R. Al, 41 SEM pictures of the o-ring area (inside and beyond) after the anodization step and the, p.143

S. Máté-tempi, M. Máté-tempi, A. Vlad, V. Antohe, and L. Piraux, Nanowires and nanostructures fabrication using template methods: a step forward to real devices combining electrochemical synthesis with lithographic techniques, Journal of Materials Science: Materials in Electronics, vol.20, p.249254, 2009.

S. Jeong, H. Hwang, K. Lee, and Y. Jeong, Template-based carbon nanotubes and their application to a field emitter, Applied Physics Letters, vol.78, issue.14, p.2052, 2001.
DOI : 10.1063/1.1359483

S. Jeong and K. Lee, Fabrication of the aligned and patterned carbon nanotube eld emitters using the anodic aluminum oxide nano-template on a si wafer, Synthetic Metals, vol.139, p.385390, 2003.

W. B. Choi, J. U. Chu, K. S. Jeong, E. J. Bae, J. Lee et al., Ultrahigh-density nanotransistors by using selectively grown vertical carbon nanotubes, Applied Physics Letters, vol.79, issue.22, p.36963698, 2001.
DOI : 10.1063/1.1419236

H. Y. Jung, S. M. Jung, J. Kim, and J. S. Suh, Chemical sensors for sensing gas adsorbed on the inner surface of carbon nanotube channels, Applied Physics Letters, vol.90, issue.15, pp.153114-1531143, 2007.
DOI : 10.1063/1.2722196

A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, Fabrication of highly ordered metallic nanowire arrays by electrodeposition, Applied Physics Letters, vol.79, issue.7, p.10391041, 2001.
DOI : 10.1063/1.1389765

H. Zeng, M. Zheng, R. Skomski, D. Sellmyer, Y. Liu et al., Magnetic properties of self-assembled Co nanowires of varying length and diameter, Journal of Applied Physics, vol.87, issue.9, 2000.
DOI : 10.1063/1.373137

Q. Xu, G. Meng, X. Wu, Q. Wei, M. Kong et al., A Generic Approach to Desired Metallic Nanowires Inside Native Porous Alumina Template via Redox Reaction, Chemistry of Materials, vol.21, issue.12, p.23972402, 2009.
DOI : 10.1021/cm803458b

Y. Cui and C. M. Lieber, Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks, Science, vol.291, issue.5505, p.851853, 2001.
DOI : 10.1126/science.291.5505.851

Y. Huang, Logic Gates and Computation from Assembled Nanowire Building Blocks, Science, vol.294, issue.5545, p.13131317, 2001.
DOI : 10.1126/science.1066192

S. J. Tans, A. R. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, vol.393, p.4952, 1998.

R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Single-and multi-wall carbon nanotube eld-eect transistors, Applied Physics Letters, vol.73, p.24472449, 1998.
DOI : 10.1063/1.122477

URL : http://infoscience.epfl.ch/record/144112

Y. Huang, Directed Assembly of One-Dimensional Nanostructures into Functional Networks, Science, vol.291, issue.5504, p.630633, 2001.
DOI : 10.1126/science.291.5504.630

Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber, Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems, Science, vol.302, issue.5649, p.13771379, 2003.
DOI : 10.1126/science.1090899

J. Park and J. Colinge, Multiple-gate SOI MOSFETs: device design guidelines, Electron Devices, IEEE Transactions on, vol.49, issue.12, p.22222229, 2002.

H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen et al., Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor, Nano Letters, vol.4, issue.7, pp.1247-1252, 2004.
DOI : 10.1021/nl049461z

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.5796

J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, Silicon vertically integrated nanowire eld eect transistors, Nano Lett, vol.6, p.973977, 2006.
DOI : 10.1021/nl060166j

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.8001

V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess et al., Realization of a silicon nanowire vertical surround-gate eld-eect transistor, Small, vol.2, issue.1, p.8588, 2006.

F. Keller, M. S. Hunter, and D. L. Robinson, Structural Features of Oxide Coatings on Aluminum, Journal of The Electrochemical Society, vol.100, issue.9, p.411419, 1953.
DOI : 10.1149/1.2781142

J. P. O-'sullivan and G. C. Wood, The morphology and mechanism of formation of porous anodic lms on aluminium, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol.317, p.511543, 1970.

Y. Xu, G. Thompson, G. Wood, and B. Bethune, Anion incorporation and migration during barrier lm formation on aluminium, Corrosion Science, vol.27, issue.1, p.83102, 1987.

H. Masuda and K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science, vol.268, issue.5216, p.14661468, 1995.
DOI : 10.1126/science.268.5216.1466

H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao et al., Highly ordered nanochannel-array architecture in anodic alumina, Applied Physics Letters, vol.71, issue.19, p.27702772, 1997.
DOI : 10.1063/1.120128

D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh et al., Titanium oxide nanotube arrays prepared by anodic oxidation, Journal of Materials Research, vol.68, issue.12, p.33313334, 2001.
DOI : 10.1063/1.121004

N. Mukherjee, M. Paulose, O. K. Varghese, G. K. Mor, and C. A. Grimes, Fabrication of nanoporous tungsten oxide by galvanostatic anodization, Journal of Materials Research, vol.26, issue.10, p.22962299, 2003.
DOI : 10.1016/S0013-4686(99)00034-1

I. Sieber, B. Kannan, and P. Schmuki, Self-Assembled Porous Tantalum Oxide Prepared in H[sub 2]SO[sub 4]/HF Electrolytes, Electrochemical and Solid-State Letters, vol.8, issue.3, p.10, 2005.
DOI : 10.1149/1.1859676

H. Tsuchiya, J. Macak, I. Sieber, and P. Schmuki, SelfOrganized HighAspectRatio nanoporous zirconium oxides prepared by electrochemical anodization, Small, vol.1, p.722725, 2005.
DOI : 10.1002/smll.200400163

Z. Su and W. Zhou, Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides, Advanced Materials, vol.151, issue.19, p.36633667, 2008.
DOI : 10.1002/adma.200800845

F. Li, L. Zhang, and R. M. Metzger, On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide, Chemistry of Materials, vol.10, issue.9, p.24702480, 1998.
DOI : 10.1021/cm980163a

V. P. Parkhutik and V. I. Shershulsky, Theoretical modelling of porous oxide growth on aluminium, Journal of Physics D: Applied Physics, vol.25, issue.8, p.12581263, 1992.
DOI : 10.1088/0022-3727/25/8/017

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, Hexagonal pore arrays with a 50???420 nm interpore distance formed by self-organization in anodic alumina, Journal of Applied Physics, vol.84, issue.11, p.6023, 1998.
DOI : 10.1063/1.368911

S. J. Garcia-vergara, L. Iglesias-rubianes, C. E. Blanco-pinzon, P. Skeldon, G. E. Thompson et al., Mechanical instability and pore generation in anodic alumina, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.462, issue.2072, p.23452358, 2006.
DOI : 10.1098/rspa.2006.1686

G. D. Sulka and W. J. Stepniowski, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures, Electrochimica Acta, vol.54, issue.14, p.36833691, 2009.
DOI : 10.1016/j.electacta.2009.01.046

O. Jessensky, F. Müller, and U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina, Applied Physics Letters, vol.72, issue.10, p.11731175, 1998.
DOI : 10.1063/1.121004

K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gösele, Self-ordering Regimes of Porous Alumina:?? The 10 Porosity Rule, Nano Letters, vol.2, issue.7, p.677680, 2002.
DOI : 10.1021/nl025537k

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, Controlling Factor of Self-Ordering of Anodic Porous Alumina, Journal of The Electrochemical Society, vol.151, issue.8, pp.473-478, 2004.
DOI : 10.1149/1.1767838

W. Lee, R. Ji, U. Gösele, and K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature Materials, vol.12, issue.9, p.741747, 2006.
DOI : 10.1038/nmat1717

M. A. Kashi, A. Ramazani, M. Raou, and A. Karimzadeh, Self-ordering of anodic nanoporous alumina fabricated by accelerated mild anodization method, Thin Solid Films, vol.518, issue.23, p.67676772, 2010.
DOI : 10.1016/j.tsf.2010.06.020

M. A. Kashi and A. Ramazani, The eect of temperature and concentration on the selforganized pore formation in anodic alumina, Journal of Physics D: Applied Physics, vol.38, p.23962399, 2005.

F. Zhang, X. Liu, C. Pan, and J. Zhu, Nano-porous anodic aluminium oxide membranes with 6???19 nm pore diameters formed by a low-potential anodizing process, Nanotechnology, vol.18, issue.34, p.345302, 2007.
DOI : 10.1088/0957-4484/18/34/345302

S. Ono and N. Masuko, Evaluation of pore diameter of anodic porous lms formed on aluminum, Surface and Coatings Technology, vol.169170, p.139142, 2003.

J. Martín, C. V. Manzano, and M. Martín-gonzález, In-depth study of self-ordered porous alumina in the 140400 nm pore diameter range, Microporous and Mesoporous Materials, vol.151, p.311316, 2012.

G. D. Sulka, A. Brzózka, and L. Liu, Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates, Electrochimica Acta, vol.56, issue.14, p.49724979, 2011.
DOI : 10.1016/j.electacta.2011.03.126

W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz et al., Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium, Nature Nanotechnology, vol.5, issue.4, p.234239, 2008.
DOI : 10.1038/nnano.2008.54

S. C. Bodepudi, D. Bachman, and S. Pramanik, Fabrication of Highly Ordered Cylindrical Nanopores with Modulated Diameter Using Anodic Alumina, 2011 International Conference on Nanoscience, Technology and Societal Implications, p.14, 2011.
DOI : 10.1109/NSTSI.2011.6111796

K. Pitzschel, J. Bachmann, S. Martens, J. M. Montero-moreno, J. Kimling et al., Magnetic reversal of cylindrical nickel nanowires with modulated diameters, Journal of Applied Physics, vol.109, issue.3, p.0339070339076, 2011.
DOI : 10.1063/1.3544036

L. Kong, Synthesis of Y-junction carbon nanotubes within porous anodic aluminum oxide template, Solid State Communications, vol.133, issue.8, p.527529, 2005.
DOI : 10.1016/j.ssc.2004.12.009

J. Li, C. Papadopoulos, and J. Xu, Nanoelectronics: Growing y-junction carbon nanotubes, Nature, vol.402, p.253254, 1999.

W. Cheng, M. Steinhart, U. Gösele, and R. B. Wehrspohn, Tree-like alumina nanopores generated in a non-steady-state anodization, Journal of Materials Chemistry, vol.5, issue.33, pp.3493-3495, 2007.
DOI : 10.1039/b709618f

A. Y. Ho, H. Gao, Y. C. Lam, and I. Rodríguez, Controlled Fabrication of Multitiered Three???Dimensional Nanostructures in Porous Alumina, Advanced Functional Materials, vol.268, issue.14, p.20572063, 2008.
DOI : 10.1002/adfm.200800061

R. Zakeri, C. Watts, H. Wang, and P. Kohli, Synthesis and characterization of nonlinear nanopores in alumina lms, Chem. Mater, vol.19, issue.8, 2007.

H. Asoh, K. Nishio, M. Nakao, T. Tamamura, and H. Masuda, Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured Al, Journal of The Electrochemical Society, vol.148, issue.4, pp.152-156, 2001.
DOI : 10.1149/1.1355686

B. Yan, H. T. Pham, Y. Ma, Y. Zhuang, and P. M. Sarro, ultrathin anodic aluminum oxide layers for nanostructuring on silicon substrate, Applied Physics Letters, vol.91, issue.5, p.0531170531173, 2007.
DOI : 10.1063/1.2767768

T. Xu, G. Zangari, and R. M. Metzger, Milling of the Barrier Layer in Hexagonally Ordered Nanoporous Alumina, Nano Letters, vol.2, issue.1, p.3741, 2001.
DOI : 10.1021/nl010075g

J. Liang, H. Chik, A. Yin, and J. Xu, Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template, Journal of Applied Physics, vol.91, issue.4, p.25442546, 2002.
DOI : 10.1063/1.1433173

C. Y. Han, G. A. Willing, Z. Xiao, and H. H. Wang, Control of the Anodic Aluminum Oxide Barrier Layer Opening Process by Wet Chemical Etching, Langmuir, vol.23, issue.3, p.15641568, 2006.
DOI : 10.1021/la060190c

G. E. Thompson and G. C. Wood, Porous anodic lm formation on aluminium, March, vol.290, p.230232, 1981.

B. Marquardt, L. Eude, M. Gowtham, G. Cho, H. J. Jeong et al., Density control of electrodeposited Ni nanoparticles/nanowires inside porous anodic alumina templates by an exponential anodization voltage decrease, Nanotechnology, vol.19, issue.40, p.405607, 2008.
DOI : 10.1088/0957-4484/19/40/405607

URL : https://hal.archives-ouvertes.fr/hal-00795368

M. R. Lukatskaya, L. A. Trusov, A. A. Eliseev, A. V. Lukashin, M. Jansen et al., Controlled way to prepare quasi-1D nanostructures with complex chemical composition in porous anodic alumina, Chem. Commun., vol.5, issue.8, p.2396, 2011.
DOI : 10.1039/C0CC04394J

Z. Zhang, J. Y. Ying, and M. S. Dresselhaus, Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process, Journal of Materials Research, vol.272, issue.07, p.17451748, 1998.
DOI : 10.1126/science.266.5193.1961

N. R. Coleman, M. A. Morris, T. R. Spalding, and J. D. Holmes, The Formation of Dimensionally Ordered Silicon Nanowires within Mesoporous Silica, Journal of the American Chemical Society, vol.123, issue.1, p.187188, 2000.
DOI : 10.1021/ja005598p

Q. Xu, G. Meng, X. Wu, Q. Wei, M. Kong et al., A Generic Approach to Desired Metallic Nanowires Inside Native Porous Alumina Template via Redox Reaction, Chemistry of Materials, vol.21, issue.12, p.23972402, 2009.
DOI : 10.1021/cm803458b

V. P. Menon and C. R. Martin, Fabrication and Evaluation of Nanoelectrode Ensembles, Analytical Chemistry, vol.67, issue.13, 1995.
DOI : 10.1021/ac00109a003

M. D. Leo, F. C. Pereira, L. M. Moretto, P. Scopece, S. Polizzi et al., Towards a better understanding of gold electroless deposition in track-etched templates, Chem. Mater, vol.19, issue.24, p.59555964, 2007.

C. M. Yang, H. S. Sheu, and K. J. Chao, Templated synthesis and structural study of densely packed metal nanostructures in MCM41 and MCM48, Advanced Functional Materials, vol.12, p.143148, 2002.

R. V. Parthasarathy, K. L. Phani, and C. R. Martin, Template synthesis of graphitic nanotubules, Advanced Materials, vol.1, issue.11, p.896897, 1995.
DOI : 10.1002/adma.19950071103

B. B. Lakshmi, P. K. Dorhout, and C. R. Martin, SolGel template synthesis of semiconductor nanostructures, Chem. Mater, vol.9, issue.3, p.857862, 1997.

T. Kyotani, L. Tsai, and A. Tomita, Preparation of ultrane carbon tubes in nanochannels of an anodic aluminum oxide lm, Chem. Mater, vol.8, issue.8, p.21092113, 1996.

J. C. Hulteen and C. R. Martin, A general template-based method for the preparation ofnanomaterials, Journal of Materials Chemistry, vol.7, p.10751087, 1997.

S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fischer, density for ultrahigh density quantum magnetic storage, Journal of Applied Physics, vol.76, issue.10, pp.6673-6675, 1994.
DOI : 10.1063/1.358164

L. Gravier, S. Serrano-guisan, and J. Ansermet, Spin-dependent peltier eect in Co/Cu multilayer nanowires, Journal of Applied Physics, vol.97, issue.10, pp.10-501, 2005.

F. De-menten-de-horne, L. Piraux, and S. Michotte, Fabrication and physical properties of Pb???Cu multilayered superconducting nanowires, Applied Physics Letters, vol.86, issue.15, p.1525101525103, 2005.
DOI : 10.1063/1.1900953

K. Lew and J. M. Redwing, Growth characteristics of silicon nanowires synthesized by vapor???liquid???solid growth in nanoporous alumina templates, Journal of Crystal Growth, vol.254, issue.1-2, p.1422, 2003.
DOI : 10.1016/S0022-0248(03)01146-1

J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovits, Highly-ordered carbon nanotube arrays for electronics applications, Applied Physics Letters, vol.75, issue.3, p.367369, 1999.
DOI : 10.1063/1.124377

T. Hashishin, Y. Tono, and J. Tamaki, Guide Growth of Carbon Nanotube Arrays Using Anodic Porous Alumina with Ni Catalyst, Japanese Journal of Applied Physics, vol.45, issue.1A, p.333337, 2006.
DOI : 10.1143/JJAP.45.333

M. E. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz et al., SingleCrystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes, Advanced Materials, vol.13, p.6265, 2001.

T. Gao, G. Meng, J. Zhang, Y. Wang, C. Liang et al., Template synthesis of single-crystal Cu nanowire arrays by electrodeposition, Applied Physics A Materials Science & Processing, vol.73, issue.2, p.251254, 2001.
DOI : 10.1007/s003390100910

J. Wang, M. Tian, T. E. Mallouk, and M. H. Chan, Microstructure and interdiusion of template-synthesized Au/Sn/Au junction nanowires, Nano Lett, vol.4, issue.7, p.13131318, 2004.

K. Nielsch, F. Müller, A. P. Li, and U. Gösele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition, Advanced Materials, vol.12, p.582586, 2000.

M. Tian, J. Wang, J. Kurtz, T. E. Mallouk, and M. H. Chan, Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism, Nano Letters, vol.3, issue.7, p.919923, 2003.
DOI : 10.1021/nl034217d

X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao, and Y. Q. Mao, Fabrication and characterization of highly ordered Au nanowire arrays, Journal of Materials Chemistry, vol.11, issue.6, p.17321734, 2001.
DOI : 10.1039/b100552i

D. Almawlawi, N. Coombs, and M. Moskovits, Magnetic properties of fe deposited into anodic aluminum oxide pores as a function of particle size, Journal of Applied Physics, vol.70, p.44214425, 1991.

A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, Fabrication of highly ordered metallic nanowire arrays by electrodeposition, Applied Physics Letters, vol.79, issue.7, p.10391041, 2001.
DOI : 10.1063/1.1389765

G. A. Gelves, Z. T. Murakami, M. J. Krantz, and J. A. Haber, Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates, Journal of Materials Chemistry, vol.13, issue.30, p.30753083, 2006.
DOI : 10.1039/b603442j

A. Jagminas, A. Jagminiene, and E. Matulionis, Uniformity of ac growth of copper nanowires within the porous alumina template from acidic Cu(II) sulphate solutions, 2003.

N. J. Gerein and J. A. Haber, Eect of ac electrodeposition conditions on the growth of high aspect ratio copper nanowires in porous aluminum oxide templates, J. Phys. Chem. B, vol.109, issue.37, p.1737217385, 2005.

G. P. Sklar, K. Paramguru, M. Misra, and J. C. Lacombe, Pulsed electrodeposition into AAO templates for CVD growth of carbon nanotube arrays, Nanotechnology, vol.16, issue.8, p.12651271, 2005.
DOI : 10.1088/0957-4484/16/8/047

K. Kim, M. Kim, and S. M. Cho, Pulsed electrodeposition of palladium nanowire arrays using AAO template, Materials Chemistry and Physics, vol.96, issue.2-3, p.278282, 2006.
DOI : 10.1016/j.matchemphys.2005.07.013

X. Huang, L. Li, X. Luo, X. Zhu, and G. Li, Orientation-Controlled Synthesis and Ferromagnetism of Single Crystalline Co Nanowire Arrays, The Journal of Physical Chemistry C, vol.112, issue.5, p.14681472, 2008.
DOI : 10.1021/jp710106y

R. Inguanta, S. Piazza, and C. Sunseri, Inuence of the electrical parameters on the fabrication of copper nanowires into anodic alumina templates, Applied Surface Science, vol.255, p.88168823, 2009.

S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, and T. Takahagi, Two-dimensional nanowire array formation on Si substrate using self-organized nanoholes of anodically oxidized aluminum, Solid-State Electronics, vol.43, issue.6, p.11431146, 1999.
DOI : 10.1016/S0038-1101(99)00037-4

H. Zeng, M. Zheng, R. Skomski, D. Sellmyer, Y. Liu et al., Magnetic properties of self-assembled Co nanowires of varying length and diameter, Journal of Applied Physics, vol.87, issue.9, 2000.
DOI : 10.1063/1.373137

B. Marquardt, L. Eude, M. Gowtham, G. Cho, H. J. Jeong et al., Density control of electrodeposited Ni nanoparticles/nanowires inside porous anodic alumina templates by an exponential anodization voltage decrease, Nanotechnology, vol.19, issue.40, p.405607, 2008.
DOI : 10.1088/0957-4484/19/40/405607

URL : https://hal.archives-ouvertes.fr/hal-00795368

M. Sun, G. Zangari, M. Shamsuzzoha, and R. M. Metzger, Electrodeposition of highly uniform magnetic nanoparticle arrays in ordered alumite, Applied Physics Letters, vol.78, issue.19, p.29642966, 2001.
DOI : 10.1063/1.1370986

G. J. Strijkers, J. H. Dalderop, M. A. Broeksteeg, H. J. Swagten, and W. J. De-jonge, Structure and magnetization of arrays of electrodeposited Co wires in anodic alumina, Journal of Applied Physics, vol.86, issue.9, p.51415145, 1999.
DOI : 10.1063/1.371490

G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn et al., Highly ordered monocrystalline silver nanowire arrays, Journal of Applied Physics, vol.91, issue.5, p.32433247, 2002.
DOI : 10.1063/1.1435830

S. Mondal, A. Dhar, and S. Ray, Optical properties of CdS nanowires prepared by dc electrochemical deposition in porous alumina template, Materials Science in Semiconductor Processing, vol.10, issue.4-5, p.185193, 2007.
DOI : 10.1016/j.mssp.2007.11.003

J. D. Klein, R. D. Herrick, D. Palmer, M. J. Sailor, C. J. Brumlik et al., Electrochemical fabrication of cadmium chalcogenide microdiode arrays, Chemistry of Materials, vol.5, issue.7, p.902904, 1993.
DOI : 10.1021/cm00031a002

M. S. Sander, R. Gronsky, T. Sands, and A. M. Stacy, Structure of Bismuth Telluride Nanowire Arrays Fabricated by Electrodeposition into Porous Anodic Alumina Templates, Chemistry of Materials, vol.15, issue.1, p.335339, 2002.
DOI : 10.1021/cm0207604

K. V. Singh, A. A. Martinez-morales, K. N. Bozhilov, and M. Ozkan, A simple way of synthesizing single-crystalline semiconducting copper sulde nanorods by using ultrasonication during template-assisted electrodeposition, Chem. Mater, vol.19, issue.10, p.24462454, 2007.

G. Cao and D. Liu, Template-based synthesis of nanorod, nanowire, and nanotube arrays, Advances in Colloid and Interface Science, vol.136, issue.1-2, p.4564, 2008.
DOI : 10.1016/j.cis.2007.07.003

M. Takeuchi, Y. Onozaki, Y. Matsumura, H. Uchida, and T. Kuji, Photoinduced hydrophilicity of TiO2 thin lm modied by ar ion beam irradiation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, vol.206, p.259263, 2003.

M. Nyström and P. Järvinen, Modication of polysulfone ultraltration membranes with UV irradiation and hydrophilicity increasing agents, Journal of Membrane Science, vol.60, issue.23, p.275296, 1987.

H. Chou, E. Lee, J. You, and S. Yu, Photo-induced hydrophilicity of TiO2xNx thin lms on PET plates, Thin Solid Films, vol.516, p.189192, 2007.

F. Liu, B. Zhu, and Y. Xu, Improving the hydrophilicity of poly(vinylidene uoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers, Applied Surface Science, vol.253, p.20962101, 2006.

Y. Jong-bin, K. Nam-hoon, and L. Hyun-yong, Universal Surface Hydrophilicity Obtained by Using Low-temperature Plasma H_2O gas for Nanosphere Lithography, Journal of the Korean Physical Society, vol.58, issue.1, 2011.
DOI : 10.3938/jkps.58.1

K. N. Pandiyaraj and V. Selvarajan, Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics, Journal of Materials Processing Technology, vol.199, issue.1-3, p.130139, 2008.
DOI : 10.1016/j.jmatprotec.2007.07.046

J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao et al., Study on hydrophilicity of polymer surfaces improved by plasma treatment, Applied Surface Science, vol.252, issue.10, p.33753379, 2006.
DOI : 10.1016/j.apsusc.2005.05.038