R. J. Alcantara-hernandez, C. Valenzuela-encinas, R. Marsch, and L. Dendooven, Respiratory and dissimilatory nitrate-reducing communities from an extreme saline alkaline soil of the former lake Texcoco (Mexico), Extremophiles, vol.61, issue.1, pp.169-178, 2009.
DOI : 10.1007/s00792-008-0207-1

A. Andra, Dossier argile 2005 : tome évolution phénoménologique du stockage géologique, 2005.

A. Andra, Stockage réversible profond : option de conception du stockage en formation géologique profonde, 2009.

C. A. Appelo and D. Postma, Geochemistry, groundwater and pollution, 2005.

T. S. Arnarson, K. , and R. G. , Mechanisms of pore water organic matter adsorption to montmorillonite, Marine Chemistry, vol.71, issue.3-4, pp.309-320, 2000.
DOI : 10.1016/S0304-4203(00)00059-1

I. Azoulay, C. Rémazeilles, R. , and P. , Determination of standard Gibbs free energy of formation of chukanovite and Pourbaix diagrams of iron in carbonated media, Corrosion Science, vol.58, pp.229-236, 2012.
DOI : 10.1016/j.corsci.2012.01.033

M. Barbalat, L. Lanarde, D. Caron, M. Meyer, J. Vittonato et al., Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection, Corrosion Science, vol.55, pp.246-253, 2012.
DOI : 10.1016/j.corsci.2011.10.031

B. Baeyens and M. H. Bradbury, Cation exchange capacity measurements on illite using the sodium and cesium isotope dilution technique: effects of the index cation, electrolyte concentration and competition: modeling, clays and clay minerals, vol.52, issue.4, pp.421-431, 2004.
DOI : 10.1346/CCMN.2004.0520403

C. Beaucaire, J. L. Michelot, S. Savoye, and J. Cabrera, Groundwater characterisation and modelling of water???rock interaction in an argillaceous formation (Tournemire, France), Applied Geochemistry, vol.23, issue.8, pp.2182-2197, 2008.
DOI : 10.1016/j.apgeochem.2008.03.003

URL : https://hal.archives-ouvertes.fr/hal-00357173

I. B. Beech and J. Sunner, Biocorrosion: towards understanding interactions between biofilms and metals, Current Opinion in Biotechnology, vol.15, issue.3, pp.181-186, 2004.
DOI : 10.1016/j.copbio.2004.05.001

F. Bensenouci, Apport des traceurs naturels à la compréhension des transferts au sein des formations argileuses compactées, p.194, 2010.

O. Bildstein, L. Trotignon, M. Perronnet, J. , and M. , Modelling iron???clay interactions in deep geological disposal conditions, Physics and Chemistry of the Earth, Parts A/B/C, vol.31, issue.10-14, pp.618-625, 2006.
DOI : 10.1016/j.pce.2006.04.014

P. Blanc, A. Lassin, P. Piantone, M. Azaroual, N. Jacquemet et al., Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials, Applied Geochemistry, vol.27, issue.10, pp.2107-2116, 2012.
DOI : 10.1016/j.apgeochem.2012.06.002

URL : https://hal.archives-ouvertes.fr/hal-00846739

P. Blanchart, P. Faure, M. De-craen, C. Bruggeman, and R. Michels, Experimental investigation on the role of kerogen and clay minerals in the formation of bitumen during the oxidation of Boom Clay, Fuel, vol.97, pp.344-351, 2012.
DOI : 10.1016/j.fuel.2012.02.046

P. Blanchart, P. Faure, C. Bruggeman, M. De-craen, and R. Michels, In situ and laboratory investigation of the alteration of Boom Clay (Oligocene) at the air???geological barrier interface within the Mol underground facility (Belgium): Consequences on kerogen and bitumen compositions, Applied Geochemistry, vol.27, issue.12, pp.2476-2485251, 2012.
DOI : 10.1016/j.apgeochem.2012.07.016

J. M. Blengino, M. Keddam, J. P. Labbe, R. , and L. , Physico-chemical characterization of corrosion layers formed on iron in a sodium carbonate-bicarbonate containing environment, Corrosion Science, vol.37, issue.4, pp.621-643, 1995.
DOI : 10.1016/0010-938X(94)00160-8

B. Bonin, Deep geological disposal in argillaceous formations: studies at the Tournemire test site, Journal of Contaminant Hydrology, vol.35, issue.1-3, pp.315-330, 1998.
DOI : 10.1016/S0169-7722(98)00132-6

J. Bourdoiseau, M. Jeannin, C. Rémazeilles, R. Sabot, R. et al., The transformation of mackinawite into greigite studied by Raman spectroscopy, Journal of Raman Spectroscopy, vol.51, issue.3, pp.496-504, 2011.
DOI : 10.1002/jrs.2729

J. A. Bourdoiseau, M. Jeannin, R. Sabot, C. Rémazeilles, R. et al., Characterisation of mackinawite by Raman spectroscopy: Effects of crystallisation, drying and oxidation, Corrosion Science, vol.50, issue.11, pp.3247-3255, 2008.
DOI : 10.1016/j.corsci.2008.08.041

M. H. Bradbury and B. Baeyens, Modelling the sorption of Mn(II), Co(II, Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV) Th(IV), 2005.

E. Burger, D. Rebiscoul, F. Bruguier, M. Jublot, J. E. Lartigue et al., Impact of iron on nuclear glass alteration in geological repository conditions: A multiscale approach, Applied Geochemistry, vol.31, pp.159-170, 2013.
DOI : 10.1016/j.apgeochem.2012.12.016

G. T. Burstein and D. H. Davies, The effects of anions on the behaviour of scratched iron electrodes in aqueous solutions, Corrosion Science, vol.20, issue.10, pp.1143-1155, 1980.
DOI : 10.1016/0010-938X(80)90145-6

H. Castaneda and X. D. Benetton, SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions, Corrosion Science, vol.50, issue.4, pp.1169-1183, 2008.
DOI : 10.1016/j.corsci.2007.11.032

L. Charlet and C. Tournassat, Fe(II)-Na(I)-Ca(II) Cation Exchange on Montmorillonite in Chloride Medium: Evidence for Preferential Clay Adsorption of Chloride ??? Metal Ion Pairs in Seawater, Aquatic Geochemistry, vol.60, issue.1, pp.115-137, 2005.
DOI : 10.1007/s10498-004-1166-5

URL : https://hal.archives-ouvertes.fr/hal-00664218

D. Charpentier, M. Cathelineau, R. Mosser-ruck, and G. Bruno, Mineralogical evolution of argillites in dehydrated-oxidised zones: the example of the argillitic walls from Tournemire tunnel, Comptes Rendus Acad. Sci. Ser II-A, vol.332, pp.601-607, 2001.

D. Charpentier, K. Devineau, R. Mosser-ruck, M. Cathelineau, and F. Villiéras, Bentonite???iron interactions under alkaline condition: An experimental approach, Applied Clay Science, vol.32, issue.1-2, pp.1-13, 2006.
DOI : 10.1016/j.clay.2006.01.006

URL : https://hal.archives-ouvertes.fr/hal-00087446

C. Chautard, J. Lartigue, M. Libert, F. Marsal, and L. D. Windt, An Integrated Experiment Coupling Iron/Argillite Interactions with Bacterial Activity, Procedia Chemistry, vol.7, pp.641-646, 2012.
DOI : 10.1016/j.proche.2012.10.097

URL : https://hal.archives-ouvertes.fr/hal-00747917

A. Chautard, M. Ritt, L. D. Libert, and . Windt, Influence of Hydrogen in the Presence of Organic Matter on Bacterial Activity Under Radioactive Waste Disposal Conditions, Procedia Earth and Planetary Science, vol.7, pp.147-150, 2013.
DOI : 10.1016/j.proeps.2013.03.221

URL : https://hal.archives-ouvertes.fr/hal-00820358

X. L. Cheng, H. Y. Ma, J. P. Zhang, X. Chen, S. H. Chen et al., Corrosion of Iron in Acid Solutions with Hydrogen Sulfide, CORROSION, vol.54, issue.5, pp.369-375, 1998.
DOI : 10.5006/1.3284864

J. Chivot, Les diagrammes E-pH révisés du système Fer-H2O en fonction de la température, 1999.

P. G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Marine Chemistry, vol.51, issue.4, pp.325-346, 1996.
DOI : 10.1016/0304-4203(95)00062-3

R. M. Cornell and U. Schwertmann, Products of Iron Metal Corrosion, The Iron Oxides, pp.491-508251, 2004.
DOI : 10.1002/3527602097.ch18

A. Courdouan, I. Christl, S. Meylan, P. Wersin, and R. Kretzschmar, Characterization of dissolved organic matter in anoxic rock extracts and in situ pore water of the Opalinus Clay, Applied Geochemistry, vol.22, issue.12, pp.2926-2939, 2007.
DOI : 10.1016/j.apgeochem.2007.09.001

A. Courdouan, I. Christl, S. Meylan, P. Wersin, and R. Kretzschmar, Isolation and characterization of dissolved organic matter from the Callovo???Oxfordian formation, Applied Geochemistry, vol.22, issue.7, pp.1537-1548, 2007.
DOI : 10.1016/j.apgeochem.2007.04.001

J. Crolet, N. Thevenot, and S. Nesic, Role of Conductive Corrosion Products in the Protectiveness of Corrosion Layers, CORROSION, vol.54, issue.3, pp.194-203, 1998.
DOI : 10.5006/1.3284844

A. Dauzeres, L. Bescop, P. Sardini, P. , C. et al., Physico-chemical investigation of clayey/cement-based materials interaction in the context of geological waste disposal: Experimental approach and results, Cement and Concrete Research, vol.40, issue.8, pp.1327-1340, 2010.
DOI : 10.1016/j.cemconres.2010.03.015

A. Dauzères, A. Maillet, A. Gaudin, A. E. Albani, and P. Vieillard, Ten Years of Toarcian Argillite - Carbon Steel In Situ Interaction, Procedia Earth and Planetary Science, vol.7, pp.195-198, 2013.
DOI : 10.1016/j.proeps.2013.03.056

G. De-combarieu, P. Barboux, and Y. Minet, Iron corrosion in Callovo???Oxfordian argilite: From experiments to thermodynamic/kinetic modelling, Physics and Chemistry of the Earth, Parts A/B/C, vol.32, issue.1-7, pp.346-358, 2007.
DOI : 10.1016/j.pce.2006.04.019

URL : https://hal.archives-ouvertes.fr/hal-00114293

G. De-combarieu, M. L. Schlegel, D. Neff, E. Foy, D. Vantelon et al., Glass???iron???clay interactions in a radioactive waste geological disposal: An integrated laboratory-scale experiment, Applied Geochemistry, vol.26, issue.1, pp.65-79, 2011.
DOI : 10.1016/j.apgeochem.2010.11.004

G. De-marsily, Hydrogéologie quantitative (Masson), 1981.

J. Delay, A. Trouiller, and J. Lavanchy, Propri??t??s hydrodynamiques du Callovo-Oxfordien dans l'Est du bassin de Paris : comparaison des r??sultats obtenus selon diff??rentes approches, Comptes Rendus Geoscience, vol.338, issue.12-13, pp.892-907, 2006.
DOI : 10.1016/j.crte.2006.07.009

I. Deniau, I. Devol-brown, S. Derenne, F. Behar, and C. Largeau, Comparison of the bulk geochemical features and thermal reactivity of kerogens from Mol (Boom Clay), Bure (Callovo???Oxfordian argillite) and Tournemire (Toarcian shales) underground research laboratories, Science of The Total Environment, vol.389, issue.2-3, pp.475-485, 2008.
DOI : 10.1016/j.scitotenv.2007.09.013

URL : https://hal.archives-ouvertes.fr/bioemco-00393636

M. Descostes, C. Beaucaire, and P. Vitorge, Pyrite (FeS2) oxidation as a function of pH: A multitechnique approach, Geochimica et Cosmochimica Acta, vol.70, issue.18, p.138, 2006.
DOI : 10.1016/j.gca.2006.06.293

M. Descostes, P. Vitorge, and C. Beaucaire, Pyrite dissolution in acidic media, Geochimica et Cosmochimica Acta, vol.68, issue.22, pp.4559-4569, 2004.
DOI : 10.1016/j.gca.2004.04.012

URL : https://hal.archives-ouvertes.fr/hal-00159372

I. Devol-brown, E. Tinseau, D. Bartier, A. Mifsud, and D. Stammose, Interaction of Tournemire argillite (Aveyron, France) with hyperalkaline fluids: Batch experiments performed with powdered and/or compact materials, Physics and Chemistry of the Earth, Parts A/B/C, vol.32, issue.1-7, pp.320-333, 2007.
DOI : 10.1016/j.pce.2006.02.046

D. Windt, L. Marsal, F. Tinseau, E. Pellegrini, and D. , Reactive transport modeling of geochemical interactions at a concrete/argillite interface, Tournemire site (France), Physics and Chemistry of the Earth, Parts A/B/C, vol.33, pp.295-305, 2008.
DOI : 10.1016/j.pce.2008.10.035

URL : https://hal.archives-ouvertes.fr/hal-00569257

H. Dong, J. K. Fredrickson, D. W. Kennedy, J. M. Zachara, R. K. Kukkadapu et al., Mineral transformations associated with the microbial reduction of magnetite, Chemical Geology, vol.169, issue.3-4, pp.299-318, 2000.
DOI : 10.1016/S0009-2541(00)00210-2

S. Drouin, Rôle des argiles dans la préservation et la fossilisation de la matière organique pétroligène, 2007.

O. W. Duckworth, M. , and S. T. , Role of molecular oxygen in the dissolution of siderite and rhodochrosite, Geochimica et Cosmochimica Acta, vol.68, issue.3, pp.607-621, 2004.
DOI : 10.1016/S0016-7037(03)00464-2

B. Durand, Kerogen: Insoluble Organic Matter from Sedimentary Rocks (Éditions Technip, 1980.

E. Hajj, H. Abdelouas, A. Grambow, B. Martin, C. et al., Microbial corrosion of P235GH steel under geological conditions, Physics and Chemistry of the Earth, Parts A/B/C, vol.35, issue.6-8, pp.248-253, 2010.
DOI : 10.1016/j.pce.2010.04.007

URL : https://hal.archives-ouvertes.fr/in2p3-00515573

M. Elie, P. Faure, R. Michels, P. Landais, and L. Griffault, Natural and Laboratory Oxidation of Low-Organic-Carbon-Content Sediments:??? Comparison of Chemical Changes in Hydrocarbons, Energy & Fuels, vol.14, issue.4, pp.854-861251, 2000.
DOI : 10.1021/ef9902146

M. Elie, P. Faure, R. Michels, P. Landais, L. Griffault et al., Effects of water???cement solutions on the composition of organic compounds leached from oxidized Callovo???Oxfordian argillaceous sediment, Applied Clay Science, vol.26, issue.1-4, pp.309-323, 2004.
DOI : 10.1016/j.clay.2003.12.016

L. Esnault, M. Jullien, C. Mustin, O. Bildstein, and M. Libert, Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers, Physics and Chemistry of the Earth, Parts A/B/C, vol.36, issue.17-18, pp.1624-1629, 2011.
DOI : 10.1016/j.pce.2011.10.018

L. Esnault, M. Libert, O. Bildstein, J. , and M. , Clay-Iron Reducing Bacteria interaction in deep geological environment: experimental and modeling approach, pp.13-939, 2010.

L. Esnault, M. Libert, M. Jullien, and C. Mustin, Availability of nutrient sources for bacterial development in deep clay environments, Geochimica Et Cosmochimica Acta, vol.73, pp.338-338, 2009.

P. Faure and P. Landais, Evidence for clay minerals catalytic effects during low-temperature air oxidation of n-alkanes, Fuel, vol.79, issue.14, pp.1751-1756, 2000.
DOI : 10.1016/S0016-2361(00)00039-9

P. Faure and C. Peiffert, Lixiviation of argillaceous rocks: Impact of oxidation degree states on organic compound mobilization, Fuel, vol.86, issue.3, pp.426-433, 2007.
DOI : 10.1016/j.fuel.2006.07.008

URL : https://hal.archives-ouvertes.fr/hal-00131193

P. Faure, L. Schlepp, V. Burkle-vitzthum, E. , and M. , Low temperature air oxidation of n-alkanes in the presence of Nasmectite, pp.1751-1762, 2003.

V. Fell, Fiskerton: Scientific analysis of corrosion layers on archaeological iron artefacts and from experimental iron samples buried for up to 18 months, 2005.

V. Fell, W. , and J. , Monitoring of archaeological and experimental iron at Fiskerton, 2004.

F. Feugeas, J. P. Magnin, A. Cornet, and J. J. Rameau, Corrosion influenc??e par les micro-organismes : influence du biofilm sur la corrosion des aciers, techniques et r??sultats recents, Journal de Physique III, vol.7, issue.3, pp.631-663, 1997.
DOI : 10.1051/jp3:1997147

URL : https://hal.archives-ouvertes.fr/jpa-00249605/document

F. Foct and J. Gras, Semi-empirical model for carbon steel corrosion in long term geological nuclear waste disposal Prediction of long term corrosion behaviour in Nuclear Wastes System, 2003.

G. Gales, M. F. Libert, R. Sellier, L. Cournac, V. Chapon et al., Molecular hydrogen from water radiolysis as an energy source for bacterial growth in a basin containing irradiating waste, FEMS Microbiology Letters, vol.240, issue.2, pp.155-162, 2004.
DOI : 10.1016/j.femsle.2004.09.025

A. Gaudin, S. Gaboreau, E. Tinseau, D. Bartier, S. Petit et al., Mineralogical reactions in the Tournemire argillite after in-situ interaction with steels, Mineralogical reactions in the Tournemire argillite after in-situ interaction with steels, pp.196-207, 2009.
DOI : 10.1016/j.clay.2008.08.007

URL : https://hal.archives-ouvertes.fr/hal-00488937

L. K. Herrera and H. A. Videla, Role of iron-reducing bacteria in corrosion and protection of carbon steel, International Biodeterioration & Biodegradation, vol.63, issue.7, pp.891-895, 2009.
DOI : 10.1016/j.ibiod.2009.06.003

J. K. Heuer and J. F. Stubbins, An XPS characterization of FeCO3 films from CO2 corrosion, Corrosion Science, vol.41, issue.7, pp.1231-1243, 1999.
DOI : 10.1016/S0010-938X(98)00180-2

M. Jeannin, D. Calonnec, R. Sabot, R. , and P. , Role of a clay sediment deposit on the corrosion of carbon steel in REFERENCES 213, p.251, 2010.

M. Jeannin, D. Calonnec, R. Sabot, R. , and P. , Role of a clay sediment deposit on the passivity of carbon steel in 0.1moldm???3 NaHCO3 solutions, Electrochimica Acta, vol.56, issue.3, pp.1466-1475, 2011.
DOI : 10.1016/j.electacta.2010.10.063

C. Jeanthon, A. L. Reysenbach, S. Lharidon, A. Gambacorta, N. R. Pace et al., Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir, Archives of Microbiology, vol.151, issue.2, pp.91-97, 1995.
DOI : 10.1007/BF02525313

K. Kaiser, M. Kaupenjohann, and W. Zech, Sorption of dissolved organic carbon in soils: effects of soil sample storage, soil-to-solution ratio, and temperature, Geoderma, vol.99, issue.3-4, pp.317-328, 2001.
DOI : 10.1016/S0016-7061(00)00077-X

K. Kalbitz, J. Schmerwitz, D. Schwesig, and E. Matzner, Biodegradation of soil-derived dissolved organic matter as related to its properties, Geoderma, vol.113, issue.3-4, pp.273-291, 2003.
DOI : 10.1016/S0016-7061(02)00365-8

J. E. Kostka, N. , and K. H. , Isolation cultivation and characterization of iron-and manganese-reducing bacteria, Techniques in Microbial Ecology, pp.58-78, 1998.

D. Landolt, Corrosion et chimie des surfaces des métaux, 1993.

M. Langumier, R. Sabot, S. Sablé, M. Jeannin, A. Dheilly et al., Marine corrosion of steel: Role of interactions between sulphated green rust and sulphate reducing bacteria, Corrosion marine des aciers: rôle des interactions rouille verte sulfatée/bactéries sulfato-réductrices 98, pp.81-89, 2010.

M. Langumier, R. Sabot, R. Obame-ndong, M. Jeannin, S. Sablé et al., Formation of Fe(III)-containing mackinawite from hydroxysulphate green rust by sulphate reducing bacteria, Corrosion Science, vol.51, issue.11, pp.2694-2702, 2009.
DOI : 10.1016/j.corsci.2009.07.001

S. Lantenois, Réactivité fer métal/smectites en milieu hydraté à 80°C, p.188, 2003.

S. Lantenois, B. Lanson, F. Muller, A. Bauer, M. Jullien et al., Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization, clays and clay minerals, vol.53, issue.6, pp.597-612, 2005.
DOI : 10.1346/CCMN.2005.0530606

A. K. Lee and D. K. Newman, Microbial iron respiration: impacts on corrosion processes, Applied Microbiology and Biotechnology, vol.62, issue.2-3, pp.134-139, 2003.
DOI : 10.1007/s00253-003-1314-7

T. R. Lee and R. T. Wilkin, Iron hydroxy carbonate formation in zerovalent iron permeable reactive barriers: Characterization and evaluation of phase stability, Journal of Contaminant Hydrology, vol.116, issue.1-4, pp.47-57, 2010.
DOI : 10.1016/j.jconhyd.2010.05.009

W. Lee, C. , and W. G. , Corrosion of Mild Steel Under Anaerobic Biofilm, CORROSION, vol.49, issue.3, pp.186-199, 1993.
DOI : 10.5006/1.3316040

L. Legrand, S. Savoye, A. Chausse, and R. Messina, Study of oxidation products formed on iron in solutions containing bicarbonate/carbonate, Electrochimica Acta, vol.46, issue.1, pp.111-117, 2000.
DOI : 10.1016/S0013-4686(00)00563-6

M. Libert, O. Bildstein, L. Esnault, M. Jullien, and R. Sellier, Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories, Physics and Chemistry of the Earth, Parts A/B/C, vol.36, issue.17-18, pp.1616-1623, 2011.
DOI : 10.1016/j.pce.2011.10.010

V. J. Linnenbom, The Reaction between lron and Water in the Absence of Oxygen, Journal of The Electrochemical Society, vol.105, issue.6, pp.322-324, 1958.
DOI : 10.1149/1.2428838

B. Little and P. Wagner, An overview of microbiologically influenced corrosion of metals and alloys used in the storage of nuclear wastes, Canadian Journal of Microbiology, vol.42, issue.4, pp.367-374, 1996.
DOI : 10.1139/m96-052

C. Lu, J. Samper, B. Fritz, A. Clement, and L. Montenegro, Interactions of corrosion products and bentonite: An extended multicomponent reactive transport model, Physics and Chemistry of the Earth, Parts A/B/C, vol.36, issue.17-18, pp.1661-1668, 2011.
DOI : 10.1016/j.pce.2011.07.013

R. Marchal, Rôle des bactéries sulfurogènes dans la corrosion du fer Oil and Gas Science and Technology -Revues de l, REFERENCES, vol.54, issue.214, pp.649-659251, 1999.

F. A. Martin, C. Bataillon, and M. L. Schlegel, Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment, Journal of Nuclear Materials, vol.379, issue.1-3, pp.80-90, 2008.
DOI : 10.1016/j.jnucmat.2008.06.021

M. Martins, M. L. Faleiro, S. Chaves, R. Tenreiro, C. et al., Effect of uranium (VI) on two sulphate-reducing bacteria cultures from a uranium mine site, Science of The Total Environment, vol.408, issue.12, pp.2621-2628, 2010.
DOI : 10.1016/j.scitotenv.2010.02.032

N. C. Marty, B. Fritz, A. Clément, and N. Michau, Modelling the long term alteration of the engineered bentonite barrier in an underground radioactive waste repository, Applied Clay Science, vol.47, issue.1-2, pp.82-90, 2010.
DOI : 10.1016/j.clay.2008.10.002

URL : https://hal.archives-ouvertes.fr/insu-00556507

H. Matthiesen, D. Gregory, P. Jensen, and B. Sørensen, Environmental Monitoring at Nydam, a Waterlogged Site with Weapon Sacrifices from the Danish Iron Age. I: A Comparison of Methods Used and Results from Undisturbed Conditions, Journal of Wetland Archaeology, vol.50, issue.1, pp.55-74, 2004.
DOI : 10.4319/lo.1974.19.5.0857

H. Matthiesen, L. R. Hilbert, D. Gregory, and B. Soerensen, Long-term corrosion of iron at the waterlogged site of Nydam in Denmark: studies of environment, archaeological artefacts, and modern analogues, Prediction of long term corrosion behaviour in nuclear waste systems, pp.114-127, 2004.
DOI : 10.1533/9781845693015.272

L. Mauclaire, J. A. Mckenzie, B. Schwyn, and P. Bossart, Detection and cultivation of indigenous microorganisms in Mesozoic claystone core samples from the Opalinus Clay Formation (Mont Terri Rock Laboratory), Physics and Chemistry of the Earth, Parts A/B/C, vol.32, issue.1-7, pp.232-240, 2007.
DOI : 10.1016/j.pce.2005.12.010

M. Mehanna, R. Basseguy, M. L. Delia, and A. Bergel, Role of direct microbial electron transfer in corrosion of steels, Electrochemistry Communications, vol.11, issue.3, pp.568-571, 2009.
DOI : 10.1016/j.elecom.2008.12.019

A. Meunier, Argiles (Contemporary publishing international-GB science publisher), 2003.

E. Miranda, M. Bethencourt, F. J. Botana, M. J. Cano, J. M. Sánchez-amaya et al., Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator, Corrosion Science, vol.48, issue.9, pp.2417-2431, 2006.
DOI : 10.1016/j.corsci.2005.09.005

T. Missana, M. Garcia-gutierrez, A. , and U. , Sorption of strontium onto illite/smectite mixed clays, Physics and Chemistry of the Earth, Parts A/B/C, vol.33, pp.156-162, 2008.
DOI : 10.1016/j.pce.2008.10.020

T. Misawa, K. Hashimoto, and S. Shimodaira, The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature, Corrosion Science, vol.14, issue.2, pp.131-149, 1974.
DOI : 10.1016/S0010-938X(74)80051-X

K. Mori, H. Tsurumaru, and S. Harayama, Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities, Journal of Bioscience and Bioengineering, vol.110, issue.4, pp.426-430, 2010.
DOI : 10.1016/j.jbiosc.2010.04.012

M. Motamedi, O. Karland, and K. Pedersen, Survival of sulfate reducing bacteria at different water activities in compacted bentonite, FEMS Microbiology Letters, vol.141, issue.1, pp.83-87, 1996.
DOI : 10.1111/j.1574-6968.1996.tb08367.x

M. Motamedi and K. Pedersen, Note: Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at aspo hard rock laboratory, Sweden, International Journal of Systematic Bacteriology, vol.48, issue.1, pp.311-315, 1998.
DOI : 10.1099/00207713-48-1-311

D. Neff, Apport des analogues archéologiques à l'estimation des vitesses moyennes et à l'étude des mécanismes de corrosion à très long terme des aciers non alliés dans les sols, Sciences Mécaniques pour l'Ingénieur, p.360, 2003.

D. Neff, P. Dillmann, L. Bellot-gurlet, and G. Beranger, Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system, Corrosion Science, vol.47, issue.2, pp.515-535, 2005.
DOI : 10.1016/j.corsci.2004.05.029

D. Neff, P. Dillmann, M. Descostes, and G. Beranger, Corrosion of iron archaeological artefacts in soil: Estimation of the average corrosion rates involving analytical techniques and thermodynamic calculations, Corrosion Science, vol.48, issue.10, pp.2947-2970, 2006.
DOI : 10.1016/j.corsci.2005.11.013

URL : https://hal.archives-ouvertes.fr/hal-00157950

D. Neff, S. Reguer, L. Bellot-gurlet, P. Dillmann, and R. Bertholon, Structural characterization of corrosion products on archaeological iron: an integrated analytical approach to establish corrosion forms, Journal of Raman Spectroscopy, vol.35, issue.89, pp.739-745251, 2004.
DOI : 10.1002/jrs.1130

D. Neff, M. Saheb, J. Monnier, S. Perrin, M. Descostes et al., A review of the archaeological analogue approaches to predict the long-term corrosion behaviour of carbon steel overpack and reinforced concrete structures in the French disposal systems, Journal of Nuclear Materials, vol.402, issue.2-3, pp.196-205, 2010.
DOI : 10.1016/j.jnucmat.2010.05.003

C. O. Obuekwe, D. W. Westlake, J. A. Plambeck, and F. D. Cook, Corrosion of Mild Steel in Cultures of Ferric Iron Reducing Bacterium Isolated from Crude Oil I. Polarization Characteristics, CORROSION OF MILD STEEL IN CULTURES OF FERRIC IRON REDUCING BACTERIUM ISOLATED FROM CRUDE OIL -1. POLARIZATION CHARACTERISTICS, pp.461-467, 1981.
DOI : 10.5006/1.3585992

T. Oyama and M. Chigira, Weathering rate of mudstone and tuff on old unlined tunnel walls, Engineering Geology, vol.55, issue.1-2, pp.15-27, 2000.
DOI : 10.1016/S0013-7952(99)00103-9

J. L. Palandri, Y. K. Kharaka, G. S. National, and E. T. Laboratory, A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling, of the Interior, U.S. Geological Survey, 2004.

P. Panak, B. C. Hard, K. Pietzsch, S. Kutschke, K. Röske et al., Bacteria from uranium mining waste pile: interactions with U(VI), Journal of Alloys and Compounds, vol.271, issue.273, pp.271-273, 1998.
DOI : 10.1016/S0925-8388(98)00067-X

F. Papillon, M. Jullien, and C. Bataillon, Carbon steel behaviour in compacted clay : two long term tests for corrosion prediction " Prediction of long term corrosion, behaviour in nuclear waste systems, pp.439-454, 2001.

D. Patriarche, E. Ledoux, R. Simon-coincon, J. L. Michelot, and J. Cabrera, Characterization and modeling of diffusion process for mass transport through the Tournemire argillites (Aveyron, France), Applied Clay Science, vol.26, issue.1-4, pp.109-122, 2004.
DOI : 10.1016/j.clay.2003.10.005

K. Pedersen, Microbial life in deep granitic rock, FEMS Microbiology Reviews, vol.20, issue.3-4, pp.399-414, 1997.
DOI : 10.1111/j.1574-6976.1997.tb00325.x

K. Pedersen, Exploration of deep intraterrestrial microbial life: current perspectives, FEMS Microbiology Letters, vol.185, issue.1, pp.9-16, 2000.
DOI : 10.1111/j.1574-6968.2000.tb09033.x

K. Pedersen, J. Arlinger, L. Hallbeck, and C. Pettersson, Diversity and distribution of subterranean bacteria in groundwater at Oklo in Gabon, Africa, as determined by 16S rRNA gene sequencing, Molecular Ecology, vol.51, issue.3, pp.427-436, 1996.
DOI : 10.1038/345063a0

I. V. Pekov, N. Perchiazzi, S. Merlino, V. N. Kalachev, M. Merlini et al., Chukanovite, Fe<SUB>2</SUB>(CO<SUB>3</SUB>)(OH)<SUB>2</SUB>, a new mineral from the weathered iron meteorite Dronino, Chukanovite, Fe2(CO3)(OH)2, a new mineral from the weathered iron meteorite Dronino, pp.891-898, 2007.
DOI : 10.1127/0935-1221/2007/0019-1767

J. Pelmont, Bactéries et environnement: Adaptations physiologiques, 1993.

J. Peña, E. Torres, M. J. Turrero, A. Escribano, and P. L. Martín, Kinetic modelling of the attenuation of carbon steel canister corrosion due to diffusive transport through corrosion product layers, Corrosion Science, vol.50, issue.8, pp.2197-2204, 2008.
DOI : 10.1016/j.corsci.2008.06.004

M. Perronnet, M. Jullien, F. Villiéras, J. Raynal, D. Bonnin et al., Evidence of a critical content in Fe(0) on FoCa7 bentonite reactivity at 80????C, Applied Clay Science, vol.38, issue.3-4, pp.187-202, 2008.
DOI : 10.1016/j.clay.2007.03.002

N. Platts, D. J. Blackwood, and C. C. Naish, Anaerobic oxidation of carbon steel in granitic groundwaters: A review of the relevant literature, 1994.

J. S. Potekhina, N. G. Sherisheva, L. P. Povetkina, A. P. Pospelov, T. A. Rakitina et al., Role of microorganisms in corrosion inhibition of metals in aquatic habitats, Applied Microbiology and Biotechnology, vol.52, issue.5, pp.639-646, 1999.
DOI : 10.1007/s002530051571

S. Poulain, Caractérisation microbiologique de l'argile à Opalinus du Mont Terri et de l'argilite du Callovo-Oxfordien de Meuse/Haute-Marne, Thèse doctorat : Sciences chimiques. CNAB : Bordeaux 1, 2006.

S. Poulain, C. Sergeant, M. Simonoff, L. Marrec, C. And-altmann et al., Microbial Investigations in Opalinus Clay, an Argillaceous Formation under Evaluation as a Potential Host Rock for a Radioactive Waste Repository, Geomicrobiology Journal, vol.62, issue.5, pp.240-249, 2008.
DOI : 10.1016/j.cub.2003.12.012

D. Prêt, Nouvelles méthodes quantitatives de cartographie de la minéralogie et de la porosité dans les matériaux argileux, 2006.

P. Refait, J. A. Bourdoiseau, M. Jeannin, D. D. Nguyen, A. Romaine et al., Electrochemical formation of carbonated corrosion products on carbon steel in deaerated solutions, Electrochimica Acta, vol.79, issue.216, pp.210-217251, 2012.
DOI : 10.1016/j.electacta.2012.06.108

P. Refait, D. D. Nguyen, M. Jeannin, S. Sable, M. Langumier et al., Electrochemical formation of green rusts in deaerated seawater-like solutions, Electrochimica Acta, vol.56, issue.18, pp.6481-6488, 2011.
DOI : 10.1016/j.electacta.2011.04.123

C. Remazeilles, D. Neff, F. Kergourlay, E. Foy, E. Conforto et al., Mechanisms of long-term anaerobic corrosion of iron archaeological artefacts in seawater, Corrosion Science, vol.51, issue.12, pp.2932-2941, 2009.
DOI : 10.1016/j.corsci.2009.08.022

D. Rickard, L. , and G. W. , Chemistry of Iron Sulfides, Chemical Reviews, vol.107, issue.2, pp.514-562, 2007.
DOI : 10.1021/cr0503658

E. M. Rivkina, E. I. Friedmann, C. P. Mckay, and D. A. Gilichinsky, Metabolic Activity of Permafrost Bacteria below the Freezing Point, Applied and Environmental Microbiology, vol.66, issue.8, pp.3230-3233, 2000.
DOI : 10.1128/AEM.66.8.3230-3233.2000

D. Rickard, L. , and G. W. , Chemistry of Iron Sulfides, Chemical Reviews, vol.107, issue.2, pp.514-562, 2007.
DOI : 10.1021/cr0503658

M. L. Rozalén, F. J. Huertas, P. V. Brady, J. Cama, S. García-palma et al., Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25??C, Geochimica et Cosmochimica Acta, vol.72, issue.17, pp.4224-4253, 2008.
DOI : 10.1016/j.gca.2008.05.065

M. Saheb, Les analogues archéologiques ferreux pour la compréhension des mécanismes de corrosion multiséculaire en milieu anoxique, Chimie et Sciences des matériaux, p.282, 2009.

M. Saheb, P. Berger, L. Raimbault, D. Neff, and P. Dillmann, Investigation of iron long-term corrosion mechanisms in anoxic media using deuterium tracing, Journal of Nuclear Materials, vol.423, issue.1-3, pp.61-66, 2012.
DOI : 10.1016/j.jnucmat.2012.01.018

URL : https://hal.archives-ouvertes.fr/hal-00669011

M. Saheb, D. Neff, C. Bataillon, E. Foy, and P. Dillmann, Copper tracing to determine the micrometric electronic properties of a thick ferrous corrosion layer formed in an anoxic medium, Corrosion Science, vol.53, issue.6, pp.2201-2207, 2011.
DOI : 10.1016/j.corsci.2011.02.042

M. Saheb, D. Neff, J. Demory, E. Foy, and P. Dillmann, Characterisation of corrosion layers formed on ferrous archaeological artefacts buried in anoxic media, Corrosion Engineering, Science and Technology, vol.28, issue.4, pp.381-387, 2010.
DOI : 10.1038/246527a0

M. Saheb, D. Neff, P. Dillmann, H. Matthiesen, and E. Foy, Long-term corrosion behaviour of low-carbon steel in anoxic environment: Characterisation of archaeological artefacts, Journal of Nuclear Materials, vol.379, issue.1-3, pp.118-123, 2008.
DOI : 10.1016/j.jnucmat.2008.06.019

S. Sammartino, A. Bouchet, D. Prêt, J. C. Parneix, and E. Tevissen, Spatial distribution of porosity and minerals in clay rocks from the Callovo-Oxfordian formation (Meuse/Haute-Marne, Eastern France)???implications on ionic species diffusion and rock sorption capability, Applied Clay Science, vol.23, issue.1-4, pp.157-166, 2003.
DOI : 10.1016/S0169-1317(03)00098-X

J. Samper, C. Lu, and L. Montenegro, Reactive transport model of interactions of corrosion products and bentonite, Physics and Chemistry of the Earth, Parts A/B/C, vol.33, pp.306-316, 2008.
DOI : 10.1016/j.pce.2008.10.009

J. Satterberg, T. S. Arnarson, E. J. Lessard, K. , and R. G. , Sorption of organic matter from four phytoplankton species to montmorillonite, chlorite and kaolinite in seawater, Marine Chemistry, vol.81, issue.1-2, pp.11-18, 2003.
DOI : 10.1016/S0304-4203(02)00136-6

D. Savage, C. Watson, S. Benbow, W. , and J. , Modelling iron-bentonite interactions, Applied Clay Science, vol.47, issue.1-2, pp.91-98, 2010.
DOI : 10.1016/j.clay.2008.03.011

S. Savoye, L. Legrand, G. Sagon, S. Lecomte, A. Chausse et al., Experimental investigations on iron corrosion products formed in bicarbonate/carbonate-containing solutions at 90??C, Corrosion Science, vol.43, issue.11, pp.2049-2064, 2001.
DOI : 10.1016/S0010-938X(01)00012-9

T. Schäfer, F. Claret, A. Bauer, L. Griffault, E. Ferrage et al., Natural organic matter (NOM)-clay association and impact on Callovo-Oxfordian clay stability in??high alkaline solution: Spectromicroscopic evidence, Journal de Physique IV (Proceedings), vol.104, issue.217, pp.413-416251, 2003.
DOI : 10.1051/jp4:20030111

M. L. Schlegel, C. Bataillon, K. Benhamida, C. Blanc, D. Menut et al., Metal corrosion and argillite transformation at the water-saturated, high-temperature iron???clay interface: A microscopic-scale study, Applied Geochemistry, vol.23, issue.9, pp.2619-2633, 2008.
DOI : 10.1016/j.apgeochem.2008.05.019

M. L. Schlegel, C. Bataillon, C. Blanc, D. Prêt, and E. Foy, Anodic Activation of Iron Corrosion in Clay Media under Water-Saturated Conditions at 90 ??C: Characterization of the Corrosion Interface, Environmental Science & Technology, vol.44, issue.4, pp.1503-1508, 2010.
DOI : 10.1021/es9021987

A. I. Slobodkin, C. Jeanthon, S. L-'haridon, T. Nazina, M. Miroshnichenko et al., Dissimilatory Reduction of Fe(III) by Thermophilic Bacteria and Archaea in Deep Subsurface Petroleum Reservoirs of Western Siberia, Current Microbiology, vol.39, issue.2, pp.99-102, 1999.
DOI : 10.1007/s002849900426

B. Soerensen, G. , and D. , In situ preservation of artifacts in Nydam Mose, Metal 98 conference on metals conservation, pp.94-99, 1998.

P. Sollins, P. Homann, C. , and B. A. , Stabilization and destabilization of soil organic matter: mechanisms and controls, Geoderma, vol.74, issue.1-2, pp.65-105, 1996.
DOI : 10.1016/S0016-7061(96)00036-5

S. Stroes-gascoyne and M. Gascoyne, The Introduction of Microbial Nutrients into A Nuclear Waste Disposal Vault during Excavation and Operation, Environmental Science & Technology, vol.32, issue.3, pp.317-326, 1998.
DOI : 10.1021/es970496t

S. Stroes-gascoyne, A. Schippers, B. Schwyn, S. Poulain, C. Sergeant et al., Microbial Community Analysis of Opalinus Clay Drill Core Samples from the Mont Terri Underground Research Laboratory, Switzerland, Geomicrobiology Journal, vol.62, issue.1, pp.1-17, 2007.
DOI : 10.1093/nar/21.22.5279

URL : https://hal.archives-ouvertes.fr/hal-00176818

S. Stroes-gascoyne, C. Sergeant, A. Schippers, C. J. Hamon, S. Nèble et al., Biogeochemical processes in a clay formation in situ experiment: Part D ??? Microbial analyses ??? Synthesis of results, Applied Geochemistry, vol.26, issue.6, pp.980-989, 2010.
DOI : 10.1016/j.apgeochem.2011.03.007

URL : https://hal.archives-ouvertes.fr/in2p3-00607073

K. Tang, V. Baskaran, and M. Nemati, Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries, Biochemical Engineering Journal, vol.44, issue.1, pp.73-94, 2009.
DOI : 10.1016/j.bej.2008.12.011

B. P. Tissot and D. H. Welte, Petroleum Formation and Occurrence. A new Approach to Oil and Gas Exploration, Zeitschrift für allgemeine Mikrobiologie, vol.20, pp.428-428, 1980.
DOI : 10.1007/978-3-642-96446-6

K. Todar, Textbook of bacteriology (University of Wisconsin-Madisson), 2006.

L. Urios, F. Marsal, D. Pellegrini, and M. Magot, Microbial diversity of the 180 million-year-old Toarcian argillite from Tournemire, France, Applied Geochemistry, vol.27, issue.7, pp.1442-1450, 2012.
DOI : 10.1016/j.apgeochem.2011.09.022

C. Tournassat, H. Gailhanou, C. Crouzet, G. Braibant, A. Gautier et al., Cation Exchange Selectivity Coefficient Values on Smectite and Mixed-Layer Illite/Smectite Minerals, Soil Science Society of America Journal, vol.73, issue.3, pp.928-942, 2009.
DOI : 10.2136/sssaj2008.0285

J. Tremosa, D. Arcos, J. M. Matray, F. Bensenouci, E. C. Gaucher et al., Geochemical characterization and modelling of the Toarcian/Domerian porewater at the Tournemire underground research laboratory, Applied Geochemistry, vol.27, issue.7, pp.1442-1450, 2011.
DOI : 10.1016/j.apgeochem.2012.01.005

URL : https://hal.archives-ouvertes.fr/hal-00675192

S. Turner, K. M. Pryer, V. P. Miao, P. , and J. D. , Investigating Deep Phylogenetic Relationships among Cyanobacteria and Plastids by Small Subunit rRNA Sequence Analysis, The Journal of Eukaryotic Microbiology, vol.9, issue.4, pp.327-338, 1999.
DOI : 10.1006/mpev.1995.1005

J. Van-der-lee, D. Windt, and L. , Chess Tutorial and Cookbook. User's Manual, p.96, 2000.

J. Van-der-lee, L. De-windt, V. Lagneau, and P. Goblet, Module-oriented modeling of reactive transport with HYTEC, Computers & Geosciences, vol.29, issue.3, pp.265-275, 2003.
DOI : 10.1016/S0098-3004(03)00004-9

URL : https://hal.archives-ouvertes.fr/hal-00564455

M. Vandenbroucke and C. Largeau, Kerogen origin, evolution and structure, Organic Geochemistry, vol.38, issue.5, pp.719-833, 2007.
DOI : 10.1016/j.orggeochem.2007.01.001

URL : https://hal.archives-ouvertes.fr/bioemco-00147220

H. A. Videla and L. K. Herrera, Microbiologically influenced corrosion: looking to the future, International Microbiology REFERENCES, vol.8, issue.218, pp.169-180251, 2005.

H. A. Videla and L. K. Herrera, Understanding microbial inhibition of corrosion. A comprehensive overview, International Biodeterioration & Biodegradation, vol.63, issue.7, pp.896-900, 2009.
DOI : 10.1016/j.ibiod.2009.02.002

K. Videm and A. Dugstad, Corrosion of carbon steel in an aqueous carbon dioxide environment, Journal Name: Mater, 1989.

P. Wersin, Geochemical modelling of bentonite porewater in high-level waste repositories, Journal of Contaminant Hydrology, vol.61, issue.1-4, pp.405-422, 2003.
DOI : 10.1016/S0169-7722(02)00119-5

P. Wersin, O. Leupin, S. Mettler, E. C. Gaucher, U. Mäder et al., Biogeochemical processes in a clay formation in situ experiment: Part A ??? Overview, experimental design and water data of an experiment in the Opalinus Clay at the Mont Terri Underground Research Laboratory, Switzerland, Applied Geochemistry, vol.26, issue.6, pp.931-953, 2011.
DOI : 10.1016/j.apgeochem.2011.03.004

URL : https://hal.archives-ouvertes.fr/hal-00664964

P. Wersin, S. Stroes-gascoyne, F. Pearson, C. Tournassat, O. Leupin et al., Biogeochemical processes in a clay formation in situ experiment: Part G ??? Key interpretations and conclusions. Implications for repository safety, Applied Geochemistry, vol.26, issue.6, pp.1023-1034, 2011.
DOI : 10.1016/j.apgeochem.2011.03.010

URL : https://hal.archives-ouvertes.fr/hal-00597107

J. M. West, I. G. Mckinley, S. Stroes-gascoyne, M. J. Keith-roach, and F. R. Livens, Microbial effects on waste repository materials, Radioactivity in the Environment, pp.255-277, 2002.

F. Widdel and T. A. Hansen, Dissimilatory Sulfate-and Sulfur-Reducing Prokaryotes," in The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, pp.582-624, 1992.

J. Wilson, G. Cressey, B. Cressey, J. Cuadros, K. V. Ragnarsdottir et al., The effect of iron on montmorillonite stability. (II) Experimental investigation, Geochimica et Cosmochimica Acta, vol.70, issue.2, pp.323-336, 2006.
DOI : 10.1016/j.gca.2005.09.023

J. Wilson, D. Savage, J. Cuadros, M. Shibata, and K. V. Ragnarsdottir, The effect of iron on montmorillonite stability. (I) Background and thermodynamic considerations, Geochimica et Cosmochimica Acta, vol.70, issue.2, pp.306-322, 2006.
DOI : 10.1016/j.gca.2005.10.003