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Partie 1
Introduction

Dans cette introduction destinée aux mathématiciens non spécialistes, nous expliquons
dans quel contexte s'inscrivent les résultats de cette these. Le titre annonce qu'il s'agit
d'arithmétique, ce qui n'est peut-étre pas évident a la lecture du texte. L'un des buts de
cette branche des mathématiques est I'étude des équatiomiophantiennes c'est-a-dire les
éguations a coe cients entiers dont on cherche les solutionsentiéres Un probléme for-
mulé aussi vaguement ne peut admettre de solution générale, et I'histoire de l'arithmétique
est jalonnée par les découvertes d'outils permettant d'étudier seulement certaines classes
d'équations diophantiennes. Citons deux outils fondamentaux pour I'étude des systémes
d'équations polynomiales, c'est-a-dire de la forme

simpli er le probléme, contentons-nous de travailler sur lecorps Q des nombres rationnels
plutét que sur son sous-annea des nombres entiers.
Galois nous enseigne que les solutions rationnelles d'un tel systéme d'équations sont

par Gal(Q=Q), le groupe de Galois absolu d& qui agit sur Q. L'intérét de ce point de
vue est que, comme souvent en mathématiques, il est plus aisé d'étudier les propriétés de
solutions dont I'existence est connue a priori que de s'attaquer directement au probléeme
d'existence. Plus généralement, il est naturel de voir un objet dé ni surQ comme un
objet dé ni sur Q et muni d'une action de Gal(Q=Q). Notons toutefois que I'utilisation de
nombres algébriques suQ remonte & Gauss qui introduisit en 1832 (avant la publication
des résultats de Galois) I'anneau des entiers de GausZ[i] = fa+ ibja;b2 Zg dans le
but de formuler la loi de réciprocité biquadratique.

Une autre approche consiste a compléter le corp® pour une de ses valuationsv.
D'aprés un théoreme d'Ostrowski, a un exposant inessentiel prés, est soit la valuation
archimédienne usuelle, soit la valuatiorp-adique pour un nombre premierp. Dans le corps
complétéQ, correspondant, on dispose d'outils analytiques (théoréme des valeurs intermé-
diaires, lemme de Hensel ...) simpli ant grandement la résolution du systeme d'équations.
A n de prendre en compte toutes ces valuations (également appelées places) a la fois, on



considere I'anneau desdéles

Y o Y o

A= Q=R Qv

v p premier
qui est le produit restreint de ces corps et qui contienQ comme sous-anneau, plongé dia-
gonalement. Ici on a notéQ, le complétéQ, de Q pour la valuation p-adiquev. L'existence
d'une solution & coe cients rationnels implique donc I'existence d'une solution a coe cients
adeliques. Toute la di culté consiste a aller dans l'autre sens, c'est-a-dire a déterminer les
obstructions globales contrélant I'existence d'une solution rationnelle lorsque I'on suppose
I'existence d'une solution adélique. Par exemple le théoréme de Hasse-Minkowski implique
gue dans le cas d'une seule équation quadratique, il n'y a pas de telle obstruction. On peut
en déduire le théoreme de Legendre a rmant qu'un entier est somme de trois carrés si et
seulement si il n'est pas de la formel?(8b+ 7) pour des entiersa et b.

Outre ces outils fondamentaux, la notion récurrente dans cette these est celle de re-

présentation automorphe, qui reformule et généralise celle de forme modulaire cuspidale
propre pour les opérateurs de Hecke.

1.1 Formes modulaires

SoitH = fz2 CjIm(z) > Og le demi-plan de Poincaré. Le groupe d'automorphismes de
cette courbe complexe s'identi e aPSL,(R) = SL »(R)=f 1g via l'action dé nie par

a b _az+b

c d zZ= 7CZ+ d pour

(tj) 2SLy(R)etz2H:

Soit = SL »(Z); il s'agit d'un sous-groupe discret deSL,(R). Le quotient nH a attiré
I'attention des mathématiciens car il paramétre les courbes elliptiques (dé nies analyti-
guement), via l'application qui & z 2 H associe la courbe elliptiqueC=(Z zZ). Nous ne
détaillerons pas davantage ce point de vue.

De nition 1.1.0.1. Soit k un entier. On dit qu'une fonction holomorphef : H! C est
une forme modulaire de poidsk si :

Pour tout i 3 2 ettoutz2H,onaf i};jg = (cz+ d)¥f (z). En choisissant

ab _ 11
cd 01
existe une unique fonction holomorph& : D(0;1)r fOg! C telle quef (z) = F(Q).

on constate quef est fonction deq = €2 | c'est-a-dire qu'il

La fonction F se prolonge en une fonction holomorphe sub (0;1). Cela revient a
demander quef soit bornée sur la banddz 2 C jjRe(z)] 1=2etim(z) 1g.

On note Mi() le C-espace vectoriel des formes modulaires de poills

Etant donnée une fonction holomorpheF sur D(0; 1), la fonction f : z 7! F(e?2 ) est

une forme modulaire de poid si et seulement si pour toutz 2 H on af ( 1=2) = z*f (2).

Cela résulte du fait que le groupe est engendré par (1) 1 et 2 01 . Dans cette



dé nition il peut étre utile de remplacer  par un sous-groupe convenable, mais nous
ne détaillerons pas les complications que cela entraine. En interprétaril () comme
(un sous-espace de) l'espace vectoriel complexe des sections globales d'un bré en droites
holomorphe sur une surface de Riemanoompacte on obtient que M () est de dimension
nie.
On peut aller plus loin et expliciter les espaced () . Pour k > 2, la série d'Eisenstein
X 1

C(2) = (m+ no)k

(m;n)22Z2r £(0;0)g

converge uniformément sur tout compact deH, et il est formel de véri er qu'il s'agit d'une
forme modulaire de poidsk, non nulle si et seulement sk est pair. De plus il est possible
d'expliciter les coe cients de Gy vue comme fonction deq = €*? dans son développement
en série entiére autour ded. Il est remarquable qu'a un scalaire prés, ces coe cients sont
entiers. La théorie des séries d'Eisenstein permet donc de produire des formes modulaires
tout a fait explicites.

D'autre part, la formule de Riemann-Roch ou la formule des traces permettent de
calculer la dimension de chaquéM () . Dans notre cas (= SL »(Z)) on a formellement :

1
1 tHa 9

dimc (Mk()) t=
k
ce qui traduit le fait que la C-algebre commutative graduee | M() est librement en-
gendrée parG, et Ge.
Cette approche concréte permet de démontrer des identités miraculeuses qui comptent
le nombre de solutions de certaines équations diophantiennes. Donnons un exemple simple
avec la fonction

ra(m)y=card (x1;:::;X4)2Z%jx3+ +x5=m

qui compte le nombre de représentations de I'entiem comme somme de quatre carrés.

Introduisons la série génératrice
by

n2

X X
4(2) = ra(m)q" = q
m O n2z

ouq= €¥Z , qui dé nit une fonction holomorphe sur H. Il est clair que 4(z+1)= 4(2)
et grace a laformule sommatoire de Poissonon a en outre

a( 1=42) = 42° 4(2)

ce qui implique que 4 est une forme modulaire de poid® pour le sous-groupe

1(4) = i 2 2 ;a d 1 (mod4)etc O (mod4)



de . D'autre part I'espace M,( 1(4)) est de dimension2 et la comparaison de 4 avec des
séries d'Eisenstein permet de démontrer la formule de Jacobi :

8 p

E 8 d
rq(m) = P . .

3 24 d sim est pair

djim
d impair

si m est impair;
djm

Les formes modulaires, dont la dé nition a plutdt une saveur analytique, ont donc des
liens avec l'arithmétique. Loin d'étre anecdotique, la méthode ci-dessus admet une vaste
généralisation (correspondance théta) qui fait I'objet de recherches actuelles, mais dont il
ne sera pas question dans cette théese.

1.2 Formes automorphes et représentations galoisiennes

En 1937 Hecke dé nit, pour chaque nombre premiep, un opérateur Ty : M () ! My() .

Ces opérateurs commutent entre eux et ont la propriété d'étre auto-adjoints pour un pro-
duit scalaire hermitien convenable. Il est donc naturel de vouloir diagonaliser simultané-
ment ces opérateurs. Cela suggere que les formes modulaires propres pour les opérateurs
de Hecke (et s'annulant enq = 0, on dit d'une telle forme qu'elle est cuspidale) sont des
vecteurs bien particuliers dans deseprésentations irréductiblesd'un groupe adélique, qui

se trouve étreGL»(A). Une représentﬂtion irréductible convenable deGL,(A) se décom-
pose en un produit tensoriel restreint 8 v oU  est une représentation irréductible de
GL2(Qy), ou v parcourt I'ensemble des valuations deQ. Cette décomposition généralise

le fait suivant : si G; et G, sont deux groupes nis, les représentations irréductibles de
G1 Gy sont exactement les produits tensoriels de représentations irréductibles d&; et

G». Les représentations deGL,(A) correspondant aux formes modulaires sont celles qui
interviennent dans I'espace ddormes automorphesL?(GL »(Q)nGL2(A)) et telles que pour

la valuation archimédienne notéev, la représentation  du groupeGL»(R) est algébrique

et réguliere . Ce point de vue plus abstrait a au moins deux avantages : il permet d'utiliser
les techniques de la théorie des représentations, et il se généralise a d'autres groupes que
GL» pour lesquels il n'y a pas toujours d'analogues aux formes modulaires.

Les opérateurs de Hecke entrent dans la description d'un lien profond entre formes
modulaires (ou plus généralement, représentations automorphes) etprésentations galoi-
siennes A n de présenter ces derniéres, revenons a un systéme d'équations polynomiales
a coe cients rationnels. Les solutionscomplexesd'un tel systeme d'équations forment une
variété complexe, qui possede éventuellement des singularités. On est habitué, pour étudier
la topologie d'une telle variété, a considérer ses groupes de cohomologie. On obtient ainsi
desinvariants simples du systéme d'équations originel. Néanmoins le lien entre les solu-
tions rationnelles du systéme et ces invariants n'est pas évident, de plus ces considérations
oublient que le systéeme de départ est a coe cients rationnels : on doit donc s'attendre a
une perte d'information importante. Grace a la géométrie algébrique, on peut a ner cette
construction. Le systeme d'équations dé nit une variété algébriqueX dé nie sur Q, que
I'on voit comme une variété algébriquexé dé nie sur Q munie d'une action deGal(Q=Q).

7



Pour tout nombre premier *, on peut considérer les groupes de cohomologie étakadique
H(‘ét(XG; Q') : ce sont desQ--espaces vectoriels de dimension nie munis d'une action
continue et linéaire de Gal(Q=Q), c'est-a-dire des représentations galoisienneésadiques.
Celles-ci linéarisent la variété algébriqueX, et on peut espérer que ces invariants sont
su samment ns pour permettre de retrouver des informations de nature arithmétique sur
le systeme de départ.

En 1967, dans une lettre adressée a Weil, Langlands imagine un lien entre certaines
représentations automorphes et les représentations galoisiennes se factorisant par le groupe
de Galois d'une extensionnie de Q (on parle de représentation d'Artin), dans I'espoir
d'aboutir a des lois de réciprociténon-abéliennes en termes des coe cients des formes
automorphes. Plus précisément, il demande si a chaque telle représentation galoisienne en
dimensionn il est possible d'associer une représentation automorphe del,(A), selon une
recette explicite.

L'année suivante Deligne suit le chemin inverse en associant & tout forme modulaire
de poids k 2, cuspidale et propre pour les opérateurs de Hecke une représentation
galoisienne -adique de dimension2, caractérisée par les traces des Frobenius gnpour
tout nombre premier p 6 °, données par les valeurs propres pour les opérateufs. Le cadre
est quelque peu di érent de celui de la question posée par Langlands puisqu'aucune de ces
représentations n'est d'Artin. Le cas du poidsk = 1, correspondant aux représentations
d'Artin, sera traité en 1974 par Deligne et Serre, en utilisant le résultat de Deligne.

Langlands et Tunnell démontrent un énoncé dans le sens de la question de Langlands
en 1980, en utilisant le changement de base pour le groufel,. Il s'agit de représenta-
tions d'Artin en dimension 2, d'images résolubles Les travaux de Wiles et Taylor-Wiles
en 1995 démontrent pour la premiére fois un cas non résoluble. Soulignons qu'il s'agit de
représentations galoisiennes qui ne sont pas d'Artin. Plus précisément, ils établissent le
cas semistable de la conjecture de Taniyama-Shimura, qui a rme que la représentation
galoisienne de dimensior2 associée a une courbe elliptique provient d'une forme modulaire
de poids2, cuspidale et propre pour les opérateurs de Hecke. Grace aux travaux de Weil,
Hellegouarch, Frey, Serre et Ribet, cela entraine le célebre théoréme de Fermat. Remar-
guons qu'ici encore, la toute derniére étape de la démonstration repose sur la connaissance
concrete des formes modulaires : le fait qu'il n'y a pas de forme modulaire cuspidale non
nulle en poids2 et niveau 2 permet de conclure a l'absurdité de I'existence d'un triplet de
Fermat.

A la suite de cette percée, la correspondance de Langlands a connu des avancées im-
portantes dans les deux sens, notamment la preuve de la correspondance de Langlands
locale pour les groupes linéaires (Henniart et Harris-Taylor en 2001), la construction des
représentations galoisiennes-adiques dans de nombreux cas (Chenevier, Clozel, Harris,
Kottwitz, Labesse, Shin, Taylor, ...), et trés récemment de nombreux cas d'automorphie
potentielle généralisant les travaux de Wiles et Taylor-Wiles (Barnet-Lamb-Gee-Geraghty-
Taylor, utilisant notamment des constructions de Kisin, et Patrikis-Taylor).

Il faut souligner que tous ces résultats concernent les représentations automorphes al-
geébriques et réguliéres ou quasi-réguliéres aux places archimédiennes, tandis que le pro-



gramme de Langlands se veut plus général. Néanmoins les représentations automorphes
qui ne sont pas algébriques aux places archimédiennes ne correspondent pas conjecturale-
ment a des objets de nature arithmétique comme les représentations galoisienneadiques
considérées ci-dessus.

1.3 Résultats obtenus dans cette these

Nous proposons deux applications arithmétiques des travaux récents de James Arthur sur
la classi cation endoscopique du spectre automorphe discret des groupes symplectiques et
orthogonaux.

La premiere consiste a 6ter une hypothese d'irréductibilité dans un résultat de Richard
Taylor décrivant l'image des conjugaisons complexes par les représentations galoisiennes
p-adigues associées aux représentations automorphes cuspidales algébriques régulieres es-
sentiellement autoduales pour le groupé&L,n+1 Sur un corps de nombres totalement réel.
Cet énoncé peut étre vu comme une partie de la compatibilité entre correspondances de
Langlands locale et globale aux places archimédiennes, l'autre partie consistant a décrire
les poids de Hodge-Tate de la représentation galoisienne en fonction des parametres de Lan-
glands aux places archimédiennes. Nous étendons également ce résultat au casste,
sous une hypothese de parité du caractere multiplicatif. Nous utilisons un résultat de défor-
mation p-adique de représentations automorphes. Plus précisément, nous montrons l'abon-
dance de points correspondant a des représentations galoisiennes (quasi-)irréductibles sur
les variétés de Hecke pour les groupes symplectiques et orthogonaux pairs. La classi cation
d'Arthur est utilisée a la fois pour dé nir les représentations galoisiennes et pour transférer
des représentations automorphes autoduales (pas nécessairement cuspidales) de groupes
linéaires aux groupes symplectiques et orthogonaux.

La deuxieme application concerne le calcul explicite de dimensions d'espaces de formes
automorphes ou modulaires. Notre contribution principale est un algorithme calculant les
intégrales orbitales aux éléments de torsion des groupes classiqueadiques non rami és,
pour l'unité de l'algébre de Hecke non rami ée. Cela permet le calcul du c6té géométrique
de la formule des traces d'Arthur, et donc celui de la caractéristique d'Euler-Poincaré du
spectre discret en niveau trivial. La classi cation d'Arthur permet I'analyse ne de cette ca-
ractéristique d'Euler, jusqu'a en déduire les dimensions des espaces de formes automorphes.
De la il n'est pas di cile d'apporter une réponse a un probléme plus classique : déterminer
les dimensions des espaces de formes modulaires de Siegel a valeurs vectorielles.



Partie 2

Eigenvarieties for classical groups and complex conjugations
in Galois representations

2.1 Introduction

Let pbe a prime. Let us choose once and for all algebraic closu@s@p; C and embeddings
p:Q! Qp 1 :Q! C. LetF be atotally real number eld. A regular, L-algebraic,

essentially self-dual, cuspidal (RLAESDC) representation oflGL,(Ag) is a cuspidal auto-
morphic representation together with an algebraic character j j9 of Ac.=F ( being
an Artin character, and g an integer) such that

~ jdetje

For any real placev of F, LL ( )jw. ' i z7! z%iz% wherelLL is the local
Langlands correspondenceW¢ ' C is the Weil group of C, and ay;i, b, are
integers anday; 6 ay;j ifi 6 j.

By de nition, is regular, L-algebraic, essentially self-dual, cuspidal (RLAESDC) if and
only if  j detj(" D=2 is regular, algebraic (in the sense of Clozel), essentially self-dual,
cuspidal (RAESDC). The latter is the notion of algebraic usually found in the liter-
ature, and is called C-algebraic in [ ]. Given a RLAESDC representation of
GL,(Af), there is (Theorem 2.4.1.2) a unique continuous, semisimple Galois represent-
aton ., ():Gg'! GLn(Gp) such that ., () is unramied at any nite place v of
F not lying above p for which  is unramied, and 1 plTr o:1 ( )(Froby) is equal
to the trace of the Satake parameter of , (contained in this assertion is the fact that this
trace is algebraic overQ). It is conjectured that for any real place v of F, if ¢, 2 G
is the conjugacy class of complex conjugations associated with the conjugacy class of

o:1 ()(cy) is determined byLL ( ) (see | JILemma 2.3.2] for the case of an arbitrary
reductive group). In the present case, by Clozel's purity lemma and by regularityLL ( )
is completely determined by its restriction to W¢, and sincedet ., ( ) is known, the
determination of ., ( )(c,) amounts to the following

Conjecture. Under the above hypothesesr ., ( )(c) 1

There are several cases for which this is known. By [Pat] for an in nite place of F the
value of ( 1)2f 1g does not depend orv, and we denote the common value ( 1).
When ; ( 1)( 1)9 = 1 (this happens only if n is even, and by [ ] this means
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that ., () together with the character ., (j j9) =( rec)cycld, is symplectic),
o:1 ()(cy) is conjugate to ., ( )(cy), so the trace is obviously zero.
In [ ], Richard Taylor proves the following

Theorem (Taylor). Let F be a totally real number eld,n 1 an integer. Let be a reg-
ular, L-algebraic, essentially self-dual, cuspidal automorphic representation @L .+ =F.
Assume that the attached Galois representation ., ( ) : GF ! Glan« (Gp) is irredu-
cible. Then for any real placev of F,

T . ()e) = L

Although one expects ., ( ) to be always irreducible, this is not known in general.
However it is known whenn 2 by [CG], and for arbitrary n but only for p in a set of
positive Dirichlet density by [PT].

In this paper, the following cases are proved:

Theorem A (Theorem 2.6.3.4) Let n 2, F a totally real number eld, a regu-
lar, L-algebraic, essentially self-dual, cuspidal representation dL,(Afr), such that -
((jj9 det) , Where is an Artin character and g an integer. Suppose that one of
the following conditions holds

1. nis odd.
2. niseven,giseven,and ; ( 1)=1.
Then for any complex conjugationc 2 Gg, jTr( ., ( )(c)j 1

This is achieved thanks to the result of Taylor, Arthur's endoscopic transfer between
twisted general linear groups and symplectic or orthogonal groups, and using eigenvarieties
for these groups. Let us describe the natural strategy that one might consider to prove the
odd-dimensional case using these tools, to explain why it fails and how a detour through
the even-dimensional case allows to conclude.

Let be a RLAESDC representation of GL2n+1 (Ag). Up to a twist by an algeb-
raic character is self-dual and has trivial central character. Conjecturally, there should
be an associated self-dual Langlands parameter : Lg ! GLon+1(C) where Lg is the
conjectural Langlands group. Up to conjugation, takes values inSOun+1 (C), and by
functoriality there should be a discrete automorphic representation of Sp,,(Ar) such
that LL ( ) is equal toLL ( y) via the inclusion SOzn4+1 (C) | GLan+1 (C) for any place
of F which is either archimedean or such that , is unramied. Arthur's results in his
book [ ] imply that this (in fact, much more) holds. To construct p-adic families of
automorphic representations (i.e. eigenvarieties) containing , it is preferable to work with
a group which is compact at the real places ofF, and work with representations having
Iwahori-invariants at the p-adic places. A suitable solvable base change allows to assume

that [F : Q] is even and that , has Iwahori-invariants for vjp. The last chapter of [ ]
will allow to transfer to an automorphic representation of G, the inner form of
Sp,, Which is split at the nite places and compact at the real places ofF. By [ ]
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(which generalizes | ]), the eigenvariet)k for G is available. Thanks to | 1,
one can associatg-adic Galois representations ., () to automorphic representations
of G, yielding a family of Galois representations onX , that is to say a continuous map
T :Gg 'O (X ) which specializes toTr ., () atthe points of X corresponding to
automorphic representations ofG(Ag). One can then hope to prove a result similar to
[ , Lemma 3.3], i.e. show that one can deform (on X ) to reach a point correspond-
ing to an automorphic representation °whose Galois representation is irreducible (even
when restricted to the decomposition group of g-adic place ofF). Since ., ( 9 comes
from an automorphic representation °of GL,n+1, Cis necessarily cuspidal and satis es
the hypotheses of Taylor's theorem. Sincel (c,) is locally constant on X , we would be
done.

Unfortunately, it does not appear to be possible to reach a representation ° whose
Galois representation is irreducible by using local arguments on the eigenvariety. However
we will prove the following, which includes the case of some even-dimensional special
orthogonal groups as it will be needed later:

Theorem B (Theorem 2.4.2.2, Theorem 2.5.0.3)Let G be an inner form of Sp,,, or SOup,
over a totally real number eld, compact at the real places and split at thp-adic ones. Let
be an irreducible automorphic representation of5 (Ag) having Iwahori invariants at all
the places ofF abovep, and having invariants under an open subgroup) of G(A(Fpn? ). Let
.;1 () denote thep-adic representation of the absolute Galois grour of F associated
with  and embeddings, : Q! Q,, 1 : Q! C. Let N be an integer. There exists an
automorphic representation °of G(Ag) such that:

Ojs unrami ed at the places abovep, and has invariants underU;

The restriction of ., ( 9 to the decomposition group at any place aboyeis either
irreducible or the sum of an Artin character and an irreducible representation of
dimension 2n (the latter occurring only in the symplectic case);

Forall gin Ge, Tr( ,;, ( %(g) Tr( ,;, () @) mod pV.

The possible presence of an Artin character (in the case of inner forms &8p,,) comes
from the fact that the standard representation of SOn+1 (C) in GLap+1 (C) is not minus-
cule: the set of characters of a torusl (C) of SOyn+1 (C) in this representation has two
orbits under the Weyl group, one of which contains only the trivial character. The key
fact allowing to prove the above theorem is that classical points on the eigenvariety for
G correspond to automorphic representations of G(Ag) (say, unrami ed at the p-adic
places)and a re nement of each , vjp, that is to say a particular element in T(C) in the
conjugacy class of the Satake parameter of,. The variation of the crystalline Frobenius
of ., () on the eigenvariety with respect to the weight and the freedom to change the
re nement (by the action of the Weyl group) are at the heart of the proof of Theorem B.

Although the strategy outlined above fails, Theorem A can be deduced from Theorem
B. Indeed the precise description of the discrete automorphic spectrum of symplectic and
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orthogonal groups by Arthur shows that formal sums of distinct cuspidal self-dual repres-
entations of general linear groups contribute to this spectrum. The even-dimensional case
in Theorem A will be proved by transferring 0, Where ; ¢ are regular, L-algebraic,
self-dual, cuspidal representations of5L,,(Ag) (resp. GL3(Ag)) with distinct weights at
any real place ofF, to an automorphic representation of an inner form G of Sp,,,.,» =F.
Since ., () o;1 ( 0) does not contain any Artin character (the zero Hodge-Tate
weights come from ., ( o), which is known to be irreducible), for big enoughN any
representation °as in B has an irreducible Galois representation.

To treat the original case of a regular, L-algebraic, self-dual, cuspidal representation of
GL2n+1 (Ar) having trivial central character, we appeal to Theorem B for special ortho-
gonal groups. For example, ifn is odd, 0, Where g is the trivial character of A =F ,
contributes to the automorphic spectrum of G, which is now the special orthogonal group
of a quadratic form on F2"*2 which is de nite at the real places and split at the nite
places ofF. Note that o is not regular: the zero weight appears twice at each real
place of F. However the Langlands parameters of representations of the compact group
SOun+2 (R) are of the form

Mt w i
Indwg z7! (z=2)"“
i=1
when composed withSO.n42(C) | GLon+2 (C), with kg > ::: > K 41 0. Moreover
LL (( o)v) is of the above form, with kn+1 = 0. The rest of the proof is identical to
the even-dimensional case.

This fact also shows that somenon-regular, L-algebraic, self-dual, cuspidal represent-
ations of GL,,(Afr) contribute to the automorphic spectrum of G. Consequently we can
also extend Taylor's result to the Galois representations associated with these slightly non-
regular automorphic representations. These Galois representations were shown to exist by
Wushi Goldring [ ]

We now x some notations for the rest of the article. The valuation v, of Q, is the one
sendingp to 1, and j j will denote the norm p Y»(). All the number elds in the paper
will sit inside Q. We have chosen arbitrary embeddings, : Q! Qp, 1 : Q) C. Infact,
the constructions will only depend on the identi cation between the algebraic closures of
Qin Gp and C (informally,  ; 1). Observe that the choice of ap-adic placev of a number
eld F and of an embeddingF, ) Gp is equivalent, via p, to the choice of an embedding
F ! Q. The same holds for the in nite places and ; . Thus if F is totally real, P 11
de nes a bijection between the set of in nite places ofF and the set ofp-adic placesv of
F together with an embeddingF, | Gp. The eigenvarieties will be rigid analytic spaces
(in the sense of Tate). IfX is a rigid analytic space over a nite extensionE of Qp, jX j
will denote its points.

2.2 Assumptions on forthcoming results of Arthur

As the results of this paper rely on | ][Theorem 9.5.3] (the analogue of | , Theorem
1.5.2] in the case ofinner forms of quasi-split classical groups), whose proof will only be
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given in [Art], we have stated some properties as assumptions: Assumptions 2.4.1.1, 2.6.1.2,
2.6.2.2 and 2.6.4.1. These will all be consequences of the main global theorem of [Art],
which will make more precise the statement of [ ][Theorem 9.5.3].

The reason | J[Theorem 9.5.3] is not precisely stated is that at present it is not
known what global data should play the role of Whittaker data in the case of inner forms of
guasisplit groups. These data are needed to normalize the local Langlands correspondence,
via the normalization of endoscopic transfer factors. There is a satisfactory de nition in
the local case: rigid inner forms as de ned in [Kal]. A global analogue is necessary to
formulate [ 1[Theorem 9.5.3] precisely.

A subsequent version of this paper will have the assumptions replaced by actual pro-
positions or lemmas.

2.3 The eigenvariety for de nite symplectic groups

In this section we recall the main result of [ ] in our particular case (existence of the
eigenvariety for symplectic groups), and show that the points corresponding to unrami ed,
completely re nable automorphic forms, with weight far from the walls, are dense in
this eigenvariety.

2.3.1 The eigenvariety

2.3.1.1 Symplectic groups compact at the archimedean places

Let F be a totally real number eld of even degree overQ, and let D be a quaternion
algebra overF, unrami ed at all the nite places of F (Fy, ¢ D' M2(Fy)), and de nite
at all the real places of F. Such aD exists thanks to the exact sequence relation the
Brauer groups of F and the F,. Let n be a positive integer, and letG be the algebraic
group over F de ned by the equation M M =1, forM 2 M,(D), where (M )i;j = Mj;,
and denotes conjugation inD.

Then G (F o R) is a compact Lie group, and for all nite placesv of F, G ¢ Fy'
Spoy=Fv.

Fix a prime p. We will apply the results of [ ] to the groupG°= Reng. Let E
be a nite and Galois extension ofQp, containing all the F, (v over p).

2.3.1.2 The Atkin-Lehner algebra

The algebraic gr8qu0 0Qp = ijpG o Fv (where v runs over the places ofF)

is isomorphic to vip Re%;SpZn:FV, which is quasi-split but not split in general. The

algebraic group Sp,,, is ge ned ovef Z by the equation tMJM = J in My,, whereJ =
0 1

0 Jq

3 0 and J, = Ea) ;I: E We de ne its algebraic subgroupsT,, By, By,
n

1 0
Ny, Ny of diagonal, upper triangular, lower triangular, unipotent&pper triangular, and

unipotent lower triangular matrices of Re%;SpZn:F\,, andletT = =, Tv,B= ";;By,
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and so on. In| , 2.4], only the action of the maximal split torus ofG° o Qpis
considered. For our purpose, we will need to extend this and consider the action of a
maximal (non-split in general) torus, that is T, instead of a maximal split torusS T.
The results in [ ] are easily extended to this bigger torus, essentially becaus€Qp)=
S(Qp) is compact. Moreover, we letl, be the compact subgroup ofSp,, (Oy) consisting
of matrices with invertible diagonal elements and elements onpositive valuation below
the diagonal. Finally, following Loe er's notation, we let Gg = vip v It is an lwahori
sugroup ofG O(Qp) having an lwahori decomposition:Go ' NoToNg where o= (Qp)\ Go.

For each placev of F abovep, let us choose a uniformizer$, of F,. Let  be the
subgroup ofSp,,, (Fy) consisting of diagonal matrices whose diagonal elements are powers
of $ , i.e. matrices of the form

0 o 1
$n
$,
$,"
Let | be the submonoid of , whose elements satisfy; ::: n 0 ,and J* the
one whose elements satisfi; < :::<r , < 0. Naturally, we set = vip Vs and similarly

+ ++

and

The Atkin-Lehner aIgebrale,r is de ned as the subalgebra of the Hecke-Iwahori algebra
H (GonG Y Qp)=Go) (over Q) generated by the characteristic functiongGouGo), foru2 *.
Let Hp be the subalgebra ofH (GonG 0(Qp):Go) generated by the characteristic functions
[GouGo] and their inverses, foru 2 * (in | ], a presentation of the Hecke-Iwahori
algebra is given, which shows that{GouGg] is invertible if p is invertible in the ring of
coe cients).

If SPis a nite set of nite places of F not containing those overp, let HS be the Hecke
algebra (overQ) o

for

H (G (Or, )nG (Fw)=G(Or,))
W2SP[ Sp[ St
where S denotes the set of places above. This Hecke algebra has uniteS. Let Hg be a
commutative subalgebra of |, 5, H(G(Fw)), with unit esp.
Finally, we let H* = H} H s H S,H=H, H s» H Sande=eg, es e°.

2.3.1.3 p-adic automorphic forms

The construction in [ ] depends on the choice of a parabolic subgroup of G°and
a representationV of a compact subgroup of the Levi quotientM of P. The parabolic
subgroup we consider here is the Borel subgrouB, and thus, using Loe er's notation,
T = M is a maximal (non-split in general) torus contained inB. The representationV is
taken to be trivial.
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The weight spaceW is the rigid space (overE, but it is well-de ned over Qp) parr?met-
rizing locally Qp-analytic (equivalently, continuous) characters of Tp ' vipOv - As
1+$,0y isisomorphicto( p \ F,) ZLFV;Q'“], W is the product of an open polydisc of
dimensionn[F : Q] and a rigid space nite over E.

The construction in [ ] de nes the k-analytic ((Gk)x o being a ltration of Gp)
parabolic induction from Ty to Gg of the universal character :To!O (W) , denoted by
C(U ; k) (k big enough such that is k-analytic on the open a noid U ), which interpolates
p-adically the restriction to GO(Qp) of algebraic representations ofG 0(ép). From there
one can de ne the spacedM (e;U ; k) ([ , De nition 3.7.1]) of p-adic automorphic
forms (or overconvergent automorphic forms, by analogy with the rigid-geometric case of
modular forms) above an open a noid or a point U of W which are k-analytic and xed
by the idempotent e. This space has an action oH*. By [ , Corollary 3.7.3], when
consideringp-adic automorphic forms which are eigenvectors fojGouGo] for someu 2 **
and for a non-zero eigenvalue ( nite slope p-adic eigenforms), one can forget abouk,
and we will do so in the sequel.

2.3.1.4 Existence and properties of the eigenvariety

We choose the element
00 11

$7

\Y

Theorem 2.3.1.1. There exists a reduced rigid spaceX over E, together with an E-
algebra morphism : H* 'O (X ) and a morphism of rigid spacesv : X ! W such
that:

1. The morphism w; ([ GoGo]) * : X ! W Gy is nite
2. For each pointx of X , W' :H* g Oy ! O  is surjective

3. For every nite extension E<E, X (E9 is in bijection with the nite slope systems
of eigenvalues oH* acting on the space of overconvergent automorphic forms, via
evaluation of the image of at a given point.

Moreover, for any point x 2 j X |, there is an arbitrarily small open a noid V containing
x and an open anoid U of W such thatV ~ w (U), the morphismwjy :V ! U is
nite, and surjective when restricted to any irreducible component ofV .

Proof. This is [ , Theorems 3.11.2 and 3.12.3], except for the last assertion. To prove
it, we need to go back to the construction of the eigenvariety in [ ]. Buzzard begins
by constructing the Fredholm hypersurfaceZ (encoding only the value of ([ Gg G ¢])),
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together with a at morphism Z ! W, before de ning the nite morphism X ! Z . By
[ , Theorem 4.6],Z can be admissibly covered by its open a noidsVy such that w
restricted to Vg induces a nite, surjective morphism to an open anoid U of W, and Vj
is a connected component of the pullback o) . We can assume thatU is connected, and
hence irreducible, sinceV is normal. The morphismVy! U is both open (since it is at:

[ , Corollary 7.2]) and closed (since it is nite), so that any irreducible component of
Vo is mapped ontoU . This can be seen more naturally by observing that the irreducible
components ofVy are also Fredholm hypersurfaces, by [ , Theorem 4.3.2].

By [ , Proposition 6.4.2], ifV denotes the pullback toX of Vg, each irreducible
component ofV is mapped onto an irreducible component ol/y (more precisely, this is a
consequence of [ , Lemme 6.2.10]). To conclude, we only need to show that & V ,
up to restricting U , the connected component oV containing x can be arbitrarily small.
This is a consequence of the following lemma. O

Lemma 2.3.1.2. Letf : X3! X, be a nite morphism of rigid analytic spaces. Then
the connected components of 1(U), for U admissible open ofX », form a basis for the
canonical topology onX 1.

Proof. It is enough to consider the caseX 1 = SpAj1, X2 = SpA,. Let x; be a maximal

and rgi); il rl((ii) of xj. Using the maximum modulus principle, it is easily seen that jn :=
y2Xojjti(y)j pN iN is an admnissible covering of the admissiblg opeX > nff (x)g

of X 2. Let Viy be the admissible open x 2 X 1 j 8i; 9k; jrl((i)(x)j p M, whichisa nite

union of open a noids, hence quasi-compact. Consequently, the admissible open sets

Un = XM\f 1( j;N)
= x2X1j8i9k jrt’x)j p M andjf'(tp)(x)j p N

o]
iN

form an admissible covering ofVy, . Therefore there is anN big enough so that

which implies that
L (i) °
ftoy2Xojjtyi pN* x2X1j8k jn’()j pM
[
and whenM goes to in nity, the right hand side is the disjoint union of arbitrarily small
a noid neighbourhoods of the x;. O
We de ne the algebraic points of W(E) to be the ones of the form
|
Y Yoo '
Xv;i)vii 7! Xv;li”l
v, i=1
where ky.; are integers, and such a point is called dominant iky:: 1 Ky:: 2
kv; n O
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Recall that a setS j X jis said to accumulateat a point x 2 jX j if X has a basis of
a noid neighbourhoods in which S is Zariski dense.

Proposition 2.3.1.3. Let ( ), be a nite family of linear forms on R” where A is
the set of triples (v; ;i) for v a place of F abovep, F/! E and 1 i n,
and let (c/); be a family of elements inR . Assume that the open ane coneC =
y2 RAj8r, (y)>c, is nonempty. Then the set of algebraic characters i€ yields
a Zariski dense set in the weight spacd/, which accumulates at all the algebraic points.

Proof. [ , Lemma 2.7]. O

In particular the property of being dominant or very regular can be expressed in this
way.

By niteness of G (F)nG (A )=U for any open subgroupU of G (Ag ), if is an auto-
morphic representation of G (Ag), the representation ; is de ned over ; (Q). Loeer
de nes ([ , De nition 3.9.1]) the classical subspace of the space pfadic automorphic
forms above an algebraic and dominant pointw of the weight space. This subspace is
isomorphic to p ;1 e(Ct (G(F)nG(Ag)) W )®F R asH*-module, with W the
representation of G(F o R) which is the restriction of the algebraic representation of
GO o C having highest weight ! p(w). The classical points of the eigenvariety are the
ones having eigenvectors in the classical subspace.

We need to give an interpretation of classical points on the eigenvarietX , in terms
of automorphic representations ofG (Ar). Namely, there is a classical pointx 2 X (E9
de ning a character  :H! E%hereE E° 6p) if and only if there is an automorphic
representation = 0 ,= p ]Ep) of G(Af) such that:

p .t vit v Iis the algebraic representation having highest weightv(x);

P (e eg) ]Ep) contains a non-zero vector on whictHS H g acts according to

X

p(€s, p) contains a non-zero vector on whictH acts according to ,(x) x, Where
wi)([Go Gol) = w(x)( ) if 2 ~.

The twist by the character () is explained by the fact that the classical overconvergent
automorphic forms are constructed by induction of characters of the torus extended from
To (on which they are de ned by w) to T trivially on

2.3.2 Unrami ed and completely re nable points

2.3.2.1 Small slope p-adic eigenforms are classical

The algebraic and dominant points of W are the ones of the form
!

kv; i
Vi

Y Y
(Xvi)vii 7! X
v; i=1
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whereky..- 1 Kky::2 it Ky 0 are integers. The proof of the criterion given
in [ , Theorem 3.9.6] contains a minor error, because it sees only the restriction of
these characters to the maximal split torusS (over Qp), and the BGG resolution has to
be applied to split semi-simple Lie algebras.

We correct it in the case of quasi-split reductive groups (in particular the restriction to
a sub eld of a quasi-split group remains quasi-split), and give a stronger criterion. This
criterion could be used on an eigenvariety for which only the weights corresponding to a
given p-adic place ofF vary. For this purpose we use the dual BGG resolution given in
[ ]. The proof will be very close to that of [ , Propositions 2.6.3-2.6.4]. In the
following G°could be any quasi-split reductive group ovelQp, and we could replaceE=Qy
by any extension splitting G°.

Let B be a Borel subgroup ofG® S a maximal split torus in B, T the centralizer of S,

a maximal torus. This determines an opposite Borel subgrou@d such that B\ B = T.
Let * (resp. ) be the set of positive (resp. simple) roots oG ° Q, E, with respect to
the maximal torus T of the Borel subgroupB. One can split = t; ; where; belong
to the same ; if and only if js = js (equivalently, the ; are the Galois orbits of ).
Let be a subgroup ofT (Qp) supplementary to its maximal compact subgroup, and *
the submonoid consisting of thez 2 T (Qp) such thatj (z)j 1forall 2 . For each
i, de ne ; to be the element of +:(Z(G‘5(Qp)\ ) generating\ jg; kerj j()j (here
denotes any element of ;, andj j()j does not depend on this choice).

Assume that Gg is a compact open subgroup o6 {Qp) having an Iwahori factorization
NoToNp. Using a lattice in the Lie algebra of N and the exponential map, it is easily seen
that No admits a decreasing, exhaustive ltration by open subgroups(Ny)x 1 having a
canonical rigid-analytic structure. Moreover any ordering of * endows the Banach space
of Qp-analytic functions on Ny taking values in E with an orthonormal basis consisting of
monomials on the weight spaces.

Let be an algebraic and dominant weight ofT o, E. By [ ], there is an exact
sequence o [I]-modules, wherel = Gg *Gp = Bg " Ny is the monoid generated byGq
and *:

M
0! IndS() sm-lndggNm la-IndZN°( ) ! la-indENo(s ( + ) ) (2.3.2.1)
2
P
where2 = > + , sm stands for smooth and la for locally analytic. The relation
with Loe er's Ind(V)y is la-IndZ"°( ) & =1lim Ind(E ), where g is the character

k
on T which is trivial on its maximal compact subgroup and agrees with on . Naturally
IndS () sm-IndggNol o = im Ind(E )¢

To prove a classicity criterion, li/ve need to bound the action of ; on the factors of the
RHS of (2.3.2.1) twisted by i. Letn = —-( )2 Nfor 2 ,thens ( + ) =
(1+n ) . The Banach space ok-analytic functions on Ny is the direct sum of the spaces
of analytic functions on XN, x 2 Ng=Ng, and each of these spaces has an orthonormal
(with respect to the supremum norm) basis(Vvjx )j25 whereJ = N " (monomials on the
weights spaces). This basis depends on the choice of a representatieout if we x i and
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P

Xo 2 No, we can choose; %o i as a representative of its class. Then if = AT
(with a | 0)is an element of la-IngN°(s ( + ) ) b and 2 Ny,

X

1
(i dxe) = %" a0 (i )
j22
X

1 .
= g M Wy (xo )
j23

Xo i

wheres(j) = P , +J() . Thisshowsthatj i j j () @*")j j, and so the operator
i has norm less than or equal tg ( ;)] @*" ) onla-IndZ"°(s ( + ) ) o

We can then apply the exact functor which to anE[I]-module W associates the auto-
morphic forms taking values in W, and take the invariants under the idempotent e (this
functor is left exact). We obtain that M (e;E )=M(e;E )q (the space ofp-adic auto-
morphic forms modulo the classical automorphic forms) embeds in , M where each
M is a Banach space on which the operatofGg iGg] has norm j ( i)j @*" ). The
following criterion follows:

Lemma 2.3.2.1. If an overconvergent eigenfornf 2 M (e;E ) satis es [Go iGo]f = f
with {60 and

V()< inf @+ n )vp( (1)

for all i, then f is classical.

In the case of the symplectic groupG? the family ( ;); can be indexed by the couples
(v;i) wherev is a place ofF abovepand1l i n,and ; isindexed by the embeddings
Fy ! E. Specically, ; is trivial at all the places except for v, where it equals

Diag(xl;:::;xn;xnl;:::;xll)
(
l .f . -
with xj = Sy IJ _I.
1 if j>i
The conditions in the previous lemma can be written
(
Vp( V;i) < é |nf (1 + kv; ;i kv; ;i +]_) fOI‘ | <n

Vp( vin) < éinf (2+2ky;;n):

2.3.2.2 Representations having lwahori-invariants and unramied principal
series

We recall results of Casselman showing that irreducible representations having lwahori-
invariants appear in unrami ed principal series, and giving the Atkin-Lehner eigenvalues
in terms of the unrami ed character being induced.

In this subsection, we x a placev of F abovep. Recalll, has an Iwahori decomposition
lv = Nyv.oTv:oNy:0. As in [Cas], if ( ;V) is a smooth representation ofG (Fy), V(Ny) is
the subspace ofV spanned by the (nn)(x) XR n2Ny, W, = VSV(NV) and if Ny; is a

compact subgroup ofNy, V(Ny;j)= v2Vj ( n)(v)dn=0

Nv;i
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Lemma 2.3.2.2. Let ( ;V) be an admissible representation ot (F,) over C. Then the
. | TV;O . . . . .
natural (vector space) morphism fromV'v to Vy, is an isomorphism, inducing a
T -equivariant isomorphism
lvy Tv:o 1
H Nv Bv

where g denotes the modulus morphism dB,, andu 2 § acts on v by [Iyuly].

Proof. Let Ny.; be a compact subgroup oN, such that V'v\ V(Ny) V(Ny:1). There
isau2 } suchthatuNyiu ' Nyo. By [Cas, Prop. 4.1.4], and using the fact that
[Iyuly] is invertible in the Hecke-lwahori algebra, the natural morphism fromV'v to VNTV‘O
is an isomorphism (of vector spaces).

Lemmas 4.1.1 and 1.5.1 in [Cas] allow to compute the action of}, . O

Corollary 2.3.2.3.  Any smooth irreducible representation ofG (F,) over C having Iwahori
invariants is a subquotient of the parabolic induction (fromB,) of a character of the torus
Ty, which is unique up to the action oW (Ty; G (Fy)), and unrami ed.

Proof. is a subquotient of the parabolic induction of a character of the torusT, if and

only if , 60, which is true by the previous lemma. The geometrical lemma [ , 2.12]
shows that if is a smooth character ofTy,
M
G(Fv) 5%, w 1=2
Indg N B,

w2W (Tv;G (Fv))

O

Since | is left adjoint to non-normalized induction, the rst argument in the proof
shows that is actually a subrepresentation oflndgv(FV) for at least one in the orbit
under W(Ty; G(Fy)). In that case we will say that ( ; ) is are nement of . Note that
up to the action of W(T,; G(Fy)), there is a uniqgue such that is a subquotient of

G(Fv)
IndBV .

2.3.2.3 Most points of the eigenvariety arise from unrami ed, completely re-
nable representations

We will need a result of Tadi¢, characterizing theirreducible principal series. If 1;:::; n
are characters ofF, , we denote simply by = ( 1;:::; n) the character of T, which
maps 0 1
X1
Xn
Xt
X, !

to Qin:1 i(xi). Let be the unrami ed character of F, such that ($y)= jF,j .
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Theorem 2.3.2.4. Let =( 1;:::; n) be a character ofT,. Then Indz‘:2”(FV) is irre-
ducible if and only if the following conditions are satis ed

1. For all i, ; is not of order 2.
2. Foralli, ;6 1
3. For all distinct i;j , i | ' land ; ;6 L
Proof. [ , Theorem 7.1] O

De nition 2.3.2.5.  An irreducible representation  of G(Fy) is completely re nable if
it is isomorphic to IndZSZ“(FV) for some unrami ed character
An automorphic representation of G(Ag) is completely re nable if  is completely

re nable for any vjp.

Note that completely re nable representations are unrami ed (for any choice of hyper-
special subgroup). A representation , is completely re nable if and only if ( V)ﬁfv is the
sum of jW(Ty; G(Fy))j unrami ed characters.

Recall that classical points on the eigenvariety are determined by an automorphic rep-
resentation together with a re nement of each , vjp. Completely re nable automorphic
representations are the ones giving the greatest number of points on the eigenvariety. When
one can associate Galois representations to automorphic representations, each re nement
of comes with a p-adic family of Galois representations going through the same one.

is Zariski dense and accumulates at all the algebraic points.

Compare | , Proposition 6.4.7], [ , Corollary 3.13.3].

Proof. The hypotheses in the classicality criterion 2.3.2.1 and the ones in Theorem 2.3.2.4
are implied by inequalities of the form 2.3.2.2. First we prove the accumulation property.
We can restrict to open anoids V of the eigenvariety, and hence assume that the right
hand side of 2.3.2.2 is replaced by a constant. By Theorem 2.3.1.X, can be an arbitrarily
small open a noid containing an algebraic point x of X , such that there is open a noid
U of W such that V' w 1(U), the morphismwjy : V ! U is nite, and surjective
when restricted to any irreducible component ofV . By Proposition 2.3.1.3, the algebraic
weights satisfying 2.3.2.2 are Zariski dense in the weight spad®' and accumulate at all
the algebraic points of W. [ , Lemme 6.2.8] shows thaB \ V is Zariski-dense inV .
Each irreducible componentX %of X is mapped onto a Zariski-open subset of a con-
nected component oW, by [ , Corollaire 6.4.4] (which is a consequence of the decom-
position of a Fredholm series into a product of prime Fredholm series, [ , Corollary
4.2.3]), soX 9contains at least one algebraic point (the algebraic weights intersect all the
connected components ofV), and hence the Zariski closure oS\ X 9 contains an open
anoid of X @ which is Zariski dense inX © O
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2.4 Galois representations associated with automorphic rep-
resentations of symplectic groups

2.4.1 A consequence of Arthur's description of the discrete spectrum
for classical groups

2.4.1.1 Automorphic self-dual representations of GLon+1 Of orthogonal type

According to Arthur's conjectural parametrization of discrete automorphic representations,
each such representation ofG(Ar) should be part of an A-packet corresponding to a
discrete parameter, which is a representation

L SLa(C)! SOz+1(C)

such that (among other conditions) the commutant of the image is nite.

The standard embeddingSOyn+1 (C) !  GLon+1 (C) transfers this parameter to a
parameter of GLon+1 =F, which is not discrete in general, and thus it corresponds to an
automorphic representation ofGL 2,41 (Ar). Here we de ne an automorphic representation

of I(DSLN (Ar) as a formal sum of discrete automorphic representations; of GL,; such
that ;nj = N. We will write = j. By [ ], each ; is the Langlands quotient
of the parabolic induction of twists of a single cuspidal representation by powers gfdet;.
We will not need this generality, as we will force the representations ; to be cuspidal in
the sequel.

Since comes from a self-dual parameter, it is self-dual: - * . Even though is not
discrete in general, the discreteness of the parameter which takes values$®.,+1 implies
that the ;'s are self-dual.

If = v v is an automorphic representation ofG (Ag), then for any archimedean
placev of F, the local Langlands parameter of , composed withSOzn4+1 (C) | GL2n+1 (C)
is of the form:

M

LL( W' " Indy? (z 7! (z=2)")

i=1
where is the only non-trivial character of We=Wg, and the r; are integers, withr, >
rn 1>:::>r 1> 0. We dene Asp, to be the set of automorphic representations such
that for each in nite place v of F, r;1 2 and rj4+1 ri + 2. The equivalence above is
meant as representations ofVg (i.e. morphisms Wi !  GLan41 (C)), although LL ( ) is
a parameter taking values inSOy,+1 (C) (the two notions coincide).

Similarly, let AgL,,,, be the set of formal sums of self-dual cuspidal representations
= i i= v vofGLzu+ (Ar) such that for each in nite place v of F,

M |
LL( )" " Indyr (z 7! (z=2)")
i=1

where ther;'s are integers,such thatr; 2, ri« ri + 2, and such that the product of
the central characters of the j's is trivial.
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These inequalities are imposed to ensure that the corresponding global parameters are
trivial on Arthur's SLy(C), to simplify the statements. That is why we take formal sums
of cuspidal (not discrete) representations.

Note that there is no non-zero alternate bilinear form preserved by such a parameter
(one could say that the parameter is completely orthogonal ).

Assumption 2.4.1.1. Forany 2 Asgp, , thereisa 2 AgL,,., , such that the local
Langlands parameters match at the in nite places, and for any nite placev of F,  is
unrami ed if  is unramied, and in that case the local parameters match, by means of
the inclusion SOzn41 (C)  GLon+1 (C).

2.4.1.2 p-adic Galois representations associated with RLASDC representa-
tions of GLpy

An automorphic cuspidal representation of GLy (Ag) is said to belL-algebraic if for any
in nite place v of F, the restriction of LL ( ) to C is of the form

z7! Diag z%iz™i

|
wherea;; b 2 Z. By the purity lemma | , Lemme 4.9], ay; + b,; does not depend
onv;i. We will say that is L-algebraicregular if for any v as above, thea,; are distinct.
By purity, this implies t%at if visreal,
< e IndWr 271 (z=z)™  if N is odd, with e=0;1
C

LL( Wi °=.
Y L iIndWR 27! (z=2)% if N is even

for some integers, and integersO<af; <::i:<ad ..
As a special case of [ , Theorem 4.2] (which builds on previous work of Clozel,

Harris, Kottwitz, Labesse, Shin, Taylor), we have the following theorem.

Theorem 2.4.1.2. Let be a regular L-algebraic, self-dual, cuspidal (RLASDC) rep-
resentation of GLon+1 (AF). Then is L-arithmetic, and there is a continuous Galois
representation

i1 ()IGE ! Gloann (6p)
such that if v is a nite place of F and  is unrami ed,
1. if v is coprime to p, then ., ( )jc, is unramied, and
det Tid ., ( )(Froby) = ,,'det(Tid A)

where A 2 GLy (C) is associated with  via the Satake isomorphism.

2. if v lies abovep, ., ( )jag, is crystalline. The associated ltered' -module (over
Fvo q, Qp) is such that

detg Tid 'fv =, ldet(Tid A)"

Q
where A 2 GL\(C) is associated with , via the Satake isomorphism. For any
C Ry ! Gp, the -Hodge-Tate weights are thea,:;, wherew is the real place ofF

dened by , pand ;.
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The power f appearing at places aboveg may seem more natural to the reader (and
will actually disappear) after reading subsubsection 2.4.2.1.
Combining this theorem with the transfer detailed in the last section, we obtain

Corollary 2.4.1.3. Let be an automorphic representation ofG (Ar), whose weights
Kw:1 Kw:2 o Kwen 0 at the real placesw are far from the walls ( 2 Asp,, is
enough), and unrami ed at the places abovp. There exists a continuous semisimple Galois
representation

pi 1 () : Gg ! Glon+1 (ép)

such that for any nite place v of F such that , is unrami ed
1. if v is coprime to p, then ., () jgg, is unramied, and
det Tid ., ()(Frob ) = ,,'det(Tld A)
where A 2 GLy (C) is associated with  via the Satake isomorphism.

2. if v lies abovep, ., () jog, Is crystalline. The associated Itered" -module is such
that

detg Tid T =, det(Tid A)

Q
where A 2 SOon+1 (C)  GLon+1 (C) is associated with | via the Satake isomorph-
ism. Forany :F,! Gp, the -Hodge-Tate weights ar&ky:.1 + n>kyo2+n 1>
> Kw1+t1>0> kyp 1>:::> kw1 n, wherew is the real place ofF

dened by , pand ;.

Proof. There is an automorphic representation = ; ; of GL2y+1 (Ar) corresponding to
by Assumption 2.4.1.1, obtained by induction from distinct cuspidal representations ;.
Let p?l()z i p;l( i)' 0

Note that in that case, since 1 is C-algebraic, is obviously C-arithmetic (which is
equivalent to L-arithmetic in the case of Sp,,,), and thus the coe cients of the polynomials
appearing in the corollary lie in a nite extension of Q.

2.4.1.3 The Galois pseudocharacter on the eigenvariety

To study families of representations, it is convenient to usepseudorepresentations(or
pseudocharactery, which are simply the traces of semi-simple representations when the
coe cient ring is an algebraically closed eld of characteristic zero. We refer to [ ]
for the de nition, and [ , Theorem 1] is the converse theorem we will need.

On O(X ), we put the topology of uniform convergence on open a noids.

The Zariski-density of the classical points at which we can de ne an attached Galois
representation implies the following

Proposition 2.4.1.4.  There is a continuous pseudocharactef : Gg ' O (X ), such that

at every classical unrami ed point of the eigenvariety having weight far from the wallsT
specializes to the character of the Galois representation associated with the automorphic
representation by Corollary 2.4.1.3.
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Proof. This is identical to the unitary case, and thus is a consequence of | , Proposi-
tion 7.1.1], by Proposition 2.3.2.6. O

Thus at any (classical or not) point of the eigenvariety, there is an attached Galois
representation.

2.4.2 Galois representations stemming from symplectic forms are gen-
erically almost irreducible

2.4.2.1 Crystalline representations over Gp

We x a nite extension K of Qp, and denoteK o the maximal unrami ed subextension,
e=[K Ko, f =[Kog:Qp]. Let :Gk ! GL(V) be a continuous representation of the
absolute Galois group ofK , whereV is a nite dimensional vector space overL, a nite
Galois extension ofQp. We will take L to be big enough so as to be able to assume in many
situations that L = Gp. For example, we can assume that. is an extension ofK, and
that has a composition serie® = V; .. V; = V such that each quotientVi41 =M is
absolutely irreducible.
For any such , we denoteD¢ris(V) = Beris g, V K. From now on we assume that
is a crystalline representation, which means thatdimy , Dcris(V) = dim o, V. It is well-
known that Ds(V) is a ltered ' -module overK , and sinceV is a vector space ovet,
Deris(V) is a' -module overKo g, L, and Dgr(V) = Kk, Deris(V) is @ module over
K g, L with a ltration by projective submodulss.
We have a natural decompositiorKo q,L ' 02 oL o with o= Hom(sp alg:(Ko; L)
and L , ' L, given by the morphisms o Id_. Similarly, K o, L >, L with
=Hom q, ag:(K;L).
Hence we have decompositions

Y Y
Deris(V) = Deris(V) o Dar(V) = Dar(V) :
02 0 2

G

The operator ' restricts as linear isomorphisms fromD is(V) , t0 Deris(V) , + 1, and so
' flisal ,-linear automorphism on eachDis(V) ,, which are isomorphic as vector spaces
over L equipped with the linear automorphism* .

Each D4r(V) comes with a ltration, and hence de nes dim_ V = N Hodge-Tate
weightsk.1 ::: k. (the jumps of the ltration).

Although we will not use it, it should be noted that by [ , Proposition 3.1.1.5],
to verify the weak admissibility of a Itered ' -module D over K with an action of L
commuting with ' and leaving the ltration stable, it is enough to check the inequality
tn(DY  ty (DY for subKy L-modules stable under .

If ' ¥ has eigenvalues 1;:::;' n, With Vp(' 1) .2t vp(' n), we can in particular
chooseD%= | ; ker(' F ")) (if the eigenvalues are distinct, but even if they are not,
we can choos® %such that ' fjpo has eigenvalues 1;:::;" j» counted with multiplicities).
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The worst case for the lItration yields the inequalities
X

1
Vp(' 1) e K. 1

1
Vp(' 1I 2) E k;1"'k;2

In the sequel, we will only use these inequalities, and we will not be concerned with the
subtleties of the lItrations.

2.4.2.2 Variation of the crystalline Frobenius on the eigenvariety

In this section we explicit the formulas relating the eigenvalues of the crystalline Frobenius
at classical, unrami ed points of the eigenvariety and the eigenvalues of the Hecke-lwahori
operators acting on p-adic automorphic forms. Let x be a classical point on the eigen-
variety. There is an automorphic representation of G(Ar) such that | 11 1) is the
representation having highest weightw(x). Assume that  is unramied. The point
X denes a re nement of ,, that is an unramied character , : To! C such that

p i Ind(B;O(Qp) x, Or equivalently the character ézz x appearing in( p)y. By 2.3.2.2,
foranyu2 *, w xiv, =(p 1% %) a7

The diagonal torus in SO,,+1 (C) and the identi cation of it with the dual of the diag-

onal torus of Sp,,=F, being xed, the character y is mapped by the unrami ed Langlands

yvi = x(Diag(l;:::;$v;::;11:::8,5::0;1) ($ being thei-th element). Thus the
linearization of the crystalline Frobenius"' v on D ;s( oi1 ( Jicg,) o (for any choice of
o:Fyv! Ein oy) has eigenvalues

. Y
p1 l(yv;i) = q\r/1+l ! vin+l i(X) ($ v)kv; i
2

and their inverses, together with the eigenvaluel. Here .n+1 | 2 O(X ) is de ned by

~_ ([ Goui 1Go))
vin+l i ([ GOUiGO])

ky:.i the integers de ning the weight w(x).
Assume furthermore that |, admits albother renement o= § for somea=(ay)yjp
in the Weyl group W(GO(Qp);T(Qp)) = ,W(G(F);Ty). Each W(G(Fy);Ty) can be

ay( )= ay(i) for all i, acting by

av(Diag(X1; 1 Xn; Xy 5115 X, 1) = Diag( Xay 1)+ 5 %a, 1y Xay, 1 nyr st i Xa, 1))
on Ty, where for commodity we setx | = X, Tfori< o. Similarly we de ne ky:- = Ky
and ;. ; = V;il. We also setky:..o = 0, .0 = 1. The equality o= § can also be
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written

: : : Y . Y
q$n+1)5|gn( w(i)) w(i) vin+1 w(i)(x) ($ v)k"“w (i) = q\r/1+1 i vin+l i(XC) ($ v)kv;;i
2 v 2 v
which is valid forany n i nif we setsign(i) = 1 (resp.0, 1) if i is negative (resp.

zero, positive), and equivalent to

Y
vt 1X9= vt w(i)(X)qiv w(i)+( n+1)(sign( i) sign(w(i))) ($ V)kv;;w (i kvi -
2

This last formula will be useful in the proof of the main result.

2.4.2.3 Main result

Lemma 2.4.2.1. Let K be a nite extension of Qp, and let : Gk ! GLN(Qp) be a
crystalline representation. Let(D;"; Fil'D k,K) be the associated Itered -module. Let
S i N be the Hodge-Tate weights associated with the embedding K ,! QJ.
Let' 1;:::;"' N be the eigenvalues of the linear operator’ (on any of theD ,, 02 o),
and suppose they are distinct. Finally, assume that for some2 , for all i,
1 X
vo('i) = i min q+1 g

e2 eN1j N 1

Then if D® D is an admissible sub--module overK g Q 6p (corresponding to a sub-

and -Hodge-Tate weights( i )i, .

Proof. Since the eigenvalues of f %e distinct, and DCis stable under' , there is a subset
| of f1;:::;Ngsuchthat D°=ker ~,,, ' ' . There are unique increasing functions
1. 11 !'f 1;:::;Ngsuch that the -weights ofD%are the . .. (i), fori 2 1. By ordering

similarly the weights of D=D¢ we de ne increasing functions ». : f1;:::;Ngnl !
f1;:::;Ng, and we can glue the . to get bijective maps :f1;:::;Ng!f 1;:::;Ng.
We will show that =1d.

We now write the admissibility condition for D? and D=D° Let i; be the smallest

element ofI. Then ker ' T ', is a sub* -module of D% Its induced -weight is one
of the . (i)Pfor i 21, thus it is greater than or equal to . (). This implies that
vo('i,) 1= , . (). We can proceed similarly for the submodules

ker *foor oty

(where thei are the ordered elements of ), to get the inequality
X 1 X X
Vp(' ix) é ; (ix)
1 xr 1 xr 2
The same applies toD=D°, and by adding both inequalities, we nally get
X 1 X X
vo('i) o )
1i s 1is 2
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P
We now isolate , using the fact that
the inequality

is 5 () 1is ;i for 6 ,andobtain

X

Dl

X X 1 X
vp(' i) e

11 s 1is 2 11 s

(i) i

Let r be minimal such that (s) 6 s (if no such s exists, we are done). In that case, we
necessarily have (s) s+1, and the previous inequality yields

X 1 X X _ .
ve(hi) i 7'“16 =
1is 1is 2
but the hypothesis implies that the left hand side is less thamimin; ( ;j +1 j)=6 and
we get a contradiction. O

Theorem 2.4.2.2. Let be an irreducible automorphic representation ofs (Ag) having

Iwahori invariants at all the places of F abovep, and having invariants under an open

subgroupU of G(A(FF;? ). Let N be an integer. There exists an automorphic representation
0of G(Ag) such that:

Ojs unrami ed at the places abovep, and has invariants underU;

The restriction of ., ( 9 to the decomposition group at any place aboyeis either
irreducible or the sum of an Artin character and an irreducible representation of
dimension 2n;

Forall gin Gg, Tr( .., ( 9(g)) Tr( ,;, ()( g)) mod p".

Proof. We will write © mod pN for the last property.

that for any unrami ed classical point x 2 X (6p) re ning an automorphic representation
, the ltered ' -module associated with the crystalline representation ., () jgr, has
' fv_eigenvalues

Y Y

v n0()g," B iy a0t (WY L

|

Y . Y . '

vii(X)ay (V)" 5 un (X)q\r/] ()it
and -Hodge-Tate weights

In the following if xy or xg is a classical point, k\(,'o)I will be the weights de ning w(xy).
The representation corresponds to at least one poink of the eigenvarietyX for G%and

the idempotent ey  eg,. By Proposition 2.3.2.6, and sinceGg is compact, there exists
a point x1 2 X (E9 (near x, and for some nite extension E° of E) corresponding to an
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unrami ed, completely re nable automorphic representation 1 and a re nement , such
that for any v,

2 Xt X 1)
o ko > Vp( via(Xa) iit vin(X2)) +3n(n+1)f,
i=1
and 1 mod pV. Since ; is completely re nable, there is a point x? 2 X (E9
associated with the representation ; and the character 2, wherea is the element of the
Weyl group acting as Id on the roots. Specically, x;jysy e, = ngHs H s ecp’
but v "
. 1
vt 1) = v i) (g ) P
fori =1;:::;n, and all placesv. There exists a pointx, 2 X (E9 (near x9, and up to

enlarging E9 corresponding to an unrami ed, completely re nable automorphic represent-
ation , and a re nement, such that for any v and anyj < 0,

1 X 2 2

ev k\(/;);n +j k\(/;);n v > V(v e (x2))  fy
and - 1 mod pN. Like before, since , is completely re nable, there is a point
x32 X (E9 such that ,jpsy o e, = xAHSH ¢ eg s AN

Y (2 %)
v;n(Xg)Z V:l(XZ)q\} 5 ($ v)kv”n kv 1

Y ) @ _
vix®) = vis1 (x2)oy ($) v i K im fori=1;:i;n L

Here we used the element of the Weyl group corresponding (at eaeh) to the permutation

n n+1 ::: 2 1 1 ::: n
n+1 n+2 ::: 1 nn:@:n 1
Again, we can choose a poinks 2 X (E9 (near x$, and up to enlarging E9 corresponding
to an unrami ed automorphic representation 3 and a re nement, such that for any v and
any 2
n

1 @ 3 ... 3 . ©
m min k\(/;); 1 k\(/;); 210 k\(/;);n 1 k\(/3;);n ’ k\(lg;);n >
maxfo; jvp( v;:1(X3))js 5 ivp( v (X3))j9

and 3 mod pN. We show that 3 has the desired properties. First we apply the
previous lemma to the local Galois representations associated withs, at the places above
p, which are crystalline. Since the di erencesvp(' i) % > i inthe hypotheses of
the lemma are equal in our case to

Vp( vin(X3))5 005 Vp( via(X3)); 05 vp( via(X3)); 1115 vp( vin(X3));
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the hypotheses of the lemma are satised for all 2 . Thus if ., ( 3)ige, is not
irreducible, there is a subset; ( | ( f n;:::;ng such that if i; < ::: <i, are the

Vp( viy(x3)) O

Vp( viin (X3)) + Vp( vip(x3)) O

Vp( vip (X3)) + 12t 4 vp( vii, (X3)) =0
Vp( vij,(X3)) O

Vp( vis(X3)) + Vp( vjo(x3)) O

Vp( vij 1(X3)) it VIO( Vij2n+1 r(X3)) =0

by the admissibility of the corresponding lItered ' -modules. For alli, vp( v:i(x9)) =
Vp( v;i(x3)), so all these conditions hold also atx3. Up to exchanging! and J, we can
assume thati; = n. If j; < 0,

1 X

K@ K@

Vp( V;jl(Xg)) = vp( v, jl(Xg)) = Vp( v; jp+1(x2)) fy viin +j1 vin +ji+l
and x, was chosen to ensure that this quantity is negative, so we are facing a contradiction.
Thus J has only nonnegative elements, and n;:::; 1g |. If we do not assume that
i1 = n, we have in general thatf n;:::; 1gis contained inl or J. Similarly, suppose
ir=n.1fjonsr r >0,

0y — 0
Vp( Vij2n+1 r(XZ))_ VP( Vij2n+1 r(XZ))

1 X 2 2
= Vp( Vij2n+1 r(XZ))+ fV+ g k\(/§)§n jon+1 r k\(ﬁ)?n jon+1 1l

Assume for example thatf n;:::; 1g | andfl;:::;ng J. In that case
Vp( vij 1(X3) L Vijon+1 r(X3)) = Vp( V;l(XZ) L v;n(XZ))
= vp( v;1(X8) L v;n(Xg))
= Vp( va(X1) il vin(X2)+3n(n+1)fy
20X
e\/ Vil
i=1

is negative, which is yet another contradiction.

As a consequence, we can conclude thator J is equal tof Og, and this shows that at
each placev of F abovep, the semisimpli cationof ., ( 3)jc., is eitherirreducible or the
sum of an Artin character and an irreducible representation of dimensior2n. Consequently

3 has the required properties. O
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2.5 Similar results for even orthogonal groups

In this section we explain (very) brie y how the same method as in the previous sections
applies to orthogonal groups.

Let F be a totally real number eld of even degree oveQ. Then F has an even number
of 2-adic places of odd degree oveD,, and as these are the only nite places of at which
(L 1)y = 1(where(; )y denotesthe Hilbert symbol), we have™ ,( 1, 1), =1 where
the product ranges over the nite places ofF. Consequently, there is a unique quadratic
form on F# which is positive de nite at the real places of F, and split (isomorphic to
(x;y;z;1) 7! xy + zt) at the nite places. It has Hasse invariant ( 1; 1), at each nite
place v of F, and its discriminant is 1. As a consequence, for any integen 1, there
is a connected reductive groupG over F which is compact (and connected) at the real
places (isomorphic toSO4,=R) and split at all the nite places (isomorphic to the split
SOusn). As before, we letGO= Reng. The proofs of the existence and properties of the
attached eigenvariety X ! W are identical to the symplectic case. We could not nd
a result as precise as Theorem 2.3.2.4 in the literature, however by [ , Proposition
3.5] unrami ed principal series are irreducible on an explicit Zariski-open subset of the
unrami ed characters. Speci cally, if SOz (Fy)= M 2 Mgn(Fy) j tMI4nM = Jg,

80 1

T= X xi 2 Fy

and P is any parabolic subgroup containingT, then for an unrami ed character =

1
X1

i($,)26 1 foraliand {($v) j($v) 16 1;q:0,1foralli<j. Note that this is
not an equivalence.
The existence of Galois representations ., () attached to automorphic represent-
ations of G(Ag) is identical to Assumption 2.4.1.1. We now state the main result for
orthogonal groups.

Theorem 2.5.0.3. Let be an irreducible automorphic representation ofs (Ag) having

Iwahori invariants at all the places of F abovep, and having invariants under an open

subgroupU of G(A(F‘?z ). Let N be an integer. There exists an automorphic representation
Oof G(Ar) such that:

Ojs unrami ed at the places abovep, and has invariants underU;

The restriction of ., ( 9 to the decomposition group at any place aboyeis irre-
ducible;

Forall gin G, Tr( ,;, ( (@)  Tr( ;. () @) mod pV.
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Proof. The proof is nearly identical to that of Theorem 2.4.2.2. In the orthogonal case
the Weyl group is a bit smaller: it is the semi-direct product of S;, and a hyperplane
of (Z=ZZ)2”. Alternatively, it is the group_of permutations w of f 2n;:::; 1;1;:::;2ng
such that w( i) = w(i) for all i and i2:”1 w(i) > 0. The two elements of the Weyl
group used in the proof of Theorem 2.4.2.2 have natural counterparts in this Weyl group.
The only di erence lies in the fact that there is no Hodge-Tate weight equal toO in the
orthogonal case, hence the simpler conclusion ., ( ()jGFV is irreducible for vjp . O

2.6 The image of complex conjugation: relaxing hypotheses
in Taylor's theorem

Let us apply the previous results to the determination of the image of the complex conjuga-
tions under the p-adic Galois representations associated with regular, algebraic, essentially
self-dual, cuspidal automorphic representations ofsL,(Ar), F totally real. Recall that
these representations are constructed by patching representations of Galois groups of CM
extensions ofF, on Shimura varieties for unitary groups. The complex conjugations are
lost when we restrict to CM elds. In [ ], Taylor proves that the image of any com-
plex conjugation is given by (the discrete part of) the local Langlands parameter at the
corresponding real place, assuming is odd and the Galois representation is irreducible,
by constructing the complex conjugation on the Shimura datum. Of course the Galois
representation associated with a cuspidal representation dbL, is conjectured to be irre-
ducible, but unfortunately this is (at the time of writing) still out of reach in the general
case (however, see [CG] fon  5; [ , Theorem D] for a density one result for
arbitrary n but under the assumption that F is CM and the automorphic representation
is extremely regular at the archimedean places; and [PT] for a positive density result
for arbitrary n and without these assumptions).

The results of the rst part of this paper allow to remove the irreducibility hypothesis
in Taylor's theorem, and to extend it to some (half) cases of evenn, using Arthur's
endoscopic transfer. Unfortunately some even-dimensional cases are out of reach using
this method, because odd-dimensional essentially self-dual cuspidal representations are
(up to a twist) self-dual, whereas some even-dimensional ones are not.

Since the proof is not direct, let us outline the strategy. First we deduce the even-
dimensional self-dual case from Taylor's theorem by adding a cuspidal self-dual (with
appropriate weights) representation ofGL 3, we get an automorphic self-dual representation
of GL2n+3 Which (up to base change) can be transferred to a discrete representation of
the symplectic group in dimension2n. Since the associated Galois representation contains
no Artin character, it can be deformed irreducibly, and Taylor's theorem applies. Then
the general odd-dimensional case is deduced from the even-dimensional one, by essentially
the same method, using the eigenvariety for orthogonal groups.

Finally we prove a supplementary, non-regular case, thanks to the fact that discrete
Langlands parameters for the groupSO,,=R are not always discrete when seen as para-
meters for GL,p, i.e. can correspond to a non-regular representation dbL o, =R.
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2.6.1 Regular, L-algebraic, self-dual, cuspidal representations of GLon (AR)
having Iwahori-invariants

In this subsectionG will denote the symplectic group in dimension2n+2 de ned in section
2.3.
The following lemma is due to C. M+glin and J.-L. Waldspurger.

Lemma 2.6.1.1. Let K be a nite extension of Q,. Let : Wk SU(2)! SOxn+3(C)
be a Langlands parameter (equivalently, a generic Arthur parameter). Assume that the
subgroupl f 1g (I being the inertia subgroup oW ) is contained in the kernel of .

Then the A-packet associated with contains a representation having a non-zero vector
xed under the lwahori subgroup ofSp,,., (K).

Proof. Let f 1;:::; kg denote the A-packet. Since Arthur's construction of the 's is
inductive for parameters trivial on the supplementary SL,(C), and subquotients of para-
bolic inductions of representations having lwahori-invariants have too, it is enough to
prove the result when is discrete. Let be the irreducible smooth representation of

GL2n+3 (K) having parameter , then ' Indf"2n+3 , where is the tensor product of
(square-integrable) Steinberg representationSt( ;n;) of GL,, (K) (i 2f1;:::;rg), ; are
unrami ed, auto-dual characters of K (thus ; =1 or ( 1)'0)), and the couples( i:n;)

are distinct. Here L denotes the standard parabolic associated with the decomposition

2n+3 = ;n;. Since is self-dual, can be extended (not uniquely, but this will not
+
matter for our purpose) to a representation oféL2n+3 =GL on+3 0 f1; g, where
0 1
1

1 0
1
1 1
(g)=% - E‘Q% §
1

Let also GLonss = GL 243 O

Let No be the number ofi such that n; is odd, and forj 1 let N; be the number ofi
such thatn; 2j. Then Ng+2 1Nj =2n+3, and if s is maximal such that Ns > 0,
we let

1

i
M=GLn, ::: GLn; GLn, GLn; i@ Glng

which is a -stable Levi subgroup ofGLyn+3, allowing us to de ne #1* and M. Since the
standard (block upper triangular) parabolic containing M is also stable under , \ is nat-
urally a representation off1*, denoted by ¢, - The constituents of the semi-simpli cation
of ¢, either stay irreducible when restricted to M, in which case they are of the form

1 0 ( 1) where 1 is a representation ofGLy, ::: GLy, and o is a represent-
ation of GLy,; or they are induced fromM to # *, and the restriction of their character
to {1 is zero. Since we are precisely interested in that character, we can forget about the
second case. By the geometrical lemma,

M
SS 1 M
M Indy W )W( Lvw 1m)
w2W LM
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where WEM is the set of w 2 Synsz such that w is increasing only = f1;:::;n10,

I, = fny+1;:::;n.+ nog, etc. andw ! is increasing ond s = f1;:::;Nsg, J s+1 =
fNs+1;:::;Ns+ Ns 10, etc. Fix the irreducible representation of GL GLn,
Cﬁ GLy: O .
— i ol
1= - Inde i] )
j=1 ijni 2]
0 n; odd

where T; is the standard maximal torus of GLy;, i = .
1=2 n; even

There is a uniquew such that Indm \ W(l_)w( L\w 1m ) admits a subquotient of the form
1 o ( 1) as above, moreovetndm\W(L)w( L\w 1m) is irreducible, and

_ GLn
0= Ind To 0 i

i jn odd
Speci cally, w maps the rst element of I in Jy, (n,+1) =2, the second inJ y, 41y =2c + 1,
..., the central element (if n; is odd) in Jg, etc.
Let M %be the parabolic subgroup ofSp,,., =K corresponding toM , i.e.

MP=GLn, ::: GLn, Spy, 1
P
By [ , 2.2.6], ,Tr jis a stable transfer ofTrGLg , By [ , Lemme 4.2.1]
(more accurately, the proof of the lemma),
X

T DfRel 1)
|
is a stable transfer of Tr las[ 1] (where [] denotes the isotypical component on the
factor GLy, ::: GLny).

Since lfS/IS[ 11 = 1 0 ( 1), the stable transfer of Tr KSAS[ 1] is equal to the
product of Tr( 1) and | Tr ,Owhere the Ioare the elements of the A-packet associated
with the parameter M
i jn odd
At least one representation Pis unrami ed for some hyperspecial compact subgroup of
Spy, 1(K), and so a Jacquet module of a ; contains a nonzero vector xed by an Iwahori
subgroup. This proves that at least one of the ; has Iwahori-invariants. O

Assumption 2.6.1.2. Let Fg be a totally real eld, and let be a regular, L-algebraic,
self-dual, cuspidal (RLASDC) representation ofGL2n (Ag,). Assume that for any placevjp
of Fo, v has vectors xed under an Ilwahori subgroup oGL2n(AF,, ). Then there exists
a RLASDC representation ¢ of GL3(Ag,), a totally real extensionF=Fq which is trivial,

quadratic or quartic, and an automorphic representation of G(Ag) such that

1. For any placevjp of Fg, o IS unrami ed.

2. BCg=g,( ) and BCg—g,( o) remain cuspidal.
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3. For any placev of F abovep,  has invariants under the action of the lwahori
subgroupGq of G (Fy).

4. For any nite place v of F such thatBCg_¢,( )v and BCg=¢,( o)v are unramied,
is unrami ed, and via the inclusion SOn+3(C) ! GL2n+3 (C), the Satake parameter
of y is equal to the direct sum of those oBCg=¢,( )v and BCr=g,( o)v.

Let us comment brie y on the proof to come. First we construct o. Let be a cuspidal
automorphic representation ofPGL 2=Fy which is unrami ed at the p-adic places, Steinberg
at the "-adic places for some arbitrary prime’ 6 p, and whose local langlands parameters
at the real places are of the formlndwz (z 7' (z=2)?) wherea is a half-integer big enough
with respects to their analogues appearing in the local Langlands parameters of Such
a representation exists thanks to [ , Theorem 1B]. Let ¢ be the automorphic repres-
entation of GL3=F obtained by functoriality from  through the adjoint representation of
PGL,(C) = SL»(C) on its Lie algebra. The representation  exists and is cuspidal by

[ , Theorem 9.3]. The condition at the -adic places ensures that no nontrivial twist
of (seen as a representation oL ,=Fp) is isomorphic to , and the cuspidality of ¢
follows. We can twist o by the central character of , to ensure that o has trivial

central character. Clearly o is a RLASDC representation ofGL3=F.

Note that for BCg_g,( ) and BCg_g,( o) to remain cuspidal, it is enough for F=F
to be totally rami ed above a nite place of Fg at which and o are unramied. To
begin with one can choose such a quadratic extension &%, in order to dene G. The
automorphic representation :=BC g_g,( ) BCg-,( o) can be seen as a global, ortho-
gonal parameter. This determines a global packeP of representations ofG (Ag), and
Arthur's results shall attach to each 2 P a character ofS ' Z=2Z, and characterize
the automorphic 's as the ones whose character is trivial. We can choose the components

v at the nite places of F not lying above p to be associated with a trivial character of
S ,, and taking a quadratic extension split above thep-adic and real places of (at which

v is imposed) allows to double the contribution of the characters, thus yielding a trivial
global character.

Proposition 2.6.1.3. Let F be a totally real eld, and let be a regular, L-algebraic,
self-dual, cuspidal representation ofGL,,(Ar). Suppose that for any placer of F abovep,
v has invariants under an Iwahori subgroup. Then for any complex conjugation 2 Gg,

Tr( 50 ()()=0.

Proof. By the previous assumption, up to a (solvable) base change to a totally real exten-
sion (which only restricts the Galois representation to this totally real eld, so that we get
even more complex conjugations), we can take a RLASDC representationy of GL3(Ag)
and transfer o to an automorphic representation of G(Ag). The representation
de nes (at least) one point x of the eigenvariety X de ned by G (and by an open
subgroup U of G(A(F‘?]? )). Of course, by the febotarev density theorem and the compat-
ibility of the transfer at the unrami ed places, the representation associated with is
equalto ., () o:1 (0). Since the Hodge-Tate weights of ., ( )jc., are non-zero
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for any placevjp, ,;, () does not contain an Artin character. By [ I, ;. (Co)is
irreducible and thus does not contain any character. There are only nitely many Artin
characters taking values inf 1g and unrami ed at all the nite places at which is un-
rami ed. For any such character , the pseudocharactefT on the eigenvariety is such that

Tx is not a pseudocharacter, hence we can nd.1;:::;0:2n+3 Such that
X
t = (Tx ) (9;1;:::;09;2n+3) 60
2S52n+3

Let us chooseN greater than all the vp(t ) and such that pN > 2n+4. Let Obe an
automorphic representation of G (Ag) satisfying the requirements of Theorem 2.4.2.2 for
this choice of N. Then the Tr( ., ( 9) are not pseudocharacters, thus ., ( 9
does not contain an Artin character and by Theorem 2.4.2.2 it is irreducible. This Galois
representation is (by construction in the proof of Corollary 2.4.1.3) the direct sum of
representations associated with cuspidal representations. Since it is irreducible, there is
only one of them, and it has the property that its associated Galois representations is
irreducible, so that the theorem of | ] can be applied: for any complex conjugation
c2Gr, Tr( .y ( )(0)= 1 Sincedet .., ( Y=1,T( ., ( WcH=( 1",
AspV > 2n+4 andjTr( ,;, ()( ©) Tr( ,;, ( 9(c)j 2n+4,we can conclude that

Tr( p O ©)=( D™, and hence thatTr( ., ( J(O)FTI( i, (o)) =( 1"
We also know thatdet ., ( o)=det ., ( )(©=( 1)",andthat Tr( ., ( 0)(C) =

1 by Taylor's theorem, from which we can conclude thatTr( ., ( 0)(c)) = ( 1)+t
Thus Tr( ,;, ( )(¢))=0. O

2.6.2 Regular, L-algebraic, self-dual, cuspidal representations of GLon+1 (Af)
having lwahori-invariants

In this subsection, G is the orthogonal reductive group de ned in section 2.5, of dimension
2n+2 if nis odd, 2n + 4 if n is even.

Lemma 2.6.2.1. Let K be a nite extension of Q. Let :Wx SU(2)! SOyn(C) be
a Langlands parameter. Assume that the subgroup f 1g (I being the inertia subgroup of
Wy ) is contained in the kernel of .

Then the packet of representations of the split grougO,m(K) associated with by
Arthur contains a representation having a non-zero vector xed under the lwahori subgroup.

Proof. Of course this result is very similar to 2.6.1.1. However M+glin and Waldspurger
have not put their lemma in writing in this case, and the transfer factors are no longer
trivial, so that one needs to modify the de nition of stable transfer. For this one needs
to use the transfer factors ELom ;sozm( ;) denedin [ ]. They depend in general on
the choice of an inner class of inner twistings [ , 1.2] (in our case an inner class of
isomorphisms betweenGL,»=K and its quasi-split inner form de ned over K, which we
just take to be the identity), and a Whittaker datum of the quasi-split inner form. Arthur
chooses the standard splitting ofGL,y and an arbitrary character K | C , but this
will not matter to us since both GL,y, and SOy, are split, so that the factor hz;;s;i of
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[ , 4.2] (by which the transfer factors are multiplied when another splitting is chosen)
is trivial. Indeed to compute this factor we can choose the split torusTy of SOy =K,

which is a norm group (see [ , Lemma 3.3B]) for the split torusl' of GL,,=K, and
thus, using the notations of | , 4.2]T% is split and H Y(K; T X) is trivial, so that z°=1
(zy is the image ofz%in H1(K;J), so that it is trivial). Since both groups are split the
-factor of [ , 5.3] is also trivial, so the transfer factors are canonical.

Let H = SO,y (K), e the representation of(stZm associated with , and " the sum
of the elements of the packet associated with by Arthur. Note that by construction,
this packet is only a nite set of orbits under O, (K)=SOn(K) ' Z=2Z of irreducible,
square-integrable representations 080, (K ). Each orbit has either one or two elements.
In the latter case where the orbit is (say)f 1; 2g one can still de ne a partial character
(in the sense of Harish-Chandra):

(+ (= )+ (h)= (+ L (h)

wheneverh is regular semisimple conjugacy class i8Om (K ) and h®is the complement of
h in its conjugacy class underO,y, (K ). Although the individual terms on the left cannot
be distinguished, their sum does not depend on the choice of a particular element (e.g.
1) in the orbit. In that setting, Arthur shows ([ , 8.3]) that the following character
identity holds:
X
iDu ('™ w(h)( hig) = jDg, (9 &(9) (2.6.2.1)
h
where the sum on the left runs over the the stable conjugacy classésin SO, (K ) which
are norms of the conjugacy clasg in GLom (K ), both assumed to be stronglybL .. -regular.
There are two such stable conjugacy classds they are conjugate underO,ny, (K ) and the
two transfer factors on the left are equal (this can be seen either by going back to the
de nition of Kottwitz and Shelstad, or by Waldspurger's formulas recalled below). This
fact together with the stability of the partial distribution n (which is part of Arthur's

results) imply that the expression on the left is well-de ned. Note that as in [ ]
and [ ], the term v is not included in the product de ning the transfer factor
Contrary to the case of symplectic and odd orthogonal groups treated in [ ], the

transfer factors are not trivial, and the terms jDy (h)j*™ and iDg,,. (9)j*2 are not equal.
However the latter play no particular role in the proof. This character identity 2.6.2.1 is

the natural generalization of the notion of stable transfer of [ ]
Let
M=GLn, ::: GLn; GLn, GLn; i Glng
be a -stable Levi subgroup ofGLoy, and M%= GLy, ::: GLyn, SOy, the cor-

responding parabolic subgroup ofSO,,,. To mimic the proof of 2.6.1.1, we only need to
show that Tr [ is a stable transfer of Trg, , , where stable transfer has the above
meaning, that is the character identity 2.6.2.1 involving transfer factors. Note that fa+
has a factorGL,, n,=2 GLn n,=2 together with the automorphism (a;b) = ( (b); (a)),
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for which the theory of endoscopy is trivial: -conjugacy classes are in bijection with con-
jugacy classes irGL,, n,=2 (overK orK) via (a;b) 7! a (b) and the -invariant irreducible
representations are the ones of the form ().

So we need to check that ify = ( g1; go) is a strongly regularGL o, (K )-conjugacy class in
éLZm(K) determined by a conjugacy clasg; in GL,, n,=2(K) and aGLy,(K )-conjugacy
classgp in (stNO(K), and if hg is the O,y (K )-conjugacy class inSO,, (K') corresponding
to go, then

éLNO:SONO(ho; %) = L, 50, ((91:N0); (91 G0)):

Although this is most likely known by the experts (even in a general setting) we will check it.
Fortunately the transfer factors have been computed by Waldspurger in [ ]. We recall
his notations and formulas. The conjugacy clasg, being regular enough, is parametrized
by a nite set 14, a collection of nite extensionsK ; of K fori 2 |1, and (regular enough,

i.e. generatingK ; over K) elementsx;1 2 K j. Asin [ 1, go is parametrized by
a nite set lg, nite extensions K ; of K, K j-algebrasK;, and x; 2 K;. Each K; is
either a quadratic eld extension of K j or K ; K j, and x; is determined only modulo

Nk,=x K; . Thengis parametrized byl = It lo, with K; = K j K jandx; =(Xjz1;1)
fori 2 11, and the same data forlg. Let ; be the non-trivial K j-automorphism of K,
andyi = Xxj=i(xj). Letl bethe setofi 2 | suchthatK; is a elg (soé lg). For any
i21,let ;bethe set ofK-morphismsK;! K,andletP (T)= ", 2 (T v1)).
De ne Py, similarly. For i 2 1 (resp. 1), let Ci = x; *PXyi)Pi( 1)y} ™1+ yi) (resp.
Cio = X "P2(yi)Pi,( 1)y ™(1+ yi)). We have dropped the factor of [ , 1.10],
because as remarked above, the transfer factors do not depend on the chosen splitting.
Observe also that the factors computed by Waldspurger are really the factors o= v of

[ , 5.3], but the factor is trivial so they are complete.

Waldspurger shows that

Y
6L om :505m (91:10);(G15G0)) = signk, =« ,(Ci)
i21
wheresigny -« , is the nontrivial character of K ;=Ng,-x ,K; . We are left to show that
i21 SO =« (Ci=GCio) =1,

=Cq = yNo=2 m vy , , ,
Ci=Go = i Nt 1 )
v y j211 2
= yi tit 0G) vit ()t () 1) (ga) Yol
j2li 2
0 1
No=2 vy 1
= (D" NNk« @ (vi+ (GO (1) & DA
j2l1 2
where ; is the set of K -morphismsK ;! K. Thus
sign, (Ci=Ci0) = signe =k Jk (YT T
i21 i21

1
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sinceQi2| signk,-x ,ik is easily checked to be equal to the Hilbert symbol with the
discriminant of our special orthogonal group, which isl (this is the condition for gy to
have a norm in the special orthogonal group). O

Assumption 2.6.2.2. Let Fg be a totally real eld, and let be a regular, L-algebraic,
self-dual, cuspidal representation ofGL2n+1 (AF,). Assume that for any placevjp of Fo,

v has vectors xed under the Iwahori. Then there exists a RLASDC representationg of
GL1(Ag,) if nis odd (resp. GL3(Af,) if n is even), a totally real extensionF=Fq which is
trivial or quadratic, and an automorphic representation of G(Ag) such that

1. For any placevjp of Fo, oy iS unrami ed.
2. BCg=g,( ) and BCg—¢,( o) remain cuspidal.

3. For any placev of F abovep,  has invariants under the action of the Iwahori
subgroup ofG (Fy).

4. For any nite place v of F such thatBCr_¢,( )y and BCg—g,( o)v are unramied,
is unrami ed, and via the inclusion SOyn+2 (C) | GLon+2 (C) (resp. SOzn+4(C) |
GL2n+2(C)), the Satake parameter of , is equal to the direct sum of those of
BCr=r,( )v and BCg=¢,( o)v-

This is very similar to Assumption 2.6.1.2. In fact in this case the groupS is trivial,
which explains why it is enough to take a quadratic extension ofg. This is only necessary
to be able to de ne the group G. The crucial observation is that the local Langlands
parameters ofBCg_g,( ) BCg=g,( o) at the in nite places correspond to parameters for
the compact groupsSOyn+2 =R (resp. SOon+4). These parameters are of the form

n M W | r
IndWR (z7 (z=2)")
i=1
(ri>:::>r 5> 0) for BCp_g,( ), and

(
1 if nis odd

Indwg (z7! (z=2)") if niseven

so that the direct sum of the two is always of the form

1 W _

1 Indy,S (z 7! (z=2)")

i=1
for distinct, positive ri. This is the Langlands parameter corresponding to the representa-
tion of SO (R) having highest weight ¥, (ri (k i))e with r, = 0, where the root sys-
tem consists of the e g (i 6 j) and the simple roots aree; lllie 1 e e 1t €.

Note that, contrary to the symplectic case, there is one outer automorphism of the

even orthogonal group, and so there may be two choices for the Satake parameters af,
mapping to the same conjugacy class in the general linear group. Fortunately we only need
the existence.
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Proposition 2.6.2.3. Let F be a totally real eld, and let be an L-algebraic, self-dual,

cuspidal representation ofGL2n+1 (Ag). Suppose that for any placer of F abovep,  has

invariants under an lwahori. Then for any complex conjugationc 2 Gg, Tr( ., ( )(©) =
1

Proof. The proof is similar to that of Proposition 2.6.1.3. We use the previous assumption
to be able to assume (after base change) that there is a representationy (of GL1(Ag) if n
is odd, GL3(Af) if n is even) such that o transfers to an automorphic representation

of G(Ag), with compatibility at the unrami ed places. The representation  has Iwahori-
invariants at the p-adic places ofF, and thus it de nes a point of the eigenvariety X
associated with G (and an idempotent de ned by an open subgroup ofG (A(F‘?]Z )). By
Theorem 2.5.0.3, is congruent (at all the complex conjugations, and modulo arbirarily big
powers ofp) to another automorphic representation °of G, and i1 ( 9 is irreducible.
Hence .., ( 9= ;. ( 9 for some RLASDC °of GL(Ar), which is unramied at
all the p-adic places ofF, and we can apply Proposition 2.6.1.3 to ° This proves that

T ()= Ty (o)(e)= L O

2.6.3 Almost general case

We will now remove the hypothesis of being Iwahori-spherical ap, and allow more general
similitude characters, using Arthur and Clozel's base change.

Lemma 2.6.3.1. Let E be a number eld, S a nite set of (possibly in nite) places of
E, and for eachv 2 S, let K() be a nite abelian extension ofE,. There is an abelian
extension F of E such that for anyv 2 S and any placew of F abovev, the extension
Fy=E, is isomorphic to K V) =E,.

Proof. After translation to local and global class eld theory, this is a consequence of
[ , Théoréme 1]. O

Before proving the last theorem, we need to reformulate the statement, in order to
make the induction argument more natural. Let be a regular, L-algebraic, cuspidal
representation of GL,n+1 (Ar). At a real place v of F, the Langlands parameter of  is
of the form M

e IndySz 7! (z=2)"
|
and according to the recipe given in [ , Lemma 2.3.2], .., ( )(c) should be in the
same conjugacy class as 0 1

( °
01
10

= O
O R
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Since it is known that det _;, ( )(o)=( 1", ., ( )c) LL ( v)(j) if and only
if jTr ., ( )(cv)j =1. Similarly, in the even-dimensional case, ., ( )(¢,) LL ( v)(J)
if and only if Tr ., ( )(c) =0.

Theorem 2.6.3.2. Let n 2, F a totally real number eld, a regular, L-algebraic,
essentially self-dual, cuspidal representation dBL,(Ag), such that - "' (( j j9) det)
, Where is an Artin character. Suppose that one of the following conditions holds

1. nis odd.
2. nis even,qiseven,and 1 ( 1)=1.
Then for any complex conjugationc 2 Gg, jTr( ., ( )(c)] 1.

Proof. We can twist by an algebraic character, thus multiplying the similitude character
j 9 by the square of an algebraic character. If is odd, this allows to assume =1;q=0
(by comparing central characters, we see thatj j9 is a square). Ifn is even, we can
assume thatq =0 (we could also assume that the order of is a power of2, but this is not
helpful). The Artin character de nes a cyclic, totally real extension F%F. Since local

Galois groups are pro-solvable, the preceding lemma shows that there is a totally real,

solvable extensionF °¢F° such that BCroor( ) has Iwahori invariants at all the places
of F%above p. In general BCroog( ) is not cuspidal, but only induced by cuspidals:
BCroap( )= 1 ::: k. Howeveritis self-dual, and the particular form of the Langlands
parameters at the in nite places imposes that all ; be self-dual. We can then apply
Propositions 2.6.1.3 and 2.6.2.3 to the j, and conclude by induction that for any complex
conjugation ¢ 2 Gg, the conjugacy class of ., ( )(c) is given by the recipe found in
[ , Lemma 2.3.2], thatistosay Tr ., ( )(¢) 1. O

Remark 2.6.3.3. The casen even, 1 ( 1)=( 1)%?! is trivial. The case n even,q odd
and 1 ( 1)= 1 remains open.

For the sake of clarity, we state the theorem using the more common normalization of
C-algebraic representations.

Theorem 2.6.3.4. Letn 2, F atotally real number eld, a regular, algebraic, essen-
tially self-dual, cuspidal representation ofGL,,(Ag), such that - ' jdetj9 , where is
an Artin character. Suppose that one of the following conditions holds

1. nis odd.
2. niseven,gisodd, and 1 ( 1)=1.
Then for any complex conjugationc 2 Gg, jTr(r .., ( )(0)j L.

Proof. Apply the previous theorem to jdetj(™ D=2, O
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2.6.4 A supplementary, non-regular case

In this subsection G is the orthogonal group of section 2.5.

Assumption 2.6.4.1. Let Fg be a totally real eld, and let be an L-algebraic, self-dual,
cuspidal representation ofGL2,(Ag,). Assume that for any placevjp of Fg,  has vectors
xed under the lwahori, and that for any real placev of Fo,

LL( )" M Ind\e (z 7! (z=2)"")
v Wg : —

i=1
wherer, > 10 >r1 1 0 are integers (note that is not regular if r; = 0). Then
there exists a totally real extensior-=Fy which is trivial or quadratic, and an automorphic
representation of G(Ag) such that

1. BCg=g,( ) remains cuspidal.

2. For any placev of F abovep,  has invariants under the action of the Iwahori
subgroup ofG (Fy).

3. For any nite place v of F such that BCg_g,( )v is unramied,  is unramied,
and via the inclusion SOyn+2 (C) | GL2,(C), the Satake parameter of | is equal
to the one of BCg_g,( )v.

Of course this is very similar to Assumptions 2.6.1.2 and 2.6.2.2, and as in the latter
case the groupS is trivial.

For L-algebraic, self-dual, cuspidal automorphic representations déL », having almost
regular Langlands parameter at the archimedean places as above, the correspondimgdic
Galois representation is known to exist by [ ]. Exactly as in the previous subsection,
we have the following:

Theorem 2.6.4.2. Letn 2, F atotally real number eld, an L-algebraic, essentially
self-dual, cuspidal representation oiGL,(AfF), such that - ' , where is an Artin
character. Assume that at any real placey of F, ( 1)=1 and

M W
LL( v)' Indy< (z 7! (z=2)")
i=1
whererp, > @10 >r1 1 0 are integers. Then for any complex conjugationc 2 Gg,
Tr( . ()(9)=0.

Proof. Identical to that of Theorem 2.6.3.2. O

Proposition 2.6.4.3. Let be as in the previous theorem. Then for any place of F

abovep, ., ( )igg, is Hodge-Tate. If :Fy ! Gp is a Qp-embedding, the -Hodge-
Tate weights of ., ( )jc,, are the r; (if r,; = 0, it has multiplicity two), where

rm >:::>r .1 0 are the integers appearing inLL ( ) as in the previous theorem
(where w is the real place ofF determined by and p; 1 ).
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Proof. First observe that by totally real and solvable base change and Assumption 2.6.4.1,
we can assume that corresponds to an automorphic representation of G(Ag) having
Iwahori- xed vectors at all the p-adic places, and thus corresponds to a point on the
eigenvariety X =E. Let = ., (), and let V denote the E-vector space underlying
this representation (as usualE is a big enough p-adic eld).

Recall that for any p-adic placev of F, Dsen(V) isafreeE q,Fy( pt )-module of rank
ng V, together with a linear operator . Asin 2.4.2.1 we can writetE ¢, Fy( pt )"

E r Fv( pt) and thus Dgen(V) = Dsen (V) ( runs over the embeddings
Fy | Gp and E is just a copy ofE). The operator is just a collection of operators
on eachDsen (V). Moreover comes from the in nitesimal action of Gal(Fy( p: )=Fy)
on Dsen (V), hence its characteristic polynomial has coe cients inE . Therefore  can
bedenedoverE =E ¢ F, E g, Fy( pt ), but since the result is not functorial,
we will not directly use it. Note that if we write E ¢, Fy( pt ) as a product of elds
(algebraic extensions ofE ), can be concretely described as a collection of matrices
over these elds, all being similar to a single matrix overk , so that the semisimplicity of

is equivalent to the semisimplicity of any of these matrices. For this reason in the rest
of the proof we will treat as an endomorphism of a vector space ov@p.

The proposition is a small improvement of [ J[Lemma 7.5.12]. By this Lemma,
which states the analyticity of the Sen polynomial, we know that the characteristic poly-

nomial of is
Yo
(T r i )
i=1
as expected. We need to show that the Sen operator is semisimple. It is enough

to show that ker = ker 2 in the caser;: = 0. This is in turn implied by the fact
that is orthogonal, because then by functoriality Dse; (V) admits a non-degenerate
quadratic form for which is in nitesimally orthogonal, i.e. antisymmetric, and since

ker( 2 ri2) is non-degenerate if > 1, the orthogonal of these eigenspaces, that ieer 2,
is non-degenerate too. Finally, all the elements ofo, are semisimple.

Let us show that is indeed orthogonal, that is that V admits a Gg -invariant non-
degenerate quadratic form. Note that for automorphic RLASDC representations oGL o, =F,
it is known that the associated Galois representation is orthogonal by the main result of
[ ]. By the analogue of Assumption 2.4.1.1 for the special orthogonal grou@, all
classical points having weight far enough from the walls come from such representations.
We will use a deformation argument similar to [ J[Proposition 2.4].

First we replace X by a curve. Of course we want this curve to contain a given
classical pointz 2 jX j corresponding to . We also want to ensure that there are many
classical points onY , that is to say we want Proposition 2.3.2.6 to hold. LetY be an open
anoid of X w WP9containing z, where WCis the one-dimensional reduced subspace of

W parameterizing weights of the form
|
Y ¥ n i -
(XVii)vjp;izl::n 7! NFv=Qp(Xv;i )
voi=1
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times w(z), for a continuous character ofZ,. By [ J[lLemma 7.8.11], there is a
smooth connected a noid curve Y ®and a nite morphism f : Y 91 Y whose image is an
irreducible component of Y containing z, such that the 2n-dimensional pseudocharacter
f1 T is the sum of the traces of continuous representations

Rj tGg ! GLo(YO)(Mj)

for sheavesM; locally free of rank n; (Pj nj = 2n), and such that Rj oy 9 K(y) is
absolutely irreducible fory in a Zariski-open subset ofY ©
We nowErksswith Y © and still denote by z any point of Y ®abovez 2 Y . Note that
R owo9k(z) ' . Thepointsy ofY O at which the semisimpli cation of
M _
Rj  o(rok(y)
j
comes from an automorphic RLASDC representation of5L o, are still Zariski-dense, and
by consideration of the Hodge-Tate weights, the representation®R; are pairwise non-
isomorphic on a Zariski-open subset off © Since T(g) = T(g 1) for all g 2 Gg, each
R; is either self-dual (in the sense thatTr(R; (g 1)) = Tr( R (9)) for all g 2 Gg), or part
of a pair (Rj;Rjo) (j 6 j9 where Tr(Rj(g 1)) = Tr( Rjo(g)) for all g2 Gg, and thus

S

- SS_I . 1
Rj  o(vok(y) Rjo oy 9 Kk(Y)
for any point y of Y ©
To prove the orthogonality of , it is enough to prove that for each self-dual Rj,
SS
R oo k(z) is orthogonal. We can now work locally, and simply consideR; as a

representation
Rj :Gr ! GLp (0Oy)

where O, is the local ring of Y %at z, a (henselian) discrete valuation ring. We conclude
using the following lemma. O

Lemma 2.6.4.4. Let A be a discrete valuation ring, letKk be its fraction eld and k its
residue eld, and assume thatchar(k) 6 2. Let R: G! GL,(A) a representation such
that R A K is absolutely irreducible and orthogonal. TherfR A k)*° is also orthogonal.

Proof. We rst remark that the semisimpli cation of an orthogonal representation is again
orthogonal. Denote by$ a uniformizer ofA. Let V = K" be theK -vector space underlying
the representation R. By assumption V admits a Gg -stable lattice L = A". Fix a Gg-
invariant, non-degenerate symmetric bilinear formh; i on V". ReplacingL by $ KL for
some integerk 0 if necessary, we can assume that

L-:=fv2V j8u2lL; huvi2 Ag
contains L. We wish to nd a lattice L%suchthatL L° L- and (L9- = L% This

would endow L%$L © with a Gg -invariant non-degenerate symmetric bilinear form, and
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it is well-known that (LE$L 9%°' (R A k)*. Even though this will not be possible in
general, by attempting to do so we will show that(R a k)*°is orthogonal.

The A-module L-=L is torsion and of nite type. Let n be the smallest integer such
that $"L- L. If n> 1, replaceL by L + $" 1L-, which strictly contains L and is still
integral with respect to h; i. After a nite number of iterations of this procedure, we are
left with a lattice L such that

L L- $ L

Therefore
(L=$L )" L-=L *° L=$L - *°

and it is straightforward to check that h; i induces on both factors aGg -invariant non-
degenerate symmetric bilinear form. O]
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Partie 3

Dimensions of spaces of level one automorphic forms for split
classical groups using the trace formula

3.1 Introduction

Let G be a Chevalley reductive group oveZ admitting discrete series at the real place, i.e.
one of SOgp+1, Spy, Or SOy, for n - 1. We give an algorithm to compute the geometric
side in Arthur's simple trace formulain [ ] (see also [ ]) for G and the trivial
Hecke operator in level one at the nite places, that is the characteristic function ofG (B).
There are essentially three steps to compute the geometric side of the trace formula:

1. for any prime p, compute the local orbital integrals of the characteristic function
of G(Zp) at torsion elements , in G(Qp) (with respect to a Haar measure on the
connected centraliser of ),

2. for any semisimple elliptic and torsion conjugacy class 2 G (Q) with connected cent-
raliser |, use the Smith-Minkowski-Siegel mass formula to comput&ol(1(Q)nl (A)),

3. analyse the character of stable (averaged) discrete series on arbitrary maximal tori
of G(R) to express the parabolic terms using elliptic terms for groups of lower
semisimple rank.

We explain how to compute local orbital orbitals for special orthogonal groups (resp.
symplectic groups) in sections 3.3.2.2 and 3.3.2.3, using quadratic and hermitian (resp.
alternate and antihermitian) lattices. To compute the volumes appearing in local orbital

integrals we rely on the local density formulae for such lattices given in [ I [ ]
and [ ]. We choose a formulation similar to [ ] for the local and global volumes
(see section 3.3.2.4). For the last step we follow [ ], and we only add that for the

trivial Hecke operator the general formula for the archimedean factor of each parabolic
term simpli es signi cantly (Proposition 3.3.3.2). Long but straightforward calculations
lead to explicit formulae for the parabolic terms (see section 3.3.3.4).

Thus for any irreducible algebraic representationv of G ¢ characterised by its highest
weight , we can compute the spectral side of the trace formula, which we now describe. Let
K1 be a maximal compact subgroup ofc(R) and letg= C grgo Wheregp = Lie( G(R)).
For an irreducible (g; K1 )-module 1 , consider the Euler-Poincaré characteristic

X ) .
EP( 1 V)= '(1)'dimH'((g;K1); 1 V)
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whereV is seen as arepresentation @ (R). Let 4isc(G) be the set of isomorphism classes
of irreducible (g; K1) G (Af)-modules occurring in the discrete automorphic spectrum
of G. For 2 gisc(G) denote bym 2 Z . the corresponding multiplicity. Let g2.(G)
be the set of 2 4isc(G) which are unramied at all the nite places of Q. For any

dominant weight the setof 2 U4YY (G) suchthatH ((g;K1); 1 V )60 is nite.

disc
The spectral side of Arthur's trace formula in [ ] for our choice of function at the
nite places is X
mEP(1 V) (3.1.0.1)
2 i (G)

disc

This integer is interesting but it is only an alternate sum. To obtain subtler informa-
tion, e.g. the sum ofm for 1 isomorphic to a given(g; K )-module, we use Arthur's
endoscopic classi cation of the discrete automorphic spectrum for symplectic and special
orthogonal groups [ ]. Arthur's work allows to parametrise the representations con-
tributing to the spectral side 3.1.0.1 using self-dual automorphic representations for general
linear groups. DenoteWg the Weil group of R and - the character of Wgr having kernel
We' C . Forw?2 %Z de ne the bounded Langlands parameter, : Wg ! GL>(C) as

w i1\ 2W
Ind\t z 7! (z52))
sothatlg' 1 -r. The three families that we are led to consider are the following.
1. Forn landwg;:::;wp 2 %ZrZ such thatw; > >wp > 0,dene S(wy;:::;wp)
as the set of self-dual automorphic cuspidal representations d&L ,,=Q which are
unrami ed at all the nite places and with Langlands parameter at the real place
lw, lw, -

Equivalently we could replace the last condition by with in nitesimal character hav-
ing eigenvaluesf ws;:::; wprg. Here S stands for symplectic, as the conjectural

2. Forn 1 and integerswy > > W, > 0dene Og(ws;:::;wn) as the set of
self-dual automorphic cuspidal representations of5L »n+1 =Q which are everywhere
unrami ed and with Langlands parameter at the real place

lw, lwa  @=g!
Equivalently we could replace the last condition by with in nitesimal character

having eigenvaluesd wsa;:::; wp;0g. Here O, stands for odd orthogonal .

3. Forn 1land integersw; > >Won 1>Woq 0dene Og(wsq;:::;woy) as the set
of self-dual automorphic cuspidal representations oGL 4,=Q which are everywhere
unrami ed and with Langlands parameter at the real place

lw, wop -

In this case also we could replace the last condition by with in nitesimal character
having eigenvalued ws;:::; wang, even in the slightly singular case wherewy, =
0. Here O, stands for even orthogonal .
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Following Arthur using these three families we can de ne, for anyG and as above, a set
( G)U"r: of formal Arthur-Langlands parameters which parametrises the representations
2 §¥.(G) contributing to 3.1.0.1. We stress that for a givenG all three families take
part in these formal parameters. Among these formal parameters, one can distinguish a

subset ( G)g{:{]; of simple parameters, that is the tempered and non-endoscopic ones.

of any element of ( G)g{,‘;; to the spectral side 3.1.0.1 is a non-zero number depending only

on G(R). Therefore it is natural to attempt to compute the cardinalities of the sets S( ),
Oo() and O¢( ) inductively, the induction being on the dimension of G. More precisely
we have to compute the contribution of ( G)U™: r ( G)gar' to 3.1.0.1 to deduce the
cardinality of ( G)gn' -

When the highest weight is regular, any element of ( G)Y" is tempered and con-
sequently any 2 4¥.(G) contributing to the spectral side is such that ; is a discrete
series representation having same in nitesimal character a¥% . Thanks to the work of
Shelstad on real endoscopy and using Arthur's multiplicity formula it is not di cult to
compute the contribution of ( G)U": r ( G)g' to the Euler-Poincaré characteristic on
the spectral side in this case (see section 3.4.2.1). The general case is more interesting be-
cause we have to consider non-tempered representationg . Since Arthur's construction
of non-tempered Arthur packets at the real place in [ ] is rather abstract, we have to
make an assumption (see Assumption 3.4.2.4) in order to be able to compute explicitly
the non-tempered contributions to the Euler-Poincaré characteristic. This assumption is
slightly weaker than the widely believed Assumption 3.4.2.3, which states that the relevant
real non-tempered Arthur packets at the real place coincide with those constructed long

ago by Adams and Johnson in [ 1

the computer the hard work consists in computing local orbital integrals. Our current
implementation, using Sage [ ], allows to compute them at least forrank(G) 6. See
section 3.7.2 for some values.

Once these cardinalities are known we camount the number of 2§t (G) such
that 1 is isomorphic to a given(g; K1 )-module having same in nitesimal character as
V for some highest weight . A classical application is to compute dimensions of spaces
of (vector-valued) Siegel cusp forms. For a genus 1 and m; my n +
1, let r be the holomorphic (equivalently, algebraic) nite-dimensional representation of
GLn(C) with highest weight (m1;:::;mp). Let , = Sp,,(Z). The dimension of the
spaceS;( n) of level one vector-valued cuspidal Siegel modular forms of weightcan then
be computed using Arthur's endoscopic classi cation of the discrete spectrum foSp,,.
We emphasise that this formula depends on Assumption 3.4.2.3 when the's are not
pairwise distinct, in particular when considering scalar-valued Siegel cusp forms, of weight
mq = = mp. Our current implementation yields a dimension formula fordim S;( )
forany n 7 and any r as above, although forn 3 it would be absurd to print this
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huge formula. See the table in section 3.5.4 for some values in the scalar case. The case
n =1 is well-known: | oMmn( 1) = C[E4; Ee] where the Eisenstein serie€,; E¢ are
algebraically independant overC, and the dimension formula for S, ( ;) follows. Igusa
[ ] determined the ring of scalar Siegel modular forms and its ideal of cusp forms
when n = 2, which again gives a dimension formula. Tsushima | 1 [ ] gave a
formula for the dimension of S;( 2) for almost all representationsr as above (that is for
mi>ms, 5ormy=m, 4) using the Riemann-Roch-Hirzebruch formula along with a
vanishing theorem. It follows from Arthur's classi cation that Tsushima's formula holds for
any (mj;my) such that my >m, 3. In genusn =3 Tsuyumine [ ] determined the
structure of the ring of scalar Siegel modular forms and its ideal of cusp forms. Recently
Bergstrom, Faber and van der Geer [ ] studied the cohomology of certain local
systems on the moduli spacd 3 of principally polarised abelian threefolds, and conjectured
a formula for the Euler-Poincaré characteristic of this cohomology (as a motive) in terms of
Siegel modular forms. They are able to derive a conjectural dimension formula for spaces of
Siegel modular cusp forms in genus three. Our computations corroborate their conjecture,
although at the moment we have only compared values and not the formulae.

Of course the present work is not the rst one to attempt to use the trace formula
to obtain spectral information, and we have particularly bene ted from the in uence of
[ ] and [ 1. In[ ] Gross and Pollack use a simpler version of the trace for-
mula, with hypotheses at a nite set S of places ofQ containing the real place and at least
one nite place. This trace formula has only elliptic terms. They use the Euler-Poincaré
function de ned by Kottwitz in [ ] at the nite places in S. These functions have the
advantage that their orbital integrals were computed conceptually by Kottwitz. At the
other nite places, they compute the stable orbital integrals indirectly, using computations
of Lansky and Pollack [ ] for inner forms which are compact at the real place. They
do so for the groupsSL», Sp, and G,. Without Arthur's endoscopic classi cation it was
not possible to deduce the number of automorphic representations of a given type from the
Euler-Poincaré characteristic on the spectral side, even for a regular highest weight The
condition card(S) 2 forbids the study of level oneautomorphic representations. More re-
cently, Chenevier and Renard [ ] computed dimensions of spaces of level @igebraic
automorphic forms in the sense of | ], for the inner forms of the groug80~7, SOg and
SOg which are split at the nite places and compact at the real place. They used Arthur's
classi cation to deduce the cardinalities of the setsS(wi;w»;w3) and S(wy; Wa2; W3] Wa)
and, using the conjectural dimension formula of [ 10e(W1; W2; W3; Wy). Unfortu-
nately the symplectic groups do not have such inner forms, nor do the special orthogonal
groups SO, whenn mod 862 f 1;0;1g. Thus our main contribution is thus the direct
computation of local orbital integrals.

3.2 Notations and de nitions

Let us precise some notations. LefA; denote the nite adélengQp andA=R A;. We
will use boldface letters to denote linear algebraic groups, for examplé. For schemes we
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denote base change using simply a subscript, for examp(&q, instead of G o Qp where
G is de ned over Q. For a reductive group G we abusively call Levi subgroup ofG any
Levi subgroup of a parabolic subgroup of5, i.e. the centraliser of a split torus. Rings are
unital. If Risaringand a nite free R-module,rkg() denotes its rank. If G is a nite
abelian groupG" will denote its group of characters.

Let us de ne the reductive groups that we will use. Forn 1, let ¢, be the quadratic

form on Z" de ned by
b(nyd) =2¢
Gh(x) = XiXn+1 i-
i=1

Let O, be the algebraic group overZ representing the functor

Category of commutative rings! Category of groups
AT'fg2 GLn(A)jth 9= Q!

For n odd de ne SO, as the kernel ofdet : O ! ». For n even,det: Op ! » factors
through the Dickson morphismDi: O, ! Z=2Z (constant group scheme oveiZ) and the
morphismzZz=2Z! , mapping 12 Z=2Zto 12 5. Inthatcase SO, is de ned as the
kernel of Di. Forany n 1, SO, ! Specg) is reductive in the sense of | J[Exposé
XIX, Dé nition 2.7]. It is semisimple if n 3.

For n 1 the subgroupSp,, of GL 2,=Z de ned as the stabiliser of the alternate form

X
(GY) 7' XiYonsr @ Xon+d iV
i=1
is also semisimple oveZ in the sense of | J[Exposé XIX, Dé nition 2.7].
If G is one ofSO2n41 (N 1), Sp,, (N 1) or SOy, (N 2), the diagonal matrices
form a split maximal torus T, and the upper-triangular matrices form a Borel subgroup

8

2e ;1116 1 Enjey if G = SO2n+1;
S € illlien 1 €ns2en if G = Spy,;
e 1111761 €nien 1+ e, iIf G=S0s:

In the rst two cases (resp. third case), the dominant weights in X (T) are the k =
L, kie with kg kn O (resp.k; kKn 1 j Knj)-

3.3 Computation of the geometric side of Arthur's trace for-
mula

Arthur's invariant trace formula [ ] for a reductive group G=Q simpli es and becomes
more explicit when G (R) has discrete series and a nice smooth compactly supported dis-
tribution f1 (g1 )dgy is used at the real place, as shown in [ ] (see also | ] fora
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topological proof). In section 3.3.1 we recall the egiptic termslg; f1 (g1 )dow Q IOfp(gp)dgp
on the geometric side of this trace formula, where p fp(gp)dg, is @ smooth compactly sup-
ported distribution on G (A;). Then (section 3.3.2) we give an algorithm to compute these
elliptic terms when G is a split classical group and for any primep, f ,(gp)dg, is the trivial
element of the unrami ed Hecke algebra. Finally (section 3.3.3) we give explicit formulae
for the parabolic terms using the elliptic terms for groups of lower semisimple rank.

3.3.1 Elliptic terms

3.3.1.1 Euler-Poincaré measures and functions

Let G be a reductive group overR. Thanks to [ ], we have a canonical signed Haar
measure onG (R), called the Euler-Poincaré measure. It is non-zero if and only iz (R)
has discrete series, that is if and only ifG has a maximal torus de ned overR which is
anisotropic.

So assume thatG (R) has discrete series. LeK be a maximal compact subgroup of
G(R),go=Lie(G(R)) andg= C RrQgo. Let V be an irreducible algebraic representation
of G¢, parametrised by its highest weight . We can seeV as an irreducible nite-
dimensional representation ofG (R), or as an irreducible(g; K )-module. If is a(g;K)-
module of nite length, consider

EPC; )= ( DidmH(@K):  V):
|
Clozel and Delorme [ JIThéoreme 3] show that there is a smooth, compactly supported
distribution f (g)dg on G(R) such that for any as above,

Tr( (f (9)dg) =EP( ; ):

If is irreducible and belongs to the L-packet 4isc( ) Of discrete series having the same
in nitesimal character as V , this number is equal to ( 1)XG(R) where 2q(G(R)) =
dmG(R) dimK. If s irreducible and tempered but does not belong to gsc( )
it is zero.

These nice spectral properties of allow Arthur to derive nice geometric properties,
similarly to the p-adic case in | . f 2 G(R), the orbital integral O (f (g)dg)
vanishes unless is elliptic semisimple, in which case, lettingl denote the connected
centraliser of in G:

O (f (9dg)=Tr( V) erir):
Infact [ ][Theorem 5.1] computes more generally the invariant distributionsly ( ;f )
occurring in the trace formula (hereM is a Levi subgroup ofG), and the orbital integrals
above are just the special cast = G. These more general invariant distributions will be
used in the parabolic terms.

3.3.1.2 Orbital integrals for p-adic groups

We recall more precisely the de nition of orbital integrals for the p-adic groups. Letp be
a prime and G a reductive group overQ,. Let K be a compact open subgroup oG (Qp),
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2 G(Qp) a semisimple element, and its connected centraliser inG. Lemma 19 of | ]
implies that for any double cosetKcK in G(Qp), the setX of [g] 2 KnG(Qp)=1(Qp) such
that gg 12 KcK is nite. Let (resp. ) be a Haar measure onG (Qp) (resp. 1(Qp)).
Then the orbital integral at  of the characteristic function of KcK

z d
O (lkek;; )= lkek 99 * PR
G(Qp)=| (Qp)
is equal to
X (K) .
I :
aox (@ KV T(Qp)
The Haar measureO (1lkck ; ; ) is canonical, i.e. it does not depend on the choice of

. Thus O canonically maps the space of smooth compactly supported complex valued
distributions on G (Qp) (i.e. linear combinations of distributions of the form 1xck (9)d (9))
to the one-dimensional space of complex Haar measures b(Qp).

Remark 3.3.1.1. Note that any automorphism of the algebraic group preserves , and
thus if | and are xed, for any algebraic groupl®isomorphic to I, there is a well-de ned
corresponding Haar measure ori

3.3.1.3 De nition of the elliptic terms

Let G be a reductive group overQ such that G (R) has discrete series. Let be a highest
weight for the group G¢. Choose a Haar measureg; on G(R), and let f1 be a smooth
compactly supported function onG (R) such that the distribution f . (glddgl computes
the Euler-Poincaré characteristic with respect toV as in 3.3.1.1. Let pfp(gp)dgo be
a smooth compactly supporFEed distribution on G (A¢). For almost all primes p, Gq, is
unramied, f, = 1k, and Kpdg) = 1 where K, is a hyperspecial maximal compact
subgroup in G(Qp). Let C be the set of semisimple conjugacy classef ) in G(Q) such
that belongs to an anisotropic maximal torus inG(R). For cl( ) 2 C, denote byl the
connected centraliser of in G. Given such a , for almost all primes p, lQ, is unrami ed
and O (fp(gp)dg) is the Haar measure giving measure one to a hyperspecial maximal
compact subgroup ofl (Qp) (see [ , Corollary 7.3]). Thus pO (fb(gp)dgp) is a well-
de ned complex Haar measure onl (Ar). Let f(g)dg= f1; (g )don ~,fp(gp)dgp. The
elliptic part of the geometric side of Arthur's trace formula is

X Vol(1(Q)nl (A))
card (Cent( ; G(Q))=1(Q))

Tei(f (9)dg) = T jV) (3.3.1.1)

cl( )2c

wherel (R) is endowed with the Euler-Poincaré measurel,(As ) the complex Haar measure

pO (fp(9p)dgp) and 1 (Q) the counting measure. The set otl( ) 2 C such that for any
prime p, is conjugate inG(Qp) to an element belonging to the support off ; is nite, so
that the sum has only a nite number of nonzero terms.
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3.3.2 Computation of the elliptic terms in the trace formula

Our rsttask is to explicitly compute Tg(f (g)dg&whenG is one 0fSO2n+1, SPoy OF SO4p

and moreover for any primep, fp = 1g(z,) and G(2p) dg, = 1. Inthis case any 2 G(Q)

whose contribution to Tey(f (g)dg) is nonzero is torsion (" = 1 for some integerr > 0),

since is compact in G(Qy) for any placev. Here compact means that the smallest
closed subgroup ofG (Qy) containing is compact, and it is equivalent to the fact that

the eigenvalues of in any faithful algebraic representation ofGQ—v have norm one.

First we describe the semisimple conjugacy classes ®(Q) and their centralisers, a
necessary rst step to compute the setC and the groups|. Then we explain how to
enumerate the conjugacy classes of torsion elements in the gro@X(Z,). To be precise we
can compute a collection of subset§Ys)s of G(Zp) such that

fg2 G(Zp)j9r> 0; ¢ =1g= © fxyx jy2 Ys x 2 G(Zp)e:
S

Note that this leaves the possibility that for a xed s, there exist distinct y;y°2 Ys which
are conjugated underG(Zp). Thus it seems that to compute local orbital integrals we
should check for such cases and throw away redundant elements in ea¥h, and then
compute the measures of the centralisers of in G(Z,). This would be a computational
nightmare. Instead we will show in section 3.3.2.3 that the fact that such orbital integrals
are masses (as in mass formula ) implies that we only need to compute the cardinality of
eachY.. Finally the Smith-Minkowski-Siegel mass formulae of [ ] provide a means to
compute the global volumes.

3.3.2.1 Semisimple conjugacy classes in classical groups

Let us describe the absolutely semisimple conjugacy classes in classical groups over a eld,
along with their centralisers. It is certainly well-known, but we could not nd a reference.
We explain in detail the case of quadratic forms (orthogonal groups). The case of alternate
forms (symplectic groups) is similar but simpler since characteristi@ is not special and
symplectic automorphisms have determinantl. The case of (anti-)hermitian forms (unitary
groups) is even simpler but it will not be used hereatfter.

Let V be a vector space of nite dimension over a (commutative) eldK , equipped with
a regular ( ordinaire in the sense of | , Exposé XIlI]) quadratic formg. Let 2 O(q)
be absolutely semisimple, i.e. 2 Endk (V) preservesq and the nite commutative K -
algebraK [ ] is étale. Since preservesq, the K -automorphism of K[ ] sending to

1is well-de ned: if dimk V is even or2 6 0 in K, is the restriction to K[ ] of the
antiautomorphism of Endk (V) mapping an endomorphism to its adjoint with respect to the
bilinear form B4 corresponding tog, de ned by the formula Bq4(x;y) := q(x+y) a(x) a(y).

In characteristic 2 and odd dimension,(V; g is the direct orthogonal sum of its -stable
subspaces/®=ker( 1) andV%=ker P( ) where(X 1)P(X) 2 K[X]nfOgis separable
and annihilates . If V%were odd-dimensional, the kernel 0Bgjvoo yoowould be a -stable
line Kx with g(x) 6 0, which imposes (x) = X, in contradiction with P(1) 6 0. Thus
K[]1=K][jvod K ifVvV%0,and isagain well-de ned.
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Thanks to we have a natural decomposition as a nite product:

Y
KLE)= (A5 )
|
where for anyi, A; is a nite étale K -algebra generated by ; such that ; 7! lisa
well-de ned K -involution ; of Aj and F;j = fx 2 Ajj {(X) = xgis a eld. Moreover the
minimal polynomials P; of ; are pairwise coprime. For anyi, either:

?=1andA =K,
i2 6 1 and A; is a separable quadratic extension oF;, Gal(Aj=F) = f1; ;g;
i26 1,A;' F Fjand ; swaps the two factors.

Let luiv, | eia and lspe be the corresponding sets of indices. There is a corresponding

orthogonal decomposition ofV : M

V = Vi
[

whereV, is a projective Aj-module of constant nite rank.

Lemma 3.3.2.1. For any i, there is a unique j-hermitian (if ; is trivial, this simply
means quadratic) formh; : Vi ! Fj such that for anyv 2 V;, q(v) = Tr g ¢ (hi(V)).

Proof. If i 2 lyy this is obvious, so we can assume thadimg, Aj = 2. Let us show that
the K -linear map

T :f j-hermitian forms onVig ! f K-quadratic forms onV; preserved by ;g
hy 7! v 7! Trg = hi(v)

is injective. If h; is a j-hermitian form on V;, denote byBy, the unique ;-sesquilinear map
Vi Vi! Ajsuch that for any viw 2 V;, hi(v+ w) hi(v) hij(w) =Tr 5,z Bn;(vV;W),
so that in particular hi(v) = By, (v;v). Moreover for any viw 2 Vi, Brp,(v;w) =
Trp,=x Bn;(v;w). If hj 2 kerT, then Br,y = 0 and by non-degeneracy ofTr,-x we
have By, =0 and thus h; = 0.
To conclude we have to show that the twoK -vector spaces above have the same dimen-

sion. Letd =dim F; and n =dim 4, V;, then dimk f j-hermitian forms on Vg = dn2. To
compute the dimension of the vector space on the right hand side, we can tensor ov€r

with a nite separable extensionK &K such that ; is diagonalizable overK ©. Since ? 6 1
the eigenvalues ofl  j onK® ¢ V; arety;ty 5iiitg;ty ! where thet, * are distinct and
6 1. Furthermore each eigenspace); := ker(1 it 1)U =ker(l it 1o

has dimensionn over K If ¢is a K Cquadratic form on K®  V; preserved byl i,
then:

for any k, q‘]Uk =0 sincet? 6 1,

forany k 6 |, qujUk T 0 sincety=t;;tt; 6 1.
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Henceq®is determined by the restrictions ofBgo to U; U, ., and conversely any family
of K ®bilinear forms U; U, ! KO%(k 2f1;:::;dg) give rise to aK “quadratic form on
KO « Vi preserved byl ;, and we conclude that the dimension is agaimin?. O

The regularity of g implies that of h; (when ? 6 1, regularity means non-degeneracy
of Bp,). In the split case, V; can be more concretely described as a pajiw;; W9 of vector
spaces ovel; having the same dimensionh; identi es Wi0 with the dual W, of W; over
Fi, and thus the pair (V;; hi) is isomorphic to ((W;; W, ); (w;f) 7! f (w)).

If instead of g we consider a non-degenerate alternate formh; i, we have the same
kind of decomposition for (K[ ]; ). Moreover the above lemma still holds if instead of
considering hermitian formsh; we consider j-sesquilinear formsB; : Vi V; I A; such
that for any v 2 V;, Tra -, (Bi(v;V)) =0.

Proposition 3.3.2.2. Two absolutely semisimple elements ° of O(V; 0 are conjugate
if and only if there is a bijection  between their respective sets of indicek and | ° and
compatible isomorphisms(A;; ) ' Ao(i); O(i) and (Vi;hi) ' Vo(i);h0 . Moreover
the algebraic groupCent( ; O(V; Q) is naturally isomorphic to

Y

@)

Y Y
O(Vi:hy) Reg: -« U (Vi:h) Res:, -« GL (W):

121 v i21 el 121 spiit

If dimk V isoddO(V;qg = SO(V;g9 2, so this proposition easily yields a description
of absolutely semisimple conjugacy classes iBO(V;q = SO(V;g(K) and their central-
iéers. If dimk V is even_the proposition still holds if we replaceO(V;qg by SO(V; g and

1210 O(Vi;hi) by S 214 O(Vi; hj) and add the assumptionlyy, 6 ;. If dimg V
is even andlgy = ;, the datum (A;; i;Vi;hj)i2; determines two conjugacy classes in
SO(V; 9.

In the symplectic case there is a similar proposition, but now the indices 2 |, Yyield
symplectic groups.

Note that if K is a local or global eld in which 2 6 0, the simple and explicit invari-
ants in the local case and the theorem of Hasse-Minkowski (and its simpler analogue for
hermitian forms, see [ ]) in the global case allow to classify the semisimple conjugacy
classes explicitly. For example ifKk = Q, given M > 0 one can enumerate the semisimple
conjugacy classes ir5O(V; g annihilated by a non-zero polynomial having integer coe -
cients bounded byM .

3.3.2.2 Semisimple conjugacy classes in hyperspecial maximal compact sub-
groups

To compute orbital integrals in the simplest case of the unit in the unrami ed Hecke
algebra of a split classical group over g-adic eld, it would be ideal to have a similar
description of conjugacy classes and centralisers valid ovetp. It is straightforward to
adapt the above description over any ring (or any base scheme). However, it is not very
useful as the conjugacy classes for which we would like to compute orbital integrals are
not all semisimple overZ,, i.e. Zp[ ] is not always an étaleZ,-algebra. Note that the
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semisimple overZ, case is covered by [ , Corollary 7.3] (with the natural choice
of Haar measures, the orbital integral is equal tol). Nevertheless using the tools of the
previous section, we give in this section a method to exhaust the isomorphism classes of
triples ( ;q; ) where is a nite free Z,-module, q is a regular quadratic form on

and 2 SO( ;q). The symplectic case is similar. This means that we will be able to
enumerate them, but a priori we will obtain some isomorphism classes several times. In
the next section we will nonetheless see that the results of this section can be used to
compute the orbital integrals, without checking for isomorphisms.

Let be a freeZp-module of nite rank endowed with a regular quadratic form g,
and let 2 Autz () preservingg and semisimple overQ,. We apply the notations and
considerations of section 3.3.2.1 to the isometry of Q, z, , to obtain quadratic or
hermitian spaces Qp, z, ;. Consider the lattices

i= \ Qp z, ;=ker(Pi()j):

Let N 0 be such thatpN belongs to the ideal ofZp[X ] generated by therei P; for all
i. Then =( ; ;) is annihilated by pN, so this group is nite. Since ; is saturated in
and q is regular, foranyv2 ir p i,

pN 2 B(v; ) if p 3orrkz, ;iseven,

N _ , (3.3.2.1)
pT 2B(v; j)orq(v)2Z, ifp=2andrkz, ;isodd.

The Zp[ i]-module ; is endowed with a hermitian (quadratic if 2 = 1) form h; taking
values inF;j. The sesquilinear (bilinear if ,2 =1)form B; . ; i I A associated with
h; has the property that for all v;w2 ;,

B(v;w)=Tr Ai=Qp (Bi(v;w)) :

From now on we assume for simplicity thatZy[ ;] is normal (i.e. either it is the integer ring
of an extension ofQp, or the product of two copies of such an integer ring), as it will be the
case in our global situation which imposes that the ;'s be roots of unity. The structure
of quadratic or hermitian modules over such rings is known: see [ ] for the quadratic
case, [ ] for the hermitian case. The split case amounts to the comparison of two
lattices in a common vector space (isomorphism classes of such pairs are parametrised by
invariant factors ). Choose a uniformiser$; of Zy[ i] (by de nition, in the split case $;
is a ulr_liformiser of Of;). In all cases, there is a (non-canonical) orthogonal decomposition
= ,;, " suchthat$, "Bjj ) o is integral and non-degenerate. 1f($ ") is the
dierent of Z,[ i]=Zp and (p) = (ifi),l condition 3.3.2.1 imposes (but in general stays
stronger than) the following:

() =
1

(=0 unless0 r  max(1;N) if p=2 andrkz, ;i is odd.

Ounless d r  di+Ne ifp 3orrkz, iseven, (3.3.2.2)

Note that in the second case ,2 =1 and h; is a quadratic form overZ,. These conditions
provide an explicit version of the niteness result in section 3.3.1.2, since for any and r
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there is a nite number of possible isomorphism classes fori(r), and when the j's are

xed, there is only a nite number of possible -stable g-regular 's since

M i p max(1;N)
| |
For e ciency it is useful to sharpen these conditions. Denote byo an orbit of Z=2Z
Gal Fp=F, acting on F, , where the non-trivial element of Z=2Z acts by x 7! x 1.
Concretely, o is an orbit in the set of primitive m-th roots of unity ( m coprime to p) under
the subgrouphp; 1i of (Z=mZ) . Let |, be the set of indices such that ; mod%o some

(at most two possibilities) maximal ideal of Zy[ ;] belongs too. Then for 0 6 o° i21, Pi

and ", ,Pi generate the unit ideal inZy[X], thus = o |, Where
! !
M Y
1, = Sat i =ker Pi( )]
i2lo i21o

Here Sat ( 9, the saturation of %in , is de nelc_i as \ (Qp 9. Our task is now to
enumerate the -stable g-regular lattices containing 5, i in which each ; is saturated.
Fori 2 1,, there is a canonical ( Jordan-Chevalley oveZ, ) decomposition j =  j where
m( i) =0 (m associated witho as above) and
P

P +1

Since we assumed tha¥Zp[ i] = Z,[ ][ i] is normal, either ; 2 Zy[ i] or over each factor
of Qp[ ], Qpl i] is @ non-trivial totally rami ed eld extensionand ; 1is a uniformiser.
In any case, de neh? := Tr Fi=Qol i+ | 1](hi), a quadratic or hermitian (with respect to
I A l) form on the Zp[ i]-module ;. On ,, = |, |, as above, the restriction
of |, to (i 21,)is j, and the minimal polynomial of ; over Q, does not depend
oni 2 l,. Thus we can see the j, i 2 1, as nite free quadratic or hermitian modules
over the same ringZ,[ |,], each of these modules being endowed with an automorphism
i satisfying ipn ' 1. Moreover sinceZy[ |,] is an étale Z,-algebra, the regularity of g
(restricted to |,) is equivalent to the regularity of h®= {h%on | . Knowing the s,
Lnding the possible |,'s amounts to nding the -stable h%regular lattices containing

21, in which each ; is saturated, where = j.

Let us now specialise to the case where each is a root of unity, i.e.
n 0. Denote by | the r-th cyclotomic polynomial.

n
P* =1 for some

Lemma 3.3.2.3. Letm 1 be coprime top. In Zy[X], for any k 1, p belongs to the
ideal generated by xn(X) and m X P

Proof. For k =1, since n(XP)= pm(X) m(X), by derivating we obtain the following
equality in the nite étale Zp-algebraZy[X]= m(X):

pm(X) = pXP 1 2 (xP)= 8 (X)=p unit:

Hence there existsU;V 2 Zy[X] such that pm(X)U(X)+ n(X)V(X) = p. For any
k 1wehave xn(X)= pm X P and the general case follows. O
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Having chosen quadratic or hermitian lattices( i);,,, there is a natural order in which
to proceed to enumerate the possible |,. Let us focus on one orbito. To lighten notation
name the indicesl, = f1;:::;sg in such a way that for 1 t s, Pyj mpkt where
0 kiy<:::<ks Having xed o we also drop the indicesl, from our notations. The
lemma tells us that forany 1 t<s, p annihilates

Sat (1 i ow)=(Sat (1ot ) )
and thus we also have thatp® ! annihilates
=(Sat ( 1 ::: t) 1 Ll og).

This will provide a sharper version of condition 3.3.2.1. LetB9 be the sesquilinear (bi-
linear if 2 = 1) form on  associated withh® For any i 2 |, there is an orthogonal

decomposition with respect toB% | = | Li(r) where eachLi(r) is p'-modular for B?
ie. p quLi‘” Lo takes values inZy[ ] and is non-degenerate. Forl t s denote
M{=Sat (,1 ::: 1), which can similarly be decomposed orthogonally with respect
to B® M, = ; Mt(r). Note that M1 = 1. Analogously to condition 3.3.2.1, forl t<s

we have
LS =M =0 unlesso r s t (3.3.2.3)

and if s =1 we simply have that the hermitian (or quadratic) module ( 1;h% over Zy[ ]
is regular. We can deduce a sharper version of condition 3.3.2.2. 4f> 1 then

V=0 unless dy r di+(s 1e (3.3.2.4)
fori<t s; )=0unless d r d+(s t+1le: (3.3.2.5)

while for s =1:
(1r)=0ifr6 dy ifp 3orm> 1, (3.3.2.6)

1 is a regular quadratic Z,-module ifp=2 andm =1.

Let us recapitulate the algorithm thus obtained to enumerate non-uniquely the iso-
morphism classes of tripleg ;q; ) such that ( ;q) is regular and is torsion. Begin with
a datum (Aj; i)i2i, i.e. X the characteristic polynomial of . For any orbit o for which
s=card(lo) > 1:

1. Foranyi 2 |, enumerate the isomorphism classes of quadratic or hermitiadp[ ;]-
modules ; subject to conditions 3.3.2.4 and 3.3.2.5, comput&®on ; i and
throw away those which do not satisfy condition 3.3.2.3.

2. For any such family( i)i2i,, enumerate inductively the possibleSat ( 1 ::: t).
At each stept =1;:::;s, given a candidateM for Sat ( 1 ::: 1), we have to
enumerate the candidatesM.; for Sat ( 1 ::: t), i.e. the -stable lattices

containing M t+1 such that

(@) hOis integral on My.1,
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(b) both M and 41 are saturated in M1,
(c) if t<s 1, M4+ satis es condition 3.3.2.3,

(d) if t=s 1, M1 (a candidate for ) is regular for h°

Remark 3.3.2.4. The rst step can be re ned, since already overQ, there are obstructions
to the existence of a regular lattice. These obstructions exist only whéf= qis a quadratic
form, i.e. |20 =1, so let us make this assumption for a moment. Consider its discriminant
D =disc(q) 2 Q,=squaresQ). If rkz, =2 n is even, thenQp[X1=(X2 ( 1)"D) is
unrami ed over Qp. If rkz, is odd, the valuation ofdisc(g)=2 is even. Moreover in any
case, once we X the discriminant, the Hasse-Witt invariant ofq is determined. We do
not go into more detail. A subtler obstruction is given by the spinor norm of . Assume
that N =rk z, is at least3, and for simplicity assume also thatdet( ) = 1. The regular
lattice ( ;) de nes a reductive groupSO(q) over Z,. The fppf exact sequence of groups
over Zp
1! L1 Spin(g! SO(g! 1

yields for any Z,-algebraR the spinor norm SO(g)(R) ! Hf})pf(R; 2) whose kernel is the
image of Spin (q)(R). Moreover if Pic(R) = 1 (which is the case ifR = Qp or Zp) we
have Hf}opf(R; 2) = R =squaresR ). Thus another obstruction is that the spinor norm
of must have even valuation. We can compute the spinor norm of each easily. If

i = 1 its spinor norm is simply the discriminant of the quadratic form h;. If i 62l
a straightforward computation shows that the spinor norm of j is N, =, (1 + j)dima; Vi
Note that it does not depend on the isomorphism class of the hermitian forhy.

Let us elaborate on the second step of the algorithm. For an orbib for which s =1,
we simply have to enumerate the modules ; satisfying 3.3.2.6 and such that the resulting
quadratic form q (equivalently, h9 is regular.

We have not given an optimal method for the cases > 1. A very crude one consists in
enumerating all the freeFy[ ]-submodules inp 1z,=Z, z, (M¢ t+1) and keeping only
the relevant ones. The following example illustrates that one can do much better in many
cases.

Example 3.3.2.5. Consider the second simplest case =2. Assume for simplicity that
p> 2orm> 1. Then condition 3.3.2.3 shows that for any pair(( 1;h1);( 2;h2)) found
at the rst step of the algorithm, we have

=LY P and =LY LY

where eachLi(r) is p'-modular. Moreover for any i 2 f 1;2g the topologically unipotent
automorphism ; stabilises

pLi(O) Li(l) =fv2 ;j8w2 i;BYv;w)2 pZy[ lg

and thus ; induces a unipotent automorphism ; of (Vi; i) whereV;, = Li(l)szi(l) and
i is a the non-degenerate quadratic or hermitian formp 1hi0 mod p on V,. It is easy to
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check that any relevant 1 > is such that

p=(p 1 po2)="~fve f(vi)jvi2Vig

for a unique isomorphismf : (Vi; 1; 1) ! (V2; 2; 2). Conversely such an isomorphism
yields a relevant .

For p=2 and m = 1 there is a similar but a bit more complicated description of the
relevant lattices 1 2. In that case each form ; is a quadratic form modulo 4,
i.e. x 7! hx;xi mod 4 where h; i is a symmetric bilinear form on a freeZ,-module N .
Note that hx;xi mod 4 only depends on the class ok in F, N. A further complication
comes into play whenrkz,( 1) +rk z,( 2) is odd, but we do not go into more detail.

In the case of an arbitrary s > 1, the observation made in example 3.3.2.5 still applies
atthe laststept = s 1, replacing( 1; »2) with (Mg 1; ). We do not go into the details
of our implementation of the previous steps{<s 1). We merely indicate that in general
pMLm =My t+1) is still described using an iso[norphism‘ between a -stable subspace
of . ,M!” modpanda -stable subspace of , ,L{” mod p.

Remark 3.3.2.6. Regarding all the results of this section, the symplectic case is similar,
replacing quadratic by symplectic and hermitian by antihermitian, and even simpler
because the prime2 is less exceptional . More precisely, the classi cation of hermitian
modules for e.g. the quadratic extensioZp[ ]=Zp[ p + pkl] is more involved forp = 2

than for the other primes (see [ 1), but once we have enumerated the possible iso-
morphism classes of ;'s, the enumeration of the relevant i i can be done uniformly
in p.

3.3.2.3 Orbital integrals for the unit in the unramied Hecke algebra of a
p-adic classical group

In this section we show that thanks to the fact that orbital integrals are formally sums of
masses (where mass takes the same meaning as in mass formula, or in overly fancy terms,
the measure of a groupoid ), they can be computed by counting instead of enumerating
and checking isomorphisms. As before we focus on the case of special orthogonal groups,
the case of symplectic groups being easier.

Let o be afreeZp-module of nite rank endowed with a regular quadratic form ¢p and

consider the algebraic groupG = SO( o; %) Which is reductive overZp. Let f = 1z,

Be the characteristic function of G(Z,) and x the Haar measure on G(Qp) such that

G(Zp) dg = 1. Let o 2 G(Qp) be semisimple (for now we do not assume that it is
torsion), and let I be its connected centraliser inG o,. Fix a Haar measure on lo(Qp).
Consider the isomorphism classes of tripleé ;qg; ) such that

is a freeZp,-module of nite rank endowed with a regular quadratic form g,
2 S0O( ;0),

there exists an isomorphism betweerfQ, z, :d; ) and(Qp z, 0;%; o)
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We apply the previous section's notations and results to suclf ;q; ). The last condition
can be expressed simply using the classical invariants of quadratic (ov€),) or hermitian
(over Qpl i]) forms, as in Proposition 3.3.2.2. It implies that I and the connected cent-
raliser| of in SO(Qp z, ;Q) are isomorphic, and by Remark 3.3.1.1 we can seeas a
Haar measure onl (Qp). Then
0 1
X
O ,(f(g9dg) = @ (1(Qp)\ SO( ;q) *A
(5a)

where the sum ranges over isomorphism cglsses as above. Note thgQp) \ SO( ;0)
stabilises each i, so that it is a subgroup of ~; i 1(Qp) where

(SO( ihi) if02 Iy
U( i;hi) if 12 1eqg [ Ispit:

Irllfact 1(Qp)\ SO( ;0 is the stabiliser of = i for the action oni i on (Qp=Zp) z,

(i ). Grouping the terms in the above sum according to the isomorphism classes of
the quadratic or hermitian modules i, we obtain
0 1
X R
O ,(f (g)dg) = @ A—exﬂ( "h'))')A : (3.3.2.7)
|

( ishi)is, i

Now the sum ranges over the isomorphism classes of quadratic or hermitian latticés;; h;)
over Zy[ ], which become isomorphic to the corresponding datum fo(Qp z, 0;G; o)
when p is inverted, and
( " )
ext(( i;hy)j):=card gregular( i j)-stable i ] 8i; i saturated in
|
We will study the volumes appearing at the denominator below, but for the moment we
consider these numerators. Motivated by the global case, assume from now on thag is
torsion as in the end of the previous section. It is harmless to restrict our attention to a
single orbit o, and assumel = |,. For the computation of orbital integrals, the benet
resulting from the transformation above is that instead of enumerating the possiblév +1
knowing M; at the last stept = s 1, we only have to count them. Let us discuss the
various cases that can occur, beginning with the simplest ones.

The unrami ed case corresponds tos =1 and A1 = Qp[ 1] = Qp[ ], and in that case
there is a unique relevant isomorphism clas¢ 1;h;). It is easy to check that we recover
Kottwitz's result [ ][Corollary 7.3] that the orbital integral equals 1 for the natural
choice of Haar measures.

The case wheres = 1 but Qp[ 1]=Qp[ ] can be non-trivial (i.e. rami ed) is not much
harder: the algorithm given in the previous section identi es the relevant isomorphism
classes( 1;h;) appearing below the sum, andext( 1;hi) = 1. In this case we have
reduced the problem of computing the orbital integral by that of computing the volume of
the stabilisers of some lattices. WherG = Sp, = SL it is the worst that can happen.
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The rstinteresting case iss = 2. Assume for simplicity that p > 2orm > 1, and let us
look back at example 3.3.2.5, using the same notations. Theext(( 1;hi1);( 2;h2)) =0
unless(Vi; 1; 1) ' (Vo;  2; 2), in which caseext(( i;hj)i) = card (Aut( Vi; 1; 1)).
This group is the centraliser of a unipotent element in a classical group over a nite eld.
Results of Wall [ ] give the invariants of such conjugacy classes as well as formulae
for their centralisers. In many cases (e.g. itkz,() < p? 1) the automorphism 1 of
Vy is trivial, and thus we do not need the general results of Wall, but merely the simple
cardinality formulae of nite classical groups. For G = Sp, or SO4 we haves 2 and

1Jv; =1 at worst.

When s > 2 the situation is of course more complicated, and it seems that we cannot
avoid the enumeration of successive latticeM+1  M; t+1 fort<s 1, although the
last stept = s 1is identical to the above case. Note however that these very rami ed
cases are rare in low rank. More preciselykz, ps 1, e.g. in rank less than25 it can
happen that s > 2 only for p=2;3. Thus the worst cases havep = 2. This is fortunate
because for xedk and n the number of k-dimensional subspaces in am-dimensional
vector space over a nite eld with g elements increases dramatically withg.

Remark 3.3.2.7. In the case whereG is an even special orthogonal group, some of the
semisimple conjugacy classes G (Qp) were parametrised only up to outer conjugation.
Since G (Z,) is invariant by an outer automorphism of G, for any o; §2 G(Qp) which
are conjugate by an outer automorphism of5q,, the orbital integrals for f (g,)dg, at o
and J are equal. Of course the above formula for the orbital integral is valid for both.

3.3.2.4 Local densities and global volumes

To complete the computation of adélic orbital integrals we still have to evaluate the de-
nominators in formula 3.3.2.7 and the global volumes. Formulae for local densities and
Smith-Minkowski-Siegel mass formulae are just what we need. But we will use the point of
view suggested by [ ]and used in [ ], i.e. x canonical Haar measures to see local
orbital integrals as numbers. For this we need to work in a slightly more general setting
than cyclotomic elds.

If kis a number eld or a p-adic eld, denote by Oy its ring of integers. If k is a number
eld Ay = k o A will denote the adéles ofk.

Let k be a number eld or a local eld of characteristic zero, and letK be a nite
commutative étale k-algebra such thatdimy K 2,i.e.K = kork k or K is a quadratic
eld extension of k. Let be such that Auty(K) = fldk; g. This determines . Let V
be a vector space oveK of dimensionr 0. Let 2f1; 1g, and assume that =1 if
dimy K = 2. Assume that V is endowed with a non-degenerate -sesquilinear formhj i
such that for any vi;v> 2 V we havehvy;vii = (hvi;voi). Let G = Aut (V;h; i)° be
the connected reductive group overk associated with this datum. Then G is a special
orthogonal (K = k and = 1), symplectic (K = kand = 1), unitary (K=k is a
quadratic eld extension and = 1) or general linear K = k kand =1) group.

If k is a number eld, by Weil [ ] the Tamagawa number (G) equals2 (resp. 1)
in the orthogonal case ifr 2 and V is not a hyperbolic plane (resp. ifr =1 or V is
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a hyperbolic plane), 1 in the symplectic case,2 in the unitary case ifr > 0 and 1 in the
general linear case.

If k is ap-adic eld, consider a lattice N in V, i.e. a nite free Ox -moduleN V such
that V = KN . DenoteN- = fv2 Vj8w2 N; hv;wi20kg. If h; ijy N takes values in
Ok then N- N and we can considefN- : N], i.e. the cardinality of the nite abelian
group N-=N. In general dene [N- : NJas[N- : N-\ N]5[N : N-\ N]. Recall also
[ ][De nition 3.5] the density n associated with(N; h; i).

In [ ] Gross associates a motivil of Artin-Tate type to any reductive group over
a eld. For the groups G de ned above, letting n be the rank of G, we have

8L
2 .01 2x) orthogonal case withr odd and symplectic case,
M = S Q1 n ;‘:11 Q(1 2x) orthogonal case withr > 0 even,
v=1 Q@ x) unitary and general linear cases.

In the orthogonal case withr > 0 even let( 1)"D be the discriminant of (V;h; i) (i.e.
the determinant of the Gram matrix), then is de ned as the characterGal(k(' D)=k) !

f 1g which is non-trivial if D is not a square ink. In the general linear case is trivial,
and in the unitary case is the non-trivial character of Gal(K=k). For L-functions and
-factors we will use the same notations as | ]

If k is a number eld Dy will denote the absolute value of its discriminant. ForK = k
or K = k kdenoteDg- =1, whereas for a quadratic eld extensionK of k we denote
Dk=k = JNk=0o(Dk=x)j Where Dk is the di erent ideal of K=k and the absolute value of
the idealmZ of Zism if m 1. There are obvious analogues over ang-adic eld, and
Dy (resp. Dk= ) is the product of Dy, (resp. Dy =, WhereKy = ky,  K) over the nite
placesv of k.

For (k;K; ;V h; i) (local or global) as above de ne as in [ ]
(
+ if K = k;
nvy= 0T
r if dimgK =2
and 8
22 in the orthogonal case withr even,
= 20*1) =2 in the orthogonal case withr odd,
"1 in the symplectic, unitary and general linear cases.

Finally, consider the case wher&k = R and G (R) has discrete series, i.e. the Euler-Poincaré
measure onG (R) is non-zero, i.e.G has a maximal torus T which is anisotropic. Re-
call Kottwitz's sign e(G) = ( 1)%©) and the positive rational number ¢(G) de ned in

[ 1Y8]. Explicitly,

g 1 in the symplectic case,
c(G) = S 2"= QZC in the orthogonal case with signature(a;b); b even,
S 2"= 2 in the unitary case with signature (a; b):
The following theorem is a reformulation of the mass formula [ J[Theorem 10.20]

in our special cases.
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Theorem 3.3.2.8. Let k be a totally real number eld and letK, , (V;h; i) and G be as
above. LetM denote the Gross motive of5. Assume that for any real placev of k, G (ky)

has discrete series. De ne a signed Haar measure = ~, , on G(Ag) as follows. For
any real placev of k,  is the Euler-Poincaré measure onG (ky). For any nite place v of
k, v is the canonical measurd (M -(1))j! g,,J on G(ky) (see [ 1[Y4)]). In particular,

for any nite place v such thatGy, is unramied, the measure of a hyperspecial compact
subgroup ofG (ky) is one. Then for any Ok -lattice N in V,

Z DY™CFD Uy (e
= (G) LW™M) —
G (K)NG (Ag) (M) vit c(Gk,)

gmok | [Ng iNyJ"™)Z (G(ky)\ GL(Ny))
Ly(M-(1)) n,

vV nite
Proof. To get this formula from [ ][Theorem 10.20], use the comparison of measure at
real places [ ][Proposition 7.6], the fact thatL, (M -(1)) n, =1 for almost all nite

places ofk, and the functional equation ( M)= (M) ( M-(1)) (see [ 19.7]). O

Note that the choice of at the nite places does not play any role. This choice was

made to compare with the very simple formula [ ][Theorem 9.9]:
Z Y ( 1)%Cx)
= (G) LWM) — (3.3.2.8)
G (K)NG (Ax) it c(Gk,)
We obtain that under the hypotheses of the theorem,
Y (M) dmek Y Ly(M-(1) n
v(G(k)\ GLINY) = —go = VDD N (33.2.9)
Vv nite Dklm D|r<(=rk+ ) Vv nite [Ny : Nv]n( )
We can compute explicitely
8
3 DK:”k:2 in the unitary case if r = n is even,
(M ) — n 1=2 . . .
DM G2 () = 3 Ny=o( ) in the orthogonal case ifr is even,
k K=k : i
1 otherwise,

where in the second casé 1)"D is the discriminant of h; i and is the discriminant of
k(' D)=k. As the proof of the following proposition shows, the factor 9Mek which is
nontrivial only in the orthogonal cases, is local at the dyadic places.

Proposition 3.3.2.9. Let p be a prime. Letkg be ap-adic eld and let (Kg; ;V o;h; ig)
and G be as above. Let o be the canonical Haar measurd (M -(1))j! g,j on Go(ko).
If p=2, Ko= kgand =1, letxg=  9Meko otherwise letxg = 1. Then for any
Ok ,-lattice Ng in Vp,

0(Go(ko) \ GL(No)) = L(8M—(l)) Xo No [Ng :Ng] "Ve)=2

3 DKQZEO in the unitary case if r = n is even,
5 Nko=q, ( 0) " 122 inthe orthogonal case ifr is even,

1 otherwise,
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where in the second cas€é 1)"Dy is the discriminant of h; ig and ¢ is the discriminant
P=\_
of ko( Do)—ko.

Proof. We apologise for giving a global proof of this local statement. We only give details
for the hardest case of orthogonal groups.

When p > 2 and the symmetric bilinear form h; iojn, N, IS integer-valued and non-
degenerate G is the generic ber of a reductive group overOy, and the equality is obvious.
Note that this does not apply for p = 2, even assuming further that the quadratic form
v 7! hv;vip=2 is integer-valued onNg, because the local density y, is de ned using the
bilinear form h; ig, not the quadratic form v 7! hv; vig=2.

Next consider the casep = 2 and Ng arbitrary. By Krasner's lemma there ex-
ists a totally real number eld k and a quadratic vector space(V;h; i) which is posit-
ive de nite at the real places of k and such that k has a unique dyadic placevy and
(ko;Vosh; io) " (kvgsky, « Vih;i). Let S be the nite set of nite places v 6 vp of k
such that (ky  V;h; i) is rami ed, i.e. does not admit an integer-valued non-degenerate
Oy, -lattice. For any v 2 S there is a nite extension E() of k, over which (k, « V;h; i)
becomes unrami ed. By Krasner's lemma again there exists a nite extensiork® of k
which is totally split over the real places ofk and overvgy and such that for anyv 2 S, the
ky-algebraky i k%is isomorphic to a product of copies oE (). Let Sy be the set of dyadic
places ofk® i.e. the set of places ok®abovevy. There exists a latticeN%in k®  V such
that for any nite v 62Sp the symmetric bilinear form h; ijno no is integer-valued and
non-degenerate, and for anw 2 Sp we haveh; ino no 'h ;ioing No- APPlying formula
3.3.2.9 we obtain the desired equality to the powecard(Sp), which is enough because all
the terms are positive real numbers. Having established the dyadic case, the general case
can be established similarly.

The unitary case is similar but simpler, because the dyadic places are no longer excep-
tional and it is su cient to take a quadratic extension k%k in the global argument. The
symplectic and general linear cases are even simpler. O]

Remark 3.3.2.10. 1. In this formula, one can check case by case that the product of
[Ng : No] "V0)=2 and the last term is always rational, as expected since all other
terms are rational by de nition.

2. We did not consider the case where = 1 and K=k is a quadratic eld extension,
i.e. the case of antihermitian forms, although this case is needed to compute orbital
integrals for symplectic groups. Ify 2 K is such that (y) = vy, multiplication by
y induces a bijection between hermitian and antihermitian forms, and of course the
automorphism groups are equal.

3. There are other types of classical groups considered in [ ] and which we left
aside. For a central simple algebrak over k with dimy K =4 (i.,e. K = My(k) or
K is a quaternion algebra ovek) they also consider hermitian (resp. antihermitian)
forms over a K -vector space. The resulting automorphism groups are inner forms
of symplectic (resp. even orthogonal) groups. Using the same method as in the proof
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of the proposition leads to a formula relating the local density y, to the canonical
measure ofAut( Ng) in these cases as well.

We use the canonical measure de ned by Gross (called, above) when computing local
orbital integrals. In the previous section we explained how to compute the numerators in
formula 3.3.2.7 for the local orbital integrals. Proposition 3.3.2.9 reduces the computation
of the denominators to that of local densities. Using an elegant method of explicitly
constructing smooth models, Gan and Yu [ ] give a formula for n, for p > 2 in
general and forp = 2 only in the case of symplectic and general linear groups and in the
case of unitary groups ifK g=kg is unrami ed. Using a similar method Cho | ] gives
a formula in the case of special orthogonal groups whep = 2 and ko=Q> is unrami ed.
This is enough for our computations since we only need the case = Q,. Form 1
and = ., the quadratic extensionQ( )=Q( + 1) is ramied over a dyadic place if
and only if m is a power of2. In this case the dierent Dg,( )=q,( + 1) iS generated by
a uniformiser of Q2( + 1), which is the minimal rami cation that one can expect from
a rami ed quadratic extension in residue characteristic2. Cho [ J[Case 1] also proved
an explicit formula for the local density in this case. To be honest | ] only asserts it
in the case wherekg is unrami ed over Q,. Nevertheless the proof in Case 1 does not
use this assumption. This completes the algorithm to compute the local orbital integrals
in all cyclotomic cases overQ. Note that the result is rational and the computations are
exact (i.e. no oating point numbers are used).

Finally, the global volume is evaluated using Gross' formula 3.3.2.8. The value df(M )
is known to be rational and computable by [ ]. However, we only need the values of
L(M) for M which is a direct sum of Tate twists of cyclotomic Artin motives (concretely,
representations ofGal(E=F) where E is contained in a cyclotomic extension ofQ). Thus
we only need the values of Dirichlet L-functions at non-negative integers, i.e. the values of

generalised Bernoulli numbers (see e.g. [ 1.
Remark 3.3.2.11. Formally it is not necessary to use the results of [ ] to com-
pute the factors Vol(I1(Q)nl(A)) in formula 3.3.1.1, the mass formula in [ ] along

with the formulae for the local densities \, would su ce. Apart from the fact that it is

less confusing and more elegant to clearly separate local and global measures, using Gross'
canonical measure, which is compatible between inner forms by de nition, allows to com-
pute -orbital integrals once we have computed orbital integrals. The fundamental lemma
gives a meaningful way to check the results of computations of orbital integrals. More pre-
cisely we need the formulation of the fundamental lemma for semisimple singular elements
[ J[Conjecture 5.5] which has been reduced to the semisimple regular case by | 1[Y3]
and [ J[Lemma 2.4.A]. For an unrami ed endoscopic group the fundamental lemma for
the unit of the unrami ed Hecke algebra at regular semisimple elements is a consequence
of the work of Hales, Waldspurger and Ng6. The case of a rami ed endoscopic group is
[ J[Proposition 7.5]: the -orbital integral simply vanishes.
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3.3.2.5 Short description of the global algorithm

Let G be one 0ofSOgzn+1 OF Sp,, or SOy, over Z, let prp be the characteristic function
of G(,b;) and pdgo the Haar measure onG (A;) such that G(,bi) has measure one. Let

be a dominant weight for G¢ and let f1 . (91 )dgy be the distribution on G(R) de ned

in section 3.3.1.1. Denotd (g)dg= f1 . (o1 )dou pfp(gp)dgp. We give a short summary
of the algorithm computing Tey(f (g)dg) for a family of dominant weights , by outlining

the main steps. RealiseG as SO( ;q) (resp. Sp( ;a)) where is a nite free Z-module
endowed with a regular quadratic formq (resp. nondegenerate alternate forna). Denote
N =rankz() .

1. Enumerate the possible characteristic polynomials in the standard representation of
G for 2 C(G(Q)). Thatis, enumerate the polynomialsP 2 Q[X ] unitary of degree
d such that all the roots of P are roots of unity, and the multiplicity of 1 as root
of P is even.

2. For each suchP, and for any prime numberp, in Qp[X] write P = Qi P; as in section
3.3.2.1. For anyi, enumerate the nite set of isomorphism classes of quadratic or
hermitian (resp. alternate or antihermitian) lattices ( i;h;) as in section 3.3.2.2. For
almost all primes p, the minimal polynomial rad(P) = P=gcd(P;P9 is separable
modulo p, there is a unique isomorphism clasg i;h;) to consider andh; is non-
degenerate. Thus we only need to consider a nite set of primes.

3. The combinations of these potential local data determine a nite set of conjugacy
classes inG (Q).

4. For any such conjugacy class ove®, compute the local orbital integrals using section
3.3.2.3 and Proposition 3.3.2.9. Compute the global volumes using Gross' formula
3.3.2.8.

5. Let CY be the set of G(Q)-conjugacy classes inC(G(Q)). For ¢ 2 C°de ne the

mass ofc X
S Vol(1 (Q)nl (A))
‘ card(Cent( ; G(Q))=(Q))

cl( )2c

so that X
Ten(f (9)dg) = mcTr(cjV ):
c2Co
Using Weyl's character formula, we can nally compute Tg(f (g)dg) for the dom-
inant weights ~ we are interested in. Some conjugacy classes2 C° are singular,
so that a re nement of Weyl's formula is needed: see | J[Proposition 1.9] and
[ ][Proposition 2.3].

We give tables of the massesn. in section 3.7.1, for the groups of rank 4. Our
current implementation allows to compute these masses at least up to rank (and for
Sp,4 also), but starting with rank 5 they no longer t on a single page.
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Remark 3.3.2.12. In the orthogonal case the groufis is not simply connected and thus in
G (Q) there is a distinction between stable conjugacy and conjugacy ®&(Q). However, if
: 92 C(G(Q)) both contribute non-trivially to Ty (f (g)dg) and are conjugated inG (Q),
then they are stably conjugate. Indeed their spinor norms have even valuation at every
nite prime, and are trivial at the archimedean place since they each belong to a compact
connected torus, therefore their spinor norms are both trivial. This implies that they lift to
elements~ ~%in the spin group Gs(Q), and moreover we can assume that and ~° are
conjugated in G s(Q), which means that they are stably conjugate.

This observation allows to avoid unnecessary computations: if the spinor norm ofis
not equal tol, the global orbital integralO (f (g)dg) vanishes.

3.3.3 Computation of the parabolic terms using elliptic terms for groups
of lower semisimple rank

In the previous sections we gave an algorithm to compute the elliptic terms in Arthur's trace
formula in [ ]. After recalling the complete geometric side of the trace formula, i.e.
the parabolic terms, we explain how the archimedean contributions to these terms simplify
in our situation where the functions f, at the nite places have support contained in a
compact subgroup. The result is that we can express the parabolic terms very explicitely
(perhaps too explicitely) using elliptic terms for groups of lower semisimple rank in section
3.3.3.4.

3.3.3.1 Parabolic terms

Let us recall the geometric side of the trace formula given in [ 1[Y6]. We will slightly
change the formulation by using Euler-Poincaré measures on real groups instead of trans-
ferring Haar measures to compact inner forms. The translation is straightforward using
[ [[Theorem 1]. Let G be one ofSOzn+1, Spy, Or SO4,. Of course the following
notions and Arthur's trace formula apply to more general groups.

First we recall the de nition of the constant term at the nite places. Let p be a
nite prime, and denote K = G(Zp). Let P = MN be a parabolic subgroup ofG
having unipotent radical N admitting M as a Levi subgroup. SinceK is a hyperspecial
maximal compact subgroup ofG(Qp) it is good: there is an lwasawa decomposition
G(Qp) = KP(Qp). When p is not ambiguous write p(m) = jdet(mjLie(N))j,. In
formulae we require the Haar measures on the unimodular group& (Qp), M (Qp) and
N (Qp) to be compatible in the sense that for any continuoush : G(Qp) ! C having
compact support,

Z Z Z
h(g)dg = h(knm) dkdndm = h(kmn) p(m)dkdndm:
G (Qp) K N(Qp) M(Qp) K N(Qp) M(Qp)
If f,(g)dg is a smooth compactly supported distribution onG (Qp), the formula
Z Z
fpm (M) = p (M) fp(kmnk 1)dndk
K N(Qp)
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de nes a smooth compactly supported distribution f .y (m)dm on M (Qp). Although

it seems to depend on the choice oN and the good compact subgroupK, the or-
bital integrals of f,\ (m)dm at semisimple G-regular elements ofM (Qp) only depend
on f, (see [ JlLemma 9]). The case of arbitrary semisimple elements follows us-
ing [ I[Theorem 0]. Whenf is the characteristic function 1z, of G(Zp) (and
vol(G(Zp)) = 1), the fact that T is de ned over Z, and the choiceK = G(Z;) imply that

for any choice ofN, fpm = 1y (z,) (if vol(M (Zp)) =1).

We can now de ne the factors appearing on the geometric side of the trace formula.
As for elliptic terms, consider a smooth compactly supported distribution pfp(gp)dgo
on G(Af). Fix a split maximal torus T of G (over Z). The geometric side is a sum
over Levi subgroupsM containing T o, they are also de ned overZ. For such M, denote
by Am the connected center oM and let C(M (Q)) be the set of semisimple conjugacy
classes of elements 2 M (Q) which belong to a maximal torus ofM r which is anisotropic
modulo (Am)r = Amg. If  is (a representative of) an element ofC(M (Q)), let | denote
the connected centraliser of in M. Dene M( ) = jCent(; M(Q))=1(Q)j. For any
nite prime p, to fp(gp)dg, we associate the complex Haar measur® (fpv) on 1(Qp).
For p outside a nite set (containing the primes at which | is rami ed), the measure of a
hyperspecial maximal compact subgroup of (Qp) is 1. De ne a complex Haar measure on
I(A)=Awm (A) as follows:

Give | (R)=A m (R) its Euler-Poincaré measure. It is honzero by our assumption on

Give Ay (Qp) its Haar measure such that its maximal compact subgroup (in the
case at handA y (Zp)) has measurel, and endowl (Qp)=A v (Qp) with the quotient
measure.

Now x adominantweight for G and denote = + (where2 isthe sum of the pos-
itive roots) the associated in nitesimal character. Forf (g)dg= f1 . (o1 )do pfp(gp)dgo,
the last ingredient occurring in Tgeom(f (9)dg) is the continuous function 7!  u(; )
de ned for semisimple 2 M (R) which belong to a maximal torus of M g which is an-
isotropic modulo (A v )r. This function will be de ned in terms of characters of discrete
series and studied at compact elements in section 3.3.3.3. If does not satisfy these
properties dene p(; )=0.

The geometric sideTgeom(f (g)dg) of the trace formula is

X 1M W(TeM) X el QN A)AMA) L,
2 W (T 0; G)j card (Cent(; M(Q)=(Q) "' 7"

(3.3.3.1)
After the de nition of the function \ it will be clear that the term corresponding to

M = G is Tei(f (g)dg).

M To 2C(M (Q))
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3.3.3.2 Sums of averaged discrete series constants

Harish-Chandra gave a formula for the character of discrete series representations of a
real reductive group at regular elements of any maximal torus. This formula is similar
to Weyl's character formula but it also includes certain integers which can be computed
inductively. In the case of averaged discrete series this induction is particularly simple. We
recall the characterisation of these integsrs given in [ [Y3] and compute their sum
and alternate sum. When the support of Iofp(gp)dgp is contained in a compact subgroup
of G(At), in the trace formula only these alternate sums need to be computed, not the
individual constants.

Let X be a real nite-dimensional vector space andR a reduced root system inX .
Assume that Id 2 W(R), i.e. any irreducible component ofR is of type A1, B, (n 2),
Ch (n 3), Don (n 2), E7, Eg, F4 or G,. If Ry is a subsystem ofR having the
same property, letting R, be the subsystem ofR consisting of roots orthogonal to all
the roots in Ry, Idgrr, 2 W(R2) by [ lich. V, Y3, Proposition 2], andank(R) =
rank(R1)+rank( Rp). In particularfor 2 R,R :=f 2Rj ( -)=0gis arootsystem
inY whereY = ker

Recall that Xeg := fX2 X j8 2 R; (x) 6 0g, and de ne X 4 similarly with respect
to R-. For x 2 Xeg We denote by  the basis of simple roots ofR associated with the
chamber containingx. There is a unique collection of functionscr : Xeg Xeg! Z for
root systemsR as above such that:

1. ¢(0;0)=1,
2. forall (X; )2 Xreg Xygq suchthat (x)> 0, cr(X; )=0,

3. forall (x; )2 Xreg Xpgand 2 x, Ccr(X; )+ cr(s (X); )=2cr (y; jv) where
Y =ker andy=(x+s (x))=2.

In the third Broperty note that for any 2 Rr f gsuchthat (x) > 0, (y)> 0

writng =, n withn 0, we have
- X -
= &) %= n  (x) % > 0 (3.3.3.2)
2 xrf g

In the second property we could replace (x) > 0 by the stronger condition that R 6 ;
and x and dene the same order:f 2 Rj (xX)>0g=f 2Rj (-)> 0g By
induction cg is locally constant, and W (R)-invariant for the diagonal action of W(R) on
Xreg  Xreg-

The existence of these functions follows from Harish-Chandra's formulae and the ex-
istence of discrete series for the split semisimple groups ov& having a root system as
above. However, [ ] give a direct construction.

Let X0 2 Xreg and o 2 X4 de ne the same order. Forw 2 W(R) de ne d(w) =

cr(Xo;W( 0)) = cr(W (X0); o).
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Proposition 3.3.3.1. Let R be a root system as above, and denote gR) the integer
(jRj=2 + rank(R)) =2. Then

X
d(w) = jW(R)j and (wd(w) = (- )W (R)j:

Ww2W (R) w2W (R)
Proof. The two formulae are equivalent by [ ][Theorem 3.2] so let us prove the rst
one by induction on the rank of R. The case ofR = ; is trivial. Assume that R is

not empty and that the formula holds in lower rank. Denote W = W(R). For 2 R
let C = fx 2 Wxgj] 2 xgandD the orthogonal projection of C onY = ker
Geometrically, C represents the chambers adjacent to the wall¥ on the side determined
by . Forx 2 C , by a computation similar to 3.3.3.2, orthosgonal projection onY maps the
chamber containingx onto a connected componento¥ r g« ker ,i.e. achamber
in Y relative to R. Thus the projection C ! D s bijective and in any R -chamber ofY

there is the same numbeiD j5fW (R )j of elements inD .

X X X
rank(R) d(w) = Cr(X; o)

w2W x2Wxo 2 «
1 X X
=3 CR(X; 0)+ Cr(s (X); o)
X 2R>(<2C |
= Cr (Y olv)
2R y2D
X . - X . - . -
= D j= ] xJ =rank( R)jWj:
2R x2WXg
At the second line we used the permutation 7! of R and the fact that x 2 C
s(x)2C . O

3.3.3.3 Character of averaged discrete series on non-compact tori

In this section we consider a reductive groupG over R which has discrete series. To
simplify notations we assume thatG is semisimple, as it is the case for the symplectic and
special orthogonal groups. Fix a dominant weight for G¢, andlet = + where?2

is the sum of the positive roots. LetM be a Levi subgroup ofG and denote by A\ the
biggest split central torus in M. If 2 M (R) is semisimple,G -regular and belongs to a
maximal torus anisotropic modulo A y , de ne

M(s )= ( DACE) pG () X L)

12 disc( )

where DS () = det(ld Ad( )jg=m). Note that for 2 G(R) semisimple elliptic reg-
ular, c(; ) epawr =Tr( V) epaw = O (f (9)dg) wheref (g)dg is the smooth
compactly supported distribution of section 3.3.1.1.

When M R admits a maximal torus T anisotropic moduloAy R, Arthur shows
that  (; ) extends continuously toT (R) (beware that the statement | 1[(4.7)] is
erroneous: in general v (; ) is not identically zero outside the connected components
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that intersect the center of G). Following [ 1[Y4], to which we refer for details, let
us write the restriction of  (; ) to any connected component ofl (R)g reg as a linear
combination of traces in algebraic representations oM .

Let R be the set of roots of T on G (over C). Let Ry be the set of roots of T on
M. Let 2 T(R) be G-regular, and let be the connected component of in T (R). Let
R Dbe the set of real roots 2 R such that ( ) > 0. As the notation suggests, it only
depends on . MoreoverR and Ry, are orthogonal sub-root systems oR: the coroots of
Rm factor through T\ M ger Which is anisotropic, while the roots inR  factor through the
biggest split quotient of T. Finally y (; ) =0 unless belongs to the image ofG s¢(R),
and in that case the Weyl groupW (R ) of R contains Id and rk(R ) =dim Ay. In
the following we assume that 2 Im(Gs(R)! G(R)).

Since is G-regular, it de nes a set of positive rootsR* =f 2R j ()> 1ginR .
Choose a parabolic subgrou® = MN with unipotent radical N such that R* is included
in the set of roots of T on N. In general this choice is not unique. Choose any set of
positive roots RR’A for Ry . There is a unique Borel subgroupB P of G containing T
such that the set of roots of T on B\ M is Ry, . Let R* be the set of positive roots inR
corresponding toB.

There is auniquex 2 (RR) = R zX (Am) suchthatforany 2R, (x)=

(). Then x is R -regular and the chamber in whichx lies only depends on the
connected component of in T(R)g reg- Denote by pr the orthogonal projection R 7
X (T)! RR . When we identify RR with R 7z X (Awm), pr is simply restriction to
Am . By [ ][proof of Lemma 4.1 and end of Y4] we have

o PO

m(; )=Q e @ () D (W)er (x spr(w( g)))[w(s) 8I()

w2W (R)

where Y
p( )= jdet( jLie(N))j= INQ@IE

2R* Ry,
Since g g\ wm isinvariant under W(Ry ), in the above sum we can combine terms in the
same orbit underW (Ry, ) to identify Weyl's character formula for algebraic representations
of M. Let E = w2W(R)j8 2R*[ R, :w % )2R* , a set of representatives
for the action of W(R ) W (Rum) on the left of W(R). Denoting Vy . o the algebraic

representation ofM with highest weight © we obtain

X
m(s )= p( ) (Wiwo)d(W)Tr [V awawo( ) s
Wo2E wi2W (R )

Furthermore wiwg( 8) Wo( 8) 2 ZR is invariant under W (Ry ), hence in the above
sum

T MMawawe(s) & =[WaWo( B) Wo( B)I( ) Tr Muwo(s) &

and [wiwg( g8) Wo( g8)]( ) is a positive real number, which does not really depend on
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but only on the coset(T \ M g)(R) (equivalently, on x ). Finally we obtain

X X
m(; )= p( ) (wo) (wi)d(wy) [wiwo( 8)  Wo( B)I( )
Wo2E wi2W (R )

Tr jVM:Wo(B) B

This formula is valid for in the closure (in T (R)) of a connected component of (R)g  reg-

Proposition 3.3.3.2. If is compact, i.e. the smallest closed subgroup &f(R) containing
is compact, then we have

X
m(: )= DIRIHW(R )j Wo)Tr MM wo(s) &
W02E

Proof. This formula follows from [wiwp( 8) Wo( g)]( ) =1 and Proposition 3.3.3.1. [J

3.3.3.4 Explicit formulae for the parabolic terms

Let G be one 0ofSO2n+1 OF Sp,, or SOy, over Z, let prp be the characteristic function
of G(E) and IOdgp the Haar measure onG (Af ) such that G(,b;) has measure one. Let
be a dominant weight for G¢ and let f1 . (g1 )dgi. be the distribution on G(R) de ned
in section 3.3.1.1. Denotd (g)dg= f1 . (01 )do IOfp(gp)dg[,. Using Proposition 3.3.3.2
and tedious computations, we obtain explicit formulae for the geometric sid& geom(f (g)dg)
of Arthur's trace formula de ned in section 3.3.3.1. For a dominant weight = kje; +

+ Kn €, it will be convenient to write Tgeom(G; K) for Tgeom(f (g)dg) to precise the group
G, and similarly for Tgy. If G is trivial ( SOq or SO; or Spg) then Tgy is of course simply
equal to 1.

Any Levi subgroup M of G is isomorphic toQi GL,, GP°whereGUis of the same type
as G. Note that M (R) has essentially discrete series (i.e.y ( ; ) is not identically zero)
if and only if for all i;n; 2 and in caseG is even orthogonal,G0 has even rank. Thus
the Levi subgroupsM whose contribution to Tgeom (that is formula 3.3.3.1) is nonzero are
isomorphicto GL? GL$S GPfor some integersa; c.

SincePGL ' SOg3, for k 2 Z o we denoteTg(PGL 2;k) = Tei(SO3; k). For non-
negativek 2 1=27ZrZ itis convenient to de ne Tg(PGL 2;k) =0, sothatforanyk 2 Z
we haveTg(PGL 2;k=2) = Te||(Sp2; k)=2.

For a;c;d2 Z o, let 4.c.q be the set of in the symmetric group Sa+2¢+4q Such that

< < (a,
(a+1) < (a+3) < < (a+2c 1),
foranyl i ¢ (a+2i 1)< (a+2i),

(a+2c+1) < < (n).
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Fora Oandx2f0;:::;ag, dene

( paa D2 R gy

®)(a;x) = (P (
22 b0 o T 2b r
It is easy to check that
B) n. oy o (12 D7 P— pP— 1 _
®)(a;x) = s o =0 I+ 171 ) 2 sy

Forn a, 2S,andk=(ks;:::;kn) 22", let

Theorem 3.3.3.3 (Parabolic terms for G = SO,+1). Let a;c;d2 Z ¢ not all zero and
n = a+2c+ d. The sum of the contributions t0Tgeom(SO2n+1 ; K) in formula 3.3.3.1 of the
Levi subgroupsM in the orbit of GLY GL§ SOg4+1 under the Weyl groupW (T o; G)
is

®)(a;k; )

2 acd
Q
i=1

Ten(PGL 2; (K (a+2i 1)+ K (a+2iy (@+2i) (a+2i 1)+2n)=2)
Ten(SO2g+1; (K (n sy * N d+1  (n d+1);:i5k i+ n (n):

Ten PGL 2;(K (a+2i 1y K (a+2iy* (a+2i) (a+2i 1) 1)=2
i

We have a similar formula for the symplectic group. Fora 0O and x 2 f0;:::;ag,
de ne

a(a 1)=2 X@ Xo
(C)(a; X) = L ( l)b(a b) X a X ( 1
2a o b r
b=0 r=0
Then we have 8
>( 1)*2 if ais even andx = a;
©)(a;x) = ( 1)@ D=2 jf 3js odd andx = 0;
"0 otherwise.

Forn a, 28S,andk=(ks;:::;kn) 2 2Z", let

Theorem 3.3.3.4 (Parabolic terms for G = Sp,,). Let a;c;d 2 Z ¢ not all zero and
n=a+2c+ d. The sum of the contributions toTgeom(SpP,y; K) in formula 3.3.3.1 of the
Levi subgroupsM in the orbit of GLY GL§ Sp,4 under the Weyl groupW (T o; G) is

©(a;k; )

2 a;c;d
Q . .
Ten PGL 5; (k (a+2i 1) k (a+21i) + (a+ 2|) (a+ 21 l) l):2 -
i=1 i
Ten(PGL 2; (K (as2i 1)+ K (a+2i) (@a+2i) (a+2i 1)+2n+1)=2)

Ten(Spags (K (n g+1y + N d+1  (n d+1);::5kpy+n  (n))
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Fora Oandx 2f0;:::;2ag, dene

1@ X 2
(D)(a;x): ﬁ X 23 X ( 1)r:
b=0 r=0 r r
We have 8
21 if a=0;

(P)(a;x)= _1=2 ifa>0andx(2a x)=0;
"0 otherwise.

Forn a, 2 Sy, andk =(Ky;:::;kon) 2 22", let

For the group SOg4,, We need only consider dominant weightk with kop 0 (i.e.
the same inequalities as for the other two in nite families) since the end result is invari-
ant under the outer automorphism of SO4y, that is Tgeom(SOun; (K1;:::;kon 1, Kkon)) =

Theorem 3.3.3.5 (Parabolic terms for G = SOy,). Let a;c;d2 Z ¢ not all zero and
n = a+ c+ d. The sum of the contributions t0 Tgeom(SOan;K) in formula 3.3.3.1 of the
Levi subgroupsM in the orbit of GL22  GLS SOyq under the Weyl groupW (T o; G) is

©)(a;k; )

2 2a;c; 2d

Ten PGL 2,(k (2a+2i 1) k (2a+2i) + (2a+ 2|) (23"‘ 2i 1) 1)22 _
i=1 [
+Tal(PGL 2;(K as2i 1)+ K ar2iy (2a+2i) (2a+2i 1)+4n 1)=2)
Ten(SOuq; (K 2n 2941y +2Nn  2d+1 (2n 2d+1);::00K on) +2n (2n)):

3.4 Endoscopic decomposition of the spectral side

3.4.1 The spectral side of the trace formula

The previous sections give an algorithm to compute the geometric side of Arthur's trace
formula in [ ]. Let us recall the spectral side of this version of the trace formula.
As before G denotes one of the reductive groupsSOzn+1, Spo, Or SOy Over Z. Let
K1 be a maximal compact subgroup ofG(R) and denoteg = C R Lie(G(R)). Let
Adisc(G (Q)NG (A)) be the space oK G(Q)— nite and Z(U(Qg))- nite functions in the
discrete spectrum Lgisc(G(Q)nG (A)). It is also the space of automorphic forms in the
sense of | ] which are square-integrable. There is an orthogonal decomposition

M
Adisc(G(QING (A)) = m
2 gisc (G)

where 4isc(G) is a countable set of distinct isomorphism classes of unitaryg; K1 )

G (Af)-modules andm 2 Z ;. Denote YV (G) disc(G) the set of such that for

disc
any prime number p the representation , is unrami ed, i.e. S(Zp) 60.
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Let be a dominant weight for G¢, and denoteV the corresponding algebraic rep-
resentation of G (C), which by restriction to G(R) we see as dg; K1 )-module. If X is an
admissible(g; K1 )-module, de ne its Euler-Poincaré characteristic with respect toV

X _ .
EP(X V)= ( D'dimH'((g;K1 ); X V):
i 0
We refer to [ ] for de nitions and essential properties of(g; K1 )-cohomology. By
[ J[Chapter |, Corollary 4.2] for any irreducible (g; K1 )-module X, we have that

H ((g;K1);X V )=0 unlessX has the same in nitesimal character asV .
For our particular choice of function on G(A;) the spectral side of Arthur's trace
formula in [ ]lis

mEP(1 V) (3.4.1.2)
2 Gisc (G)
By [ ][Theorem 1] there is only a nite number of nonzero terms. Vogan and Zuck-
erman | ] (see also [ ]J[Chapter VI, Y5]) have classi ed the irreducible unitary

(g; K1 )-modules having cohomology with respect toV , and computed this cohomo-
logy. However, the integer 3.4.1.1 alone is not enough to recover the numben(X) of

2 gw.(G) suchthat 1 isisomorphic to a given irreducible unitary (g; K1 )-module X
having the same in nitesimal character asV .

Arthur's endoscopic classi cation of the discrete automorphic spectrum ofG | ]
allows to expressm(X) using numbers of certainself-dual cuspidal automorphic repres-
entations of general linear groups. Conversely these numbers can be obtained from the
Euler-Poincaré characteristic 3.4.1.1 for various group§& and weights . For explicit com-
putations we will have to make Assumption 3.4.2.4 that relates the rather abstract Arthur
packets at the real place with the ones previously de ned by Adams and Johnson in | ]

Note that it will not be necessary to use [ ] since the Euler-Poincaré characteristic

is a much simpler invariant than the whole cohomology.

3.4.1.1 Arthur's endoscopic classi cation

Let us review how Arthur's very general results in [ ] specialise in our particular
situation: level one and regular in nitesimal character. We are brief since this was done
in [ 1[Y3], though with a slightly di erent formulation. We refer to [ ] for the
de nition of L-groups. For G a reductive group overF we will denote @ the connected
component of the neutral element in-G (which Borel denotes-GY).

Let F be a local eld of characteristic zero. The Weil-Deligne group ofF is denoted
by W2: if F is archimedeanW? = W, whereas in thep-adic caseW? = W SU(2).
Consider a quasisplit special orthogonal or symplectic groufis over F. Let : WS
SL,(C)! G be alocal Arthur parameter, i.e. ng is a continuous semisimple splitting
of "G I WQ with bounded image and jsi,(c) is algebraic. If js, ) is trivial then
is a tempered Langlands parameter. The general case is considered for global purposes,
which we will discuss later. Consider the groupC = Cent( ; @) and the nite group

S =¢C :COZ(@)GaI(E:F):
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For the groups G considered here the groupS is isomorphic to a product of copies of
f 1g. Arthur [ ][Theorem 1.5.1] associates with a nite multiset of irreducible
unitary representations of G (F), along with a characterh; i of S forany 2 . In
the even orthogonal case this is not exactly true: instead of actual representations, is
comprised of orbits of the groupOut(G) ' Z=2Z of outer automorphisms of G on the
set of isomorphism classes of irreducible representations & (F). These orbits can be
described as modules over th®ut( G)-invariants of the Hecke algebraH (G (F)) of G(F),
which we denoteH{G (F)). Here we have xed a splitting Out(G) ! Aut( G) de ned over
F. Note that if F is p-adic, G is unramied and K is a hyperspecial subgroup ofs (F)
we can choose a splittingOut(G) ! Aut( G) that preserves K. If F is archimedean and
K is a maximal compact subgroup ofG (F), we can also choose a splitting that preserves
K, and H{G (F)) is the algebra of left and right K - nite Out( G )-invariant distributions
on G(F) with support in K. Note that the choice of splitting does not matter when one
considers invariant objects, such as orbital integrals or traces in representations.
DenoteStd: G ! GLy (C) the standard representation, where

8
>2n if Gk ' (SOzn+1)g . i.e. 8" Spy(C);

N=_2n+1 ifGg"' (SPan)e ie.8"' SOun1(C);
" 2n if Gk ' (SOz)e . i.e. 8" SO (C):

In the rst two cases det Std is trivial, whereas in the third case it takes values inf 1g
and factors through a characterGal(F=F) ! f  1g, which by local class eld theory we
can also see as a characterg : F ! f 1g. If 8 = Sp,,(C) (resp. 8 = SO2n41 (C)),
the standard representation Std induces a bijection from the set of conjugacy classes of
Arthur parameters : WS SL,(C) ! 6 to the set of conjugacy classes of Arthur
parameters %: W2 SL,(C)! GLn(C) such that det Cis trivial and there exists a
non-degenerate alternate (resp. symmetric) bilinear form orCN preserved bylim( 9. The
third case, whereG is an even special orthogonal group, induces a small complication.
Composing with Std still induces a surjective map from the set of conjugacy classes of
Arthur parameters WE SL,(C) ! LG to the set of conjugacy classes of Arthur
parameters %: W2 SL,(C) ! GLn(C) having determinant ¢ and such that there
exists a non-degenerate bilinear form orCN preserved byIm( 9. However, the bers
of this map can have cardinality one or two, the latter case occurring if and only if all
the self-dual irreducible constituents of © have even dimension. The Arthur packet
along with the charactersh; i of S are characterised | ][Theorem 2.2.1] using the
representation ofGL y (F) associated withStd by the local Langlands correspondence,
and twisted and ordinary endoscopic character identities. The charactergh; i) »,  of
S are well-de ned only once we have xed an equivalence class of Whittaker datum foG,
since this choice has to be made to normalise the transfer factors involved in the ordinary
endoscopic character identities.

In the p-adic case, we will mainly be interested irunrami ed Arthur parameters |, i.e.
such that ng is trivial on the inertia subgroup and on SU(2). Of course these exist only
if G is unramied, so let us make this assumption. We refer to [ ] for the de nition
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of unrami ed Whittaker data with respect to a choice of hyperspecial maximal compact
subgroup. Note that several conjugacy classes of Whittaker data can correspond to the
same conjugacy class of hyperspecial subgroups, and th@at,q(F ) acts transitively on both
sets of conjugacy classes.

The following lemma is implicit in [ ]. Note that a weak version of it is needed to
make sense of the main global theorem [ ][Theorem 1.5.2].

Lemma 3.4.1.1. Let :WS SL,(C) ! “G be an Arthur parameter for the p-adic eld
F. Then contains an unrami ed representation if and only if is unramied. In that
case, contains a unique unrami ed representation , which satisesh; i =1.

Proof. This is a consequence of the proof of | J[lLemma 7.3.4]. We borrow Arthur's
notations for this (sketch of) proof. Let f€be the characteristic function of GL y (Og) 0

&L n (F). Arthur shows that f§y( ) =1 if isunramied. If is ramied, the represent-
ation of GL y (F) associated with Std is rami ed, thus & ( ) = 0. The statement of
the lemma follows easily from these two identities, the characterization [ ][Theorem
2.2.1] of the local Arthur packets by endoscopic character relations, and the twisted funda-
mental lemma (which applies even when the residual characteristic & is small!) proved
in [ J[lLemma 7.3.4]. O

To state Arthur's global theorem we only consider the split groupsSOzn+1, Spo, and
SO», over Q. From now on G denotes one of these groups. By [ J[Theorem 1.4.1],
any self-dual cuspidal automorphic representation of GL  over a number eld has a
signs( ) 2f 1g, which intuitively is the type of the conjectural Langlands parameter of

:s( )=1 (resp. 1) if this parameter is orthogonal (resp. symplectic). Unsurprisingly
if M is odd thens( ) =1, and if M is even ands( ) = 1 then the c?;\tral character
of s trivial. Moreover Arthur characterises s( ) using Sym? and 2 L-functions
[ J[Theorem 1.5.3]. This partition of the set of self-dual cuspidal automorphic repres-
entations of general linear groups allows to de ne substitutes for discrete Arthur-Langlands
parameters for the groupG. Dene s(G) = 1 in the rst case (@ = Sp,y,(C)) and
s(G) = 1 in the last two cases 8 = SO24+1 (C) or SO (C)). Dene ( G) as the set of
formal sums = 2, i[di] where

1. foralli 21, ;isa self-dual cuspidal automorphic representation oGL n, =Q,
2. foralli21,d 2Z 1issuchthats( {)( 1% 1= s(G),

P
3. N = i21 nidi,

4. the pairs( i;d;) are distinct,
Q

5. T, % =1,where . isthe central character of ;.

The last condition is automatically satis ed if @ = Sp,,(C). The notation [d;] sug-

gests taking the tensor product of the putative Langlands parameter of ; with the d-

dimensional algebraic representation 0EL,(C). Each factor [d;] corresponds to a discrete
automorphic representation ofGL ,,,4, over Q by [ 1.
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Let v denote a place ofQ. Thanks to the local Langlands correspondence for general
linear groups applied to the ( j)'s, for 2 ( G), specialises into a local Arthur
parameter :ng SLL,(C)! GLn(C). By | ][Theorem 1.4.2] we can see as a
genuine local Arthur parameterWQOV SL,(C)! LG, butin the even orthogonal case y is
well-de ned only up to outer automorphism. To be honest it is not known in general that

V(WQOV) is bounded (this would be the Ramanujan-Petersson conjecture), but we will not
comment more on this technicality and refer to the discussion preceding [ ][Theorem
1.5.2] for details. Thus we have a nite multiset , of irreducible unitary representations
of G(Qy), each of these representations being well-de ned only up to outer conjugacy in
the even orthogonal case.

As in the local case we want to de neC = Cent( ; @) and

S = C =C°z(B)%Q=Q = ¢ =z(8):

Observe that this can be done formally for = 5, i[di]. An elements of C is described
by J | such that ,,;nid; is even, ands corresponds formally to Id on the space
of 23 ildi] and Id on the space of 2|3 i[di]. Thus one can de ne a nite 2-group
S along with a natural morphism S ! S | for any placev of Q. The last ingredient
in Arthur's global theorem is the character of S . It is de ned in terms of the root

numbers ( j j; 1=2) just after [ ][Theorem 1.5.2]. If all the d;'s are equal to1l, in

which case we say that is formally tempered, then =1.

Fix a global Whittaker datum for G, inducing a family of Whittaker data for Gq,
wherev ranges over the places of. Our reductive group is de ned overZ, and the global
Whittaker datum can be chosen so that for any prime numberp it induces an unrami ed
Whittaker datum on G (Qp) with respect to the hyperspecial subgroupG (Zp). Let Ky be
a maximal compact subgroup ofG (R), and denoteg = C RrLie(G(R)). The following is a
specialization of the general theorem [ J[Theorem 1.5.2] to the everywhere unrami ed
case, using Lemma 3.4.1.1.

Theorem 3.4.1.2. Recall that A 4isc(G(Q)nG (A)) is the space ofK 1 G(,b;)- nite and
Z (U(g))- nite functions in the discrete spectrum LZ_ (G (Q)nG(A)). Let ( G)“™ be the

disc
setof = i i[di]2 ( G) such that for anyi, ; is unramied at every prime. There is
a H{G (R))-equivariant isomorphism
() M M
Adisc(G(Q)NG(A)) =™ m 1
2 ( G)unr 12 1
h; 1 i=

wherem = 1 except if G is even orthogonal and for alli n;d; is even, in which case
m =2.

For 1 2 , the characterh; ;i of S |, induces a character ofS using the morph-
ismS ! S, and the inner direct sum ranges over the 1 's such that this character of
S is equal to

In the even orthogonal case, 1 is only an Out( G r)-orbit of irreducible representations,
and it does not seem possible to resolve this ambiguity at the moment. Nevertheless
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it disappears in the global setting. There is a splitting Out(G) ! Aut(G) such that

Out(G) preservesG(,b;), and thus if f X 1; X 2g is an Out( G r)-orbit of isomorphism classes
of irreducible unitary (g;K; )-modules, then X; and X, have the same multiplicity in

Adisc(G(QNG (A)) 6 ®).

3.4.1.2 The spectral side from an endoscopic perspective

We keep the notations from the previous section. Suppose now thak (R) has discrete
series, i.e.G is not SO, with n odd. Let be a dominant weight forG¢. Using Theorem
3.4.1.2 we can write the spectral side of the trace formula 3.4.1.1 as

X X
mEP(1 V) (3.4.1.2)

2( G 12
h; 1 i=
We need to be cautious here sincEP( 1 V ) is not well-de ned in the even orthogonal
case. If 1 is the restriction to H{G(R)) of two non-isomorphic (g; K1 )-modules 51)
and 52), we de ne

EP(1 V)= JEP (@) v

In 3.4.1.2 we can restrict the sum to 1 's whose in nitesimal character equals that ofV (up
to outer automorphism in the even orthogonal case), which is + via Harish-Chandra's
isomorphism, where2 is the sum of the positive roots. Thanks to the work of Mezo,
we can identify the in nitesimal character of the elements of , . To lighten notation,
we drop the subscript 1 temporarily and consider an archimedean Arthur parameter
:WR SLy(C)! 'G. Recall that Wec = C , Wg = Wct jWc wherej?2= 12 W¢

and for any z 2 Wc, jzj ' = z. De ne a Langlands parameter' by composing with
WRr! Wgr SLy(C) mappingw 2 Wg to

w0

0 jiwj P
wherejj jj : Wr ! Rsg is the unique morphism mappingz 2 Wc to zz. Let T be a
maximal torus in @. Conjugating by an element of 8 if necessary, we can assume that
" (We) T andwrite' (z)= 1(2) 2(z) for z2 W¢, where 1; 22 C 2z X (T) are
suchthat ; 22 X (T). The conjugacy class of 1; »2) under the Weyl groupW(T;@)
is well-de ned. Note that for any maximal torus T of G¢ we can see 1; 2 as elements of
C 2z X (T), again canonically up to the action of the Weyl group.

Lemma 3.4.1.3. The Weyl group orbit of ; is the in nitesimal character of any element
of

Proof. Recall [ J[Theorem 2.2.1] that the packet is characterised by twisted and
standard endoscopic character identities involving the representation oGL y (R) having

Langlands parameterStd ' . The lemma follows from [ JIlLemma 24] (see also
[Wal][Corollaire 2.8]), which establishes the equivariance of twisted endoscopic transfer for
the actions of the centers of the enveloping algebras. O
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Attached to  is a unique (up to @-conjugacy) discrete parameter' :Wg! 'G
having in nitesimal character + . We explicit the GLy (C)-conjugacy class oStd ' in
each case. Fow 2 %Z o itis convenient to denote the Langlands parameteWr ! GL2(C)

i) 2W 2w
— Wg | Fo\2W . | (ZqZJ) 0 -7 0 ( 1)
lw=1Ind we 27! (z92z)) 22 W 7! 0 (z=izj) 2 j 7 1 0
Note that this was denoted |,y in [ ] to emphasise motivic weight in a global setting.

We choose to emphasise Hodge weights, i.e. eigenvalues of the in nitesimal character:
our |y has Hodge weightsw and w. Let c-g be the non-trivial continuous character

Wg ! f 1g, sothatlg =1 c=r.- If G = SO2n+1, We can write = kieg + + kpen
where kq kn Oareintegers,and =(n e +(n e+ + 1ey. Inthis
caseStd ' is
M
Ik +n+1=2 r:
r=1
If G = Spy,, we can write = kje; + + knen, where k; ko, O are integers,
and =ne;+(n e+ + e,. ThenStd ' is
M
n_ I .
C=R kr+n+l r-
r=1
Finally, if G = SOy, we can write = kye; + + koneon Wherek; Kon 1 ] Konj
are integers, and =(2n e +(2n 2e+ + e, 1. ThenStd ' s
VD
Ik +2n r:
r=1
Replacing (k1;:::;Kon 1;kon) with (Kg1;:::;kon 1; kon) yields the same conjugacy class
under GLy (C).

From this explicit description one can deduce several restrictions on the global paramet-
ers 2 ( G)Y" contributing non-trivially to the spectral side 3.4.1.2. These observations
were already made in [ ], using a di erent formulation. We de ne ( G) as the subset
of ( G) consisting of such that the in nitesimal character of ; isequalto + . Dene
also ( G)'™ = ( G)"\ (G).

1. In the rsttwo cases (G = SOj,+1 Of Sp,,) the in nitesimal character of Std ' is
algebraic and regular in the sense of Clozel [ ]. Clozel's de nition of algebraic
is C-algebraic in the sense of | ], and we will also use the term C-algebraic to
avoid confusion. In the third case G = SOg4n) We have thatjj jj¥™ (Std ' )is
C-algebraic, but not always regular. It is regular if and only if ko, 6 0. In all cases,
Clozel's purity lemma [ l[lLemme 4.9] implies thatif = ; {[d]2 ( G) , then
for all i the self-dual cuspidal automorphic representation ; of GL ,, =Q is tempered
at the real place. Equivalently, 1 (WR) is bounded.

2. Let ( G)sim be the set of simple formal Arthur parameters in ( G), i.e. those
= 21 ildi]suchthatl = fipgandd, =1. Denote ( G)g, = ( G)sim\ ( G) .
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Then ( G)g, is the set of self-dual cuspidal automorphic representations dsL n =Q
such that the central character of is trivial and the local Langlands parameter of

1 isStd ' . Indeed in all three casesStd ' is either orthogonal or symplectic,
and thus ; determiness( ).

. Letm 1land consider a self-dual cuspidal automorphic representation of GL 2y, =Q
such that j detj'2 is C-algebraic regular. Self-duality implies that the central
character  of is quadratic, ie. : A =Q !f 1g. Sincejdetj? is
C-algebraic and regular, there are unique integersv; > > W, > 0 such that the
local Langlands parameter of ; is

P
lw,
r=1
which impliesthat jg ( 1) =( 1)™. If moreover we assume that is everywhere
unrami ed, then is trivial on pr. SinceA = Q Rsg pr, this implies
that is trivial, and thus m must be even.

. The previous point has the following important consequence for our inductive com-
putations. Let G be a split symplectic or special orthogonal group admitting discrete
series at the real place, and adominantweightforG. Let =  [di]2 ( G)'" .
Then for any i, there is a split symplectic or special orthogonal groupG° ad-
mitting discrete series at the real place and a dominant weight © for G° such
that ; 2 ( GYa ° We emphasise that this holds even ifG = SOg, and

= kiep + + koneon With kon = 0. To be precise, we have the following classi c-
ation:

(a) G = SOyy+1 and thus 8 = Sp,,(C). For a dominant weight and =
i21 ildi] 2 ( G)Y": | there is a canonical decompositiond = It It I3
where

i. foralli214,disodd,njisevenand 2 ( soniﬂ);?n” 0,

ii. forall i 2 1, d; is even,n; is divisible by 4 and | 2 ( SOp,)gn’ °

iii. card(lz) 2f0;1gandifls= fig,diisevennjisoddand i 2 ( Sp, 1)am ’
(b) G = Sp,y, and thus 6 = SO2n+1(C). For a dominant weight and =

i21 il[di] 2 ( G)U": | there is a canonical decompositiond = It It I3

where

i 11=fjg, d is odd,n; isodd and j 2 ( Sp, v ",
i. forall i 2 12, d; is odd, n; is divisible by 4and ;2 ( SOp)"™
unr; ©

jii. for all i 213, dj is even,n; is evenand ; 2 ( SOnp;+1)gim

Note that njdj =2n+1 mod 4.

(c) G = SOy, and thus 8 = SO4n(C). For a dominant weight and =
i21 ildi] 2 ( G)U": | there is a canonical decompositionl = It It I3
where
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As in
( G)
1.

i. forall i 214, dj is odd, n; is divisible by 4 and | 2 ( SOp,)gn’ °
unr; ©
sim !

iii. card(l3) 2 f0;29. If I3 = fi;j g and up to exchangingi and j, d, = 1
and d; is odd, n; and n; are odd, and ; 2 ( Sp, )" °and j 2

ii. forall i2 15, diseven,njisevenand i 2 ( SOp,+1)

unr 0 sim
( Spnj 1)sim’
Note that in all three cases, if is regular then forany = 5, j[di]2 ( G)Y""
we have that ; ="' and thus all di's are equal tol (i.e. is formally tempered)

and moreover in the third caselz = ;.

the introduction, it will be convenient to have a more concrete notation for the sets

Uhl’;
sim
For n 1, the dominant weights for G = SO,n+1 are the characters = kje; +

+ knen such that kg kn 0. Then + = we+ + wpe, where
W, = ke +n+ 3 r, sothat wy > > wp > 0 belong to 2ZrZ . Dene
S(Wi;ii;Wn) = ( SOzn+1)an - that is the set of self-dual automorphic cuspidal
representations ofGL ,,=Q which are everywhere unrami ed and with Langlands
parameter at the real place

lw, lw, !

Equivalently we could replace the last condition by with in nitesimal character hav-

. Forn 1, the dominant weights forG = Sp,, are the characters = kje;+ +kpe,

such that k1 kn O. Then + = w;ei+ +wye, wherew, = ki+n+1 r,
sothatw; >  >w, > O are integers. De neOg(W1;:::;Wn) = ( Spon)an » that
is the set of self-dual automorphic cuspidal representations dL 2541 =Q wWhich are
everywhere unrami ed and with Langlands parameter at the real place

lw, lwa =R
Equivalently we could replace the last condition by with in nitesimal character

having eigenvaluesf wj;:::; wn;0g. Here O, stands for odd orthogonal, as
8 =S041 (C).

Forn 1, the dominant weights for G = SOy, are the characters = kie; + +
kon€on such that k; kon 1 ] konj. Since we only consider quantities invariant
under outer conjugation we assumd,, 0. Then + = wye;+ + wy,e, Where
Wy = ke + n r, so that w; > > Won 1 > Wop 0 are integers. De ne
Oe(Wy;::1;Wan) = ( SOgn)at’ | that is the set of self-dual automorphic cuspidal
representations of GL 4,=Q which are everywhere unrami ed and with Langlands
parameter at the real place

lw, lwoy, -
In this case also we could replace the last condition by with in nitesimal character
having eigenvaluesd wa;:::; wong, even whenky, = 0. Here O stands for even
orthogonal , as® = S04, (C).
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It is now natural to try to compute the cardinality of ( G)qr' , inductively on the
dimension of G. Observe that for 2 ( G)sim, the group S is trivial. Thus the contri-
bution of any 2 ( G)gn,' to the spectral side 3.4.1.2 is simply

X
EP( 1 V):
12

Recall that for such a , the local Arthur parameter 1 is' . Inthat case Arthur de nes
as the L-packet that Langlands [ ] associates with . In the next section we

will review these packets in more detail, in particular Shelstad's de nition ofh; ;i for
1 2 + ,butsinceS is trivial all that matters for now is that card( - ) is positive (and
easily computed) and that all the representations in - are discrete series. By [ 1[ch.

I, Thm. 5.1 forany , 2 . ,

EP( 1 V)=( DIe®

and thus to compute the cardinality of ( G)q’' we want to compute the contribution of

( G)U r ( G)gn' to the spectral side 3.4.1.2.

This is particularly easy if is regular, since as we observed above in that case any

2 ( G)"" is formally tempered or formally of Ramanujan type, ie. 1 ="
Moreover s trivial. Shelstad's results reviewed in the next section allow the explicit
determination of the number of ; 2  suchthath; 1 i is equal to a given character
of S | .

The general case is more interesting. The determination of in the conductor one
case was done in [ ], and the result is simple since it involves only epsilon factors at
the real place of Q. In all three cases, for any = 5, i[di] 2 ( G)Y" the abelian
2-group S is generated by(s;j)i2y whered = fi 2 I jn;d; is evergands; 2 C is formally

Id on the space of i[di] and Id on the space of j[d;] for j 6 i. By [ 1[(3.10)]

)= (e
j21rfig

and since ; and j are everywhere unramied ( i j) can be computed easily from
the tensor product of the local Langlands parameters of )1 and ( j)1 . Note that by
[ J[Theorem 1.5.3] ( j i)=1if s( i)s( j)=1. The explicit computation of
along with the map | ! SA1 , does not follow directly from Arthur's work, even in our
special case where the in nitesimal character of ; is that of an algebraic representation
V . We will need to make an assumption (Assumption 3.4.2.4) relating Arthur's packet

, to the packets constructed by Adams and Johnson in [ ]. The latter predate
Arthur's recent work, in fact [ ] has corroborated Arthur's general conjectures: see
[ I[Y5]. Under this assumption, we will also be able to compute the Euler-Poincaré
characteristic of any element of | in section 3.4.2.2.

Remark 3.4.1.4. Our original goal was to compute, for a given groups=Q as above,
dominant weight and simple(g; K1 )-module moduleX with in nitesimal character + ,
the multiplicity of X in Agisc(G(Q)NG (A))G('@). This is possible once the cardinalities of

85



( GY ° are computed, under Assumption 3.4.2.3 if we do not assume thatis regular.
. . . . -0

However, Arthur's endoscopic classi cation shows that computingard ( G g{,‘; is a

more interesting problem from an arithmetic perspective, since conjecturally we are counting

the number of self-dual motives ove® with conductor 1 and given Hodge weights.

Remark 3.4.1.5. Except in the even orthogonal case with = kie; + + koneon and

kon =0, itis known thatany 2 ( G)g{;;? is tempered also at the nite places by [ 1.

Remark 3.4.1.6. If G is symplectic or even orthogonal, it has non-trivial centerZ iso-
morphicto . ThusZ(R)  Z(Q)Z(R), and Z(R) acts trivially on A gisc(G (Q)nG (A)) S ®).
This implies that ( G)gy' is empty if jz(gy is not trivial, since Z(R) acts by on any
discrete series representation with in nitesimal character + . Using the concrete de-
scription above, it is elementary to deduce that in fact( G)"" is empty if jz ) is not

trivial.

3.4.2 Euler-Poincaré characteristic of cohomological archimedean Ar-
thur packets

3.4.2.1 Tempered case: Shelstad's parametrization of L-packets

For archimedean local elds in the tempered case the A-packets in [ ] are not
de ned abstractly using the global twisted trace formula. Rather, Arthur denes - as
the L-packet that Langlands [ ] associates with , andthe map « ! S"; 7!

h; i is dened by Shelstad's work, which we review below. Mezo | ] has shown
that these Langlands-Shelstad L-packets satisfy the twisted endoscopic character relation
[ 1[Theorem 2.2.1 (a)], and Shelstad's work contains the standard endoscopic char-
acter relations [ J[Theorem 2.2.1 (b)].

In this section we will only be concerned with the local eld R and thus we drop the
subscripts 1 , and we denoteGal(C=R) = f1;, g. Let G be a reductive group overR, and
denote by A g the biggest split torus in the connected centeiZs of G. Let us assume that
G has a maximal torus (de ned over R) which is anisotropic modulo A, i.e. G(R) has
essentially discrete series. Consider a dominant weighty for (G ger)c de ning an algebraic
representationV ; of G 4er(C) and a continuous character ¢ : Zg(R)! C suchthat o
and ¢ coincide onZg(R) \ Gger(C). Let  4isc( 0; o) be the nite set of essentially
discrete series representations of G (R) such that

IG 4 (r) has the same in nitesimal character asV jg .., (r)

jze(R) = o

Harish-Chandra has shown that inside this L-packet of essentially discrete series, the rep-
resentations are parameterised by the conjugacy classes (und&(R)) of pairs (B;T)
where T is a maximal torus of G anisotropic modulo Ag and B is a Borel subgroup of
G containing T¢. For such a pair(B;T), o and the character ¢ of T ger(R) Which is
dominant for B extend uniquely to a character g of T(R). If we x such a pair (B;T),
the pairs (B% T) which are in the same conjugacy class form an orbit under the subgroup
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W: = W(G(R);T(R)) of W := W(G(C);T(C)). Concretely, if 2 gisc( 0; o) is the
representation associated with this conjugacy class, then for any 2 T(R)g reg,

( ):( 1)q(G) X wBw ()

W2We wBw 1( )

Q

where is Harish-Chandra's character for , and g( ) = 2R(T;B)(l () Y.
Therefore the choice of(B;T) as a base point identi es the set of conjugacy classes with
WenW, by g2 N(G(C); T(C)) 7! (gBg ;).

Langlands [ ] and Shelstad [ N 1 [ ] gave another formulation
for the parameterisation inside an L-packet, more suitable for writing endoscopic character
relations. By de nition of the L-group we have a splitting (B;T;(X ) » ) of @ which
de nes a section ofAut(8) ! Out(8) and G = Bo Wg. Let (B;T) be as above. Thanks
to B we have a canonical isomorphisni‘j I'T , which can be extend&d into an embedding
of L-groups :'T ! LG as follows. Forz 2 Wc, dene (z) = ore —(z37) 0 Z
where Rg is the set of roots of T in B. Dene (j)= ngo j whereng 2 N(@;T)\ 6 ger
represents the longest element of the Weyl grourW(@;T) for the order de ned by B.
Then is well-de ned thanks to [ JlLemma 3.2]. Since conjugation byng 0 j acts
byt 7!t onT\ @der, the conjugacy class of does not depend on the choice ofg.
The character g of T(R) corresponds to a Langlands parametet , : Wg ! LT. If
G is semisimple, g is the restriction to T (R) of an element ofX (T) = X (T) and for
anyz2 W, " ,(z) = B(z9zj). Composing' . with we get a Langlands parameter
' :Wgr! LG, whose conjugacy class unde® does not depend on the choice ofB; T).
Langlands has shown that the map( o; o) 7! ' is a bijection onto the set of conjugacy
classes of discrete Langlands parameters, i.e. Langlands parametérssuch that S :=
Cent('; 8)=z(8)%3(CR) js nite.

Consider a discrete Langlands parameter, and denote by - = ( o; o) the corres-
ponding L-packet. Assume thatG is quasisplit and x a Whittaker datum (see [Kal] for
the general case). Then Shelstad de nes an injective map: ! S', 7!'h; i. It has the
property that h; i is trivial if  is the unique generic (for the given Whittaker datum)
representation in the L-packet.

Recall the relation between these two parametrizations of the discrete L-packets. Let
(B;T) be as above, de ning an embedding : “T ! “G and recall that W and W, denote
the complex and real Weyl groups. LetC: = Cent("; 8), sothatS = C =z(8)Gal(C=R)
Using we have an isomorphism betweeid 1(R; T) and o(C:)". We have a bijection

WenW I ker HYR;T)! H(R;G)

mapping g 2 Ng()(T(C)) to ( 7! g * (g). Kottwitz [ ] has de ned a natural

morphism HY{(R;G) ! o Z(8)%a(C=R)  and thus the above bijection yields an injec-
tion :WenW ! S'. If 2 . corresponds to (the conjugacy class offB;T) and
02 . corresponds to(gBg *;T), then foranys2 S ,
bs; 1 _ _
=IOk



Finally, the generic representation in : corresponds to a pair(B;T) as above such that
all the simple roots for B are noncompact. This is a consequence of | [[Theorem 3.9]
and [ ][Theorem 6.2]. In particular thereexists such a pair(B; T). We will make use
of the converse in the non-tempered case.

Lemma 3.4.2.1. Let H be a reductive group oveR. Assume thatT is a maximal torus of
H which is anisotropic moduloA  , and assume that there exists a Borel subgrol® T¢
of H¢ such that all the simple roots oflT in B are non-compact. ThenH is quasisplit.

Proof. We can assume thatH is semisimple. We use theR-opp splittings of | 1[Y12].
Let be the set of simple roots ofT in B. For any 2  we can choose arsl,-triple
(H ;X ;Y )inh=C gLie(H(R)). The pair (X ;Y ) is notunique: it could be replaced
by (xX ;x 1Y ) forany x 2 C . Since () = , (X )= yY for somey 2 C ,
andy 2 R because is an involution. The sign of y does not depend on the choice of
(X ;Y ), and making some other choice if necessary, we can assume that 1. Itis
easy to check that is non-compact if and only ify > 0. Thus the hypotheses imply the
existence of anR-opp splitting, that is a splitting (X ) » suchthat (X )= Y forany
. Note that this splitting is unique up to the action of T (R).

Let HO be the quasisplit reductive group overR such that H® admits an anisotropic
maximal torus and Hc ' H2. We know that H?admits a pair (B%TY where T%is an
anisotropic maximal torus and all the simple roots ofB ®are non-compact. Therefore there
exists an R-opp splitting (X°) o ofor (BSTY.

There is a unique isomorphismf : Hc ! H2 identifying (B;Tc;(X ) 2 ) with
(B%T2;(X% , o) and to conclude we only have to show that it is de ned overR, i.e.
that it is Galois-equivariant. It is obviously the case onT, since any automorphism ofT ¢

is de ned over R. Moreover by constructionf ( (X ))= (X fo( )) forany 2 . Since
T ¢ and the one-dimensional unipotent groups corresponding to for 2  generate
Hc, f is -equivariant. O

There are as many conjugacy classes of such pai8; T) such that all the simple roots
are non-compact as there are conjugacy classes of Whittaker datum. For the adjoint group
SO2n+1 there is a single conjugacy class, whereas f@ = Sp,, or SOy, there are two.
However, for our purposes it will fortunately not be necessary to precise which paiB; T)
corresponds to each conjugacy class of Whittaker datum.

For the quasi-split group G = SO(V;0 wheredimV 3 and disc(g) > O, T is the
stabiliser of a direct orthogonal sum

I31 IDn

where eachP; is a de nite plane and n = bdim V=2c. LetLI+ (resp. | ) be the set of
i 2f1;:::;ng such that P; is positive (resp. negative),V = 5, PjandV, = V?. The
group K of real points of

S(O(V+;a)  O(V ;0)
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is the maximal compact subgroup ofG(R) containing T (R). For eachi, choose an iso-
morphism g : SO(P;;g)c! G arbitrarily. For dimV even, the rootse; lliien 1
en;en 1+ ey are all noncompact if and only if

flo;1 g=1f1,3,5:::0,f2,4;:::99
and modulo conjugation by W, = N(K; T (R))=T (R) there are two Borel subgroupsB

are all noncompact if and only if
I =fn;n 2,n 4;:::gandl. =fn 1Lin 3;:::g
and there is just one conjugacy class of such Borel subgroups. In both cases
ker HY(R;T)! HY(R;G)
is isomorphic to the set of( i)1 ; n» where ; 2f 1gand
cardfi 2 1+ j = 1g=cardfi21 j = 1g

For the symplectic group G = Sp(V;a (where a is a non-degenerate alternate form)
HY(R;G) is trivial, so that the set of h; i ( 2 ) is simply the whole group S’ .
However, for the non-tempered case and for the application to Siegel modular forms it will
be necessary to have an explicit description of the paireB ; T) as for the special orthogonal
groups. There exists] 2 G(R) such that J2= Id and for anyv 2 V r f0g, a(Jv;v) > 0.
Then J is a complex structure onV and

h(vy;v2) = a(Jvi;vo) + ia(vy; Vo)

de nes a positive de nite hermitian form h on V. Choose an orthogonal (forh) de-
compositionV = L, P; where eachP; is a complex line, then we can de neT as the
stabiliser of this decomposition. The maximal compact subgroup o6 (R) containing T (R)
is K = U(V;h)(R), and W; ' S,. Thanks to the complex structure there are canonical
isomorphismse; : U(Pj;h) ! Uj (fori 2f1;:::;ng). Modulo conjugation by W¢, the two
Borel subgroups containingT ¢ and having non-compact simple roots correspond to the
sets of simple roots

fer+e; & gt ( 1)"en 1+ en);( )" 2eng;
f e exet+e:i( D" Yew 1+ e);( 1)"2eng:

3.4.2.2 Adams-Johnson packets and Euler-Poincaré characteristics

Let us now consider the general case, which as we observed above is necessary only when
the dominant weight is not regular. For a quasisplit special orthogonal or symplectic
group G and an Arthur parameter :Wg SLy(C)! -G having in nitesimal character

+ , we would like to describe explicitly the multiset along with the map !
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S". We would also like to compute the Euler-Poincaré characteristiceP( V ) for any

2 . Unfortunately it does not seem possible to achieve these tasks directly from
Arthur's characterisation | J[Theorem 2.2.1]. We will review Adams and Johnson's
construction of packets A using Arthur's formulation, which will lead us naturally to
Assumption 3.4.2.4 relating Arthur's with AV, This review was done in [ 1,
[ ] and [ ] but we need to recall Adams and Johnson's results precisely in order
to compute Euler-Poincaré characteristics. Moreover we will uncover a minor problem in
[ 1[Y5]. Finally, [ ] was written before Shahidi's conjecture [ ][Conjecture
9.4] was formulated, and thus we need to adress the issue of normalization of transfer
factors by Whittaker datum. This is necessary to get a precise and explicit formulation of
[ ] in our setting, which is a prerequisite for writing an algorithm.

As in the previous sectionG could be any reductive algebraic group oveR such that
G (R) has essentially discrete series. To simplify notations we assume thét is semisimple.
To begin with, we consider general Arthur parameters : Wr SLy(C) ! 'G, i.e.
continuous morphisms such that

composing withG ! Wg, we getld,,
jwe is semisimple and bounded,
IsL,(c) is algebraic.

As before we x a Gal(C=R)-invariant splitting (B;T;(X ) 2 ) in 8. Assume that is
pure, i.e. the restriction of to R.g Woc is trivial. Otherwise  would factor through a
Levi subgroup of-G. After conjugating by an element of 8 we have aB-dominant g 2
%X (T) such that forany z 2 We, (2) =(2 o)(z5zj). The set of roots 2 R(T;@) such
that hg; i 0de nes a parabolic subgroupQ = LU of 8 with Levi L = Cent( (W¢); @)
and (SL2(C)) L ger. After conjugating we can assume that

z2c I 201 2 SL,(C)

takes values inT \ L g and is dominant with respect to B\ L ger. Let us restrict our
attention to parameters  such that jg,c) : SL2(C) 'L ger is the principal morphism.
After conjugating we can assume that

. 01 X
d IsL,y(0) 0 0 2sl, = X
2

We claim that (j) 2 Go fjgis now determined modulo left multiplication by Z(L).
Letn:W(B;T)oWr! N(:G;T)= N(8;T)o Wg be the set-theoretic section de ned
in| I[Y2.1]. Letwp 2 W(@ ; T) be the longest element in the Weyl group (with respect
to B). Since G has an anisotropic maximal torus, conjugation by (any representative of)
Woo j actsbyt 7!t 1 onT. Let w; be the longest element of the Weyl groupN (L;T).
Then wiwg 0 j preserves | and acts byt 7! t Y on Z(L). By [ J[Proposition 9.3.5]
n(wiwp 0 j) = n(wiwp) o0 j preserves the splitting(X ) » ,, and thus commutes with

(SL2(C)). The following lemma relates (j) and n(wiwgp 0 |).
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Lemma 3.4.2.2. There is a unique elemena 2 Z(L)n Go fjg commuting with (SL2(C))
and such that for anyz2 W¢, a (z)a 1= (z 1).

Proof. If a and b are two such elementsab 1 2 8 commutes with (W¢), thusab 12 L.
Furthermore ab commutes with (SL»(C)), henceab 12 Z(L). O

Sincen(wiwp 0 j) and (j) satisfy these two conditions, they coincide modulaZ (L).
In particular conjugation by (j) acts byt 7!t 1 on Z(L), and thus the group

C =Cent(; 8)=ft22z(L)jt?=1g

is nite, and sois S := C =z(6)%(S=R) |n addition, (2 o)( %z ()% = n(wiwpo j)?
only depends onL. By [ JlLemma 2.1.A],n(wiwp 0 j)? = 2R -( 1) whereRg
is the set of roots of T occurring in the unipotent radical U of Q. Thus

0 1 X
02X(Z(L))+é —:
2Rq

Conversely, using the elemenh(w;wg0 j) we see that for any standard parabolic subgroup
Q=LU B of 8 and any strictly dominant (for Rg) 02 X (Z(L))+ 3 ,r, -

there is at least one Arthur parameter mappingz 2 W¢ to (2 ¢)(z5zj) and 2 sl

01
= 00
to 2 X . Finally, forany u2 Z(L), we can form another Arthur parameter Opy im-
posing Y, sLy(C) = Jwe sL,(c) and )= u (j). It follows that the set of conjugacy
classes of Arthur parameters ©such that (]WC sL,(c) IS conjugated to jw. sL,(c) IS @

torsor under
Z(L)=ft?2jt2 Z(L)g= HYGal(C=R);Z (L)) where acts by wiwgo j on Z(L):

Recall the normjj jj : Wr! Rs>o which mapsj to 1 and z 2 W¢ to zz, which is used

to de ne the morphism Wg! Wg SLy(C) mapping w to
jwit> 0
b0 jiwj 2
Composing with this morphism we get a Langlands parameter' : Wg ! LG which
is not tempered in general. Forz 2 W¢, ' (2) = ( 9z5z))( + 9(jzj) (formally
(2) Y2)) where

X

NI =
NI~

= 0 +
2R\ 2Rp\L

P
Then 2 % 2rg — T X (T) and the following are equivalent:

1. isregqular,

P : : :
% 2rg — IS dominant with respect to Rg,

P

2.

3. o 2R, ~ IS dominant with respect to Rq.

Nl

91



In fact for any pure Arthur parameter , without assuming a priori that  jg ,c) 'L is
principal, if the holomorphic part  of ' jw, is regular, then jg ,c) ! L is principal.
The orbit of under the Weyl group is the in nitesimal character associated with , and
we have seen that it is the in nitesimal character of any representation in the packet
associated with (Lemma 3.4.1.3). For quasisplit special orthogonal or symplectic groups
we checked this (up to outer conjugacy in the even orthogonal case) in Lemma 3.4.1.3.
From now on we also assume that the in nitesimal character of is regular. Note

that is then the in nitesimal character of the restriction to G (R) of the irreducible algeb-
raic representationV of G¢, where = + . Let us describe the set of representations

AJ that Adams and Johnson associate with as well as the pairing ! S". To be
honest Adams and Johnson do not consider parameters, they only work with repres-
entations, but [ J[Y5] interpreted their construction in terms of parameters. We will
only add details concerning Whittaker normalisation. As in the tempered case we begin
by considering pairs(B;T) where T is an anisotropic maximal torus of G and B a Borel
subgroup of G¢ containing T ¢. We have a canonical isomorphism between the based root
data

X (Te); 8;X (Te); g) and (X (T); g X (T); 8)

and we can associate with(Q; L) a parabolic subgroupQ B of G¢ and a Levi subgroup
Lc Tc of G¢c. As the notation suggestsL ¢ is de ned over R (for any root  of T in

Ge, ()= ), and we denote this real subgroup ofG by L. Consider the set o of
conjugacy classes of pairéQ; L) (Q a parabolic subgroup ofG¢ and L a real subgroup of
G such that L ¢ is a Levi subgroup ofQ) obtained this way. The nite set g of conjugacy
classes of pair§B;T) surjectsto . If we x a base point (B;T), we have seen that g

is identi ed with  W¢nW. This base point allows to identify o with WenW=W_ where
W, = W(L(C);T(C)), and

WenW=W_ ' ker HYR;L)! H(R;G) :

For any cl(Q;L) 2 ¢ there is a canonical isomorphisn® ' L identifying the splittings.
Given another cl(Q%L9 2 g, there is a uniqueg 2 G(C)=L(C) conjugating (Q;L) into
(Q%LY, yielding a canonical isomorphism of L-groups-L ' “L% As in the tempered
case we want to extendl ' L into an embedding : ‘L ! .G as follows. Forz 2 W,
dene (2) = 2R -(z9zj) o z. Dene (j) = n(wiwgo j). We have computed
n(wiwpo j)? = 2R —-( 1) above and thus is well-de ned. Note that contrary to the
tempered case, there are other choices fofj) even up to conjugation byZ(L): we could
replace (j) by u (j) whereu 2 Z(L), and it can happen that u is not a square inZ(L).
This issue seems to have been overlooked in [ J[Y5]. We will not try to determine
whether n(wiwg 0 j) is the correct choice here and we will consider this problem in a
separate note, since for our present purpose this choice does not matter.

For any classcl(Q;L) 2 o there is a unique Arthur parameter

oL WR SLyC)! ‘L
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such that up to conjugation by 8, = oiL- Now qujsi,c : SL(C) ! B is the
principal morphism. Thus g jw, takes values inZ(D) 0 WRg, and the conjugacy class of
o:L Is determined by the resulting element ofH H(Wr; Z(D)), which has compact image.
Recall that for any real reductive group H there is a natural morphism

h o HY(Wg;Z(R)) ! Homeont(H (R);C )

which is surjective and maps cocyles with compact image to unitary characters dfl (R).
To de ne this morphism we can use the same arguments as | I[Y1]. W is simply
connected, thenfd is adjoint and H (R) is connected. More generally, ifH ger is Simply
connected then the torusC = H=H g is such that Z(®) = € and

H(R)® =ker C(R)! HYR;Hger) :

Finally if H is arbitrary there exists a z-extensionC ! & H whereC is an induced torus
and 18 4¢, is simply connected. ThenH (Gal(C=R);C(C)) is trivial, thus B(R) H(R)
and

Homeont(H(R); C ) =ker Homeont(R(R);C ) ! Homeont(C(R);C )

Parallelly, ©Wr is connected so thatCWr 1| H1(Wg;Z(R)) is trivial and thus
HiWr:Z(B)) =ker HX(Wr;Z(B) ! HY(Wk:®)

As in [ [Y1] the morphism  obtained this way does not depend on the choice of a
z-extension. Note that whenH is quasi-split, y is an isomorphism, by reduction to the
case whereH 4¢, is simply connected and using the fact that a maximally split maximal
torus in a simply connected quasi-split group is an induced torus. It is not injective in
general, e.g. wherH is the group of invertible quaternions.

Hence . de nes a one-dimensional unitary representation O;Q;L of L(R), and ap-
plying cohomological induction as de ned by Zuckerman, Adams and Johnson de ne the
representation . qg. = Riq( ?Q;L) of G(R), whereq = Lie(Q) andi = g(G) q(L).
Vogan has shown that this representation is unitary. They de ne the set A’ in bijection
with  q:

M=t quicQiL)2 qg:

The endoscopic character relations that they prove [ J[Theorem 2.21] allow to identify
the map I S", as Arthur did in [ J[Y5]. Assume that G is quasisplit (this is
probably unnecessary as in the tempered case using the constructions of [Kal]), and x a
Whittaker datum for G. Then any cl(B;T) 2 g determines an element ofS" (here'
could be any discrete parameter, the groufs is described in terms ofB; T independently).

It is easy to check that if (B;T) and (B%T9 give rise to pairs(Q;L) and (Q%LY which
are conjugated underG (R), then the restrictions to S of the characters ofS associated
with (B:;T) and (B%T9 coincide. We get a map 7 ! S" which is not injective in
general.
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Adams and Johnson (] ][Theorem 8.2], reformulating the main result of | 1)
give a resolution of . . by direct sums of standard modules

0! .qu! Xdr 1 X% o (3.4.2.1)

Recall that a standard module is a parabolic induction of an essentially tempered rep-
resentation of a Levi subgroup ofG, with a certain positivity condition on its central
character. Johnson's convention is opposite to that of Langlands, so that . 5., embedsin
a standard module. Apart from its length, the only two properties of this resolution that
we need are

1. X 9is the direct sum of the discrete series representations & (R) having in nitesimal
character and corresponding to thecl(B;T) 2 g mapping to cl(Q;L) 2 g,

2. foranyi> 0, X' is a direct sum of standard modules induced fronproper parabolic
subgroups ofG, therefore EP(X' V )=0.

Thus we have the simple formula
EP( .q1 V)=( 1)%®) dBcard(berof cl(Q;L)by ! o):

Note that . .. is a discrete series representation if and only it is anisotropic.

Let us be more precise about the endoscopic character relations a orded by Adams-
Johnson representations, since Shahidi's conjecture was only formulated after both [ ]
and [ ]. Let s be the image by of 12 SLy(C), which we will see as an ele-
ment of S . Arthur and Kottwitz have shown that for cl(Q;L);cl(Q%L%Y 2 o, we have
hs ; .oui=( 1% 99 ; . qoLd. Let (Bo;To) be a pair in G corresponding to
the base point (i.e. the generic representation for our xed Whittaker datum) for any dis-
crete L-packet. It determines a pair(Qo;Lo) such that cl(Qo;Lo) 2 . The simple roots
of Bg are all non-compact and thus the same holds for the Borel subgroupg\ (Lo)c of
(Lo)c. By Lemma 3.4.2.1 the groupL ¢ is quasisplit. Thus for anycl(Q;L) 2 o we have
hs ; .qui =( 1)%0 ab) Note that if (B1;T4) corresponds to the generic element
in tempered L-packets foranother Whittaker datum, the pair (L1; Q1) that it determines
also has the property thatL 1 is quasisplit. SinceL and L1 are inner forms of each other,
they are isomorphic andq(Lg) = q(L1). This shows that the map

X
f(g)dg 7! ks ; iTr( (f(g)dg);

2 Al

de ned on smooth compactly supported distributions on G (R), is canonical: it does not
depend on the choice of a Whittaker datum for the quasisplit groupG. By [ 1[Theorem
2.13] it is stable i.e. it vanishes if all the stable orbital integrals off (g)dg vanish. Consider
an arbitrary element x 2 S . It determines an endoscopic grougH of G and an Arthur

parameter y : WRr SL»(C)! YH whose in nitesimal character is regular. Thanks to
the choice of a Whittaker datum we have a well-de nedtransfer map f (g)dg 7! fH (h)dh

from smooth compactly supported distributions onG (R) to smooth compactly supported
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distributions on H(R). Adams and Johnson have proved [ ][Theorem 2.21] that there
is somet 2 C such that

X X
ks x; iTr( (f(g)dg) =t ks iTr  (fH (h)dh) (3.4.2.2)

2AJ 2AJ
H

for any smooth compactly supported distribution f (g)dg on G(R). We check thatt = 1.
Let' :WRr! LG be the discrete Langlands parameter having in nitesimal character .
Conjugating if necessary, we can assume that the holomorphic parts ofjw. and ' jw,
are equal and not just conjugated. In this way we se& as a subgroup ofS . We restrict
to distributions f (g)dg whose support is contained in the set of semisimple regular elliptic
elements ofG (R). In that case by Johnson's resolution 3.4.2.1

X
he x; iTr( (F(g)dg) = ( 1% h iTr( (f(g)dg))
2 A 2

X
= ( 1)%o) Tr  (f"(h)dh)

2y

where the second equality is the endoscopic character relation fdt;x ). Let (B ;TH)
be a pair for H such that the simple roots of B}l are all non-compact. Then the pair
(QF;LE) that it determines is such that L is quasisplit and has same Langlands dual
group asLo, thus LY ' Lo. In particular g(L5) = g(Lo) and

X X
( 1)%Lo) T (fH(h)dh) = ks ; iTr (f"(h)dh) :

2 AJ
H 2H

Therefore the endoscopic character relation 3.4.2.2 holds with=1 for such distributions
f (g)dg. By choosingf (g)dg positive with small support around a well-chosen semisimple
regular elliptic element we can ensure that both sides do not vanish, so that=1.

This concludes the precise determination of the map 7! h; i, normalised using Whit-
taker datum as in the tempered case. Note that this normalised version of | J[Theorem
2.21] is completely analogous to | J[Theorem 2.2.1(b)]. We are led to make the follow-
ing assumption.

Assumption 3.4.2.3. Let G be a quasisplit special orthogonal or symplectic group over
R having discrete series. Fix a Whittaker datum forG. Let be an Arthur parameter for

G with regular in nitesimal character = + . Thenforany 2 S",
M M
‘ : (3.4.2.3)
2 A 2
h; i= hi i=

Note that in the even orthogonal case, this only assumes an isomorphism f(G (R))-
modules.

To compute Euler-Poincaré characteristics we only need the character of the direct sum
appearing in Assumption 3.4.2.3 on an anisotropic maximal torus. This follows from the
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fact that the standard modules form a basis of the Grothendieck group of nite length
(g; K)-modules. Using also the fact that Arthur and Adams-Johnson packets satisfy the
same endoscopic relations, we can formulate a weaker assumption which is enough to
compute the Euler-Poincaré characteristic of the right hand side of 3.4.2.3 for any 2 S".

Assumption 3.4.2.4. Let G be a quasisplit special orthogonal or symplectic group over
R having discrete series. Let be an Arthur parameter for G with regular in nitesimal
character = + , and let T be a maximal torus of G which is anisotropic. Let Lg
denote the quasisplit reductive group de ned in the discussion above. is symplectic or
odd orthogonal, the assumption is that for any 2 T q(R),

X
hs; i ()=( 1)%¢) atoTr( jv):
2

In the even orthogonal case, this identity takes the following meaning. Let2 T e4(R) and

consider a °2 G(R) outer conjugated to . For in , Which is only an Out( G)-orbit
of representations, we still denote by any element of this orbit. The assumption is
X
i )+ (9 =( DI D T v+ V)

2

Of course it does not depend on the choice made in each orbit.

Thus under this assumption we have an algorithm to compute inductively the cardin-
ality of each ( G)4"' .

sim
Remark 3.4.2.5. For this algorithm it is not necessary to enumerate the sets
WenW=W,_ ' ker HYR;L)! H(R;G)

parametrizing the elements of each . It is enough to compute, for each discrete series
represented by a collection of signs as in the previous section, the restriction bf i to
S and the sign( 1)%L),

unr;

See the tables in section 3.7.2 for some values foard ( G)q,

ordered lexicographically.

in low weight

3.5 Application to vector-valued Siegel modular forms

Let us give a classical application of the previous results, to the computation of dimensions
of spacesS;( ) of vector-valued Siegel cusp forms in genus 1, weight r and level one.
It is certainly well-known that, under a natural assumption on the weight r, this dimension
is equal to the multiplicity in LgiSC(PGSp on(Q)NPGSp ,,,(A)=PGSp Zn(,bi)) of the holo-
morphic discrete series representation corresponding ta Although [ ] contains half

of the argument, we could not nd a complete reference for the full statement. To set our
mind at rest we give details for the other half. We begin with a review of holomorphic

discrete series. We do so even though it is redundant with [ ]and [ ], in order to
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give precise references, to set up notation and to identify the holomorphic discrete series
in Shelstad's parametrisation.

Note that it is rather arti cial to restrict our attention to symplectic groups. For any
n 3 suchthatn 6 2 mod 4, the split group G = SO, has an inner formH which is
split at all the nite places of Q and such that

if n=1,0;1 mod 8 H(R) is compact,
ifn=3;4;5 mod 8 H(R)' SO(h 2;2).

In the second caseH (R) has holomorphic discrete series which can be realised on a her-
mitian symmetric space of complex dimensiom 2. In the rst case H(R) also has holo-
morphic discrete series which can be realised on a zero-dimensional hermitian symmetric
space.

3.5.1 Bounded symmetric domains of symplectic type and holomorphic
discrete series

Let us recall Harish-Chandra's point of view on bounded symmetric domains and his
construction of holomorphic discrete series (see [ I [ 1 [ I [ ]) in the
case of symplectic groups. Len 1 and G = Sp,,, over R in this section, and denote
G = G(R), go=Lie(G) andg= C rgo. Then G is the stabiliser of a non-degenerate
alternate form a on a 2n-dimensional real vector space/. As before choosel 2 G such
that J2= 1andforanyv 2 Vr f0Og, a(Jv;v) > 0, which endowsV with a complex
structure and realisesa as the imaginary part of the positive de nite hermitian form h
de ned by

h(vi;v2) = a(Jvy; vo) + ia(vy; vo):

Then K = U(V;h) is a reductive subgroup ofG, and K = K(R) is a maximal compact
subgroup of G. Note that both G and K are connected. The centetZx of K is one-
dimensional and anisotropic, and the complex structurel yields a canonical isomorphism
Zk ' Uj. Letus (resp.u ) be the subspace of such that the adjoint action of z 2 Z¢ (R)
on us (resp. u ) is by multiplication by z° (resp.z 2. Theng= u+ k u and

[U+;us] = [u ;u ] =0. Moreoverus u = C R po Wherepg is the subspace of
0o = Lie(G) on which J acts by 1,i.e.go= po ko is the Cartan decomposition ofgg
for the Cartan involution = Ad(J). There are unipotent abelian subgroupsU ;U of

G ¢ associated withu, ;u , and the subgroupsK cU+ and KcU are opposite parabolic
subgroups ofG ¢ with common Levi subgroupK ¢. It follows that the multiplication map
U: K¢ U I Gg¢is an open immersion. FurthermoreG U, (C)K(C)U (C).
For g 2 G, we can thus writeg = g+ gog where(g+;00;9 )2 U.(C) K(C) U (Q),
and Harish-Chandra showed thatg 7! log(g.) identies G=K with a bounded domain
D us. This endowsG=K with a structure of complex manifold, and for any g 2 G, left
multiplication by g yields a holomorphic mapG=K ! G=K.

Remark 3.5.1.1. Let us compare this point of view with the classical one. Le¥ = R?"
0 1

and choose the alternate forma( ; ) having matrix A = 10
n

, that is a(vq;Vv) =
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'v1Avo. The complex structureJ whose matrix is alsoA satis es the above conditions,
and the resulting maximal compact subgrou is the stabiliser ofil, for the usual action
of G on the Siegel upper half planeHg = f 2 Mn(C) j' = andIm( ) > Og: for

a;b;c;d2 M,(R) such thatg = 3 2Gand 2Hg g()=(a +b(c +d L

We now have two identi cations of G=K with domains, D and H,, and they di er by the
Cayley transformH, ! D, 7! ( ily)( +i1,) L

Observe that GK (C)U (C) = exp(D)K (C)U (C) is open inG(C). Consider an irre-
ducible unitary representationr : K | GL(W), i.e. an irreducible algebraic representation
of K ¢ endowed with aK -invariant positive de nite hermitian form. Harish-Chandra con-
sidered the space of holomorphic function$ : GK (C)U (C)! W such that

1. for any (s;k;n) 2 GK(C)U (C) K(C) U (C),f(skn)= r(k) f(s),
R
2. 4iif(9i*dg<1.

It has an action of G de ned by (g f)(s)= f(g !s), and we get a unitary representation
of G on a Hilbert spaceH ;. SinceG=K ' GK(C)U (C)=K(C)U (C), H, is isomorphic
to the space off 2 L?(G;W) such that

1. forany (g;:k) 2 G K, f(gk) = r(k) f (9g),
2. the function G=K ! W; g 7! r(go)f (g) is holomorphic.

Harish-Chandra proved that H, is zero or irreducible, by observing that in any closed
invariant subspace, there is anf such that G=K ! W; g 7! r(go)f (g) is constant and
nonzero. Actually this a special case of [ JlLemma 12, p. 20]). Hence when 6 0,
there is a K -equivariant embedding : W ! H,, and any vector in its image isu. -
invariant. More generally, using the simple action ofZx (R) on U, we see that when
H: 6 0 the K - nite vectors of H, are exactly the polynomial functions onD. Note that
whenH , 6 0 it is square-integrable by de nition, i.e. it belongs to the discrete series of5.
Harish-Chandra determined necessary and su cient conditions foH ; 6 0. Let T be a
maximal torus of K, and choose an order on the roots of in K. This determines a unique
order on the roots of T in G such that the parabolic subgroupK cU. is standard, i.e.
contains the Borel subgroupB of G¢ such that the positive roots are the ones occurring
in B. To be explicit in the symplectic case,T is determined by a decomposition oV as
an orthogonal (for the hermitian form h) direct sum V = V; Vi where eachV is
a line over C. For any k we have a canonical isomorphisng, : U (V;h) ' Ui. We can
choose the order on the roots so that the simple roots are; ey;:::;e, 1 €n;2e,. Note
that among these simple roots, only2e, is noncompact. Let = mie + + mpe, be
the highest weight ofr, so that m; my,. This means that up to multiplication by
a scalar there is a unique highest weight vectow 2 W r f0g, that is such that for any
b2 K(C)\ B(C), r(hv= (bv. Let = ne  + + e, be half the sum of the positive
roots of T in G. Then H, 6 0 if and only if forany root of T inU;,h-; + i<0
(see [ J[lLemma 29, p. 608]). In our case this condition is equivalent tm1 + n < 0.
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Assume thatH, 6 0. Note that (v) is a highest weight in theg-module (H;)x n,
i.e. the Lie algebra of the unipotent radical of B cancels (v). SinceH, is irreducible
and unitary, (H;)x n is a simpleg-module whose isomorphism class determines that of
H: (see [ l[chapter VIII]), and thus it is the unique simple quotient of the Verma
module de ned by B and . In particular, + is a representative for the in nitesimal
character ofH . One can show that(H)x n = U(9) uyk u. )W, WhereW is seen as a
k u;-module by letting u; act trivially.

Remark 3.5.1.2. Before Harish-Chandra realised these holomorphic discrete series con-
cretely, in [ ] he considered the simple quotient of the Verma module de ned byand
B, for an arbitrary dominant weight for K¢\ B. He determined a necessary condition
for this g-module to be unitarisable | l[Corollary 1 p.768]: for any root of T in U,
h —; i 0O(in our case this is equivalent tom; 0). He also determined a su cient con-
dition [ 1[Theorem 3 p.770]: foranyroot of T inU.,h-; + i 0 (in our case
this is equivalent tom1 + n Q). For classical groups Enright and Parthasarathy [ ]
gave a necessary and su cient condition for unitarisability. In our symplectic case, this
condition is 0 1

my 1mjinn@n i+ X. 'wA:

2 i

It would be interesting to determine whether all these unitary representations are globally
relevant, i.e. belong to some Arthur packet.

The character of H, was computed explicitely in [ I [ ] and [ ]. There
exists a unique Borel subgroupB® TcU of G¢ such that B\ K¢ = B\ K¢. The
order on the roots de ned by B%is such that + s strictly dominant, i.e. for any root

occurring inB% h —; + i > 0. Let W, = W(T(R);G) = W(T(R);K). Then among
the discrete series ofG with in nitesimal character + , H, is determined by the G-
conjugacy class of the pair(B% T) (see section 3.4.2.1). In our case the simple roots for
BOaree; iliiien 1 ey, and  2e.

Remark 3.5.1.3. This characterisation of the holomorphic discrete series in their L-packet
is enough to determine which Adams-Johnson representations are holomorphic discrete
series. Using the notations of section 3.4.2.2, the representation . o.. is a holomorphic
discrete series if and only ifQ  B%and L is anisotropic. By [ J[lLemma 9.4] the
packet A contains a holomorphic discrete series representation if and only Btd  does
not contain [d] or -g[d] as a factor for somed > 1 (necessarily odd).

We have made an arbitrary choice betweetd . and U . We could have also identi ed
G=K with a bounded domainD® u :

G=K U (C)K(C)U,(C)=K (C)U.(C)' U (C):

The resulting isomorphism of manifoldsD ' D %is antiholomorphic. Given an in nitesimal
character which occurs in a nite-dimensional representation of G, we have a discrete
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series representations oG in the L-packet associated with , "9 = (H,),  (resp.

*}0'). It is characterised among irreducible unitary representations having in nitesimal
character by the fact that it has a nonzero K - nite vector cancelled by u; (resp.u ).
SinceK stabilisesu. andu , "% 6 "

Let us now de ne holomorphic discrete series for the groui®= PGSp(V;a). Assume
that = j.; M is even, i.e. the center ofG acts trivially in - "% (and "°'). The image of G
in G%has index two, and there is an element 06G° normalizing K and exchangingU . and
U . Thusif is such that the kernel of "° contains the center ofG, "o :=ind&’ Mo
is irreducible and isomorphic tolndgo h;o' . Among irreducible unitary representations
having in nitesimal character , " is characterised by the fact that it has a nonzero
K - nite vector cancelled by u; . Of course we could replacel, by u .

3.5.2 Siegel modular forms and automorphic forms

Let us recall the link between Siegel modular forms and automorphic cuspidal representa-
tions for the group PGSp . Almost all that we will need is contained in [ ], in which
the authors construct an isometric Hecke-equivariant map from the space of cuspidal Siegel
modular forms to a certain space of cuspidal automorphic forms. We will simply add a
characterisation of the image of this map.

For the de nitions and rst properties of Siegel modular forms, see [ ] or
[ ]. We will use the classical conventions and consider the alternate form on Z2"
0 I

whose matrix isA = 2 M2y (2) for some integern 1. Let : GSp(A)!

1, O
GL ; be the multiplier, de ned by the relation a(g(vi);g(v2)) = (g)a(vi;v2). Let G =

Sp(A) =ker( ) and G%= PGSp (A) = G4q, both reductive over Z.

2 2 GSp(A;R)

and 2 H,. As in the previous section denote byK the stabiliser ofil, 2 H, under the

action of G(R). Let K °be the maximal compact subgroup ofG{R) containing the image

of K by the natural morphism G(R) ! GYR). Observe that the mapk = ab 2 2

K 7! j(k;ily,) = a ib is an isomorphism betweenK and the unitary group U(1,).

In the previous section, using the complex structure] whose matrix is equal to A, we
have identied K with the unitary group U(h) for a positive de nite hermitian form h
on R?" with the complex structure J. We emphasise that the the resulting isomorphism
U(1,) ' U(h) is not induced by an isomorphism between the hermitian spaces: one has
to compose with the outer automorphismx 7! 'x 1 on one side.

Let (V;r) be an algebraic representation oGL ,. We can see the highest weight of as
(mg;:::;mg) wheremy  :::mg are integers. The representatiork 2 K 7! r(j (k;ily)) is
the restriction to K of an algebraic representatiorr® of K ¢c. As in the previous section we
choose a Borel pair(B¢; T) in K and denote bye; ;iiien 1 e, the corresponding
simple roots. Then the highest weight ofr%is mpe; mien.

Let , = Sp(A;Z), and denote byS;( ) the space of vector-valued Siegel modular
forms of weightr. When m; = = myg, that is when r is one-dimensional, this is the

Recall the automorphy factorj(g; )= ¢ +d2 GL,(C) forg=
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space of scalar Siegel modular forms of weigint;. Asgari and Schmidt associate with any
f 2 S.( n) afunction & 2 L2(G{Q)nGYA);V) such that

1. € is right GY®)-invariant,

2. for any g 2 GYA), the function GYR) ! W;h 7! €;(gh) is smooth,
3. foranyX 2u andanyg?2 GYA), (X ©€;)(g) =0,

4. forany g2 GYA) and anyk 2 K, €; (gk) = r(j (k;i1n)) € (9),

5. € is cuspidal.

The third condition translates the Cauchy-Riemann equation for the holomorphy off into
a condition on €;. If the measures are suitably normalisedf 7! €; is isometric for the
Petersson hermitian product onS;( ). Finally, f 7! €; is equivariant for the action of
the unrami ed Hecke algebra at each nite place.

Let N. be the unipotent radical of B¢, let n. be its Lie algebra and lethy be the
Lie algebra of T. The representation r° allows to seeV as a simplek-module, and n.V
has codimension one inv. Let L be a linear form onV such that ker(L) = nV. We
can seeX (T) as a lattice in Homg(hg;iR) h. Let = me + + mpe, which
we can see as an element¢gh n; u ) trivialon nc u . Foranyv 2 V and any
X2h ne u,L( r(X)v)= (X). Forg2 GYA), dene (g) = L(&:(g)). Then

f 2 L2(GAQ)nGqA)) satis es the following properties

1. ¢ is right GY®)-invariant and right K % nite,

2. for any g 2 GYA), the function GYR)! W;h 7! ¢ (gh) is smooth,

3. foranyX 2h n. u andanyg2 GYA), (X )9 = (X) (9,
4. ¢ is cuspidal.

Again f 7! ¢ is equivariant for the action of the unrami ed Hecke algebras at the nite
places, and is isometric (up to a scalar). The third condition implies that ; is an eigen-
vector for Z(U(g)) and the in nitesimal character + . v =(m; 1l)eg+ +(my n)ey.
In particular ¢ is a cuspidal automorphic form in the sense of | ], which we denote

by  2Acusp(G QNG YA)).

Lemma 3.5.2.1. Any 2 Acusp(GY{QINGYA)) satisfying the four conditions above is
equal to ¢ for a uniquef 2 S;( ).

Proof. Since is K2 nite and transforms under h n; accordingto , = L(§ fora
unique function © GYQ)NGYA) ! V such that fork 2 K, € gk) = r(j(k;il,)) € g).
It is completely formal to check that there is a uniquef 2 M, ( ) such that & €, and
thanks to the Koecher principle we only need to use that _has moderate growth when
n=1. We are left to show that f is cuspidal. Write f ( )=~ 5, c(s)€” T(S) where
Cs 2 V and the sum ranges over the seBym, of symmetric half-integral semi-positive
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0 O

denite n n. We need to show that for anys®2 Sym, ;, ¢ 0L - 0: We use the
cuspidality condition on  for the parabolic subgroupP of G de ned over Z by
8 9
1 n 1 1n 1
0 1
p=_" 1%0 gze :
1 0 0 0
n 1 0

Denote N the unipotent radical of P, and observe thatN = Ngo N1 where

80 19 80 19
5 1 0 ttl to 3 5 1 t3 0 0 3
N = 0 1,1 t2 O and  Na= 0 1,1 O o§
07 3 0 1 0A3 175 0 1 0A3
"0 0 0 11’ "0 O 3 1y 1 '

are vector groups. MoreovemN o(Q)NNg(A) ' No(Z)nNo(R) and similarly for N 1. There-

fore for anyg 2 G(R),
z z
€ ngnyg)dngdny = 0:
N1(Z)nN1(R) No(Z)nNo(R)

By de nition of €, for somem 2 R depending only onr,

€ non1g) =  (9)™r(j (Non1g;iln)) *f (nonag(iln)):

iT

0

such that = g(il1,). We will evaluate the inner integral rst. Fix n; 2 N1(R) determined

by tz 2 R" ! as above. For anyng 2 N(R) determined by (t1;t,) 2 R R" ! as above,
j(non1g;ily) = j(n19;ils) and we have the Fourier expansion

0 1

- m . (i r 1 X X S1 2 P T(s® A

€ nomg) = (9)"r((n1g;iln)) @ ¢ o, o €

$12Z;5221=2zn 1 s®2Sym,

exp 2i (si(tz Ytz + 0T + t1) + 2s5( %ts'ty))

Fix 2 H, of the form 00 whereT 2 Rsgand 92 H, 1, and let g 2 G(R) be

and thus
z m, (i : 1 X 0 O i Tr(s® 9
% nonag)dno (@)™ (i (n19;iln)) c 5o €
No(Z)nNo(R) s®2sym,

X .
(@™ (g;i1n)) * c gs% ERTE
s®2Sym, ,

does not depend om;. Note that to get the last expression we used

fG(ng: ) Lo 00 - c 1 0 0 0 1 t3 - 0 0
]y 0 ~° 31 0 01 ¢ o0
0 00 _
Hence we can conclude that for anys”2 Sym,, 4, C 0O = 0. O
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Assume thatm, n+1,ie.that + ,  isthe innitesimal character of an L-
packet of discrete series foGYR). Assume also that ., mg is even, since otherwise
S:( n) =0. By the theorem of Gelfand, Graev and Piatetski-Shapiro

M
Acusp(GIQINGYA)) * m
2 cusp (GO
where cusp(G9 is the set of isomorphism classes of irreducible admissiblg; K9 G YA¢)-
modules occurring iNAcusp(G{Q)NGYA)) andm 2 Z ;. Considera 2 usp(G9. For
any prime p, ,?O(Z”) 8 0 if and only if p is unrami ed, and in that case dimc ,?O(Zp) =1.
Since 1 is unitary, it has a highest weight vector for (; nc u ) if and only if 1 is
the holomorphic discrete series with in nitesimal character(m; 1)e;+ +(mp  n)en,
and in that case the space of highest weight vectors has dimension one. Thdsn S;( )

is equal the sum of them for = 9, 2 (,p(GY such that 1 is a holomorphic
discrete series with in nitesimal character(m; 1)es+ +(mp n)e, and for any prime
number p, , is unramied. By [ Jany 2 4isc(GY 1 cusp(G9Y is such that 4

is not tempered. Thereforedim S;( ) is equal to the sum of the multiplicities m for
2 gisc(G9 such that

for any prime numberp, , is unramied,

1 is the holomorphic discrete series representation™' with in nitesimal character
=(my De+ +(mp n)ey.

Recall that G = Sp,,. Thanks to [ J[Proposition 4.7] we have thatdim S;( ) is
also equal to the sum of the multiplicitesm for 2 sc(G) such that is unramied
everywhere and ; ' 9.

Remark 3.5.2.2. For any central isogenyG ! G? between semisimple Chevalley groups
over Z, the integer denoted] 1 ; $]in[ ]J[Proposition 4.7] is always equal tol. This
follows from the fact thatGY{R)=G (R) is a nite abelian group.

Thus we have an algorithm to computedim S;( ) from the cardinalities of S( ), Oq( )

Adams-Johnson packets A have multiplicity one, under Assumption 3.4.2.3 the multi-
plicites m for as above are all equal tal, and thus Siegel eigenforms in level one and
weight r satisfying m,, n +1 have multiplicity one: up to a scalar they are determined
by their Hecke eigenvalues at primes in a set of density one. This was already observed in
[ J[Corollary 4.10].

Remark 3.5.2.3. Without assuming thatm, n+ 1, the construction in [ ] shows
that f 7! ¢ is an isometry from the space of square-integrable modular forms (for the
Petersson scalar product) to the space of square-integrable automorphic forms which are
-equivariant undern:  u and GYZ)-invariant.
In fact for m, n+1 (evenm, n) we could avoid using [ ] and Lemma 3.5.2.1
and use the fact [ l[Satz 3] that fom,  n square-integrable Siegel modular forms
are cusp forms.
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3.5.3 Example: genus 4

Let us give more details in casen = 4, which is interesting because there an endoscopic
contribution from the group SOg (the formal parameter Og(wy; Wa; W3; Wa) 1 below) which
cannot be explained using lower genus Siegel eigenforms. First we list the possible Arthur
parameters for the groupSpg in terms of the setsS(wx;:::), Oo(wq;:::) and Og(wy;::1).
The non-tempered ones only occur when®=(m; n 1)e + +(mp, n ey is
orthogonal to a non-empty subset of the simple coroot$e; e,;:::;e, ; €,;€,0. The
convention in the following table is that the weights w; 2 %Z o are decreasing withi. For
example S(w3)[2] Og(wq;wy) occurs only if msz = my, and if this is the case then

7
5 W3t 5

(my;mz;mz;mg) = wp+1;wo+2; w3+ > 5

Table 3.1: Unrami ed cohomological Arthur parameters for Spg
Oo(W1; Wa; W3; Wy) Oe(W1;W2;W3;Wg) 1 | Og(Wi;Wg)  Oe(Wz;wz) 1
Oe(W2;W3)  Oo(Wi;Wg) | Oe(wi;Wa)  Oo(Wz;W3) | Oe(Wi;wz)  Oe(wz;wg) 1
Oe(W2;Wg)  Oo(Wi;wz) | Oe(wi;wa)  Oo(Wz2;Wa) | Oe(Wi;wz)  Oe(ws;wag) 1
Oc(Wz;Wg)  Oo(Wi;Wz) | Oe(Wi;w2)  Oo(Wa;wa) | Oe(wi;wz)  S(wg)[2] 1
S(W3)[2] Oo(wi;wz) | Oe(wi;wg) S(w2)[2] 1 S(w2)[2]  Oo(Wi;Ws)

Oe(ws;wg) S(wy)[2] 1 S(W1)[2] Og(ws; W) S(wy;ws)[2] 1
S(wi)[2] S(ws)[2] 1 S(wy[4] 1 S(w1)2] [9]
Oe(W1;W2)  [5] Oo(W1)[3] [9]

Among these24 types for 2 ( Spg)"" ° some never yield Siegel modular forms. In
the last four cases §(w1)[2] [5], Oe(W1;W2) [5], Oo(w1)[3] @and[9]), , does not contain
the holomorphic discrete series. In the other20 cases, , contains the holomorphic
discrete series representation "% but it can happen that h; "%ijs never equals . For
example if is tempered (the rst 11 cases) is always trivial, whereash; r;‘clr' ijs is
trivial if and only if  does not containOg(W1; W2) or Og(W1;Wy) or Og(W2; W3) as a factor.

In the following table we list the 11 types that yield Siegel modular forms for some
dominant weight °for Spg. In the last column we give a necessary and su cient condition
on the weights for havingh; "%ijs =
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Table 3.2: The 11 possible Arthur parameters of Siegel eigenforms for,4

Type (mq; my; M3; My) Occurs i

Oo(W1; W2; W3; Wy) (Wi +1;wo+2;w3+3;wy+4) always

Oe(w1; Wo; W3 W) 1 (Wi +1;wo+2;wW3+3;wWy+4) always

Oe(w1;W3)  Og(Wz;wg) 1| (Wp+1;wr+2;w3+3;wq+4) always

Oc(W2; Wa)  Og(wWq;W3) (Wi +1;wo+2;w3+3;wy+4) always

Oc(wi;W3)  Og(Wa;Wyg) (Wi +1;wo+2;w3+3;wy+4) always
S(w3)[2]  Oo(wy;wWz) (Wi+1;wp+2;w3+ 2;ws+ Z) | wa+ 3 is odd

S(W2)[2] Oe(wi;ws) 1 | (Wi+1;wo+ 3;Wwo+ 3;wa+4) | Wo+ 3 is even

S(W2)[2]  Oo(Wi;Wa) (Wi+1;Wo+ 3;Wo+ 3;wa+4) | wo+ 3 is even
S(wi)[2] Oo(ws;wa) | (Wi+ Fiwa+ 3;wa+3;wa+4) | wy+ 3 is odd
S(wi;ws)[2] 1 (wi+ 3wi+ 3iws+ Lwe+ 2) | wy+ wsis odd
S(wy)[4] 1 Wi+ 3w+ Jwi+ 3iwi+ 3) | wi+ Jis even

3.5.4 Some dimensions in the scalar case

In genus n greater than 4 the enumeration of the possible Arthur parameters of Siegel
eigenforms is best left to a computer. Our implementation currently allows to compute
dimS;( n) for n 7 and any algebraic representationr of GL , such that its highest
weight mq mp satisesm, n+1.

Table 3.3 displays the dimensions of some spaces sfalar Siegel cusp forms. Note
that our method doesnot allow to compute dim Sg( ) whenk n (question marks in
the bottom left corner), and that for scalar weights is is necessary to make Assumption
3.4.2.3. We do not include the valuedim Sg( ) whenn+1 Kk 7 because they all
vanish. The question marks on the right side could be obtained simply by computing more
traces in algebraic representationsTr( jV ) in the geometric side of the trace formula).
For more data seehttp://www.math.ens.fr/~taibi/dimtrace/ . For n 8 we have not
(yet) managed to compute the masses foSp,,. Nevertheless we can enumerate some
endoscopic parameters, and thus give lower bounds falim Si( ,): these are the starred
numbers.
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Table 3.3: Dimensions of spaces of scalar Siegel cusp forms

k|8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
dmS(y)|/0 0 0 0 1 0 0 O 1 o0 1 o0 1 o0 1
dmS( |0 0 1 0o 1 0 1 0 2 0 2 0 3 0 4
dmS(s3/0 0 0 0 1 0 1 O 3 0 4 0O 6 0 9
dmS¢( 4|1 0 1 0 2 0 3 0 7 0 12 1 22 1 38
dmS(s |0 O O 0 2 0 3 O 13 0 28 0 76 0O 186
dmS(e|0 0O 1 0 3 0 9 0 33 0 117 1 4872 ?
dmS( /0 0 0 0 3 0 9 O 8 0 2 0 2?2 0 2
dmS«(g) |2 0O 1 0 4 1 23 2 234

dmS¢( o)|? 2 0 0O 2 0 25 0 843

dmSc( 10)|? ? 2?2 0 2 0 43 1 1591

dmSc( 1) |? 2 2 2 1 0 32 0 6478

P
In principle for n 7 one can compute the generating series | ,,; (dim S¢( n)) Tk,
We have not attempted to do so forn 4.

3.6 Reliability

The complete algorithm computing the three families of numbers
card (S(wy;:::;wp)) forn 1, w; 2 %ZrZ and wy > >w, > 0,
card (Og(wq;:::;wp)) forn 1, w; 2 Z and wy > >wp, > 0,
card (Oe(w1;:::;wpn)) forn 1, w; 2 Z and wy > >Wo, O,

is long and complicated. Our implementation consists of more than 5000 lines of source
code (mainly in Python, using Sage | 1), therefore it certainly contains errors. There
are several mathematically meaningful checks suggesting that the tables produced by our
program are valid:

1. When computing the geometric side of the trace formula we obviously always nd
a rational number. The trace formula asserts that it is equal to the spectral side,
which is an integer, being an Euler-Poincaré characteristic. The rst check that our
tables pass is thus that the geometric sides are indeed integral.

2. With a one-line modi cation, our algorithm can be used to compute global orbital
integrals for special orthogonal groupsG =Q which are split at every nite place and
such that G(R) is compact. On a space of dimension such a group exists if and
onlyd= 1;0;1 mod 8 Recall that for d 2 f 7; 8;9g, up to isomorphism there is a
unique regular and de nite positive quadratic formq: 29! Z. These are the lattices
E7, Eg and Eg A;. Each one of these three lattices de nes a reductive grougs
over Z such that Gq is as above, and their uniqueness is equivalent to the fact that
the arithmetic genus G (A¢ ):G(,b;) has one element. Chenevier and Renard [ ]
computed the geometric side of the trace formula, which is elementary and does not
depend on Arthur's work in the anisotropic case, tocount level one automorphic
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representations for these groups. This is possible becau€q2) is closely related to
the Weyl groups of the root systemsE; and Eg, for which Carter [ ] described
the conjugacy classes and their orders. We checked that we obtain the same masses
(see section 3.3.2.5).

belong toZ (. Our tables pass this check.

. In low rank there are exceptional isogenies between the groups that we consider:
PGSp," SO3,PGSp,' SOs, (SO4)s." SLo SLa, which by [ ][Proposition
4.7] imply:

() Forany oddw; 2 Zs g, card (S(w1=2)) = card ( Og(w1)). Note that card (Og(w1)) =
0 if wy is even.
(b) For any integers w1 > w, > 0 such that wy + w is odd,

Wi+ Wo W1 W2

card S B = card (Op(wW1; W2)) :

Note that card (Og(wy1;W>2)) =0 if wy + wy is even.

(c) For any integerswy >w» > 0 such that wi + w» is odd,

+
card S d! > W2 card S d! > W2 = card (Oe(w1; W2)) ;
and for any odd integerw > 0,
w
card 28(2) = Ou(w: 0):

Note that card (Og(w1;W2)) =0 if wy + wo is even.

5. By results of Mestre [ ], Fermigier [ ] and Miller [ ], in low motivic

weight (that is 2w;) some of the cardinalities ofS(wx;:::), Oo(wz1;:::) and Og(wq;:::)
are known to vanish. In forthcoming work, Chenevier and Lannes improve their
method to show thatif n 1 and is a self-dual cuspidal automorphic representa-
tion of GL ,=Q such that

for any prime numberp, , is unramied,

the local Langlands parameter of 1 is either

a direct sum of copies ofl, g and |, forintegers1 r 10, or
a direct sum of copies of; forr 2 1zrz and3 r %.

then ' belongs to the following list:

1,
l11=0; l1s=2; l17=0; l19=0,

c=r 100 c=r o,
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=0 lq9=p With r 215;7;9;11;13g,
lg lg, Iy liowithr2f2;3;4;5;6;7q,
1 1Isg 11 I7 Igo.

Note that they make no regularity assumption. This implies the vanishing of2521
values in our tables for groups of rank 6. In our tables, the only non-vanishing
card (S(wq;:::)), card (Og(wq;:::)) or card (Oe(wq;:::)) with wy 10 are the fol-
lowing.

Forw; 2 ;2419 card(S(wy)) = 1. These are the well-known modular
forms.

19.7  _
card S 3,5 =1.

6. Finally, we can compare the values that we obtain for the dimensions of spaces of
Siegel modular forms with known ones. Our formulae coincide with those given in
[ ] (genus two, scalar) and [ ]and | ] (genus two, vector-valued). Tsuy-
umine [ ] gave a dimension formula in the scalar case in gen@s There seems
to be a typographical error in the formula on page 832 of | ], the denominator
should be

(1 T4)(1 T12)2(1 T14)(l T18)(1 TZO)(l T30)
instead of
@ THE T2 T™Ha T¥a TO0a T):

With this correction we nd the same formula as Tsuyumine. In | ] Bergstrom,
Faber and van der Geer conjecture a formula for the cohomology of local systems on
the moduli spaceAs in terms of motives conjecturally associated with Siegel cusp
forms. As a corollary they obtain a conjectural formula fordim S, ( 3) wherer is an
algebraic representation ofGL 3 of highest weightm; my, m3 4. Form; 24
(1771 values) we have checked that our values coincide. We have also checked that

our tables agree with Nebe and Venkov's theorem and conjecture in weight2 ]
and Poor and Yuen's results in low weight [ ]

3.7 Tables

3.7.1 Masses

Table 3.4: Masses for the grousO3
Char. pol. mass | Char. pol. mass| Char. pol. mass

3 1=12 13 1=4 13 1=3
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Table 3.5: Masses for the grousOsg

Char. pol. mass | Char. pol. mass | Char. pol. mass | Char. pol. mass
? 1=1440 32 1-48 14 7=288 15 4 14
13 1=24 33 1=36| 1 5 3 1=12 1 3 1=36

136 2=9 13 1=36 112 1=6 15 2=
Table 3.6: Masses for the grous0~
Char. pol. mass Char. pol. mass Char. pol. mass
! 1=483840 22 19=23040 34 331=13824
18 1=7680 32, 11=192 15 4 1=64
3 2 25=1152 15 2 7=384 15 8 3=16
14 8 3=16 23 1=1440 32, 1=36
1 g 3 7=864 1 % 3 4 1=24 1 3 % 1=72
3 2 7=144 133 1=144 1§ 1=216
325 23=432 1% 6 1-48 15406 1-8
1536 5227 3 2 1=432 15 2 1=48
1 3 % 1=216 % 12 1=72 1 % 12 1=24
13 12 5=36 19 1=3 35 1=15
1 % 5 1=10 1 3 5 1=15 1 % 10 3=10
17 3=7
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Table 3.7: Masses for the groufs5Og

Char. pol. mass Char. pol. mass Char. pol. mass

? 1=116121600 {2 1=1935360 2 3 4963-1658880

35 3192160 1 8 121116121600 3 3 4 67=23040
344 7=768 154 1=2560 > 2 109=138240
32 2 37-4608 142 331=27648 153 1=128

14 1=7680 32 4 1-64 15 8 1-64

348 1=64 15 48 21=64 13 1=32

13 1=1451520 2 2 3 49=23040 33 3 331=41472

18 3 1=23040 3234 5=576 1% 34 1=192

% 3 i 25=3456 1 % 3 421 7=1152 1 % 3 8 1=16
13 4 8 1=16 ? 2 67=17280 322 7=576

1 3 3 7=10368 1334 1=144 133 1-864

33 25=2592 153 1-864 1 3 1=25920

2% 6 83-51840 336 7=576 13 6 37-51840
% % 4 6 1=96 1 ‘21 4 6 1=32 1 % 421 6 23-864
1356 s 1=8 32456 11=324 143 1=36
133406 1=6 1536 1=324 52 1=51840

322 1=576 153 133=3456 1543 1=16

132 1=864 338 1=2592 15332 13=288

1 %2 41=2592 1 33 1=324 1 ¢ 1=25920

? 12 1=8640 22 1 1=-288 1% 1 7=1728
15 4 12 1=8 13 12 1=48 33 12 5=432
1 % 3 12 5=144 1 % 12 1=432 1 % 6 12 5=54

1 6 12 1=432 1 %2 1=48 1 24 1=4

E 9 1=36 1 % 9 1=12 1 3 9 4=9

1 % 18 2=9 1 6 18 1=9 ? 5 7=3600

% % 5 1=60 1 ‘21 5 7=720 1 % 4 5 1=20

1 421 5 1=60 % 3 5 1=180 1 % 3 5 1=60

1 :2), 5 1=90 1 % 5 6 4=45 1 5 E25 1=90

1 5 12 1=15 1 % 1=100 % % 10 1=40

1% 10 11=200 13 4 10 3=20 13 3 10 1=10
156 10 1= 1 % 1=100 1 20 3=10

1 15 1= 1 30 1=5 34 1=28

137 3=28 13 7 1=7 13 14 3=

Table 3.8: Masses for the groufsp,
Char. pol. mass | Char. pol. mass | Char. pol. mass
2 1=12 1=12 4 1=2
3 1=3 1=3
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Table 3.9: Masses for the grousp,

Char. pol. mass | Char. pol. mass | Char. pol. mass | Char. pol. mass
1 1=1440 2 2 7=144 3 1=1440 2 4 1=24
2 4 1=24 2 1=24 8 1=2 2 3 1=36
% 3 1=36 3 4 1=6 % 1=36 % 6 1=36
% 6 1=36 4 6 1=6 3 6 4=9 g 1=36
12 1= 5 2=5 10 2=5

Table 3.10: Masses for the grougBpg
Char. pol mass | Char. pol. mass | Char. pol. mass
0 1=362880 42 31=17280 2 4 31=17280
8 1=362880 14 1=2880 2 2, 7=288
5 4 1=2880 2 2 7=288 2 2 7=288
3 1=48 2 5 1=24 2 s 1=24
4 8 34 43 1=4320 2 2 3 7432
‘21 3 1=4320 % 3 4 1=72 % 3 4 1=72
3 3 1=72 3 8 1=6 2 2 25=432
2 2 1=432 24 1=72 3 1=162
% 6 1=4320 2 2 5 7432 %6 1=4320
% 4 6 1=72 % 4 6 1=72 421 6 1=72
6 8 1= % 3 6 1=27 % 3 6 1=27
3 4 6 2=9 26 1=54 2 2 1=432
22 25432 4 3 1=72 3 % 1=54
g 1=162 % 12 1=72 % 12 1=72
4 12 5=12 3 12 2=9 6 12 2=9
9 4=9 18 4=9 2 5 1=30
% 5 1=30 4 5 1= 3 5 2=15
5 6 2=15 % 10 1=30 % 10 1=30
4 10 1=5 3 10 2=15 6 10 2=15
7 4= 14 4=
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Table 3.11: Masses for the grougspg

Char. pol. mass Char. pol. mass Char. pol. mass Char. pol mass
8 1=87091200 6 2 127=4354560 44 871=2073600 28 127=4354560
8 1=87091200 &, 1=725760 154 31=34560 134 31=34560
S 4 1=725760 12 31=34560 22 2 361=3456 52 31=34560
i3 7576 5 3 7=576 4 1=5760 18 1=2880
15 s 7=288 4 4 1=2880 ) 3=16 2 4 s 3=16
2 8 1=48 2 1=24 16 1 & 3 1=1088640
135 s 31=51840 133 31=51840 § 5 1=1088640 ? s 1=8640
1334 7=864 234 1=8640 2 52 7=864 2 52 7=864
3 3 1=144 2 5 8 1=72 2 3 8 1=72 3 4 8 1=4
42 241=51840 2 22 1755184 43 1=51840 154 25=864
5% 4 1=864 2 1=864 2 4 1=72 2 3 251944
23 1=1944 3 4 1=324 3 1=19440 6 6 1=1088640
156 31=51840 1356 31=51840 ¢ 6 1=1088640 146 1=8640
13545 7=864 246 1=8640 226 7=864 2 26 7=864
26 1=144 16 s 1=72 56 8 1=72 46 8 1=4
136 1=3240 1353 7=324 3 36 1=3240 1345 1=54
% 3 4 6 1=54 3 421 6 1=54 3 6 8 2=9 % % 6 25=648
5% 6 1=648 246 1=108 3, 5=243 42 1=51840
2 2 2 175-5184 42 24151840 2,2 1=864 2 42 25-864
2 2 1-864 2 o 1=72 2353 1=648 23 3 25-648
3 4 2 1=108 2z 11=648 23 1=1944 23 25=1944
4 3 1=324 s 2 5=243 A 1=19440 EETS 1=8640
22 5, 7=864 3 1=8640 2 41 5=144 2 4 12 5=144
2 7=144 8 12 1=12 2 3 1 1=54 2 3 1 1=54
3 4 12 5=9 2 1=108 2 6 12 1=54 2 6 12 1=54
4 6 12 5=9 3 6 12 14=27 2 1 1=108 L 1=36
24 1=3 % 9 1=27 % 9 1=27 4 9 2=9
3 0 16=27 6 9 4=27 2 5 1=27 2 18 1=27
4 18 2=9 3 18 4=27 6 18 16=27 ‘11 5 1=3600
155 7=360 4 5 1=3600 24 s 1=60 24 s 1=60
2 5 1=60 5 8 1=5 i35 1=90 53 5 1=90
3 45 1=15 2 5 1=90 156 1=90 55 6 1=90
45 6 1=15 3 5 6 8=45 5 2 1=90 5 12 1=15
2 1=75 4 2 1=3600 135 1w 7=360 R 1=3600
P4 10 1=60 5 4 10 1=60 PRt 1=60 & 10 1=5
% 3 10 1=90 § 3 10 1=90 3 4 10 1=15 % 10 1=90
2 6 10 1=90 26 10 1=90 4 6 10 1=15 3 6 10 8=45
2 1 1=90 10 12 1=15 5 10 24=25 2 1=75
20 2=5 15 4=15 20 4=15 2 1=21
2 5 1=21 4 7 2=7 3 7 4=21 6 7 4=21
i 1 1=21 5 1 1=21 4 14 2=7 3 14 4=21
6 14 4=21

For even orthogonal groups and when the characteristic polynomial is coprime to1 »,
the characteristic polynomial de nes two conjugacy classes ove®. They have the same

mass.
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Table 3.12: Masses for the groufs0O4

Char. pol. mass | Char. pol. mass | Char. pol. mass
i 1=44| 23 18 2 17144
2 1=24 23 1=9 2 1=36
5 6 1-9 5 1-36 12 1=
Table 3.13: Masses for the groufsOg
Char. pol. mass Char. pol. mass Char. pol. mass
8 1=58060800 ¢ 2 1=15360 13 1357165888
2 9 1=15360 8 1=58060800| 1 3 4 1-64
2 44 1=64 12 55=13824| 2 3 2 17=768
32 55=13824 4 1=7680 2 2 4 3=16
2 4 8 3=32 2 4 8 3=32 z 1=32
3 1=25920 123 1=96 213 41=5184
2234 1-8 2 52 1=432 42 19=1728
2 2 2 1=96 32 1=5184 2 2 1=864
2 3 1-648 3 1=25920 125 41-5184
% ‘21' 6 1=96 g 6 1=25920 % % 4 6 1=8
2 2 6 1=432 236 23-81 226 1=648
42 1=5184 2 22 1=96 42 19=1728
22 1-864 2 52 1-648 22 41=2592
z 3 1=648 & 1=25920 1 12 1=864
22 1 1=48 41 1-864 2 1 1=48
% 3 12 5=108 % 12 1=432 2 6 12 5=108
2 10 1=432 2, 1-48 24 1-4
2 4 1=9 39 1=9 5 18 1=9
6 18 1=9 15 1-100 %5 3=20
135 1= ¢ 1=100 2 2 10 3=20
‘21 10 1=100 % 6 10 1=5 %0 1=100
20 3=10 15 1=5 30 1=
17 3=7 5 14 3=7

3.7.2 Some essentially self-dual, algebraic, level one, automorphic cuspidal
representations of GL, for n 13

The following tables list the non-zero

as de ned in the introduction. These values depend on Assumption 3.4.2.4 whew; =
wij+1 +1 for somei or
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Much more data is available athttp://www.math.ens.fr/~taibi/dimtrace/

Table 3.14: card (S(w))
2w card. | 2w card. | 2w card. | 2w card.
11 1 23 2 33 2 43 3

15 1 25 1 35 3 45 3
17 1 27 2 37 2 a7 4
19 1 29 2 39 3 49 3
21 1 31 2 41 3 51 4
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Table 3.15: card (S(w1; W»))

(2wy; 2wy)  card.

(2wy; 2w)  card.

(2wy; 2wp)  card.

(2ws; 2wy)  card.

(19, 7)
(21, 5)
(21, 9)
(21, 13)
(23, 7)
(23, 9)
(23, 13)
(25, 5)
(25, 7)
(25, 9)
(25, 11)
(25, 13)
(25, 15)
(25, 17)
(25, 19)
(27, 3)
(27, 7)
(27, 9)
(27, 11)
(27, 13)
(27, 15)
(27, 17)
(27, 19)
(27, 21)
(29, 5)
(29, 7)
(29, 9)
(29, 11)
(29, 13)
(29, 15)
(29, 17)
(29, 19)
(29, 21)
(29, 25)
(31, 3)

NRPNNWOWNRARPRPOWRPNRPPRPRPNNNRPNRPPRPRRPRPNRNRPRPPRRPRRRER

(31, 5)
(31, 7)
(31, 9)
(31, 11)
(31, 13)
(31, 15)
(31, 17)
(31, 19)
(31, 21)
(31, 23)
(31, 25)
(33, 5)
(33, 7)
(33, 9)
(33, 11)
(33, 13)
(33, 15)
(33, 17)
(33, 19)
(33, 21)
(33, 23)
(33, 25)
(33, 27)
(33, 29)
(35, 3)
(35, 5)
(35, 7)
(35, 9)
(35, 11)
(35, 13)
(35, 15)
(35, 17)
(35, 19)
(35, 21)
(35, 23)

o ~NOOOoOO A P~,ORPNENMNOWDOOOORMNONIONWOWNNWNAMNWDAMDMNWNWE

(35, 25)
(35, 27)
(35, 29)
(35, 31)
(37, 1)
(37, 5)
(37, 7)
(37, 9)
(37, 11)
(37, 13)
(37, 15)
(37, 17)
(37, 19)
(37, 21)
(37, 23)
(37, 25)
(37, 27)
(37, 29)
(37, 31)
(37, 33)
(39, 3)
(39, 5)
(39, 7)
(39, 9)
(39, 11)
(39, 13)
(39, 15)
(39, 17)
(39, 19)
(39, 21)
(39, 23)
(39, 25)
(39, 27)
(39,
(39,

CEOOINNWNRIOONE 00O NWARLRLNWO

w N
= ©
N’ N

(NN NN
O~NOsoc0o kR

(39, 33) 4
(39, 35) 1
(39, 37) 1
(41, 1) 1
(41, 3) 1
(41, 5) 6
41, 7) 4
(41, 9) 9
(41, 11) 6
(41, 13) 13
(41, 15) 10
(41, 17) 13
(41, 19) 11
(41, 21) 14
(41, 23) 11
(41, 25) 15
(41, 27) 11
(41, 29) 11
(41, 31) 9
(41, 33) 8
(41, 35) 4
(41, 37) 3
(43, 3) 5
(43, 5) 3
(43, 7) 9
(43, 9) 7
(43, 11) 11
(43, 13) 11
(43, 15) 15
(43, 17) 13
(43, 19) 17
(43, 21) 14
(43, 23) 16
(43, 25) 16
(43, 27) 16
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Table 3.16: card (S(wz; w2; w3))

(2w;); card. | (2w;); card. | (2w;)i card. | (2w;); card.
(23, 13, 5) 1 | (27,21, 7) 2 | (29, 19, 13) 5 1(31,13,5) 3
(23, 15, 3) 1 |(27,21,9) 4 | (29, 19, 15) 1 |(31,13,7) 2
(23,15, 7) 1 | (27,21, 11) 2 |(29,19,17) 1 |(31,13,9) 4
(23, 17, 5) 1 | (27,21,13) 3 (29, 21,3) 5 | (31, 15,3) 3
(23,17, 9) 1 | (27, 21, 15) 1 | (29, 21,5) 1 | (31, 15,5) 2
(23, 19, 3) 1 | (27,21,17) 1 1(29, 21,7 10 | (31,15, 7) 5
(23, 19, 11) 1 | (27,23,3) 1 | (29, 21,9) 4 | (31,15,9) 3
(25, 13, 3) 1 | (27,23,5) 3 |(29, 21, 11) 8 | (31, 15, 11) 2
(25, 13, 7) 1 | (27,23, 7) 1 (29,21, 13) 4 | (31,17,1) 2
(25, 15, 5) 1 | (27,23,9) 2 | (29, 21, 15) 5 |(31,17,5) 7
(25, 15, 9) 1 | (27, 23,11) 2 | (29, 21, 17) 1 |(31,17,7) 4
(25, 17, 3) 2 | (27,23, 13) 1 | (29,21, 19) 1 |(31,17,9) 9
(25, 17, 7) 2 | (27,23, 15) 1 1(29,23,1) 1 (31,17, 11) 3
(25, 17, 11) 1 | (27, 23,17) 1 | (29, 23, 3) 2 | (31,17,13) 5
(25, 19, 1) 1 | (27, 25, 5) 2 | (29, 23, 5) 5 | (31, 19,3) 6
(25, 19, 5) 2 | (27,25, 7) 1 |(29,23,7) 5 | (31,19, 5) 4
(25, 19, 9) 2 | (27,25,9) 1 (29, 23,9 6 | (31,19,7) 10
(25, 19, 13) 1 | (27, 25, 11) 1 | (29, 23, 11) 7 1(31,19,9 8
(25, 21, 3) 2 | (27, 25, 13) 1 | (29, 23, 13) 5 1(31, 19, 11) 9
(25,21, 7) 2 | (27, 25, 15) 1 | (29, 23, 15) 5 ](31, 19, 13) 6
(25, 21, 11) 2 | (27, 25,17) 1 | (29, 23, 17) 3 |(31,19,15) 4
(25, 21, 15) 1 12997 1 | (29, 23, 19) 1 | (31, 21,1) 3
(27,9, 5) 1 |(29, 11,5) 1 | (29, 25, 3) 3 |(31,21,3) 1
(27, 13, 5) 2 1(29, 13, 3) 1 |(29, 25,5) 3 | (31, 21,5 11
(27,13, 7) 1 | (29, 13,5) 1 | (29, 25,7) 7 1(31,21,7) 7
(27, 13, 9) 1 (29,13, 7) 3 | (29, 25, 9) 4 | (31, 21,9) 15
(27, 15, 3) 1 | (29, 13,9) 1 | (29, 25, 11) 7 1(31, 21, 11) 9
(27, 15, 5) 1 |(29,15,1) 1 (29, 25, 13) 4 |(31,21,13) 12
(27,15, 7) 2 | (29, 15,5) 3 | (29, 25, 15) 5 ](31, 21, 15) 6
(27, 15, 9) 1 |29, 15,7) 2 | (29, 25,17) 3 |(31, 21,17 6
(27, 17, 5) 4 | (29, 15, 9) 3 |(29, 25,19 2 (31,231 1
(27,17, 7) 1 | (29, 15, 13) 1 | (29, 25, 21) 1 |(31, 23,3 6
(27, 17, 9) 3 | (29, 17, 3) 3 129, 27,1) 1 | (31, 23,5) 6
(27, 17, 11) 1 | (29, 17,5) 1 | (29, 27,5) 1 |(31,23,7) 12
(27, 17, 13) 1 |(29,17,7) 6 | (29,27, 7) 2 1(31,23,9) 11
(27, 19, 3) 2 | (29, 17,9 3 | (29, 27,9) 3 |(31,23,11) 13
(27, 19, 5) 2 1(29, 17, 11) 3 | (29, 27, 11) 1 ](31,23,13) 10
(27,19, 7) 3 | (29,17, 13) 1 | (29, 27, 13) 2 [(31,23,15) 10
(27, 19, 9) 3 ](29, 19,1) 1 |(29, 27, 15) 1 | (31, 23,17) 6
(27, 19, 11) 3 1(29, 19,3 1 | (29,27, 17) 1 | (31, 23,19 3
(27, 19, 13) 2 [(29,19,5) 6 | (29,27, 19) 1 | (31 25,1) 3
(27, 19, 15) 1 |29, 19,7) 3 (31,95 1 |(31 25,3 2
(27, 21, 1) 1 | (29, 19,9 7 |(31,11,3) 1 | (31, 25,5) 11
(27, 21, 5) 4 | (29,19, 11) 4 (31,11, 7) 1 (31,25, 7) 9
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Table 3.17: card (S(wx1; Wo; W3; Wg))

(2w;); card. | (2w;); card. | (2w;)i card. | (2w;); card.
(25, 17, 9, 5) 1 | (27,19,13,9) 3 |(27,23,15,7) 7 | (27, 25,19, 7) 3
(25, 17, 13, 5) 1 | (27,19, 15, 3) 2 | (27, 23,15, 9) 4 | (27, 25,19, 9) 6
(25, 19, 9, 3) 1 | (27,19, 15,5) 1 | (27, 23, 15, 11) 5 | (27, 25, 19, 11) 3
(25, 19, 11, 5) 1 | (27,19, 15,7) 1 | (27, 23, 15, 13) 1 | (27, 25, 19, 13) 3
(25, 19, 13, 3) 1 | (27,19, 15,9) 1 | (27,23,17,1) 5 | (27, 25, 21, 3) 4
(25, 19, 13, 5) 1 | (27,19, 17,5) 1 | (27, 23,17, 3) 2 | (27,25,21,7) 4
(25, 19, 13, 7) 1 |(27,19,17,9) 1 | (27, 23,17,5) 6 | (27, 25, 21, 9) 2
(25, 19, 13, 9) 1 |(27,21,9,23) 2 | (27,23,17,7) 5 | (27, 25, 21, 11) 3
(25, 19, 15, 5) 1 |(27,21,9,7) 1 |(27,23,17,9) 7 | (27, 25, 21, 13) 1
(25, 21, 11, 7) 1 | (27,21, 11, 3) 1 | (27,23, 17, 11) 3 | (27, 25, 21, 15) 1
(25, 21, 13, 5) 1 | (27,21, 11,5) 2 | (27, 23,17, 13) 4 | (27, 25, 23, 3) 1
(25, 21, 13, 7) 1 |(27,21,11,7) 2 | (27,23, 19, 3) 5 | (27, 25, 23, 9) 1
(25, 21, 15, 3) 1 | (27,21, 13, 3) 5 | (27, 23, 19, 5) 1 | (27, 25, 23, 11) 1
(25, 21, 15, 5) 1 | (27,21, 13,5) 2 | (27,23,19,7) 6 | (29, 15,7,5) 1
(25, 21,15, 7) 2 | (27,21,13,7) 6 | (27, 23,19,9) 2 | (29, 15,93 1
(25, 21, 15, 9) 1 | (27,21, 13,9) 2 | (27, 23, 19, 11) 3 | (29, 15,13, 3) 1
(25, 21, 17, 5) 1 | (27,21, 15,1) 1 | (27, 23, 19, 13) 1 |(29,17,7,3) 1
(25, 21, 17, 7) 1 | (27,21, 15, 3) 2 | (27, 23, 19, 15) 1 |(29,17,9,5) 3
(25, 21, 17, 9) 1 | (27,21, 15,5) 4 | (27,23,21,1) 1 |(29, 17,11, 3) 2
(25, 23, 9, 3) 1 |(27,21,15,7) 4 | (27,23,21,5) 1 ](29,17,11,7) 1
(25, 23, 11, 1) 1 | (27,21, 15,9) 4 | (27,23,21,9) 1 ](29,17,13,1) 1
(25, 23, 11, 5) 2 | (27, 21, 15, 11) 2 |(27,25,9,3) 2 | (29,17, 13,5) 4
(25, 23, 13, 3) 1 | (27,21, 17, 3) 5 | (27,25, 11, 1) 1 ](29,17,13,7) 1
(25, 23,13, 7) 1 |(27,21,17,7) 6 | (27, 25, 11, 3) 1 |(29,17,13,9) 2
(25, 23, 15, 1) 1 | (27,21,17,9) 2 | (27,25, 11,5) 2 | (29,17, 15, 3) 1
(25, 23, 15, 5) 3 | (27, 21,17, 11) 3 | (27, 25, 13, 3) 5 (9, 17,15, 7) 1
(25, 23, 15, 9) 1 | (27, 21,19, 3) 1 | (27, 25, 13, 5) 1 ](2919,7,5) 1
(25, 23, 15, 11) 1 | (27,21, 19,5) 1 | (27,25,13,7) 4 (29, 19,9, 3) 4
(25, 23, 17, 3) 1 |(27,21,19,7) 1 | (27, 25, 13,9) 1 ](2919,09,5) 1
(25, 23, 17, 5) 1 |(27,21,19,9) 1 | (27, 25, 15, 1) 3 1(29,19,9,7) 1
(25, 23,17, 7) 1 | (27, 21, 19, 11) 1 | (27, 25, 15, 3) 2 |(29, 19, 11, 1) 1
(25, 23, 17, 11) 1 | (27,23,7,3) 2 | (27, 25, 15, 5) 5 | (29, 19, 11, 3) 1
(25, 23, 19, 5) 1 ](27,23,9,1) 1 | (27,25, 15,7) 3 [(29, 19,11, 5) 4
(27, 17, 9, 3) 1 |(27,23,9,5) 2 |(27,25,15,9) 5 (29,19, 11, 7) 1
(27, 17,9, 7) 1 | (27,23,11,3) 5 | (27, 25, 15, 11) 1 (29,19, 11, 9) 1
(27, 17, 13, 3) 2 | (27,23, 11,5) 1 | (27, 25, 17, 3) 7 | (29, 19, 13, 3) 8
(27, 17,13, 7) 2 | (27,23,11,7) 4 | (27, 25,17, 5) 2 |(29, 19, 13,5) 4
(27, 19, 9, 5) 1 | (27,23,13,1) 4 | (27,25,17,7) 7 |(29,19,13,7) 6
(27, 19, 11, 3) 2 | (27, 23, 13, 3) 1 | (27, 25,17,9) 4 | (29, 19, 13, 9) 4
(27, 19, 11, 5) 1 | (27,23, 13,5) 6 | (27, 25, 17, 11) 5 | (29, 19, 13, 11) 1
(27, 19, 13, 1) 1 |(27,23,13,7) 3 | (27, 25, 17, 13) 1 | (29,19, 15,1) 2
(27, 19, 13, 3) 1 |(27,23,13,9) 6 | (27, 25,19, 1) 3 | (29, 19, 15, 3) 2
(27, 19, 13, 5) 4 | (27,23, 15, 3) 7 | (27, 25, 19, 3) 2 | (29,19, 15, 5) 5
(27, 19, 13, 7) 1 | (27, 23, 15, 5) 3 | (27, 25, 19, 5) 5 | (29, 19, 15, 7) 3
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Table 3.18: card (S(wx1; Wo; W3; Wa))

(2wp)i

O
QD
-~
o

(2wy)i

o
job}
=
o

(2wi)i

O
Q
-~
o

(23, 21, 17, 11, 3)
(25, 19, 15, 9, 3)

(25, 21, 13, 9, 3)

(25, 21, 15, 7, 3)

(25, 21, 15, 9, 1)

(25, 21, 15, 9, 5)

(25, 21, 15, 11, 3)
(25, 21, 15, 13, 1)
(25, 21, 17, 9, 3)

(25, 21, 17, 11, 1)
(25, 21, 17, 11, 5)
(25, 21, 17, 13, 3)
(25, 21, 17, 13, 7)
(25, 21, 19, 11, 3)
(25, 21, 19, 13, 1)
(25, 21, 19, 15, 3)
(25, 23, 15, 9, 3)

(25, 23, 17, 7, 3)

(25, 23, 17, 11, 3)
(25, 23, 17, 11, 5)
(25, 23, 17, 11, 7)
(25, 23, 17, 13, 1)
(25, 23, 17, 13, 5)
(25, 23, 17, 13, 7)
(25, 23, 17, 13, 9)
(25, 23, 19, 9, 5)

(25, 23, 19, 11, 3)
(25, 23, 19, 11, 5)
(25, 23, 19, 11, 7)
(25, 23, 19, 13, 3)
(25, 23, 19, 13, 5)
(25, 23, 19, 13, 7)
(25, 23, 19, 15, 3)
(25, 23, 19, 15, 7)
(25, 23, 19, 15, 9)
(25, 23, 21, 11, 3)
(25, 23, 21, 11, 5)
(25, 23, 21, 13, 3)
(25, 23, 21, 13, 5)
(27, 19, 13, 9, 3)

(27, 19, 15, 7, 3)

(27, 19, 15, 9, 1)

(27, 19, 15, 9, 5)

(27, 19, 15, 11, 3)

PNNPRPRPRPRPRRRPRPRREPNRPRRPRPRPRPREPNRPRPRPRPRPRPREPNRPPRPRPNRPRPNRNRREPRPEPRERPRR

(27, 19, 15, 13, 5)
(27, 19, 17, 9, 3)
(27, 19, 17, 11, 5)
(27, 19, 17, 13, 3)
(27, 21, 13, 7, 3)
(27, 21, 13, 9, 1)
(27, 21, 13, 9, 5)
(27, 21, 13, 11, 3)
(27, 21, 15, 7, 1)
(27, 21, 15, 7, 5)
(27, 21, 15, 9, 3)
(27, 21, 15, 9, 5)
(27, 21, 15, 9, 7)
(27, 21, 15, 11, 1)
(27, 21, 15, 11, 5)
(27, 21, 15, 13, 3)
(27, 21, 15, 13, 5)
(27, 21, 15, 13, 7)
(27, 21, 17, 7, 3)
(27, 21, 17, 9, 1)
(27, 21, 17, 9, 5)
(27, 21, 17,9, 7)
(27, 21, 17, 11, 3)
(27, 21, 17, 11, 5)
(27, 21, 17, 11, 7)
(27, 21, 17, 13, 1)
(27, 21, 17, 13, 5)
(27, 21, 17, 13, 7)
(27, 21, 17, 13, 9)
(27, 21, 17, 15, 3)
(27, 21, 17, 15, 7)
(27, 21, 19, 7, 1)
(27, 21, 19, 9, 3)
(27, 21, 19, 11, 1)
(27, 21, 19, 11, 5)
(27, 21, 19, 11, 7)
(27, 21, 19, 11, 9)
(27, 21, 19, 13, 3)
(27, 21, 19, 13, 5)
(27, 21, 19, 13, 7)
(27, 21, 19, 15, 1)
(27, 21, 19, 15, 5)
(27, 21, 19, 15, 9)
(27, 21, 19, 17, 3)

P NDMOWOWFROFRPRPFPOMNOORPERPNNMNNNWONSNPRPOWOAORFRENDANNERANEPRERPENENDNPRE

(27, 23, 13, 7, 5)
(27, 23, 13, 9, 3)
(27, 23, 13,9, 7)
(27, 23, 13, 11, 5)
(27, 23, 15, 7, 3)
(27, 23, 15, 7, 5)
(27, 23, 15, 9, 1)
(27, 23, 15, 9, 3)
(27, 23, 15, 9, 5)
(27, 23, 15, 9, 7)
(27, 23, 15, 11, 3)
(27, 23, 15, 11, 5)
(27, 23, 15, 11, 7)
(27, 23, 15, 13, 1)
(27, 23, 15, 13, 3)
(27, 23, 15, 13, 5)
(27, 23, 15, 13, 7)
(27, 23, 15, 13, 9)
(27, 23, 17, 5, 3)
(27, 23, 17, 7, 1)
(27, 23, 17, 7, 5)
(27, 23, 17, 9, 3)
(27, 23, 17, 9, 5)
(27, 23, 17,9, 7)
(27, 23, 17, 11, 1)
(27, 23, 17, 11, 3)
(27, 23, 17, 11, 5)
(27, 23, 17, 11, 7)
(27, 23, 17, 11, 9)
(27, 23, 17, 13, 3)
(27, 23, 17, 13, 5)
(27, 23, 17, 13, 7)
(27, 23, 17, 13, 9)
(27, 23, 17, 13, 11)
(27, 23, 17, 15, 1)
(27, 23, 17, 15, 5)
(27, 23, 17, 15, 7)
(27, 23, 17, 15, 9)
(27, 23, 19, 7, 3)
(27, 23, 19, 7, 5)
(27, 23, 19, 9, 1)
(27, 23, 19, 9, 3)
(27, 23, 19, 9, 5)
(27, 23, 19, 9, 7)

Nabwl—‘bI\JI\)U‘IH|—\-l>';\IK;I\JCD'_;oooo-b-b':mNHHN-bHHNhOJHOOHNHNHI—‘bH
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Table 3.19: card (S(wz; Wa; W3; Wa; Ws; Wg))

(2wi);

card.

(2w; )

card.

(2wj);

o
QO
=
o

(25, 21, 17, 13, 7, 3)
(25, 23, 17, 11, 7, 3)
(25, 23, 17, 13, 7, 1)
(25, 23, 17, 13, 9, 3)
(25, 23, 19, 13, 7, 3)
(25, 23, 19, 13, 9, 1)
(25, 23, 19, 13, 9, 5)
(25, 23, 19, 13, 11, 3)
(25, 23, 19, 15, 7, 1)
(25, 23, 19, 15, 9, 3)
(25, 23, 19, 15, 9, 5)
(25, 23, 19, 15, 11, 1)
(25, 23, 19, 15, 11, 5)
(25, 23, 19, 15, 13, 3)
(25, 23, 19, 17, 9, 1)
(25, 23, 19, 17, 9, 5)
(25, 23, 19, 17, 11, 3)
(25, 23, 19, 17, 13, 1)
(25, 23, 19, 17, 13, 5)
(25, 23, 21, 11, 7, 3)
(25, 23, 21, 13, 7, 1)
(25, 23, 21, 13, 9, 3)
(25, 23, 21, 13, 11, 1)
(25, 23, 21, 15, 7, 3)
(25, 23, 21, 15, 9, 1)
(25, 23, 21, 15, 9, 5)
(25, 23, 21, 15, 11, 3)
(25, 23, 21, 15, 11, 5)
(25, 23, 21, 15, 11, 7)
(25, 23, 21, 15, 13, 5)
(25, 23, 21, 17, 7, 1)
(25, 23, 21, 17, 7, 5)
(25, 23, 21, 17, 9, 3)
(25, 23, 21, 17, 9, 7)
(25, 23, 21, 17, 11, 1)
(25, 23, 21, 17, 11, 5)
(25, 23, 21, 17, 11, 7)
(25, 23, 21, 17, 13, 3)
(25, 23, 21, 17, 13, 7)
(25, 23, 21, 17, 15, 1)
(25, 23, 21, 17, 15, 5)
(25, 23, 21, 19, 7, 3)
(25, 23, 21, 19, 9, 1)
(25, 23, 21, 19, 9, 5)

P RPPFRPRPPRPPOFRPOWRPROFRPNENPOONDNDNENNPEFPRPEPNNNRERPOONDNMNNNDNONMNNNRERLPRE

(25, 23, 21, 19, 11, 7)
(25, 23, 21, 19, 13, 5)
(27, 21, 15, 13, 7, 3)
(27, 21, 17, 11, 7, 3)
(27, 21, 17, 13, 5, 3)
(27, 21, 17, 13, 7, 1)
(27, 21, 17, 13, 7, 5)
(27, 21, 17, 13, 9, 3)
(27, 21, 17, 13, 9, 5)
(27, 21, 17, 15, 7, 3)
(27, 21, 17, 15, 9, 5)
(27, 21, 19, 13, 7, 3)
(27, 21, 19, 13, 9, 1)
(27, 21, 19, 13, 9, 3)
(27, 21, 19, 13, 9, 5)
(27, 21, 19, 13, 11, 3)
(27, 21, 19, 13, 11, 5)
(27, 21, 19, 15, 5, 3)
(27, 21, 19, 15, 7, 1)
(27, 21, 19, 15, 9, 3)
(27, 21, 19, 15, 9, 5)
(27, 21, 19, 15, 11, 3)
(27, 21, 19, 15, 11, 5)
(27, 21, 19, 15, 11, 7)
(27, 21, 19, 17, 9, 5)
(27, 21, 19, 17, 11, 3)
(27, 23, 15, 11, 7, 3)
(27, 23, 15, 13, 7, 1)
(27, 23, 15, 13, 9, 3)
(27, 23,17, 9, 7, 3)

(27, 23, 17, 11, 5, 3)
(27, 23, 17, 11, 7, 1)
(27, 23, 17, 11, 7, 5)
(27, 23, 17, 11, 9, 3)
(27, 23, 17, 13, 5, 1)
(27, 23, 17, 13, 7, 3)
(27, 23, 17, 13, 7, 5)
(27, 23, 17, 13, 9, 1)
(27, 23, 17, 13, 9, 3)
(27, 23, 17, 13, 9, 5)
(27, 23, 17, 13, 9, 7)
(27, 23, 17, 13, 11, 3)
(27, 23, 17, 13, 11, 7)
(27, 23, 17, 15, 5, 3)

NP APRPORPRORPEOPRPONMNMONNRPPRPNRPRPRPNNRARRPRPRNNRPONNREBAENRRRRERR

(27, 23, 17, 15, 7, 1)

(27, 23, 17, 15, 7, 5)
(27, 23, 17, 15, 9, 3)
(27, 23, 17, 15, 9, 5)
(27, 23, 17, 15, 9, 7)
(27, 23, 17, 15, 11, 1)
(27, 23, 17, 15, 11, 5)
(27, 23, 17, 15, 13, 3)
(27, 23, 19, 9, 5, 3)

(27, 23, 19, 9, 7, 1)

(27, 23, 19, 11, 5, 1)
(27, 23, 19, 11, 7, 3)

(27, 23, 19, 11, 9, 1)
(27, 23, 19, 11, 9, 5)
(27, 23, 19, 13, 5, 3)
(27, 23, 19, 13, 7, 1)
(27, 23, 19, 13, 7, 3)
(27, 23, 19, 13, 7, 5)
(27, 23, 19, 13, 9, 3)
(27, 23, 19, 13, 9, 5)
(27, 23, 19, 13, 9, 7)
(27, 23, 19, 13, 11, 1)
(27, 23, 19, 13, 11, 3)
(27, 23, 19, 13, 11, 5)
(27, 23, 19, 13, 11, 7)
(27, 23, 19, 15, 5, 1)
(27, 23, 19, 15, 7, 3)
(27, 23, 19, 15, 7, 5)
(27, 23, 19, 15, 9, 1)
(27, 23, 19, 15, 9, 3)
(27, 23, 19, 15, 9, 5)
(27, 23, 19, 15, 9, 7)
(27, 23, 19, 15, 11, 1)
(27, 23, 19, 15, 11, 3)
(27, 23, 19, 15, 11, 5)
(27, 23, 19, 15, 11, 7)
(27, 23, 19, 15, 11, 9)
(27, 23, 19, 15, 13, 1)
(27, 23, 19, 15, 13, 3)
(27, 23, 19, 15, 13, 5)
(27, 23, 19, 15, 13, 7)
(27, 23, 19, 15, 13, 9)
(27, 23, 19, 17, 5, 3)
(27, 23, 19, 17, 7, 1)

BONNWOODORNOWNNRNNRRPRPRONR R ®OWN
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Table 3.20: card (Oq(w))

w card.|w card.|w card.|w card.

11 1 21 1 29 2 37 2

15 1 23 2 31 2 39 3

17 1 25 1 33 2 |4 3

19 1 27 2 35 3 |43 3

Table 3.21: card (Og(w1; W>))

(wi;wp) card. | (wq;wp) card. | (wg;wp) card. | (wg;wp) card.
(13, 6) 1 (21, 12) 5 (25, 6) 4 (28, 7) 6
(13, 8) 1 (21, 14) 5 (25, 8) 6 (28, 9) 8
(15, 6) 1 (21, 16) 4 | (25, 10) 6 | (28, 11) 8
(15, 8) 1 (21, 18) 3 (25, 12) 9 | (28, 13) 10
(15, 10) 1 (21, 20) 1 (25, 14) 8 | (28, 15) 11
(15, 12) 1 (22, 3) 1 (25, 16) 9 (28, 17) 9
(16, 7) 1 (22, 5) 1 (25, 18) 9 | (28,19 10
(16, 9) 1 (22, 7) 2 (25, 20) 8 (28, 21) 9
17, 4) 1 (22, 9) 4 (25, 22) 5 | (28, 23) 5
(17, 8) 2 (22, 11) 2 (25, 24) 2 (28, 25) 3
(17, 10) 2 (22, 13) 4 | (26, 5) 3 (29, 4) 4
(17, 12) 2 (22, 15) 3 (26, 7) 5 (29, 6) 5
a7, 14) 2 (22, 17) 2 (26, 9) 5 (29, 8) 10
(18, 5) 1 (22, 19) 1 (26, 11) 6 | (29, 10) 11
(18, 7) 1 (23, 4) 1 (26, 13) 8 | (29, 12) 13
(18, 9) 1 (23, 6) 3 (26, 15) 6 | (29, 14) 15
(18, 11) 1 (23, 8) 4 (26, 17) 7 (29, 16) 17
(18, 13) 1 (23, 10) 6 (26, 19) 6 | (29, 18) 15
(19, 6) 2 (23, 12) 5 (26, 21) 4 (29, 20) 17
(19, 8) 2 (23, 14) 7 (26, 23) 1 (29, 22) 15
(19, 10) 3 (23, 16) 7 (27, 2) 1 (29, 24) 13
(19, 12) 3 (23, 18) 6 (27, 4) 2 (29, 26) 10
(19, 14) 3 (23, 20) 5 (27, 6) 5 (29, 28) 4
(19, 16) 2 (23, 22) 2 (27, 8) 7 (30, 3) 2
(19, 18) 1 (24, 3) 1 (27, 10) 9 |(30,5) 5
(20, 5) 1 (24, 5) 2 (27, 12) 10 | (30, 7) 7
(20, 7) 2 (24, 7) 3 (27, 14) 13 | (30, 9) 10
(20, 9) 1 (24, 9) 4 (27, 16) 11 | (30, 11) 11
(20, 11) 2 (24, 11) 5 (27, 18) 13 | (30, 13) 13
(20, 13) 2 (24, 13) 5 (27, 20) 12 | (30, 15) 13
(20, 15) 1 (24, 15) 5 (27, 22) 10 | (30, 17) 15
(21, 4) 1 (24, 17) 4 | (27, 24) 8 | (30, 19) 13
(21, 6) 2 (24, 19) 3 (27, 26) 3 | (30, 21) 13
(21, 8) 4 (24, 21) 1 (28, 3) 2 (30, 23) 10
(21, 10) 3 (25, 4) 2 (28, 5) 3 (30, 25) 8
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Table 3.22: card (Og(W1; W2; W3))

(wi); card. | (wp); card. | (w;); card.
(12, 8, 4) 1 |(16,9,5) 1 |(@17,12,7) 5
(13, 8, 5) 1 |(16,9,7) 1 |(17,12,9) 6
(13, 10, 3) 1 | (16, 10, 2) 1 | (17,12, 11) 2
(13, 10, 5) 1 | (16, 10, 4) 2 | (17,13, 2) 1
(13, 10, 7) 1 | (16, 10, 6) 2 | (17,13, 4) 4
(13, 12, 5) 1 | (16, 10, 8) 1 | (17, 13, 6) 5
(13, 12, 7) 1 | (16,11, 3) 1 | (7,13, 8) 3
(13, 12, 9) 1 | (16, 11,5) 2 | (17, 13, 10) 2
(14, 7, 3) 1 | (6, 11,7) 1 | (17, 14, 3) 4
(14, 8, 4) 1 |(16,11,9) 1 | (17, 14,5) 6
(14, 9, 5) 1 | (186,12, 2) 1 | (7,14, 7) 8
(14, 10, 4) 1 | (16, 12, 4) 3 | (17,14,9) 7
(14, 10, 6) 1 | (16, 12, 6) 3 |@17,14,11) 6
(14, 12, 2) 1 | (16, 12, 8) 2 | (17, 14, 13) 2
(14, 12, 6) 1 | @16,12,10) 2 | (17,15,2) 2
(14, 12, 8) 1 | (16,13, 3) 2 | (17, 15, 4) 2
(15, 8, 3) 1 | (16, 13,5) 2 | (17, 15, 6) 3
(15, 8, 5) 1 | (186,13,7) 2 | (17, 15, 8) 4
(15, 8, 7) 1 | (16, 13,9 1 | (17, 15, 10) 2
(15, 9, 4) 1 |(@6,13,11) 1 |(17,15,12) 1
(15, 10, 3) 1 | (16, 14, 2) 2 | (17,16, 1) 1
(15, 10, 5) 2 | (16, 14, 4) 2 | (17, 16, 3) 2
(15, 10, 7) 1 | (16, 14, 6) 3 | (17, 16, 5) 4
(15, 10, 9) 1 | (16, 14, 8) 3 | (17, 16,7) 6
(15, 11, 4) 1 | (16, 14, 10) 2 |(17,16,9) 7
(15, 11, 6) 1 | @6,14,12) 1 | (17,16,11) 3
(15, 12, 3) 2 |(17,6,3) 1 |(17,16,13) 4
(15, 12, 5) 2 | (17,7, 4) 1 | (18,6, 4) 1
(15, 12, 7) 3 |17, 8,3) 1 | @18,7,3) 1
(15, 12, 9) 2 | (17,8,5) 3 |(18,7,5) 1
(15, 13, 4) 1 |(7,8,7) 1 | @18, 8,2) 1
(15, 13, 6) 1 ]@17,9 2 1 | (18,8, 4) 3
(15, 13, 8) 1 |@17,9 4) 1 | (18,8, 6) 2
(15, 14, 1) 1 | (17,9, 6) 1 |(8,9,73) 2
(15, 14, 5) 2 | (17, 10,3 3 ]1(18,9,5) 3
(15, 14, 7) 3 | (17, 10,5) 3 1(18,9,7) 2
(15, 14, 9) 3 | (17,10, 7) 4 | (18, 10, 2) 2
(15, 14, 13) 1 (17, 10, 9) 2 (18, 10, 4) 4
(16, 6, 4) 1 | (17,11, 2) 1 | (18, 10, 6) 4
(16, 7, 5) 1 | (@17, 11, 4) 3 | (18, 10, 8) 2
(16, 8, 2) 1 | (17,11, 6) 1 | (18, 11, 3) 3
(16, 8, 4) 1 | (7,11, 8) 1 | (@18, 11, 5) 4
(16, 8, 6) 1 |(17,12,3) 3 (18,11, 7) 4
(16, 9, 3) 1 | (7,12, 5) 7 | (18,11, 9) 2
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Table 3.23: card (Og(W1; W2; W3; Wy))

(W) card. | (w;); card. | (w;); card.
(13, 10, 9, 4) 1 | (15, 12, 11, 6) 4 | (15, 14, 13, 10) 3
(13,12, 7, 4) 1 | (15, 12, 11, 8) 2 | (16,8,7,3) 1
(13, 12, 9, 4) 1 | (15, 12, 11, 10) 1 | (16, 10,7, 3) 1
(13, 12, 9, 6) 1 | (15, 13,7, 3) 2 | (16, 10, 7, 5) 1
(13, 12, 11, 4) 1 | (15,13,7,5) 1 (16, 10, 8, 4) 1
(14, 10, 9, 5) 1 | (15,13,8,2) 1 | (16, 10,9, 3) 2
(14, 12, 7, 3) 1 | (15, 13,8, 4) 1 | (16,10, 9, 5) 2
(14, 12, 8, 4) 1 | (15, 13, 8, 6) 1 | (16,10,9,7) 1
(14, 12, 9, 3) 1 | (15,13,9,3) 3 | (16, 11, 6, 3) 1
(14, 12, 9, 5) 2 | (15,13,9,5) 4 | (16, 11,7, 4) 1
(14, 12,9, 7) 1 |(5,13,9,7) 2 | (16, 11, 8, 5) 1
(14, 12, 10, 4) 1 | (15, 13, 10, 4) 2 | (16, 11,9, 2) 1
(14, 12,10,6) 1 | (15, 13, 10, 6) 2 | (16, 11, 9, 4) 2
(14, 12, 11, 3) 1 | (15, 13, 10, 8) 1 | (16, 11,9, 6) 2
(14,12,11,5) 1 | (15,13, 11, 1) 1 | (16, 11, 9, 8) 1
(14, 12, 11, 7) 1 | (15,13, 11, 3) 2 | (16, 11, 10, 3) 1
(14, 13, 8, 5) 1 | (15,13, 11,5) 3 | (16, 11, 10, 7) 1
(14, 13, 10, 5) 1 |(15,13,11,7) 3 | (16, 12,5, 3) 1
(14, 13, 10, 7) 1 | (15, 13,11,9) 1 | (16, 12,6, 4) 2
(15, 10, 5, 4) 1 | (15, 14,5,2) 1 |6, 12,7, 3) 2
(15, 10, 7, 4) 1 |(15,14,7,2) 1 | (16,12,7,5) 3
(15, 10, 7, 6) 1 | (15, 14,7, 4) 4 | (16,12, 8, 2) 1
(15, 10, 9, 2) 1 | (15, 14,7, 6) 2 | (16, 12,8, 4) 3
(15, 10, 9, 4) 1 | (15, 14,8, 3) 1 | (16, 12, 8, 6) 3
(15, 10, 9, 6) 1 | (15, 14, 8,5) 1 |(16,12,9,1) 1
(15, 10, 9, 8) 1 | (15, 14,9, 2) 3 | (16, 12, 9, 3) 5
(15, 11, 7, 5) 1 | (15,14, 9, 4) 6 | (16,12, 9,5) 6
(15, 11, 9, 3) 1 | (15,14, 9, 6) 7 |(16,12,9,7) 5
(15, 11, 9, 5) 1 | (15,14,9,8) 3 | (16, 12, 10, 2) 2
(15, 11,9, 7) 1 | (15, 14, 10, 3) 2 | (16, 12, 10, 4) 5
(15, 12, 5, 4) 2 | (15, 14, 10, 5) 3 | (16, 12, 10, 6) 4
(15, 12, 7, 2) 1 | (15, 14,10, 7) 1 | (16, 12, 10, 8) 3
(15, 12, 7, 4) 2 | (15, 14, 11, 2) 2 | (16, 12, 11, 3) 5
(15, 12, 7, 6) 3 | (15,14, 11, 4) 7 | (16, 12, 11, 5) 6
(15, 12, 8, 3) 1 | (15, 14, 11, 6) 8 | (16, 12, 11, 7) 3
(15, 12, 9, 2) 1 | (15, 14, 11, 8) 7 | (16, 12, 11,9) 1
(15, 12, 9, 4) 5 | (15, 14, 11,10) 2 | (16, 13, 4, 3) 1
(15, 12, 9, 6) 4 | (15, 14, 12, 3) 3 | (16, 13,5, 4) 1
(15, 12, 9, 8) 3 | (15,14, 12,5) 3 | (16, 13, 6, 3) 2
(15, 12, 10, 1) 1 | (15,14, 12, 7) 2 |(16, 13,6,5) 2
(15, 12, 10, 3) 1 | (15, 14, 13, 2) 1 |(16,13,7,2) 1
(15, 12,10,5) 2 | (15, 14, 13, 4) 4 | (16, 13,7, 4) 2
(15, 12, 11, 2) 2 | (15, 14, 13, 6) 3 | (16, 13,7, 6) 2
(15, 12,11, 4) 4 | (15, 14, 13, 8) 3 | (16, 13, 8, 3) 4
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Table 3.24: card (Og(W1; W2; W3; Wa; Ws))

(W)
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(W)
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(W)

O
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(13, 10, 9, 6, 3)
(13, 11, 9, 8, 4)
(13, 12, 7, 6, 3)
(13, 12, 9, 4, 3)
(13, 12, 9, 6, 1)
(13, 12, 9, 6, 3)
(13, 12, 9, 6, 5)
(13, 12, 9, 8, 3)
(13, 12, 9, 8, 5)
(13, 12, 10, 6, 2)
(13, 12, 10, 8, 4)
(13, 12, 11, 6, 3)
(13, 12, 11, 8, 3)
(13, 12, 11, 8, 5)
(14, 10, 7, 6, 2)
(14, 10, 9, 6, 2)
(14, 10, 9, 7, 1)
(14, 10, 9, 8, 2)
(14, 11, 9, 5, 2)
(14, 11, 9, 6, 3)
(14,11, 9, 7, 2)
(14, 11, 9, 7, 4)
(14, 11, 9, 8, 1)
(14, 11, 9, 8, 5)
(14, 12, 7, 6, 4)
(14, 12, 8, 6, 3)
(14, 12, 9, 4, 2)
(14, 12, 9, 5, 3)
(14, 12, 9, 6, 2)
(14, 12, 9, 6, 4)
(14,12, 9, 7, 3)
(14, 12, 9, 7, 5)
(14, 12, 9, 8, 2)
(14, 12, 9, 8, 4)
(14, 12, 9, 8, 6)
(14, 12, 10, 5, 2)
(14, 12, 10, 6, 1)
(14, 12, 10, 6, 3)
(14, 12, 10, 6, 5)
(14, 12, 10, 7, 2)
(14, 12, 10, 7, 4)
(14, 12, 10, 8, 3)
(14, 12, 10, 8, 5)
(14, 12, 11, 6, 2)

NNNRPRNRNRPRRPRRPRPORPRRPNNNRPRRPRRPPRPRPRPRPRPRPRPRPRPRPREPRNRRPREPNRPRRPRERRRERR

(14, 12, 11, 6, 4)
(14, 12, 11, 7, 1)
(14, 12, 11, 7, 3)
(14, 12, 11, 7, 5)
(14, 12, 11, 8, 2)
(14, 12, 11, 8, 4)
(14, 12, 11, 8, 6)
(14, 12, 11, 9, 3)
(14, 12, 11, 9, 5)

(14, 12, 11, 10, 4)

(14, 13, 7, 5, 4)
(14, 13, 8, 6, 4)
(14, 13, 8, 7, 3)
(14, 13, 8, 7, 5)
(14, 13, 9, 3, 2)
(14, 13, 9, 5, 2)
(14, 13, 9, 5, 4)
(14, 13, 9, 6, 1)
(14, 13,9, 7, 2)
(14, 13, 9, 7, 4)
(14, 13, 9, 7, 6)
(14, 13, 9, 8, 3)
(14, 13, 10, 5, 3)
(14, 13, 10, 6, 2)
(14, 13, 10, 6, 4)
(14, 13, 10, 7, 1)
(14, 13, 10, 7, 3)
(14, 13, 10, 7, 5)
(14, 13, 10, 8, 2)
(14, 13, 10, 8, 4)
(14, 13, 10, 8, 6)
(14, 13, 10, 9, 3)
(14, 13, 10, 9, 5)
(14, 13, 10, 9, 7)
(14, 13, 11, 5, 2)
(14, 13, 11, 5, 4)
(14, 13, 11, 6, 3)
(14, 13, 11, 7, 2)
(14, 13, 11, 7, 4)
(14, 13, 11, 7, 6)
(14, 13, 11, 8, 3)
(14, 13, 11, 8, 5)
(14, 13, 11, 9, 2)
(14, 13, 11, 9, 4)

NFRPRRPRPWOWOWFRPNRPPNRPRNRPNNRPRRPRPRPPNWOWRPNRPRPPPRPPEBRPRPRREPNNRREREPR

(14, 13, 11, 9, 6)
(14, 13, 12, 7, 1)
(14, 13, 12, 7, 3)
(14, 13, 12, 8, 4)
(14, 13, 12, 9, 5)
(15, 10, 7, 6, 3)
(15, 10, 9, 4, 3)
(15, 10, 9, 6, 1)
(15, 10, 9, 6, 3)
(15, 10, 9, 6, 5)
(15, 10, 9, 7, 2)
(15, 10, 9, 8, 3)
(15, 11, 7, 6, 2)
(15, 11, 8, 6, 3)
(15, 11, 9, 5, 3)
(15, 11, 9, 6, 2)
(15, 11, 9, 6, 4)
(15, 11, 9, 7, 1)
(15, 11, 9, 7, 3)
(15, 11, 9, 7, 5)
(15, 11, 9, 8, 2)
(15, 11, 9, 8, 4)
(15, 11, 9, 8, 6)
(15, 11, 10, 5, 4)
(15, 11, 10, 7, 4)
(15, 12, 7, 4, 3)
(15, 12, 7, 6, 1)
(15, 12, 7, 6, 3)
(15, 12, 7, 6, 5)
(15, 12, 8, 4, 2)
(15, 12, 8, 5, 3)

(15, 12, 9, 6, 3)
(15, 12, 9, 6, 5)
(15, 12, 9, 7, 2)
(15, 12, 9, 7, 4)
(15, 12, 9, 8, 1)
(15, 12, 9, 8, 3)
(15, 12, 9, 8, 5)

OCODNDMNDMNDNONNNREPENNRRPRRPRNRRPRRPRRENWORNRPNNRPRPREPNRRPNRRPRRRERRERRERRN
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Table 3.25: card (Og(W1; W2; W3; Wa; Ws; Wg))

(W)

O
job}
=
o

(W)

(@)
QD
=
o

(W)

O
jab}
=
o

(13, 11, 10, 8, 4, 3)
(13, 12, 9, 8, 5, 4)

(13, 12, 9, 8, 7, 2)

(13, 12, 10, 8, 5, 3)
(13, 12, 11, 6, 5, 4)
(13, 12, 11, 8, 3, 2)
(13, 12, 11, 8, 5, 2)
(13, 12, 11, 8, 5, 4)
(13, 12, 11, 8, 7, 2)
(13, 12, 11, 8, 7, 4)
(13, 12, 11, 8, 7, 6)
(13, 12, 11, 9, 5, 3)
(13, 12, 11, 9, 7, 1)
(13, 12, 11, 10, 5, 2)
(13, 12, 11, 10, 5, 4)
(13, 12, 11, 10, 7, 2)
(13, 12, 11, 10, 7, 4)
(13, 12, 11, 10, 7, 6)
(13, 12, 11, 10, 9, 2)
(13, 12, 11, 10, 9, 6)
(14, 11, 9, 8, 4, 3)

(14, 11, 9, 8, 6, 3)

(14, 11, 10, 8, 5, 3)
(14, 12, 9, 7, 5, 2)

(14, 12, 9, 7, 5, 4)

(14, 12, 9, 8,
(14, 12, 9, 8
(14, 12, 9, 8,
(14, 12, 9, 8,
(14, 12, 10, 6
(14, 12, 10, 7
(14, 12, 10, 7
(14, 12, 10, 8
(14, 12, 10, 8,
(14, 12, 10, 8
(14, 12, 10, 8
(14, 12, 10, 8
(14, 12, 10, 8
(14, 12, 10, 8
(14, 12, 10, 9,
(14, 12, 11, 6, 5, 1)
(14, 12, 11, 7, 5, 2)
(14, 12, 11, 7, 5, 4)
(14, 12, 11, 8, 3, 1)

PFNRPRPRPRPNMNNRPNNRPRRPRPRPPPEPNRPRPRPPPPRNNNNRPRPRPEPNRNNRPRRERRR

(14, 12, 11, 8, 4, 2)
(14, 12, 11, 8, 5, 1)
(14, 12, 11, 8, 5, 3)
(14, 12, 11, 8, 6, 2)
(14, 12, 11, 8, 6, 4)
(14, 12, 11, 8, 7, 1)
(14, 12, 11, 8, 7, 3)
(14, 12, 11, 8, 7, 5)
(14, 12, 11, 9, 4, 3)
(14, 12, 11, 9, 5, 2)
(14, 12, 11, 9, 5, 4)
(14, 12, 11, 9, 6, 3)
(14, 12, 11, 9, 7, 2)
(14, 12, 11, 9, 7, 4)
(14, 12, 11, 9, 7, 6)
(14, 12, 11, 10, 4, 2)
(14, 12, 11, 10, 5, 1)
(14, 12, 11, 10, 5, 3)
(14, 12, 11, 10, 6, 2)
(14, 12, 11, 10, 6, 4)
(14, 12, 11, 10, 7, 1)
(14, 12, 11, 10, 7, 3)
(14, 12, 11, 10, 7, 5)
(14, 12, 11, 10, 8, 2)
(14, 12, 11, 10, 8, 4)
(14, 12, 11, 10, 8, 6)
(14, 12, 11, 10, 9, 1)
(14, 12, 11, 10, 9, 3)
(14, 12, 11, 10, 9, 5)
(14, 13, 9, 6, 4, 3)

(14, 13, 9, 7, 4, 2)

NFPANRPNRPPPONPRPPPRPRPRPRPRPONOMOIONWOWOWWRERPRPRONOOWWERNONOWWEADNEPRE

(14, 13, 10, 8, 7, 1)
(14, 13, 10, 8, 7, 3)
(14, 13, 10, 8, 7, 5)
(14, 13, 10, 9, 5, 2)
(14, 13, 10, 9, 5
(14, 13, 10, 9, 7
(14, 13, 10, 9, 7
(14, 13, 11, 6, 4
(14, 13, 11, 7, 4,
5
5
6
6

(14, 13, 11, 7,
(14, 13, 11, 7,
(14, 13, 11, 7,
(14, 13, 11, 7, 6,
(14, 13, 11, 8, 4,
(14, 13, 11, 8, 4, 3)
(14, 13, 11, 8, 5, 2)
(14, 13, 11, 8, 6, 1)
(14, 13, 11, 8, 6, 3)
(14, 13, 11, 8, 6, 5)
(14, 13, 11, 8, 7, 2)
(14, 13, 11, 8, 7, 4)
(14, 13, 11, 9, 4, 2)
(14, 13, 11, 9, 5, 1)
(14, 13, 11, 9, 5, 3)
(14, 13, 11, 9, 6, 2)
(14, 13, 11, 9, 6, 4)
(14, 13, 11,9, 7, 1)
(14, 13, 11, 9, 7, 3)
(14, 13, 11, 9, 7, 5)
(14, 13, 11, 9, 8, 2)
(14, 13, 11, 9, 8, 4)
(14, 13, 11, 9, 8, 6)
(14, 13, 11, 10, 4, 1)
(14, 13, 11, 10, 4, 3)
(14, 13, 11, 10, 5, 2)
(14, 13, 11, 10, 5, 4)
(14, 13, 11, 10, 6, 1)
(14, 13, 11, 10, 6, 3)
(14, 13, 11, 10, 6, 5)
(14, 13, 11, 10, 7, 2)
(14, 13, 11, 10, 7, 4)
(14, 13, 11, 10, 8, 1)
(14, 13, 11, 10, 8, 3)
(14, 13, 11, 10, 8, 5)

=

NOUOPFRPPFPWODMNONEFPPFPRARPNWOWFRWORARNOPPOFRPWERPEPRAONWORLRNDNNENNENEPRERPEDNLEPRE
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Table 3.26: card (Og(W1; W>))

(wi;wp) card. | (wq;wp) card. | (wg;wp) card. | (wg;wp) card.
(13, 2) 1 (24, 7) 2 (29, 6) 6 (33, 0) 1
(14, 3) 1 (24, 9) 2 (29, 8) 2 (33, 2) 6
(15, 4) 1 (24, 13) 2 | (29, 10) 3 | (33,4 4
(16, 1) 1 (25, 2) 4 (29, 12) 3 | (33,6) 6
(16, 5) 1 (25, 4) 2 (29, 14) 3 |(33,8) 3
17, 2) 1 (25, 6) 2 (29, 18) 4 | (33, 10) 6
(17, 6) 2 (25, 8) 2 (30, 1) 4 | (33,12 3
(18, 1) 1 (25, 10) 3 | (30, 3) 4 | (33,14 4
(18, 3) 1 (25, 14) 3 |(30,5) 3 (33, 16) 3
(18, 7) 1 (26, 1) 2 (30, 7) 4 | (33,18) 4
(19, 2) 1 (26, 3) 4 (30,9 3 (33, 22) 4
(19, 4) 2 (26, 5) 2 (30, 11) 3 134,11 6
(19, 8) 2 (26, 7) 2 (30, 13) 3 |(34,3) 4
(20, 1) 1 (26, 9) 3 (30, 15) 3 | (34,5 6
(20, 3) 2 (26, 11) 2 | (30,19 3 |1(34,7 6
(20, 5) 1 (26, 15) 3 | (31,0 1 (34, 9) 3
(20, 9) 2 (27, 0) 1 (31, 2) 4 | (34,11 6
(21, 2) 2 | (27,2 2 | (31,4 6 |(34,13) 4
(21, 4) 1 (27, 4) 4 (31, 6) 2 (34, 15) 3
(21, 6) 2 (27, 6) 2 (31, 8) 6 (34, 17) 4
(21, 10) 2 | (27, 8) 3 (31, 10) 3 | (34, 19) 4
(22, 1) 2 (27, 10) 2 | (31,12 3 | (34, 23) 4
(22, 3) 1 (27, 12) 3 | (31, 14) 3 | (35,0 3
(22, 5) 2 (27, 16) 3 | (31, 16) 4 | (35,2 4
(22, 7) 2 (28, 1) 4 (31, 20) 4 | (35, 4) 6
(22, 11) 2 | (28, 3) 2 (32, 1) 4 | (35, 6) 6
(23, 0) 1 (28, 5) 4 (32, 3) 6 (35, 8) 6
(23, 2) 1 (28, 7) 3 (32, 5) 4 | (35, 10) 3
(23, 4) 2 | (28, 9) 2 | (32,7 3 |(35,12) 8
(23, 6) 2 (28, 11) 3 |(32,9) 6 (35, 14) 3
(23, 8) 2 (28, 13) 3 | (32,11) 3 | (35, 16) 4
(23, 12) 3 | (28,17) 3 | (32,13 3 | (35, 18) 4
(24, 1) 2 (29, 0) 1 (32, 15) 4 | (35, 20) 4
(24, 3) 2 (29, 2) 4 (32, 17) 3 | (35, 24) 5
(24, 5) 2 (29, 4) 2 (32, 21) 4 | (36,1) 6
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Table 3.27: card (Og(W1; W2; W3; W4))

(wi)i card. | (wp); card. | (w;); card.
12,9,5, 2) 1 | (14, 12,10, 2) 1 |(@5,12,7,2) 2
(12, 10, 7, 1) 1 | (14,12,10,4) 1 | (15,12, 7, 4) 3
(13,9,5,1) 1 | (14,13,6,1) 1 | (15,12,8,1) 3
(13,9, 7, 3) 1 | (14, 13,7, 2) 1 | (15,128, 3) 2
(13, 10, 5, 2) 1 (14, 13, 8, 1) 2 (15, 12, 8, 5) 2
(13, 10, 7, 4) 1 | (14,13,9,0) 1 | (15,12,9,2) 4
(13, 11, 5, 3) 1 | (14, 13,9, 4) 1 | (15,12, 9, 4) 1
(13,11,7,1) 1 | (14, 13,10, 3) 1 | (15, 12,9, 6) 2
(13,12, 7, 2) 1 |(4,13,11,2) 1 |(15,12,10,1) 2
(13, 12,8, 1) 1 |(15,7,4,2) 1 | (15, 12, 10, 3) 2
(13, 12, 9, 4) 1 |(15,8,5,2) 1 |@15,12,10,5) 1
(13, 12, 10, 3) 1 |(5,09 4,2 1 | (15,12, 10,7) 1
(14, 8, 5, 3) 1 |(15,9,5,1) 1 |(15,12,11,4) 1
(14,9, 4, 1) 1 | (15,95, 3) 1 | (15, 12, 11, 8) 1
(14, 9, 6, 1) 1 | (15,9, 86,2) 1 | (@15,13,3,1) 1
(14,9, 7, 2) 1 |@5,971) 1 | (15,13, 4,2 1
(14, 10,5, 1) 1 |(15,9,7,3) 1 | (15,13,5,1) 1
(14, 10, 6, 2) 1 | (15, 10, 3, 2) 1 | (15, 13,5, 3) 2
(14, 10,7, 1) 1 | (15, 10,5, 0) 1 | (15, 13,6, 2) 2
(14, 10, 7, 3) 1 | (15, 10, 5, 2) 1 | (15, 13, 6, 4) 1
(14, 10, 8, 2) 1 | (15, 10, 5, 4) 1 |(15,13,7,1) 3
(14, 10, 8, 4) 1 | (15, 10, 6, 1) 1 | (15, 13,7, 3) 1
(14, 11, 4, 1) 1 | (15,10,7,2) 3 | (5,13,7,5) 2
(14, 11, 5, 2) 1 | (15, 10, 7, 4) 1 | (15, 13, 8, 0) 1
(14, 11,6, 1) 1 | (15, 10,7, 6) 1 | (15, 13,8, 2) 2
(14, 11, 6, 3) 1 | (15, 10, 8, 1) 1 | (15, 13,8, 4) 1
(14, 11, 7, 0) 1 | (15, 10, 8, 3) 1 | (15, 13, 8, 6) 1
(14, 11, 7, 4) 1 | (15,10, 9, 4) 1 |(@15,13,9 1) 3
(14, 11, 8, 1) 1 (15, 11, 4, 2) 1 (15, 13, 9, 3) 2
(14, 11, 8, 3) 1 | (15,11,5,1) 2 | (15,13,9,5) 1
(14, 11, 8, 5) 1 | (15,11, 5, 3) 1 |(15,13,9,7) 1
(14, 11, 9, 2) 1 | (15,11, 6, 2) 1 | (15, 13, 10, 2) 3
(14, 12, 4, 2) 1 |5, 11,7, 1) 2 |(15,13,10,4) 1
(14, 12,5, 1) 1 |(15,11,7,3) 3 | (15,13,11,1) 1
(14, 12, 5, 3) 1 | (15, 11, 8, 2) 2 |@15,13,11,3) 2
(14, 12, 6, 2) 1 | (15,11, 8, 4) 1 | (15, 13,11, 5) 1
(14, 12, 6, 4) 1 | (@5, 11,9, 1) 1 | (15, 14,5,2) 1
(14, 12,7, 1) 2 (15, 11, 9, 3) 1 (15, 14, 5, 4) 1
(14, 12, 7, 5) 1 | (15,11, 9,5) 1 | (15, 14, 6, 1) 1
(14, 12, 8, 0) 1 | (15,12, 4, 1) 1 | (15, 14,7, 2) 3
(14, 12, 8, 2) 1 | (15,12,5, 2) 3 | (15, 14,7, 6) 1
(14, 12, 8, 6) 1 | (15,12, 6, 1) 2 | (15, 14, 8, 1) 2
(14, 12,9, 1) 1 | (15, 12, 6, 3) 2 | (15, 14, 8, 3) 1
(14, 12, 9, 3) 1 | (5, 12,7, 0) 1 | (15,14, 9, 0) 1
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Table 3.28: card (Og(W1; Wo; W3; W4; Ws5; Wg))

(W)

o
QD
=
o

(W)

o
Q
=
o

(W)

O
o]
=
o

(13, 11, 10, 6, 4, 3)
(13, 12, 8, 7, 4, 1)
(13, 12, 9, 6, 3, 2)
(13, 12, 9, 7, 5, 1)
(13, 12, 9, 8, 5, 2)
(13, 12, 10, 6, 4, 2)
(13, 12, 10, 7, 4, 1)
(13, 12, 10, 7, 4, 3)
(13, 12, 10, 8, 5, 1)
(13, 12, 10, 8, 6, 2)
(13, 12, 10, 9, 4, 1)
(13, 12, 10, 9, 6, 1)
(13, 12, 10, 9, 6, 3)
(13, 12, 11, 6, 5, 2)
(13, 12, 11, 7, 5, 3)
(13, 12, 11, 8, 3, 2)
(13, 12, 11, 8, 5, 4)
(13, 12, 11, 8, 7, 2)
(14, 10, 8, 6, 3, 2)
(14, 11, 8, 7, 3, 2)
(14, 11, 9, 6, 4, 1)
(14, 11, 9, 8, 3, 2)
(14, 11, 10, 6, 4, 2)
(14, 11, 10, 6, 5, 3)
(14, 11, 10, 7, 4, 1)
(14, 11, 10, 7, 5, 2)
(14, 11, 10, 8, 4, 2)
(14, 11, 10, 8, 5, 1)
(14, 11, 10, 9, 4, 3)
(14, 12, 8, 5, 3, 1)
(14, 12, 8, 6, 4, 1)
(14, 12, 8, 7, 4, 0)
(14, 12, 8, 7, 5, 1)

(14, 12, 9, 6, 3, 1)
(14, 12, 9, 6, 4, 2)
(14, 12, 9, 6, 5, 1)
(14, 12, 9, 7, 4, 1)
(14, 12, 9, 7, 5, 0)
(14, 12,9, 7, 5, 2)
(14, 12, 9, 8, 5, 1)
(14, 12, 9, 8, 6, 2)
(14, 12, 10, 5, 3, 1)
(14, 12, 10, 5, 4, 2)
(14, 12, 10, 6, 2, 1)

PR RPRPNRPRRPRPRPRPPPPPPEPPPRPRPPEPRPRPPPPPRPRPPPPPREPNRPRPRPRPRREPRERERER

(14, 12, 10, 6, 3, 2)
(14, 12, 10, 6, 4, 1)
(14, 12, 10, 6, 4, 3)
(14, 12, 10, 6, 5, 2)
(14, 12, 10, 7, 3, 1)
(14, 12, 10, 7, 4, 0)
(14, 12, 10, 7, 4, 2)
(14, 12, 10, 7, 5, 1)
(14, 12, 10, 7, 5, 3)
(14, 12, 10, 7, 6, 2)
(14, 12, 10, 8, 4, 1)
(14, 12, 10, 8, 5, 0)
(14, 12, 10, 8, 5, 2)
(14, 12, 10, 8, 6, 1)
(14, 12, 10, 8, 6, 3)
(14, 12, 10, 8, 7, 2)
(14, 12, 10, 9, 4, 0)
(14, 12, 10, 9, 4, 2)
(14, 12, 10, 9, 5, 1)
(14, 12, 10, 9, 6, 0)
(14, 12, 10, 9, 6, 2)
(14, 12, 10, 9, 7, 1)
(14, 12, 10, 9, 7, 3)
(14, 12, 11, 5, 3, 2)
(14, 12, 11, 6, 3, 1)
(14, 12, 11, 6, 4, 2)
(14, 12, 11, 6, 5, 1)
(14, 12, 11, 6, 5, 3)
(14, 12, 11, 7, 2, 1)
(14, 12, 11, 7, 3, 2)
(14, 12, 11, 7, 4, 1)
(14, 12, 11, 7, 4, 3)
(14, 12, 11, 7, 5, 2)
(14, 12, 11, 7, 5, 4)
(14, 12, 11, 7, 6, 3)
(14, 12, 11, 8, 3, 1)
(14, 12, 11, 8, 4, 2)
(14, 12, 11, 8, 5, 1)
(14, 12, 11, 8, 6, 2)
(14, 12, 11, 8, 6, 4)
(14, 12, 11, 8, 7, 1)
(14, 12, 11, 8, 7, 3)
(14, 12, 11, 9, 3, 2)
(14, 12, 11, 9, 4, 1)

PR RPRRPNWONNRPRPORPNRPRPRPRERPNNRPNRNRORNEPNNNRPORNNNRRERERNNLERE

(14, 12, 11, 9, 5, 0)
(14, 12, 11, 9, 5, 2)
(14, 12, 11, 9, 6, 1)
(14, 12, 11, 9, 6, 3)
(14, 12, 11, 9, 7, 2)
(14, 12, 11, 9, 7, 4)
(14, 12, 11, 9, 8, 3)
(14, 12, 11, 10, 5, 1)
(14, 12, 11, 10, 7, 3)
(14, 13, 7, 6, 4, 1)
(14, 13, 8, 6, 3, 1)
(14, 13, 8, 7, 4, 1)
(14, 13, 8, 7, 5, 2)

(14, 13, 9, 6, 2, 1)
(14, 13, 9, 6, 3, 2)
(14, 13, 9, 6, 4, 1)
(14, 13, 9, 6, 4, 3)
(14, 13,9, 7, 3, 1)
(14, 13, 9, 7, 4, 2)
(14, 13,9, 7, 5, 1)
(14, 13, 9, 8, 3, 0)
(14, 13, 9, 8, 4, 1)
(14, 13, 9, 8, 5, 2)
8, 6, 1)

6, 3)

(14, 13, 10, 5, 4, 1)
(14, 13, 10, 6, 2, 0)
(14, 13, 10, 6, 3, 1)
(14, 13, 10, 6, 4, 2)
(14, 13, 10, 6, 5, 1)
(14, 13, 10, 6, 5, 3)
(14, 13, 10, 7, 2, 1)
(14, 13, 10, 7, 3, 2)
(14, 13, 10, 7, 4, 1)
(14, 13, 10, 7, 4, 3)
(14, 13, 10, 7, 5, 0)
(14, 13, 10, 7, 5, 2)
(14, 13, 10, 7, 5, 4)
(14, 13, 10, 7, 6, 1)
(14, 13, 10, 8, 3, 1)
(14, 13, 10, 8, 4, 0)
(14, 13, 10, 8, 4, 2)
(14, 13, 10, 8, 5, 1)
(14, 13, 10, 8, 5, 3)

’

P OFPNMNNEPENNMNENONMPEPRPNONPPRPPEPNOFRPNPFPPRPEPNRPPRPPRPPRPRPRNRPPNRERPRDNLERE
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