A. D. Mcnaught and A. Wilkison, Compendium of Chemical Terminology -The Gold Book, Second Edition, Matières plastiques. 8 e édition Journal officiel de la République Française du 1 er mars 2002 : Termes généraux de la chimie [4] The Nobel Prize in Chemistry. Nobelprize.org. Consulté le 9 Octobre 2012, 1997.

V. Pierre and . Plastifiants, Techniques de l'ingénieur, 10 février 1992, référence A3231 [6] Hervé-Bazin Benoît, Laudet-Hesbert Annie

D. Vanessa, G. Marina, P. Jean-luc, B. Abdelhay, C. Le-maire-albane et al., Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes Communiqué de veille toxicologique : les phtalates : état des connaissances sur la toxicité et l'exposition de la population générale. Pour l'Institut de santé publique du Québec, Proceedings of the National Academy of Sciences of the United States of America, vol.8, issue.9, p.2012, 2004.

S. Kitamura, N. Jinno, S. Ohta, H. Kuroki, and N. Fujimoto, Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A . Biochemical and Biophysical Research Communications, pp.554-559, 2002.

B. Gladen, W. Rogan, P. Hardy, J. Thullen, J. Tingelstad et al., Development after exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene transplacentally and through human milk, The Journal of Pediatrics, vol.113, issue.6, pp.113-991, 1988.
DOI : 10.1016/S0022-3476(88)80569-9

A. Giraud, Presentation of Pipe Products. International Technical Symposium, 2000.

E. Aliza, Étude expérimentale du thermoformage assisté par poinçon d'un mélange de polystyrènes. Sous la direction de Noëlle Billon, 2005.

I. Adolph, Pratique du thermoformage, pp.151-84, 1999.

G. Ryan, Injection de mousses composites bois/plastiques d'origine postconsommation, 2005.

B. Maxime, Modélisation et optimisation numérique de l'étape de chauffage infrarouge pour la fabrication de bouteilles en PET par injection soufflage, 2009.

T. Ghomari, Contribution à la modélisation 3D volumique de la mise en forme des corps plastiques creux, 2007.

D. Roger, L. , G. Harry, and B. , Chemical structure and Bonding, p.491, 1989.

M. Hu, A. Morsali, and L. Aboutorabi, Lead(II) carboxylate supramolecular compounds: Coordination modes, structures and nano-structures aspects, Coordination Chemistry Reviews, vol.255, issue.23-24, pp.23-24, 2011.
DOI : 10.1016/j.ccr.2011.05.019

M. Presle, Synthèse et propriétés d'hétérostructures moléculaires de type multiferroïque à base d'analogues du Bleu de Prusse, 2012.

J. Haudin, Chapitre VIII : Microstructures des polymères

M. Kurtz, J. N. Steven, and . Devine, PEEK biomaterials in trauma, orthopedic, and spinal implants, Biomaterials, vol.28, issue.32, pp.4845-4869, 2007.
DOI : 10.1016/j.biomaterials.2007.07.013

D. Abdesselam, Comportement plastique et textures de déformation des polymères semi-cristallins en traction uniaxiale et en cisaillement simple, 1992.

N. Ning, W. Zhang, Y. Zhao, C. Tang, M. Yang et al., Facilitating the formation of nanohybrid shish kebab structure in helical polymer systems by using carbon nanotube bundles, Polymer, vol.53, issue.20, pp.4553-4559, 2012.
DOI : 10.1016/j.polymer.2012.07.060

M. C. Kuo, J. S. Kuo, M. H. Yang, and J. C. Huang, On the crystallization behavior of the nano-silica filled PEEK composites, Materials Chemistry and Physics, vol.123, issue.2-3, pp.2-3
DOI : 10.1016/j.matchemphys.2010.04.043

C. William and -. Jr, Science et génie des matériaux, Éditeur Modulo, p.781, 2001.

R. Alfonso and M. Monroy, Morphologies induites dans les pièces en polyoléfine moulées par injection, 2005.

H. Kausch, R. Gensler, . Ch, C. J. Grein, P. Plummer et al., Crazing in semicrystalline thermoplastics, Journal of Macromolecular Science, Part B, vol.8, issue.2, pp.5-6, 1999.
DOI : 10.1080/00222349908248140

J. L. Halary, F. Lauprêtre, and L. Monnerie, Polymer Materials: Macroscopic Properties And Molecular Interpretations, 2011.

B. Noëlle, Comportement mécanique des polymères. Cours à l'École Nationale Supérieure des Mines de Paris, p.2, 2007.

R. Crompton-thomas, Rapra Technology Limited. Polymer Reference Book, Rapra Technology Limited, p.704, 2006.

I. M. Ward, Mechanical properties of solid polymers, 1983.

H. Bertilsson and J. Jansson, The limits of linear viscoelasticity in poly(methyl methacrylate) and poly(ethyl methacrylate), Journal of Applied Polymer Science, vol.19, issue.7, pp.1971-1978, 1975.
DOI : 10.1002/app.1975.070190717

M. Reiner, Rheology. Encyclopedia of Physics, Elasticity and Plasticity, Editeur Flügge S, vol.36, pp.434-550, 1958.

O. S. Brüller and H. H. Schmidt, On the linear viscoelastic limit of polymers-exemplified on poly(methyl methacrylate), Polymer Engineering & Science, vol.19, issue.12, pp.883-887, 1979.
DOI : 10.1002/pen.760191212

B. Benoît and A. Dubault, Jean Louis Halaris Approche moléculaire de la déformation plastique de polymères amorphes, LPCSM (ESPCI), 2012.

O. K. Spurr and W. D. Niegisch, Stress crazing of some amorphous thermoplastics, Journal of Applied Polymer Science, vol.6, issue.23, pp.585-599, 1962.
DOI : 10.1002/app.1962.070062314

L. Lin and A. S. Argon, Structure and plastic deformation of polyethylene, Journal of Materials Science, vol.43, issue.7, pp.294-323, 1994.
DOI : 10.1007/BF01162485

L. Laiarinandrasana, J. Besson, M. Lafarge, and G. Hochstetter, Temperature dependent mechanical behaviour of PVDF: Experiments and numerical modelling, International Journal of Plasticity, vol.25, issue.7, pp.1301-1324, 2009.
DOI : 10.1016/j.ijplas.2008.09.008

URL : https://hal.archives-ouvertes.fr/hal-00390741

J. Chu and J. M. Schultz, The influence of microstructure on the failure behaviour of PEEK, Journal of Materials Science, vol.24, issue.12, 1989.

W. Terry and G. Tim, History of additive manufacturing, Wholers Report, 2011.

T. Wohlers, Rapid prototyping state of the industry: 1995-96 worldwide progress report, Society of Manufacturing Engineers Symposium, 1996.

P. Ciraud, Verfahren und Vorrichtung zur Herstellung beliebiger Gegenstände aus beliebigem schmelzbarem Material. German patent application, priority filed, 1971.

G. Andreas, . Rapid-prototyping, E. Berry, J. M. Brown, M. Connell et al., Preliminary experience with medical applications of rapid prototyping by selective laser sintering, Medical Engineering & Physics, vol.19, issue.1, pp.379-428, 1997.

H. Neil, H. Richard, and D. Philip, Rapid manufacturing: an industrial revolution for a digital age, 2005.

T. H. Childs, C. Hauser, C. M. Taylor, and A. E. Tontowi, Simulation and experimental verification of crystalline polymer and direct metal selective laser sintering, Proceedings of the Solid Freeform Fabrication Symposium, pp.100-109, 2000.

A. E. Tontowi and T. H. Childs, Density prediction of crystalline polymer sintered parts at various powder bed temperatures, Rapid Prototyping Journal, vol.7, issue.3, pp.180-184, 2001.
DOI : 10.1108/13552540110395637

K. H. Tan, C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang et al., Scaffold development using selective laser sintering of polyetheretherketone???hydroxyapatite biocomposite blends, Biomaterials, vol.24, issue.18, pp.3115-3123, 2003.
DOI : 10.1016/S0142-9612(03)00131-5

. Bernache-assollant, B. Didier, and . Jean-pierre, Frittage : aspects physico-chimiques - Partie 1 : frittage en phase solide. Techniques de l'ingénieur, Fondamentaux en chimie, p.6620, 2005.
URL : https://hal.archives-ouvertes.fr/emse-00497555

J. Kruth, G. Levy, F. Klocke, and T. H. Childs, Consolidation phenomena in laser and powderbed based layered manufacturing. CIRP Annals -Manufacturing Technology, pp.730-759, 2007.

D. Drummer, D. Rietzel, and F. Kühnlein, Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering, Proceedings of the LANE 2010, pp.533-54, 2010.
DOI : 10.1016/j.phpro.2010.08.081

G. Alscher, Das Verhalten teilkristalliner Thermoplaste beim Lasersintern, 2000.

K. Athreya-siddharth-ram, S. Kalaitzidou, and . Das, Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering, Materials Science and Engineering: A, vol.57, pp.10-11, 2010.

N. Woicke, T. Wagner, and P. Eyerer, Selective Laser Sintering of High Temperature Resistant Thermoplastic Polymers, Proceedings of the 21st Annual Meeting of the Polymer Processing Society, 2005.

D. Langevin, J. Grenet, and J. M. Saiter, Moisture sorption in pet influence on the thermokinetic parameters, European Polymer Journal, vol.30, issue.3, pp.339-345, 1994.
DOI : 10.1016/0014-3057(94)90297-6

C. Bastioli, G. Romano, and C. Migliare, Water sorption and mechanical properties of dental composites, Biomaterials, vol.11, issue.3, pp.219-223, 1990.
DOI : 10.1016/0142-9612(90)90159-N

J. Park, J. Park, and E. Ruckenstein, Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels, Polymer, vol.42, issue.9, pp.4271-4280, 2001.
DOI : 10.1016/S0032-3861(00)00768-0

E. Teunou and J. J. Fitzpatrick, Effect of relative humidity and temperature on food powder flowability, Journal of Food Engineering, vol.42, issue.2, pp.109-116, 1999.
DOI : 10.1016/S0260-8774(99)00087-4

J. J. Beaman, J. W. Barlow, D. L. Bourell, C. R. , M. H. Mcalea et al., Solid Freeform Fabrication: A New Direction in Manufacturing, 1997.
DOI : 10.1007/978-1-4615-6327-3

M. Savalani-monica, Selective laser sintering of hydroxyapatite -polyamide composites, PhD in Mechanical and Manufacturing Engineering

Y. Shi, . Li, . Sun, F. Huang, and . Zeng, Effect of the properties of the polymer materials on the quality of selective laser sintering parts, Proceedings of the Institution of Mechanical Engineers, pp.247-252, 2004.
DOI : 10.1177/146442070421800308

. Ajokuu, N. Hopkinson, and M. Caine, Experimental measurement and finite element modeling of the compressive properties of laser sintered Nylon-12, Materials Science and Engineering: A, vol.428, pp.1-2, 2006.

B. Caulfield, P. E. Mchugh, and S. Lohfeld, Dependence of mechanical properties of polyamide components on build parameters in the SLS process, Journal of Materials Processing Technology, vol.182, issue.1-3, pp.477-488, 2007.
DOI : 10.1016/j.jmatprotec.2006.09.007

J. Cheng and S. Lao, SLS processing studies of nylon 11 nanocomposites, Proc. SFF Symp, pp.141-149, 2005.

T. H. Childs, C. Hauser, C. M. Taylor, and A. E. Tontovi, Simulation and experimental verification of crystalline polymer and direct metal selective laser sintering, Proc. SFF Symp, pp.100-109, 2000.

J. Kim and T. S. Creasy, Selective laser sintering characteristics of nylon 6/clay-reinforced nanocomposite, Polymer Testing, vol.23, issue.6, pp.629-636, 2004.
DOI : 10.1016/j.polymertesting.2004.01.014

J. Kruth and M. Van-elsen, Manufacturing of light weight polymer structures using SLS, Proceedings of the International Conference Polymers & Moulds Innovations PMI, 2005.

H. Zarringhalam, N. Hopkinson, N. F. Kamperman, and J. J. De-vlieger, Effects of processing on microstructure and properties of SLS Nylon 12, Materials Science and Engineering: A, vol.435, issue.436, pp.435-436, 2006.
DOI : 10.1016/j.msea.2006.07.084

T. Rechtenwald, F. Niebling, D. Pohle, and G. Esser, An investigation into laser sintering of PEEK, Proc. LANE, pp.485-496

K. H. Tan, C. K. Chua, K. F. Leong, C. M. Cheah, W. S. Gui et al., Selective laser sintering of biocompatible polymers for applications in tissue engineering, Bio-Medical Materials and Engineering, vol.15, issue.12, pp.113-124, 2005.

J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach et al., Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering, Biomaterials, vol.26, issue.23, pp.4817-4827, 2005.
DOI : 10.1016/j.biomaterials.2004.11.057

K. H. Tan, C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang et al., Scaffold development using selective laser sintering of polyetheretherketone???hydroxyapatite biocomposite blends, Biomaterials, vol.24, issue.18, pp.3115-3123, 2003.
DOI : 10.1016/S0142-9612(03)00131-5

N. Hopkinson, C. E. Majewski, and H. Zarringhalam, Quantifying the degree of particle melt in Selective Laser Sintering??, CIRP Annals - Manufacturing Technology, vol.58, issue.1, pp.197-200, 2009.
DOI : 10.1016/j.cirp.2009.03.001

C. E. Majewski, H. Zarringhalam, and N. Hopkinson, Effects of Degree of Particle Melt and Crystallinity in SLS Nylon-12 Parts, Proceedings from the SFF Symposium, pp.45-54, 2008.

G. Berti, L. D-'angelo, A. Gatto, and L. Iuliano, composites obtained by selective laser sintering, Rapid Prototyping Journal, vol.16, issue.2, pp.124-129, 1995.
DOI : 10.1108/13552541011025843

K. Athreya-siddharth-ram, S. Kalaitzidou, and . Das, Mechanical and microstructural properties of Nylon-12/carbon black composites: Selective laser sintering versus melt compounding and injection molding, Composites Science and Technology, vol.71, issue.4, pp.506-510, 2011.
DOI : 10.1016/j.compscitech.2010.12.028

D. T. Pham, K. D. Dotchev, and W. A. Yussof, Improvement of part surface finishing in laser sintering by experimental design optimisation (DOE) Innovative production machines and systems, third I PROMS Virtual International Conference, pp.61-66, 2008.

D. T. Pham, K. D. Dotchev, W. A. Yussof, and H. Yang, A study on shrinkage compensation of SLS process by using the Taguchi method, International Journal of Machine Tools and Manufacture, vol.42, issue.11, pp.1203-1212, 2002.

V. Thomas, Fabrication directe de pièces aéronautiques et spatiales en Nimonic 263 et A360 par le procédé de fusion sélective par laser : approche thermique, microstructurale et mécanique, Sous la direction de Bienvenu Yves et Christophe Colin, 2011.

X. Shen, J. Yao, Y. Wang, and J. Yan, Density Prediction of Selective Laser Sintering Parts Based on Artificial Neural Network, Lecture Notes in Computer Science, vol.3174, pp.832-840, 2004.
DOI : 10.1007/978-3-540-28648-6_133

Y. Ning, J. Y. Fuh, Y. S. Wong, and H. T. Loh, An intelligent parameter selection system for the direct metal laser sintering process, International Journal of Production Research, vol.42, issue.1, pp.183-199, 2004.
DOI : 10.1108/13552549810210257

S. H. Masood, W. Ratanaway, and P. Iovenitti, A generic algorithm for a best part orientation system for complex parts in rapid prototyping, Journal of Materials Processing Technology, vol.139, issue.1-3, pp.110-116
DOI : 10.1016/S0924-0136(03)00190-0

J. C. Nelson, S. Xue, J. W. Barlow, J. J. Beaman, H. L. Marcus et al., Model of the selective laser sintering of bisphenol-A polycarbonate, Industrial & Engineering Chemistry Research, vol.32, issue.10, pp.2305-2317, 1993.
DOI : 10.1021/ie00022a014

E. M. Weissman and M. B. Hsu, A Finite Element Model of Multi-layered Laser Sintered Part. Solid Freeform Fabrication, Proceedings, University of Texas at, pp.86-93, 1991.

E. Boillat, S. Kolossov, and R. Glardon, Finite element and neural network models for process optimization in selective laser sintering, Proceedings of the Institution of Mechanical P a g e, p.63
DOI : 10.1243/0954405041167121

M. Buongiorno, . Nardelli, J. Fattebert, D. Orlikowski, C. Roland et al., Mechanical properties, defects and electronic behavior of carbon nanotubes, Carbon, vol.38, issue.11-12, pp.11-12, 2000.
DOI : 10.1016/S0008-6223(99)00291-2

A. Zamiri and S. De, Mechanical properties of hydroxyapatite single crystals from nanoindentation data, Journal of the Mechanical Behavior of Biomedical Materials, vol.4, issue.2, pp.146-152, 2011.
DOI : 10.1016/j.jmbbm.2010.11.001

W. Ludwig, A. King, P. Reischig, M. Herbig, E. M. Lauridsen et al., New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging, Materials Science and Engineering: A, vol.524, issue.1-2, pp.1-2, 2009.
DOI : 10.1016/j.msea.2009.04.009

URL : https://hal.archives-ouvertes.fr/hal-00423791

W. Zuo, W. Li, T. Xu, S. Xuan, and J. Na, A complete development process of finite element software for body-in-white structure with semi-rigid beams in .NET framework Advances in Engineering Software, pp.261-271, 2012.

D. Fabrice, Nanomécanismes de Déformation des Polymères Semi-Cristallins: Etude In Situ par Microscopie à Force Atomique et Modélisation, 2008.

A. L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I???Yield Criteria and Flow Rules for Porous Ductile Media, Journal of Engineering Materials and Technology, vol.99, issue.1, pp.2-15, 1977.
DOI : 10.1115/1.3443401

T. Viggo, Influence of voids on shear band instabilities under plane strain conditions, International Journal of Fracture, vol.17, issue.4, 1981.

C. Regrain, L. Laiarinandrasana, and S. Toillon, Experimental and numerical study of creep and creep rupture behavior of PA6, Engineering Fracture Mechanics, vol.76, issue.18, pp.2656-2665, 2009.
DOI : 10.1016/j.engfracmech.2009.04.016

URL : https://hal.archives-ouvertes.fr/hal-00438802

F. Henriroux and P. Frémiot, Fabrication directe thermoplastique et métallique, Les premières applications chez Dassault Aviation. 12 ème assises européennes du prototypage rapide: Prototypage et Fabrication rapide, les 4,5 et 6 mars, 2008.

C. Molly, 3D Printed Robot Spider Can Save Lives and Analyze Hazardous Surroundings

C. Aurélien, Étude expérimentale et modélisation thermomécanique de l'étape de calibration dans le procédé d'extrusion de tubes en polyamides 12. Sous la direction de Jean-Marc-Haudin, 2005.

C. Gianna, A. Fichera, C. Garbuglio, V. Malta, and . Zannetti, The Crystal Structure of Polylauryllactam (Nylon 12) Die Makromolekulare Chemie, pp.289-301, 1973.

M. G. Northolt, B. J. Tabor, and J. J. Van-aartsen, Polymorphism in nylon 12, Journal of Polymer Science Part A-2: Polymer Physics, vol.10, issue.1, pp.191-192, 1972.
DOI : 10.1002/pol.1972.160100114

I. Kazuo and H. Sadao, Crystal structure of Nylon 12, Journal of polymer Science: Polymer Physics Edition, vol.11, issue.6, pp.1077-1089, 1973.

A. J. Owen and P. Kollross, A note on the crystal structure of nylon-12, Polymer communications, vol.24, issue.10, pp.303-306, 1983.

J. Dechant, Polymer handbook

S. Gogolewski, K. Czerniawska, M. Gasiorek-bhattacharyya-arup, R. , P. Pötschke et al., Effect of annealing on thermal properties and crystalline structure of polyamides, Nylon 12 (polylaurolactam) Colloid & Polymer Science Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites, Chemical Physics Letters, vol.2589, issue.392, pp.1130-1136, 1980.

I. Pio, Molecular structure refinement of poly(aryl ether ether ketone) by means of the whole fiber x-ray diffraction pattern analysis, Macromolecules, vol.26, pp.2309-2314, 1993.

T. W. Giants, Crystallinity and dielectric properties of PEEK, poly(ether ether ketone), IEEE Transactions on Dielectrics and Electrical Insulation, vol.1, issue.6, pp.991-999, 1994.
DOI : 10.1109/94.368664

J. N. Hay, . J. Kemmish-d, J. I. Langford, and A. I. Rae, The Structure of Crystalline PEEK, Polymer communications, vol.25, issue.6, pp.175-178, 1984.

C. Nicodeau, Modélisation du soudage en continu de composites à matrice thermoplastique. Sous la direction de, Verdu J. et Regnier G, 2005.

P. Cebe and S. Hong, Crystallization behaviour of poly(ether-ether-ketone) Polymer, pp.1183-1192, 1986.

L. Steve, Characterization and Failure Analysis of Plastics, p.482, 2003.

H. N. Beck, Solubility characteristics of poly(etheretherketone) and poly(phenylene sulfide), Journal of Applied Polymer Science, vol.45, issue.8, pp.1361-1366, 1992.
DOI : 10.1002/app.1992.070450806

B. Matthew, T. , K. Franck, E. , R. Paul et al., Solubility and properties of a poly(aryl ether ketone) in strong acids, Macromolecules, vol.18, pp.86-93, 1985.

J. Xu, Z. Zhang, X. Xiong, and H. Zeng, A new solvent for poly(ether ether ketone) Polymer, pp.4432-4434, 1992.

D. F. Williams, A. Mcnamara, and R. M. Turner, Potential of polyetheretherketone (PEEK) and carbon-fibre-reinforced PEEK in medical applications, Journal of Materials Science Letters, vol.2, issue.2, pp.188-190, 1987.
DOI : 10.1007/BF01728981

P. J. Rae, E. N. Brown, and E. B. Orler, The mechanical properties of poly(ether-ether-ketone) (PEEK) with emphasis on the large compressive strain response, Polymer, vol.48, issue.2, pp.12-598, 2007.
DOI : 10.1016/j.polymer.2006.11.032

H. Hay and D. Kemmish, Thermal decomposition of poly(aryl ether ketones), Polymer, vol.28, issue.12, p.2047, 1987.
DOI : 10.1016/0032-3861(87)90039-5

M. Day, J. D. Cooney, and D. M. Wiles, The thermal stability of poly(aryl-ether???ether-ketone) as assessed by thermogravimetry, Journal of Applied Polymer Science, vol.38, issue.2, pp.323-337, 1989.
DOI : 10.1002/app.1989.070380214

M. Day, D. Sally, and D. M. Wiles, Thermal degradation of poly(aryl-ether-ether-ketone): Experimental evaluation of crosslinking reactions, Journal of Applied Polymer Science, vol.40, issue.910, pp.1615-1625, 1990.
DOI : 10.1002/app.1990.070400917

A. Jonas and R. Legras, Thermal stability and crystallization of poly(aryl ether ether ketone), Polymer, vol.32, issue.15, pp.2691-2706, 1991.
DOI : 10.1016/0032-3861(91)90095-Z

K. C. Cole and I. G. Casella, Fourier transform infrared spectroscopic study of thermal degradation in films of poly(etheretherketone), Thermochimica Acta, vol.211, pp.209-228, 1992.
DOI : 10.1016/0040-6031(92)87021-2

G. Kenncorwin, H. , H. Benjamin, S. Matheson-robert, R. et al., Structure, crystallization and morphology of poly (aryl ether ketone ketone, Polymer, vol.33, issue.12, pp.2483-2495, 1992.

H. Münstedt and H. Zeiner, Polyaryletherketone-Neue Möglichkeiten für Thermoplaste, Kunststoffe, vol.79, issue.10, pp.993-996, 1989.

K. H. Gardner, B. Hsiao, R. R. Matherson, and R. R. Wood, Structure, Crystallization and Morphology of Poly(aryl ether ketone ketones) Polymer, pp.2483-2495, 1992.

B. Hsiao, K. H. Gardner, and S. Z. Cheng, Crystallization of poly(aryl ether ketone ketone) copolymers containing terephthalate/isophthalate moieties, Journal of Polymer Science Part B: Polymer Physics, vol.32, issue.16, pp.2585-2594, 1994.
DOI : 10.1002/polb.1994.090321604

S. Bryan, B. , H. Benjamin, S. , F. Katherine et al., Miscibility and Phase Properties of Poly(aryl Ether Ketones) with Three High Temperature All Aromatic Thermoplastic Polyimides, Polymer, vol.37, issue.3, pp.445-453, 1996.

S. Z. Ho-rong-ming, B. S. Cheng, K. H. Hsiao, and . Gardner, Crystal Morphology and Phase Identifications in Poly(aryl ether ketone)s and Their Copolymers. 1. Polymorphism in PEKK, Macromolecules, issue.8, pp.27-2136, 1994.

L. Tianxi, W. Shanger, Z. Mo, and Z. Hongfang, Crystal Structure and Drawing- Induced Polymorphism in Poly(aryl ether ether ketone). IV, Journal of Applied Polymer Science, vol.73, issue.2, pp.237-243, 1999.

D. Gan, W. Cao, C. Song, and Z. Wang, Mechanical properties and morphologies of poly(ether ketone ketone)/glass fibers/mica ternary composites, Materials Letters, vol.51, issue.2, pp.120-124, 2001.
DOI : 10.1016/S0167-577X(01)00276-2

F. Bruce, K. , G. John, W. Jr, E. Nuri et al., Thermal degradation effects on consolidation and bonding in the termoplastic Fiber-Placement Process, 2000.

M. Bouwman-anneke, C. Jaap, P. Bosma, J. Vonk, ). A. Hans et al., Which shape factor(s) best describe granules? Powder Technology, pp.1-2, 2004.

W. Souheng, Polar and Nonpolar Interactions in Adhesion, The Journal of Adhesion, vol.5, issue.1, pp.39-55, 1973.

F. M. Fowkes, DETERMINATION OF INTERFACIAL TENSIONS, CONTACT ANGLES, AND DISPERSION FORCES IN SURFACES BY ASSUMING ADDITIVITY OF INTERMOLECULAR INTERACTIONS IN SURFACES, The Journal of Physical Chemistry, vol.66, issue.2, pp.382-382, 1962.
DOI : 10.1021/j100808a524

G. Robert, J. Girifalco, and L. A. , A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data, Journal of Physical Chemistry, vol.64, issue.5, pp.561-565, 1960.

V. Jacques, Action de l'eau sur les plastiques

E. J. Stober, J. C. Seferis, and . J. Keenan, Characterization and exposure of polyetheretherketone (PEEK) to fluid environments, Polymer, vol.25, issue.12, pp.1845-1852, 1984.
DOI : 10.1016/0032-3861(84)90260-X

C. Charles, Essai sur une application des règles de maximis et minimis à quelques problèmes de statique, relatifs à l'architecture, avec 2 planches. Mémoires de mathématiques et de physique présentés à l'Académie royale des sciences par divers savants, et lus sans ses assemblées, pp.343-382

F. Gwenaelle, Ecoulements de milieux granulaires en tambour tournant Étude de quelques transitions de régime. Application à la ségrégation, 2002.

N. T73-008, Poudres et granulés, Mesurage de l'angle de talus d'éboulement. Septembre, 1978.

L. Mylène, Aptitude à l'Ecoulement d'un Milieu Granulaire : Exploitation des Instabilités de Cisaillement et Evaluation du Vieillissement, 2000.

N. Norme and . Iso, Poudres métalliques, Détermination de la masse volumique âpres tassement

R. L. Carr, Evaluating flow properties of solids, Chem. Eng, vol.72, pp.163-168, 1965.

H. H. Hausner, Friction conditions in a mass of metal powder, International Journal of Powder Metallurgy, vol.3, pp.7-13, 1967.

K. Kawakita and K. Lüdde, Some consideration on powder Compression Equations. Powder Technology, pp.61-68, 1971.

C. Conesa, H. Saleh, A. Thomas, P. Guigon, and N. Guillot, Characterization of Flow Properties of Powder Coatings Used in the Automotive Industry. Kona Powder And Particle, pp.94-106, 2004.

M. Yamashiro and Y. Yuasa, An experimental study on the relationships between compressibility, fluidity and cohesion of powder solids at small tapping numbers, Powder Technology, vol.34, issue.2, pp.225-231, 1983.
DOI : 10.1016/0032-5910(83)87054-5

J. Frenkel, Viscous flow of crystalline bodies under the action of surface tension, Journal of Physics, vol.16, issue.24, pp.385-391, 1945.

T. Bellehumeur and . Céline, Polymer sintering and its role in rotating molding, 1997.

D. Denis, Simulation du procédé de fabrication directe de pièces thermoplastiques par fusion laser de poudre. Sous la direction de Regnier Gilles et Patrice Peyre, 2013.

D. Masao and S. F. Edwards, Dynamics of concentrated polymer systems. Part 1. -Brownian motion in the equilibrium state, Journal of the Chemical Society, Faraday Transactions Molecular and Chemical Physics, vol.2, issue.74, pp.1789-1801, 1978.

P. J. Flory, Tensile strength in relation to molecular weight of high polymers, Journal of the american chemical society, issue.11, pp.67-2048, 1945.

A. Peterlin, Structural model of mechanical properties and failure of crystalline polymer solids with fibrous structure, International Journal of Fracture, vol.171, issue.10, pp.761-780, 1975.
DOI : 10.1007/BF00012895

S. Paul, L. Piet, J. Pijpers, and P. L. Jacques, Tensile strength of highly oriented polyethylene. II. Effect of molecular weight distribution, Journal of Polymer Science: Polymer Physics Edition, vol.20, issue.12, pp.2229-2241

N. Ronald, W. , M. John, R. , J. Julian et al., Influence of molecular weight and molecular weight distribution on mechanical properties of polymers, Polymer Engineering & Science, vol.22, issue.4, pp.205-228, 1982.

T. G. Fox and P. J. Flory, Second???Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight, Journal of Applied Physics, vol.21, issue.6, pp.581-591, 1950.
DOI : 10.1063/1.1699711

N. Hopkinson, C. E. Majewski, and H. Zarringhalam, Quantifying the degree of particle melt in Selective Laser Sintering??, CIRP Annals - Manufacturing Technology, vol.58, issue.1, pp.197-200, 2009.
DOI : 10.1016/j.cirp.2009.03.001

H. Zarringhalam, N. Hopkinson, N. F. Kamperman, and J. J. De-vlieger, Effects of processing on microstructure and properties of SLS Nylon 12, Materials Science and Engineering: A, vol.435, issue.436, pp.435-436, 2006.
DOI : 10.1016/j.msea.2006.07.084

C. E. Majewski, H. Zarringhalam, and N. Hopkinson, Effects of Degree of Particle Melt and Crystallinity in SLS Nylon-12 Parts, Proceedings from the 19th Solid Freeform Symposium, pp.45-54, 2008.

D. Stéphane, L. Olivier-;-barrès-claires, and C. Jean-yves, Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering, European Polymer Journal, vol.48, issue.9, pp.1611-1621, 2012.

A. Weck and D. S. Wilkinson, Experimental investigation of void coalescence in metallic sheets containing laser drilled holes, Acta Materialia, vol.56, issue.8, pp.1774-1784, 2008.
DOI : 10.1016/j.actamat.2007.12.035

P. Levitz, Statistical modeling of pore network Handbook of Porous Media, NF EN ISO, vol.78, issue.527, pp.35-80

D. Stéphane, Étude fondamentale de la transformation du polyamide 12 par frittage laser : mécanismes physico-chimiques et relations microstructures/propriétés, Sous la direction de Charmeau Jean-yves, p.2012

T. Alva, E. Childs, and T. H. , Density prediction of crystalline polymer sintered parts at various powder bed temperatures, Rapid Prototyping Journal, vol.7, issue.3, pp.180-184

J. Kruth, G. Levy, F. Klocke, and T. H. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Annals - Manufacturing Technology, vol.56, issue.2, pp.730-759, 2007.
DOI : 10.1016/j.cirp.2007.10.004

D. Gennes and P. G. , Entangled polymersA theory based on the snake-like motion by which chains of monomers move in the melt is enhancing our understanding of rheology, diffusion, polymer-polymer welding, chemical kinetics and biotechnology, Physics Today, vol.3615, issue.6, pp.33-64, 1983.

D. Gennes and P. G. , Reptation of a Polymer Chain in the Presence of Fixed Obstacles, The Journal of Chemical Physics, vol.55, issue.2, pp.572-571, 1971.
DOI : 10.1063/1.1675789

E. J. Lamethe, Etude de l'adhésion de composites thermoplastiques semi-cristallins; application à la mise en oeuvre par soudure. Thèses, 2004.

G. Jarrousse, Adhésion des polymères semi-cristallins entre leur température de transition vitreuse et leur température de fusion, ESPCI ParisTech, 2004.

Y. M. Boiko, A. Vyacheslav, . Marikhin, and E. Robert, Healing of interfaces of amorphous and semi-crystalline poly(ethylene terephthalate) in the vicinity of the glass transition temperature, Polymer, vol.42, issue.21, pp.8695-8702, 2001.
DOI : 10.1016/S0032-3861(01)00406-2

M. Du, C. Mecanique-du-pa12, . Mis, . Forme, and . Sls, Les deux chapitres précédents ont été centrés sur l'étude des poudres et la description du lien entre les microstructures et le comportement mécanique de la matière consolidée Il est maintenant nécessaire de déterminer plus précisément le comportement mécanique des matériaux frittés pour deux raisons. La première est de pouvoir utiliser un code de calcul pour dimensionner les structures au plus juste sans utiliser de modèle réel. La deuxième est de mieux mesurer l'évolution des propriétés mécaniques de la matière au cours de son chargement et ainsi se prémunir contre d'éventuelles défaillances. Il n'a pas été possible de disposer d'un nombre suffisant d'éprouvettes en PEEK ou PEKK pour identifier un modèle de comportement. C'est pourquoi, seul le PA12 fritté sélectivement par laser est abordé dans ce chapitre, CHAPITRE, vol.4

.. Traction-monotone-À-température-ambiante, 211 4.1.2.1 Modélisation du comportement dans le domaine élastique

.. Essais-de-chargements-complexes, Error! Bookmark not defined. 4.1.4.1 Essais de chargement, p.224

. De-par-les-possibilités and . Qu, offre la fabrication additive, il est très probable qu'un effort important des industriels du domaine de l'aérospatial ou de l'aéronautique se focalise sur l'utilisation des progiciels d'optimisation topologique afin de gagner en productivité et en masse, p.253

R. Hooke, Lectures de Potentia Restitutiva, Or of Spring Explaining the Power of Springing Bodies, p.1678

J. Chaboche, A. Benallal, R. Desmorat, L. M. Kachanov-]-g, L. Boisot et al., Mécanique des milieux continus -Ecole des Mines de Paris Consulté sur http Time of the rupture process under creep conditions [6] François Sidoroff. Mécanique des milieux continus Experimental investigations and modeling of volume change induced by void growth in polyamide 11 The gurson Tvergaard Needleman model for rate and temperature dependent materials with isotropic and kinematic hardening Temperature dependent mechanical behaviour of PVDF: Experiments and numerical modelling, Mécanique des matériaux solides -3ème édition Izv. kad. Nauk. SSR. Otd. Tekh. Nauk, pp.34-40, 1958.

P. Marceron, Le rôle des potentiels généralisés en thermodynamique de la relaxation, 1999.

F. Hild, J. Périé, and M. Coret, Mesure de champs de déplacements 2D par intercorrélation d'images : CORRELI 2D

F. Hild, B. Raka, M. Baudequin, S. Roux, and F. Cantelaube, Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation, Applied Optics, vol.41, issue.32, pp.41-6815, 2002.
DOI : 10.1364/AO.41.006815

URL : https://hal.archives-ouvertes.fr/hal-00002901

M. Tomlin and J. Meyer, Topology Optimization of an Additive Layer Manufactured (ALM) Aerospace Part. The 7th Altair CAE Technology Conference, 2011.

L. Folgar, Developing Nanocomposites for Isotropic Selective Laser Sintering, 2012.

D. Justin, Propriétés effectives de matériaux architecturés, Sous la direction de Samuel Forest et Dominique Jeulin. Mines Paristech, p.2012

M. Baumers, Engineering and Physical Sciences Research Council, Centres for innovative manufacturing

. The-white-house, Obama Administration Launches Competition for Three New Manufacturing Innovation Institutes, 2013.