

Within the range of active control strategies, a model-based approach has been preva-
lent in the flow control literature (see, e.g., Kim & Bewley (2007) or Noack et al. (2011)).
Its underlying premise is to determine a mathematical model that accurately describes
the system dynamics and to subsequently use it to design an optimal control law. Sev-
eral strategies are available to arrive at such a model. For sufficiently simple systems, a
model equation can be deduced directly from physical principles (Bewley & Liu 1998).
For more complex problems, numerical simulations offer an alternative to obtain this
model (Semeraro et al. 2011). Both approaches provide valuable insight into the physical
mechanisms of instability and flow control. However, both approaches also suffer from
the need to accurately describe the external disturbance environment. In many previ-
ous studies (Lauga & Bewley 2004; Bagheri et al. 2009a; Semeraro et al. 2011; Chen &
Rowley 2011; Ma et al. 2011; Barbagallo et al. 2012), a simplified model for the distur-
bance environment is assumed in the control design. The resulting control performance
is somewhat contrived, since it is closely tailored to the postulated noise model. A sim-
ilar approach is inconceivable in an experimental setting. Another approach resorts to
system-identification theory in order to generate a model. In particular, this technique
has been successfully applied experimentally with several goals such as the suppression of
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flow-induced cavity tones (Cattafesta et al. 2003; Kegerise et al. 2004), the reattachment
of a separated boundary layer over a pitched airfoil (Tian et al. 2006), the manipulation
of the reattachment point downstream of a backward-facing step (Henning & King 2007)
or the control of lift of an airfoil in the presence of gusts (Kerstens et al. 2011). A rather
recent approach consists of using system identification techniques to obtain a model that
directly approximates the linearized Navier-Stokes equations. In this context, promising
results have been found by Hervé et al. (2012). The principal advantage of this approach
lies in the fact that the model is directly derived from experimental, and thus noise-
contaminated, data. In this sense, such a technique may provide a better description of a
realistic (experimental) fluid system. However, a physical interpretation of the identified
model may prove to be rather challenging.
System identification is concerned with building input-output models for dynamical

systems directly from input-output observations. Even-though this field of research com-
prises a wide range of techniques and applications, we restrict our attention to algorithms
developed for the identification of stable Linear Time Invariant (LTI) systems. Applying
these techniques to fluid systems may be justified in the case of amplifier flows if they
are excited by small perturbations. In that case, the flow dynamics can be decomposed
as a sum of a steady base flow (Time Invariant) and a perturbation flow field. For suf-
ficiently small perturbations, the amplifier behavior is then accurately described by the
Navier-Stokes equations linearized around the base flow and system identification tech-
niques therefore aim at constructing a model that accurately captures any input-output
behavior of the linearized Navier-Stokes operator.
If the underlying model is specified, for instance as an AutoRegressive model with

eXogenous inputs (ARX), or an AutoRegressiveMoving-Average model with eXogenous
inputs (ARMAX), the identification technique proceeds by matching the input-output
behavior of the model to the observed data in a least-squares sense (Ljung 1999). An al-
ternative is to identify the discrete linear system matrices by computing estimates of the
state vector over many consecutive time steps. This technique is referred to as subspace
identification; the main idea stems from Kalman (1960) and the method has been for-
malized by Larimore (1983). Commonly used subspace identification algorithms include
the Canonical Variate Analysis algorithm (CVA) (Larimore 1983, 1990), the Multiple-
inputs and multiple-outputs Output-Error State sPace algorithm MOESP (Verhaegen &
Deprettere 1991) and the Numerical algorithms for Subspace State Space System IDenti-
fication N4SID (Van Overschee & De Moor 1994). A comprehensive description of these
techniques, within a unified framework, is given in Van Overschee & De Moor (1996);
for a more recent review on the subject see for instance Qin (2006). In addition to the
linear system matrices, subspace identification techniques provide an approximation of
the noise covariances which are required for a subsequent control design based on Lin-
ear Quadratic Gaussian (LQG) theory. In fact, subspace identification and LQG control
design are two intimately related procedures, and the corresponding approaches can be
combined into a single technique that produces an optimal control strategy directly from
the input-output data sequences (Favoreel et al. 1998).
Over the last two decades, the LQG framework has provided the central component

of many flow control studies as in Bewley & Liu (1998); Bewley (2001); Chevalier et al.
(2007); Högberg & Henningson (2002); Bagheri et al. (2009a) and Semeraro et al. (2011).
The appeal — and thus widespread use — of this technique lies in its theoretical op-
timality. A great many other alternatives are however available and even preferred in
robust control applications for industrial problems; this over-emphasis on LQG control
has also been noted by Qin & Badgwell (2003).
This article consists in a presentation and evaluation of a combined approach involving
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subspace identification and optimal control design. In particular, we are interested in a
design that is not only efficient in reducing noise amplification, but also robust in its
performance and realistic with respect to available system information. The successful
application of flow-altering momentum or energy sources necessarily relies on efficient
strategies and control laws. These control laws, in turn, have to be insensitive to small
variations in the underlying assumptions, to model approximations or to parameter un-
certainties. Only schemes that exhibit this property, i.e., robust schemes, will be able to
perform under a range of environmental conditions, rather than at a narrowly defined
or idealized design point. Effective control strategies also have to be realistic in a sense
that their design only relies on quantities that are readily available in numerical simula-
tions as well as in physical experiments; this precludes the use of purely mathematical
quantities such as system matrices or prescribed stochastic disturbance environments. In
this paper we propose and analyze a feed-forward design procedure that accomplishes
these three objectives. Feed-forward control is not a new approach and it has been used
intensively in other fields of research such as in automatics (see, e.g., Meckl & Seering
1986), in chemistry (see, e.g., Calvet & Arkun 1988) or in noise cancellation application
(see, e.g., Zeng & de Callafon 2003) or temperature control (see, e.g., Thomas et al.
2005). A recent and successful numerical application of such a strategy for the control of
flow over a backward-facing step can be found in Hervé et al. (2012). The main purpose
of the present article is to identify and understand the strengths and weaknesses of the
feed-forward approach when applied to amplifier flows. In particular, it will be seen that
convection plays a crucial role in the relative efficiency of the technique.
The paper is organized as follows. In §2, subspace identification techniques are intro-

duced and the LQG framework is briefly discussed. Based on these techniques, a standard
control approach is applied to the linear Ginzburg-Landau equation in §3 and its limi-
tations are pointed out. In particular, the relative estimation error and the introduction
of the concept of a visibility length are shown to provide valuable tools in analyzing the
strengths and weaknesses of standard feedback control in convection-dominated flows
(§3.4). In this respect, it is advantageous to place sensors further upstream in the flow
domain. The resulting feed-forward approach leads to the design of a realistic, robust and
efficient control scheme (§4). The technique is then validated on a more realistic fluid
system, namely flow over a backward-facing step at a Reynolds number Re = 350 (§5).
Finally, this successful feed-forward strategy is further explored and analyzed in mathe-
matical terms and it is compared to the optimal LQG-control design (§6). A discussion of
the main conclusions is given in §7. For the sake of clarity, the details of the presentation
of the subspace identification algorithm have been relegated to an appendix.

2. System definition and control performance

2.1. System definition

The one-dimensional linear Ginzburg-Landau equation (see, e.g., Bagheri et al. 2009b)
is selected as a model problem. It reads

∂q

∂t
= −(Ur + iUi)

∂q

∂x
+ (1 + icd)

∂2q

∂x2
+ µ(x)q (2.1)

where q(x, t) denotes the state which is assumed bounded as |x| tends to infinity. This
equation is widely used as a model in fluid mechanics due to its convectively or absolutely
unstable characteristics (Huerre & Monkewitz 1990; Lauga & Bewley 2004). It contains
convective and diffusive/dispersive terms, as well as a local instability governed by the
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Figure 1. Response to an impulse from the noise location shown as |q|-contours in an
x-t-diagram; (a) for a moderate convection speed Ur = 2 and (b) for a large convection speed
Ur = 3. Symbols denote the absolutely unstable (AU), convectively unstable (CU) or stable (S)
spatial domains.

parameter µ(x). In the present case, the latter function is chosen as µ(x) = µ1−(Ui/2)
2+

µ2x
2/2, with µ1 = 0.38, µ2 = −0.01 and Ui = 0.4, such that only a finite region, given

by |x| <
√
2µ1/|µ2| ≈ 8.72 is locally unstable. The parameters of the Ginzburg-Landau

equation are the same as in Bagheri et al. (2009b) and Chen & Rowley (2011); only
the convection coefficient Ur may differ when specified. More precisely, the dispersion
coefficient cd is equal to −1 and two different values of the convection speed Ur are
selected. To model a fluid system in the presence of moderate convection, the value
Ur = 2 is chosen whereas Ur = 3 corresponds to a case of large convection. With this
choice of parameters, the flow is always globally stable, even though a sizable absolutely
unstable region is present in the case of moderate convection Ur = 2, a feature which
can be attributed to the non-parallel nature of the flow stemming from the µ(x)-term
(Chomaz et al. 1987; Huerre & Monkewitz 1990; Bagheri et al. 2009b). Systems of this
type are referred to as amplifiers, i.e., any perturbation moving into the unstable region
is convected, filtered and amplified. It is further assumed that the governing equation is
excited by a noise source which is localized inside the upstream locally stable domain,
at xw = −14. The response to an impulse from this noise location gives insight into
the system dynamics. It is displayed in figure 1(a) with isocontours of |q| in an x-t-
diagram. For moderate convection speed Ur = 2, the impulse decays initially (in the
stable region) but grows rather rapidly as it moves into the convectively unstable region.
More quantitatively, the maximum value of q is less than 0.01 as the perturbation enters
the unstable region (at t ≈ 2), but it is amplified by a factor of more than four at t = 20
before it slowly decays for t > 20. This is in contrast to the impulse response for a
large convection speed Ur = 3 displayed in figure 1(b). In this case, a similar, initially
convected pattern is observed, but the slowly decaying quasi-stationary perturbation is
conspicuously absent. This strong difference in the behavior of the two systems (Ur = 2
and Ur = 3) is to be attributed to the presence of an absolutely unstable region in the
moderate convection case (Ur = 2).

Hence, within the family of amplifier flows, very different behaviors are observed and
it will be seen in the next section that this has a direct impact on the efficiency of
any control strategy. More precisely, two cases are distinguished, one with moderate
convection and one with large convection. In fact, convection is a central component
of amplifier flows. From a local point of view, a parallel flow is an amplifier if it is
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Figure 2. Sketch of the control set-up for the linear Ginzburg-Landau equation, showing the
noise source w at xw = −14, the actuator u at xu = 0 and the sensor y at xy = 7 for moderate
convection U = 2 (a) and large convection U = 3 (b)

convectively unstable, that is if, for infinitely large times, any unstable wave is associated
with a non-zero group velocity (Huerre & Monkewitz 1990). From a global point of view,
convection is responsible for the non-normality of the linear operator in globally stable
open flows, which, consequently, results in an amplifier behavior (Chomaz 2005). Hence,
it is clear that amplifier flows are necessarily associated with a non-negligible convection.
The moderate convection Ur = 2 corresponds to a case where convection is sufficiently
high for the flow to be globally stable and to be classified as an amplifier. Yet this
convection is relatively small and, as illustrated in figure 1(a), the competition between
local instabilities and convection has a very strong impact on the intrinsic global flow
behavior.

Thus, within the set of amplifier flows, a flow is convection-dominated if its behavior
is mainly governed by convective processes. For instance, pipe or channel flows, homoge-
neous jet flows, or flows over streamlined airfoils at small angles of attack are examples of
convection-dominated flows. In the present study, as seen in figure 1, the large convection
case Ur = 3 has a convection-dominated behavior whereas the moderate convection case
Ur = 2 does not. It will be seen in §4.2 that the technique developed in this article is
particularly efficient for convection-dominated flows.

To complete the specification of the control set-up, a sensor and an actuator are placed
at xy = 7 and xu = 0, respectively, with a Gaussian shape function of width s = 0.4
(figure 2). In fact, the sensor placement corresponds to the position where the impulse
response is largest (figure 1). Hence this sensor provides direct information on the max-
imum amplification within the flow.

Following Bagheri et al. (2009b), the Ginzburg-Landau equation is discretized in space
using a pseudo-spectral method based on Hermite functions where n = 220 nodes are
distributed within the interval −85 < x < 85. The discrete state vector is advanced
in time by a Crank-Nicolson scheme with a constant time step ∆t = 0.1. The spatio-
temporal discretization then yields the discrete state-space formulation

qk+1 = Aqk + Buk + Bwwk (2.2a)

yk = Cqk + vk, (2.2b)
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where qk is a column vector with n components describing the state at time t = k∆t, A
is the state matrix of size n× n, B is the actuator input matrix of size n× 1 , Bw is the
noise input matrix of size n× 1 and C is the output matrix of size 1×n. In addition, wk

is a stochastic, normally-distributed, white-in-time noise of standard deviation σW = 1,
uk is the actuator input, yk is the sensor output and vk is the measurement noise (again,
normally-distributed and white-in-time of standard deviation σV equal to 10% of the
output standard deviation when the system is excited by w only). From the stochastic
terms of the above system, noise covariances R, S and Q can be defined according to

E
((

Bwwk

vk

)(
Bwwp

vp

)H
)

=

(
Q S

SH R

)
δpk (2.3)

where E(a) ≡ limN→∞
1

N

∑N
k=1

ak denotes the expected value and the superscript H

symbolizes the conjugate transpose. In practice, v and w are uncorrelated such that S is
identically zero. Recall that σW ≡ 1 and σV ≡

√
R.

2.2. Control performance

We next design a control scheme based on the set-up above and determine its effectiveness
in reducing the upstream noise w. Ideally, the norm of the state vector, ‖q‖, is to be
minimized. In practice, however, the state vector cannot be measured directly; instead,
only information from the sensor is available. Since the measurement is performed at
xy = 7, where the impulse response amplitude is largest (figure 1(a)), it is reasonable to
assume that by reducing the output y a commensurate reduction of the state vector q
can be accomplished. We thus formulate the cost functional J as

J ≡ E
(
‖y‖2 + l‖u‖2

)
→ min, (2.4)

where l is a positive parameter that penalizes the exerted control effort and thus prevents
excessive input amplitudes, and ‖.‖ represents the Euclidean norm. In what follows we
set l = 0.001. The state-space system (2.2) and the cost functional (2.4) are augmented
by an optimal control law (LQG) based on the measurement y. The results are presented
in figure 3(a) for a moderate convection speed Ur = 2. The full-order system (A,B,C)
as well as the noise covariances (Q,R, S) are assumed to be given. The quantity Jk =
‖yk‖2 + l‖uk‖2 is represented as a function of time, together with its expected values
for an active and inactive control u. At t = 400 the control is switched on, and the
cost functional rapidly decreases by nearly two orders of magnitude, settling down to an
expected value J = 0.0064 from an uncontrolled value J = 0.25, i.e. a reduction by a
factor of 38.
The same control design procedure has also been applied to the case of the large con-

vection speed Ur = 3. The control performance measure is shown in figure 3(b). The
optimal control in seen to achieve a reduction in the cost functional of only a factor
2.6. This decreased performance results from two considerations. First, for Ur = 2 the
perturbation remains in the unstable region for more than 1500 time steps (figure 1(a)),
and the control can be applied over this entire time span, while for Ur = 3, the pertur-
bation decays substantially more rapidly (figure 1(b)), and the control has a very limited
“window of opportunity” (when the perturbation passes the actuator location) to accom-
plish its objective. The second observation is related to the efficiency of the estimation
process. For a large convection speed (in our case Ur = 3), the information from the
sensor downstream fails to sufficiently capture the upstream dynamics of the incoming
perturbation which is essential for an effective control.
In the previous computation, the LQG framework was chosen to probe the optimal con-
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Figure 3. Cost functional J = E(y2 + lu2) with control (in green) and without control (in
black). In addition the quantity J = y2

k + lu2

k is plotted as a function of time. The control is
turned on at t = 400. The LQG controller has been designed based on the full-order system (2.2)
and the full-order noise covariances (2.3). (a) Moderate convection Ur = 2, (b) Large convection
Ur = 3.

trol performance for a given actuator-sensor set-up and to quantify the control efficiency
that, in the best case, may be expected. The disappointing reduction in performance for
convection-dominated flows (Ur = 3) cannot be attributed to the control technique, but
rather it has to be related to the control set-up. This first issue is dealt with in §3.4. Fur-
thermore, it has to be kept in mind, that while establishing an upper bound for control
performance, the LQG design involves mathematical quantities such as A, B, C, Q, R
and S which are generally not available in physical experiments. To address this issue, a
technique that only depends on realistically available quantities is introduced in the next
section. It extracts the system matrices and noise covariances directly from measured
data sequences. The efficiency of this scheme will then be compared with the optimal
(but unrealistic) LQG standard.

3. Towards a realistic LQG-control scheme based on subspace
identification

3.1. System identification by subspace techniques

System identification is a well-established technique for the recovery of deterministic
and/or stochastic dynamical systems from their response to input signals. It comprises
numerous methods of varying applicability and complexity (Ljung 1999). In the present
case, we are interested in extracting the system matrices (A, B, C) together with the noise
covariances (Q,R, S) by processing measured data sequences for u and y. The identifica-
tion of noise covariances is particularly important for flow amplifiers where the response
to noise plays a crucial role. For this reason, a subspace identification technique, that
provides approximations of the noise covariances (Q,R, S), is chosen. A comprehensive
description of these techniques can be found in Van Overschee & De Moor (1996) or Qin
(2006). The procedural steps of subspace identification and control design are sketched
in figure 4. First, the system is excited by an arbitrary, but frequency-rich input signal u
and by unknown disturbances w; meanwhile, the output signal y is recorded. In a second
step, the known input and output signals are processed and a subspace identification al-
gorithm provides a linear model (A, B, C) together with the noise covariances (Q,R, S). In
a final step, an LQG regulator is designed based on this model. The subspace identifica-
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Figure 4. Procedural steps of control design based on system identification. Step 1: excitation
of the system with a known input signal and simultaneous measurement of the output. Step 2:
subspace identification of the model. Step 3: design of the LQG regulator and compensation of
the system.

tion algorithm constitutes a central element in the entire analysis. The reader is referred
to the appendix for its detailed presentation. The paper may be read independently of
the appendix.

3.2. Linear-Quadratic-Gaussian (LQG) framework

Once input-output data sequences have been used to identify the system matrices and
noise covariances, we are in a position to design an estimator and controller using the
LQG-framework and to compensate the identified system (step 3 in figure 4). This design
step is well covered in the flow control literature (Skogestad & Postlethwaite 1996; Fried-
land 1986; de Larminat 2002; Zhou et al. 1996) and thus it will be only briefly reviewed
for completeness.
The objective of the control is to find a sequence uk such that the cost functional J

given by

J = E
(
‖y‖2 + l‖u‖2

)
(3.1)

is minimized, where y is governed by the state-space system

qk+1 = Aqk + Buk + Bwwk (3.2a)

yk = Cqk + vk, (3.2b)

with given system matrices A, B, C, known noise covariances and measured output yk.
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In a first step, the full-state control problem is solved, which assumes that the state qk
is entirely known. With a linear optimal control law, i.e., uk = Kqk, the full-state control
problem can be expressed in the form of an optimization problem: find a constant gain
matrix K such that the cost functional

J = E
(
qH
(
CHC+ l KHK

)
q
)

(3.3)

is minimized, where q solves (3.2a). If (A,B) is stabilizable, i.e there exists a matrix M

such that A − BM is stable, and (C,A) is detectable, i.e there exists a matrix M such
that A − MC is stable, a symmetric, positive semi-definite matrix T can be uniquely
determined (de Larminat 2002; Zhou et al. 1996) as a solution of the discrete algebraic
Riccati equation:

T = AHTA− AHTB(l+ BHTB)−1BHTA+ CHC. (3.4)

The optimal control gain K is then given by

K = −(l + BHTB)−1BHTA, (3.5)

and the controlled system is stable.
In practice, the state q is not available and an estimator has to be designed that ap-

proximately, but optimally, recovers the state from measurements yk only. The estimation
problem reads

q̃k+1 = Aq̃k + Buk + L(yk − ỹk) (3.6a)

ỹk = Cq̃k (3.6b)

where the Kalman gain L, has to be optimized so that the estimation error, i.e., the
difference between the true state qk and the estimated state q̃k, is minimized. Under
the assumption that (C,A) is detectable and (A,Bw) is stabilizable, this optimization
problem again leads to a discrete algebraic Riccati equation for a unique, symmetric,
positive-definite matrix P according to

P = APAH + Q− APCH(R+ CPCH)−1CPAH . (3.7)

The optimal Kalman gain L then follows as

L = APCH(R + CPCH)−1. (3.8)

Combining the controller and estimator yields a compensator, which produces an optimal
control strategy uk directly from measurements yk. Even though the control gain K has
been designed under full-state assumptions, it still remains optimal when used with the
estimated (rather than the exact) state. This fact is a consequence of the separation
theorem (Skogestad & Postlethwaite 1996; Friedland 1986) which states that the design
of the optimal controller and the optimal estimator can be performed independently.

3.3. A first attempt at LQG control design

The identification technique, introduced in §3.1 and presented in the appendix, pro-
duces all the necessary system and noise information from measured data. It ensures
the applicability of the overall control design to experimental data. In this respect, the
subspace identification technique guarantees the realistic aspect of the control design. In
the following, the efficiency and robustness of the approach are evaluated.
From the identified system matrices A,B,C and noise covariances R, S,Q we follow the
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Figure 5. Sample of the (a) input and (b) output signal used for the subspace identification for
the large convection case Ur = 3. The full signal is over 500 time units, i.e 5000 time steps long.
The input signal (a) is chosen to be Gaussian and white; the measured signal (b) is colored by
the system.

classical control design within the LQG framework, the third and final step in figure 4.
We choose a large convection speed Ur = 3, starting with the sensor-actuator configura-
tion shown in figure 2. A set of input-output samples consisting of 5000 discrete values
is generated from a Gaussian, white input signal. Care has to be taken regarding the
amplitude of the driving in order for the response to remain within the linear regime (see
appendix), since both the identification and control techniques rely on a linear system. A
representative sample of input and output signals is shown in figure 5. We observe that
as the Gaussian, white input signal passes through the linear system, it retains some
frequencies while attenuating others, thereby resulting in a colored signal for the output.
From these signals a reduced-order model of order four is identified using the subspace
identification algorithm MOESP (see §3.1 and appendix).
The impulse response of the identified model is compared to the impulse response of the

true system in figure 6. We note an overall satisfactory match, despite small discrepancies
for larger times which can be attributed to the appreciable level of environmental noise
in the output signal. It is still remarkable for a model of order four to reproduce the
response behavior of a system of order n = 220.
The optimal control gain K is then obtained, for the large convection case Ur = 3,

by solving the appropriate disrete algebraic Riccati equation (3.4) using the identified
system matrices. The optimal estimation (Kalman) gain L is determined by using the
identified system matrices and noise covariances in a second discrete algebraic Riccati
equation (3.7). In figure 7 the quantity Jk = ‖yk‖2 + l‖uk‖2 is presented as a function
of time, and the control is turned on after 4000 time steps. Three cases are considered.
The most effective, but idealistic, control strategy (in blue) is based on full-state control,
as it assumes knowledge of the full system matrices A,B,C and even access to the state
vector q. The second case (in green) reproduces the results displayed in figure 3. This
still unrealistic control strategy relies on the system matrices A, B and C but substitutes
an estimated state q̃ for the true state q. The only realistic, third case assumes no
prior knowledge of the system matrices, but extracts all the necessary information from
measured data. The identified matrices and noise covariances are then used to design a
compensator. The terms full-state control, full-order control and identified-model-based
control will be used through out the paper to designate these three distinct control
approaches.
From figure 7 we conclude that the loss of control performance cannot be attributed

to the identification step as it does not appear to significantly degrade the efficiency



55

12 F. Juillet, P.J. Schmid and P. Huerre

t

y

0 2 4 6 8 10 12 14 16
−0.01

−0.005

0

0.005

0.01

0.015

0.02

Figure 6. Impulse response (from u to y) of the full-order system (blue line) compared to the
impulse response of the identified system (red circles).

t

J
k

0 200 400 600 800 1000

10−6

10−4

10−2

Figure 7. Cost functional J = E(y2 + lu2) as a function of time without control (in black)
and with control applied (in green, red and blue). The blue line represents full-state control
designed from knowledge of all full-order system matrices as well as the q. The green line
represents LQG control designed from the full-order system matrices and noise covariances
(same as in figure 3(b)). The red line is the cost functional based on LQG control designed from
the identified model and the identified noise covariances. In addition to the cost functional J
the quantity Jk = y2

k + lu2

k is displayed. The control is switched on at t = 400, and a convection
velocity of Ur = 3 is chosen.

of the control strategy. For this reason, we can safely rely on subspace identification
as a crucial step towards realistic control applications. Rather, the comparison of the
three cases points toward the estimation process as the component that deteriorates the
control performance. This is reflected in the marked gap between the cost reduction, by
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Figure 8. Standard deviation of the estimation error (dashed line) as a function of streamwise
position x and standard deviation of the state (continuous line) as a function of x. For both
curves, the convection speed is Ur = 3.

a factor of 166, for the estimation-free (full-state) control and the disappointing low cost
reduction, by a factor of 2.6, for the estimation-based (full-order) control.

3.4. Visibility and optimal placement of a ’spy’ sensor

A closer look at the estimation process is now taken by computing the standard devi-
ation of the estimation error, in the statistically stationary limit, for each position in
x. More precisely, the standard deviation of the estimation error is defined as std(e) ≡√

diag (E ((q̃ − q).(q̃ − q)H)), where diag(A) is the vector constructed with the diagonal
elements of any square matrix A, the state q and the estimated state q̃ are defined in
equations (3.2) and (3.6), respectively, and E is the expected value as defined in §2.3.
Similarly the standard deviation of the state is defined as std(q) ≡

√
diag (E (q.qH)). In

figure 8, these two quantities are plotted as functions of x, in dashed and continuous
line respectively. The main estimation error occurs upstream of the sensor, a region in
which the two curves coincide. Physically, this corresponds to the failure of the sensor
to accurately estimate information from upstream; the state downstream of the sensor,
however, can be more easily estimated. In more quantitative terms, we introduce the
ratio of the estimation-error standard deviation to the state standard deviation as a per-
formance measure of the sensor. A ratio of 0% indicates an exact estimation of the state,
whereas a value of 100% corresponds to the case where the estimator only returns the
zero solution. This ratio is depicted in figure 9 for the two cases of moderate convection
Ur = 2 and large convection Ur = 3, and it is evident that the state estimation be-
comes increasingly difficult upstream of the sensor. Based on these curves, we introduce
the visibility length of the sensor as the maximum upstream distance from the sensor
for which the relative estimation error is less than 50%. Physically, this length gives a
measure of how far upstream state information can be estimated within a reasonable
tolerance. For Ur = 2 this length is equal to 9.8 whereas for Ur = 3 it is nearly half this
value at 5.2. Figure 10 extends the visibility concept to even higher convection speeds
and confirms the fact that estimation of upstream state information deteriorates rapidly
as the convection speed increases.
This clearly demonstrates that state estimation in convection-dominated flows requires
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Figure 9. Ratio of the standard deviation of the estimation error to the standard deviation of
the state as a function of streamwise position x for a convection speed of (a) Ur = 3 and (b)
Ur = 2. In both figures, the visibility length (see text) has been added.
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Figure 10. Visibility length as a function of the convection speed Ur for the configuration
displayed in figure 2.

particular attention. To this end, we introduce an additional sensor ys, referred to as “spy
sensor”, in an attempt to reduce the estimation error upstream. Since this is its only
purpose, this additional sensor will not be included in the cost functional, in contrast to
the first sensor. Its best placement is investigated by designing an optimal LQG control
strategy based on the full-order system for each streamwise sensor position. The results
of this parameter study are shown in figure 11 where the control efficiency, i.e. the ratio
of the cost functionals with and without applied control, is evaluated for various spy
sensor positions. The highest values of the control efficiency are achieved for a sensor
placement upstream of the actuator, which is in accordance with figure 9 that showed
poor state estimation in this region. In Hervé et al. (2010) a similar upstream sensor was
used and referred to as a “spy sensor”. In the present article, this terminology is adopted
and extended to the case of any convection-dominated system controlled by use of an
upstream sensor. In addition, any sensor located sufficiently far downstream is referred to
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Figure 11. Efficiency of the optimal LQG control (based on the full-order system) as a function
of the spy sensor position for the case of large convection Ur = 3. The location of the objective
sensor and actuator is given in figure 2.

as “objective sensor”. In physical terms, the improvement in control efficiency from this
spy sensor can be related to the more accurate estimation of incoming external noise.
In other words, the spy sensor provides valuable information to the estimator on the
incoming perturbations. Knowing these perturbations, it is then a lot easier to control
them. Our findings are consistent with the studies of Barbagallo et al. (2012) who found
that the best estimation results were obtained for the farthest upstream sensor.

3.5. Failure and lack of robustness of the method

So far, we have addressed the issues of a realistic control design (via subspace identifi-
cation) and of an efficient control performance (via placement of a spy sensor). We are
now combining these two approaches into an identified control design using a spy sensor
and consider the remaining issue of its robustness.
The control efficiency based on full-order LQG-control, as shown in figure 11, will

serve as the reference solution for the upper-bound or best-case control performance of
our scheme. We therefore repeat the computations of the control efficiency based on the
subspace-identified system matrices and noise covariances. A remarkable sensitivity of
the control performance to external noise sources, but also to user-defined parameters,
such as the shift i (see appendix), the choice of subspace algorithm (MOESP, CVA or
N4SID), the order of the identified model and the position of the spy sensor has been
found. In practice, a small change in one of these parameters may even lead to an unstable
control. A representative sample of our studies is shown in figure 12 where the average
control efficiency over 50 realizations is displayed together with error bars. A marked
drop in efficiency and sizable variations can be observed, yielding rather disappointing
results compared to the reference full-order LQG-case.
A possible reason for this sensitivity may be a weak and inaccurate link between the

noise source very far upstream and the objective sensor downstream; this is sketched
in figure 13. In general, the identification process establishes linear relations between
inputs and outputs. In particular, the transfer function connecting known inputs and
known outputs is rather easy to identify, for instance u → y (red line in figure 13). Even
an accurate model for w → ys (blue line) can be found due to the stochastic nature
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Figure 12. Control efficiency based on identified model versus position of the spy sensor ys
for the case of large convection Ur = 3. The identification follows the classical approach. Fifty
realizations of identification and control were performed, and the average and one standard
deviation are indicated. In practice, some unstable control cases were encountered. These curves
are compared with the optimal LQG control designed from the full-order system (continuous
line with plus symbols) and the full-state control (horizontal green line). The actuator is located
at xu = 0.

Figure 13. Sketch of the identification mechanism. Non-robustness stems from inaccuracies in
the long-distance stochastic identification, shown in green.

of the subspace identification. The main difficulty, however, lies in the link between
this upstream stochastic model w → ys and the perturbation dynamics measured by
the objective sensor y (in green). Identifying a model by subspace identification is akin
to designing an estimator and it is therefore subject to the same visibility restrictions
discussed earlier. This also conforms with our intuition that, in convection-dominated
flows, it becomes increasingly difficult to estimate the perturbation dynamics when the
unknown input (w) moves further and further apart from the measured output y, as
already demonstrated by introducing the concept of visibility. In fact, the control success
or failure of control depends on the long-distance stochastic identification represented in
green in figure 13.

In summary, for convection-dominated flows the classical set-up, combining subspace
identification and LQG control results in a lack of robustness that renders this approach
unusable for real-life applications.
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4. The feed-forward approach, a robust and efficient method for
convection-dominated flows

In this section a solution for the control of convection-dominated flows is presented.
The approach is similar to the one developed in Hervé et al. (2012) although the practical
implementation details are different. The general method is referred to as feed-forward
in the control literature (Skogestad & Postlethwaite 1996; Qin & Badgwell 2003). The
idea is to place a sensor ys sufficiently upstream to measure the incoming perturbations.
This measurement ys is then used as a representation of the exact noise source w. As
we will see, for convection-dominated flows this procedure is very robust with respect to
system identification and it is close to the optimal LQG performance-limit. Its realistic
and robust characteristics should make it applicable to real experimental settings.

4.1. Feed-forward identification and control

We start by assuming that the noise perturbation wk is known. In this hypothetical
situation, all inputs and outputs of the system are known, and a complete model can be
identified by using data sequences of the input and output signals together with subspace
identification techniques. From this model, the state vector can be accurately estimated
at any time by simply exciting the model by known inputs.
In mathematical terms, an input-output model in state-space form is formulated ac-

cording to

qk+1 = Aqk + Buk + Bwwk (4.1a)

yk = Cqk + vk (4.1b)

and the system matrices are determined by resorting to the MOESP identification tech-
nique. Based on this identified model, a full-state control may then be determined. At
this point, the input w is not taken into consideration for the design of the controller K.
The noise source w is assumed to be known but it is not a control input. Rather, the
control gain K is computed according to

K = −(l + B
H
TB)−1

B
H
TA, (4.2)

where T satisfies the discrete algebraic Riccati equation

T = AHTA− AHTB(l+ BHSB)−1BHTA+ CHC. (4.3)

The subspace identification process produces noise covariances Q, R, S (see §3.1) re-
lated to potentially unidentified input sources. In feed-forward mode for convectively
dominated flows, this aspect of the estimation process is not exploited. With all input
variables known, the estimator simply reads

q̃k+1 = Aq̃k + Buk + Bwwk, (4.4a)

and there is no need to compute and use the Kalman gain L.
The feed-forward approach consists in adding a new spy sensor upstream of the actua-

tor to measure the incoming noise (figure 14). Assuming that this measurement provides
an accurate description of this noise, we may replace the true noise w by the spy mea-
surement ys in the above identification and control design algorithm. After substitution
of the true noise w by the proxy measurement ys from the spy sensor the identified model
reads

qk+1 = A′qk + Buk + Bsys,k, (4.5a)

yk = Cqk. (4.5b)
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Figure 14. Sensor and actuator placement. The symbol w represents the noise source at
xw = −14, u is the actuator (the control) at xu = 0, y is the objective sensor at xy = 7
and ys is the spy sensor placed at xs = −7.

The matrix A′ in (4.5) differs from the matrix A in (4.1) due to the subtitution of w by
ys. More details on this are given in §6.2. Note that all inputs to this model are known
and it is therefore directly used to estimate the state. Based on this model, an optimal
control gain can be computed by using the discrete Riccati given in equation (4.3).

4.2. Efficiency of the method

The feed-forward technique may then be implemented and evaluated. In figure 15 the
efficiency of this control is plotted as a function of the spy sensor position xs. First, a sig-
nificantly improved robustness, as evidenced by the reduced standard deviation of the in-
dividual realizations, can be observed when compared to the stochastic identification and
LQG control (figure 12). This improvement can be attributed to the absence of stochastic
noise identification due to the substitution of w by ys. Any system-identification algo-
rithm would be able to produce a model linking known inputs (u and ys) to a known
output y. Even though subspace algorithms were found to be very robust and efficient,
they do not constitute the only possible choice. In addition, the control based on the
spy model is nearly as efficient as the optimal control based on the full-order matrices
A, B, C, Q, R, S (given by the red curve) and even close to full-state control (given in
green). Figure 15 also illustrates that the control performance drops precipitously as the
spy sensor approaches the actuator location xu = 0. Indeed, the spy sensor should pro-
vide upstream noise information and thus should not be corrupted by any action of the
actuator u (see §6.2).

4.3. Influence of convection

The feed-forward identification and control are now applied to the Ginzburg-Landau
equation for variable convection speeds Ur. For this model, the efficiency of the control,
i.e. the relative reduction in the cost functional, is presented as a function of Ur in fig-
ure 16. Two control design strategies are compared. The first strategy (blue curve) uses
the feed-forward (spy) approach. In the identification process, the spy and the actuator
are treated as inputs while the objective sensor downstream is taken as an output. In
the control application, the objective sensor downstream is no longer needed and only
the measurement from the spy is considered. The second strategy (red curve) is an LQG-
control based on the full-order system, with both sensors and the actuator. This strat-
egy provides the best possible control for a given configuration and furnishes an upper
bound for the system-identified feed-forward control. As previously mentioned in § 2.2,
the control performance becomes increasingly inefficient as the system becomes more
convection-dominated. This appears clearly in the figure when considering the strong de-
crease in optimal efficiency (red curve) when the convection speed Ur is increased. This
is a general tendency, which holds true for any control strategy. In addition, by compar-
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Figure 15. Control efficiency based on identified models versus position of the spy sensor ys
for the case of large convection Ur = 3. The identification follows the spy approach whereby the
upstream sensor ys is considered as an input in the model. Fifty realizations of identification
and control were performed, and the average and one standard deviation are indicated. In
practice, all the controllers were stable. These curves are compared with the optimal LQG
control designed from the full-order system (continuous line with plus symbols) and the full-state
control (horizontal green line). The actuator is located at xu = 0.

ing the feed-forward control efficiency (blue curve) with this optimal upper-bound, it is
confirmed that the spy technique is almost optimal for large convection speed Ur = 3.
In contrast, although the feed-forward control is surprisingly effective (with an efficiency
of 500), it is far from optimality for moderate convection speed Ur = 2. Two reasons for
this non-optimality may be put forward. First, within the feed-forward control, the ob-
jective sensor downstream is not used for the estimation. However, it was shown in § 3.4,
using the associated visibility length, that for Ur = 2 this sensor provides meaningful
information regarding the state estimation. In addition, for moderate convection Ur = 2,
the theoretical upper bound of efficiency (red curve) is so high that the identification
accuracy may become a limiting factor.
Hence, it has been seen that the feed-forward approach applied to amplifier flows is

realistic, robust and efficient. In addition, the technique is close to optimal for noise-
amplifiers with sufficiently high convection. In the following, the technique is validated
on a two-dimensional flow over a backward-facing step.

5. Application to the flow over a two-dimensional backward-facing
step

The design of feed-forward control strategies based on subspace system identification
has been introduced, illustrated and justified on the complex Ginzburg-Landau equa-
tion. It is now applied to the flow over a backward-facing step at Re = 350. The three-
dimensional stability of this flow was studied by Barkley et al. (2002) and a critical
Reynolds number of 748 was found beyond which the flow becomes unstable. The first
unstable mode is three-dimensional and localized in the recirculation bubble. More re-
cently, this study has been extended to different step heights and the physical mechanisms
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Figure 16. Control efficiency of the feed-forward approach (in blue) as a function of the con-
vection speed Ur for the complex Ginzburg-Landau model. Fifty realizations of identification
and control were performed; the average (in blue) and one standard deviation are plotted. These
curves are compared to the optimal LQG-control designed from the full-order system (continuous
line with plus symbols). The spy sensor is placed at xs = −7.

Figure 17. Sketch of the backward-facing step, displaying sensor and actuator positions; the
two recirculation bubbles and the inlet Poiseuille profile are also indicated.

leading to instability have been identified (Lanzerstorfer & Kuhlmann 2012). In this in-
vestigation, it was also shown that the instability properties depend on the entrance
length and as a result the critical Reynolds number given by Barkley et al. (2002) was
corrected from 748 to 714. In Blackburn et al. (2008) the optimal disturbance and the
transient growth were examined. For a Reynolds number of 500, the maximum transient
energy growth is 80× 103.
Since a feed-forward controller has recently been applied and discussed in detail by

Hervé et al. (2012) for the flow over a backward-facing step, the present section is willingly
kept brief. Its main objective is to validate the control technique developed in §4, to
naturally extend it to the case of several spy sensors and to demonstrate its efficiency in
the presence of multiple noise sources.

5.1. System description

A sketch of the configuration is presented in figure 17. The flow separates at the step
corner and reattaches downstream at a distance equal to about nine step-heights, in
accordance with the computation of Barkley et al. (2002) and Blackburn et al. (2008).
Under the selected flow conditions, a smaller recirculation bubble is also observed on the
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Figure 18. Base flow over a backward-facing step at Re = 350. Colors correspond to the
kinetic energy levels.

upper wall. These two bubbles induce strong shear-stresses in the middle of the channel
downstream of the step; this feature causes amplification of incoming perturbations via a
Kelvin-Helmholtz instability. The objective of the control is to reduce this amplification.
Although at Re = 350, the flow is locally unstable, it is globally stable, since the local
instability is convective in nature and any growing perturbation is rapidly transported
downstream.
The steady base flow presented in figure 18 was obtained via a Newton-Raphson tech-

nique. The corresponding linear Navier-Stokes equations were then solved numerically
with the finite-element software FreeFEM++. A linearized version of the Taylor-Hood
algorithm was implemented. The domain was discretized in 42656 triangles, and a time
step ∆t = 0.03 was chosen. No-slip boundary conditions at the wall, a parabolic veloc-
ity profile at the inlet and standard outflow boundary conditions were imposed. Three
independent upstream noise sources (figure 17) were introduced and modeled by local-
ized volumetric forces. The white-noise was chosen to have a zero-mean unit-variance
Gaussian probability density function. In order to control the incoming perturbations,
an actuator was placed just upstream of the step corner (x = 1, y = 0.12). The entire
success of the feed-forward technique relies on the ability to accurately describe this
complex noise structure. For that purpose two shear-stress spy sensors were introduced
just upstream of the actuator, one on the upper wall and one on the lower wall. Since the
flow over a backward-facing step is known to be particular sensitive to any perturbation
close to the step corner, one of the two spy sensors was placed close to this point. In
addition, the second spy sensor, on the opposite wall, is able to capture incoming infor-
mation that is not accessible to the first spy sensor. In general, for an effective control
the number of spy sensors depends on the complexity of the incoming perturbations that
are to be modeled. Finally, the objective sensor was placed downstream near the lower
reattachment point. All sensor measurements were corrupted by 10% of white noise.

5.2. System identification

Following the algorithm outlined in § 3.1 and in the appendix, a linear model is gen-
erated by subspace-identification techniques. There are many possible choices for the
actuator signal. In this work, the fluid is excited by two Gaussian white signals exiting
from the actuators; Other, more physical choices are discussed in the appendix. At the
same time, disturbances are generated by the noise sources, and the amplitudes of the
actuator signals are chosen such that both the actuator signals and disturbances invoke
about the same order of magnitude in the objective sensor signal. All signals used in
the subspace-identification algorithm have a length of 8000 time steps, and the shift pa-
rameter i is 200. A model of order 19 is identified. This model expresses a causal link
between the three upstream signals (two spy sensors and one actuator) and the objective
sensor downstream. From this model, the three corresponding impulse responses can be
determined and are displayed in figure 19 (continuous and dashed lines). For comparison,
the exact impulse response from the actuator to the objective sensor is also displayed
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Figure 19. Comparison of the exact impulse response between the actuator u and the objec-
tive sensor y (diamonds) and the same impulse response determined from the identified model
(continuous line). The identified impulse responses from the spy sensors to the objective sensor
are also represented (dashed lines).
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Figure 20. Signal measured at the objective sensor y. The control is activated at t = 600.

(diamond symbols). It is evident that the identified model very well captures the true
system behavior between the actuator and the objective sensor. From this model, the
feed-forward compensator is designed as explained in §4.1.
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Figure 21. Time average of the perturbation norm for the uncontrolled (top) and controlled
(bottom) case.

5.3. Results

In figure 20, the signal measured by the objective sensor is plotted as a function of time.
After 5000 time steps the control is activated, and an output reduction by a factor of
approximately 10 is observed. In addition, this local reduction at the objective sensor
location also results in a pronounced reduction of the flow perturbation energy down-
stream of the step. In figure 21, the time average of the perturbation norm is represented
without control (top) and with control (bottom).
These results corroborate and further support the use of a feed-forward approach for

convection-dominated systems. Based on the study of § 6.2, we expect this control ap-
proach based on subspace identification to be nearly optimal. Moreover, the use of iden-
tification techniques makes the entire compensator design amenable to implementation
in a real experiment.

6. Theoretical basis of the feed-forward (spy) approach

6.1. A simple convection model

We use a simplified model to further explain the optimal placement of the second sensor
selected in §4.2 in the context of the Ginzburg-Landau equation. It was observed in §3.4
that state estimation and control efficiency improve significantly when the second sensor
is placed upstream of the actuator. The model introduced below is intended to illustrate
and clarify this finding. In addition, it will be demonstrated that the concept of observ-
ability is based on an asymptotic notion and it is thus inappropriate for describing sensor
placement in convection-dominated flows.
To model convection-dominated phenomena in a small-order system, we base our model

on a 6 × 6 shift operator, which, over each time step, advances the state vector X =
(x1, x2, x3, x4, x5, x6)

T into a shifted vector (0, x1, x2, x3, x4, x5)
T . Note that this type of

system can be obtained by discretizing an advection equation and choosing a unit CFL-
number. A noise source is placed at the extreme upstream location, and an actuator is
placed downstream. In mathematical terms, the full system is described by

Xk+1 = AXk + Buuk + Bwwk (6.1a)

yk = CXk + Nvk (6.1b)

where Xk is the state vector, uk denotes the actuator input, yk stands for the sensor
output, wk represents the stochastic excitation of the system (noise source) and vk is the
measurement noise. We model wk and vk as uncorrelated Gaussian, white-noise sources
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of unit amplitude. In the above equation N is a scalar that represents the measurement
noise amplitude and it is assumed that ‖N‖ ≪ 1. According to this model, the system
matrices are given as

A =




0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




, Bw =




1
0
0
0
0
0




, Bu =




0
0
1
0
0
0




(6.2)

and C is left to be defined later. As a prerequisite for an efficient control, we proceed by
computing an accurate estimate of the above system. For a given matrix C, the governing
equation for an estimator reads

X̂k+1 = AX̂k + Buuk + L(yk − ŷk) (6.3a)

ŷk = CX̂k, (6.3b)

where L is the optimal Kalman gain. The estimation error ek ≡ Xk − X̂k then satisfies

ek+1 = (A− LC)ek + Bwwk − LNvk. (6.4)

In the following we wish to determine an optimal sensor placement that minimizes this
estimation error.

6.1.1. Sensor placement

Two possible choices for the sensor placement are considered. The first one corresponds
to a sensor located far downstream, i.e.,

C = C1 ≡
(
0 0 0 0 0 1

)
. (6.5)

This choice (downstream of the actuator) is often preferred in the flow control literature
(Bagheri et al. 2009b; Barbagallo 2011; Barbagallo et al. 2012), and may be justified by
the argument that it yields high observability. In addition, if the control objective is to
minimize the norm of y, which is often the case in practice, placing the sensor downstream
of the actuator appears intuitive, since it guarantees a non-zero transfer function from u
to y. It will, however, be seen below that, for convection-dominated systems, this choice
is extremely disadvantageous for the state estimation.
It can be easily verified by computing the rank of the observability matrix Ob1 that

the system (A,C1) is observable (Zhou et al. 1996). We obtain the full-rank matrix

Ob1 =




C1

C1A

C1A
2

C1A
3

C1A
4

C1A
5




=




0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0




. (6.6)

Recall that a system is observable if and only if all eigenvalues of the matrix A− LC can
be placed arbitrarily by choosing the coefficients of L. Defining L = (l1, l2, l3, l4, l5, l6)

T in
the system above, we arrive at det(λI−A+LC) = λ6+ l6λ

5+ l5λ
4+ l4λ

3+ l3λ
2+ l2λ+ l1,

which shows that we have full control over the eigenvalues of A− LC and therefore over
the long-time dynamics of the estimation error, governed by equation (6.4). However,
a performing estimator should also provide an approximation of the state on a short
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time-scale — in particular in strongly convective systems where perturbations are quickly
swept downstream and measured information quickly becomes non-pertinent. Tuning the
eigenvalues is insufficient for guaranteeing optimal estimator performance on account of
the presence of transient effects; we also have to consider the corresponding eigenvectors
of A − LC. This is due to the fact that the matrix A describes a convective process and
is therefore highly non-normal (Chomaz 2005).

From a physical point of view, it is clear that information from a downstream sensor is
futile since it is immediately swept away. This is further corroborated when computing
the Kalman gain L1 in the presence of stochastic noise. This gain is governed by the
discrete Riccati equation

P = APAT − APCT
1 (N

2 + C1PC
T )−1C1PA

T + BwB
T
w (6.7a)

L1 = APCT
1 (N

2 + C1PC
T
1 )

−1. (6.7b)

For a far-downstream sensor location C1, it can be verified that the optimal Kalman gain
L1 tends to zero for vanishing N, i.e.,

lim
N→0

L1 = 0. (6.8)

This limit supports mathematically the intuitive argument above, namely, that input
from y does not enter the estimation of the state given by (6.3). In other words, this
downstream sensor could simply be removed without any consequences for the control
performance.

In contrast, we now consider a configuration where the sensor is placed at a very
upstream position so that

C = C2 ≡
(
0 1 0 0 0 0

)
. (6.9)

Note that the system (A,C2) is clearly not observable since

Ob2 =




C2

C2A

C2A
2

C2A
3

C2A
4

C2A
5




=




0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




. (6.10)

Nonetheless, this sensor placement can lead to a very accurate state estimation. Intu-
itively, for a sensor placed sufficiently upstream, all components of the current state
vector Xk have previously been measured by the sensor before being convected down-
stream. As before, the Kalman gain may be obtained from a discrete Riccati equation,
with C = C2. It now reads

lim
N→0

L2 =




0
0
1
0
0
0




. (6.11)
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Figure 22. Computational steps of the LQG and feed-forward procedures. Section 6.2 gives a
theoretical comparison of these two control frameworks.

Consequently, the estimation error given by equation (6.4) is

ek =




wk−1

wk−2

0
0
0
0




. (6.12)

We observe that the estimated state vector is exact (zero estimation error) everywhere
downstream of the sensor location. This demonstrates that, in convection-dominated
flows, valuable information on the future downstream state can be obtained from an
upstream sensor; this is also consistent with our earlier study of the visibility length
in §3.4. Even though the system becomes more observable by placing the sensor fur-
ther downstream, the drastic decrease in control performance makes this choice highly
ineffective. This also confirms that conventional observability measures yield mislead-
ing suggestions regarding optimal sensor placement, especially in convection-dominated
(and, more generally, non-normal) systems.

6.2. LQG control design and feed-forward approach: a comparison

In this section a theoretical comparison between the feed-forward approach and the op-
timal LQG-framework is presented, and conditions are derived under which these two
control strategies are equivalent. In this manner, we establish situations for which the
feed-forward technique is optimal. The configuration under study is very general; the
flow is convection-dominated with one actuator u, one upstream spy sensor ys and one
downstream objective sensor yob. Flow over a backward-facing step, as in §5, is a typical
example but more generally we consider any convection-dominated flow such as channel
flows, homogeneous jet flows or flows over streamlined airfoils. The optimal, but unreal-
istic, LQG algorithm is described on the left column of figure 22. It is compared with the
realistic feed-forward technique summarized on the right side of figure 22. Rather than
focusing on the very specific accuracy of the system identification stage, which might
be improved by simply increasing the length of the input-ouput data sequences, it is as-
sumed that the systems are identified exactly. Hence, the last two steps of the techniques
are compared and the analysis naturally divides into the study of estimation processes
and of control gains.
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6.2.1. Estimation

In this section, the state estimation stages of both techniques are compared. It has
already been argued in §3.4 and in §6 that the downstream measurement from the objec-
tive sensor does not contribute to state estimation in convection-dominated flows. The
optimal Kalman gain L is therefore designed assuming an estimation from the spy sensor
ys only. As detailed in §3.2, the Kalman estimator of the optimal LQG method reads

X̃k+1 = (A− LCs) X̃k + Buk + Lys,k (6.13a)

ỹk = CobX̃k, (6.13b)

where Cs and Cob are respectively the spy and objective measurement matrices and X̃
is the estimated state. The first equation (6.13a) has been generated from system (3.6)
by adding an s subscript (for spy) to y, ỹ and C. The second equation (6.13b) is a
measurement equation that provides an estimate of the objective sensor measurement
from the estimated state. The equivalent measurement equation for the spy sensor is not
explicitly written. The Kalman estimator written in (6.13) is a linear system with two
inputs u and ys and one output ỹ. In the sequel, it is claimed and numerically verified
that this Kalman estimator is precisely the identified model of the feed-forward method
outlined on the right of figure 22.
In the feed-forward identification procedure (stage one in the right column of figure

22) a linear system is sought for with inputs u and ys and output ỹ such that the
output error ‖ỹ − y‖ is minimized. This property is already verified by the estimator
(6.13). Assuming that the Kalman estimator is the only system minimizing the output
error ‖ỹ − y‖, we may conclude that the feed-forward procedure aims at identifying the
Kalman estimator. In other words, the identification procedure consists in identifying the
matrices A′ = A− LC, B, L, Cob, which precisely coincides with the determination of the
Kalman estimator. Note that a similar property is the basis of other control schemes such
as the Observer/Kalman Filter Identification (OKID) procedure (Juang et al. 1991).
At this point, it is worth comparing the input-output dynamics of the feed-forward

identified model and of the Kalman estimator, as displayed in figure 23. The system under
consideration is the Ginzburg-Landau model for large convection Ur = 3, as described
in §2, with the sensor-actuator configuration sketched in figure 14. The impulse responses
of each system are represented in figure 23: it is clear that the feed-forward model is
identical to the optimal Kalman estimator. Hence, treating the measurement ys as an
input in the identification stage coincides with the computation of the Kalman estimator
and, thus, the estimation stage in both techniques are identical.

6.2.2. Control gain

The equivalence of the estimation process is now contrasted with the design of the
control gain for the two methods since, in the end, the product of control gain and
estimated state will determine the final control law. The difference in control gains stems
from the fact that in the feed-forward approach the gain K is determined from a discrete
Riccati equation involving A′ = A−LCs, whereas in the LQG-approach a discrete Riccati
equation involving A is used. The consequences of such an observation are given below.
In terms of equations, if the objective to be minimized is given by E

(
‖y‖2 + l‖u‖2

)
, the

LQG-control gain K is given by the discrete Riccati equation involving A

S = A
H
(
S− SB(l + B

H
SB)−1

B
H
S
)
A+ Cob

H
Cob, (6.14a)

K = −(l + BHSB)−1BHSA, (6.14b)
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Figure 23. Impulse response generated from an impulse applied to ys and measured in ỹ (left)
and impulse response generated from an impulse applied to u and measured in ỹ (right). The
continuous red lines pertain to the optimal Kalman estimator whereas the blue circles pertain
to the feed-forward identified model.

while the feed-forward (spy) control gain K is determined by the discrete Riccati equation
based on A′ = A− LCs

S = (A− LCs)
H
(
S− SB(l + B

H
SB)−1

B
H
S
)
(A − LCs) + Cob

H
Cob, (6.15a)

K = −(l + BHSB)−1BHS(A− LCs). (6.15b)

Based on these two equations, we proceed by comparing the two control signals uk = KX̂k

and uk = KX̂k.

To this end, the estimator (6.13a) is rewritten in canonical Kalman form (Zhou et al.
1996). This form is obtained via a change of variables, and it can be shown that it is
mathematically equivalent to equation (6.13a). This canonical Kalman form reads:




X̂co/k+1

X̂co/k+1

X̂co/k+1

X̂co/k+1


 =




Aco 0 A13 0
A21 Aco A23 A24

0 0 Aco 0
0 0 A43 Aco







X̂co/k

X̂co/k

X̂co/k

X̂co/k


+




Bco Lco

Bco Lco

0 0
0 0



(

uk

ys,k − ŷs,k

)
(6.16a)

ŷs,k =
(
Cs,co 0 Cs,co 0

)



X̂co/k

X̂co/k

X̂co/k

X̂co/k


 . (6.16b)

The second equation (6.16b) gives an optimal estimate of the spy sensor measure-
ment. The equivalent equation for the objective sensor is not considered. The subscript

co denotes controllable and observable components, co stands for controllable but un-
observable components, co represents uncontrollable but observable components and co

means both uncontrollable and unobservable components. By definition the observability
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and controllability matrix of the canonical Kalman form, i.e.,

Ob =




(
Cs,co Cs,co

)

(
Cs,co Cs,co

)(Aco A13

0 Aco

)

...
(
Cs,co Cs,co

)(Aco A13

0 Aco

)n−1




(6.17)

and

Ctr =

((
Bco Lco

Bco Lco

) (
Aco 0
A21 Aco

)(
Bco Lco

Bco Lco

)
. . .

(
Aco 0
A21 Aco

)n−1(
Bco Lco

Bco Lco

))

(6.18)
have full column and row rank, respectively. The same decomposition into (un)controllable
and (un)observable components can be applied to both control gains K and K accord-
ing to K =

(
Kco Kco Kco Kco

)
and K =

(
Kco Kco Kco Kco

)
. In what follows we

compare individual components of the two control gains and interpret their significance.
Without loss of generality, we choose X̂0 = 0 as the initial estimated state, from which
it follows that both X̂co/k and X̂co/k are zero for all k. As a result, the control inputs
may be expanded as:

uk = KcoX̂co/k + KcoX̂co/k + KcoX̂co/k + KcoX̂co/k =
(
Kco Kco 0 0

)
X̂k, (6.19)

uk = KcoX̂co/k + KcoX̂co/k + KcoX̂co/k + KcoX̂co/k =
(
Kco Kco 0 0

)
X̂k. (6.20)

Note that neither the LQG-control uk nor the feed-forward (spy) control uk depend on
the uncontrollable part c of the estimator. This uncontrollable part of the estimator
represents the subspace of the state that cannot be estimated at all, and it appears
appropriate that neither control depends on this input. What remains to be seen is
whether

(
Kco Kco

)
is equivalent to

(
Kco Kco

)
.

The following analysis rests on the assumption that there is no influence of the actuator
on the upstream spy sensor. This may be expressed by a zero impulse response from u to
ys, which appears reasonable for convection-dominated flows. Under this assumption, we

form the product of the observability matrix Ob and the control input matrix
(
BT
co 0

)T

to obtain

Ob

(
Bco

0

)
=




(
Cs,co Cs,co

)

(
Cs,co Cs,co

)(Aco A13

0 Aco

)

...
(
Cs,co Cs,co

)(Aco A13

0 Aco

)n−1




(
Bco

0

)
=




Cs,coBco

Cs,coAcoBco

...
Cs,coA

n−1
co Bco


 . (6.21)

Since the elements Cs,coBco,Cs,coAcoBco, . . . ,Cs,coA
n−1
co Bco represent the first n values of

the discrete impulse response (Markov parameters) from u to ys and since this impulse
response is assumed to be identically zero, we conclude that

Ob

(
Bco

0

)
= 0. (6.22)

Owing to the full column rank of Ob, one has Bco = 0. A careful reorganization and
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partitioning of the two discrete Riccati equations (6.14), (6.15), using Bco = 0 as well
as the block-structure of (6.16), yields

Kco = −(l+ BH
coScoBco)

−1BH
coScoAco, (6.23a)

Kco = −(l+ BH
coScoBco)

−1BH
coScoAco (6.23b)

where Sco and Sco are solutions of

Sco = AH
co

(
Sco − ScoBco(l + BH

coScoBco)
−1BH

coSco
)
Aco + Cob

H
Cob, (6.24a)

Sco = AH
co

(
Sco − ScoBco(l + BH

coScoBco)
−1BH

coSco
)
Aco + Cob

H
Cob. (6.24b)

It then follows that Kco = Kco.
In our quest to compare the two control gains K and K we still have to assess the equiv-

alence of the observable and controllable parts, Kco and Kco. For the case of a convection-
dominated flow, the observable part of the estimated state is mainly upstream of the spy
sensor while the controllable part of the estimated state (non-zero components of the
estimated state) is downstream of it. The part of the state that is simultaneously con-
trollable and observable, denoted by Xco, is thus located in the vicinity of the upstream
spy sensor.
From this situation, two cases arise . For convection-dominated flows, the controllable-

observable region is rather small, and in the limit of pure convection, Kco and Kco have
zero-dimension. Then, the two control gains K and K coincide. In a second case, consider
the situation where the spy-sensor is sufficiently upstream such that the estimation of the
state in the region near ys has no influence on the control u further downstream; conse-
quently, Kco as well as Kco are small or negligible. This is exemplified in figure 24 where
the control gains K and K are compared for the complex Ginzburg-Landau equation with
the high convection speed Ur = 3. Equivalence is observed throughout the computational
domain, except for a small region near the spy-sensor location. When placing ys even
further upstream (not shown), the control gain in this small region drastically diminishes.
For comparison, the relative estimation error is also included in the figures.
In conclusion, we observe that for convection-dominated flows with a spy sensor placed

sufficiently upstream, the two control strategies are equivalent and the feed-forward con-
trol set-up inherits the optimality property of LQG-control. This study explains the
remarkable efficiency of the feed-forward controller observed previously in figure 15 and
in the backward-facing step geometry.

7. Discussion and conclusions

In this article, the control of convection-dominated amplifier flows has been inves-
tigated. It was observed that using a feedback control strategy becomes significantly
less efficient when applied to convection-dominated situations. The reason is that, in
such flows, information mainly travels downstream. Hence, sensors essentially describe
the future flow state downstream but provide only limited knowledge of the flow up-
stream. Therefore any feedback information from a sensor located too far downstream is
useless. To quantify this observation, the concept of visibility length was introduced in
order to measure how far upstream a sensor is able to accurately estimate the flow. Not
surprisingly, the visibility length was observed to decrease when the flow became more
convection-dominated. These findings suggested the use of a feed-forward approach for
the control of amplifier flows. Many approaches for the design of feed-forward controllers
have been developed in the control literature, as noted in Qin & Badgwell (2003). When
applied to fluid flows, the procedure relies on the addition of spy sensors introduced
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Figure 24. The control gains K and K designed from A (continuous red line) and from A− LCs

(crosses) respectively, are compared, as a function of x . On the same plot the relative estimation
error is presented in dashed line. The right figure is a zoom of the left one, focusing on the
spy-sensor location.

upstream in order to measure the perturbations ahead of time. In this paper, the tech-
nique was based on subspace system identification followed by optimal controller design.
System identification provided a model derived from sensor and actuator signals only.
Such an approach is realistic since all these data are accessible in real experiments. In
addition, when applied to a flow model based on the Ginzburg-Landau equation, the feed-
forward control efficiency was found to be comparable to the optimal full-state control.
The technique was then validated on the two-dimensional flow over a backward-facing
step at Re = 350. The system was excited by three independent noise sources. Two spy
sensors, one actuator and one objective sensor were used. The application of the present
feed-forward control led to the reduction of the perturbation norms by a factor 10. The
feed-forward method presented in this paper has the advantage of being amenable to
direct numerical and theoretical comparison with the LQG control framework commonly
used in fluid mechanics. It was observed on the Ginzburg-Landau model that the feed-
forward control is almost as efficient as the optimal LQG control. The main advantage of
the present technique, however, is that it only relies on experimentally accessible data.
More generally, it was demonstrated that both techniques are equivalent for sufficiently
upstream spy sensor locations or for sufficiently convective flows. Under these conditions
the feed-forward approach was proved to be optimal.
In contrast to the LQG and LQR formulations, feed-forward techniques have rarely

been used for the control of flow instabilities, with the exception of the numerical study
of Hervé et al. (2012) and the experimental investigation of Rathnasingham & Breuer
(2003). Several reasons may explain this observation. In the plane Poiseuille flow ampli-
fier, the translational invariance in the streamwise direction is often exploited to impose
streamwise periodicity (Joshi et al. 1997). In such a case, perturbations at the outlet
are re-introduced at the inlet and the distinction between upstream and downstream
becomes elusive. Furthermore, in most theoretical studies, sensors (shear stress gauges)
and actuators (blowing or suction devices) are assumed to be continuously distributed
along the wall, whereas in real flows, only a discrete set of localized sensors and actuators
is feasible. In all these instances, the relative position of sensors and actuators is difficult
to define. In order to remedy this lack of realism, the present work could be extended
to the application of the feed-forward identification and feed-forward control to plane
Poiseuille flow. It should be noticed that feed-forward control has already been applied
successfully numerically on a flat plate boundary layer (Semeraro et al. 2011; Bagheri
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et al. 2009a). Although the method was referred to as feedback control by the authors,
the approach was essentially feed-forward since upstream spy sensors were used and the
feedback information provided by the downstream objective sensors was clearly negligible
in both studies. More generally, the feedback control terminology is often used in fluid
mechanics to designate an optimal LQR or LQG control, independently of the relative
positions of sensors and actuators. According to the theoretical study presented in §6.2
and the numerical evidence given in §4.2, one may expect the realizable feed-forward
technique of the present study to be equivalent to and as efficient as the traditional LQG
control.
The control of the backward facing step performed by Barbagallo et al. (2012) may, at

first sight, be considered as a counter-example to the above conclusions: based only on
the knowledge of a downstream sensor, the controller was able to achieve a sufficiently
accurate state-estimation in order to efficiently control the flow. However, among the four
sensor positions considered in Barbagallo et al. (2012), the best results were obtained for
the most upstream sensor placement. This finding confirms our intuition, based on the
concept of visibility length, that a sensor provides accurate upstream estimation only in
its own immediate neighborhood.
The successful validation of the feed-forward approach in amplifier flows gives us confi-

dence that an experimental implementation is feasible. In order to do so, a few conceptual
and experimental issues will have to be addressed. In particular, the analysis relies on the
linearity of the fluid flow and this property may not be preserved when large transient
growth (Blackburn et al. 2008) may be expected. Linear control in flows governed by
the nonlinear Navier-Stokes equations has, however, been the subject of many numerical
studies and adequate robustness has usually been obtained (Högberg et al. 2003; Sharma
et al. 2011; Kim & Bewley 2007; Hervé et al. 2012). In addition, although sensors may be
faithfully represented in numerical simulations, modeling actuators by simple localized
volume forces is a convenient but strongly idealized representation. In practice, most
realistic actuators are directly mounted on the walls and behave non-linearly. Finally, a
strong limiting feature of the present analysis is its two-dimensional nature. The previ-
ously cited work of Semeraro et al. (2011) gives us confidence that the application of the
technique to three-dimensional observations is possible. The experimental implementa-
tion of the feed-forward control procedure is currently underway for the backward-facing
step configuration.
The support of Ecole Polytechnique and of the Partner University Fund (PUF) is

gratefully acknowledged.

Appendix A. Subspace identification algorithm

In its general form a linear time invariant system (LTI) with m inputs and l outputs
may be written in state-space form as

qk+1 = Aqk + Buk + Bwwk, (A 1a)

yk = Cqk + Duk + vk. (A 1b)

If the system order is n then the state matrix A is n× n, the input matrix B is n×m,
the output matrix C is l × n and the direct matrix D is l × m. In practice, the direct
matrix D is often either negligible or equal to zero. In addition, the noise covariances
Q, R and S are defined as in §2. The purpose of the subspace identification algorithm
is to recover the system matrices A, B, C, D and the noise covariances Q, R, S from
the knowledge of input-output data sequences only. In order to describe the technique,
preliminary mathematical manipulations of the system (A1) have to be performed.
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Figure 25. Comparison of the system equations in vector form (A3) and in matrix form
(A4), (A 6).

A.1. Reformulation of the discrete state-space system

It is convenient to rearrange the discrete state-space system (A1) into several equivalent
formulations that emphasize either prediction or estimation (Qin 2006).

A central concept in subspace identification is the innovation form of the original
system (A1) defined by

qk+1 = Aqk + Buk + Lek, (A 2a)

yk = Cqk + Duk + ek, (A 2b)

where L is the steady Kalman gain obtained from the solution of a discrete Riccati
equation and ek is a Gaussian white noise with second-order moment E(ekeHp ) = Rδpk.
This formulation, which is based on the same Kalman gain as in the familiar estimation
problem (§3.2), is equivalent to (A 1) in the sense that the deterministic parts of the
outputs are identical while the stochastic parts of the output show the same statistical
moments.

Alternatively, one may easily recast the state-space system (A 2) into the predictor
form (Qin 2006)

qk+1 = ALqk + BLzk, (A 3a)

yk = Cqk + Duk + ek, (A 3b)

where zk = (uk yk)
T , AL = A−LC and BL is the block matrix (B−LD, L). The advantage

of this formulation is that the (unknown) noise ek does not appear explicitly in the state
equation (A 3a) but is accounted for in the known (noise-contaminated) measurement
yk. It should be stressed again that systems (A 1), (A 2) and (A3) are all equivalent in
the above-defined sense. They will be used interchangeably in the analysis that follows.

In the next step, the above one-step vector-based linear difference equations are refor-
mulated into multi-step matrix based expressions. Two extended states Xp = (qk, qk+1, ..., qk+j−1)
and Xf = (qk+i, qk+i+1, ..., qk+i+j−1) are introduced by stacking vector-states qk. The
subscript p in Xp stands for past states; the subscript f in Xf denotes future states. Both
state sequences, Xf and Xp, contain j columns describing the state at j consecutive time
steps and are shifted by i time steps where i ≪ j (figure 25). In addition, the shift i
is chosen to be larger than the system order n. Starting with the predictor form (A3a)
of the dynamical system, the matrix form of the state equation is sought by recursive
iteration, which results in

Xf = Ai
LXp +∆cZp, (A 4)
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where

∆c =
(
BL ALBL · · · A

i−1

L BL

)
, Zp =




zk zk+1 · · · zk+j−1

zk+1 zk+2 · · · zk+j

...
...

. . .
...

zk+i−1 zk+i · · · zk+j+i−2


 ,

(A 5)
and Ai

L represents AL applied i times. In addition, a similar recursive iteration technique,
this time applied to the innovation form (A2), yields the matrix form of the measurement
equation

Yf = ΓiXf + HiUf + GiEf , (A 6)

with

Γi =




C

CA

...
CAi−1


 , (A 7a)

Hi =




D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0
...

...
...

. . .
...

CAi−2B CAi−3B CAi−4B · · · D




, (A 7b)

Gi =




I 0 0 · · · 0
CL I 0 · · · 0
CAL CL I · · · 0
...

...
...

. . .
...

CAi−2L CAi−3L CAi−4L · · · I




, (A 7c)

Yf =




yk+i yk+i+1 · · · yk+i+j−1

yk+i+1 yk+i+2 · · · yk+i+j

...
...

. . .
...

yk+2i−1 yk+2i · · · yk+j+2i−2


 . (A 7d)

The quantities Uf and Ef are identical in structure to Yf : they are characterized by a
Hankel-matrix pattern where y is changed into u or e, respectively. Combining the state
equation (A 4) and the measurement equation (A 6) in their matrix form yields the final
equation

Yf = Γi∆cZp + ΓiA
i
LXp + HiUf + GiEf , (A 8)

which plays a central role in system identification by subspace techniques (Qin 2006).

A.2. Extraction of the system matrices by subspace projections

Before proceeding to the solution algorithm for (A 8), the following assumptions are
introduced which will prove advantageous for the procedural extraction of the system
matrices and noise covariances. The matrix AL, which describes the estimator dynamics,
is taken as strictly stable, with all eigenvalues confined inside the unit disk, under mild
assumptions. Furthermore, the input uk is uncorrelated to the noise ek, which is a con-
sequence of the open-loop nature of our identification method. Moreover, the input uk
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is taken as sufficiently rich in temporal behavior to excite all the observable dynamics
of the system. These reasonable assumptions will be brought to bear step-by-step in the
further development of the identification algorithm.

A.2.1. Extraction of the extended observability matrix Γi

For convenience, we take the limit i → ∞ and, recalling the contractive property of the
matrix AL, we obtain Ai

L → 0. However, the final results obtained below may be shown
to be valid even for finite i (Van Overschee & De Moor 1994, 1996). In the asymptotic
limit, equations (A 4) and (A8) simplify to

Xf = ∆cZp, (A 9a)

Yf = (Γi∆c Hi)

(
Zp

Uf

)
+ GiEf . (A 9b)

In the above equations, the quantities Zp and Uf , which involve u and y only, are known
since they are either imposed or measured. The remaining variables, except Ef , implicitly
contain the unknown system matrices.
The purpose of the next few steps is to recover the matrices Γi∆c, and then Γi. We

proceeed by right-multiplying equation (A 9b) by (ZT
p UT

f ). We then use the previous
assumptions that past measurements Zp as well as future control Uf are uncorrelated with
the white noise Ef . This manipulation eliminates the term GiEf from the above equation.

In the remaining terms, the expression

(
Zp

Uf

)
(ZT

p UT
f ) is known, as is Yf (Z

T
p UT

f ), from

which the unknowns Γi∆c and Hi can now be determined by a straightforward least-
squares technique followed by matrix partitioning in order to isolate Γi∆c.
At this point, we have determined the quantity Γi∆cZp, which, using (A 9a), is equiv-

alent to ΓiXf . The splitting of this matrix product relies on the last of our assumptions
(excitation of all dynamical states) which ensures a full row-rank of Xf . In addition, Γi
also has full column-rank under the assumption of full observability. These properties
suggest an application of a singular value decomposition (i) to determine the order of
the identified system as the rank of ΓiXf , and (ii) to isolate Γi from the product ΓiXf .
Mathematically, this amounts to

ΓiXf =
(
U1 U2

)(Σ1 0
0 Σ2

)(
VH
1

VH
2

)
, (A 10)

where the diagonal matrix Σ has been partitioned so that ‖Σ2‖ is negligible compared
to ‖Σ1‖. The size of Σ1 then represents the order of the identified system. In addition
we obtain the extended observability matrix Γi as

Γi = U1Σ
1/2
1 . (A 11)

Even though this result has been derived under the assumption i → ∞, it can be shown

(Van Overschee & De Moor 1996) that Γi is still equal to U1Σ
1/2
1 when i is finite.

Based on the knowledge of Γi, two different approaches may be adopted. If the noise
covariances are not needed, then a simple algorithm can be used for the computation
of the system matrices A, B, C, D only. This approach is referred to as “simulation
focus” because the identified model is particularly accurate for the simulation of unknown
outputs from known inputs, without taking into account the noise sources. In particular,
this approach is relevant for the feed-forward identification presented in §4.1. However,
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if the noise covariances are sought, then a second technique consists in identifying the
system in its innovation form. This approach is referred to as “estimation focus”, because
it directly provides an approximation of the Kalman gain used in optimal estimation
processes. Both procedures are outlined below.

A.2.2. A first technique: “simulation focus”

The first step consists in deriving the system matrices A and C from Γi. To this end,
we repeat the above procedure to obtain Γi−1 which, by definition, is related to Γi via

(
I 0
0 Γi−1

)(
C

A

)
= Γi. (A 12)

This system can easily be solved for A and C by least-squares techniques. To determine
the remaining matrices B and D, one observes that the problem is linear in these matrices,
and a matching to the output data may be used to find them (Van Overschee & De Moor
1996; McKelvey 1994).

A.2.3. A second technique: “estimation focus”

The general idea behind the technique presented below is to identify the matrices A,
B, C, D based on the system written in its innovation form. For this, two consecutive
estimations of the extended state are obtained. Then, the system matrices are computed
by least-squares technique and the residual provides an approximation of the noise co-
variances.
In the previous derivation of Γi, we took advantage of the limit i → ∞ which corre-

sponds to an infinite shift between the past and future extended states and we eliminated
the dependence on the matrix AL. Consequently, we could express the future extended
state Xf as a function of the (known) past data Zp and the (known) future input Uf ;
see equation (A 9a). This relation no longer holds for a finite shift i, and the best we
can do, using the available data, is to replace the true state by an optimal (Kalman)
estimate (see Van Overschee & De Moor (1994, 1995) for a rigorous proof). Following
the same least-squares technique that has been applied to (A 9), we may then compute
the intermediate quantity defined as:

Ri ≡ ΓiX̂f,i + HiUf , (A 13)

where X̂f,i denotes an i-step Kalman estimate of the future extended state Xf starting
at index i. Repeating the same computation for a shifted index i+ 1, we obtain

Ri+1 ≡ Γi−1X̂f,i+1 + HiU
−
f , (A 14)

where U−
f is defined from Uf by removing the first m rows,m being the number of inputs.

Since X̂f,i and X̂f,i+1 are consecutive estimates of the same unsteady Kalman filter,
they are governed by

(
X̂f,i+1

Yi

)
=

(
A B

C D

)(
X̂f,i

Ui

)
+

(
LiEi

Ei

)
, (A 15)

where Yi =
(
yk+i yk+i+1 · · · yk+i+j−1

)
and Ui =

(
uk+i uk+i+1 · · · uk+i+j−1

)
.

By definition of the Kalman filter, the quantity Ei is orthogonal to Uf and X̂f,i. If the

estimated extended states X̂f,i and X̂f,i+1 were known, we could use this orthogonality

in (A 15) to solve for (A,B,C,D) by least-squares techniques. However, because X̂f,i
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depends on Hi (see equation (A 13)), which in turn depends on the system matrices, we
have to use in (A 15) the expressions deduced from (A13) and (A14)

X̂i = Γ
†
i (Ri − HiUf ) (A 16)

X̂i+1 = Γ
†
i−1(Ri+1 − HiU

−
f ) (A 17)

in order to extract the unknown system matrices (A,B,C,D). In the above expressions,

the pseudo-inverse Γ
†
i satisfies Γ†iΓi = I and it exists since Γi has full column-rank. Sub-

stituting (A 16) and (A 17) into (A 15) and rearranging the terms yields
(
Γ
†
i−1Ri+1

Yi

)
=

(
A K1

C K2

)(
Γ
†
iRi

Uf

)
+

(
LiEi

Ei

)
(A 18)

with
(
K1

K2

)
=

((
B Γ

†
i−1

Hi−1

)
− AΓ

†
iHi(

D 0
)
− CΓ

†
iHi

)
=

((
0 Γ

†
i−1

)
− AΓ

†
i(

Il 0
)
− CΓ

†
i

)
Hi. (A 19)

We can now easily determine the matrix

(
A K1

C K2

)
in equation (A 18) by least-squares

methods. As before, the system matrices A and C follow directly from the least-squares
solution by appropriate matrix partitioning. The matrices B and D are implicitly, but
linearly, contained in K1 and K2 and can be factored out and solved for. The algebraic
manipulations are rather cumbersome and omitted here; for details see Van Overschee
& De Moor (1996).
In a final step, the noise covariances R,Q and S are determined by processing the

residual of (A 18) with all system matrices A,B,C,D determined. We have

(
LiEi

Ei

)
=

(
Γ
†
i−1

Ri+1

Yi

)
−
(
A K1

C K2

)(
Γ
†
iRi

Uf

)
(A 20)

from which the noise covariances follow according to

(
R S

SH Q

)
=

(
LiEi

Ei

)(
LiEi

Ei

)T

. (A 21)

This step concludes the identification of the system matrices and noise covariances from
input and output sequences. This procedure eliminates the need to rely on specific system
matrices. As a component in the full control design, it ensures a realistic approach that
is also applicable in experiments.
Note that the general subspace identification procedure may be further modified by

introducing weight matrices W1,2 to the left-hand side in equation (A 10) in the form
W1ΓiXfW2 and by performing the singular-value decomposition on the latter expression.
Several special choices of W1 and W2 correspond to well-known algorithms, such as
CVA (Larimore 1983, 1990), MOESP (Verhaegen & Deprettere 1991) and N4SID (Van
Overschee & De Moor 1994) and more details on the derivation of these schemes may
be found in Van Overschee & De Moor (1995). In this article, the implementation of the
MOESP weighting has been chosen; but it was verified that all three algorithms give
comparable results.

Appendix B. Choice of user parameters for subspace identification

Before applying any system identification technique, several parameters have to be
chosen. In particular, the number of samples, the type of input signal, the order of the
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Figure 26. Control efficiency of the feed-forward approach (in blue) as a function of the number
of samples for the complex Ginzburg-Landau model. Fifty realizations of identification and
control were performed; the average (in blue) and the standard deviation are displayed. These
curves are compared to the optimal LQG-control designed from the full-order system (continuous
line with plus symbols).

model and the shift parameter i are of crucial importance in subspace identification
techniques. These user-specified parameters are studied in this appendix using the same
configuration as in figure 16, but the convection speed is kept constant at Ur = 3 and
the above identification parameters are successively varied while their effect on control
efficiency is monitored. It is useful to define the characteristic time of the system τ as the
time for a wave packet to travel from the most upstream input (spy sensor at xs = −7)
to the most downstream output (objective sensor xy = 7). More precisely, the group
velocity is Ur + cdUi (Bagheri et al. 2009b), and thus we obtain

τ ≡ xy − xs

Ur + cdUi
≈ 5.4 (B 1)

for our configuration.

B.1. Number of samples

The quality of the input and output signals used for the identification has a direct impact
on the quality of the resulting model. In particular, any system-identification algorithm
should give better results as the length of the input and output signals increases. This is
verified in figure 26 where the efficiency of the feed-forward controller is represented as
a function of the number of samples used in the identification step. It is observed that
the efficiency of the control (blue curve) approaches the optimal LQG upper-bound (red
curve) as the number of samples increases. In this study, the order of the model and the
shift parameter are kept constant and equal to 6 and 67, respectively. The input signal u
is white noise. Throughout this article, the number of samples is chosen as 5000 (i.e., 500
time units). This value is represented by a vertical dashed line in figure 26. In practice,
the length of the signals used for identification has to be significantly larger than any
characteristic time scale of the system. The value used in this article is nearly 100 times
the characteristic time scale τ.
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Figure 27. (a) Control efficiency of the feed-forward approach (in blue) as a function of the
identified model order for the complex Ginzburg-Landau model. Fifty realizations of identifica-
tion and control were performed; the average (in blue) and one standard deviation are plotted.
These curves are compared to the optimal LQG-control designed from the full-order system
(continuous line with plus symbols). (b) Singular values from equation (A10) of the subspace
identification process.

B.2. Identified model order

In this section the choice of model order is analyzed. In figure 27(a), the efficiency of
the feed-forward controller is shown as a function of the model order. It appears that
the control (and, consequently, the identification) is optimal for a model order between
six and eight. Surprisingly, the performance of models decreases beyond this point. This
can be explained by the fact that all accessible dynamics of the system has already
been captured by eight modes and that the remaining dynamics is not accessible and
essentially hidden within the measurement noise. Trying to extract additional information
by increasing the model order only degrades the quality of the model. This is illustrated
in figure 27(a) by the increasing standard deviation observed for higher-order models. In
practice, however, the present parameter study may not be available a priori. Similar to
many other system identification techniques, subspace identification relies on a singular
value decomposition for the truncation of the order. This corresponds to equation (A 10)
in the description of the technique. In figure 27(b) the singular values are represented in
decreasing order. A sensible procedure is to select the order as the number of singular
values above a given threshold. In this article, better results were obtained by detecting
a sudden drop in singular values; for our configuration, this technique gives an order of
six. Except when specified otherwise, an automatic order detection is performed in this
article.

B.3. Type of input signal

In this article, a white-noise signal is used as an input at the system identification stage.
This signal has the advantage of exciting all frequencies of the system; however, in practice
real actuators are not capable of accomplishing such an excitation. Furthermore, it might
be advantageous to tune the frequency content of the input signal to better force the
dynamics of interest in the system. To this end, a random binary signal is often used as
input signal. It is constructed by low-pass filtering a white-noise signal and by applying
the sign function to the result; in this way, a random binary signal is generated. Its
frequency content can be tailored to better excite the dynamics of the system. Similarly,
a random triangular signal can be constructed by replacing the squares of the random
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Figure 28. Samples of the random binary signal and of the random triangular signal. Both
signals have the same standard deviation.

white noise random binary signal random triangular signal

mean efficiency 147.1 150.5 145.4
standard deviation 4.3 2.5 5.6

Table 1. Performance measures of the feed-forward control for the Ginzburg-Landau model
for three different input signals.

binary signal by triangles. A representative sample of these two signals is shown in figure
28 and the corresponding control efficiency is given in table 1. We conclude that the
random binary input signal produces a better control efficiency. In Ljung (1999) criteria
for the choice of the input are given. In particular, it is argued that a proper input signal
should have a standard deviation as close as possible to its maximum. This may be the
reason why the random binary signal gives better performances than the other input
signals. Other possible choices comprise, among others, chirp signals, sum of sinusoids or
pseudo-random binary signals.

B.4. Shift parameter

In subspace identification the shift between the past extended state and the future ex-
tended state is a user=specified parameter. During the first projection step of the sub-
space algorithm, the future objective-sensor measurements are described as a linear com-
bination of the past spy- and actuator-signals. Hence, to be able to find any correlation
between these quantities, it is imperative that the shift parameter i is larger than the
number of time steps needed for the information to travel from the spy sensor to the
objective sensor. In other words, the shift i must be larger than τ/∆t. In this article, ex-
cept when specified otherwise, we chose i ≡ 1.25τ/∆t. In figure 29, the control efficiency
is represented as a function of the shift parameter i. A vertical dashed line indicates the
parameter i used in our study.
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Figure 29. Control efficiency of the feed-forward approach (in blue) as a function of the shift
parameter i for the complex Ginzburg-Landau model. Fifty realizations of identification and
control were performed; the average (in blue) and one standard deviation are plotted. These
curves are compared to the optimal LQG-control designed from the full-order system (continuous
line with plus symbols).
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Högberg, M., Bewley, T. R. & Henningson, D. S. 2003 Linear feedback control and esti-

mation of transition in plane channel flow. Journal of Fluid Mechanics 481, 149–175.
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Convection-dominated or convectively unstable flows are characterized by the amplifica-
tion of disturbances over a broad range of scales as they propagate in the downstream
direction. Controlling this type of flows favors a feedforward configuration that actuates
on the flow based on information provided by an upstream sensor. A simple and effective
identification and control procedure, based on model-predictive concepts, is proposed
that extracts the proper transfer functions from input-output data-sequences which are
then used to design disturbance-rejection control laws. It provides a less complex and
more efficient alternative to commonly applied LQG-methods. This technique is applied
to a simple model problem as well as a two-dimensional obstructed channel flow; in both
cases, satisfactory control performance can be demonstrated. Since the implementation
of this technique merely requires input-output measurements, it is not only applicable to
numerical, but also to experimental data.

Key words:

1. Introduction

It has long been acknowledged that flow control is a key technology in fluid systems to
reduce drag, suppress instabilities, enhance efficiencies or increase operational envelopes,
to name but a few potential applications. For this reason, flow control has attracted a
great deal of attention. The current state of this discipline is characterized by a wide
range of techniques and approaches brought to bear on specific flow configurations. In
particular, linear control has received strong interest as evidenced by a large body of
literature (see, e.g., Kim & Bewley 2007; Williams & Rowley 2006; Bagheri & Henningson
2011). It most readily applies to flow situations that are either globally stable or only
sightly supercritical, such that a linearization about a steady equilibrium point can be
justified.
The choice of a successful control strategy critically depends on the type of flow be-

havior. For example, relying solely on downstream sensors to control upstream-generated
perturbations in a convection-dominated flow would appear futile. These types of flow —
which will be considered in this article — are indeed more suited for feedforward than for
feedback control (Juillet et al. 2013). Common techniques to design feedforward control
strategies fall under the category of Model Predictive Control (MPC; Qin & Badgwell
2003; Gerber et al. 2006), examples of which are the Model Predictive Heuristic Controller
algorithm, originally developed in Richalet et al. (1978) but also well presented in Cama-
cho & Bordons (2004) and Zheng (2010), and the step-response-based Dynamic Matrix
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Controller (DMC; see Cutler & Ramaker 1980). Even the familiar Linear Quadratic Gaus-
sian (LQG) control (Kalman 1960) can be interpreted within the MPC framework (see,
e.g., Qin & Badgwell 2003; Camacho & Bordons 2004). This latter technique has been
used extensively in the flow control literature due to its theoretical foundation and prov-
able optimality. Using LQG control for convection-dominated flow, where a feedforward
control seems more appropriate and practical, is rather cumbersome: first, two Riccati
equations for the control and Kalman gains need to be solved, and, second, a model for
the system noise is required. Whereas the former can be resolved by efficient algorithms
and model reduction efforts, the latter poses a far greater challenge that is not easily
overcome but, nonetheless, is a deciding factor for the ultimate control performance.
In contrast, a Model Predictive Heuristic Controller (MPHC) is significantly simpler to
design as only a least-squares problem is required. At the root of this technique, finite-
impulse responses are used to describe the fluid system. These impulse responses are
commonly obtained from system-identification algorithms.
System identification is concerned with the extraction of a model of the fluid sys-

tem from input-output data sequences only. Typical system identification techniques are
subspace identification techniques (van Overschee & de Moor 1996; Katayama 2005) or
classical least-squares fitting techniques (Ljung 1987). Among the subspace identifica-
tion techniques, the Canonical Variate Analysis algorithm (CVA; Larimore 1983, 1990),
the Multiple-inputs and multiple-outputs Output-Error State sPace algorithm (MOESP;
Verhaegen & Deprettere 1991) and the Numerical algorithms for Subspace State Space
System IDentification (N4SID; van Overschee & de Moor 1994) are the most widely
used. All these techniques identify the system directly in its state-space form. Alterna-
tively, a specific model for the system can be prescribed: for instance, a simple Finite
Impulse Response model (FIR), an AutoRegressive model with eXogeneous inputs (ARX;
Huang & Kim 2008)) or an AutoRegressive Moving-Average model with eXogeneous in-
puts (ARMAX; Hervé et al. 2012). The unknown coefficients in the chosen model are
then determined by fitting the true output measurements to the ones predicted by the
model, using a least squares algorithm. In convection-dominated flows, long delays are
typical due to the physical separation of the input and output components. For this rea-
son, describing this type of systems by finite impulses responses may be more appropriate
than enforcing a state-space form, even though the latter may resemble more closely a
familiar “governing equation”-format.
In a second step, the controller can be designed using a disturbance rejection argument

based on the identified finite impulse response (FIR) model. Regularization techniques
may be necessary for a robust control performance. Alternatively, a state-space model
may be recovered from the FIR-model via a procedural step referred to as system real-
ization, after which a controller can be designed using Riccati-techniques.
In this article, a multiple-input multiple-output (MIMO) data-based control design

procedure, particularly suited for convection dominated flows, is proposed and validated.
The procedure is linear and is intended to control flows that are globally stable, but react
sensitively to external perturbations and noise sources. Typical examples in this category
are pipe or channel flows, boundary layers, co-flow mixing layers or homogeneous jets, at
subcritical Reynolds numbers, but any shear flow that is mainly governed by a convective
process can benefit from the control setup and design illustrated in this article.
After a short introduction to disturbance rejection by feedforward techniques, the

finite-impulse-response (FIR) least-squares identification procedure is presented. First, a
single-input single-output (SISO) model predictive heuristic control algorithm is obtained
for the design of an optimal control law, which is subsequently extended to accommodate
multiple-input and multiple-output (MIMO) signals. Then, this algorithm is applied to
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Figure 1. Feedforward control setup for convectively dominated flows. An unknown disturbance
environment w is convected past the spy-sensors si which estimate the characteristics of w. The
actuators ui then manipulate the flow such that the control-objective, given by the downstream
sensors yi, is met.

a convection-dominated flow modeled by the linear Ginzburg-Landau equation. Possible
extensions and implementation details of the technique are mentioned at the end of the
section. The algorithm, in its MIMO-form, is then applied to a two-dimensional, linearized
finite-element simulation of a channel flow with two obstructions and its effectiveness is
evaluated. Attention is also directed towards user-specified weights for the input and
output signals. Summarizing remarks conclude this article.

2. Control design based on data-sequences

Convectively dominated flows are characterized by information propagation largely in
the downstream direction. Consequently, a control setup, respecting this feature, has
to be designed in a feedforward configuration. The goal of flow control efforts is the
reduction of disturbance levels measured by downstream sensors y, also referred to as
cost sensors. Since the source of these disturbances is assumed to be mainly upstream,
actuators u have to be placed upstream of the sensors. To complete the control setup,
spy-sensors s will be placed upstream of the actuators. Their role is the detection and
estimation of the incoming disturbance environment – information that is valuable for an
effective control design u to accomplish our cost objective (measured by y). The resulting
configuration of spy-sensors, actuators and cost-sensors is depicted in figure 1.
The fluid system is then characterized by two sets of input (the known actuator signals

u and the unknown disturbance environment w) and two sets of output (the measure-
ments y yielding the control objective and measurements s providing information about
the incoming disturbances w). For the sake of simplicity, but without loss of generality,
only single input- and output-signals are assumed; a generalization to multiple inputs
and outputs will be addressed later.
The setup above can be formulated in the terms of transfer functions according to

y = Gwyw + Guyu (2.1)

which describes the dependency of the downstream cost measurement y on the distur-
bance environment w and the control u. Similarly, the spy-sensor output s is expressed
in terms of the true disturbance environment w by writing

s = Gwsw. (2.2)

Owing to the convective nature of the flow, no influence of the control u on the spy-
sensor s is assumed. Ultimately, we wish to determine a transfer function Csu which links
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information from our spy-measurements s to the actuation u, i.e.

u = Csus. (2.3)

This latter transfer function has to be designed such that our cost-objective is satisfied.
In our case, we wish to minimize the disturbance energy at the cost-sensor location and
thus choose y = 0 (for all times) as our control objective. Upon substitution of (2.3)
and (2.2) into (2.1), we arrive at an expression linking the output y to the input w
according to

y = (Gwy + GuyCsuGws)w. (2.4)

For a controller that suppresses the output signal y for all times and independent of the
disturbance environment w, we have to require the expression in the parenthesis to be
identically zero which yields a control law u of the form

u = −G
−1

uyGwyG
−1

wss ≡ Csus. (2.5)

At this point, a discussion about the existence of the inverse transfer functions, their
minimal-phase properties and their compliance with causality is postponed to a later
section. Instead, we proceed by introducing techniques to identify the involved transfer
functions from input-output data sequences. Any transfer function requiring information
about the unknown disturbance environment w, such as Gwy and Gws, cannot be deter-
mined under realistic conditions. Coincidentally, the control design (2.5) only requires
the composite transfer function GwyG

−1

ws . Using relation (2.2) between w and s we have

y = Guyu+ GwyG
−1

wss. (2.6)

Since the signals u, s and y are readily accessible (e.g. from an experiment) we can
determine the two transfer functions Guy and GwyG

−1

ws . Their identification by processing
finite-impulse responses (in the temporal rather than frequency domain) is the focus of
the next section.

2.1. Finite-impulse responses (FIR)

To take advantage of a data-based approach, an input-output data sequence of N samples
will be recorded from which the transfer functions will be determined. This latter process
can be divided into two steps: a model-structure for the system’s impulse responses has
to be chosen first, after which a fitting procedure will determine the inherent parameters
of the selected model.
It is important to choose an input signal u that properly excites the inherent fre-

quencies of the system and thus provides a complete input-output map that accurately
represents the response behavior of the system to a range of harmonic excitations. To
this end, a pseudo-random binary signal (PRBS), a chirp signal or, simply, white noise
are appropriate and common choices of a frequency-rich input signal.

2.1.1. FIR model structure

Among the many options to represent a transfer function of a linear system, one of the
most straightforward is the finite-impulse response description. For discrete times, this
description links the present output to past inputs in the form

y = Guyu ⇒ y(k) =

∞∑

j=0

Hju(k − j) (2.7)

where y(k) is a short-form for y(k∆t) with ∆t as the discrete time-step, and Hj stands
for the jth impulse response coefficient (also referred to as the jth Markov parameter).
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Under the assumption that, after a sufficient time, the influence of past actuation on the
present measurement is negligible, we can truncate the above expression and arrive at
the Finite Impulse Response (FIR) model of order µ

y(k) =

µ−1∑

j=0

Hju(k − j) (2.8)

where only the µ first Markov parameters are accounted for. For single input and sin-
gle output signals, the Markov parameters are scalar; for nu input signals u and ny

measurement signals y the Markov parameters will be ny × nu matrices.
For our control configuration (see figure 1) two transfer functions need to be identified:

Guy and GwyG
−1

ws . Consequently, two sets of Markov parameters, denoted by Hu and Hs,
describe the FIR input-output relation,

y(k) =

µu−1∑

j=0

Hu
j u(k − j) +

µs−1∑

j=0

Hs
j s(k − j). (2.9)

Even though each term of the FIR model can have a different order, for the sake of
simplicity, we will take µu = µs = µ for the remainder of this study.

2.1.2. Least-squares identification

Denoting by ŷ(k;Hu, Hs) the output predicted by the identified model, the identifi-
cation error E may be written as the l2-norm distance between the exact (measured)
output y and its estimation, i.e.,

E(Hu, Hs) =
1

N

N∑

k=1

‖y(k)− ŷ(k;Hu, Hs)‖
2
. (2.10)

The identification procedure then corresponds to the minimization of E, resulting in
the set of Markov parameters Hu, Hs. Among the many different ways to solve this
optimization problem, the pseudo-inverse is used to arrive at the solution. In vector form
the identification error can be written as

E =
1

N
‖Y −HΦ‖

2
(2.11)

with

Y = (y(µ), y(µ+ 1), . . . , y(N)) (2.12a)

H =
(
Hu

0
, . . . , Hu

µ−1
, Hs

0
, . . . , Hs

µ−1

)
(2.12b)

Φ =




u(µ) u(µ+ 1) · · · u(N)
u(µ− 1) u(µ) · · · u(N − 1)

...
...

...
u(0) u(1) · · · u(N − µ)

s(µ) s(µ+ 1) · · · s(N)
s(µ− 1) s(µ) · · · s(N − 1)

...
...

...
s(0) s(1) · · · s(N − µ)




. (2.12c)
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Based on this formulation, the set of Markov parameters which minimizes the l2-identification
error is obtained using the pseudo-inverse of the data matrix Φ according to

H = Y Φ†. (2.13)

Using the identified Markov parameters H we can form the two sought-after transfer
functions Guy and GwyG

−1

ws based on our FIR-representation and determine the controller
according to u = −G−1

uyGwyG
−1

wss = Csus. Thus, the remaining step is to apply the inverse
of Guy (by left multiplication) to the composite transfer function GwyG

−1

ws ; this final step
is the focus of the next section.

2.2. Disturbance rejection control design

For realistic cases the inversion of the transfer function Guy may be complicated by
the fact that for some frequencies the modulus of the transfer function is nearly zero,
resulting in excessively large control amplitudes following the inversion. Regularization
techniques have to be employed to avoid these situations. The idea is to invert the transfer
function only for frequencies where the transfer-function modulus is above a pre-set
threshold value. This technique is equivalent to singular-value thresholding when forming
the pseudo-inverse of the transfer function. In our case, the transfer function is expressed
as a finite-impulse response in the time domain, and the algorithm of Model Predictive
Heuristic Control (MPHC) (see, e.g., Camacho & Bordons 2004) is most conveniently
applied to arrive at a regularized inverse and a robust expression for the transfer function
G−1

uy GwyG
−1

ws . The MPHC approach determines the Markov parameters of the transfer
function Csu using a variational principle: we seek a signal u which minimizes the cost
functional J given by

(SISO) J =

µ−1∑

k=0

y(k)2 + α

µ−1∑

k=0

u(k)2, (2.14a)

(MIMO) J =
1

2

µ−1∑

k=0

no∑

i=1

βiyi(k)
2 +

1

2

µ−1∑

k=0

ni∑

j=1

αjuj(k)
2. (2.14b)

The first cost functional is relevant for a single-input-single-output (SISO) configura-
tion, whereas the second expression allows for multiple-input and multiple-output signals
(MIMO), where no and ni are respectively the number of cost-sensors and the number of
actuators. In either case, the aim is to compute a signal u which will cancel an impulse in
s. Furthermore, the cost functional covers a time span of µ time steps (the length of the
impulse response from s to reach y) and represents a balance between the compensated
signal and its associated control. The balancing constant α (for the SISO-case) account-
ing for the relative weight of the control cost and the measured signal is an analog to the
threshold value for the frequency cut-off (in the frequency domain). In the MIMO-case,
the cost of the different actuators αj and the weights for the measured signals βi allow
a great deal of flexibility to account for special features of the physical system under
consideration.
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2.2.1. Optimal actuation: single input, single output (SISO)

Starting with the cost functional for the SISO-case, we use the additional fact that the
signal s is given by an impulse and that y is given by (2.9) and obtain

J =

µ−1∑

k=0


Hs

k +

µ−1∑

j=0

Hu
j u(k − j)




2

+ α

µ−1∑

k=0

u(k)2. (2.15)

Introducing the impulse response coefficients (Markov parameters) corresponding to the
transfer function Csu as Lk we can write

u(k) =

µ−1∑

j=0

Ljs(k − j). (2.16)

Again, for the special case of an impulse in s, that is s(0) = 1 and s(k) = 0 for k 6= 0,
we arrive at the simplified relation

u(k) = Lk. (2.17)

Returning to (2.15) we obtain, using (2.17), an expression for the cost functional J in
terms of Markov parameters only. We have

J =

µ−1∑

k=0


Hs

k +

µ−1∑

j=0

Hu
j Lk−j




2

+ α

µ−1∑

k=0

L2

k. (2.18)

The desired transfer function Csu has to be causal which requires that for k < 0, the
Markov parameters Lk have to be identically zero. We proceed by defining the transposed
(upper triangular) Toeplitz matrix TT containing the Markov parameters of Guy , i.e.,

T
T =




Hu
0

Hu
1

· · · Hu
µ−1

Hu
0

· · · Hu
µ−2

. . .
...
Hu

0


 . (2.19)

Furthermore, we introduce S as the vector of Markov parameters of Gsy,

S = (Hs
0
, Hs

1
, . . . , Hs

µ−1
)T , (2.20)

and L as the vector of (unknown) Markov parameters of the desired transfer function
Csu, that is,

L = (L0, L1, . . . , Lµ−1)
T , (2.21)

and can then reformulate the cost functional J in the more compact form

J(L) = ‖S+ TL‖2 + α‖L‖2 → min (2.22)

which attains its minimum for (see appendix A)

L = −(TT
T+ αI)−1

T
T
S. (2.23)

We recognize the expression (TTT+αI)−1TT as a Tikhonov regularization of the pseudo-
inverse of the Toeplitz matrix T, where α acts as the Tikhonov regularization parameter
that avoids large coefficients in L stemming from the ill-posedness of the original problem.
Low values of α enforce a low frequency-cutoff threshold and result in large-amplitude
actuation; large values of α yield low-amplitude (but maybe ineffective) actuation.
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The desired transfer function of the controller is determined directly from (2.23): the
Markov parametersHu andHs have been identified earlier, which makes the computation
of L straightforward. With L determined, the optimal control for disturbance rejection is
given by the application of the transfer function to the measured signal s according to

u(k) =

µ−1∑

j=0

Ljs(k − j). (2.24)

This expression concludes the computational procedure for the design of a controller —
from measured data-sequences — that optimally acts on the flow to suppress the signal
energy downstream.

2.2.2. Optimal actuation: multiple inputs, multiple outputs (MIMO)

This generalization to multiple inputs and/or outputs is very similar to the previous
SISO case; the optimization procedure is equivalent, but the derivation of the cost func-
tional with respect to the unknown Markov parameters is rather arduous. Starting with
the cost functional

J =
1

2

µ∑

k=1

no∑

i=1

βiyi(k)
2 +

1

2

µ∑

k=1

ni∑

j=1

αjuj(k)
2 (2.25)

which, upon analogous substitution of the Markov parameters, becomes

J =
1

2

no∑

i=1

βi




ns∑

k=1

∥∥∥∥∥∥
Ski +

ni∑

j=1

TijLjk

∥∥∥∥∥∥

2

+

1

2

ni∑

j=1

αj

(
ns∑

k=1

‖Ljk‖2
)
. (2.26)

In this expression, Tij denotes the transpose Toeplitz matrix of the Markov parameters
of the transfer function from the control uj to the sensor yi, and Ski stands for the vector
of Markov parameters of the transfer function from the spy sensor sk to the cost sensor
yi. Finally, the terms Ljk represent the Markov parameters of the controller (from spy
sk to actuation uj), the quantities that have to be determined.
As before, it is convenient to formulate the minimization problem for J in matrix form

which then allows a simple solution in terms of a pseudo-inverse. For this reason, we
introduce

Jk(L1k, L2k, . . . , Lnsk) =
1

2

no∑

i=1

βi




∥∥∥∥∥∥
Ski +

ni∑

j=1

TijLkj

∥∥∥∥∥∥

2

+

1

2

ni∑

j=1

αj

(
‖Ljk‖2

)
(2.27)

which simplifies (2.26) to

J =

ns∑

k=1

Jk(L1k, L2k, . . . , Lnik). (2.28)

From this we conclude that the minimization of J with respect to Lij is equivalent to the
minimization of each individual Jk with respect to Lik and that the controller associated
with each spy sensor can be designed independently. We proceed by defining

T =




T11 T12 . . . T1,ni

T21 T22 . . . T2,i

...
...

. . .
...

Tno,1 Tno,2 . . . Tno,ni


 (2.29a)
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(2.29b)

Sk =




Sk,1

Sk,2

...
Sk,no


 Lk =




Lk,1

Lk,2

...
Lk,ni


 (2.29c)

which brings the individual cost functionals (2.27) into the compact form

Jk = ‖B(Sk + TLk)‖2 + ‖ALk‖2. (2.30)

with

B =




√
β1Iµ 0 . . . 0

0
√
β2Iµ

. . .
...

...
. . .

. . . 0

0 . . . 0
√
βno

Iµ




A =




√
α1Iµ 0 . . . 0

0
√
α2Iµ

. . .
...

...
. . .

. . . 0
0 . . . 0

√
αni

Iµ



.

(2.31)
including the weight measures βk and αk. The minimization of Jk with respect to the
controller Markov parameters Lk is then simply a matter of linear algebra resulting in

Lk = −(TT
B
2
T+ A

2)−1
T
T
B
2Sk. (2.32)

The solution of this optimization is similar to the SISO case, except for the appearance
of weight matrices A and B accounting for the specific balance of terms in the cost
functional. In a last step, the control laws for each actuator uj (j = 1, ..., ni) can be
written as

uj(p) =

ns∑

k=1

µ−1∑

i=0

Lkjsk(i− p) (2.33)

which concludes the design process for the MIMO case.

2.3. Validation on a simple example

Before applying the above control design strategy to a more realistic flow case, we will
first validate its effectiveness on a simple, yet fluid-related model problem. The key
steps in the design of a SISO, model-predictive control strategy can be summarized
as follows: (i) We force the system with a broadband control signal u and record the
resulting output signals s (representing the unknown upstream disturbance environment)
and y, as well as the control input u. (ii) From these data-sequences, we identify the
impulse response coefficients (Markov parameters) based on a FIR-model using a least-
squares technique (see equ. (2.13)). (iii) Based on the identified transfer functions Guy

and GwyG
−1

ws , we determine the impulse response coefficients (Markov parameters) Lk

of the control transfer function Csu using a variational approach with (2.23) as the cost
functional. (iv) Using the coefficients Lk and (2.24), an optimal control law results linking
the input signals s to an actuator signal u that optimally suppresses the cost-sensor energy
given by y.
These procedural steps will be followed for the design of a disturbance rejection con-

trol law for the Ginzburg-Landau equation. This equation is a popular choice for bench-
marking control schemes, since it contains advective, dissipative, dispersive and unstable
terms, thus mimicking (with a substantially reduced number of degrees of freedom) the
fundamental, underlying processes of many fluid systems. For our case, the parameters
of the equation have been chosen to replicate the behavior of a convectively dominated
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Figure 2. Setup of a control problem for the Ginzburg-Landau equation.

Figure 3. Left: Identified impulses responses, Guy (dashed) and GwyG
−1

ws (plain). Right:
computed impulse response of the controller Csu

(amplifier) flow (see Roussopoulos & Monkewitz 1996). We have

∂ψ

∂t
− ωkkk0

∂ψ

∂z
− i

2
ωkk

∂2ψ

∂z2
+ i

(
ω0 + ωkk

k2
0

2

)
ψ = 0. (2.34)

The layout of the control problem based on the Ginzburg-Landau equation is shown in
figure 2. The upstream noise disturbance w is convected in the streamwise x-direction
and is measured by the sensor s. The actuation u aims at reducing this disturbance so
that the signal y at the cost sensor location is minimized. The dashed line symbolizes
the spatial disturbance energy distribution for the uncontrolled case.
Working through the design procedure, the identified FIR representation of Guy and

GwyG
−1

ws are displayed in figure 3; quantitatively, the residuals from the identification of
Guy and GwyG

−1

ws are less than 0.5% in either case. It is noteworthy that the controller’s
transfer function approximates a delay combined with an opposition action. Finally, fig-
ure 4 shows space-time diagrams of the energy magnitude (starting with an impulse
applied at the noise location) with the controller switched off (figure 4(a)) or on (fig-
ure 4(b)). The controller efficiency (for α = 0.01) is approximately 97%. After applying
control, the signal measured by the cost sensor is only a 1/20-th of the uncontrolled
signal.

2.4. Additional remarks, implementation issues and extensions of the method

We recall that finding the optimal model-predictive controller for disturbance rejection
is equivalent to computing the transfer function Csu = −G−1

uy GwyG
−1

ws which links the
sensors measurements s to the actuator signal according to u = Csus. For this procedure
to yield feasible results, causality constraints have to be respected. For purely convective
flows the transfer functions introduced above can be thought of as approximations of
delay operators; for example, Guy corresponds to a forward translation over τuy time
units while G−1

ws can be represented as a translation backward in time. The final control
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Figure 4. Controlled (left) and uncontrolled (right) impulse response (from the noise source)
in a space-time diagram.

Figure 5. Example of a feedforward configuration that satisfies the causality constraint and
hence is controllable by the proposed algorithm.

transfer function Csu is thus describes a time delay of τsu = −τuy + τwy − τws which is
only sensible if it is positive, or if τwy > τuy+ τws. This causality constraint, expressed in
terms of time delays for convective systems, has implications for the placement of sensors
and actuators to ensure an effective control configuration. A feedforward configuration
for a more complex geometric setup (e.g., the one displayed in figure 5) can be treated
analogously by the technique introduced above, as long as this constraint is accounted
for.
It is worth pointing out that the transfer function Csu = −G−1

uyGwyG
−1

ws can be com-
puted by a variety of algorithms: in the time domain, in the frequency domain, or using
other model structure, such as state-space representations. All those techniques are mu-
tually consistent and should give equivalent results, even though the individual imple-
mentation details may vary. We have chosen the MPHC-approach for its simplicity, ease
of implementation and effectiveness. In a similar vein, the computation of the impulse
response coefficients can also be accomplished with a wide range of available methods,
such as, for example, ARX (Gerencsér et al. 2009), ARMarkov (Akers & Bernstein 1997),
subspace identification (Katayama 2005) or any other linear system identification algo-
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rithm (see Ljung 1987). The overall procedure, however, is identical to the one introduced
above, even though slight variations in the convergence rate or statistical properties of
the errors are conceivable.
Under the assumption of a pure feedforward configuration (the information only travel

in one direction), stability — but not performance — of the controlled system is assured.
If this assumption is violated, however, robustness issues arise. In this case, a feedback
from the controller u to the sensor s can be modeled by a transfer function of the form

s = Gwsw + Gusu =
Gws

1− GusCsu

w. (2.35)

The non-zero term Gus can give rise to divergences in the sensor s which subsequently
impact the control signal u. This divergence occurs when GusCsu approaches unity; the
minimum distance to this singularity can be interpreted as a robustness margin of the
controlled system. A more detailed analysis of robustness margins can be found in Dovetta
et al. (2011).
An implementation concern stems from the signal delay caused by the convective

nature of the flow: due to causality, signals generated upstream will have an impact on
measurements downstream after a delay that can be estimated by the convection speed
and the distance between upstream and downstream signal location. This delay can be
accounted for explicitly in the computation of the respective transfer functions. In this
manner, one avoids the calculation of unnecessary zero Markov parameters that reflect
the time delay in the various impulse responses.
Placing multiple spy sensors in a MIMO configuration appears to be a prudent way of

extracting more information about the unknown upstream disturbance environment and
is expected to improve the effectiveness and performance of the disturbance rejection
control. However, the cost of this procedure has to be taken into consideration, since
we aim at a real-time implementation of the feedforward control which may become
prohibitive with a large number of sensors. In this latter case, redundant information
from the spy sensors should be removed. Even though this objective poses a non-trivial
problem, various approximate options exist. The multiple signals could be combined via
a linear combination to yield a smaller number of filtered (noise-reduced) spy signals.
Alternatively, the estimation error for all combinatorial sensor configurations can be
computed and only the most performing combinations could be retained. A far more
efficient approach is based on the sequential evaluation of the rms-difference between the
estimated signal ŝ2(s1) based on retained spy sensors s1 and the true signal s2 at the
same location. If this value falls below a given threshold (for example, related to the
measurement noise), the sensor s2 is eliminated, since most of its contribution is already
captured by s1.

3. Application to two-dimensional obstructed channel flow

We intend to test the proposed control design technique MPHC on a more challeng-
ing case and chose a configuration depicted in figure 6 with a MIMO setup. The two-
dimensional channel has two rectangular-shaped obstructions that cause flow separation
and recirculation regions. Nonetheless, the flow is convectively dominated and is thus a
suitable application of feedforward control. Included in figure 6 is also the location of
the sensors s1 and s2, the actuators u1 and u2, as well as the performance sensors y1
and y2. Causality constraints have been observed in the placement of these elements.
The flow is excited upstream with multiple high-dimensional broad-band noise sources.
Our numerical experiment is is based on the Navier-Stokes equations linearized about a
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Figure 6. Flow in an obstructed two-dimensional channel; the base flow is visualized by the
streamwise velocity, and the location of sensors and actuators is indicated.
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Figure 7. Contours of averaged perturbation norm, in response to excitation by the three
upstream noise sources.

steady base flow. Upstream perturbations are initially damped, but are then re-amplified
(due to a Kelvin-Helmholtz instability) in the shear regions near and downstream of the
obstructions. The response of the flow to excitation by the noise sources, measured by
the average perturbation norm, is shown in figure 7; the aim of our control efforts is the
minimization of the fluctuating signals measured by the sensors y1 and y2.

3.1. Identification and control

Numerical experiments have been performed with a white noise actuator signal, from
which all necessary impulse responses have been identified using (2.13). Four of the total
eight identified impulse responses are shown in figure 8. In particular, the identified
impulses responses from the spy sensors s1 and s2 to the cost sensor y2 (see figure 8(b))
appear far noisier compared to its equivalent in the Ginzburg-Landau case. Part of this
phenomenon can be attributed to the more complex flow configuration yielding more
complex transfer functions Gwy and Gws, which also reflects into the product GwyG

−1

ws . A
second reason is more of a numerical nature: by the time the broad-band noise w reaches
the location of the respective spy sensors it has lost a substantial part of its frequency
content, causing the input s1,2 into the identification algorithm to be not as rich in
frequency as desired. The resulting least-squares problem can thus be ill-conditioned. To
compensate for this difficulty, lower cut-off thresholds for the truncation of the singular
values of Φ in (2.13) have to be chosen. As a consequence, small oscillations can appear
in the FIR representation of the associated transfer function, evident in figure 8(b).
With all necessary transfer functions identified, a control strategy can be designed to

minimized the signals at y1 and y2. For simplicity, the weight coefficients for the actuators
and performance sensors have been chosen as α1 = α2 = 0.01 and β1 = β2 = 0.5. The
controller designed with these parameters has been attached to the numerical simulation,
and the controlled flow is represented in figure 9, visualized by the averaged perturbation
norm. The perturbation flow has been drastically reduced, which is apparent from a
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Figure 8. Identified impulse response functions: (a) response measured at y2 for an impulse
generated in u1 (continuous line) and u2 (dashed line); (b) response measured at y2 for an
impulse in s1 (continuous line) and s2 (dashed line).
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Figure 9. Averaged perturbation norm of the controlled flow in an obstructed channel flow.
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Figure 10. On the left: Actuations u1 (red) and u2 (blue) standard deviation when the flow
is designed for actuation penalty weights α1 = α2 ≡ α varying from 0 to 0.015. On the right:
Corresponding attenuation on y1 (red) and y2 (blue).

comparison with the contour plots of the uncontrolled flow in figure 7 (the same colormap
has been used). More quantitatively, the rms-value of the signals y1 and y2 has been
reduced by more than 80%.
The effectiveness of the disturbance-rejection feedforward control is very encouraging;

we will next explore the flexibility of our MIMO setup and investigate the influence of
the different weights parameters αi and βi (see expression (2.14)) on the performance of
the MIMO control strategy.

3.2. Influence of the actuator weigths α1 and α2

The weights α on the actuator signal in the objective functional (2.14) takes into account
the cost of control. Large values of α penalize any control effort and yield parsimonious
actuation, while small values of α produce more liberally expended control signals.
Figure 10 displays the standard deviations of the actuator and sensor signal as a

function of the weight α. We observe that the more expensive the control efforts, the less
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Figure 12. On the left: Actuations u1 (red) and u2 (blue) standard deviation when the flow
is designed for actuation penalty weights α1 = 1 − α2 varying from 0 to 1. On the right:
Corresponding attenuation on y1 (red) and y2 (blue).

control will be expended and the more fluctuations can be expected at the objective sensor
locations and vice versa. More interestingly, we set the sum of the actuation penalizations
to a constant and vary the relative weight between the two. Figures 11 and 12 show two
cases of tuning the actuation penalties: with

∑
αi = 0.01 and

∑
αi = 1, respectively.

In figure 11, even though the different actuators are more or less active, depending
on the penalty distribution, the disturbance attenuation recorded by the two objective
sensors remains in approximately the same range. We conclude that the two actuators
are independently able of significantly reducing the energy of the flow perturbations.
In figure 12, the overall cost of the actuation is substantially larger when compared to
the sensor signal. Consequently, for α1 ≃ α2, each actuation is too expensive, and the
controller nearly shuts down. On the other hand, if one of the actuation signal becomes
cheap, it is able to control the flow by itself; the controller increases its signal, and we
converge to the performance of a single-actuator configuration. Next, we investigate the
effect of the sensor weights which discriminates the different outputs.

3.3. Influence of objective sensor weights β1 and β2

The penalization of the actuations is set to αi = 0.005, and β1 = 1− β2 varies from 0 to
1. In figure 13 the standard deviations of the control signals and the attentuation of the
sensor signals are represented. The control efficiency is influenced, as expected, by the
variation of the weight coefficients. However, even if one coefficient is set to zero (i.e.,



105

16 N. Dovetta, F. Juillet and P.J. Schmid√
β2

BA

A
ct
u
a
ti
o
n
st
a
n
d
a
rd

d
ev
ia
ti
o
n

√
β1

1 0.75 0.5 0.25 0

0 0.25 0.5 0.75 1
0.012

0.014

0.016

0.018

0.02

0.022

√
β2

BA

A
tt
en
u
a
ti
o
n

√
β1

1 0.75 0.5 0.25 0

0 0.25 0.5 0.75 1
0.1

0.15

0.2

0.25

0.3

0.35

Figure 13. On the left: Actuations u1 (red) and u2 (blue) standard deviation when the flow is
designed for objective sensor weigths β1 = 1−β2 varying from 0 to 1.On the right: Corresponding
attenuation of y1 (red) and y2 (blue).

 

 

0 2 4 6 8 10 12 14 16 18 20
0

2

0

0.5

1
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Figure 15. Controlled perturbation norm (case B)

the controller is not designed to reduce the fluctuations measured by the corresponding
sensor), the attenuation in the associated sensor signal is still significant; for instance,
the signal measured at y1 has its standard deviation reduced by 73% compared to the
uncontrolled case, even when β1 = 0. This means that the flow responds more globally to
a certain perturbation and that it suffices to control this perturbation based on at least
one sensor measurement and still reap remarkable benefits at the other sensors.
To see the impact of the weight coefficients on the flow behavior, the controlled per-

turbation norm is presented for two cases (referred to as A and B; see figure 13) in
figures 14 and 15. Both controllers significantly reduce the perturbation norm over the
entire downstream flow field. However, closer inspection of the difference between the
two compensated perturbation norms (figure 16) reveals slightly different behavior in
the two cases. Hence, the MIMO algorithm together with the weight coefficients can be
used to design control schemes that will change the flow behavior such that some regions
of the flow are more or less sensitive to external perturbation as the cost functional is
minimized.

4. Summary and conclusion

A data-based identification and control design algorithm for fluid flows that are dom-
inated by convection has been presented. The identification step is based on a simple
finite-impulse-response model, whose unknown coefficients can be determined by a least-
squares match of the true and model-predicted output sequence, as the model is driven



106 Data-based model-predictive control design for convection dominated flows

Model-predictive control design for convectively unstable flows 17

 

 

0 2 4 6 8 10 12 14 16 18 20

−2
0
2

0

0.5

1

Figure 16. Difference between the averaged perturbations for case A and B. Regions in blue are
more effectively controlled by the compensator A whereas regions in red are better controlled
by the compensator B.

by frequency-rich input signals. Noise sources are captured by a sensor located upstream
of the actuator. The two identified transfer functions (Markov parameters) between (i)
upstream and downstream sensors and (ii) actuator and downstream sensor are then
used to compute a control strategy based on disturbance rejection. This yields a transfer
function between upstream sensor and actuator, thus providing a control strategy. The
SISO-case has been tested on a simple Ginzburg-Landau model, while the MIMO-version
has been applied to control two-dimensional channel flow over two rectangular obstruc-
tions. In both cases, an effective and efficient control performance could be achieved.
The presented approach is particularly suited for convection-dominated flows where it

provides a simpler and far more efficient alternative to the more commonly used LQG-
technique (for a relation between the proposed and LQG-approach, see appendix B). It
is also noteworthy that the entire design process only relies on flow measurements and
thus is equally applicable to numerical simulations and experimental data. Future work
will explore the implementation of the FIR-based model-predictive heuristic controller
to experimental data aiming at the suppression of upstream generated disturbances in
convectively dominated shear flows.

Appendix A. Minimization of the cost functional

More details are given on the minimization of the cost functional J with respect to the
Markov parameters L of the controller. The mathematical problem can be stated as

J(L) = ‖S + TL‖2 + α‖L‖2 → min (A 1)

which can be rewritten, using the norm-related scalar product, as

J(L) = 〈S + TL, S + TL〉+ α〈L,L〉. (A 2)

Using the bilinearity property, the latter expression can be expanded as

J(L) = 〈S, S〉+ 2〈TL, S〉+ 〈TL,TL〉+ α〈L,L〉. (A 3)

A minimum is obtained when the first variation of J with respect to L vanishes, i.e.,

∂J

∂L
δL = J(L+ δL)− J(L) = 2〈δL,TTS〉+ 2〈δL,TT

TL〉+ 2α〈δL, L〉 = 0. (A 4)

The last expression has to hold for all variations δL, which leads to

T
TS + T

T
TL+ αL = 0 (A 5)

which, after rearrangement, results in an explicit expression for L that renders J minimal.
We finally arrive at

L = −(TT
T+ αI)−1

T
TS. (A 6)
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Appendix B. Equivalence between finite and infinite time-horizon

control design for convective systems

We will consider the infinite time-horizon cost functional

J∞ = lim
N→∞

1

N

(
N∑

k=0

y(k)2 + α

N∑

k=0

u(k)2

)
. (B 1)

This cost functional is minimized by the LQG controller based on a state-space rep-
resentation of a system that has been identified by its finite impulse responses. The
disturbances are taken as white in time, and the system is assumed to be convectively
dominated. This allows the formulation of the system’s behavior by a set of finite-impulse
responses (FIR) of length µ. Substituting this formulation back into (B 1) we obtain

J∞ = lim
N→∞



1

N

N∑

k=0




µ−1∑

j=0

Hu
j

µ−1∑

i=0

Lis(k − j − i) +

µ−1∑

j=0

Hs
j s(k − j)




2

+ α
1

N

N∑

k=0

(
µ−1∑

i=0

Lis(k − i)

)2

 (B 2)

which, after rearranging the sums, yields

J∞ = lim
N→∞



1

N

N∑

k=0







µ−1∑

j=0

(
µ−1∑

i=0

Hu
j Lis(k − j − i) +Hs

j s(k − j)

)


2

+ α

(
µ−1∑

i=0

Lis(k − i)

)2



 . (B 3)

Introducing Sk
k−2µ = (s(k), s(k − 1), . . . , s(k − 2µ+ 2)), as well as two linear operators

(A,B) corresponding to the above quadratic forms, we arrive at a compact formulation
according to

J∞ = lim
N→∞

1

N

N∑

k=0

(
‖ASk

k−2µ‖2 + α‖BSk
k−2µ‖2

)
, (B 4)

and, using the definition of the operator scalar product, we obtain

J∞ = lim
N→∞

[
trace

(
A 1

N

N∑

k=0

(
Sk
k−2µS

k
k−2µ

T
)
AT

)

+ α trace

(
B 1

N

N∑

k=0

(
Sk
k−2µS

k
k−2µ

T
)
BT

)]
. (B 5)

In the above expression, we notice that (
∑N

k=0
Sk
k−2µS

k
k−2µ

T
)/N = σI with I as the

identity matrix of size 2µ and σ denoting a scalar, which follows from the fact that the
noise has been taken as white. We thus have

J∞/σ = ‖A‖2 + α‖B‖2. (B 6)

Based on the definition of J(L), and the expressions for the two linear operators above,
we recognize that the infinite time-horizon cost functional is proportional to the finite



108 Data-based model-predictive control design for convection dominated flows

Model-predictive control design for convectively unstable flows 19

time-horizon cost functional (which our disturbance-rejection algorithm optimizes)

J∞/σ = 2µJ(L) = 2µ
(
‖S + T L‖2 + α‖L‖2

)
. (B 7)

We conclude that, if the system, driven by white noise, is convectively dominated, then
the controller that minimizes an infinite time-horizon cost functional is equivalent to a
controller that stems from a (sufficiently long) finite time-horizon optimization.
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A combined approach using system identification and feed-forward control design has
been applied to experimental channel flow in an effort to reduce the naturally occur-
ring disturbance level. A simple blowing/suction strategy was capable of reducing the
standard deviation of the measured sensor signal by 45%. The technique is effective, flex-
ible, and robust, and the obtained results encourage further explorations of experimental
control of convection-dominated flows.

1. Introduction

Despite a great deal of progress in the development and application of flow control
strategies, there are rather few experimental efforts that achieve the kind of control
results that so readily can be realized in numerical simulations. Most computational
studies have concentrated on the implementation of optimal and robust control laws and
have validated performance measures under controlled or designed environments. Start-
ing from a set of governing equations and empirical assumptions about ambient noise or
model uncertainties, a variational approach yields control and estimation units that aim
at optimally or robustly suppressing instabilities, decreasing amplification rates, reducing
drag and other undesirable output, delaying transition, avoiding separation, enhancing
mixing, or generally increasing the efficiency of fluid systems (see Gad-el-Hak 1996; Be-
wley 2001; Kim & Bewley 2007; Jahanmiri 2010, for reviews on these subjects). For any
but the most simple configurations, the governing equations describing the perturba-
tion dynamics commonly require a drastic reduction in the degrees of freedom before
low-dimensional compensators can be designed. This model-reduction step inevitably
introduces inaccuracies into the design process, which together with typical heuristics
about the noise environment (freestream turbulence, wall roughness, acoustic forcing,
etc.) can negatively influence the performance of controllers — sometimes up to failure
in reaching the control objective. Common reduction techniques use Galerkin projections
based on proper orthogonal decomposition (POD) modes (Rowley et al. 2004; Luchten-
burg et al. 2006), balanced POD modes (Willcox & Peraire 2002; Rowley 2005; Ilak &
Rowley 2006) or the eigenvalue realization algorithm (ERA) (Illingworth et al. 2012)
to arrive at reduced-order models for control applications. The subsequent design of a
controller proceeds along standard lines following optimal or robust control theory (see,
e.g., Burl 1998). The ability of these techniques to produce successful numerical control
strategies is well established and documented; an equally successful implementation in
an experiment, however, is still lacking, to the best of the authors’ knowledge.
System identification, and control design based on the identified model, is an alternative
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Figure 1. Schematic representation of the open return tunnel used for the experiments
(dimensions in cm).

that extracts an input-output relation between actuator(s) and sensor(s) directly from
processing computed or measured data-sequences. Persistent uncertainties and variability
in the system, even of unknown origin, are taken into account during the identification
process. System identification has been successfully applied, for example, to experimen-
tally suppress cavity tones (Cattafesta et al. 1998; Kegerise et al. 2004; Cattafesta et al.

2008). Recently, convectively dominated flows have been treated numerically by a com-
bined identification-feedforward approach in Hervé et al. (2012) and Juillet et al. (2013);
the investigations of Rathnasingham & Breuer (2003) and Lundell (2007) are two appli-
cations of this methodology to a convectively dominated, experimental flow. In Goldin
et al. (2013) a similar technique is used for the damping of Tollmien-Schlichting waves.
This article presents a feasibility and performance assessment study of a combined

system-identification/feed-forward control approach aimed at suppressing naturally oc-
curring perturbations in wall-bounded shear flows under realistic conditions. A channel
flow has been chosen as our flow configuration and as a generic representation of more
complex wall-bounded, noise-amplifying flows that are dominated by convection.

2. Experimental set-up

The experiments for this article were carried out in an open-return tunnel at GALCIT.
The tunnel has a total length of Lt = 260 cm and internal cross-sectional dimensions
of width W = 15.6 cm and height H = 2h = 1.2 cm, resulting in a width-to-height
ratio W/H = 13. Air is driven by a simple fan, passes through a small screen (mesh size
1.5 mm) and a smooth contracting nozzle of inlet-to-outlet ratio A = 8.3 and enters the
test section of length L = 186 cm (L/H = 155) (see figure 1). The Reynolds number
based on the channel half-height h and the maximum speed Umax in the duct is Re = 870.
Two hot-film sensors (Dantec hot film probe 55R47) were placed on the channel wall at
xs = 0 and xs = 29 cm (xs/H = 24.17) and operated at constant temperature. The
upstream sensor will provide information about the incoming disturbance field, while
the downstream sensor will be used to evaluate the control objective. Actuation (blow-
ing/suction) is performed by a computer-controlled 25 cl syringe pump connected to the
lower channel wall at xa = 16.5 cm (xa/H = 13.75) by a small hole of diameter 0.8 mm.
A sketch of the set-up is presented in figure 2. The acquired sensor signals pass via a
AN-1005 AA Labs Constant Temperature Anemometer (CTA) to the computer. The
software Labview is used for both the identification and control phase of the study, with
a sampling time of 2 ms. Finally, the control signal is processed by a voltage/frequency
converter and passed via a motor controller to the stepper unit of the syringe pump. A
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Figure 2. Sketch of the full experimental set-up including the air tunnel, all actuation and
measurement devices, and data acquisition and processing units.

wide range of choices for actuation is available (see, e.g., Gad-el-Hak 1996; Cattafesta
et al. 2003; Cattafesta & Sheplak 2011), including active dimples (Dearing et al. 2007)
or any active roughness on the wall (Jacobi & McKeon 2011), plasma actuators (see,
e.g., Belson et al. 2012), wall oscillations (Quadrio & Ricco 2004; Moarref & Jovanovic
2012), synthetic jets (see, e.g., Glezer & Amitay 2002) or general blowing/suction devices
(Woodcock et al. 2012). A syringe pump linked to a stepper motor has been chosen for
our study due to its simplicity yet precision in controlling the blowing and suction ve-
locity. Anticipating the application of a linear framework for both system identification
and control design, we must ensure that the actuation exercised by the syringe pump
can be aptly described by a linear relation. Due to the high Reynolds number, inertia
stemming from blowing or suction cannot be neglected in the cross flow; consequently,
the flow response is not symmetric with respect to positive or negative actuation, and
linearity cannot be assumed. In fact, the effect of suction on the downstream sensor was
nearly negligible when compared to the response to blowing. An improved linear response
behavior can be accomplished by operating the actuator about a small and constant rate
of blowing. Small fluctuations about this minor base bleed were then used to suppress
the incoming flow perturbations. The constant rate of blowing (of 4.8 cm3/s which con-
stitutes 0.18% of the mean volume flux) has been chosen to ensure a positive influx of
control fluid from the syringe over the entire control cycle, while keeping its effect on any
possible mean-flow modification negligible.

3. System identification and feed-forward control design

As outlined in the introduction, we will apply a system identification approach to
deduce a quantitative model from observed data, which in a second step will be used
to design a feed-forward control strategy to minimize the naturally occurring, incoming
flow disturbances. This technique is particularly suited for an experimental setting, since
environmental noise and other flow uncertainties are directly reflected in the identified
model, without heuristic external user input. The general algorithm and its implementa-
tion for convectively dominated fluid problems are presented in Dovetta et al. (2013), but
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a concise description of the essential steps, tailored to our specific configuration, is given
in the following sections. Further details on this general approach and on applications to
fluid flows can be found in previous work by Rathnasingham & Breuer (2003), Cattafesta
et al. (2003), Hervé et al. (2012) and Juillet et al. (2013).

3.1. System identification: choice of model structure

System identification aims at extracting a mathematical model for a dynamical system
by observing and processing input-output data only. Procedurally, it involves a least-
squares fit of a postulated, general input-output expression to measured input-output
sequences. Typical models for system identification include, among others, Finite Im-
pulse Response (FIR) filters, AutoRegressive models with eXogeneous inputs (ARX) or
AutoRegressive Moving-Average models with eXogeneous inputs (ARMAX) (see Ljung
1999, for an overview). For our experiment, the simplest structure, a FIR-model, has been
chosen; more sophisticated models have also been tested, but their added complexity did
not yield sufficient improvements to warrant their use. Mathematically, a finite impulse
response (FIR) model of order µu takes the form

y(k) =

µu
∑

j=0

Hu
j u(k − j), (3.1)

where y(k) denotes the output signal of the system at discrete times tk = k∆t, u(k − j)
stands for the input signal of the system at time index (k−j) and Hu

j is the jth unknown

model coefficient (also referred to as the jth Markov parameter). This model expresses
the current output measurement as a linear combination of the current and past input
measurements. It arises from a classical convolution product, used to describe a causal
linear system with input u and output y. For our flow configuration, perturbations are
predominantly convected downstream which allows the truncation of the infinite convo-
lution product at a finite limit, as shown in (3.1). In this case, the Markov parameters
represent the finite discrete impulse response from the actuator (u) to the sensor (y).
Information from the upstream sensor (s) also has to be considered. Again, the convec-
tive nature of the flow clearly designates this signal as an input to our model, rather
than an output of our system, resulting in our final model structure for the experimental
input-output dynamics. It reads

y(k) =

µu
∑

j=0

Hu
j u(k − j) +

µs
∑

j=0

Hs
j s(k − j), (3.2)

where Hs
j is the jth Markov parameter accounting for the sensor signal s. Once the model

is chosen, further steps in the system identification consist of adjusting the coefficients
Hu

j and Hs
j to optimally fit the measured data.

3.2. System identification: least-squares minimization

Once input and output data sequences have been recorded, the best-fit Markov param-
eters can be determined by minimizing (in a least-squares sense) the difference between
the measured signal y and the estimated output from the model given u and s. In math-
ematical terms, we solve the optimization problem

(Hu
j , H

s
j )j=1,µu/s

= argmin
N
∑

k=0

∥

∥

∥

∥

∥

∥

y(k)−

µu
∑

j=0

Hu
j u(k − j)−

µs
∑

j=0

Hs
j s(k − j)

∥

∥

∥

∥

∥

∥

2

(3.3)
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Figure 3. Identified impulse responses from the spy sensor s to the objective sensor y and
from the actuator u to objective sensor y. The controller impulse response L is also

represented.

for data sequences {u, s, y} of length N+1. The above expression can be recast in matrix
form as

H = argmin‖Y − HΦ‖
2
2 (3.4)

with Y = (y(0), . . . , y(N)) and H = (Hu
0 , . . . , H

u
µu

, Hs
0 , . . . , H

s
µs
). The matrix Φ contains

the input data in the form

Φ =

































u(0) u(1) · · · u(N)
u(−1) u(0) · · · u(N − 1)

...
...

...
u(−µu) u(1− µu) · · · u(N − µu)

s(0) s(1) · · · s(N)
s(−1) s(0) · · · s(N − 1)

...
...

...
s(−µs) s(1− µs) · · · s(N − µs)

































. (3.5)

The optimization problem (3.4) can then be solved for the set of Markov parameters H
as follows

H = Y Φ†, (3.6)

where Φ† ≡ lim
ǫ→0

ΦT (ΦΦT + ǫI)−1 indicates the Moore-Penrose pseudo-inverse of Φ with ǫ

as a regularization parameter. Alternatively, the Markov parameters can be determined
sequentially from an unforced (u = 0) experiment followed by a forced (u 6= 0) experi-
ment.

3.3. Feed-forward control design

The final step consists of the design of a control law from the identified Markov pa-
rameters. For simplicity, we assume that the two sets of Markov parameters (impulse
responses) have identical lengths, µs = µu ≡ µ. In practice, this choice is not detrimental
as long as µ is sufficiently large. Within a feed-forward setting, the final control law is in
the form of a direct causal relation between the upstream sensor signal s and the actuator
signal u, which can be expressed — analogous to the analysis above — as an impulse
response from s to u given by a set of unknown coefficients L ≡ (L0, . . . , Lµ). Causality
requires Lk = 0 for k < 0. Figure 3 gives a graphical interpretation of this issue. The
coefficients Lk can be readily determined by assuming a discrete impulse in s (that is,
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s(0) = 1 and s(k) = 0 for k > 0), for which the response in y is given according to (3.2)
by

y(k) =

min(µ,k)
∑

j=0

Hu
j Lk−j +Hs

k. (3.7)

From this expression, the coefficients Lk can be found by minimizing the output y(k)
for any k. More precisely, a cost functional J(L) (to be minimized) can be formulated in
matrix form as

J(L) = ||LΨ+ H
s||

2
2 + α ||L||

2
2 , (3.8)

with H
s = (Hs

0 , . . . , H
s
µ) and

Ψ =











Hu
0 Hu

1 · · · Hu
µ

0 Hu
0 · · · Hu

µ−1
...

...
. . .

...
0 0 · · · Hu

0











. (3.9)

The second term in (3.8) represents a penalization of the actuator signal with α as
a penalty cost parameter. Physically, this term limits the amplitude of the actuator
signal; mathematically, it acts as a (Tikhonov) regularization of the problem. The solution
of (3.8) leads to the controller impulse response

L = H
sΨT

(

ΨΨT + αI
)−1

. (3.10)

The controller impulse response L given in (3.10) fully describes the controller dynamics;
this concludes the control design procedure.

4. Results

For the identification phase of the proposed FIR-model a choice has to be made as to
the actuator excitation. Stochastic signals (e.g., white noise) and deterministic forcings
(e.g., chirp) have to be weighed against theoretical advantages for the identification and
experimental feasibility. A good compromise is given by a random binary signal: it excites
a sufficiently wide frequency range, and its standard deviation equals its maximum value
— a property (known as a unit crest factor) which proves advantageous for system
identification (see Ljung 1999). A typical actuator signal during the identification phase
is shown in figure 4, alternating between constant excitation and rest. A superiority of
random over deterministic signals has also been observed in numerical experiments (see,
e.g., Juillet et al. 2013).
Two impulse responses (Markov parameter sequences) result from processing the in-

put/output data sequences according to the system identification algorithm outlined
above; they are presented in figure 5. A typical delay of 0.2 s can be observed for the
impulse response from the upstream to the downstream sensor (figure 5a) which trans-
lates into a perturbation group velocity of Ug = 1.46 m/s = 0.68 Umax. Nearly the same
characteristic time of 0.2 s is also measured for the impulse response from the actuator
to the downstream (objective) sensor (figure 5b). This finding may, at first sight, seem
surprising given the fact that the actuator is placed much closer to the downstream sen-
sor. However, one has to keep in mind that the identification procedure describes the
system from the computer-generated input signal to the output signal recorded by the
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Figure 4. Random binary actuator signal used during the system identification phase. Notice
the mean base bleed of 4.8 cm3/s.
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Figure 5. Identified impulse response (a) from the upstream s to the downstream sensor y,
(b) from the actuator u to the downstream sensor y.

same computer. Between these two signals lies a multi-component system (see figure 2)
whose elements add delays to the overall response time. Based on the already identified
group velocity Ug, the convective time from actuator to downstream sensor is estimated
as 0.09 s, which leaves a delay of 0.1 s stemming from the electrical and mechanical de-
vices. This matter also illustrates the strength of system identification in accommodating
typical imperfections and shortcomings in the system; an approach based on common
reduced-order models could not manage this type of challenges.
In order to validate the identified model, the downstream sensor signal y used for the

identification is compared with the predicted output from (3.2). Figure 6 shows a pleas-
ing agreement between the predicted (black) and measured (red) signal. In quantitative
terms, a better than 60% match has been achieved corresponding to a relative error —
measured as the standard deviation of the absolute signal difference to the standard de-
viation of the uncontrolled signal — of less than 40%. More importantly, the measured
and estimated signals are closely locked in phase which instills confidence for the design
and implementation of a controller based on this model.
Application of the control design equation (3.10) with the penalization parameter of

α = 10−8 results in the controller impulse response presented in figure 7. A strong
negative peak at t = 0 is observed, reminiscent of opposition control; the entire response,
however, is more complex and therefore more effective than classical opposition control
strategies (see, e.g., Rebbeck & Choi 2006). The controller seems to react immediately
after detection of an incoming perturbation in s. This is to be expected, since the two
identified impulse responses showed peaks at nearly the same time (recall figure 5).
Nonetheless, the before-mentioned delay in the system will ensure maximum destructive
interference at the downstream sensor location.
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Figure 6. Comparison of the measured downstream sensor signal ym (red) and the predicted
value yp (black) from the identified model. A prediction accuracy of 60% of the measured signal
is obtained.
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Figure 7. Controller impulse response which describes the control signal triggered by an
impulse in the upstream sensor s
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Figure 8. Objective sensor signal y measured (a) with the control switched off, (b) with the
control activated. A reduction of 44% in the signal’s standard deviation has been accomplished.

The controller represented by its impulse response (figure 7) has been implemented in
our experiment. Representative results of the controlled and uncontrolled flow are shown
in figure 8: the downstream sensor signal is recorded for a period of 30 seconds with
the control off (figure 8a) or on (figure 8b). For this specific realization the uncontrolled
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Figure 9. Power spectral density of the downstream (objective) sensor signal (blue) without
control and (red) with control.

signal has a standard deviation of σ = 0.0625 which can be reduced by 44%, to a value
of σ = 0.0348, once the control has been activated. Statistics on the control efficiency
have been gathered by repeating the control experiment more than 25 times (for a total
recorded time of more than 13 minutes). On average, a robust reduction in standard
deviation by 45% has been measured. We also note that, even though only a reduction
of the downstream sensor signal has been targeted by our control, an average reduction
in standard deviation of still 30% could be measured by an additional sensor placed
xs2 = 14 cm (xs2/H = 11.67) farther downstream from the objective sensor.
Finally, the power spectral densities of the objective sensor signals with and without

control are displayed in figure 9. The dynamics in the channel are clearly dominated by
low frequencies, and the controller has been able to reduce the low-frequency spectral
density by nearly a factor of four. Frequencies in the range of 4.5 to 25Hz are amplified by
the controller; however, they represent a very small fraction of the entire energy content,
such that a significant net reduction in energy prevails. Small peaks at frequencies above
20Hz are still 1000 times smaller than the spectral density in the lowest frequencies; their
origin can be ascribed to mechanical or electro-mechanical oscillations in the channel.

5. Summary and conclusions

System identification based on an FIR-model and followed by a feed-forward control
design has been applied to an experiment of subcritical channel flow (Re = 870) to de-
crease the naturally occurring perturbation magnitude. A blowing/suction strategy using
a simple syringe pump was capable of reducing the standard deviation of the downstream
sensor signal on average by 45%; a second sensor, placed a posteriori farther downstream,
could still record a 30% reduction in standard deviation, which suggests a decrease in
disturbance level beyond the localized region for which the control strategy has been de-
signed. This level of reduction is certainly less than what can be accomplished in numer-
ical simulations with similar techniques (which can be attributed to the uncompromised
conditions and idealizations of the computations, especially regarding noise sources and
actuator modeling). Nonetheless, it exceeds previous values from experimental studies:
Rathnasingham & Breuer (2003) apply related techniques to control natural flow distur-
bances in a turbulent boundary layer at Re = 1960 (based on the momentum thickness)
and report a maximum localized reduction of 30% in the streamwise velocity fluctuations.
The latter configuration is certainly more difficult to takle than the present channel flow.
Note however, that the control has been applied only near the wall, in the sub-layer and
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buffer layer, where the flow is expected to behave linearly. More recently, Lundell (2007)
used a threshold-and-delay control algorithm and achieved a maximum disturbance re-
duction of 18%. A related study by Jacobson & Reynolds (1998) attempted to control
disturbances in a Re = 600 boundary layer, but introduced the upstream perturbations
artificially and deterministically.
The technique introduced in this article is capable of identifying and controlling a nat-

urally occurring disturbance environment in an effective, efficient and robust manner. It
improves on previous techniques to manipulate convectively dominated (noise-amplifier)
flows and provides a promising direction in the further pursuit of control of wall-bounded
shear flows.
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