I. Annexe, Caractéristiques de l'alliage d'aluminium 7475, p.126

I. Annexe, Système de pilotage de la machine de traction à chaud, p.127

Y. Aoura, Contribution à la modélisation du comportement superplastique des alliages métalliques pour les procédés de mise en forme, Angers: Arts et Métiers ParisTech, 2004.

J. Bonet, A. Gil, R. D. Wood, R. Said, and R. V. Curtis, Simulating superplastic forming, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.48-49, pp.6580-6603, 2006.
DOI : 10.1016/j.cma.2005.03.012

R. Curtis, Overview ??? Superplasticity Community, Materialwissenschaft und Werkstofftechnik, vol.16, issue.4-5, pp.265-274, 2008.
DOI : 10.1002/mawe.200800287

T. G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities, Journal of Materials Science, vol.58, issue.4, pp.5998-6010, 2009.
DOI : 10.1007/s10853-009-3780-5

L. D. Hefti, Commercial Airplane Applications of Superplastically Formed AA5083 Aluminium Sheet, pp.136-141, 2007.

A. Barnes, Superplastic Forming 40??Years and Still Growing, Journal of Materials Engineering and Performance, vol.26, issue.448, pp.440-454, 2007.
DOI : 10.1007/s11665-007-9076-5

J. Bonet, R. D. Wood, R. Said, R. V. Curtis, and D. Garriga-majo, Numerical simulation of the superplastic forming of dental and medical prostheses, Biomechanics and Modeling in Mechanobiology, vol.1, issue.3, pp.177-196, 2002.
DOI : 10.1007/s10237-002-0016-x

H. R. Zamani, S. P. Agrawal, and R. Vastava, Superplastic formed Aluminium airframe structures. Volume II -Technical details, 1987.

N. Chandra, Constitutive behavior of superplastic materials, International Journal of Non-Linear Mechanics, vol.37, issue.3, pp.461-484, 2002.
DOI : 10.1016/S0020-7462(01)00021-X

H. Xing, C. Wang, K. Zhang, and Z. Wang, Recent development in the mechanics of superplasticity and its applications, Journal of Materials Processing Technology, vol.151, issue.1-3, pp.196-202, 2004.
DOI : 10.1016/j.jmatprotec.2004.04.039

Q. Snippe and T. Meinders, Mechanical experiments on the superplastic material ALNOVI-1, including leak information, Materials Science and Engineering: A, vol.528, issue.3, pp.950-960, 2011.
DOI : 10.1016/j.msea.2010.09.075

C. Robert, Contribution à la simulation numérique des procédés de mise en forme ? Application au formage incrémental et au formage superplastique, Angers: Arts et Métiers ParisTech, 2009.

M. Bellet, Modélisation numérique du formage superplastique de tôles, 1988.

F. A. Mohamed, The role of boundaries during superplastic deformation, Surface and Interface Analysis, vol.25, issue.7, pp.532-546, 2001.
DOI : 10.1002/sia.1081

T. G. Langdon, Grain boundary sliding revisited: Developments in sliding over four decades, Journal of Materials Science, vol.358, issue.321, pp.597-609, 2006.
DOI : 10.1007/s10853-006-6476-0

Z. Boulos, Interactions matériaux -procédé dans la mise en forme superplastique d'alliages réfractaires, Angers: ENSAM, 1999.

S. Boude, Maîtrise du procédé de formage superplastique et réalisation d'une installation pilote, 1994.

C. Snippe, Design and optimization of vertex detector foils by superplastic forming, 2011.

R. L. Coble, A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials, Journal of Applied Physics, vol.34, issue.6, pp.1679-1682, 1963.
DOI : 10.1063/1.1702656

J. Weertman, Theory of Steady???State Creep Based on Dislocation Climb, Journal of Applied Physics, vol.26, issue.10, pp.1213-1217, 1955.
DOI : 10.1063/1.1721875

R. Raj and M. Ashby, On grain boundary sliding and diffusional creep, Metallurgical Transactions, vol.95, issue.4, pp.1113-1127, 1971.
DOI : 10.1007/BF02664244

M. Ashby and R. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metallurgica, vol.21, issue.2, pp.149-163, 1973.
DOI : 10.1016/0001-6160(73)90057-6

J. Spingarn and W. Nix, Diffusional creep and diffusionally accommodated grain rearrangement, Acta Metallurgica, vol.26, issue.9, pp.1389-1398, 1978.
DOI : 10.1016/0001-6160(78)90154-2

V. V. Astanin, O. A. Kaibyshev, and S. N. Faizova, Cooperative grain boundary sliding under superplastic flow, Scripta metallurgica et materialia, pp.2663-2268, 1991.
DOI : 10.1016/0956-716X(91)90135-N

T. G. Langdon, An evaluation of the strain contributed by grain boundary sliding in superplasticity, Materials Science and Engineering: A, vol.174, issue.2, pp.225-230, 1994.
DOI : 10.1016/0921-5093(94)91092-8

K. Padmanabhan, A theory of structural superplasticity, Materials Science and Engineering, vol.29, issue.1, pp.1-18, 1977.
DOI : 10.1016/0025-5416(77)90140-9

K. Padmanabhan, A reply to ???Comments on theories of structural superplasticity???, Materials Science and Engineering, vol.40, issue.2, pp.285-292, 1979.
DOI : 10.1016/0025-5416(79)90200-3

H. Luthy, R. White, and O. D. Sherby, Grain boundary sliding and deformation mechanism maps, Materials Science and Engineering, vol.39, issue.2, pp.211-216, 1979.
DOI : 10.1016/0025-5416(79)90060-0

O. Ruano, A. Miller, and O. Sherby, The influence of pipe diffusion on the creep of fine-grained materials, Materials Science and Engineering, vol.51, issue.1, pp.9-16, 1981.
DOI : 10.1016/0025-5416(81)90100-2

A. Ball, Superplasticity in the aluminium-zinc eutectoid???an early model revisited, Materials Science and Engineering: A, vol.234, issue.236, pp.234-236, 1997.
DOI : 10.1016/S0921-5093(97)00157-3

A. Mukherjee, The rate controlling mechanism in superplasticity, Materials Science and Engineering, vol.8, issue.2, pp.83-89, 1971.
DOI : 10.1016/0025-5416(71)90085-1

R. Gifkins, Grain-boundary sliding and its accommodation during creep and superplasticity, Metallurgical Transactions A, vol.20, issue.8, p.1225, 1976.
DOI : 10.1007/BF02656607

R. Gifkins, Grain rearrangements during superplastic deformation, Journal of Materials Science, vol.17, issue.9, pp.1926-1936, 1978.
DOI : 10.1007/BF00552899

A. Arieli and A. Mukherjee, A model for the rate-controlling mechanism in superplasticity, Materials Science and Engineering, vol.45, issue.1, pp.61-70, 1980.
DOI : 10.1016/0025-5416(80)90070-1

A. Arieli and A. Mukherjee, The rate-controlling deformation mechanisms in superplasticity???a critical assessment, Metallurgical Transactions A, vol.27, issue.5, pp.717-732, 1982.
DOI : 10.1007/BF02642385

M. Mayo and W. Nix, Direct observations and micromechanical testing of superplastic alloys, Superplasticity and superplastic forming, pp.21-25, 1988.

A. Nazarov, Ensembles of gliding grain boundary dislocations in ultrafine grained materials produced by severe plastic deformation, Scripta Materialia, vol.37, issue.8, pp.1155-1161, 1997.
DOI : 10.1016/S1359-6462(97)00230-3

A. Nazarov, A Revision of the Models for the Accommodation of Extrinsic Grain Boundary Dislocations, Interface Science, vol.8, issue.1, pp.71-76, 2000.
DOI : 10.1023/A:1008787404947

K. Padmanabhan, R. Vasin, and F. Enikeev, Superplastic Flow: Phenomenology and Mechanics, 2001.
DOI : 10.1007/978-3-662-04367-7

G. Krallics and J. Lenard, An examination of the accumulative roll-bonding process, Journal of Materials Processing Technology, vol.152, issue.2, pp.154-161, 2004.
DOI : 10.1016/j.jmatprotec.2004.03.015

M. Vanderhasten, Ti???6Al???4V: Deformation map and modelisation of tensile behaviour, Materials & Design, vol.29, issue.6, 2007.
DOI : 10.1016/j.matdes.2007.06.005

Y. Huang, N. Ridley, F. Humphreys, and J. Cui, Diffusion bonding of superplastic 7075 aluminium alloy, Materials Science and Engineering: A, vol.266, issue.1-2, pp.295-302, 1999.
DOI : 10.1016/S0921-5093(98)00958-7

N. E. Paton and C. H. Hamilton, Superplastic forming of structural alloys, 1982.

D. G. Sanders and M. Ramulu, Examination of Superplastic Forming Combined with Diffusion Bonding for Titanium: Perspective from Experience, Journal of Materials Engineering and Performance, vol.13, issue.6, pp.744-752, 2004.
DOI : 10.1361/10599490421574

L. D. Hefti, Innovations in the Superplastic Forming and Diffusion Bonded Process, Journal of Materials Engineering and Performance, vol.136, issue.1, pp.178-182, 2008.
DOI : 10.1007/s11665-007-9178-0

L. D. Hefti, Fine-grain titanium 6AI-4V for superplastic forming and diffusion bonding of aerospace products, JOM, vol.17, issue.2, pp.42-45, 2010.
DOI : 10.1007/s11837-010-0076-9

P. Ducheyne and P. D. Meester, Superplastic testing conditions and grain growth, Journal of Materials Science, vol.21, issue.1, pp.109-116, 1974.
DOI : 10.1007/BF00554760

A. K. Ghosh and C. H. Hamilton, Mechanical behavior and hardening characteristics of a superplastic Ti-6AI-4V alloy, Metallurgical Transactions A, vol.64, issue.6, pp.699-706, 1979.
DOI : 10.1007/BF02658391

A. Juhasz, P. Tasnadi, N. Q. Chinh, and I. Kovacs, Stress-strain curves of superplastic alloys, Journal of Materials Science, vol.66, issue.10, pp.3679-3684, 1987.
DOI : 10.1007/BF01161477

D. H. Shin and S. C. Maeng, Superplastic behaviour of 7475 aluminium alloy, Journal of Materials Science Letters, vol.7, issue.12, pp.1380-1382, 1989.
DOI : 10.1007/BF00720193

T. Nieh, D. Lesuer, and C. Syn, Characterization of a commercial superplastic stainless steel, SuperDux64, Materials Science and Engineering: A, vol.202, issue.1-2, pp.43-51, 1995.
DOI : 10.1016/0921-5093(95)09790-2

T. K. Ha and Y. W. Chang, Superplastic deformation behavior of 8090 aluminum-lithium alloy, Scripta Metahrgica et Materialia, pp.809-814, 1995.
DOI : 10.1016/0956-716X(95)93206-J

M. K. Khraisheh, H. M. Zbib, C. H. Hamilton, and A. E. Bayoumi, Constitutive modeling of superplastic deformation. Part I: Theory and experiments, International Journal of Plasticity, vol.13, issue.1-2, pp.143-164, 1997.
DOI : 10.1016/S0749-6419(97)00005-3

A. K. Ghosh and C. H. Hamilton, Influences of material parameters and microstructure on superplastic forming, Metallurgical Transactions A, vol.10, issue.5, pp.733-743, 1982.
DOI : 10.1007/BF02642386

Y. Song and S. Liu, One-dimensional tensile constitutive equation cannot be directly generalized to deal with two-dimensional bulging mechanical problems, REFERENCES 133 SCIENCE IN CHINA (Series E), pp.585-592, 2002.

H. Wu, Cavitation characteristics of a superplastic 8090 Al alloy during equibiaxial tensile deformation, Materials Science and Engineering A, issue.291, pp.1-8, 2000.

D. Banabic, F. Barlat, O. Cazacu, and T. Kuwabara, Advances in anisotropy and formability, International Journal of Material Forming, vol.37, issue.SI, pp.165-189, 2010.
DOI : 10.1007/s12289-010-0992-9

D. S. Dawicke and W. D. Pollock, Biaxial testing of 2219-T87 Aluminium alloy using cruciform specimens, 1997.

W. Johnston, W. D. Pollock, and D. S. Dawicke, Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens, 2002.

D. Green, K. Neale, S. Macewen, A. Makinde, and R. Perrin, Experimental investigation of the biaxial behaviour of an aluminum sheet, International Journal of Plasticity, vol.20, issue.8-9, pp.1677-1706, 2004.
DOI : 10.1016/j.ijplas.2003.11.012

I. Zidane, D. Guines, L. Léotoing, and E. Ragneau, Development of an in-plane biaxial test for forming limit curve (FLC) characterization of metallic sheets, Measurement Science and Technology, vol.21, issue.5, p.55701, 2010.
DOI : 10.1088/0957-0233/21/5/055701

URL : https://hal.archives-ouvertes.fr/hal-00981719

M. Merklein and M. Biasutti, Development of a biaxial tensile machine for characterization of sheet metals, Journal of Materials Processing Technology, vol.213, issue.6, pp.939-946, 2013.
DOI : 10.1016/j.jmatprotec.2012.12.005

. Hopperstad, Experimental and numerical study on the behaviour of PVC and HDPE in biaxial tension, Mechanics of Materials, vol.54, pp.18-31, 2012.

A. International, ASTM Standard E2712 -Standard Test Method for Bulge- Forming Superplastic Metallic Sheet, DOI: 10, 2009.

T. Nieh and J. Wadsworth, Biaxial gas-pressure forming of a superplastic Al2O3/YTZP, Journal of Materials Engineering and Performance, vol.72, issue.8, pp.496-500, 1994.
DOI : 10.1007/BF02645316

J. A. Belk, A quantitative model of the blow-forming of spherical surfaces in superplastic sheet metal, International Journal of Mechanical Sciences, vol.17, issue.8, pp.505-511, 1975.
DOI : 10.1016/0020-7403(75)90015-6

F. U. Enikeev and A. A. Kruglov, An analysis of the superplastic forming of a thin circular diaphragm, International Journal of Mechanical Sciences, vol.37, issue.5, pp.473-483, 1995.
DOI : 10.1016/0020-7403(94)00081-T

S. Franchitti, G. Giuliano, G. Palumbo, D. Sorgente, and L. Tricarico, On the optimisation of superplastic free forming test of an AZ31 magnesium alloy sheet, International Journal of Material Forming, vol.1, issue.S1, pp.1067-1070, 2008.
DOI : 10.1007/s12289-008-0203-0

A. El-morsy and K. Manabe, FE simulation of rectangular box forming using material characteristics from the multi-dome forming test, Journal of Materials REFERENCES 134 Processing Technology, pp.125-126, 2002.
DOI : 10.1016/S0924-0136(02)00389-8

F. Roters, P. Eisenlohr, L. Hantcherli, D. Tjahjanto, T. Bieler et al., Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Materialia, vol.58, issue.4, pp.1152-1211, 2010.
DOI : 10.1016/j.actamat.2009.10.058

F. H. Norton, The creep of steel at high temperatures, 1929.

G. Johnson and W. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures The Hague, Proceedings of the 7th International symposium on Ballistics, 1983.

C. Zener and J. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, Journal of Applied Physics, vol.15, issue.1, pp.22-32, 1944.
DOI : 10.1063/1.1707363

W. Backofen, J. Turner, and D. Avery, Super-plasticity in an Al-Zn Alloy, Trans. Am. Soc. Metals, vol.57, issue.6, pp.980-990, 1964.

Z. Guan, The quantitative analysis of superplastic tensile deformation, 2008.

G. T. Kridli, A. S. El-gizawy, and R. Lederich, Development of process maps for superplastic forming of Weldalite??? 049, Materials Science and Engineering: A, vol.244, issue.2, pp.224-232, 1998.
DOI : 10.1016/S0921-5093(97)00545-5

Y. Chen, K. Kibble, R. Hall, and X. Huang, Numerical analysis of superplastic blow forming of Ti???6Al???4V alloys, Materials & Design, vol.22, issue.8, pp.679-685, 2001.
DOI : 10.1016/S0261-3069(01)00009-7

H. Yang and A. Mukherjee, An analysis of the superplastic forming of a circular sheet diaphragm, International Journal of Mechanical Sciences, vol.34, issue.4, pp.283-297, 1992.
DOI : 10.1016/0020-7403(92)90036-G

D. Sorgente and L. Tricarico, A numerical-experimental approach to material characterization and process analysis in the blow forming process, 6th EuroSPF conference, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00349244

G. Giuliano and S. Franchitti, The determination of material parameters from superplastic free-bulging tests at constant pressure, International Journal of Machine Tools and Manufacture, vol.48, issue.12-13, pp.1519-1522, 2008.
DOI : 10.1016/j.ijmachtools.2008.05.007

G. Giuliano and S. Franchitti, On the evaluation of superplastic characteristics using the finite element method, International Journal of Machine Tools and Manufacture, vol.47, issue.3-4, pp.471-476, 2007.
DOI : 10.1016/j.ijmachtools.2006.06.009

F. Jovane, An approximate analysis of the superplastic forming of a thin circular diaphragm: Theory and experiments, International Journal of Mechanical Sciences, vol.10, issue.5, pp.405-427, 1968.
DOI : 10.1016/0020-7403(68)90005-2

J. Bonet, R. D. Wood, and R. Collins, Pressure-control algorithms for the numerical simulation of superplastic forming, International Journal of Mechanical Sciences, vol.36, issue.4, pp.297-309, 1994.
DOI : 10.1016/0020-7403(94)90036-1

J. S. Luckey, P. A. Friedman, and K. J. Weinmann, Correlation of finite element analysis to superplastic forming experiments, Journal of Materials Processing Technology, vol.194, issue.1-3, pp.30-37, 2007.
DOI : 10.1016/j.jmatprotec.2007.03.122

G. R. Johnson and W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics, vol.21, issue.1, p.3148, 1985.
DOI : 10.1016/0013-7944(85)90052-9

H. Zhang, W. Wen, and H. Cui, Behaviors of IC10 alloy over a wide range of strain rates and temperatures: Experiments and modeling, Materials Science and Engineering: A, vol.504, issue.1-2, pp.99-103, 2009.
DOI : 10.1016/j.msea.2008.10.056

H. Shin and J. Kim, A Phenomenological Constitutive Equation to Describe Various Flow Stress Behaviors of Materials in Wide Strain Rate and Temperature Regimes, Journal of Engineering Materials and Technology, vol.132, issue.2, p.21009, 2010.
DOI : 10.1115/1.4000225

Q. Hou and J. Wang, A modified Johnson???Cook constitutive model for Mg???Gd???Y alloy extended to a wide range of temperatures, Computational Materials Science, vol.50, issue.1, pp.147-152, 2010.
DOI : 10.1016/j.commatsci.2010.07.018

G. Kay, Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson-Cook Material Model, 2003.
DOI : 10.2172/15006359

A. S. Khan, Y. S. Suh, and R. Kazmi, Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys, International Journal of Plasticity, vol.20, issue.12, pp.2233-2248, 2004.
DOI : 10.1016/j.ijplas.2003.06.005

T. Özel, M. Sima, and A. K. Srivastava, Finite element simulation of high speed machining ofTi6Al4V Alloys using modified material models, Transactions of NAMRI/SME, vol.38, pp.49-56, 2010.

W. K. Rule and S. E. Jones, A REVISED FORM FOR THE JOHNSON???COOK STRENGTH MODEL, International Journal of Impact Engineering, vol.21, issue.8, pp.609-624, 1998.
DOI : 10.1016/S0734-743X(97)00081-X

S. Nemat-nasser and W. Guo, Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures, Mechanics of Materials, vol.35, issue.11, pp.1023-1047, 2003.
DOI : 10.1016/S0167-6636(02)00323-X

L. Schwer, Optional strain-rate forms for the Johnson-Cook constitutive model and the role of the parameter Epsilon_0, LS-DYNA Anwenderforum, 2007.

M. Cook and . Zerilli, Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behavior in modified 9Cr-1Mo steel, Computational materials Science, vol.47, pp.568-576, 2009.

Y. Lin and X. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Materials & Design, vol.32, issue.4, pp.1733-1759, 2011.
DOI : 10.1016/j.matdes.2010.11.048

J. Li, F. Li, J. Cai, R. Wang, Z. Yuan et al., Flow behavior modeling of the 7050 aluminum alloy at elevated temperatures considering the compensation of strain, Materials & Design, vol.42, pp.369-377, 2012.
DOI : 10.1016/j.matdes.2012.06.032

O. Ruano and O. Sherby, On constitutive equations for various diffusion-controlled creep mechanisms, Revue de Physique Appliqu??e, vol.23, issue.4, pp.625-637, 1988.
DOI : 10.1051/rphysap:01988002304062500

URL : https://hal.archives-ouvertes.fr/jpa-00245811

C. Herring, Diffusional Viscosity of a Polycrystalline Solid, Journal of Applied Physics, vol.21, issue.5, p.437, 1950.
DOI : 10.1063/1.1699681

J. Dorn, Some fundamental experiments on high temperature creep, Journal of the Mechanics and Physics of Solids, vol.3, issue.2, pp.85-116, 1954.
DOI : 10.1016/0022-5096(55)90054-5

J. Weertman, Steady???State Creep of Crystals, Journal of Applied Physics, vol.28, issue.10, pp.1185-1189, 1957.
DOI : 10.1063/1.1722604

O. D. Sherby, R. H. Klundt, and A. K. Miller, Flow stress, subgrain size, and subgrain stability at elevated temperature, Metallurgical Transactions A, vol.8, issue.6, pp.843-850, 1977.
DOI : 10.1007/BF02661565

K. Zhang, Transient deformation behavior and modeling of a superplastic Pb-Sn eutectic alloy, 1996.

M. Zelin and A. Mukherjee, Geometrical aspects of superplastic flow, Materials Science and Engineering: A, vol.208, issue.2, pp.201-225, 1996.
DOI : 10.1016/0921-5093(95)10080-6

T. Chung and T. Davies, The superplastic creep of uranium dioxide, Journal of Nuclear Materials, vol.79, issue.1, pp.143-153, 1979.
DOI : 10.1016/0022-3115(79)90441-0

A. J. Blander, Transformation phenomena in superplastic aluminum 7475, 2004.

M. Abo-elkhier and M. S. Soliman, Superplastic Characteristics of Fine-Grained 7475 Aluminum Alloy, Journal of Materials Engineering and Performance, vol.15, issue.1, pp.76-80, 2006.
DOI : 10.1361/105994906X83394

A. and L. Dromaguet, «Etude du lien entre microstructure et rhéologie sur un alliage d'aluminium 7475 formé en superplasticité,» Arts et Métiers ParisTech, 2004.

M. Mahoney, C. H. Hamilton, and A. K. Ghosh, Development of Forming Limits for REFERENCES 137

R. K. Mahidhara, Strain distribution in the superplastic 7475 Al alloy, Scripta Metallurgica et Materialia, pp.1483-1488, 1995.
DOI : 10.1016/0956-716X(95)00192-X

D. H. Shin, Y. J. Joo, W. J. Kim, and C. S. Lee, Microstructural evolution during superplastic deformation of a 7475 Al alloy, Journal of Materials Science, vol.33, issue.12, pp.3073-3078, 1998.
DOI : 10.1023/A:1004383420256

C. L. Chen and M. J. Tan, Effect of grain boundary character distribution (GBCD) on the cavitation behaviour during superplastic deformation of Al 7475, Materials Science and Engineering: A, vol.338, issue.1-2, pp.243-252, 2002.
DOI : 10.1016/S0921-5093(02)00083-7

H. E. Adabbo, G. González-doncel, O. A. Ruano, J. M. Belzunce, and O. D. Sherby, Strain hardening during superplastic deformation of A1-7475 alloy, Journal of Materials Research, vol.39, issue.03, pp.587-594, 1989.
DOI : 10.1016/0025-5416(82)90169-0

A. Hor, Simulation physique des conditions thermomécaniques de forgeage et d'usinage ? Caractérisation et modélisation de la rhéologie et de l'endommagement, Angers: Arts et Métiers ParisTech, 2011.

T. Seshacharyulu, S. Medeiros, W. Frazier, and Y. Prasad, Hot working of commercial Ti???6Al???4V with an equiaxed ??????? microstructure: materials modeling considerations, Materials Science and Engineering: A, vol.284, issue.1-2, pp.184-194, 2000.
DOI : 10.1016/S0921-5093(00)00741-3

J. Lin, Y. Liu, and T. A. Dean, A Review on Damage Mechanisms, Models and Calibration Methods under Various Deformation Conditions, International Journal of Damage Mechanics, vol.53, issue.4, pp.299-319, 2005.
DOI : 10.1177/1056789505050357

URL : https://hal.archives-ouvertes.fr/hal-00571146

H. Hu, L. Zhen, L. Yang, W. Shao, and B. Zhang, Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation, Materials Science and Engineering: A, vol.488, issue.1-2, pp.64-71, 2008.
DOI : 10.1016/j.msea.2007.10.051

Y. Deng, Z. Yin, and J. Huang, Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature, Materials Science and Engineering: A, vol.528, issue.3, pp.1780-1786, 2011.
DOI : 10.1016/j.msea.2010.11.016

J. Lemaitre, How to use damage mechanics, Nuclear Engineering and Design, vol.80, issue.2, pp.233-245, 1984.
DOI : 10.1016/0029-5493(84)90169-9

N. Bonora and P. P. Milella, Constitutive modeling for ductile metals behavior incorporating strain rate, temperature and damage mechanics, International Journal of Impact Engineering, vol.26, issue.1-10, pp.53-64, 2001.
DOI : 10.1016/S0734-743X(01)00063-X

H. , C. Mattos, G. Minak, F. D. Gioacchino, and A. Soldà, Modeling the REFERENCES 138 superplastic behavior of Mg alloy sheets under tension using a continuum damage theory, Materials and Design, vol.30, pp.1674-1679, 2009.

R. Hambli, Etude expérimentale, numérique et théorique du découpage des tôles en vue de l'optimisation du procédé, Angers: Ecole Nationale Supérieure d'Arts et Métiers, 1996.

M. Achouri, Caractérisation expérimentale et contribution à la modélisation numérique de l'endommagement en cisaillement des aciers HLE, Arts et Métiers ParisTech, 2012.

C. Thiery and J. L. Gerstenmayer, Tomographie à rayons X, 2002.

M. D. Michiel, P. Cloetens, L. Salvo, and E. Maire, Tompgraphie à rayon X appliquée à l'étude des matériaux, 2004.

L. Bourgeon, Etude et modélisation des mécanismes d'endommagement en forge à froid, Mines ParisTech, 2009.

M. Line and Z. Demange, La tomographie fait un pas vers la mesure, pp.30-34, 2008.

F. A. Mcclintock, A Criterion for Ductile Fracture by the Growth of Holes, Journal of Applied Mechanics, vol.35, issue.2, pp.363-371, 1968.
DOI : 10.1115/1.3601204

J. R. Rice and D. M. Tracey, On the ductile enlargement of voids in triaxial stress fields???, Journal of the Mechanics and Physics of Solids, vol.17, issue.3, pp.201-217, 1969.
DOI : 10.1016/0022-5096(69)90033-7

J. W. Hancock, Creep cavitation without a vacancy flux, Metal Science, vol.221, issue.9, pp.319-325, 1976.
DOI : 10.1063/1.1700021

A. Cocks and M. Ashby, On creep fracture by void growth, Progess in Materials Science, pp.189-244, 1982.

M. Stowell, D. Livesey, and N. Ridley, Cavity coalescence in superplastic deformation, Acta Metallurgica, vol.32, issue.1, pp.35-42, 1984.
DOI : 10.1016/0001-6160(84)90199-8

J. Pilling and N. Ridley, Solid state bonding of superplastic AA 7475, Materials Science and Technology, vol.3, issue.5, pp.353-359, 1987.
DOI : 10.1179/msc.1984.18.3.117

A. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I???Yield Criteria and Flow Rules for Porous Ductile Media, Journal of Engineering Materials and Technology, vol.99, issue.1, pp.2-15, 1977.
DOI : 10.1115/1.3443401

V. Tvergaard and A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metallurgica, vol.32, issue.1, pp.157-169, 1984.
DOI : 10.1016/0001-6160(84)90213-X

D. Zhou and J. Lian, Numerical analysis of superplastic bulging for cavity-sensitive materials, International Journal of Mechanical Sciences, vol.29, issue.8, pp.565-576, 1987.
DOI : 10.1016/0020-7403(87)90028-2

N. Ridley, P. Bate, and B. Zhang, Effect of strain rate path on cavitation in REFERENCES 139

F. Jarrar, F. Abu-farha, L. , H. Jr, and M. Khraisheh, Simulation of High- Temperature AA5083 Bulge Forming with a Hardening/Softening Material Mode, Journal of Materials Engineering and Performance, issue.18, pp.863-870, 2009.

C. L. Chen and M. J. Tan, Cavity growth and filament formation of superplastically deformed Al 7475 Alloy, Materials Science and Engineering: A, vol.298, issue.1-2, pp.235-244, 2001.
DOI : 10.1016/S0928-4931(00)00193-4

D. H. Bae and A. K. Ghosh, Cavity growth during superplastic flow in an Al???Mg alloy: I. Experimental study, Acta Materialia, vol.50, issue.5, pp.993-1009, 2002.
DOI : 10.1016/S1359-6454(01)00399-8

M. A. Khaleel, H. M. Zbib, and E. A. Nyberg, Constitutive modeling of deformation and damage in superplastic materials, International Journal of Plasticity, vol.17, issue.3, pp.277-296, 2001.
DOI : 10.1016/S0749-6419(00)00036-X

S. Dey, T. Børvik, O. Hopperstad, and M. Langseth, On the influence of constitutive relation in projectile impact of steel plates, International Journal of Impact Engineering, vol.34, issue.3, pp.464-486, 2007.
DOI : 10.1016/j.ijimpeng.2005.10.003

V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, International Journal of Fracture, vol.6, issue.4, pp.389-407, 1981.
DOI : 10.1007/BF00036191

V. Tvergaard, On localization in ductile materials containing spherical voids, International Journal of Fracture, vol.18, issue.4, pp.237-252, 1982.

K. Nahshon and J. Hutchinson, Modification of the Gurson Model for shear failure, European Journal of Mechanics - A/Solids, vol.27, issue.1, pp.1-7, 2008.
DOI : 10.1016/j.euromechsol.2007.08.002

F. Lauro, B. Bennani, P. Croix, and J. Oudin, Identification of the damage parameters for anisotropic materials by inverse technique: application to an aluminium, Journal of Materials Processing Technology, vol.118, issue.1-3, pp.472-477, 2001.
DOI : 10.1016/S0924-0136(01)00990-6

B. Dutta, S. Guin, M. Sahu, and M. Samal, A phenomenological form of the q2 parameter in the Gurson model, International Journal of Pressure Vessels and Piping, vol.85, issue.4, pp.199-210, 2008.
DOI : 10.1016/j.ijpvp.2007.10.009

U. Zerbst, M. Heinimann, C. D. Donne, and D. Steglich, Fracture and damage mechanics modelling of thin-walled structures ??? An overview, Engineering Fracture Mechanics, vol.76, issue.1, pp.5-43, 2009.
DOI : 10.1016/j.engfracmech.2007.10.005

J. Lin, T. Kanit, V. Monchiet, J. Shao, and D. Kondo, Numerical implementation of a recent improved Gurson-type model and application to ductile fracture, Computational Materials Science, vol.47, issue.4, pp.901-906, 2010.
DOI : 10.1016/j.commatsci.2009.11.021

URL : https://hal.archives-ouvertes.fr/hal-00448769

V. Monchiet and G. Bonnet, A Gurson-type model accounting for void size effects, International Journal of Solids and Structures, vol.50, issue.2, pp.320-327, 2013.
DOI : 10.1016/j.ijsolstr.2012.09.005

URL : https://hal.archives-ouvertes.fr/hal-01165812

A. Ragab and C. A. Saleh, Evaluation of constitutive models for voided solids, International Journal of Plasticity, vol.15, issue.10, pp.1041-1065, 1999.
DOI : 10.1016/S0749-6419(99)00024-8

G. Rousselier, Ductile fracture models and their potential in local approach of fracture, Nuclear Engineering and Design, vol.105, issue.1, pp.97-111, 1987.
DOI : 10.1016/0029-5493(87)90234-2

S. Bolte and F. P. Cordelières, A guided tour into subcellular colocalization analysis in light microscopy, Journal of Microscopy, vol.56, issue.3, pp.213-232, 2006.
DOI : 10.1016/S0014-5793(03)00521-0

URL : https://hal.archives-ouvertes.fr/hal-00132481

X. Jiang, J. C. Earthman, and F. A. Mohamed, Cavitation and cavity-induced fracture during superplastic deformation, Journal of Materials Science, vol.138, issue.21, pp.5499-5514, 1994.
DOI : 10.1007/BF00349941

R. K. Mahidhara and A. K. Mukherjee, Mechanisms of cavity growth in a fine-grained 7475 Al superplastic alloy, Materials & Design, vol.16, issue.6, pp.343-348, 1995.
DOI : 10.1016/0261-3069(96)00012-X

N. Benseddiq and A. Imad, A ductile fracture analysis using a local damage model, International Journal of Pressure Vessels and Piping, vol.85, issue.4, pp.219-227, 2008.
DOI : 10.1016/j.ijpvp.2007.09.003

URL : https://hal.archives-ouvertes.fr/hal-00273717

E. Felder, Plasticité en mise en forme -Métaux à froid, 2007.

F. Reusch, B. Svendsen, and D. Klingbeil, Local and non-local Gurson-based ductile damage and failure modelling at large deformation, European Journal of Mechanics - A/Solids, vol.22, issue.6, pp.779-792, 2003.
DOI : 10.1016/S0997-7538(03)00070-6

P. Muñoz-rojas, E. Cardoso, and M. Vaz-jr, Parameter Identification of Damage Models Using Genetic Algorithms, Experimental Mechanics, vol.61, issue.2, pp.627-634, 2010.
DOI : 10.1007/s11340-009-9321-y

M. Abbasi, M. Ketabchi, H. Izadkhah, D. H. Fatmehsaria, and A. N. Aghbash, Identification of GTN model parameters by application of response surface methodology, Procedia Engineering, vol.10, pp.415-420, 2011.
DOI : 10.1016/j.proeng.2011.04.070

M. Abendroth and M. Kuna, Identification of ductile damage and fracture parameters from the small punch test using neural networks, Engineering Fracture Mechanics, vol.73, issue.6, pp.710-725, 2006.
DOI : 10.1016/j.engfracmech.2005.10.007

F. Abbassi, T. Belhadj, S. Mistou, and A. Zghal, Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming, Materials & Design, vol.45, pp.605-615, 2013.
DOI : 10.1016/j.matdes.2012.09.032

M. He, F. Li, and Z. Wang, Forming Limit Stress Diagram Prediction of Aluminum Alloy 5052 Based on GTN Model Parameters Determined by In Situ Tensile Test, Chinese Journal of Aeronautics, vol.24, issue.3, p.141
DOI : 10.1016/S1000-9361(11)60045-9

C. C. Chu and A. Needleman, Void Nucleation Effects in Biaxially Stretched Sheets, Journal of Engineering Materials and Technology, vol.102, issue.3, pp.249-256, 1980.
DOI : 10.1115/1.3224807

H. Lee and A. K. Mukherjee, Superplastic Deformation of an Al-Li-Cu-Zr Alloy under Uniaxial and Biaxial Tension, MRS Proceedings, p.221, 1990.
DOI : 10.1016/0001-6160(80)90144-3

K. Chan and K. Chow, The stress state dependence of cavitation in commercial superplastic Al5083 allloy, Materials Letters, vol.56, issue.1-2, pp.38-42, 2002.
DOI : 10.1016/S0167-577X(02)00413-5

R. Wood and J. Bonet, A review of the numerical analysis of superplastic forming, Journal of Materials Processing Technology, vol.60, issue.1-4, pp.45-53, 1996.
DOI : 10.1016/0924-0136(96)02306-0

G. C. Cornfield and R. H. Johnson, The forming of superplastic sheet metal, International Journal of Mechanical Sciences, vol.12, issue.6, pp.479-490, 1970.
DOI : 10.1016/0020-7403(70)90075-5

D. L. Holt, An analysis of the bulging of a superplastic sheet by lateral pressure, International Journal of Mechanical Sciences, vol.12, issue.6, pp.491-497, 1970.
DOI : 10.1016/0020-7403(70)90076-7

J. Argyris, J. St, and . Doltsinis, A primer on superplasticity in natural formulation, Computer Methods in Applied Mechanics and Engineering, vol.46, issue.1, pp.83-131, 1984.
DOI : 10.1016/0045-7825(84)90130-0

D. Systèmes and S. Corp, chapitre 22.2.4: Rate-dependent plasticity: creep and swelling, Abaqus Analysis User's Manual, 2011.

D. Systèmes and S. Corp, chapitre 22.2.7: Johnson-Cook plasticity, Abaqus Analysis User's Manual, 2011.

J. Bonet and R. D. Wood, Incremental flow procedures for the finite-element analysis of thin sheet superplastic forming processes, Journal of Materials Processing Technology, vol.42, issue.2, pp.147-165, 1994.
DOI : 10.1016/0924-0136(94)90135-X

S. Chung, K. Higashi, and W. Kim, Superplastic gas pressure forming of fine-grained AZ61 magnesium alloy sheet, Materials Science and Engineering: A, vol.372, issue.1-2, pp.15-20, 2004.
DOI : 10.1016/j.msea.2003.08.125

D. Ollivier, Y. Aoura, A. Ambari, and S. Boude, Experimental study and superplastic rheological characterization of Ti-6Al-4V, M??canique & Industries, vol.5, issue.5, pp.511-517, 2004.
DOI : 10.1051/meca:2004051

S. C. Rama and N. Chandra, Development of a pressure prediction method for superplastic forming processes, International Journal of Non-Linear Mechanics, vol.26, issue.5, pp.711-725, 1991.
DOI : 10.1016/0020-7462(91)90022-L

L. Carrino, G. Giuliano, and G. Napolitano, A posteriori optimisation of the forming pressure in superplastic forming processes by the finite element method, Finite Elements in Analysis and Design, vol.39, issue.11, pp.1083-1093, 2003.
DOI : 10.1016/S0168-874X(02)00158-0

Y. Hwang, H. Lay, and J. Huang, Study on superplastic blow-forming of 8090 REFERENCES 142

?. Al and . Li, sheets in an ellip-cylindrical closed-die, International Journal of Machine Tools & Manufacture, vol.42, pp.1363-1372, 2002.

Y. Xiang and S. Wu, Numerical simulation of cavity damage evolution in superplastic bulging process, Journal of Materials Processing Technology, vol.116, issue.2-3, pp.224-230, 2001.
DOI : 10.1016/S0924-0136(01)01026-3

L. Carrino, G. Giuliano, and C. Palmieri, On the optimisation of superplastic forming processes by the finite-element method, Journal of Materials Processing Technology, vol.143, issue.144, pp.143-144, 2003.
DOI : 10.1016/S0924-0136(03)00423-0

M. A. Khaleel, K. I. Johnson, C. H. Hamilton, and M. T. Smith, Deformation modeling of superplastic AA-5083, International Journal of Plasticity, vol.14, issue.10-11, pp.10-11, 1998.
DOI : 10.1016/S0749-6419(98)00051-5

F. S. Jarrar, L. G. Hector-jr, M. K. Khraisheh, and A. F. Bower, New approach to gas pressure profile prediction for high temperature AA5083 sheet forming, Journal of Materials Processing Technology, vol.210, issue.6-7, pp.825-834, 2010.
DOI : 10.1016/j.jmatprotec.2010.01.002