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Partie 1

Introduction

Dans cette introduction destinée aux mathématiciens non spécialistes, nous expliquons

dans quel contexte s'inscrivent les résultats de cette thèse. Le titre annonce qu'il s'agit

d'arithmétique, ce qui n'est peut-être pas évident à la lecture du texte. L'un des buts de

cette branche des mathématiques est l'étude des équationsdiophantiennes, c'est-à-dire les

équations �à coe�cients entiers� dont on cherche les solutionsentières. Un problème for-

mulé aussi vaguement ne peut admettre de solution générale, et l'histoire de l'arithmétique

est jalonnée par les découvertes d'outils permettant d'étudier seulement certaines classes

d'équations diophantiennes. Citons deux outils fondamentaux pour l'étude des systèmes

d'équations polynomiales, c'est-à-dire de la forme
8
>><

>>:

P1(x1; : : : ; xm ) = 0
:::

Pn (x1; : : : ; xm ) = 0

où chaquePi est un polynôme à coe�cients entiers en les variablesX 1; : : : ; X m . A�n de

simpli�er le problème, contentons-nous de travailler sur lecorps Q des nombres rationnels

plutôt que sur son sous-anneauZ des nombres entiers.

Galois nous enseigne que les solutions rationnelles d'un tel système d'équations sont

les solutions(x1; : : : ; xm ) 2 Q
m

, où Q désigne une clôture algébrique deQ, qui sont �xées

par Gal(Q=Q), le groupe de Galois absolu deQ qui agit sur Q. L'intérêt de ce point de

vue est que, comme souvent en mathématiques, il est plus aisé d'étudier les propriétés de

solutions dont l'existence est connue a priori que de s'attaquer directement au problème

d'existence. Plus généralement, il est naturel de voir un objet dé�ni surQ comme un

objet dé�ni sur Q et muni d'une action de Gal(Q=Q). Notons toutefois que l'utilisation de

nombres algébriques surQ remonte à Gauss qui introduisit en 1832 (avant la publication

des résultats de Galois) l'anneau des �entiers de Gauss�Z[i ] = f a + ib j a; b 2 Zg dans le

but de formuler la loi de réciprocité biquadratique.

Une autre approche consiste à compléter le corpsQ pour une de ses valuationsv.

D'après un théorème d'Ostrowski, à un exposant inessentiel près,v est soit la valuation

archimédienne usuelle, soit la valuationp-adique pour un nombre premierp. Dans le corps

complétéQv correspondant, on dispose d'outils analytiques (théorème des valeurs intermé-

diaires, lemme de Hensel . . .) simpli�ant grandement la résolution du système d'équations.

A�n de prendre en compte toutes ces valuations (également appelées �places�) à la fois, on

4



considère l'anneau desadèles

A =
Y

v

0
Qv = R �

Y

p premier

0
Qp

qui est le produit restreint de ces corps et qui contientQ comme sous-anneau, plongé dia-

gonalement. Ici on a notéQp le complétéQv de Q pour la valuation p-adiquev. L'existence

d'une solution à coe�cients rationnels implique donc l'existence d'une solution à coe�cients

adèliques. Toute la di�culté consiste à aller dans l'autre sens, c'est-à-dire à déterminer les

obstructions �globales� contrôlant l'existence d'une solution rationnelle lorsque l'on suppose

l'existence d'une solution adèlique. Par exemple le théorème de Hasse-Minkowski implique

que dans le cas d'une seule équation quadratique, il n'y a pas de telle obstruction. On peut

en déduire le théorème de Legendre a�rmant qu'un entier est somme de trois carrés si et

seulement si il n'est pas de la forme4a(8b+ 7) pour des entiersa et b.

Outre ces outils fondamentaux, la notion récurrente dans cette thèse est celle de re-

présentation automorphe, qui reformule et généralise celle de forme modulaire cuspidale

propre pour les opérateurs de Hecke.

1.1 Formes modulaires

Soit H = f z 2 C j Im( z) > 0g le demi-plan de Poincaré. Le groupe d'automorphismes de

cette courbe complexe s'identi�e àPSL2(R) = SL 2(R)=f� 1g via l'action dé�nie par
�

a b
c d

�
� z =

az + b
cz + d

pour
�

a b
c d

�
2 SL2(R) et z 2 H :

Soit � = SL 2(Z) ; il s'agit d'un sous-groupe discret deSL2(R). Le quotient � nH a attiré

l'attention des mathématiciens car il paramètre les courbes elliptiques (dé�nies analyti-

quement), via l'application qui à z 2 H associe la courbe elliptiqueC=(Z � zZ). Nous ne

détaillerons pas davantage ce point de vue.

De�nition 1.1.0.1. Soit k un entier. On dit qu'une fonction holomorphef : H ! C est

une forme modulaire de poidsk si :

� Pour tout
�

a b
c d

�
2 � et tout z 2 H , on a f

�
az+ b
cz+ d

�
= ( cz+ d)k f (z). En choisissant

�
a b
c d

�
=

�
1 1
0 1

�
on constate quef est fonction de q = e2i�z , c'est-à-dire qu'il

existe une unique fonction holomorpheF : D(0; 1) r f 0g ! C telle quef (z) = F (q).

� La fonction F se prolonge en une fonction holomorphe surD(0; 1). Cela revient à

demander quef soit bornée sur la bandef z 2 C j jRe(z)j � 1=2 et Im( z) � 1g.

On note M k (�) le C-espace vectoriel des formes modulaires de poidsk.

Etant donnée une fonction holomorpheF sur D(0; 1), la fonction f : z 7! F (e2i�z ) est

une forme modulaire de poidsk si et seulement si pour toutz 2 H on a f (� 1=z) = zk f (z).

Cela résulte du fait que le groupe� est engendré par
�

1 1
0 1

�
et

�
0 � 1
1 0

�
. Dans cette
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dé�nition il peut être utile de remplacer � par un sous-groupe convenable, mais nous

ne détaillerons pas les complications que cela entraîne. En interprétantM k (�) comme

(un sous-espace de) l'espace vectoriel complexe des sections globales d'un �bré en droites

holomorphe sur une surface de Riemanncompacte, on obtient que M k (�) est de dimension

�nie.

On peut aller plus loin et expliciter les espacesM k (�) . Pour k > 2, la série d'Eisenstein

Gk (z) =
X

(m;n )2 Z2 r f (0;0)g

1
(m + nz)k

converge uniformément sur tout compact deH, et il est formel de véri�er qu'il s'agit d'une

forme modulaire de poidsk, non nulle si et seulement sik est pair. De plus il est possible

d'expliciter les coe�cients de Gk vue comme fonction deq = e2i�z dans son développement

en série entière autour de0. Il est remarquable qu'à un scalaire près, ces coe�cients sont

entiers. La théorie des séries d'Eisenstein permet donc de produire des formes modulaires

tout à fait explicites.

D'autre part, la formule de Riemann-Roch ou la formule des traces permettent de

calculer la dimension de chaqueM k (�) . Dans notre cas (� = SL 2(Z)) on a formellement :

X

k

dimC (M k (�)) tk =
1

(1 � t4)(1 � t6)

ce qui traduit le fait que la C-algèbre commutative graduée
L

k M k (�) est librement en-

gendrée parG4 et G6.

Cette approche concrète permet de démontrer des identités miraculeuses qui comptent

le nombre de solutions de certaines équations diophantiennes. Donnons un exemple simple

avec la fonction

r4(m) = card
�

(x1; : : : ; x4) 2 Z4 j x2
1 + � � � + x2

4 = m
	

qui compte le nombre de représentations de l'entierm comme somme de quatre carrés.

Introduisons la série génératrice

� 4(z) =
X

m� 0

r4(m)qm =

 
X

n2 Z

qn2

! 4

où q = e2i�z , qui dé�nit une fonction holomorphe sur H . Il est clair que � 4(z + 1) = � 4(z)

et grâce à laformule sommatoire de Poissonon a en outre

� 4(� 1=4z) = � 4z2� 4(z)

ce qui implique que� 4 est une forme modulaire de poids2 pour le sous-groupe

� 1(4) =
��

a b
c d

�
2 � ; a � d � 1 (mod 4) et c � 0 (mod 4)

�
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de � . D'autre part l'espace M 2(� 1(4)) est de dimension2 et la comparaison de� 4 avec des

séries d'Eisenstein permet de démontrer la formule de Jacobi :

r4(m) =

8
>>><

>>>:

8
P

djm
d si m est impair;

24
P

djm
d impair

d si m est pair:

Les formes modulaires, dont la dé�nition a plutôt une saveur analytique, ont donc des

liens avec l'arithmétique. Loin d'être anecdotique, la méthode ci-dessus admet une vaste

généralisation (correspondance thêta) qui fait l'objet de recherches actuelles, mais dont il

ne sera pas question dans cette thèse.

1.2 Formes automorphes et représentations galoisiennes

En 1937 Hecke dé�nit, pour chaque nombre premierp, un opérateur Tp : M k (�) ! M k (�) .

Ces opérateurs commutent entre eux et ont la propriété d'être auto-adjoints pour un pro-

duit scalaire hermitien convenable. Il est donc naturel de vouloir diagonaliser simultané-

ment ces opérateurs. Cela suggère que les formes modulaires propres pour les opérateurs

de Hecke (et s'annulant enq = 0 , on dit d'une telle forme qu'elle est cuspidale) sont des

vecteurs bien particuliers dans desreprésentations irréductiblesd'un groupe adèlique, qui

se trouve êtreGL2(A). Une représentation irréductible convenable deGL2(A) se décom-

pose en un produit tensoriel restreint
N 0

v � v où � v est une représentation irréductible de

GL2(Qv), où v parcourt l'ensemble des valuations deQ. Cette décomposition généralise

le fait suivant : si G1 et G2 sont deux groupes �nis, les représentations irréductibles de

G1 � G2 sont exactement les produits tensoriels de représentations irréductibles deG1 et

G2. Les représentations deGL2(A) correspondant aux formes modulaires sont celles qui

interviennent dans l'espace deformes automorphesL 2(GL 2(Q)nGL2(A)) et telles que pour

la valuation archimédienne notéev, la représentation� v du groupeGL2(R) est �algébrique

et régulière�. Ce point de vue plus abstrait a au moins deux avantages : il permet d'utiliser

les techniques de la théorie des représentations, et il se généralise à d'autres groupes que

GL2 pour lesquels il n'y a pas toujours d'analogues aux formes modulaires.

Les opérateurs de Hecke entrent dans la description d'un lien profond entre formes

modulaires (ou plus généralement, représentations automorphes) etreprésentations galoi-

siennes. A�n de présenter ces dernières, revenons à un système d'équations polynomiales

à coe�cients rationnels. Les solutionscomplexesd'un tel système d'équations forment une

variété complexe, qui possède éventuellement des singularités. On est habitué, pour étudier

la topologie d'une telle variété, à considérer ses groupes de cohomologie. On obtient ainsi

des invariants simples du système d'équations originel. Néanmoins le lien entre les solu-

tions rationnelles du système et ces invariants n'est pas évident, de plus ces considérations

�oublient� que le système de départ est à coe�cients rationnels : on doit donc s'attendre à

une perte d'information importante. Grâce à la géométrie algébrique, on peut a�ner cette

construction. Le système d'équations dé�nit une variété algébriqueX dé�nie sur Q, que

l'on voit comme une variété algébriqueX Q dé�nie sur Q munie d'une action deGal(Q=Q).
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Pour tout nombre premier `, on peut considérer les groupes de cohomologie étale`-adique

H i
ét(X Q; Q` ) : ce sont desQ` -espaces vectoriels de dimension �nie munis d'une action

continue et linéaire deGal(Q=Q), c'est-à-dire des représentations galoisiennes̀-adiques.

Celles-ci �linéarisent� la variété algébriqueX , et on peut espérer que ces invariants sont

su�samment �ns pour permettre de retrouver des informations de nature arithmétique sur

le système de départ.

En 1967, dans une lettre adressée à Weil, Langlands imagine un lien entre certaines

représentations automorphes et les représentations galoisiennes se factorisant par le groupe

de Galois d'une extension�nie de Q (on parle de représentation d'Artin), dans l'espoir

d'aboutir à des lois de réciprociténon-abéliennes, en termes des coe�cients des formes

automorphes. Plus précisément, il demande si à chaque telle représentation galoisienne en

dimensionn il est possible d'associer une représentation automorphe deGLn (A), selon une

�recette� explicite.

L'année suivante Deligne suit le chemin inverse en associant à tout forme modulaire

de poids k � 2, cuspidale et propre pour les opérateurs de Hecke une représentation

galoisienne`-adique de dimension2, caractérisée par les traces des Frobenius enp pour

tout nombre premier p 6= `, données par les valeurs propres pour les opérateursTp. Le cadre

est quelque peu di�érent de celui de la question posée par Langlands puisqu'aucune de ces

représentations n'est d'Artin. Le cas du poidsk = 1 , correspondant aux représentations

d'Artin, sera traité en 1974 par Deligne et Serre, en utilisant le résultat de Deligne.

Langlands et Tunnell démontrent un énoncé dans le sens de la question de Langlands

en 1980, en utilisant le changement de base pour le groupeGL2. Il s'agit de représenta-

tions d'Artin en dimension 2, d'images résolubles. Les travaux de Wiles et Taylor-Wiles

en 1995 démontrent pour la première fois un cas non résoluble. Soulignons qu'il s'agit de

représentations galoisiennes qui ne sont pas d'Artin. Plus précisément, ils établissent le

cas semistable de la conjecture de Taniyama-Shimura, qui a�rme que la représentation

galoisienne de dimension2 associée à une courbe elliptique provient d'une forme modulaire

de poids2, cuspidale et propre pour les opérateurs de Hecke. Grâce aux travaux de Weil,

Hellegouarch, Frey, Serre et Ribet, cela entraîne le célèbre théorème de Fermat. Remar-

quons qu'ici encore, la toute dernière étape de la démonstration repose sur la connaissance

concrète des formes modulaires : le fait qu'il n'y a pas de forme modulaire cuspidale non

nulle en poids2 et niveau 2 permet de conclure à l'absurdité de l'existence d'un triplet de

Fermat.

À la suite de cette percée, la correspondance de Langlands a connu des avancées im-

portantes dans les deux sens, notamment la preuve de la correspondance de Langlands

locale pour les groupes linéaires (Henniart et Harris-Taylor en 2001), la construction des

représentations galoisiennes̀-adiques dans de nombreux cas (Chenevier, Clozel, Harris,

Kottwitz, Labesse, Shin, Taylor, . . .), et très récemment de nombreux cas d'automorphie

potentielle généralisant les travaux de Wiles et Taylor-Wiles (Barnet-Lamb-Gee-Geraghty-

Taylor, utilisant notamment des constructions de Kisin, et Patrikis-Taylor).

Il faut souligner que tous ces résultats concernent les représentations automorphes al-

gébriques et régulières ou �quasi-régulières� aux places archimédiennes, tandis que le pro-
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gramme de Langlands se veut plus général. Néanmoins les représentations automorphes

qui ne sont pas algébriques aux places archimédiennes ne correspondent pas conjecturale-

ment à des objets de nature arithmétique comme les représentations galoisiennes`-adiques

considérées ci-dessus.

1.3 Résultats obtenus dans cette thèse

Nous proposons deux applications arithmétiques des travaux récents de James Arthur sur

la classi�cation endoscopique du spectre automorphe discret des groupes symplectiques et

orthogonaux.

La première consiste à ôter une hypothèse d'irréductibilité dans un résultat de Richard

Taylor décrivant l'image des conjugaisons complexes par les représentations galoisiennes

p-adiques associées aux représentations automorphes cuspidales algébriques régulières es-

sentiellement autoduales pour le groupeGL2n+1 sur un corps de nombres totalement réel.

Cet énoncé peut être vu comme une partie de la compatibilité entre correspondances de

Langlands locale et globale aux places archimédiennes, l'autre partie consistant à décrire

les poids de Hodge-Tate de la représentation galoisienne en fonction des paramètres de Lan-

glands aux places archimédiennes. Nous étendons également ce résultat au cas deGL2n ,

sous une hypothèse de parité du caractère multiplicatif. Nous utilisons un résultat de défor-

mation p-adique de représentations automorphes. Plus précisément, nous montrons l'abon-

dance de points correspondant à des représentations galoisiennes (quasi-)irréductibles sur

les variétés de Hecke pour les groupes symplectiques et orthogonaux pairs. La classi�cation

d'Arthur est utilisée à la fois pour dé�nir les représentations galoisiennes et pour transférer

des représentations automorphes autoduales (pas nécessairement cuspidales) de groupes

linéaires aux groupes symplectiques et orthogonaux.

La deuxième application concerne le calcul explicite de dimensions d'espaces de formes

automorphes ou modulaires. Notre contribution principale est un algorithme calculant les

intégrales orbitales aux éléments de torsion des groupes classiquesp-adiques non rami�és,

pour l'unité de l'algèbre de Hecke non rami�ée. Cela permet le calcul du côté géométrique

de la formule des traces d'Arthur, et donc celui de la caractéristique d'Euler-Poincaré du

spectre discret en niveau trivial. La classi�cation d'Arthur permet l'analyse �ne de cette ca-

ractéristique d'Euler, jusqu'à en déduire les dimensions des espaces de formes automorphes.

De là il n'est pas di�cile d'apporter une réponse à un problème plus classique : déterminer

les dimensions des espaces de formes modulaires de Siegel à valeurs vectorielles.
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Partie 2

Eigenvarieties for classical groups and complex conjugations
in Galois representations

2.1 Introduction

Let p be a prime. Let us choose once and for all algebraic closuresQ; Qp; C and embeddings

�p : Q ,! Qp, �1 : Q ,! C. Let F be a totally real number �eld. A regular, L-algebraic,

essentially self-dual, cuspidal (RLAESDC) representation ofGLn (AF ) is a cuspidal auto-

morphic representation � together with an algebraic character� j � j q of A �
F =F � (� being

an Artin character, and q an integer) such that

� � _ ' � j det jq 
 � ,

� For any real place v of F , LL (� v)jW C ' � i
�
z 7! zav;i �zbv;i

�
where LL is the local

Langlands correspondence,WC ' C� is the Weil group of C, and av;i , bv;i are

integers andav;i 6= av;j if i 6= j .

By de�nition, � is regular, L-algebraic, essentially self-dual, cuspidal (RLAESDC) if and

only if � 
 j det j(n� 1)=2 is regular, algebraic (in the sense of Clozel), essentially self-dual,

cuspidal (RAESDC). The latter is the notion of �algebraic� usually found in the liter-

ature, and is called �C-algebraic� in [BG10]. Given a RLAESDC representation� of

GLn (AF ), there is (Theorem 2.4.1.2) a unique continuous, semisimple Galois represent-

ation � � p ;� 1 (� ) : GF ! GLn (Qp) such that � � p ;� 1 (� ) is unrami�ed at any �nite place v of

F not lying above p for which � v is unrami�ed, and �1 � � 1
p Tr

�
� � p ;� 1 (� )(Frob v)

�
is equal

to the trace of the Satake parameter of� v (contained in this assertion is the fact that this

trace is algebraic overQ). It is conjectured that for any real place v of F , if cv 2 GF

is the conjugacy class of complex conjugations associated withv, the conjugacy class of

� � p ;� 1 (� )(cv) is determined byLL (� v) (see [BG10][Lemma 2.3.2] for the case of an arbitrary

reductive group). In the present case, by Clozel's purity lemma and by regularity,LL (� v)

is completely determined by its restriction to WC, and sincedet
�
� � p ;� 1 (� )

�
is known, the

determination of � � p ;� 1 (� )(cv) amounts to the following

Conjecture. Under the above hypotheses,
�
�Tr

�
� � p ;� 1 (� )(cv)

� �
� � 1.

There are several cases for which this is known. By [Pat] forv an in�nite place of F the

value of � v(� 1) 2 f� 1g does not depend onv, and we denote the common value� 1 (� 1).

When � 1 (� 1)(� 1)q = � 1 (this happens only if n is even, and by [BC11] this means
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that � � p ;� 1 (� ) together with the character � � p ;� 1 (� j � j q) = ( � � rec)cycloq, is �symplectic�),

� � p ;� 1 (� )(cv) is conjugate to � � � p ;� 1 (� )(cv), so the trace is obviously zero.

In [Tay12], Richard Taylor proves the following

Theorem (Taylor) . Let F be a totally real number �eld, n � 1 an integer. Let � be a reg-

ular, L-algebraic, essentially self-dual, cuspidal automorphic representation ofGL2n+1 =F.

Assume that the attached Galois representation� � p ;� 1 (� ) : GF ! GL2n+1 (Qp) is irredu-

cible. Then for any real placev of F ,

Tr
�
� � p ;� 1 (� )(cv)

�
= � 1:

Although one expects� � p ;� 1 (� ) to be always irreducible, this is not known in general.

However it is known whenn � 2 by [CG], and for arbitrary n but only for p in a set of

positive Dirichlet density by [PT].

In this paper, the following cases are proved:

Theorem A (Theorem 2.6.3.4). Let n � 2, F a totally real number �eld, � a regu-

lar, L-algebraic, essentially self-dual, cuspidal representation ofGLn (AF ), such that � _ '

(( � j � j q) � det) 
 � , where � is an Artin character and q an integer. Suppose that one of

the following conditions holds

1. n is odd.

2. n is even,q is even, and� 1 (� 1) = 1 .

Then for any complex conjugationc 2 GF , jTr( � � p ;� 1 (� )(c)) j � 1.

This is achieved thanks to the result of Taylor, Arthur's endoscopic transfer between

twisted general linear groups and symplectic or orthogonal groups, and using eigenvarieties

for these groups. Let us describe the natural strategy that one might consider to prove the

odd-dimensional case using these tools, to explain why it fails and how a detour through

the even-dimensional case allows to conclude.

Let � be a RLAESDC representation ofGL2n+1 (AF ). Up to a twist by an algeb-

raic character � is self-dual and has trivial central character. Conjecturally, there should

be an associated self-dual Langlands parameter� � : LF ! GL2n+1 (C) where LF is the

conjectural Langlands group. Up to conjugation, � � takes values inSO2n+1 (C), and by

functoriality there should be a discrete automorphic representation� of Sp2n (AF ) such

that LL (� v) is equal to LL (� v) via the inclusion SO2n+1 (C) ,! GL2n+1 (C) for any place

of F which is either archimedean or such that� v is unrami�ed. Arthur's results in his

book [Art13] imply that this (in fact, much more) holds. To construct p-adic families of

automorphic representations (i.e. eigenvarieties) containing� , it is preferable to work with

a group which is compact at the real places ofF , and work with representations having

Iwahori-invariants at the p-adic places. A suitable solvable base change allows to assume

that [F : Q] is even and that � v has Iwahori-invariants for vjp. The last chapter of [Art13]

will allow to �transfer� � to an automorphic representation � of G, the inner form of

Sp2n which is split at the �nite places and compact at the real places ofF . By [Loe11]
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(which generalizes [Che04]), the eigenvarietyX for G is available. Thanks to [Art13],

one can associatep-adic Galois representations� � p ;� 1 (�) to automorphic representations

of G, yielding a family of Galois representations onX , that is to say a continuous map

T : GF ! O (X ) which specializes toTr
�
� � p ;� 1 (�)

�
at the points of X corresponding to

automorphic representations ofG(AF ). One can then hope to prove a result similar to

[BC11, Lemma 3.3], i.e. show that one can �deform�� (on X ) to reach a point correspond-

ing to an automorphic representation � 0 whose Galois representation is irreducible (even

when restricted to the decomposition group of ap-adic place ofF ). Since� � p ;� 1 (� 0) comes

from an automorphic representation� 0 of GL2n+1 , � 0 is necessarily cuspidal and satis�es

the hypotheses of Taylor's theorem. SinceT(cv) is locally constant on X , we would be

done.

Unfortunately, it does not appear to be possible to reach a representation� 0 whose

Galois representation is irreducible by using local arguments on the eigenvariety. However

we will prove the following, which includes the case of some even-dimensional special

orthogonal groups as it will be needed later:

Theorem B (Theorem 2.4.2.2, Theorem 2.5.0.3). Let G be an inner form ofSp2n or SO4n

over a totally real number �eld, compact at the real places and split at thep-adic ones. Let

� be an irreducible automorphic representation ofG(AF ) having Iwahori invariants at all

the places ofF abovep, and having invariants under an open subgroupU of G(A(p)
F;f ). Let

� � p ;� 1 (�) denote thep-adic representation of the absolute Galois groupGF of F associated

with � and embeddings�p : Q ,! Qp, �1 : Q ,! C. Let N be an integer. There exists an

automorphic representation� 0 of G(AF ) such that:

� � 0 is unrami�ed at the places abovep, and has invariants underU;

� The restriction of � � p ;� 1 (� 0) to the decomposition group at any place abovep is either

irreducible or the sum of an Artin character and an irreducible representation of

dimension 2n (the latter occurring only in the symplectic case);

� For all g in GF , Tr( � � p ;� 1 (� 0)(g)) � Tr( � � p ;� 1 (�)( g)) mod pN .

The possible presence of an Artin character (in the case of inner forms ofSp2n ) comes

from the fact that the �standard� representation of SO2n+1 (C) in GL2n+1 (C) is not minus-

cule: the set of characters of a torusT(C) of SO2n+1 (C) in this representation has two

orbits under the Weyl group, one of which contains only the trivial character. The key

fact allowing to prove the above theorem is that classical points on the eigenvariety for

G correspond to automorphic representations� of G(AF ) (say, unrami�ed at the p-adic

places)and a re�nement of each� v , vjp, that is to say a particular element in T(C) in the

conjugacy class of the Satake parameter of� v . The variation of the crystalline Frobenius

of � � p ;� 1 (�) on the eigenvariety with respect to the weight and the freedom to change the

re�nement (by the action of the Weyl group) are at the heart of the proof of Theorem B.

Although the strategy outlined above fails, Theorem A can be deduced from Theorem

B. Indeed the precise description of the discrete automorphic spectrum of symplectic and
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orthogonal groups by Arthur shows that formal sums of distinct cuspidal self-dual repres-

entations of general linear groups �contribute� to this spectrum. The even-dimensional case

in Theorem A will be proved by transferring � � � 0, where �; � 0 are regular, L-algebraic,

self-dual, cuspidal representations ofGL2n (AF ) (resp. GL3(AF )) with distinct weights at

any real place ofF , to an automorphic representation� of an inner form G of Sp2n+2 =F.

Since � � p ;� 1 (� ) � � � p ;� 1 (� 0) does not contain any Artin character (the zero Hodge-Tate

weights come from� � p ;� 1 (� 0), which is known to be irreducible), for big enoughN any

representation � 0 as in B has an irreducible Galois representation.

To treat the original case of a regular, L-algebraic, self-dual, cuspidal representation of

GL2n+1 (AF ) having trivial central character, we appeal to Theorem B for special ortho-

gonal groups. For example, ifn is odd, � � � 0, where � 0 is the trivial character of A �
F =F � ,

contributes to the automorphic spectrum ofG, which is now the special orthogonal group

of a quadratic form on F 2n+2 which is de�nite at the real places and split at the �nite

places ofF . Note that � � � 0 is not regular: the zero weight appears twice at each real

place of F . However the Langlands parameters of representations of the compact group

SO2n+2 (R) are of the form
n+1M

i =1

IndWC
WR

�
z 7! (z=�z)k i

�

when composed withSO2n+2 (C) ,! GL2n+2 (C), with k1 > : : : > k n+1 � 0. Moreover

LL (( � � � 0)v) is of the above form, with kn+1 = 0 . The rest of the proof is identical to

the even-dimensional case.

This fact also shows that somenon-regular, L-algebraic, self-dual, cuspidal represent-

ations of GL2n (AF ) contribute to the automorphic spectrum of G. Consequently we can

also extend Taylor's result to the Galois representations associated with these slightly non-

regular automorphic representations. These Galois representations were shown to exist by

Wushi Goldring [Gol14].

We now �x some notations for the rest of the article. The valuation vp of Qp is the one

sending p to 1, and j � j will denote the norm p� vp (�) . All the number �elds in the paper

will sit inside Q. We have chosen arbitrary embeddings�p : Q ,! Qp, �1 : Q ,! C. In fact,

the constructions will only depend on the identi�cation between the algebraic closures of

Q in Qp and C (informally, �p� � 1
1 ). Observe that the choice of ap-adic placev of a number

�eld F and of an embeddingFv ,! Qp is equivalent, via �p, to the choice of an embedding

F ,! Q. The same holds for the in�nite places and�1 . Thus if F is totally real, �p� � 1
1

de�nes a bijection between the set of in�nite places ofF and the set ofp-adic placesv of

F together with an embeddingFv ,! Qp. The eigenvarieties will be rigid analytic spaces

(in the sense of Tate). If X is a rigid analytic space over a �nite extensionE of Qp, jX j

will denote its points.

2.2 Assumptions on forthcoming results of Arthur

As the results of this paper rely on [Art13][Theorem 9.5.3] (the analogue of [Art13, Theorem

1.5.2] in the case ofinner forms of quasi-split classical groups), whose proof will only be
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given in [Art], we have stated some properties as assumptions: Assumptions 2.4.1.1, 2.6.1.2,

2.6.2.2 and 2.6.4.1. These will all be consequences of the main global theorem of [Art],

which will make more precise the statement of [Art13][Theorem 9.5.3].

The reason [Art13][Theorem 9.5.3] is not precisely stated is that at present it is not

known what global data should play the role of Whittaker data in the case of inner forms of

quasisplit groups. These data are needed to normalize the local Langlands correspondence,

via the normalization of endoscopic transfer factors. There is a satisfactory de�nition in

the local case: rigid inner forms as de�ned in [Kal]. A global analogue is necessary to

formulate [Art13][Theorem 9.5.3] precisely.

A subsequent version of this paper will have the assumptions replaced by actual pro-

positions or lemmas.

2.3 The eigenvariety for de�nite symplectic groups

In this section we recall the main result of [Loe11] in our particular case (existence of the

eigenvariety for symplectic groups), and show that the points corresponding to unrami�ed,

�completely re�nable� automorphic forms, with weight far from the walls, are �dense� in

this eigenvariety.

2.3.1 The eigenvariety

2.3.1.1 Symplectic groups compact at the archimedean places

Let F be a totally real number �eld of even degree overQ, and let D be a quaternion

algebra overF , unrami�ed at all the �nite places of F (Fv 
 F D ' M2(Fv)), and de�nite

at all the real places of F . Such a D exists thanks to the exact sequence relation the

Brauer groups of F and the Fv . Let n be a positive integer, and letG be the algebraic

group over F de�ned by the equation M � M = I n for M 2 Mn (D ), where (M � ) i;j = M �
j;i ,

and �� denotes conjugation inD .

Then G (F 
 Q R) is a compact Lie group, and for all �nite placesv of F , G � F Fv '

Sp2n=Fv .

Fix a prime p. We will apply the results of [Loe11] to the groupG 0 = ResF
QG. Let E

be a �nite and Galois extension ofQp, containing all the Fv (v over p).

2.3.1.2 The Atkin-Lehner algebra

The algebraic group G 0 � Q Qp =
Q

vjp G � Q Fv (where v runs over the places ofF )

is isomorphic to
Q

vjp ResFv
Qp

Sp2n=Fv , which is quasi-split but not split in general. The

algebraic groupSp2n is de�ned over Z by the equation t MJM = J in M2n , where J =
�

0 Jn

� Jn 0

�
and Jn =

0

B
@

0 1

: :
:

1 0

1

C
A . We de�ne its algebraic subgroupsT v , B v , �B v ,

N v , �N v of diagonal, upper triangular, lower triangular, unipotent upper triangular, and

unipotent lower triangular matrices of ResFv
Qp

Sp2n=Fv , and let T =
Q

vjp T v , B =
Q

vjp B v ,
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and so on. In [Loe11, 2.4], only the action of the maximal split torus ofG 0 � Q Qp is

considered. For our purpose, we will need to extend this and consider the action of a

maximal (non-split in general) torus, that is T , instead of a maximal split torus S � T .

The results in [Loe11] are easily extended to this bigger torus, essentially becauseT (Qp)=

S(Qp) is compact. Moreover, we letI v be the compact subgroup ofSp2n (Ov) consisting

of matrices with invertible diagonal elements and elements of positive valuation below

the diagonal. Finally, following Loe�er's notation, we let G0 =
Q

vjp I v . It is an Iwahori

sugroup ofG 0(Qp) having an Iwahori decomposition:G0 ' �N0T0N0 where� 0 = � (Qp) \ G0.

For each placev of F above p, let us choose a uniformizer$ v of Fv . Let � v be the

subgroup ofSp2n (Fv) consisting of diagonal matrices whose diagonal elements are powers

of $ v , i.e. matrices of the form

0

B
B
B
B
B
B
B
B
@

$ r 1
v

: : :
$ r n

v
$ � r n

v
: : :

$ � r 1
v

1

C
C
C
C
C
C
C
C
A

Let � +
v be the submonoid of� v whose elements satisfyr1 � : : : � rn � 0, and � ++

v the

one whose elements satisfyr1 < : : : < r n < 0. Naturally, we set � =
Q

vjp � v , and similarly

for � + and � ++ .

The Atkin-Lehner algebra H +
p is de�ned as the subalgebra of the Hecke-Iwahori algebra

H(G0nG 0(Qp)=G0) (over Q) generated by the characteristic functions[G0uG0], for u 2 � + .

Let H p be the subalgebra ofH(G0nG 0(Qp)=G0) generated by the characteristic functions

[G0uG0] and their inverses, for u 2 � + (in [IM65], a presentation of the Hecke-Iwahori

algebra is given, which shows that[G0uG0] is invertible if p is invertible in the ring of

coe�cients).

If Sp is a �nite set of �nite places of F not containing those overp, let H S be the Hecke

algebra (overQ) O 0

w =2 Sp [ Sp [ S1

H(G(OFw )nG(Fw)=G(OFw ))

where S� denotes the set of places above� . This Hecke algebra has uniteS. Let H p
S be a

commutative subalgebra of
N

w2 Sp H(G(Fw)) , with unit eSp .

Finally, we let H + = H +
p 
 H Sp 
 H S, H = H p 
 H Sp 
 H S and e = eG0 
 eSp 
 eS.

2.3.1.3 p-adic automorphic forms

The construction in [Loe11] depends on the choice of a parabolic subgroupP of G 0 and

a representation V of a compact subgroup of the Levi quotientM of P. The parabolic

subgroup we consider here is the Borel subgroupB , and thus, using Loe�er's notation,

T = M is a maximal (non-split in general) torus contained inB . The representationV is

taken to be trivial.
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The weight spaceW is the rigid space (overE , but it is well-de�ned over Qp) paramet-

rizing locally Qp-analytic (equivalently, continuous) characters of T0 '
� Q

vjp O�
v

� n
. As

1 + $ vOv is isomorphic to (� p1 \ F �
v ) � Z[Fv :Qp ]

p , W is the product of an open polydisc of

dimension n[F : Q] and a rigid space �nite over E .

The construction in [Loe11] de�nes thek-analytic ( (Gk )k� 0 being a �ltration of G0)

parabolic induction from T0 to G0 of the �universal character� � : T0 ! O (W) � , denoted by

C(U ; k) (k big enough such that� is k-analytic on the open a�noid U ), which interpolates

p-adically the restriction to G 0(Qp) of algebraic representations ofG 0(Qp). From there

one can de�ne the spacesM (e;U ; k) ([Loe11, De�nition 3.7.1]) of p-adic automorphic

forms (or overconvergent automorphic forms, by analogy with the rigid-geometric case of

modular forms) above an open a�noid or a point U of W which are k-analytic and �xed

by the idempotent e. This space has an action ofH + . By [Loe11, Corollary 3.7.3], when

consideringp-adic automorphic forms which are eigenvectors for[G0uG0] for someu 2 � ++

and for a non-zero eigenvalue (��nite slope� p-adic eigenforms), one can forget aboutk,

and we will do so in the sequel.

2.3.1.4 Existence and properties of the eigenvariety

We choose the element

� =

0

B
B
B
B
B
B
B
B
@

0

B
B
B
B
B
B
B
B
@

$ � n
v

: : :
$ � 1

v
$ v

: : :
$ n

v

1

C
C
C
C
C
C
C
C
A

1

C
C
C
C
C
C
C
C
A

v

2 � ++

Theorem 2.3.1.1. There exists a reduced rigid spaceX over E , together with an E-

algebra morphism	 : H + ! O (X ) � and a morphism of rigid spacesw : X ! W such

that:

1. The morphism
�
w; 	([ G0�G 0]) � 1

�
: X ! W � Gm is �nite

2. For each point x of X , 	 
 w\ : H + 
 E Ow(x) ! O x is surjective

3. For every �nite extension E 0=E, X (E 0) is in bijection with the �nite slope systems

of eigenvalues ofH + acting on the space of �overconvergent� automorphic forms, via

evaluation of the image of	 at a given point.

Moreover, for any point x 2 j X j, there is an arbitrarily small open a�noid V containing

x and an open a�noid U of W such that V � w� 1(U ), the morphism wjV : V ! U is

�nite, and surjective when restricted to any irreducible component ofV .

Proof. This is [Loe11, Theorems 3.11.2 and 3.12.3], except for the last assertion. To prove

it, we need to go back to the construction of the eigenvariety in [Buz07]. Buzzard begins

by constructing the Fredholm hypersurfaceZ (encoding only the value of	([ G0�G 0])),
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together with a �at morphism Z ! W, before de�ning the �nite morphism X ! Z . By

[Buz07, Theorem 4.6],Z can be admissibly covered by its open a�noidsV0 such that w

restricted to V0 induces a �nite, surjective morphism to an open a�noid U of W, and V0

is a connected component of the pullback ofU . We can assume thatU is connected, and

hence irreducible, sinceW is normal. The morphismV0 ! U is both open (since it is �at:

[Bos09, Corollary 7.2]) and closed (since it is �nite), so that any irreducible component of

V0 is mapped ontoU . This can be seen more naturally by observing that the irreducible

components ofV0 are also Fredholm hypersurfaces, by [Con99, Theorem 4.3.2].

By [Che04, Proposition 6.4.2], ifV denotes the pullback toX of V0, each irreducible

component ofV is mapped onto an irreducible component ofV0 (more precisely, this is a

consequence of [Che04, Lemme 6.2.10]). To conclude, we only need to show that ifx 2 V ,

up to restricting U , the connected component ofV containing x can be arbitrarily small.

This is a consequence of the following lemma.

Lemma 2.3.1.2. Let f : X 1 ! X 2 be a �nite morphism of rigid analytic spaces. Then

the connected components off � 1(U), for U admissible open ofX 2, form a basis for the

canonical topology onX 1.

Proof. It is enough to consider the caseX 1 = SpA1, X 2 = SpA2. Let x1 be a maximal

ideal of A1. Then f � 1 (f f (x1)g) = f x1; : : : ; xm g. We choose generatorst1; : : : ; tn of f (x1),

and r (i )
1 ; : : : ; r (i )

k i
of x i . Using the maximum modulus principle, it is easily seen that
 j;N :=

�
y 2 X 2 j j t j (y)j � p� N

	
j;N is an admissible covering of the admissible openX 2 n f f (x)g

of X 2. Let VM be the admissible open
n

x 2 X 1 j 8i; 9k; jr (i )
k (x)j � p� M

o
, which is a �nite

union of open a�noids, hence quasi-compact. Consequently, the admissible open sets

Uj;N := VM \ f � 1 (
 j;N )

=
n

x 2 X 1 j 8i; 9k; jr (i )
k (x)j � p� M and jf \ (t j )(x)j � p� N

o

j;N

form an admissible covering ofVM . Therefore there is anN big enough so that

VM =
r[

j =1

Uj;N

which implies that

f � 1 ��
y 2 X 2 j j t j (y)j � p� N � 1	�

�
[

i

n
x 2 X 1 j 8k; jr (i )

k (x)j � p� M
o

and when M goes to in�nity, the right hand side is the disjoint union of arbitrarily small

a�noid neighbourhoods of the x i .

We de�ne the algebraic points ofW(E) to be the ones of the form

(xv;i )v;i 7!
Y

v;�

�

 
nY

i =1

xkv;�;i
v;i

!

where kv;�;i are integers, and such a point is called dominant ifkv;�; 1 � kv;�; 2 � : : : �

kv;�;n � 0.
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Recall that a set S � j X j is said to accumulate at a point x 2 j X j if x has a basis of

a�noid neighbourhoods in which S is Zariski dense.

Proposition 2.3.1.3. Let (� r )r be a �nite family of linear forms on RA where A is

the set of triples (v; �; i ) for v a place of F above p, � : Fv ! E and 1 � i � n,

and let (cr )r be a family of elements inR� 0. Assume that the open a�ne cone C =
�

y 2 RA j 8r; � r (y) > c r
	

is nonempty. Then the set of algebraic characters inC yields

a Zariski dense set in the weight spaceW, which accumulates at all the algebraic points.

Proof. [Che09, Lemma 2.7].

In particular the property of being dominant or �very regular� can be expressed in this

way.

By �niteness of G(F )nG(AF;f )=U for any open subgroupU of G(AF;f ), if � is an auto-

morphic representation of G(AF ), the representation � f is de�ned over �1 ( �Q). Loe�er

de�nes ([Loe11, De�nition 3.9.1]) the classical subspace of the space ofp-adic automorphic

forms above an algebraic and dominant pointw of the weight space. This subspace is

isomorphic to �p� � 1
1

�
e(C1 (G(F )nG(AF )) 
 W � )G (F 
 QR)

�
as H + -module, with W the

representation of G(F 
 Q R) which is the restriction of the algebraic representation of

G 0 � Q C having highest weight � � 1
1 �p(w). The classical points of the eigenvariety are the

ones having eigenvectors in the classical subspace.

We need to give an interpretation of classical points on the eigenvarietyX , in terms

of automorphic representations ofG(AF ). Namely, there is a classical pointx 2 X (E 0)

de�ning a character 	 x : H ! E 0(hereE � E 0 � Qp) if and only if there is an automorphic

representation � = 
 0
v � v = � 1 
 � p 
 � (p)

f of G(AF ) such that:

� �p� � 1
1

�

 vj1 � v

�
is the algebraic representation having highest weightw(x);

� �p

�
(eS 
 eS)� (p)

f

�
contains a non-zero vector on whichH S 
 H S acts according to

	 x ;

� �p(eG0 � p) contains a non-zero vector on whichH p acts according to� w(x) 	 x , where

� w(x) ([G0�G 0]) = w(x)( � ) if � 2 � + .

The twist by the character � w(x) is explained by the fact that the classical overconvergent

automorphic forms are constructed by induction of characters of the torus extended from

T0 (on which they are de�ned by w) to T trivially on � .

2.3.2 Unrami�ed and �completely re�nable� points

2.3.2.1 Small slope p-adic eigenforms are classical

The algebraic and dominant points ofW are the ones of the form

(xv;i )v;i 7!
Y

v;�

�

 
nY

i =1

xkv;�;i
v;i

!
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where kv;�; 1 � kv;�; 2 � : : : � kv;�;n � 0 are integers. The proof of the criterion given

in [Loe11, Theorem 3.9.6] contains a minor error, because it �sees� only the restriction of

these characters to the maximal split torusS (over Qp), and the BGG resolution has to

be applied to split semi-simple Lie algebras.

We correct it in the case of quasi-split reductive groups (in particular the restriction to

a sub�eld of a quasi-split group remains quasi-split), and give a stronger criterion. This

criterion could be used on an eigenvariety for which only the weights corresponding to a

given p-adic place ofF vary. For this purpose we use the �dual BGG resolution� given in

[Jon11]. The proof will be very close to that of [Loe11, Propositions 2.6.3-2.6.4]. In the

following G 0 could be any quasi-split reductive group overQp, and we could replaceE=Qp

by any extension splitting G 0.

Let B be a Borel subgroup ofG 0, S a maximal split torus in B , T the centralizer of S,

a maximal torus. This determines an opposite Borel subgroup�B such that �B \ B = T .

Let � + (resp. � ) be the set of positive (resp. simple) roots ofG 0 � Qp E, with respect to

the maximal torus T of the Borel subgroupB . One can split � = t i � i where �; � belong

to the same� i if and only if � jS = � jS (equivalently, the � i are the Galois orbits of � ).

Let � be a subgroup ofT (Qp) supplementary to its maximal compact subgroup, and� +

the submonoid consisting of thez 2 T (Qp) such that j� (z)j � 1 for all � 2 � . For each

i , de�ne � i to be the element of� + =(Z (G 0)(Qp) \ �) generating \ j 6= i ker j� j (�)j (here � j

denotes any element of� j , and j� j (�)j does not depend on this choice).

Assume that G0 is a compact open subgroup ofG 0(Qp) having an Iwahori factorization
�N0T0N0. Using a lattice in the Lie algebra ofN and the exponential map, it is easily seen

that N0 admits a decreasing, exhaustive �ltration by open subgroups(Nk )k� 1 having a

canonical rigid-analytic structure. Moreover any ordering of� + endows the Banach space

of Qp-analytic functions on Nk taking values in E with an orthonormal basis consisting of

monomials on the weight spaces.

Let � be an algebraic and dominant weight ofT � Qp E. By [Jon11], there is an exact

sequence ofE [I ]-modules, whereI = G0� + G0 = �B0� + N0 is the monoid generated byG0

and � + :

0 ! IndG
�B (� ) 
 sm-Ind

�B 0N0
�B 0

1 ! la-Ind
�BN 0
�B (� ) !

M

� 2 �

la-Ind
�BN 0
�B (s� (� + � ) � � ) (2.3.2.1)

where2� =
P

� 2 � + � , �sm� stands for �smooth� and �la� for �locally analytic�. The relation

with Loe�er's Ind(V )k is la-Ind
�BN 0
�B (� ) 
 � � 1

sm = lim�!
k

Ind(E � )k , where � sm is the character

on T which is trivial on its maximal compact subgroup and agrees with� on � . Naturally

IndG
�B (� ) 
 sm-Ind

�B 0N0
�B 0

1 
 � � 1
sm = lim�!

k

Ind(E � )cl
k .

To prove a classicity criterion, we need to bound the action of� i on the factors of the

RHS of (2.3.2.1) twisted by � � 1
sm. Let n� = � _ (� ) 2 N for � 2 � , then s� (� + � ) � � � � =

� (1+ n� )� . The Banach space ofk-analytic functions on N0 is the direct sum of the spaces

of analytic functions on xN k , x 2 N0=Nk , and each of these spaces has an orthonormal

(with respect to the supremum norm) basis(vj;x ) j 2 J where J = N� +
(monomials on the

weights spaces). This basis depends on the choice of a representativex, but if we �x i and
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x0 2 N0, we can choose� � 1
i x0� i as a representative of its class. Then if� =

P
j aj vj;� � 1

i x0 � i

(with aj ! 0) is an element of la-Ind
�BN 0
�B (s� (� + � ) � � ) 
 � � 1

sm, and � 2 Nk ,

(� i � � )(x0� ) = � � (1+ n � )�
i

X

j 2 J

aj vj;� � 1
i x0 � i

(� � 1
i x0�� i )

=
X

j 2 J

aj � � (1+ n � )� � s(j )
i vj;x 0 (x0� )

wheres(j ) =
P

� 2 � + j (� )� . This shows that j� i �� j � j � (� i )j � (1+ n � ) j� j, and so the operator

� i has norm less than or equal toj� (� i )j � (1+ n � ) on la-Ind
�BN 0
�B (s� (� + � ) � � ) 
 � � 1

sm.

We can then apply the exact functor which to anE[I ]-module W associates the auto-

morphic forms taking values in W , and take the invariants under the idempotent e (this

functor is left exact). We obtain that M (e; E� )=M (e; E� )cl (the space of p-adic auto-

morphic forms modulo the classical automorphic forms) embeds in
L

� 2 � M � where each

M � is a Banach space on which the operator[G0� i G0] has norm � j � (� i )j � (1+ n � ) . The

following criterion follows:

Lemma 2.3.2.1. If an overconvergent eigenformf 2 M (e; E� ) satis�es [G0� i G0] f = � i f

with � i 6= 0 and

vp(� i ) < inf
� 2 � i

� (1 + n� )vp(� (� i ))

for all i , then f is classical.

In the case of the symplectic groupG 0, the family (� i ) i can be indexed by the couples

(v; i ) wherev is a place ofF abovep and 1 � i � n, and � v;i is indexed by the embeddings

Fv ,! E . Speci�cally, � v;i is trivial at all the places except for v, where it equals

Diag(x1; : : : ; xn ; x � 1
n ; : : : ; x � 1

1 )

with x j =

(
$ � 1

v if j � i

1 if j > i
.

The conditions in the previous lemma can be written
(

vp(� v;i ) < 1
ev

inf � (1 + kv;�;i � kv;�;i +1 ) for i < n

vp(� v;n ) < 1
ev

inf � (2 + 2kv;�;n ) :

2.3.2.2 Representations having Iwahori-invariants and unrami�ed principal
series

We recall results of Casselman showing that irreducible representations having Iwahori-

invariants appear in unrami�ed principal series, and giving the Atkin-Lehner eigenvalues

in terms of the unrami�ed character being induced.

In this subsection, we �x a placev of F abovep. Recall I v has an Iwahori decomposition

I v = Nv;0Tv;0 �Nv;0. As in [Cas], if (� ; V ) is a smooth representation ofG(Fv), V ( �Nv) is

the subspace ofV spanned by the�(� n)(x) � x, �n 2 �Nv , V �N v
= V=V( �Nv) and if �Nv;i is a

compact subgroup of �Nv , V ( �Nv;i ) =
n

v 2 V j
R

�N v;i
�(� n)(v)d�n = 0

o
.
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Lemma 2.3.2.2. Let (� ; V ) be an admissible representation ofG(Fv) over C. Then the

natural (vector space) morphism from V I v to
�
V �N v

� Tv; 0 is an isomorphism, inducing a

� +
v -equivariant isomorphism

� I v ��!
�
� �N v

� Tv; 0 
 � � 1
�B v

where � �B v
denotes the modulus morphism of�Bv , and u 2 � +

v acts on � I v by [I vuI v ].

Proof. Let �Nv;1 be a compact subgroup of �Nv such that V I v \ V ( �Nv) � V ( �Nv;1). There

is a u 2 � +
v such that u �Nv;1u� 1 � �Nv;0. By [Cas, Prop. 4.1.4], and using the fact that

[I vuI v ] is invertible in the Hecke-Iwahori algebra, the natural morphism fromV I v to V Tv; 0
�N

is an isomorphism (of vector spaces).

Lemmas 4.1.1 and 1.5.1 in [Cas] allow to compute the action of� +
v .

Corollary 2.3.2.3. Any smooth irreducible representation ofG(Fv) over C having Iwahori

invariants is a subquotient of the parabolic induction (from �Bv) of a character of the torus

Tv , which is unique up to the action ofW (Tv ; G(Fv)) , and unrami�ed.

Proof. � is a subquotient of the parabolic induction of a character of the torusTv if and

only if � �N v
6= 0 , which is true by the previous lemma. The geometrical lemma [BZ77, 2.12]

shows that if � is a smooth character ofTv ,
�

IndG (Fv )
�B v

�
� ss

�N v
'

M

w2 W (Tv ;G (Fv ))

� w � 1=2
�B v

Since � �N is left adjoint to non-normalized induction, the �rst argument in the proof

shows that � is actually a subrepresentation ofIndG (Fv )
�B v

for at least one � in the orbit

under W (Tv ; G(Fv)) . In that case we will say that (� ; � ) is a re�nement of � . Note that

up to the action of W (Tv ; G(Fv)) , there is a unique � such that � is a subquotient of

IndG (Fv )
�B v

.

2.3.2.3 Most points of the eigenvariety arise from unrami�ed, completely re-
�nable representations

We will need a result of Tadi¢, characterizing theirreducible principal series. If � 1; : : : ; � n

are characters ofF �
v , we denote simply by � = ( � 1; : : : ; � n ) the character of Tv which

maps 0

B
B
B
B
B
B
B
B
@

x1
: : :

xn

x � 1
n

: : :
x � 1

1

1

C
C
C
C
C
C
C
C
A

to
Q n

i =1 � i (x i ). Let � be the unrami�ed character of F �
v such that � ($ v) = jFv j � 1.
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Theorem 2.3.2.4. Let � = ( � 1; : : : ; � n ) be a character ofTv . Then IndSp2n (Fv )
�B v

� is irre-

ducible if and only if the following conditions are satis�ed

1. For all i , � i is not of order 2.

2. For all i , � i 6= � � 1.

3. For all distinct i; j , � i � � 1
j 6= � � 1 and � i � j 6= � � 1.

Proof. [Tad94, Theorem 7.1]

De�nition 2.3.2.5. An irreducible representation � v of G(Fv) is completely re�nable if

it is isomorphic to IndSp2n (Fv )
�B v

� for some unrami�ed character � .

An automorphic representation � of G(AF ) is completely re�nable if � v is completely

re�nable for any vjp.

Note that completely re�nable representations are unrami�ed (for any choice of hyper-

special subgroup). A representation� v is completely re�nable if and only if (� v)ss
�N v

is the

sum of jW (Tv ; G(Fv)) j unrami�ed characters.

Recall that classical points on the eigenvariety are determined by an automorphic rep-

resentation� together with a re�nement of each� v , vjp. Completely re�nable automorphic

representations are the ones giving the greatest number of points on the eigenvariety. When

one can associate Galois representations to automorphic representations, each re�nement

of � comes with a �p-adic family� of Galois representations going through the same one.

Proposition 2.3.2.6. Let f 1; : : : ; f r 2 O (X ) � . The set S of points corresponding to

completely re�nable, unrami�ed classical points at which

min
v;�

minf kv;�; 1 � kv;�; 2; : : : ; kv;�;n � 1 � kv;�;n ; kv;�;n g � maxf vp(f 1); : : : ; vp(f n )g (2.3.2.2)

is Zariski dense and accumulates at all the algebraic points.

Compare [Che04, Proposition 6.4.7], [Loe11, Corollary 3.13.3].

Proof. The hypotheses in the classicality criterion 2.3.2.1 and the ones in Theorem 2.3.2.4

are implied by inequalities of the form 2.3.2.2. First we prove the accumulation property.

We can restrict to open a�noids V of the eigenvariety, and hence assume that the right

hand side of 2.3.2.2 is replaced by a constant. By Theorem 2.3.1.1,V can be an arbitrarily

small open a�noid containing an algebraic point x of X , such that there is open a�noid

U of W such that V � w� 1(U ), the morphism wjV : V ! U is �nite, and surjective

when restricted to any irreducible component ofV . By Proposition 2.3.1.3, the algebraic

weights satisfying 2.3.2.2 are Zariski dense in the weight spaceW and accumulate at all

the algebraic points ofW. [Che04, Lemme 6.2.8] shows thatS \ V is Zariski-dense inV .

Each irreducible componentX 0 of X is mapped onto a Zariski-open subset of a con-

nected component ofW, by [Che04, Corollaire 6.4.4] (which is a consequence of the decom-

position of a Fredholm series into a product of prime Fredholm series, [Con99, Corollary

4.2.3]), soX 0 contains at least one algebraic point (the algebraic weights intersect all the

connected components ofW), and hence the Zariski closure ofS \ X 0 contains an open

a�noid of X 0, which is Zariski dense inX 0.
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2.4 Galois representations associated with automorphic rep-
resentations of symplectic groups

2.4.1 A consequence of Arthur's description of the discrete spectrum
for classical groups

2.4.1.1 Automorphic self-dual representations of GL2n+1 of orthogonal type

According to Arthur's conjectural parametrization of discrete automorphic representations,

each such representation ofG(AF ) should be part of an A-packet corresponding to a

discrete parameter, which is a representation

L F � SL2(C) ! SO2n+1 (C)

such that (among other conditions) the commutant of the image is �nite.

The standard embeddingSO2n+1 (C) ,! GL2n+1 (C) �transfers� this parameter to a

parameter of GL2n+1 =F, which is not discrete in general, and thus it corresponds to an

automorphic representation ofGL2n+1 (AF ). Here we de�ne an automorphic representation

� of GLN (AF ) as a formal sum of discrete automorphic representations� i of GLn i such

that
P

i ni = N . We will write � = � i � i . By [MW89], each � i is the Langlands quotient

of the parabolic induction of twists of a single cuspidal representation by powers ofj det j.

We will not need this generality, as we will force the representations� i to be cuspidal in

the sequel.

Since� comes from a self-dual parameter, it is self-dual:� _ ' � . Even though � is not

discrete in general, the discreteness of the parameter which takes values inSO2n+1 implies

that the � i 's are self-dual.

If � = 
 v � v is an automorphic representation ofG(AF ), then for any archimedean

placev of F , the local Langlands parameter of� v composed withSO2n+1 (C) ,! GL2n+1 (C)

is of the form:

LL (� v) ' � n �
nM

i =1

IndWR
WC

(z 7! (z=�z)r i )

where � is the only non-trivial character of WC=WR, and the r i are integers, with rn >

rn� 1 > : : : > r 1 > 0. We de�ne ASp2n
to be the set of automorphic representations such

that for each in�nite place v of F , r1 � 2 and r i +1 � r i + 2 . The equivalence above is

meant as representations ofWR (i.e. morphisms WR ! GL2n+1 (C)), although LL (� v) is

a parameter taking values inSO2n+1 (C) (the two notions coincide).

Similarly, let AGL 2n +1 be the set of formal sums of self-dual cuspidal representations

� = � i � i = 
 v � v of GL2n+1 (AF ) such that for each in�nite place v of F ,

LL (� v) ' � n �
nM

i =1

IndWR
WC

(z 7! (z=�z)r i )

where the r i 's are integers,such thatr1 � 2, r i +1 � r i + 2 , and such that the product of

the central characters of the� i 's is trivial.
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These inequalities are imposed to ensure that the corresponding global parameters are

trivial on Arthur's SL2(C), to simplify the statements. That is why we take formal sums

of cuspidal (not discrete) representations.

Note that there is no non-zero alternate bilinear form preserved by such a parameter

(one could say that the parameter is �completely orthogonal�).

Assumption 2.4.1.1. For any � 2 ASp2n
, there is a � 2 AGL 2n +1 , such that the local

Langlands parameters match at the in�nite places, and for any �nite placev of F , � v is

unrami�ed if � v is unrami�ed, and in that case the local parameters match, by means of

the inclusion SO2n+1 (C) � GL2n+1 (C).

2.4.1.2 p-adic Galois representations associated with RLASDC representa-
tions of GLN

An automorphic cuspidal representation� of GLN (AF ) is said to beL-algebraic if for any

in�nite place v of F , the restriction of LL (� v) to C� is of the form

z 7! Diag
��

zav;i �zbv;i

�

i

�

where ai ; bi 2 Z. By the �purity lemma� [Clo88, Lemme 4.9], av;i + bv;i does not depend

on v; i . We will say that � is L-algebraic regular if for any v as above, theav;i are distinct.

By purity, this implies that if v is real,

LL (� v)j � j � s =

8
<

:

� e � i IndWR
WC

�
z 7! (z=�z)a0

v;i

�
if N is odd, with e = 0 ; 1

� i IndWR
WC

�
z 7! (z=�z)a0

v;i

�
if N is even

for some integers, and integers0 < a 0
v;1 < : : : < a 0

v;bN=2c.

As a special case of [CH13, Theorem 4.2] (which builds on previous work of Clozel,

Harris, Kottwitz, Labesse, Shin, Taylor), we have the following theorem.

Theorem 2.4.1.2. Let � be a regular L-algebraic, self-dual, cuspidal (RLASDC) rep-

resentation of GL2n+1 (AF ). Then � is L-arithmetic, and there is a continuous Galois

representation

� � p ;� 1 (� ) : GF �! GL2n+1 (Qp)

such that if v is a �nite place of F and � v is unrami�ed,

1. if v is coprime to p, then � � p ;� 1 (� )jGF v
is unrami�ed, and

det
�
TId � � � p ;� 1 (� )(Frob v)

�
= �p� � 1

1 det (TId � A)

whereA 2 GLN (C) is associated with� v via the Satake isomorphism.

2. if v lies abovep, � � p ;� 1 (� )jGF v
is crystalline. The associated �ltered ' -module (over

Fv;0 
 Qp Qp) is such that

det Qp

�
T Id � ' f v

�
= �p� � 1

1 det (TId � A)f v

where A 2 GLN (C) is associated with � v via the Satake isomorphism. For any

� : Fv ! Qp, the � -Hodge-Tate weights are theaw;i , where w is the real place ofF

de�ned by � , �p and �1 .
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The power f v appearing at places abovep may seem more natural to the reader (and

will actually disappear) after reading subsubsection 2.4.2.1.

Combining this theorem with the transfer detailed in the last section, we obtain

Corollary 2.4.1.3. Let � be an automorphic representation ofG(AF ), whose weights

kw;1 � kw;2 � : : : kw;n � 0 at the real placesw are far from the walls (� 2 ASp2n
is

enough), and unrami�ed at the places abovep. There exists a continuous semisimple Galois

representation

� � p ;� 1 (�) : GF �! GL2n+1 (Qp)

such that for any �nite place v of F such that � v is unrami�ed

1. if v is coprime to p, then � � p ;� 1 (�) jGF v
is unrami�ed, and

det
�
TId � � � p ;� 1 (�)(Frob v)

�
= �p� � 1

1 det (TId � A)

whereA 2 GLN (C) is associated with� v via the Satake isomorphism.

2. if v lies abovep, � � p ;� 1 (�) jGF v
is crystalline. The associated �ltered' -module is such

that

det Qp

�
T Id � ' f v

�
= �p� � 1

1 det (TId � A)f v

where A 2 SO2n+1 (C) � GL2n+1 (C) is associated with� v via the Satake isomorph-

ism. For any � : Fv ! Qp, the � -Hodge-Tate weights arekw;1 + n > k w;2 + n � 1 >

: : : > k w;1 + 1 > 0 > � kw;1 � 1 > : : : > � kw;1 � n, where w is the real place ofF

de�ned by � , �p and �1 .

Proof. There is an automorphic representation� = � i � i of GL2n+1 (AF ) corresponding to

� by Assumption 2.4.1.1, obtained by induction from distinct cuspidal representations� i .

Let � � p ;� 1 (�) = � i � � p ;� 1 (� i ).

Note that in that case, since� 1 is C-algebraic,� is obviously C-arithmetic (which is

equivalent to L-arithmetic in the case ofSp2n ), and thus the coe�cients of the polynomials

appearing in the corollary lie in a �nite extension of Q.

2.4.1.3 The Galois pseudocharacter on the eigenvariety

To study families of representations, it is convenient to usepseudorepresentations(or

pseudocharacters), which are simply the traces of semi-simple representations when the

coe�cient ring is an algebraically closed �eld of characteristic zero. We refer to [Tay91]

for the de�nition, and [Tay91, Theorem 1] is the �converse theorem� we will need.

On O(X ), we put the topology of uniform convergence on open a�noids.

The Zariski-density of the classical points at which we can de�ne an attached Galois

representation implies the following

Proposition 2.4.1.4. There is a continuous pseudocharacterT : GF ! O (X ), such that

at every classical unrami�ed point of the eigenvariety having weight far from the walls,T

specializes to the character of the Galois representation associated with the automorphic

representation by Corollary 2.4.1.3.
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Proof. This is identical to the unitary case, and thus is a consequence of [Che04, Proposi-

tion 7.1.1], by Proposition 2.3.2.6.

Thus at any (classical or not) point of the eigenvariety, there is an attached Galois

representation.

2.4.2 Galois representations stemming from symplectic forms are gen-
erically almost irreducible

2.4.2.1 Crystalline representations over Qp

We �x a �nite extension K of Qp, and denoteK 0 the maximal unrami�ed subextension,

e = [ K : K 0], f = [ K 0 : Qp]. Let � : GK ! GL(V ) be a continuous representation of the

absolute Galois group ofK , where V is a �nite dimensional vector space overL , a �nite

Galois extension ofQp. We will take L to be big enough so as to be able to assume in many

situations that L = Qp. For example, we can assume thatL is an extension ofK , and

that � has a composition series0 = V1 � : : : � Vr = V such that each quotient Vi +1 =Vi is

absolutely irreducible.

For any such � , we denoteDcris(V ) =
�
Bcris 
 Qp V

� GK . From now on we assume that

� is a crystalline representation, which means thatdimK 0 Dcris(V ) = dim Qp V. It is well-

known that Dcris(V ) is a �ltered ' -module overK , and sinceV is a vector space overL ,

Dcris(V ) is a ' -module over K 0 
 Qp L, and DdR (V ) = K 
 K 0 Dcris(V ) is a module over

K 
 Qp L with a �ltration by projective submodules.

We have a natural decompositionK 0
 Qp L '
Q

� 02 � 0
L � 0 with � 0 = Hom Qp � alg:(K 0; L )

and L � 0 ' L , given by the morphisms � 0 
 IdL . Similarly, K 
 Qp L '
Q

� 2 � L � with

� = Hom Qp � alg:(K; L ).

Hence we have decompositions

Dcris(V ) =
Y

� 02 � 0

Dcris(V ) � 0 ; DdR (V ) =
Y

� 2 �

DdR (V ) � :

The operator ' restricts as linear isomorphisms fromDcris(V ) � 0 to Dcris(V ) � 0 � ' � 1 , and so

' f is a L � 0 -linear automorphism on eachDcris(V ) � 0 , which are isomorphic as vector spaces

over L equipped with the linear automorphism ' f .

Each DdR (V ) � comes with a �ltration, and hence de�nes dimL V = N Hodge-Tate

weights k�; 1 � : : : � k�;N (the jumps of the �ltration).

Although we will not use it, it should be noted that by [BM02, Proposition 3.1.1.5],

to verify the weak admissibility of a �ltered ' -module D over K with an action of L

commuting with ' and leaving the �ltration stable, it is enough to check the inequality

tN (D 0) � tH (D 0) for sub-K 0 
 L -modules stable under' .

If ' f has eigenvalues' 1; : : : ; ' N , with vp(' 1) � : : : � vp(' n ), we can in particular

chooseD 0 = � i � j ker(' f � ' i ) (if the eigenvalues are distinct, but even if they are not,

we can chooseD 0 such that ' f jD 0 has eigenvalues' 1; : : : ; ' j , counted with multiplicities).
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The worst case for the �ltration yields the inequalities

vp(' 1) �
1
e

X

�

k�; 1

vp(' 1' 2) �
1
e

X

�

k�; 1 + k�; 2

:::

In the sequel, we will only use these inequalities, and we will not be concerned with the

subtleties of the �ltrations.

2.4.2.2 Variation of the crystalline Frobenius on the eigenvariety

In this section we explicit the formulas relating the eigenvalues of the crystalline Frobenius

at classical, unrami�ed points of the eigenvariety and the eigenvalues of the Hecke-Iwahori

operators acting on p-adic automorphic forms. Let x be a classical point on the eigen-

variety. There is an automorphic representation� of G(AF ) such that �p� � 1
1 (� 1 ) is the

representation having highest weightw(x). Assume that � p is unrami�ed. The point

x de�nes a re�nement of � p, that is an unrami�ed character � x : T0 ! C� such that

� p ,! IndG 0(Qp )
�B � x , or equivalently the character � 1=2

�B � x appearing in (� p) �N . By 2.3.2.2,

for any u 2 � + , � w(x) 	 x jH p = ( �p � � � 1
1 � � x )� 1=2

B .

The diagonal torus in SO2n+1 (C) and the identi�cation of it with the dual of the diag-

onal torus of Sp2n=Fv being �xed, the character � x is mapped by the unrami�ed Langlands

correspondence for tori toy = ( yv)vjp with yv = Diag( y1;v ; : : : ; yn;v ; 1; y� 1
n;v ; : : : ; y� 1

1;v ), and

yv;i = � x (Diag(1; : : : ; $ v ; : : : ; 1; 1; : : : ; $ � 1
v ; : : : ; 1)) ($ v being the i -th element). Thus the

linearization of the crystalline Frobenius ' f v on Dcris(� � p ;� 1 (� )jGF v
) � 0 (for any choice of

� 0 : Fv ! E in � 0;v) has eigenvalues

�p� � 1
1 (yv;i ) = qn+1 � i

v � v;n+1 � i (x)
Y

� 2 � v

� ($ v)kv;�;i

and their inverses, together with the eigenvalue1. Here � v;n+1 � i 2 O (X ) is de�ned by

� v;n+1 � i =
	 ([ G0ui � 1G0])
	 ([ G0ui G0])

with ui = Diag( $ � 1
v ; : : : ; $ � 1

v ; 1; : : : ; 1; $ v ; : : : ; $ v ) (the last $ � 1
v is the i -th element), and

kv;�;i the integers de�ning the weight w(x).

Assume furthermore that � p admits another re�nement � x0 = � a
x for somea = ( av)vjp

in the Weyl group W (G 0(Qp); T (Qp)) =
Q

v W (G(Fv); Tv). Each W (G(Fv); Tv) can be

identi�ed with the group of permutations av : f� n; : : : ; ng ! f� n; : : : ; ng such that

av(� i ) = � av(i ) for all i , acting by

av(Diag(x1; : : : ; xn ; x � 1
n ; : : : ; x � 1

1 )) = Diag( xa� 1
v (1) ; : : : ; xa� 1

v (n) ; xa� 1
v (� n) ; : : : ; xa� 1

v (1) )

on Tv , where for commodity we setx � i = x � 1
i for i < 0. Similarly we de�ne kv;�; � i = � kv;�;i

and � v;� i = � � 1
v;i . We also setkv;�; 0 = 0 , � v;0 = 1 . The equality � x0 = � a

x can also be
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written

q(n+1)sign( w(i )) � w(i )
v � v;n+1 � w(i ) (x)

Y

� 2 � v

� ($ v)kv;�;w ( i ) = qn+1 � i
v � v;n+1 � i (x0)

Y

� 2 � v

� ($ v)kv;�;i

which is valid for any � n � i � n if we set sign(i ) = � 1 (resp. 0, 1) if i is negative (resp.

zero, positive), and equivalent to

� v;n+1 � i (x0) = � v;n+1 � w(i ) (x)qi � w(i )+( n+1)(sign( i )� sign(w(i )))
v

Y

� 2 � v

� ($ v)kv;�;w ( i ) � kv;�;i :

This last formula will be useful in the proof of the main result.

2.4.2.3 Main result

Lemma 2.4.2.1. Let K be a �nite extension of Qp, and let � : GK ! GLN (Qp) be a

crystalline representation. Let (D; '; Fil i D 
 K 0 K ) be the associated �ltered' -module. Let

� �; 1 � : : : � � �;N be the Hodge-Tate weights associated with the embedding� : K ,! Qp.

Let ' 1; : : : ; ' N be the eigenvalues of the linear operator' f (on any of the D � 0 , � 0 2 � 0),

and suppose they are distinct. Finally, assume that for some� 2 � , for all i ,
�
�
�
�
�
vp(' i ) �

1
e

X

� 2 �

� �;i

�
�
�
�
�

�
1

eN
min

1� j � N � 1
� �;j +1 � � �;j :

Then if D 0 � D is an admissible sub-' -module overK 0 
 Qp Qp (corresponding to a sub-

representation), there is a subsetI of f 1; : : : ; N g such that D 0 has ' f -eigenvalues(' i ) i 2 I

and � -Hodge-Tate weights(� �;i ) i 2 I .

Proof. Since the eigenvalues of' f are distinct, and D 0 is stable under' , there is a subset

I of f 1; : : : ; N g such that D 0 = ker
Q

i 2 I

�
' f � ' i

�
. There are unique increasing functions

� 1;� : I ! f 1; : : : ; N g such that the � -weights ofD 0 are the � �;� 1;� (i ) , for i 2 I . By ordering

similarly the weights of D=D 0, we de�ne increasing functions � 2;� : f 1; : : : ; N g n I !

f 1; : : : ; N g, and we can glue the� �;� to get bijective maps � � : f 1; : : : ; N g ! f 1; : : : ; N g.

We will show that � � = Id .

We now write the admissibility condition for D 0 and D=D 0. Let i 1 be the smallest

element of I . Then ker
�
' f � ' i 1

�
is a sub-' -module of D 0. Its induced � -weight is one

of the � �;� � (i ) for i 2 I , thus it is greater than or equal to � �;� � (i 1 ) . This implies that

vp(' i 1 ) � 1=e
P

� 2 � � �;� � (i 1 ) . We can proceed similarly for the submodules

ker
��

' f � ' i 1

�
: : :

�
' f � ' i r

��

(where the i � are the ordered elements ofI ), to get the inequality

X

1� x� r

vp(' i x ) �
1
e

X

1� x� r

X

� 2 �

� �;� � (i x )

The same applies toD=D 0, and by adding both inequalities, we �nally get

X

1� i � s

vp(' i ) �
1
e

X

1� i � s

X

� 2 �

� �;� � (i )
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We now isolate � , using the fact that
P

1� i � s � �;� � (i ) �
P

1� i � s � �;i for � 6= � , and obtain

the inequality

X

1� i � s

vp(' i ) �
1
e

X

1� i � s

X

� 2 �

� �;i �
1
e

X

1� i � s

� �;� � (i ) � � �;i

Let r be minimal such that � � (s) 6= s (if no such s exists, we are done). In that case, we

necessarily have� � (s) � s + 1 , and the previous inequality yields

X

1� i � s

vp(' i ) �
1
e

X

1� i � s

X

� 2 �

� �;i �
� �;s +1 � � �;s

e

but the hypothesis implies that the left hand side is less thanmin j (� �;j +1 � � �;j ) =e, and

we get a contradiction.

Theorem 2.4.2.2. Let � be an irreducible automorphic representation ofG(AF ) having

Iwahori invariants at all the places of F abovep, and having invariants under an open

subgroupU of G(A(p)
F;f ). Let N be an integer. There exists an automorphic representation

� 0 of G(AF ) such that:

� � 0 is unrami�ed at the places abovep, and has invariants underU;

� The restriction of � � p ;� 1 (� 0) to the decomposition group at any place abovep is either

irreducible or the sum of an Artin character and an irreducible representation of

dimension 2n;

� For all g in GF , Tr( � � p ;� 1 (� 0)(g)) � Tr( � � p ;� 1 (�)( g)) mod pN .

Proof. We will write � 0 � � mod pN for the last property.

Recall that for v a place ofF abovep, there are elements� v;1; : : : ; � v;n 2 O (X ) � such

that for any unrami�ed classical point x 2 X (Qp) re�ning an automorphic representation

� , the �ltered ' -module associated with the crystalline representation� � p ;� 1 (�) jGF v
has

' f v -eigenvalues
 

� v;� n (x)q� n
v

Y

�

� ($ v)kv;�; � 1 ; : : : ; � v;� 1(x)q� 1
v

Y

�

� ($ v)kv;�; � n ; 1;

� v;1(x)qv

Y

�

� ($ v)kv;�;n ; : : : ; � v;n (x)qn
v

Y

�

� ($ v)kv;�; 1

!

and � -Hodge-Tate weights

kv;�; � 1 � n; : : : ; kv;�; � n � 1; 0; kv;�;n + 1 ; : : : ; kv;�; 1 + n

In the following if xb or x0
b is a classical point,k(b)

v;�;i will be the weights de�ning w(xb).

The representation� corresponds to at least one pointx of the eigenvarietyX for G 0 and

the idempotent eU 
 eG0 . By Proposition 2.3.2.6, and sinceGF is compact, there exists

a point x1 2 X (E 0) (near x, and for some �nite extension E 0 of E) corresponding to an
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unrami�ed, completely re�nable automorphic representation � 1 and a re�nement � , such

that for any v,

2
ev

nX

i =1

X

�

k(1)
v;�;i > � vp (� v;1(x1) : : : � v;n (x1)) + 3 n(n + 1) f v

and � 1 � � mod pN . Since � 1 is completely re�nable, there is a point x0
1 2 X (E 0)

associated with the representation� 1 and the character � a, where a is the element of the

Weyl group acting as � Id on the roots. Speci�cally, 	 x1 jH S 
H S 
 eG 0
= 	 x0

1
jH S 
H S 
 eG 0

,

but

� v;n+1 � i (x0
1) = � v;� n� 1+ i (x1)q2i +(2 n+2)

v

Y

�

� ($ v) � 2k (1)
v;�;i

for i = 1 ; : : : ; n, and all placesv. There exists a point x2 2 X (E 0) (near x0
1, and up to

enlarging E 0) corresponding to an unrami�ed, completely re�nable automorphic represent-

ation � 2 and a re�nement, such that for any v and any j < 0,

1
ev

X

�

k(2)
v;�;n + j � k(2)

v;�;n + j +1 > � vp(� v;� j +1 (x2)) � f v

and � 2 � � 1 � � mod pN . Like before, since� 2 is completely re�nable, there is a point

x0
2 2 X (E 0) such that 	 x2 jH S 
H S 
 eG 0

= 	 x0
2
jH S 
H S 
 eG 0

, and

� v;n (x0
2) = � v;1(x2)q1� n

v

Y

�

� ($ v)k (2)
v;�;n � k (2)

v;�; 1

� v;i (x0
2) = � v;i +1 (x2)qv

Y

�

� ($ v)k (2)
v;�;n � i � k (2)

v;�;n � i +1 for i = 1 ; : : : ; n � 1.

Here we used the element of the Weyl group corresponding (at eachv) to the permutation
�

� n � n + 1 : : : � 2 � 1 1 : : : n
� n + 1 � n + 2 : : : � 1 � n n : : : n � 1

�
:

Again, we can choose a pointx3 2 X (E 0) (near x0
1, and up to enlargingE 0) corresponding

to an unrami�ed automorphic representation � 3 and a re�nement, such that for any v and

any � 2 � ,

1
ev(2n + 1)

min
n

k(3)
v;�; 1 � k(3)

v;�; 2; : : : ; k(3)
v;�;n � 1 � k(3)

v;�;n ; k(3)
v;�;n

o
>

max f 0; jvp(� v;�; 1(x3)) j; : : : ; jvp(� v;�;n (x3)) jg

and � 3 � � mod pN . We show that � 3 has the desired properties. First we apply the

previous lemma to the local Galois representations associated with� 3, at the places above

p, which are crystalline. Since the di�erencesvp(' i ) � 1
e

P
� 2 � � �;i in the hypotheses of

the lemma are equal in our case to

� vp(� v;n (x3)) ; : : : ; � vp(� v;1(x3)) ; 0; vp(� v;1(x3)) ; : : : ; vp(� v;n (x3)) ;
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the hypotheses of the lemma are satis�ed for all� 2 � . Thus if � � p ;� 1 (� 3)jGF v
is not

irreducible, there is a subset; ( I ( f� n; : : : ; ng such that if i 1 < : : : < i r are the

elements ofI and j 1 < : : : < j 2n+1 � r those ofJ = f� n; : : : ; ng nI ,

vp(� v;i 1 (x3)) � 0

vp(� v;i 1 (x3)) + vp(� v;i 2 (x3)) � 0
:::

vp(� v;i 1 (x3)) + : : : + vp(� v;i r (x3)) = 0

vp(� v;j 1 (x3)) � 0

vp(� v;j 1 (x3)) + vp(� v;j 2 (x3)) � 0
:::

vp(� v;j 1 (x3)) + : : : + vp(� v;j 2n +1 � r (x3)) = 0

by the admissibility of the corresponding �ltered ' -modules. For all i , vp(� v;i (x0
2)) =

vp(� v;i (x3)) , so all these conditions hold also atx0
2. Up to exchanging I and J , we can

assume thati 1 = � n. If j 1 < 0,

vp(� v;j 1 (x0
2)) = � vp(� v;� j 1 (x0

2)) = � vp(� v;� j 1+1 (x2)) � f v �
1
ev

X

�

k(2)
v;�;n + j 1

� k(2)
v;�;n + j 1+1

and x2 was chosen to ensure that this quantity is negative, so we are facing a contradiction.

Thus J has only nonnegative elements, andf� n; : : : ; � 1g � I . If we do not assume that

i 1 = � n, we have in general thatf� n; : : : ; � 1g is contained in I or J . Similarly, suppose

i r = n. If j 2n+1 � r > 0,

vp(� v;j 2n +1 � r (x0
2)) = vp(� v;j 2n +1 � r (x0

2))

= vp(� v;j 2n +1 � r (x2)) + f v +
1
ev

X

�

k(2)
v;�;n � j 2n +1 � r

� k(2)
v;�;n � j 2n +1 � r +1

is positive, another contradiction. Thereforef 1; : : : ; ng is contained in I or J .

Assume for example thatf� n; : : : ; � 1g � I and f 1; : : : ; ng � J . In that case

vp(� v;j 1 (x3) : : : � v;j 2n +1 � r (x3)) = vp(� v;1(x2) : : : � v;n (x2))

= vp(� v;1(x0
1) : : : � v;n (x0

1))

= � vp(� v;1(x1) : : : � v;n (x1)) + 3 n(n + 1) f v

�
2
ev

nX

i =1

X

�

k(1)
v;�;i

is negative, which is yet another contradiction.

As a consequence, we can conclude thatI or J is equal to f 0g, and this shows that at

each placev of F abovep, the semisimpli�cation of � � p ;� 1 (� 3)jGF v
is either irreducible or the

sum of an Artin character and an irreducible representation of dimension2n. Consequently

� 3 has the required properties.
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2.5 Similar results for even orthogonal groups

In this section we explain (very) brie�y how the same method as in the previous sections

applies to orthogonal groups.

Let F be a totally real number �eld of even degree overQ. Then F has an even number

of 2-adic places of odd degree overQ2, and as these are the only �nite places ofF at which

(� 1; � 1)v = � 1 (where(�; �)v denotes the Hilbert symbol), we have
Q

v(� 1; � 1)v = 1 where

the product ranges over the �nite places ofF . Consequently, there is a unique quadratic

form on F 4 which is positive de�nite at the real places of F , and split (isomorphic to

(x; y; z; t ) 7! xy + zt) at the �nite places. It has Hasse invariant (� 1; � 1)v at each �nite

place v of F , and its discriminant is 1. As a consequence, for any integern � 1, there

is a connected reductive groupG over F which is compact (and connected) at the real

places (isomorphic toSO4n=R) and split at all the �nite places (isomorphic to the split

SO4n ). As before, we letG 0 = ResF
QG. The proofs of the existence and properties of the

attached eigenvariety X ! W are identical to the symplectic case. We could not �nd

a result as precise as Theorem 2.3.2.4 in the literature, however by [Cas80, Proposition

3.5] unrami�ed principal series are irreducible on an explicit Zariski-open subset of the

unrami�ed characters. Speci�cally, if SO4n (Fv) =
�

M 2 M4n (Fv) j t MJ 4nM = J4n
	

,

T =

8
>>>>>>>><

>>>>>>>>:

0

B
B
B
B
B
B
B
B
@

x1
: : :

xn

x � 1
n

: : :
x � 1

1

1

C
C
C
C
C
C
C
C
A

�
�
�
�
�
�
�
�
�
�
�
�
�
�

x i 2 F �
v

9
>>>>>>>>=

>>>>>>>>;

and P is any parabolic subgroup containingT, then for an unrami�ed character � =

(� 1; : : : ; � n ) of T (� i is a character of the variable x i ), IndSO4n (Fv )
P � is irreducible if

� i ($ v)2 6= 1 for all i and � i ($ v)� j ($ v) � 1 6= 1 ; qv ; q� 1
v for all i < j . Note that this is

not an equivalence.

The existence of Galois representations� � p ;� 1 (�) attached to automorphic represent-

ations � of G(AF ) is identical to Assumption 2.4.1.1. We now state the main result for

orthogonal groups.

Theorem 2.5.0.3. Let � be an irreducible automorphic representation ofG(AF ) having

Iwahori invariants at all the places of F abovep, and having invariants under an open

subgroupU of G(A(p)
F;f ). Let N be an integer. There exists an automorphic representation

� 0 of G(AF ) such that:

� � 0 is unrami�ed at the places abovep, and has invariants underU;

� The restriction of � � p ;� 1 (� 0) to the decomposition group at any place abovep is irre-

ducible;

� For all g in GF , Tr( � � p ;� 1 (� 0)(g)) � Tr( � � p ;� 1 (�)( g)) mod pN .
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Proof. The proof is nearly identical to that of Theorem 2.4.2.2. In the orthogonal case

the Weyl group is a bit smaller: it is the semi-direct product of S2n and a hyperplane

of (Z=2Z)2n . Alternatively, it is the group of permutations w of f� 2n; : : : ; � 1; 1; : : : ; 2ng

such that w(� i ) = � w(i ) for all i and
Q 2n

i =1 w(i ) > 0. The two elements of the Weyl

group used in the proof of Theorem 2.4.2.2 have natural counterparts in this Weyl group.

The only di�erence lies in the fact that there is no Hodge-Tate weight equal to0 in the

orthogonal case, hence the simpler conclusion �� � p ;� 1 (� 0)jGF v
is irreducible for vjp�.

2.6 The image of complex conjugation: relaxing hypotheses
in Taylor's theorem

Let us apply the previous results to the determination of the image of the complex conjuga-

tions under the p-adic Galois representations associated with regular, algebraic, essentially

self-dual, cuspidal automorphic representations ofGLn (AF ), F totally real. Recall that

these representations are constructed by �patching� representations of Galois groups of CM

extensions ofF , on Shimura varieties for unitary groups. The complex conjugations are

lost when we restrict to CM �elds. In [Tay12], Taylor proves that the image of any com-

plex conjugation is given by (the �discrete� part of) the local Langlands parameter at the

corresponding real place, assumingn is odd and the Galois representation is irreducible,

by constructing the complex conjugation on the Shimura datum. Of course the Galois

representation associated with a cuspidal representation ofGLn is conjectured to be irre-

ducible, but unfortunately this is (at the time of writing) still out of reach in the general

case (however, see [CG] forn � 5; [BLGGT14, Theorem D] for a �density one� result for

arbitrary n but under the assumption that F is CM and the automorphic representation

is �extremely regular� at the archimedean places; and [PT] for a �positive density� result

for arbitrary n and without these assumptions).

The results of the �rst part of this paper allow to remove the irreducibility hypothesis

in Taylor's theorem, and to extend it to some (�half�) cases of evenn, using Arthur's

endoscopic transfer. Unfortunately some even-dimensional cases are out of reach using

this method, because odd-dimensional essentially self-dual cuspidal representations are

(up to a twist) self-dual, whereas some even-dimensional ones are not.

Since the proof is not direct, let us outline the strategy. First we deduce the even-

dimensional self-dual case from Taylor's theorem by adding a cuspidal self-dual (with

appropriate weights) representation ofGL3, we get an automorphic self-dual representation

of GL 2n+3 which (up to base change) can be �transferred� to a discrete representation of

the symplectic group in dimension2n. Since the associated Galois representation contains

no Artin character, it can be deformed irreducibly, and Taylor's theorem applies. Then

the general odd-dimensional case is deduced from the even-dimensional one, by essentially

the same method, using the eigenvariety for orthogonal groups.

Finally we prove a supplementary, non-regular case, thanks to the fact that discrete

Langlands parameters for the groupSO2n=R are not always discrete when seen as para-

meters for GL2n , i.e. can correspond to a non-regular representation ofGL2n=R.
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2.6.1 Regular, L-algebraic, self-dual, cuspidal representations of GL2n (AF )
having Iwahori-invariants

In this subsectionG will denote the symplectic group in dimension2n+2 de�ned in section

2.3.

The following lemma is due to C. M÷glin and J.-L. Waldspurger.

Lemma 2.6.1.1. Let K be a �nite extension of Qp. Let � : WK � SU(2) ! SO2n+3 (C)

be a Langlands parameter (equivalently, a generic Arthur parameter). Assume that the

subgroupI � f 1g (I being the inertia subgroup ofWK ) is contained in the kernel of � .

Then the A-packet associated with� contains a representation having a non-zero vector

�xed under the Iwahori subgroup ofSp2n+2 (K ).

Proof. Let f � 1; : : : ; � kg denote the A-packet. Since Arthur's construction of the � i 's is

inductive for parameters trivial on the supplementary SL2(C), and subquotients of para-

bolic inductions of representations having Iwahori-invariants have too, it is enough to

prove the result when � is discrete. Let � be the irreducible smooth representation of

GL2n+3 (K ) having parameter � , then � ' IndGL 2n +3
L � , where � is the tensor product of

(square-integrable) Steinberg representationsSt(� i ; ni ) of GLn i (K ) (i 2 f 1; : : : ; r g), � i are

unrami�ed, auto-dual characters of K � (thus � i = 1 or (� 1)v(�) ), and the couples(� i ; ni )

are distinct. Here L denotes the standard parabolic associated with the decomposition

2n + 3 =
P

i ni . Since � is self-dual, � can be extended (not uniquely, but this will not

matter for our purpose) to a representation of fGL
+
2n+3 = GL 2n+3 o f 1; � g, where

� (g) =

0

B
B
B
@

1
� 1

: :
:

1

1

C
C
C
A

t g� 1

0

B
B
B
@

1
� 1

: :
:

1

1

C
C
C
A

Let also fGL2n+3 = GL 2n+3 o � .

Let N0 be the number ofi such that ni is odd, and for j � 1 let N j be the number ofi

such that ni � 2j . Then N0 + 2
P

j � 1 N j = 2n + 3 , and if s is maximal such that Ns > 0,

we let

M = GL N s � : : : � GLN1 � GLN0 � GLN1 � : : : � GLN s

which is a � -stable Levi subgroup ofGL2n+3 , allowing us to de�ne fM + and fM . Since the

standard (block upper triangular) parabolic containing M is also stable under� , � M is nat-

urally a representation of fM + , denoted by � fM . The constituents of the semi-simpli�cation

of � fM either stay irreducible when restricted to M , in which case they are of the form

� 1 
 � 0 
 � (� 1) where � 1 is a representation ofGLN s � : : : � GLN1 and � 0 is a represent-

ation of fGLN0 ; or they are induced fromM to fM + , and the restriction of their character

to fM is zero. Since we are precisely interested in that character, we can forget about the

second case. By the geometrical lemma,

� ss
M '

M

w2 W L;M

IndM
M \ w(L )w (� L \ w � 1M )
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where W L;M is the set of w 2 S2n+3 such that w is increasing on I 1 = f 1; : : : ; n1g,

I 2 = f n1 + 1 ; : : : ; n1 + n2g, etc. and w� 1 is increasing onJ� s = f 1; : : : ; Nsg, J� s+1 =

f Ns + 1 ; : : : ; Ns + Ns� 1g, etc. Fix the irreducible representation ofGLN s � : : : � GLN1

� 1 =
sO

j =1

Ind
GL N j
Tj

O

i j n i � 2j

� i j � j j � � i

where Tj is the standard maximal torus of GLN j , � i =

(
0 ni odd

1=2 ni even
.

There is a uniquew such that IndM
M \ w(L )w (� L \ w � 1M ) admits a subquotient of the form

� 1 
 � 0 
 � (� 1) as above, moreoverIndM
M \ w(L )w (� L \ w � 1M ) is irreducible, and

� 0 = Ind
GL N 0
T0

O

i j n i odd
� i

Speci�cally, w maps the �rst element of I i in J�b (n i +1) =2c, the second inJ�b (n i +1) =2c + 1 ,

. . . , the central element (if ni is odd) in J0, etc.

Let M 0 be the parabolic subgroup ofSp2n+2 =K corresponding toM , i.e.

M 0 = GL N s � : : : � GLN1 � SpN0 � 1

By [Art13, 2.2.6],
P

i Tr� i is a stable transfer ofTr GL +
2n +3

� . By [MW06, Lemme 4.2.1]

(more accurately, the proof of the lemma),
X

i

Tr ((� i )ss
M 0[� 1])

is a stable transfer of Tr
�

� ss
fM

[� 1]
�

(where �[�] denotes the isotypical component on the

factor GLN s � : : : � GLN1 ).

Since � ss
fM

[� 1] = � 1 
 � 0 
 � (� 1), the stable transfer of Tr
�

� ss
fM

[� 1]
�

is equal to the

product of Tr( � 1) and
P

l Tr� 0
l where the � 0

l are the elements of the A-packet associated

with the parameter M

i j n i odd
� i

At least one representation� 0
l is unrami�ed for some hyperspecial compact subgroup of

SpN0 � 1(K ), and so a Jacquet module of a� i contains a nonzero vector �xed by an Iwahori

subgroup. This proves that at least one of the� i has Iwahori-invariants.

Assumption 2.6.1.2. Let F0 be a totally real �eld, and let � be a regular, L-algebraic,

self-dual, cuspidal (RLASDC) representation ofGL2n (AF0 ). Assume that for any placevjp

of F0, � v has vectors �xed under an Iwahori subgroup ofGL2n (AF0;v ). Then there exists

a RLASDC representation � 0 of GL3(AF0 ), a totally real extensionF=F0 which is trivial,

quadratic or quartic, and an automorphic representation� of G(AF ) such that

1. For any placevjp of F0, � 0;v is unrami�ed.

2. BCF=F0 (� ) and BCF=F0 (� 0) remain cuspidal.
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3. For any place v of F abovep, � v has invariants under the action of the Iwahori

subgroupG0 of G(Fv).

4. For any �nite place v of F such thatBCF=F0 (� )v and BCF=F0 (� 0)v are unrami�ed, � v

is unrami�ed, and via the inclusion SO2n+3 (C) ,! GL2n+3 (C), the Satake parameter

of � v is equal to the direct sum of those ofBCF=F0 (� )v and BCF=F0 (� 0)v .

Let us comment brie�y on the proof to come. First we construct � 0. Let � be a cuspidal

automorphic representation ofPGL2=F0 which is unrami�ed at the p-adic places, Steinberg

at the `-adic places for some arbitrary prime` 6= p, and whose local langlands parameters

at the real places are of the formIndWR
WC

(z 7! (z=�z)a) where a is a half-integer big enough

with respects to their analogues appearing in the local Langlands parameters of� . Such

a representation exists thanks to [Clo86, Theorem 1B]. Let� 0 be the automorphic repres-

entation of GL3=F0 obtained by functoriality from � through the adjoint representation of
\PGL2(C) = SL 2(C) on its Lie algebra. The representation� 0 exists and is cuspidal by

[GJ78, Theorem 9.3]. The condition at the`-adic places ensures that no nontrivial twist

of � (seen as a representation ofGL2=F0) is isomorphic to � , and the cuspidality of � 0

follows. We can twist � 0 by the central character of � , to ensure that � � � 0 has trivial

central character. Clearly � 0 is a RLASDC representation ofGL3=F0.

Note that for BCF=F0 (� ) and BCF=F0 (� 0) to remain cuspidal, it is enough for F=F0

to be totally rami�ed above a �nite place of F0 at which � and � 0 are unrami�ed. To

begin with one can choose such a quadratic extension ofF0, in order to de�ne G. The

automorphic representation	 := BC F=F0 (� ) � BCF=F0 (� 0) can be seen as a global, ortho-

gonal parameter. This determines a global packetP	 of representations ofG(AF ), and

Arthur's results shall attach to each � 2 P	 a character ofS	 ' Z=2Z, and characterize

the automorphic � 's as the ones whose character is trivial. We can choose the components

� v at the �nite places of F not lying above p to be associated with a trivial character of

S	 v , and taking a quadratic extension split above thep-adic and real places ofF (at which

� v is imposed) allows to �double� the contribution of the characters, thus yielding a trivial

global character.

Proposition 2.6.1.3. Let F be a totally real �eld, and let � be a regular, L-algebraic,

self-dual, cuspidal representation ofGL2n (AF ). Suppose that for any placev of F abovep,

� v has invariants under an Iwahori subgroup. Then for any complex conjugationc 2 GF ,

Tr( � � p ;� 1 (� )(c)) = 0 .

Proof. By the previous assumption, up to a (solvable) base change to a totally real exten-

sion (which only restricts the Galois representation to this totally real �eld, so that we get

even more complex conjugations), we can take a RLASDC representation� 0 of GL3(AF )

and transfer � � � 0 to an automorphic representation � of G(AF ). The representation

� de�nes (at least) one point x of the eigenvariety X de�ned by G (and by an open

subgroup U of G(A(p)
F;f )). Of course, by the ƒebotarev density theorem and the compat-

ibility of the transfer at the unrami�ed places, the representation associated with � is

equal to � � p ;� 1 (� ) � � � p ;� 1 (� 0). Since the Hodge-Tate weights of� � p ;� 1 (� )jGF v
are non-zero
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for any place vjp, � � p ;� 1 (� ) does not contain an Artin character. By [BR92], � � p ;� 1 (� 0) is

irreducible and thus does not contain any character. There are only �nitely many Artin

characters taking values inf� 1g and unrami�ed at all the �nite places at which � is un-

rami�ed. For any such character � , the pseudocharacterT on the eigenvariety is such that

Tx � � is not a pseudocharacter, hence we can �ndg�; 1; : : : ; g�; 2n+3 such that

t � :=
X

� 2 S2n +3

(Tx � � ) � (g�; 1; : : : ; g�; 2n+3 ) 6= 0

Let us chooseN greater than all the vp(t � ) and such that pN > 2n + 4 . Let � 0 be an

automorphic representation ofG(AF ) satisfying the requirements of Theorem 2.4.2.2 for

this choice of N . Then the Tr( � � p ;� 1 (� 0)) � � are not pseudocharacters, thus� � p ;� 1 (� 0)

does not contain an Artin character and by Theorem 2.4.2.2 it is irreducible. This Galois

representation is (by construction in the proof of Corollary 2.4.1.3) the direct sum of

representations associated with cuspidal representations. Since it is irreducible, there is

only one of them, and it has the property that its associated Galois representations is

irreducible, so that the theorem of [Tay12] can be applied: for any complex conjugation

c 2 GF , Tr( � � p ;� 1 (� 0)(c)) = � 1. Sincedet � � p ;� 1 (� 0) = 1 , Tr( � � p ;� 1 (� 0)(c)) = ( � 1)n+1 .

As pN > 2n+4 and jTr( � � p ;� 1 (�)( c)) � Tr( � � p ;� 1 (� 0)(c)) j � 2n+4 , we can conclude that

Tr( � � p ;� 1 (�)( c)) = ( � 1)n+1 , and hence thatTr( � � p ;� 1 (� )(c))+Tr( � � p ;� 1 (� 0)(c)) = ( � 1)n+1 .

We also know that det � � p ;� 1 (� 0) = det � � p ;� 1 (� )(c) = ( � 1)n , and that Tr( � � p ;� 1 (� 0)(c)) =

� 1 by Taylor's theorem, from which we can conclude thatTr( � � p ;� 1 (� 0)(c)) = ( � 1)n+1 .

Thus Tr( � � p ;� 1 (� )(c)) = 0 .

2.6.2 Regular, L-algebraic, self-dual, cuspidal representations of GL2n+1 (AF )
having Iwahori-invariants

In this subsection,G is the orthogonal reductive group de�ned in section 2.5, of dimension

2n + 2 if n is odd, 2n + 4 if n is even.

Lemma 2.6.2.1. Let K be a �nite extension of Qp. Let � : WK � SU(2) ! SO2m (C) be

a Langlands parameter. Assume that the subgroupI � f 1g (I being the inertia subgroup of

WK ) is contained in the kernel of � .

Then the packet of representations of the split groupSO2m (K ) associated with� by

Arthur contains a representation having a non-zero vector �xed under the Iwahori subgroup.

Proof. Of course this result is very similar to 2.6.1.1. However M÷glin and Waldspurger

have not put their lemma in writing in this case, and the transfer factors are no longer

trivial, so that one needs to modify the de�nition of �stable transfer�. For this one needs

to use the transfer factors� fGL 2m ;SO2m
(�; �) de�ned in [KS99]. They depend in general on

the choice of an inner class of inner twistings [KS99, 1.2] (in our case an inner class of

isomorphisms betweenGL2m =K and its quasi-split inner form de�ned over �K , which we

just take to be the identity), and a Whittaker datum of the quasi-split inner form. Arthur

chooses the standard splitting ofGL2m and an arbitrary character K ! C� , but this

will not matter to us since both GL2m and SO2m are split, so that the factor hzJ ; sJ i of
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[KS99, 4.2] (by which the transfer factors are multiplied when another splitting is chosen)

is trivial. Indeed to compute this factor we can choose the split torusTH of SO2m =K ,

which is a norm group (see [KS99, Lemma 3.3B]) for the split torusT of GL2m =K , and

thus, using the notations of [KS99, 4.2],T x is split and H 1(K; T x ) is trivial, so that z0 = 1

(zJ is the image ofz0 in H 1(K; J ), so that it is trivial). Since both groups are split the

� -factor of [KS99, 5.3] is also trivial, so the transfer factors are canonical.

Let H = SO2m (K ), e� the representation of fGL
+
2m associated with� , and � H the sum

of the elements of the packet associated with� by Arthur. Note that by construction,

this packet is only a �nite set of orbits under O2m (K )=SO2m (K ) ' Z=2Z of irreducible,

square-integrable representations ofSO2m (K ). Each orbit has either one or two elements.

In the latter case where the orbit is (say)f � 1; � 2g one can still de�ne a �partial� character

(in the sense of Harish-Chandra):

� � 1 (h) + � � 1 (h0) = � � 2 (h) + � � 2 (h0) := � � 1 (h) + � � 2 (h)

wheneverh is regular semisimple conjugacy class inSO2m (K ) and h0 is the complement of

h in its conjugacy class underO2m (K ). Although the individual terms on the left cannot

be distinguished, their sum does not depend on the choice of a particular element (e.g.

� 1) in the orbit. In that setting, Arthur shows ([Art13, 8.3]) that the following character

identity holds:

X

h

jDH (h)j1=2� � H (h)�( h; g) = jD fGL 2m
(g)j1=2� e� (g) (2.6.2.1)

where the sum on the left runs over the the stable conjugacy classesh in SO2m (K ) which

are norms of the conjugacy classg in fGL2m (K ), both assumed to be stronglyfGL
+
2m -regular.

There are two such stable conjugacy classesh, they are conjugate underO2m (K ) and the

two transfer factors on the left are equal (this can be seen either by going back to the

de�nition of Kottwitz and Shelstad, or by Waldspurger's formulas recalled below). This

fact together with the stability of the �partial� distribution � � H (which is part of Arthur's

results) imply that the expression on the left is well-de�ned. Note that as in [MW06]

and [Art13], the term � IV is not included in the product de�ning the transfer factor � .

Contrary to the case of symplectic and odd orthogonal groups treated in [MW06], the

transfer factors are not trivial, and the terms jDH (h)j1=2 and jD fGL 2m
(g)j1=2 are not equal.

However the latter play no particular role in the proof. This character identity 2.6.2.1 is

the natural generalization of the notion of �stable transfer� of [MW06].

Let

M = GL N s � : : : � GLN1 � GLN0 � GLN1 � : : : � GLN s

be a � -stable Levi subgroup ofGL2m , and M 0 = GL N s � : : : � GLN1 � SON0 the cor-

responding parabolic subgroup ofSO2m . To mimic the proof of 2.6.1.1, we only need to

show that Tr
�
� H

M 0

�
is a stable transfer ofTr fM

�
� fM

�
, where �stable transfer� has the above

meaning, that is the character identity 2.6.2.1 involving transfer factors. Note that fM +

has a factorGLm� N0=2 � GLm� N0=2 together with the automorphism � (a; b) = ( � (b); � (a)) ,
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for which the theory of endoscopy is trivial: � -conjugacy classes are in bijection with con-

jugacy classes inGLm� N0=2 (over K or �K ) via (a; b) 7! a� (b) and the � -invariant irreducible

representations are the ones of the form� 
 � (� ).

So we need to check that ifg = ( g1; g0) is a strongly regularGL2m (K )-conjugacy class in
fGL2m (K ) determined by a conjugacy classg1 in GLm� N0=2(K ) and a GLN0 (K )-conjugacy

classg0 in fGLN0 (K ), and if h0 is the O2m ( �K )-conjugacy class inSO2m (K ) corresponding

to g0, then

� fGL N 0 ;SON 0
(h0; g0) = � fGL 2m ;SO2m

((g1; h0); (g1; g0)) :

Although this is most likely known by the experts (even in a general setting) we will check it.

Fortunately the transfer factors have been computed by Waldspurger in [Wal10]. We recall

his notations and formulas. The conjugacy classg1, being regular enough, is parametrized

by a �nite set I 1, a collection of �nite extensions K � i of K for i 2 I 1, and (regular enough,

i.e. generating K � i over K ) elements x i; 1 2 K � i . As in [Wal10], g0 is parametrized by

a �nite set I 0, �nite extensions K � i of K , K � i -algebras K i , and x i 2 K i . Each K i is

either a quadratic �eld extension of K � i or K � i � K � i , and x i is determined only modulo

NK i =K � i K
�
i . Then g is parametrized byI = I 1 t I 0, with K i = K � i � K � i and x i = ( x i; 1; 1)

for i 2 I 1, and the same data forI 0. Let � i be the non-trivial K � i -automorphism of K i ,

and yi = � x i =� i (x i ). Let I � be the set ofi 2 I such that K i is a �eld (so I � � I 0). For any

i 2 I , let � i be the set ofK -morphismsK i ! �K , and let PI (T) =
Q

i 2 I
Q

� 2 � i
(T � � (yi )) .

De�ne PI 0 similarly. For i 2 I � (resp. I �
0 ), let Ci = x � 1

i P0
I (yi )PI (� 1)y1� m

i (1 + yi ) (resp.

Ci; 0 = x � 1
i P0

I 0
(yi )PI 0 (� 1)y1� m

i (1 + yi )). We have dropped the factor � of [Wal10, 1.10],

because as remarked above, the transfer factors do not depend on the chosen splitting.

Observe also that the factors computed by Waldspurger are really the factors� 0=� IV of

[KS99, 5.3], but the � factor is trivial so they are complete.

Waldspurger shows that

� fGL 2m ;SO2m
((g1; h0); (g1; g0)) =

Y

i 2 I �

signK i =K � i
(Ci )

wheresignK i =K � i
is the nontrivial character of K �

� i =NK i =K � i K
�
i . We are left to show that

Q
i 2 I � signK i =K � i

(Ci =Ci; 0) = 1 .

Ci =Ci; 0 = yN0=2� m
i

Y

j 2 I 1

Y

� 2 � j

(yi � � (yj ))( � 1 � � (yj ))

=
Y

j 2 I 1

Y

� 2 � � j

y� 1
i (yi + � (x j; 1))

�
yi + � (x j; 1) � 1�

(� (x j; 1) � 1)
�
� (x j; 1) � 1 � 1

�

= ( � 1)m� N0=2NK i =K � i

0

@
Y

j 2 I 1

Y

� 2 � � j

(yi + � (x j; 1))( � (x j; 1) � 1 � 1)

1

A

where � � j is the set ofK -morphisms K � j ! �K . Thus

Y

i 2 I �

signK i =K � i
(Ci =Ci; 0) =

Y

i 2 I �

signK i =K � i
jK �

�
(� 1)m� N0=2

�

= 1
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since
Q

i 2 I � signK i =K � i
jK � is easily checked to be equal to the Hilbert symbol with the

discriminant of our special orthogonal group, which is1 (this is the condition for g0 to

have a norm in the special orthogonal group).

Assumption 2.6.2.2. Let F0 be a totally real �eld, and let � be a regular, L-algebraic,

self-dual, cuspidal representation ofGL2n+1 (AF0 ). Assume that for any placevjp of F0,

� v has vectors �xed under the Iwahori. Then there exists a RLASDC representation� 0 of

GL1(AF0 ) if n is odd (resp. GL3(AF0 ) if n is even), a totally real extensionF=F0 which is

trivial or quadratic, and an automorphic representation � of G(AF ) such that

1. For any placevjp of F0, � 0;v is unrami�ed.

2. BCF=F0 (� ) and BCF=F0 (� 0) remain cuspidal.

3. For any place v of F abovep, � v has invariants under the action of the Iwahori

subgroup ofG(Fv).

4. For any �nite place v of F such thatBCF=F0 (� )v and BCF=F0 (� 0)v are unrami�ed, � v

is unrami�ed, and via the inclusion SO2n+2 (C) ,! GL2n+2 (C) (resp. SO2n+4 (C) ,!

GL2n+2 (C)), the Satake parameter of� v is equal to the direct sum of those of

BCF=F0 (� )v and BCF=F0 (� 0)v .

This is very similar to Assumption 2.6.1.2. In fact in this case the groupS	 is trivial,

which explains why it is enough to take a quadratic extension ofF0. This is only necessary

to be able to de�ne the group G. The crucial observation is that the local Langlands

parameters ofBCF=F0 (� ) � BCF=F0 (� 0) at the in�nite places correspond to parameters for

the compact groupsSO2n+2 =R (resp. SO2n+4 ). These parameters are of the form

� n �
nM

i =1

IndWC
WR

(z 7! (z=�z)r i )

(r1 > : : : > r n > 0) for BCF=F0 (� ), and
(

1 if n is odd

� � IndWC
WR

(z 7! (z=�z)r ) if n is even

so that the direct sum of the two is always of the form

1 � � �
k� 1M

i =1

IndWC
WR

(z 7! (z=�z)r i )

for distinct, positive r i . This is the Langlands parameter corresponding to the representa-

tion of SO2k (R) having highest weight
P k

i =1 (r i � (k � i ))ei with r k = 0 , where the root sys-

tem consists of the� ei � ej (i 6= j ) and the simple roots aree1 � e2; : : : ; ek� 1 � ek ; ek� 1+ ek .

Note that, contrary to the symplectic case, there is one outer automorphism of the

even orthogonal group, and so there may be two choices for the Satake parameters of� v ,

mapping to the same conjugacy class in the general linear group. Fortunately we only need

the existence.
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Proposition 2.6.2.3. Let F be a totally real �eld, and let � be an L-algebraic, self-dual,

cuspidal representation ofGL2n+1 (AF ). Suppose that for any placev of F abovep, � v has

invariants under an Iwahori. Then for any complex conjugationc 2 GF , Tr( � � p ;� 1 (� )(c)) =

� 1.

Proof. The proof is similar to that of Proposition 2.6.1.3. We use the previous assumption

to be able to assume (after base change) that there is a representation� 0 (of GL1(AF ) if n

is odd, GL3(AF ) if n is even) such that� � � 0 transfers to an automorphic representation�

of G(AF ), with compatibility at the unrami�ed places. The representation � has Iwahori-

invariants at the p-adic places ofF , and thus it de�nes a point of the eigenvariety X

associated with G (and an idempotent de�ned by an open subgroup ofG(A(p)
F;f )). By

Theorem 2.5.0.3,� is congruent (at all the complex conjugations, and modulo arbirarily big

powers ofp) to another automorphic representation � 0 of G, and � � p ;� 1 (� 0) is irreducible.

Hence� � p ;� 1 (� 0) = � � p ;� 1 (� 0) for some RLASDC � 0 of GL2k (AF ), which is unrami�ed at

all the p-adic places ofF , and we can apply Proposition 2.6.1.3 to� 0. This proves that

Tr( � � p ;� 1 (� )(c)) = � Tr( � � p ;� 1 (� 0)(c)) = � 1.

2.6.3 Almost general case

We will now remove the hypothesis of being Iwahori-spherical atp, and allow more general

similitude characters, using Arthur and Clozel's base change.

Lemma 2.6.3.1. Let E be a number �eld, S a �nite set of (possibly in�nite) places of

E , and for each v 2 S, let K (v) be a �nite abelian extension ofEv . There is an abelian

extension F of E such that for any v 2 S and any placew of F abovev, the extension

Fv=Ev is isomorphic to K (v)=Ev .

Proof. After translation to local and global class �eld theory, this is a consequence of

[Che51, Théorème 1].

Before proving the last theorem, we need to reformulate the statement, in order to

make the induction argument more natural. Let � be a regular, L-algebraic, cuspidal

representation of GL2n+1 (AF ). At a real place v of F , the Langlands parameter of� v is

of the form

� e �
M

i

IndWC
WR

z 7! (z=�z)n i

and according to the recipe given in [BG10, Lemma 2.3.2],� � p ;� 1 (� )(cv) should be in the

same conjugacy class as 0

B
B
B
B
B
B
B
@

(� 1)e

0 1
1 0

: : :
0 1
1 0

1

C
C
C
C
C
C
C
A
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Since it is known that det � � p ;� 1 (� )(cv) = ( � 1)e+ n , � � p ;� 1 (� )(cv) � LL (� v)( j ) if and only

if jTr � � p ;� 1 (� )(cv)j = 1 . Similarly, in the even-dimensional case,� � p ;� 1 (� )(cv) � LL (� v)( j )

if and only if Tr � � p ;� 1 (� )(cv) = 0 .

Theorem 2.6.3.2. Let n � 2, F a totally real number �eld, � a regular, L-algebraic,

essentially self-dual, cuspidal representation ofGLn (AF ), such that � _ ' (( � j � j q) � det) 


� , where � is an Artin character. Suppose that one of the following conditions holds

1. n is odd.

2. n is even,q is even, and� 1 (� 1) = 1 .

Then for any complex conjugationc 2 GF , jTr( � � p ;� 1 (� )(c)) j � 1.

Proof. We can twist � by an algebraic character, thus multiplying the similitude character

� j � j q by the square of an algebraic character. Ifn is odd, this allows to assume� = 1 ; q = 0

(by comparing central characters, we see that� j � j q is a square). If n is even, we can

assume thatq = 0 (we could also assume that the order of� is a power of2, but this is not

helpful). The Artin character � de�nes a cyclic, totally real extension F 0=F. Since local

Galois groups are pro-solvable, the preceding lemma shows that there is a totally real,

solvable extensionF 00=F0 such that BCF 00=F (� ) has Iwahori invariants at all the places

of F 00above p. In general BCF 00=F (� ) is not cuspidal, but only induced by cuspidals:

BCF 00=F (� ) = � 1� : : :� � k . However it is self-dual, and the particular form of the Langlands

parameters at the in�nite places imposes that all � i be self-dual. We can then apply

Propositions 2.6.1.3 and 2.6.2.3 to the� i , and conclude by induction that for any complex

conjugation c 2 GF , the conjugacy class of� � p ;� 1 (� )(c) is given by the recipe found in

[BG10, Lemma 2.3.2], that is to say
�
�Tr � � p ;� 1 (� )(c)

�
� � 1.

Remark 2.6.3.3. The casen even, � 1 (� 1) = ( � 1)q+1 is trivial. The case n even, q odd

and � 1 (� 1) = � 1 remains open.

For the sake of clarity, we state the theorem using the more common normalization of

C-algebraic representations.

Theorem 2.6.3.4. Let n � 2, F a totally real number �eld, � a regular, algebraic, essen-

tially self-dual, cuspidal representation ofGLn (AF ), such that � _ ' � j det jq� , where � is

an Artin character. Suppose that one of the following conditions holds

1. n is odd.

2. n is even,q is odd, and � 1 (� 1) = 1 .

Then for any complex conjugationc 2 GF , jTr( r � p ;� 1 (� )(c)) j � 1.

Proof. Apply the previous theorem to � j det j(n� 1)=2.
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2.6.4 A supplementary, non-regular case

In this subsection G is the orthogonal group of section 2.5.

Assumption 2.6.4.1. Let F0 be a totally real �eld, and let � be an L-algebraic, self-dual,

cuspidal representation ofGL2n (AF0 ). Assume that for any placevjp of F0, � v has vectors

�xed under the Iwahori, and that for any real placev of F0,

LL (� v) '
nM

i =1

IndWC
WR

(z 7! (z=�z)r i )

where rn > : : : > r 1 � 0 are integers (note that � is not regular if r1 = 0 ). Then

there exists a totally real extensionF=F0 which is trivial or quadratic, and an automorphic

representation � of G(AF ) such that

1. BCF=F0 (� ) remains cuspidal.

2. For any place v of F abovep, � v has invariants under the action of the Iwahori

subgroup ofG(Fv).

3. For any �nite place v of F such that BCF=F0 (� )v is unrami�ed, � v is unrami�ed,

and via the inclusion SO2n+2 (C) ,! GL2n (C), the Satake parameter of� v is equal

to the one ofBCF=F0 (� )v .

Of course this is very similar to Assumptions 2.6.1.2 and 2.6.2.2, and as in the latter

case the groupS	 is trivial.

For L-algebraic, self-dual, cuspidal automorphic representations ofGL2n having �almost

regular� Langlands parameter at the archimedean places as above, the correspondingp-adic

Galois representation is known to exist by [Gol14]. Exactly as in the previous subsection,

we have the following:

Theorem 2.6.4.2. Let n � 2, F a totally real number �eld, � an L-algebraic, essentially

self-dual, cuspidal representation ofGL2n (AF ), such that � _ ' �� , where � is an Artin

character. Assume that at any real placev of F , � v(� 1) = 1 and

LL (� v) '
nM

i =1

IndWC
WR

(z 7! (z=�z)r i )

where rn > : : : > r 1 � 0 are integers. Then for any complex conjugationc 2 GF ,

Tr( � � p ;� 1 (� )(c)) = 0 .

Proof. Identical to that of Theorem 2.6.3.2.

Proposition 2.6.4.3. Let � be as in the previous theorem. Then for any placev of F

abovep, � � p ;� 1 (� )jGF v
is Hodge-Tate. If � : Fv ! Qp is a Qp-embedding, the� -Hodge-

Tate weights of � � p ;� 1 (� )jGF v
are the � r �;i (if r �; 1 = 0 , it has multiplicity two), where

r �;n > : : : > r �; 1 � 0 are the integers appearing inLL (� w) as in the previous theorem

(where w is the real place ofF determined by� and �p; �1 ).
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Proof. First observe that by totally real and solvable base change and Assumption 2.6.4.1,

we can assume that� corresponds to an automorphic representation� of G(AF ) having

Iwahori-�xed vectors at all the p-adic places, and thus corresponds to a point on the

eigenvariety X =E. Let � := � � p ;� 1 (� ), and let V denote the E-vector space underlying

this representation (as usualE is a �big enough� p-adic �eld).

Recall that for any p-adic placev of F , DSen(V ) is a freeE 
 Qp Fv(� p1 )-module of rank

dimE V, together with a linear operator � . As in 2.4.2.1 we can writeE 
 Qp Fv(� p1 ) '
Q

� E � 
 Fv Fv(� p1 ) and thus DSen(V ) =
Q

� DSen;� (V ) (� runs over the embeddings

Fv ,! Qp and E � is just a copy of E). The operator � is just a collection of operators� �

on eachDSen;� (V ). Moreover � � comes from the in�nitesimal action of Gal(Fv(� p1 )=Fv)

on DSen;� (V ), hence its characteristic polynomial has coe�cients inE � . Therefore � � can

be de�ned over E � = E � 
 Fv Fv � E � 
 Fv Fv(� p1 ), but since the result is not functorial,

we will not directly use it. Note that if we write E � 
 Fv Fv(� p1 ) as a product of �elds

(algebraic extensions ofE � ), � � can be concretely described as a collection of matrices

over these �elds, all being similar to a single matrix overE � , so that the semisimplicity of

� � is equivalent to the semisimplicity of any of these matrices. For this reason in the rest

of the proof we will treat � � as an endomorphism of a vector space overQp.

The proposition is a small improvement of [BC09][Lemma 7.5.12]. By this Lemma,

which states the analyticity of the Sen polynomial, we know that the characteristic poly-

nomial of � � is
nY

i =1

(T2 � r 2
�;i )

as expected. We need to show that the Sen operator� � is semisimple. It is enough

to show that ker � � = ker � 2
� in the caser1;� = 0 . This is in turn implied by the fact

that � is orthogonal, because then by functoriality DSen;� (V ) admits a non-degenerate

quadratic form for which � � is in�nitesimally orthogonal, i.e. antisymmetric, and since

ker(� 2
� � r 2

i ) is non-degenerate ifi > 1, the orthogonal of these eigenspaces, that isker � 2
� ,

is non-degenerate too. Finally, all the elements ofso2 are semisimple.

Let us show that � is indeed orthogonal, that is that V admits a GF -invariant non-

degenerate quadratic form. Note that for automorphic RLASDC representations ofGL2n=F,

it is known that the associated Galois representation is orthogonal by the main result of

[BC11]. By the analogue of Assumption 2.4.1.1 for the special orthogonal groupG, all

classical points having weight �far enough from the walls� come from such representations.

We will use a deformation argument similar to [BC11][Proposition 2.4].

First we replace X by a curve. Of course we want this curve to contain a given

classical pointz 2 j X j corresponding to� . We also want to ensure that there are �many�

classical points onY , that is to say we want Proposition 2.3.2.6 to hold. LetY be an open

a�noid of X � W W 0 containing z, where W 0 is the one-dimensional reduced subspace of

W parameterizing weights of the form

(xv;i )vjp;i =1 ::n 7! 


 
Y

v

nY

i =1

NFv =Qp (xn� i
v;i )

!
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times w(z), for 
 a continuous character ofZ �
p . By [BC09][Lemma 7.8.11], there is a

smooth connected a�noid curve Y 0 and a �nite morphism f : Y 0 ! Y whose image is an

irreducible component ofY containing z, such that the 2n-dimensional pseudocharacter

f ] � T is the sum of the traces of continuous representations

Rj : GF ! GLO(Y 0) (M j )

for sheavesM j locally free of rank nj (
P

j nj = 2n), and such that Rj 
 O(Y 0) k(y) is

absolutely irreducible for y in a Zariski-open subset ofY 0.

We now work with Y 0, and still denote by z any point of Y 0 abovez 2 Y . Note that�
R 
 O(Y 0) k(z)

� ss
' � . The points y of Y 0 at which the semisimpli�cation of

M

j

Rj 
 O(Y 0) k(y)

comes from an automorphic RLASDC representation ofGL 2n are still Zariski-dense, and

by consideration of the Hodge-Tate weights, the representationsRj are pairwise non-

isomorphic on a Zariski-open subset ofY 0. Since T(g) = T(g� 1) for all g 2 GF , each

Rj is either �self-dual� (in the sense thatTr( Rj (g� 1)) = Tr( Rj (g)) for all g 2 GF ), or part

of a pair (Rj ; Rj 0) (j 6= j 0) where Tr( Rj (g� 1)) = Tr( Rj 0(g)) for all g 2 GF , and thus

�
Rj 
 O(Y 0) k(y)

� ss;_
'

�
Rj 0 
 O(Y 0) k(y)

� ss

for any point y of Y 0.

To prove the orthogonality of � , it is enough to prove that for each �self-dual� Rj ,�
R 
 O(Y 0) k(z)

� ss
is orthogonal. We can now work locally, and simply considerRj as a

representation

Rj : GF ! GLn j (Oz)

where Oz is the local ring of Y 0 at z, a (henselian) discrete valuation ring. We conclude

using the following lemma.

Lemma 2.6.4.4. Let A be a discrete valuation ring, letK be its fraction �eld and k its

residue �eld, and assume thatchar(k) 6= 2 . Let R : G ! GLn (A) a representation such

that R 
 A K is absolutely irreducible and orthogonal. Then(R 
 A k)ss is also orthogonal.

Proof. We �rst remark that the semisimpli�cation of an orthogonal representation is again

orthogonal. Denote by$ a uniformizer ofA. Let V = K n be theK -vector space underlying

the representation R. By assumption V admits a GF -stable lattice L = An . Fix a GF -

invariant, non-degenerate symmetric bilinear formh�; �i on V n . Replacing L by $ kL for

some integerk � 0 if necessary, we can assume that

L _ := f v 2 V j 8u 2 L; hu; vi 2 Ag

contains L . We wish to �nd a lattice L 0 such that L � L 0 � L _ and (L 0)_ = L 0. This

would endow L 0=$L 0 with a GF -invariant non-degenerate symmetric bilinear form, and
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it is well-known that (L 0=$L 0)ss ' (R 
 A k)ss. Even though this will not be possible in

general, by attempting to do so we will show that(R 
 A k)ss is orthogonal.

The A-module L _ =L is torsion and of �nite type. Let n be the smallest integer such

that $ nL _ � L . If n > 1, replaceL by L + $ n� 1L _ , which strictly contains L and is still

integral with respect to h�; �i . After a �nite number of iterations of this procedure, we are

left with a lattice L such that

L � L _ � $ � 1L:

Therefore

(L=$L )ss '
�
L _ =L

� ss �
�
L=$L _ � ss

and it is straightforward to check that h�; �i induces on both factors aGF -invariant non-

degenerate symmetric bilinear form.
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Partie 3

Dimensions of spaces of level one automorphic forms for split
classical groups using the trace formula

3.1 Introduction

Let G be a Chevalley reductive group overZ admitting discrete series at the real place, i.e.

one ofSO2n+1 , Sp2n or SO4n for n � 1. We give an algorithm to compute the geometric

side in Arthur's �simple� trace formula in [Art89a] (see also [GKM97]) for G and the trivial

Hecke operator in level one at the �nite places, that is the characteristic function ofG(bZ).

There are essentially three steps to compute the geometric side of the trace formula:

1. for any prime p, compute the local orbital integrals of the characteristic function

of G(Zp) at torsion elements 
 p in G(Qp) (with respect to a Haar measure on the

connected centraliser of
 p),

2. for any semisimple elliptic and torsion conjugacy class
 2 G(Q) with connected cent-

raliser I , use the Smith-Minkowski-Siegel mass formula to computeVol( I (Q)nI (A)) ,

3. analyse the character of stable (averaged) discrete series on arbitrary maximal tori

of G(R) to express the parabolic terms using elliptic terms for groups of lower

semisimple rank.

We explain how to compute local orbital orbitals for special orthogonal groups (resp.

symplectic groups) in sections 3.3.2.2 and 3.3.2.3, using quadratic and hermitian (resp.

alternate and antihermitian) lattices. To compute the volumes appearing in local orbital

integrals we rely on the local density formulae for such lattices given in [GY00], [Choa]

and [Chob]. We choose a formulation similar to [Gro97] for the local and global volumes

(see section 3.3.2.4). For the last step we follow [GKM97], and we only add that for the

trivial Hecke operator the general formula for the archimedean factor of each parabolic

term simpli�es signi�cantly (Proposition 3.3.3.2). Long but straightforward calculations

lead to explicit formulae for the parabolic terms (see section 3.3.3.4).

Thus for any irreducible algebraic representationV� of G C characterised by its highest

weight � , we can compute the spectral side of the trace formula, which we now describe. Let

K 1 be a maximal compact subgroup ofG(R) and let g = C 
 R g0 whereg0 = Lie( G(R)) .

For an irreducible (g; K 1 )-module � 1 , consider the Euler-Poincaré characteristic

EP(� 1 
 V �
� ) =

X

i

(� 1)i dim H i ((g; K 1 ); � 1 
 V �
� )
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whereV� is seen as a representation ofG(R). Let � disc(G) be the set of isomorphism classes

of irreducible (g; K 1 ) � G(Af )-modules occurring in the discrete automorphic spectrum

of G. For � 2 � disc(G) denote by m� 2 Z � 1 the corresponding multiplicity. Let � unr
disc(G)

be the set of � 2 � disc(G) which are unrami�ed at all the �nite places of Q. For any

dominant weight � the set of � 2 � unr
disc(G) such that H � ((g; K 1 ); � 1 
 V �

� ) 6= 0 is �nite.

The spectral side of Arthur's trace formula in [Art89a] for our choice of function at the

�nite places is X

� 2 � unr
disc (G )

m� EP(� 1 
 V �
� ): (3.1.0.1)

This integer is interesting but it is only an alternate sum. To obtain subtler informa-

tion, e.g. the sum of m� for � 1 isomorphic to a given (g; K 1 )-module, we use Arthur's

endoscopic classi�cation of the discrete automorphic spectrum for symplectic and special

orthogonal groups [Art13]. Arthur's work allows to parametrise the representations� con-

tributing to the spectral side 3.1.0.1 using self-dual automorphic representations for general

linear groups. DenoteWR the Weil group of R and � C=R the character ofWR having kernel

WC ' C� . For w 2 1
2Z de�ne the bounded Langlands parameterI w : WR ! GL2(C) as

IndWR
WC

�
z 7! (z=jzj)2w �

so that I 0 ' 1 � � C=R. The three families that we are led to consider are the following.

1. For n � 1 and w1; : : : ; wn 2 1
2ZrZ such that w1 > � � � > w n > 0, de�ne S(w1; : : : ; wn )

as the set of self-dual automorphic cuspidal representations ofGL 2n=Q which are

unrami�ed at all the �nite places and with Langlands parameter at the real place

I w1 � � � � � I wn :

Equivalently we could replace the last condition by �with in�nitesimal character hav-

ing eigenvaluesf� w1; : : : ; � wng�. Here S stands for �symplectic�, as the conjectural

Langlands parameter of such a representation should be symplectic.

2. For n � 1 and integers w1 > � � � > w n > 0 de�ne Oo(w1; : : : ; wn ) as the set of

self-dual automorphic cuspidal representations ofGL 2n+1 =Q which are everywhere

unrami�ed and with Langlands parameter at the real place

I w1 � � � � � I wn � � n
C=R:

Equivalently we could replace the last condition by �with in�nitesimal character

having eigenvaluesf� w1; : : : ; � wn ; 0g�. Here Oo stands for �odd orthogonal�.

3. For n � 1 and integersw1 > � � � > w 2n� 1 > w 2n � 0 de�ne Oe(w1; : : : ; w2n ) as the set

of self-dual automorphic cuspidal representations ofGL 4n=Q which are everywhere

unrami�ed and with Langlands parameter at the real place

I w1 � � � � � I w2n :

In this case also we could replace the last condition by �with in�nitesimal character

having eigenvaluesf� w1; : : : ; � w2ng�, even in the slightly singular case wherew2n =

0. Here Oe stands for �even orthogonal�.
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Following Arthur using these three families we can de�ne, for anyG and � as above, a set

	( G)unr ;� of �formal Arthur-Langlands parameters� which parametrises the representations

� 2 � unr
disc(G) contributing to 3.1.0.1. We stress that for a givenG all three families take

part in these formal parameters. Among these formal parameters, one can distinguish a

subset 	( G)unr ;�
sim of �simple� parameters, that is the tempered and non-endoscopic ones.

When G = SO2n+1 (resp. Sp2n , resp. SO4n ), this set is exactly S(w1; : : : ; wn ) (resp.

Oo(w1; : : : ; wn ), resp. Oo(w1; : : : ; w2n )) where (wi ) i is determined by � . The contribution

of any element of	( G)unr ;�
sim to the spectral side 3.1.0.1 is a non-zero number depending only

on G(R). Therefore it is natural to attempt to compute the cardinalities of the sets S(�),

Oo(�) and Oe(�) inductively, the induction being on the dimension of G. More precisely

we have to compute the contribution of 	( G)unr ;� r 	( G)unr ;�
sim to 3.1.0.1 to deduce the

cardinality of 	( G)unr ;�
sim .

When the highest weight � is regular, any element of	( G)unr ;� is tempered and con-

sequently any � 2 � unr
disc(G) contributing to the spectral side is such that � 1 is a discrete

series representation having same in�nitesimal character asV� . Thanks to the work of

Shelstad on real endoscopy and using Arthur's multiplicity formula it is not di�cult to

compute the contribution of 	( G)unr ;� r 	( G)unr ;�
sim to the Euler-Poincaré characteristic on

the spectral side in this case (see section 3.4.2.1). The general case is more interesting be-

cause we have to consider non-tempered representations� 1 . Since Arthur's construction

of non-tempered Arthur packets at the real place in [Art13] is rather abstract, we have to

make an assumption (see Assumption 3.4.2.4) in order to be able to compute explicitly

the non-tempered contributions to the Euler-Poincaré characteristic. This assumption is

slightly weaker than the widely believed Assumption 3.4.2.3, which states that the relevant

real non-tempered Arthur packets at the real place coincide with those constructed long

ago by Adams and Johnson in [AJ87].

Thus we obtain an algorithm to compute the cardinalities of the setsS(w1; : : : ; wn ),

Oo(w1; : : : ; wn ) and Oe(w1; : : : ; w2n ), under assumption 3.4.2.4 when� is singular. For

the computer the hard work consists in computing local orbital integrals. Our current

implementation, using Sage [S+ 14], allows to compute them at least forrank(G) � 6. See

section 3.7.2 for some values.

Once these cardinalities are known we cancount the number of � 2 � unr
disc(G) such

that � 1 is isomorphic to a given(g; K 1 )-module having same in�nitesimal character as

V� for some highest weight� . A classical application is to compute dimensions of spaces

of (vector-valued) Siegel cusp forms. For a genusn � 1 and m1 � � � � � mn � n +

1, let r be the holomorphic (equivalently, algebraic) �nite-dimensional representation of

GLn (C) with highest weight (m1; : : : ; mn ). Let � n = Sp2n (Z). The dimension of the

spaceSr (� n ) of level one vector-valued cuspidal Siegel modular forms of weightr can then

be computed using Arthur's endoscopic classi�cation of the discrete spectrum forSp2n .

We emphasise that this formula depends on Assumption 3.4.2.3 when themk 's are not

pairwise distinct, in particular when considering scalar-valued Siegel cusp forms, of weight

m1 = � � � = mn . Our current implementation yields a dimension formula for dim Sr (� n )

for any n � 7 and any r as above, although forn � 3 it would be absurd to print this
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huge formula. See the table in section 3.5.4 for some values in the scalar case. The case

n = 1 is well-known:
L

m� 0 M m (� 1) = C[E4; E6] where the Eisenstein seriesE4; E6 are

algebraically independant overC, and the dimension formula for Sm (� 1) follows. Igusa

[Igu62] determined the ring of scalar Siegel modular forms and its ideal of cusp forms

when n = 2 , which again gives a dimension formula. Tsushima [Tsu83], [Tsu84] gave a

formula for the dimension of Sr (� 2) for almost all representationsr as above (that is for

m1 > m 2 � 5 or m1 = m2 � 4) using the Riemann-Roch-Hirzebruch formula along with a

vanishing theorem. It follows from Arthur's classi�cation that Tsushima's formula holds for

any (m1; m2) such that m1 > m 2 � 3. In genusn = 3 Tsuyumine [Tsu86] determined the

structure of the ring of scalar Siegel modular forms and its ideal of cusp forms. Recently

Bergström, Faber and van der Geer [BFvdG14] studied the cohomology of certain local

systems on the moduli spaceA 3 of principally polarised abelian threefolds, and conjectured

a formula for the Euler-Poincaré characteristic of this cohomology (as a motive) in terms of

Siegel modular forms. They are able to derive a conjectural dimension formula for spaces of

Siegel modular cusp forms in genus three. Our computations corroborate their conjecture,

although at the moment we have only compared values and not the formulae.

Of course the present work is not the �rst one to attempt to use the trace formula

to obtain spectral information, and we have particularly bene�ted from the in�uence of

[GP05] and [CR14]. In [GP05] Gross and Pollack use a simpler version of the trace for-

mula, with hypotheses at a �nite set S of places ofQ containing the real place and at least

one �nite place. This trace formula has only elliptic terms. They use the Euler-Poincaré

function de�ned by Kottwitz in [Kot88] at the �nite places in S. These functions have the

advantage that their orbital integrals were computed conceptually by Kottwitz. At the

other �nite places, they compute the stable orbital integrals indirectly, using computations

of Lansky and Pollack [LP02] for inner forms which are compact at the real place. They

do so for the groupsSL2, Sp4 and G 2. Without Arthur's endoscopic classi�cation it was

not possible to deduce the number of automorphic representations of a given type from the

Euler-Poincaré characteristic on the spectral side, even for a regular highest weight� . The

condition card(S) � 2 forbids the study of level oneautomorphic representations. More re-

cently, Chenevier and Renard [CR14] computed dimensions of spaces of level onealgebraic

automorphic forms in the sense of [Gro99], for the inner forms of the groupsSO7, SO8 and

SO9 which are split at the �nite places and compact at the real place. They used Arthur's

classi�cation to deduce the cardinalities of the setsS(w1; w2; w3) and S(w1; w2; w3; w4)

and, using the conjectural dimension formula of [BFvdG14],Oe(w1; w2; w3; w4). Unfortu-

nately the symplectic groups do not have such inner forms, nor do the special orthogonal

groups SOn when n mod 8 62 f� 1; 0; 1g. Thus our main contribution is thus the direct

computation of local orbital integrals.

3.2 Notations and de�nitions

Let us precise some notations. LetAf denote the �nite adèles
Q 0

p Qp and A = R � Af . We

will use boldface letters to denote linear algebraic groups, for exampleG. For schemes we
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denote base change using simply a subscript, for exampleG Qp instead of G � Q Qp where

G is de�ned over Q. For a reductive group G we abusively call �Levi subgroup ofG� any

Levi subgroup of a parabolic subgroup ofG, i.e. the centraliser of a split torus. Rings are

unital. If R is a ring and � a �nite free R-module, rkR (�) denotes its rank. If G is a �nite

abelian groupG^ will denote its group of characters.

Let us de�ne the reductive groups that we will use. Forn � 1, let qn be the quadratic

form on Zn de�ned by

qn (x) =
b(n+1) =2cX

i =1

x i xn+1 � i :

Let On be the algebraic group overZ representing the functor

Category of commutative rings! Category of groups

A 7! f g 2 GLn (A) j qn � g = qng:

For n odd de�ne SOn as the kernel ofdet : On ! � 2. For n even, det : On ! � 2 factors

through the Dickson morphism Di : On ! Z=2Z (constant group scheme overZ) and the

morphism Z=2Z ! � 2 �mapping 1 2 Z=2Z to � 1 2 � 2�. In that case SOn is de�ned as the

kernel of Di. For any n � 1, SOn ! Spec(Z) is reductive in the sense of [SGA70][Exposé

XIX, Dé�nition 2.7]. It is semisimple if n � 3.

For n � 1 the subgroupSp2n of GL 2n=Z de�ned as the stabiliser of the alternate form

(x; y) 7!
nX

i =1

x i y2n+1 � i � x2n+1 � i yi

is also semisimple overZ in the sense of [SGA70][Exposé XIX, Dé�nition 2.7].

If G is one ofSO2n+1 (n � 1), Sp2n (n � 1) or SO2n (n � 2), the diagonal matrices

form a split maximal torus T , and the upper-triangular matrices form a Borel subgroup

B . We will simply denote by t = ( t1; : : : ; tn ) the element ofT (A) (A a commutative ring)

whose �rst n diagonal entries aret1; : : : ; tn . For i 2 f 1; : : : ; ng, let ei 2 X � (T ) be the

character t 7! t i . The simple roots corresponding toB are
8
><

>:

e1 � e2; : : : ; en� 1 � en ; en if G = SO2n+1 ;

e1 � e2; : : : ; en� 1 � en ; 2en if G = Sp2n ;

e1 � e2; : : : ; en� 1 � en ; en� 1 + en if G = SO2n :

In the �rst two cases (resp. third case), the dominant weights in X � (T ) are the k =
P n

i =1 ki ei with k1 � � � � � kn � 0 (resp. k1 � � � � � kn� 1 � j kn j).

3.3 Computation of the geometric side of Arthur's trace for-
mula

Arthur's invariant trace formula [Art88] for a reductive group G=Q simpli�es and becomes

more explicit when G(R) has discrete series and a �nice� smooth compactly supported dis-

tribution f 1 (g1 )dg1 is used at the real place, as shown in [Art89a] (see also [GKM97] for a
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topological proof). In section 3.3.1 we recall the elliptic termsTell

�
f 1 (g1 )dg1

Q
p f p(gp)dgp

�

on the geometric side of this trace formula, where
Q

p f p(gp)dgp is a smooth compactly sup-

ported distribution on G(Af ). Then (section 3.3.2) we give an algorithm to compute these

elliptic terms when G is a split classical group and for any primep, f p(gp)dgp is the trivial

element of the unrami�ed Hecke algebra. Finally (section 3.3.3) we give explicit formulae

for the parabolic terms using the elliptic terms for groups of lower semisimple rank.

3.3.1 Elliptic terms

3.3.1.1 Euler-Poincaré measures and functions

Let G be a reductive group overR. Thanks to [Ser71], we have a canonical signed Haar

measure onG(R), called the Euler-Poincaré measure. It is non-zero if and only ifG(R)

has discrete series, that is if and only ifG has a maximal torus de�ned overR which is

anisotropic.

So assume thatG(R) has discrete series. LetK be a maximal compact subgroup of

G(R), g0 = Lie( G(R)) and g = C 
 R g0. Let V� be an irreducible algebraic representation

of G C, parametrised by its highest weight � . We can seeV� as an irreducible �nite-

dimensional representation ofG(R), or as an irreducible(g; K )-module. If � is a (g; K )-

module of �nite length, consider

EP(�; � ) :=
X

i

(� 1)i dim H i ((g; K ); � 
 V �
� ) :

Clozel and Delorme [CD90][Théorème 3] show that there is a smooth, compactly supported

distribution f � (g)dg on G(R) such that for any � as above,

Tr ( � (f � (g)dg)) = EP( �; � ):

If � is irreducible and belongs to the L-packet� disc(� ) of discrete series having the same

in�nitesimal character as V� , this number is equal to (� 1)q(G (R)) where 2q(G(R)) =

dim G(R) � dim K . If � is irreducible and tempered but does not belong to� disc(� )

it is zero.

These nice spectral properties off � allow Arthur to derive nice geometric properties,

similarly to the p-adic case in [Kot88]. If 
 2 G(R), the orbital integral O
 (f � (g)dg)

vanishes unless
 is elliptic semisimple, in which case, letting I denote the connected

centraliser of 
 in G:

O
 (f � (g)dg) = Tr ( 
 jV� ) � EP;I (R) :

In fact [Art89a][Theorem 5.1] computes more generally the invariant distributionsI M (
; f � )

occurring in the trace formula (hereM is a Levi subgroup ofG), and the orbital integrals

above are just the special caseM = G. These more general invariant distributions will be

used in the parabolic terms.

3.3.1.2 Orbital integrals for p-adic groups

We recall more precisely the de�nition of orbital integrals for the p-adic groups. Let p be

a prime and G a reductive group overQp. Let K be a compact open subgroup ofG(Qp),
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 2 G(Qp) a semisimple element, andI its connected centraliser inG. Lemma 19 of [HC70]

implies that for any double cosetKcK in G(Qp), the set X of [g] 2 K nG(Qp)=I (Qp) such

that g
g � 1 2 KcK is �nite. Let � (resp. � ) be a Haar measure onG(Qp) (resp. I (Qp)).

Then the orbital integral at 
 of the characteristic function of KcK

O
 (1KcK ; �; � ) =
Z

G (Qp )=I (Qp )
1KcK

�
g
g � 1� d�

d�
(g)

is equal to
X

[g]2 X

� (K )
� (g� 1Kg \ I (Qp))

:

The Haar measureO
 (1KcK ; �; � )� is canonical, i.e. it does not depend on the choice of

� . Thus O
 canonically maps the space of smooth compactly supported complex valued

distributions on G(Qp) (i.e. linear combinations of distributions of the form 1KcK (g)d� (g))

to the one-dimensional space of complex Haar measures onI (Qp).

Remark 3.3.1.1. Note that any automorphism of the algebraic groupI preserves� , and

thus if I and � are �xed, for any algebraic groupI 0 isomorphic to I , there is a well-de�ned

corresponding Haar measure onI 0.

3.3.1.3 De�nition of the elliptic terms

Let G be a reductive group overQ such that G(R) has discrete series. Let� be a highest

weight for the group G C. Choose a Haar measuredg1 on G(R), and let f 1 be a smooth

compactly supported function onG(R) such that the distribution f 1 ;� (g1 )dg1 computes

the Euler-Poincaré characteristic with respect toV� as in 3.3.1.1. Let
Q

p f p(gp)dgp be

a smooth compactly supported distribution on G(Af ). For almost all primes p, G Qp is

unrami�ed, f p = 1K p and
R

K p
dgp = 1 where K p is a hyperspecial maximal compact

subgroup in G(Qp). Let C be the set of semisimple conjugacy classescl(
 ) in G(Q) such

that 
 belongs to an anisotropic maximal torus inG(R). For cl(
 ) 2 C, denote by I the

connected centraliser of
 in G. Given such a
 , for almost all primes p, I Qp is unrami�ed

and O
 (f p(gp)dgp) is the Haar measure giving measure one to a hyperspecial maximal

compact subgroup ofI (Qp) (see [Kot86, Corollary 7.3]). Thus
Q

p O
 (f p(gp)dgp) is a well-

de�ned complex Haar measure onI (Af ). Let f (g)dg = f 1 ;� (g1 )dg1
Q

p f p(gp)dgp. The

elliptic part of the geometric side of Arthur's trace formula is

Tell(f (g)dg) =
X

cl( 
 )2 C

Vol( I (Q)nI (A))
card (Cent(
; G(Q))=I (Q))

Tr( 
 j V� ) (3.3.1.1)

whereI (R) is endowed with the Euler-Poincaré measure,I (Af ) the complex Haar measure
Q

p O
 (f p(gp)dgp) and I (Q) the counting measure. The set ofcl(
 ) 2 C such that for any

prime p, 
 is conjugate in G(Qp) to an element belonging to the support off p is �nite, so

that the sum has only a �nite number of nonzero terms.
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3.3.2 Computation of the elliptic terms in the trace formula

Our �rst task is to explicitly compute Tell(f (g)dg) whenG is one ofSO2n+1 , Sp2n or SO4n

and moreover for any primep, f p = 1G (Zp ) and
R

G (Zp ) dgp = 1 . In this case any
 2 G(Q)

whose contribution to Tell(f (g)dg) is nonzero is torsion (
 r = 1 for some integerr > 0),

since 
 is compact in G(Qv) for any place v. Here �compact� means that the smallest

closed subgroup ofG(Qv) containing 
 is compact, and it is equivalent to the fact that

the eigenvalues of
 in any faithful algebraic representation ofG Qv
have norm one.

First we describe the semisimple conjugacy classes inG(Q) and their centralisers, a

necessary �rst step to compute the setC and the groups I . Then we explain how to

enumerate the conjugacy classes of torsion elements in the groupG(Zp). To be precise we

can compute a collection of subsets(Ys)s of G(Zp) such that

f g 2 G(Zp) j 9r > 0; gr = 1g =
G

s

f xyx � 1 j y 2 Ys; x 2 G(Zp)g:

Note that this leaves the possibility that for a �xed s, there exist distinct y; y0 2 Ys which

are conjugated underG(Zp). Thus it seems that to compute local orbital integrals we

should check for such cases and throw away redundant elements in eachYs, and then

compute the measures of the centralisers ofy in G(Zp). This would be a computational

nightmare. Instead we will show in section 3.3.2.3 that the fact that such orbital integrals

are masses (as in �mass formula�) implies that we only need to compute the cardinality of

eachYc. Finally the Smith-Minkowski-Siegel mass formulae of [GY00] provide a means to

compute the global volumes.

3.3.2.1 Semisimple conjugacy classes in classical groups

Let us describe the absolutely semisimple conjugacy classes in classical groups over a �eld,

along with their centralisers. It is certainly well-known, but we could not �nd a reference.

We explain in detail the case of quadratic forms (orthogonal groups). The case of alternate

forms (symplectic groups) is similar but simpler since characteristic2 is not �special� and

symplectic automorphisms have determinant1. The case of (anti-)hermitian forms (unitary

groups) is even simpler but it will not be used hereafter.

Let V be a vector space of �nite dimension over a (commutative) �eldK , equipped with

a regular (�ordinaire� in the sense of [SGA73, Exposé XII]) quadratic formq. Let 
 2 O(q)

be absolutely semisimple, i.e.
 2 EndK (V ) preservesq and the �nite commutative K -

algebra K [
 ] is étale. Since
 preservesq, the K -automorphism � of K [
 ] sending 
 to


 � 1 is well-de�ned: if dimK V is even or2 6= 0 in K , � is the restriction to K [
 ] of the

antiautomorphism of EndK (V ) mapping an endomorphism to its adjoint with respect to the

bilinear form Bq corresponding toq, de�ned by the formula Bq(x; y) := q(x+ y)� q(x)� q(y).

In characteristic 2 and odd dimension,(V; q) is the direct orthogonal sum of its
 -stable

subspacesV 0 = ker( 
 � 1) and V 00= ker P(
 ) where(X � 1)P(X ) 2 K [X ]nf 0g is separable

and annihilates 
 . If V 00were odd-dimensional, the kernel ofBqjV 00� V 00 would be a
 -stable

line Kx with q(x) 6= 0 , which imposes
 (x) = x, in contradiction with P(1) 6= 0 . Thus

K [
 ] = K [
 jV 00] � K if V 006= 0 , and � is again well-de�ned.
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Thanks to � we have a natural decomposition as a �nite product:

(K [
 ]; 
 ) =
Y

i

(A i ; 
 i )

where for any i , A i is a �nite étale K -algebra generated by
 i such that 
 i 7! 
 � 1
i is a

well-de�ned K -involution � i of A i and Fi = f x 2 A i j � i (x) = xg is a �eld. Moreover the

minimal polynomials Pi of 
 i are pairwise coprime. For anyi , either:

� 
 2
i = 1 and A i = K ,

� 
 2
i 6= 1 and A i is a separable quadratic extension ofFi , Gal(A i =Fi ) = f 1; � i g;

� 
 2
i 6= 1 , A i ' Fi � Fi and � i swaps the two factors.

Let I triv , I �eld and I split be the corresponding sets of indices. There is a corresponding

orthogonal decomposition ofV :

V =
M

i

Vi

where Vi is a projective A i -module of constant �nite rank.

Lemma 3.3.2.1. For any i , there is a unique � i -hermitian (if � i is trivial, this simply

means quadratic) formhi : Vi ! Fi such that for any v 2 Vi , q(v) = Tr F i =K (hi (v)) .

Proof. If i 2 I triv this is obvious, so we can assume thatdimF i A i = 2 . Let us show that

the K -linear map

T : f � i -hermitian forms on Vi g �! f K -quadratic forms on Vi preserved by
 i g

hi 7!
�
v 7! Tr F i =K hi (v)

�

is injective. If hi is a � i -hermitian form on Vi , denote byBh i the unique � i -sesquilinear map

Vi � Vi ! A i such that for any v; w 2 Vi , hi (v + w) � hi (v) � hi (w) = Tr A i =Fi Bh i (v; w),

so that in particular hi (v) = Bh i (v; v). Moreover for any v; w 2 Vi , BT (h i ) (v; w) =

Tr A i =K Bh i (v; w). If hi 2 ker T, then BT (h i ) = 0 and by non-degeneracy ofTr A i =K we

have Bh i = 0 and thus hi = 0 .

To conclude we have to show that the twoK -vector spaces above have the same dimen-

sion. Let d = dim K Fi and n = dim A i Vi , then dimK f � i -hermitian forms on Vi g = dn2. To

compute the dimension of the vector space on the right hand side, we can tensor overK

with a �nite separable extension K 0=K such that 
 i is diagonalizable overK 0. Since
 2
i 6= 1

the eigenvalues of1 
 
 i on K 0
 K Vi are t1; t � 1
1 ; : : : ; td; t � 1

d where the t � 1
k are distinct and

6= 1 . Furthermore each eigenspaceU+
k := ker(1 
 
 i � tk 
 1); U �

k := ker(1 
 
 i � t � 1
k 
 1)

has dimensionn over K 0. If q0 is a K 0-quadratic form on K 0 
 K Vi preserved by1 
 
 i ,

then:

� for any k, q0jU �
k

= 0 sincet2
k 6= 1 ,

� for any k 6= l, Bq0jU �
k � U �

l
= 0 sincetk=tl ; tk t l 6= 1 .
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Henceq0 is determined by the restrictions ofBq0 to U+
k � U �

k , and conversely any family

of K 0-bilinear forms U+
k � U �

k ! K 0 (k 2 f 1; : : : ; dg) give rise to a K 0-quadratic form on

K 0
 K Vi preserved by1 
 
 i , and we conclude that the dimension is againdn2.

The regularity of q implies that of hi (when 
 2
i 6= 1 , regularity means non-degeneracy

of Bh i ). In the split case, Vi can be more concretely described as a pair(Wi ; W 0
i ) of vector

spaces overFi having the same dimension,hi identi�es W 0
i with the dual W �

i of Wi over

Fi , and thus the pair (Vi ; hi ) is isomorphic to ((Wi ; W �
i ); (w; f ) 7! f (w)) .

If instead of q we consider a non-degenerate alternate formh�; �i , we have the same

kind of decomposition for (K [
 ]; 
 ). Moreover the above lemma still holds if instead of

considering hermitian forms hi we consider� i -sesquilinear formsB i : Vi � Vi ! A i such

that for any v 2 Vi , Tr A i =Fi (B i (v; v)) = 0 .

Proposition 3.3.2.2. Two absolutely semisimple elements
; 
 0 of O(V; q) are conjugate

if and only if there is a bijection � between their respective sets of indicesI and I 0 and

compatible isomorphisms(A i ; 
 i ) '
�

A0
� (i ) ; 
 0

� (i )

�
and (Vi ; hi ) '

�
V 0

� (i ) ; h0
� (i )

�
. Moreover

the algebraic groupCent(
; O(V; q)) is naturally isomorphic to

Y

i 2 I triv

O(Vi ; hi ) �
Y

i 2 I �eld

ResF i =K U (Vi ; hi ) �
Y

i 2 I split

ResF i =K GL (Wi ):

If dimK V is odd O(V; q) = SO(V; q) � � 2, so this proposition easily yields a description

of absolutely semisimple conjugacy classes inSO(V; q) = SO(V; q)(K ) and their central-

isers. If dimK V is even the proposition still holds if we replaceO(V; q) by SO(V; q) and
Q

i 2 I triv
O(Vi ; hi ) by S

� Q
i 2 I triv

O(Vi ; hi )
�

and add the assumptionI triv 6= ; . If dimK V

is even and I triv = ; , the datum (A i ; 
 i ; Vi ; hi ) i 2 I determines two conjugacy classes in

SO(V; q).

In the symplectic case there is a similar proposition, but now the indicesi 2 I triv yield

symplectic groups.

Note that if K is a local or global �eld in which 2 6= 0 , the simple and explicit invari-

ants in the local case and the theorem of Hasse-Minkowski (and its simpler analogue for

hermitian forms, see [Jac40]) in the global case allow to classify the semisimple conjugacy

classes explicitly. For example ifK = Q, given M > 0 one can enumerate the semisimple

conjugacy classes inSO(V; q) annihilated by a non-zero polynomial having integer coe�-

cients bounded byM .

3.3.2.2 Semisimple conjugacy classes in hyperspecial maximal compact sub-
groups

To compute orbital integrals in the simplest case of the unit in the unrami�ed Hecke

algebra of a split classical group over ap-adic �eld, it would be ideal to have a similar

description of conjugacy classes and centralisers valid overZp. It is straightforward to

adapt the above description over any ring (or any base scheme). However, it is not very

useful as the conjugacy classes for which we would like to compute orbital integrals are

not all �semisimple over Zp�, i.e. Zp[
 ] is not always an étaleZp-algebra. Note that the
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�semisimple overZp� case is covered by [Kot86, Corollary 7.3] (with the natural choice

of Haar measures, the orbital integral is equal to1). Nevertheless using the tools of the

previous section, we give in this section a method to exhaust the isomorphism classes of

triples (� ; q; 
 ) where � is a �nite free Zp-module, q is a regular quadratic form on �

and 
 2 SO(� ; q). The symplectic case is similar. This means that we will be able to

enumerate them, but a priori we will obtain some isomorphism classes several times. In

the next section we will nonetheless see that the results of this section can be used to

compute the orbital integrals, without checking for isomorphisms.

Let � be a freeZp-module of �nite rank endowed with a regular quadratic form q,

and let 
 2 Aut Zp (�) preserving q and semisimple overQp. We apply the notations and

considerations of section 3.3.2.1 to the isometry
 of Qp 
 Zp � , to obtain quadratic or

hermitian spaces
�
Qp 
 Zp �

�
i . Consider the lattices

� i := � \
�
Qp 
 Zp �

�
i = ker ( Pi (
 ) j �) :

Let N � 0 be such that pN belongs to the ideal ofZp[X ] generated by the
Q

j 6= i Pj for all

i . Then � =(� i � i ) is annihilated by pN , so this group is �nite. Since � i is saturated in �

and q is regular, for any v 2 � i r p� i ,
(

pN 2 B (v; � i ) if p � 3 or rkZp � i is even,

pN 2 B (v; � i ) or q(v) 2 Z �
2 if p = 2 and rkZp � i is odd.

(3.3.2.1)

The Zp[
 i ]-module � i is endowed with a hermitian (quadratic if 
 2
i = 1 ) form hi taking

values in Fi . The sesquilinear (bilinear if 
 2
i = 1 ) form B i : � i � � i ! A i associated with

hi has the property that for all v; w 2 � i ,

B (v; w) = Tr A i =Qp (B i (v; w)) :

From now on we assume for simplicity thatZp[
 i ] is normal (i.e. either it is the integer ring

of an extension ofQp, or the product of two copies of such an integer ring), as it will be the

case in our global situation which imposes that the
 i 's be roots of unity. The structure

of quadratic or hermitian modules over such rings is known: see [O'M00] for the quadratic

case, [Jac62] for the hermitian case. The �split� case amounts to the comparison of two

lattices in a common vector space (isomorphism classes of such pairs are parametrised by

�invariant factors�). Choose a uniformiser $ i of Zp[
 i ] (by de�nition, in the split case $ i

is a uniformiser ofOF i ). In all cases, there is a (non-canonical) orthogonal decomposition

� i =
L

r 2 Z � (r )
i such that $ � r

i B i j � ( r )
i � � ( r )

i
is integral and non-degenerate. If($ di

i ) is the

di�erent of Zp[
 i ]=Zp and (p) = ( $ ei
i ), condition 3.3.2.1 imposes (but in general stays

stronger than) the following:
(

� (r )
i = 0 unless � di � r � � di + Nei if p � 3 or rkZp � i is even,

� (r )
i = 0 unless0 � r � max(1; N ) if p = 2 and rkZp � i is odd.

(3.3.2.2)

Note that in the second case
 2
i = 1 and hi is a quadratic form over Z2. These conditions

provide an explicit version of the �niteness result in section 3.3.1.2, since for anyi and r
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there is a �nite number of possible isomorphism classes for� (r )
i , and when the � i 's are

�xed, there is only a �nite number of possible 
 -stable q-regular � 's since
M

i

� i � � � p� max(1 ;N )
M

i

� i :

For e�ciency it is useful to sharpen these conditions. Denote byo an orbit of Z=2Z �

Gal
�
Fp=Fp

�
acting on Fp

�
, where the non-trivial element of Z=2Z acts by x 7! x � 1.

Concretely, o is an orbit in the set of primitive m-th roots of unity ( m coprime to p) under

the subgrouphp; � 1i of (Z=mZ) � . Let I o be the set of indicesi such that 
 i modulo some

(at most two possibilities) maximal ideal of Zp[
 i ] belongs too. Then for o 6= o0,
Q

i 2 I o
Pi

and
Q

i 2 I o0
Pi generate the unit ideal in Zp[X ], thus � =

L
o � I o where

� I o = Sat �

 
M

i 2 I o

� i

!

= ker

 
Y

i 2 I o

Pi (
 ) j �

!

:

Here Sat� (� 0), the saturation of � 0 in � , is de�ned as � \ (Qp� 0). Our task is now to

enumerate the
 -stableq-regular lattices containing
L

i 2 I o
� i in which each� i is saturated.

For i 2 I o, there is a canonical (�Jordan-Chevalley overZp�) decomposition 
 i = � i � i where

� m (� i ) = 0 (m associated witho as above) and

� pn

i �����!
n! + 1

1:

Since we assumed thatZp[
 i ] = Zp[� i ][� i ] is normal, either � i 2 Zp[� i ] or over each factor

of Qp[� i ], Qp[
 i ] is a non-trivial totally rami�ed �eld extension and � i � 1 is a uniformiser.

In any case, de�ne h0
i := Tr F i =Qp [� i + � � 1

i ](hi ), a quadratic or hermitian (with respect to

� i : � i 7! � � 1
i ) form on the Zp[� i ]-module � i . On � I o , 
 = � I o � I o as above, the restriction

of � I o to � i (i 2 I o) is � i , and the minimal polynomial of � i over Qp does not depend

on i 2 I o. Thus we can see the� i , i 2 I o as �nite free quadratic or hermitian modules

over the same ringZp [� I o ], each of these modules being endowed with an automorphism

� i satisfying � pn

i ! 1. Moreover sinceZp [� I o ] is an étale Zp-algebra, the regularity of q

(restricted to � I o ) is equivalent to the regularity of h0 = � i h0
i on � I o . Knowing the � i 's,

�nding the possible � I o 's amounts to �nding the � -stable h0-regular lattices containing
L

i 2 I o
� i in which each � i is saturated, where� = � i � i .

Let us now specialise to the case where each
 i is a root of unity, i.e. � pn

i = 1 for some

n � 0. Denote by � r the r -th cyclotomic polynomial.

Lemma 3.3.2.3. Let m � 1 be coprime top. In Zp[X ], for any k � 1, p belongs to the

ideal generated by� pk m (X ) and � m

�
X pk � 1

�
.

Proof. For k = 1 , since � m (X p) = � pm (X )� m (X ), by derivating we obtain the following

equality in the �nite étale Zp-algebra Zp[X ]=� m (X ):

� pm (X ) = pX p� 1� 0
m (X p)=� 0

m (X ) = p � unit :

Hence there existsU; V 2 Zp[X ] such that � pm (X )U(X ) + � m (X )V (X ) = p. For any

k � 1 we have� pk m (X ) = � pm

�
X pk � 1

�
, and the general case follows.
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Having chosen quadratic or hermitian lattices(� i ) i 2 I o
, there is a natural order in which

to proceed to enumerate the possible� I o . Let us focus on one orbito. To lighten notation

name the indices I o = f 1; : : : ; sg in such a way that for 1 � t � s, Pt j� mpk t where

0 � k1 < : : : < k s. Having �xed o we also drop the indicesI o from our notations. The

lemma tells us that for any 1 � t < s , p annihilates

Sat� (� 1 � : : : � � t+1 ) =(Sat� (� 1 � : : : � � t ) � � t+1 )

and thus we also have thatps� t annihilates

� =(Sat� (� 1 � : : : � � t ) � � t+1 � : : : � s) :

This will provide a sharper version of condition 3.3.2.1. LetB 0 be the sesquilinear (bi-

linear if � 2 = 1 ) form on � associated with h0. For any i 2 I o there is an orthogonal

decomposition with respect to B 0: � i =
L

r L (r )
i where eachL (r )

i is pr -modular for B 0,

i.e. p� r B 0j
L ( r )

i � L ( r )
i

takes values in Zp[� ] and is non-degenerate. For1 � t � s denote

M t = Sat � (� 1 � : : : � � t ), which can similarly be decomposed orthogonally with respect

to B 0: M t =
L

r M (r )
t . Note that M 1 = � 1. Analogously to condition 3.3.2.1, for1 � t < s

we have

L (r )
t+1 = M (r )

t = 0 unless0 � r � s � t: (3.3.2.3)

and if s = 1 we simply have that the hermitian (or quadratic) module (� 1; h0) over Zp[� ]

is regular. We can deduce a sharper version of condition 3.3.2.2. Ifs > 1 then

� (r )
1 = 0 unless � d1 � r � � d1 + ( s � 1)e1 (3.3.2.4)

for 1 < t � s; � (r )
t = 0 unless � dt � r � � dt + ( s � t + 1) et : (3.3.2.5)

while for s = 1 :
(

� (r )
1 = 0 if r 6= � d1 if p � 3 or m > 1,

� 1 is a regular quadratic Z2-module if p = 2 and m = 1 .
(3.3.2.6)

Let us recapitulate the algorithm thus obtained to enumerate non-uniquely the iso-

morphism classes of triples(� ; q; 
 ) such that (� ; q) is regular and
 is torsion. Begin with

a datum (A i ; 
 i ) i 2 I , i.e. �x the characteristic polynomial of 
 . For any orbit o for which

s = card( I o) > 1:

1. For any i 2 I o, enumerate the isomorphism classes of quadratic or hermitianZp[� i ]-

modules � i subject to conditions 3.3.2.4 and 3.3.2.5, computeB 0 on � i � � i and

throw away those which do not satisfy condition 3.3.2.3.

2. For any such family(� i ) i 2 I o , enumerate inductively the possibleSat� (� 1 � : : : � � t ).

At each step t = 1 ; : : : ; s, given a candidateM t for Sat� (� 1 � : : : � � t ), we have to

enumerate the candidatesM t+1 for Sat� (� 1 � : : : � � t ), i.e. the � -stable lattices

containing M t � � t+1 such that

(a) h0 is integral on M t+1 ,
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(b) both M t and � t+1 are saturated in M t+1 ,

(c) if t < s � 1, M t+1 satis�es condition 3.3.2.3,

(d) if t = s � 1, M t+1 (a candidate for � ) is regular for h0.

Remark 3.3.2.4. The �rst step can be re�ned, since already overQp there are obstructions

to the existence of a regular lattice. These obstructions exist only whenh0 = q is a quadratic

form, i.e. � 2
I o

= 1 , so let us make this assumption for a moment. Consider its discriminant

D = disc( q) 2 Q�
p =squares(Q�

p ). If rkZp � = 2 n is even, thenQp[X ]=(X 2 � (� 1)nD) is

unrami�ed over Qp. If rkZp � is odd, the valuation ofdisc(q)=2 is even. Moreover in any

case, once we �x the discriminant, the Hasse-Witt invariant ofq is determined. We do

not go into more detail. A subtler obstruction is given by the spinor norm of
 . Assume

that N = rk Zp � is at least 3, and for simplicity assume also thatdet(
 ) = 1 . The regular

lattice (� ; q) de�nes a reductive groupSO(q) over Zp. The fppf exact sequence of groups

over Zp

1 ! � 2 ! Spin (q) ! SO(q) ! 1

yields for any Zp-algebraR the spinor norm SO(q)(R) ! H 1
fppf (R; � 2) whose kernel is the

image of Spin (q)(R). Moreover if Pic(R) = 1 (which is the case ifR = Qp or Zp) we

have H 1
fppf (R; � 2) = R� =squares(R� ). Thus another obstruction is that the spinor norm

of 
 must have even valuation. We can compute the spinor norm of each
 i easily. If


 i = � 1 its spinor norm is simply the discriminant of the quadratic form hi . If i 62I triv

a straightforward computation shows that the spinor norm of
 i is NA i =Qp (1 + 
 i )dim A i Vi .

Note that it does not depend on the isomorphism class of the hermitian formhi .

Let us elaborate on the second step of the algorithm. For an orbito for which s = 1 ,

we simply have to enumerate the modules� 1 satisfying 3.3.2.6 and such that the resulting

quadratic form q (equivalently, h0) is regular.

We have not given an optimal method for the cases > 1. A very crude one consists in

enumerating all the freeFp[� ]-submodules inp� 1Zp=Zp 
 Zp (M t � � t+1 ) and keeping only

the relevant ones. The following example illustrates that one can do much better in many

cases.

Example 3.3.2.5. Consider the �second simplest� cases = 2 . Assume for simplicity that

p > 2 or m > 1. Then condition 3.3.2.3 shows that for any pair((� 1; h1); (� 2; h2)) found

at the �rst step of the algorithm, we have

� 1 = L (0)
1 � L (1)

1 and � 2 = L (0)
2 � L (1)

2

where eachL (r )
i is pr -modular. Moreover for any i 2 f 1; 2g the topologically unipotent

automorphism � i stabilises

pL(0)
i � L (1)

i = f v 2 � i j 8w 2 � i ; B 0
i (v; w) 2 pZp[� ]g

and thus � i induces a unipotent automorphism� i of (Vi ; � i ) where Vi = L (1)
i =pL(1)

i and

� i is a the non-degenerate quadratic or hermitian formp� 1h0
i mod p on Vi . It is easy to
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check that any relevant� � � 1 � � 2 is such that

p� =(p� 1 � p� 2) = f v1 � f (v1) j v1 2 V1g

for a unique isomorphismf : (V1; � 1; � 1) ! (V2; � � 2; � 2). Conversely such an isomorphism

yields a relevant� .

For p = 2 and m = 1 there is a similar but a bit more complicated description of the

relevant lattices � � � 1 � � 2. In that case each form� i is a �quadratic form modulo 4�,

i.e. x 7! hx; x i mod 4 where h�; �i is a symmetric bilinear form on a freeZ2-module N .

Note that hx; x i mod 4 only depends on the class ofx in F2 
 N . A further complication

comes into play whenrkZ2 (� 1) + rk Z2 (� 2) is odd, but we do not go into more detail.

In the case of an arbitrary s > 1, the observation made in example 3.3.2.5 still applies

at the last step t = s� 1, replacing (� 1; � 2) with (M s� 1; � s). We do not go into the details

of our implementation of the previous steps (t < s � 1). We merely indicate that in general

pM t+1 =(M t � � t+1 ) is still described using an isomorphismf between a� -stable subspace

of
L

r � 1 M (r )
t mod p and a � -stable subspace of

L
r � 1 L (r )

t mod p.

Remark 3.3.2.6. Regarding all the results of this section, the symplectic case is similar,

replacing �quadratic� by �symplectic� and �hermitian� by �antihermitian�, and even simpler

because the prime2 is �less exceptional�. More precisely, the classi�cation of hermitian

modules for e.g. the quadratic extensionZp[� pk ]=Zp[� pk + � � 1
pk ] is more involved for p = 2

than for the other primes (see [Jac62]), but once we have enumerated the possible iso-

morphism classes of� i 's, the enumeration of the relevant� � � i � i can be done uniformly

in p.

3.3.2.3 Orbital integrals for the unit in the unrami�ed Hecke algebra of a
p-adic classical group

In this section we show that thanks to the fact that orbital integrals are formally sums of

masses (where �mass� takes the same meaning as in �mass formula�, or in overly fancy terms,

the �measure of a groupoid�), they can be computed by counting instead of enumerating

and checking isomorphisms. As before we focus on the case of special orthogonal groups,

the case of symplectic groups being easier.

Let � 0 be a freeZp-module of �nite rank endowed with a regular quadratic form q0 and

consider the algebraic groupG = SO(� 0; q0) which is reductive over Zp. Let f = 1G (Zp )

be the characteristic function of G(Zp) and �x the Haar measure on G(Qp) such that
R

G (Zp ) dg = 1 . Let 
 0 2 G(Qp) be semisimple (for now we do not assume that it is

torsion), and let I 0 be its connected centraliser inG Qp . Fix a Haar measure� on I 0(Qp).

Consider the isomorphism classes of triples(� ; q; 
 ) such that

� � is a freeZp-module of �nite rank endowed with a regular quadratic form q,

� 
 2 SO(� ; q),

� there exists an isomorphism between(Qp 
 Zp � ; q; 
 ) and (Qp 
 Zp � 0; q0; 
 0).

61



We apply the previous section's notations and results to such(� ; q; 
 ). The last condition

can be expressed simply using the classical invariants of quadratic (overQp) or hermitian

(over Qp[
 i ]) forms, as in Proposition 3.3.2.2. It implies that I 0 and the connected cent-

raliser I of 
 in SO(Qp 
 Zp � ; q) are isomorphic, and by Remark 3.3.1.1 we can see� as a

Haar measure onI (Qp). Then

O
 0 (f (g)dg) =

0

@
X

(� ;q;
 )

� (I (Qp) \ SO(� ; q)) � 1

1

A �

where the sum ranges over isomorphism classes as above. Note thatI (Qp) \ SO(� ; q)

stabilises each� i , so that it is a subgroup of
Q

i � i � I (Qp) where

� i =

(
SO(� i ; hi ) if i 2 I triv

U(� i ; hi ) if i 2 I �eld [ I split :

In fact I (Qp) \ SO(� ; q) is the stabiliser of � =
L

i � i for the action of
Q

i � i on (Qp=Zp) 
 Zp

(
L

i � i ). Grouping the terms in the above sum according to the isomorphism classes of

the quadratic or hermitian modules � i , we obtain

O
 0 (f (g)dg) =

0

@
X

(� i ;h i ) i 2 I

ext ((� i ; hi ) i )
� (

Q
i � i )

1

A �: (3.3.2.7)

Now the sum ranges over the isomorphism classes of quadratic or hermitian lattices(� i ; hi )

over Zp[
 i ], which become isomorphic to the corresponding datum for(Qp 
 Zp � 0; q0; 
 0)

when p is inverted, and

ext ((� i ; hi ) i ) := card

(

q-regular (� i 
 i )-stable � �
M

i

� i j 8i; � i saturated in �

)

:

We will study the volumes appearing at the denominator below, but for the moment we

consider these numerators. Motivated by the global case, assume from now on that
 0 is

torsion as in the end of the previous section. It is harmless to restrict our attention to a

single orbit o, and assumeI = I o. For the computation of orbital integrals, the bene�t

resulting from the transformation above is that instead of enumerating the possibleM t+1

knowing M t at the last step t = s � 1, we only have to count them. Let us discuss the

various cases that can occur, beginning with the simplest ones.

The unrami�ed case corresponds tos = 1 and A1 = Qp[
 1] = Qp[� ], and in that case

there is a unique relevant isomorphism class(� 1; h1). It is easy to check that we recover

Kottwitz's result [Kot86][Corollary 7.3] that the orbital integral equals 1 for the natural

choice of Haar measures.

The case wheres = 1 but Qp[
 1]=Qp[� ] can be non-trivial (i.e. rami�ed) is not much

harder: the algorithm given in the previous section identi�es the relevant isomorphism

classes(� 1; h1) appearing below the sum, andext(� 1; h1) = 1 . In this case we have

reduced the problem of computing the orbital integral by that of computing the volume of

the stabilisers of some lattices. WhenG = Sp2 = SL2 it is the worst that can happen.
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The �rst interesting case is s = 2 . Assume for simplicity that p > 2 or m > 1, and let us

look back at example 3.3.2.5, using the same notations. Thenext((� 1; h1); (� 2; h2)) = 0

unless (V1; � 1; � 1) ' (V2; � � 2; � 2), in which case ext((� i ; hi ) i ) = card (Aut( V1; � 1; � 1)) .

This group is the centraliser of a unipotent element in a classical group over a �nite �eld.

Results of Wall [Wal63] give the invariants of such conjugacy classes as well as formulae

for their centralisers. In many cases (e.g. ifrkZp (�) < p 2 � 1) the automorphism � 1 of

V1 is trivial, and thus we do not need the general results of Wall, but merely the simple

cardinality formulae of �nite classical groups. For G = Sp4 or SO4 we haves � 2 and

� 1jV1 = 1 at worst.

When s > 2 the situation is of course more complicated, and it seems that we cannot

avoid the enumeration of successive latticesM t+1 � M t � � t+1 for t < s � 1, although the

last step t = s � 1 is identical to the above case. Note however that these �very rami�ed�

cases are rare in low rank. More preciselyrkZp � � ps� 1, e.g. in rank less than25 it can

happen that s > 2 only for p = 2 ; 3. Thus the �worst cases� havep = 2 . This is fortunate

because for �xed k and n the number of k-dimensional subspaces in ann-dimensional

vector space over a �nite �eld with q elements increases dramatically withq.

Remark 3.3.2.7. In the case whereG is an even special orthogonal group, some of the

semisimple conjugacy classes inG(Qp) were parametrised only up to outer conjugation.

Since G(Zp) is invariant by an outer automorphism ofG, for any 
 0; 
 0
0 2 G(Qp) which

are conjugate by an outer automorphism ofG Qp , the orbital integrals for f (gp)dgp at 
 0

and 
 0
0 are equal. Of course the above formula for the orbital integral is valid for both.

3.3.2.4 Local densities and global volumes

To complete the computation of adèlic orbital integrals we still have to evaluate the de-

nominators in formula 3.3.2.7 and the global volumes. Formulae for local densities and

Smith-Minkowski-Siegel mass formulae are just what we need. But we will use the point of

view suggested by [Gro97] and used in [GP05], i.e. �x canonical Haar measures to see local

orbital integrals as numbers. For this we need to work in a slightly more general setting

than cyclotomic �elds.

If k is a number �eld or a p-adic �eld, denote by Ok its ring of integers. If k is a number

�eld Ak = k 
 Q A will denote the adèles ofk.

Let k be a number �eld or a local �eld of characteristic zero, and let K be a �nite

commutative étale k-algebra such thatdimk K � 2, i.e. K = k or k � k or K is a quadratic

�eld extension of k. Let � be such that Aut k (K ) = f IdK ; � g. This determines � . Let V

be a vector space overK of dimension r � 0. Let � 2 f 1; � 1g, and assume that� = 1 if

dimk K = 2 . Assume that V is endowed with a non-degenerate� -sesquilinear formh�; �i

such that for any v1; v2 2 V we havehv2; v1i = �� (hv1; v2i ). Let G = Aut (V;h�; �i )0 be

the connected reductive group overk associated with this datum. Then G is a special

orthogonal (K = k and � = 1 ), symplectic (K = k and � = � 1), unitary ( K=k is a

quadratic �eld extension and � = 1 ) or general linear (K = k � k and � = 1 ) group.

If k is a number �eld, by Weil [Wei82] the Tamagawa number� (G) equals2 (resp. 1)

in the orthogonal case if r � 2 and V is not a hyperbolic plane (resp. if r = 1 or V is
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a hyperbolic plane), 1 in the symplectic case,2 in the unitary case if r > 0 and 1 in the

general linear case.

If k is a p-adic �eld, consider a lattice N in V , i.e. a �nite free OK -module N � V such

that V = KN . Denote N _ = f v 2 V j 8w 2 N; hv; wi 2 O K g. If h�; �ij N � N takes values in

OK then N _ � N and we can consider[N _ : N ], i.e. the cardinality of the �nite abelian

group N _ =N. In general de�ne [N _ : N ] as [N _ : N _ \ N ]=[N : N _ \ N ]. Recall also

[GY00][De�nition 3.5] the density � N associated with(N; h�; �i ).

In [Gro97] Gross associates a motiveM of Artin-Tate type to any reductive group over

a �eld. For the groups G de�ned above, letting n be the rank of G, we have

M =

8
><

>:

L n
x=1 Q(1 � 2x) orthogonal case withr odd and symplectic case,

� Q(1 � n) �
L n� 1

x=1 Q(1 � 2x) orthogonal case withr > 0 even,
L n

x=1 � xQ(1 � x) unitary and general linear cases.

In the orthogonal case with r > 0 even let (� 1)nD be the discriminant of (V;h�; �i ) (i.e.

the determinant of the Gram matrix), then � is de�ned as the characterGal(k(
p

D)=k) !

f� 1g which is non-trivial if D is not a square ink. In the general linear case� is trivial,

and in the unitary case � is the non-trivial character of Gal(K=k ). For L-functions and

� -factors we will use the same notations as [Gro97].

If k is a number �eld Dk will denote the absolute value of its discriminant. For K = k

or K = k � k denote DK=k = 1 , whereas for a quadratic �eld extensionK of k we denote

DK=k = jNK= Q(DK=k )j where DK=k is the di�erent ideal of K=k and the absolute value of

the ideal mZ of Z is m if m � 1. There are obvious analogues over anyp-adic �eld, and

Dk (resp. DK=k ) is the product of Dkv (resp. DK v =kv where K v = kv 
 k K ) over the �nite

placesv of k.

For (k; K; �; V h�; �i ) (local or global) as above de�ne as in [GY00]

n(V ) =

(
r + � if K = k;

r if dimk K = 2

and

� =

8
><

>:

2r in the orthogonal case withr even,

2(r +1) =2 in the orthogonal case withr odd,

1 in the symplectic, unitary and general linear cases.

Finally, consider the case wherek = R and G(R) has discrete series, i.e. the Euler-Poincaré

measure onG(R) is non-zero, i.e.G has a maximal torus T which is anisotropic. Re-

call Kottwitz's sign e(G) = ( � 1)q(G ) and the positive rational number c(G) de�ned in

[Gro97][Ÿ8]. Explicitly,

c(G) =

8
><

>:

1 in the symplectic case,

2n=
� n

ba=2c

�
in the orthogonal case with signature(a; b); b even,

2n=
� n

a

�
in the unitary case with signature (a; b):

The following theorem is a reformulation of the mass formula [GY00][Theorem 10.20]

in our special cases.
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Theorem 3.3.2.8. Let k be a totally real number �eld and letK , � , (V;h�; �i ) and G be as

above. LetM denote the Gross motive ofG. Assume that for any real placev of k, G(kv)

has discrete series. De�ne a signed Haar measure� =
Q

v � v on G(Ak ) as follows. For

any real placev of k, � v is the Euler-Poincaré measure onG(kv). For any �nite place v of

k, � v is the canonical measureL v(M _ (1)) j! G k v
j on G(kv) (see [Gro97][Ÿ4]). In particular,

for any �nite place v such that G kv is unrami�ed, the measure of a hyperspecial compact

subgroup ofG(kv) is one. Then for any OK -lattice N in V ,

Z

G (k)nG (Ak )
� = � (G) � L (M ) �

D dim G =2
k D r (r +1) =4

K=k

� (M )
�

Y

vj1

(� 1)q(G k v )

c(G kv )

� � dim Q k
Y

v �nite

[N _
v : Nv ]n(V )=2 � � v (G(kv) \ GL(Nv))

L v(M _ (1)) � N v

Proof. To get this formula from [GY00][Theorem 10.20], use the comparison of measure at

real places [Gro97][Proposition 7.6], the fact thatL v(M _ (1)) � N v = 1 for almost all �nite

places ofk, and the functional equation �( M ) = � (M )�( M _ (1)) (see [Gro97][9.7]).

Note that the choice of � at the �nite places does not play any role. This choice was

made to compare with the very simple formula [Gro97][Theorem 9.9]:
Z

G (k)nG (Ak )
� = � (G) � L (M ) �

Y

vj1

(� 1)q(G k v )

c(G kv )
: (3.3.2.8)

We obtain that under the hypotheses of the theorem,

Y

v �nite

� v (G(kv) \ GL(Nv)) =
� (M )� � dim Q k

D dim G =2
k D r (r +1) =4

K=k

Y

v �nite

L v(M _ (1)) � N v

[N _
v : Nv ]n(V )=2

: (3.3.2.9)

We can compute explicitely

� (M )

D dim G =2
k D r (r +1) =4

K=k

=

8
>><

>>:

D � n=2
K=k in the unitary case if r = n is even,

�
�Nk=Q(� )

�
�n� 1=2 in the orthogonal case ifr is even,

1 otherwise,

where in the second case(� 1)nD is the discriminant of h�; �i and � is the discriminant of

k(
p

D)=k. As the proof of the following proposition shows, the factor� � dim Q k , which is

nontrivial only in the orthogonal cases, is local at the dyadic places.

Proposition 3.3.2.9. Let p be a prime. Let k0 be ap-adic �eld and let (K 0; �; V 0; h�; �i 0)

and G 0 be as above. Let� 0 be the canonical Haar measureL(M _ (1)) j! G 0 j on G 0(k0).

If p = 2 , K 0 = k0 and � = 1 , let x0 = � � dim Q2 k0 , otherwise let x0 = 1 . Then for any

OK 0 -lattice N0 in V0,

� 0 (G 0(k0) \ GL(N0)) = L(M _ (1)) � x0 � � N0 � [N _
0 : N0]� n(V0 )=2

�

8
>><

>>:

D � n=2
K 0=k0

in the unitary case if r = n is even,
�
�Nk0=Qp (� 0)

�
�n� 1=2 in the orthogonal case ifr is even,

1 otherwise,
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where in the second case(� 1)nD0 is the discriminant of h�; �i 0 and � 0 is the discriminant

of k0(
p

D0)=k0.

Proof. We apologise for giving a global proof of this local statement. We only give details

for the hardest case of orthogonal groups.

When p > 2 and the symmetric bilinear form h�; �i 0jN0 � N0 is integer-valued and non-

degenerate,G 0 is the generic �ber of a reductive group overOk0 and the equality is obvious.

Note that this does not apply for p = 2 , even assuming further that the quadratic form

v 7! hv; vi 0=2 is integer-valued onN0, because the local density� N0 is de�ned using the

bilinear form h�; �i 0, not the quadratic form v 7! hv; vi 0=2.

Next consider the casep = 2 and N0 arbitrary. By Krasner's lemma there ex-

ists a totally real number �eld k and a quadratic vector space(V;h�; �i ) which is posit-

ive de�nite at the real places of k and such that k has a unique dyadic placev0 and

(k0; V0; h�; �i 0) ' (kv0 ; kv0 
 k V;h�; �i ). Let S be the �nite set of �nite places v 6= v0 of k

such that (kv 
 k V;h�; �i ) is rami�ed, i.e. does not admit an integer-valued non-degenerate

Okv -lattice. For any v 2 S there is a �nite extension E (v) of kv over which (kv 
 k V;h�; �i )

becomes unrami�ed. By Krasner's lemma again there exists a �nite extensionk0 of k

which is totally split over the real places ofk and over v0 and such that for any v 2 S, the

kv-algebrakv 
 k k0 is isomorphic to a product of copies ofE (v) . Let S0 be the set of dyadic

places ofk0, i.e. the set of places ofk0 abovev0. There exists a lattice N 0 in k0
 k V such

that for any �nite v 62S0 the symmetric bilinear form h�; �ij N 0
v � N 0

v
is integer-valued and

non-degenerate, and for anyv 2 S0 we haveh�; �i N 0
v � N 0

v
' h� ; �i 0jN0 � N0 . Applying formula

3.3.2.9 we obtain the desired equality to the powercard(S0), which is enough because all

the terms are positive real numbers. Having established the dyadic case, the general case

can be established similarly.

The unitary case is similar but simpler, because the dyadic places are no longer excep-

tional and it is su�cient to take a quadratic extension k0=k in the global argument. The

symplectic and general linear cases are even simpler.

Remark 3.3.2.10. 1. In this formula, one can check case by case that the product of

[N _
0 : N0]� n(V0 )=2 and the last term is always rational, as expected since all other

terms are rational by de�nition.

2. We did not consider the case where� = � 1 and K=k is a quadratic �eld extension,

i.e. the case of antihermitian forms, although this case is needed to compute orbital

integrals for symplectic groups. Ify 2 K � is such that � (y) = � y, multiplication by

y induces a bijection between hermitian and antihermitian forms, and of course the

automorphism groups are equal.

3. There are other types of classical groups considered in [GY00] and which we left

aside. For a central simple algebraK over k with dimk K = 4 (i.e. K = M 2(k) or

K is a quaternion algebra overk) they also consider hermitian (resp. antihermitian)

forms over a K -vector space. The resulting automorphism groups are inner forms

of symplectic (resp. even orthogonal) groups. Using the same method as in the proof
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of the proposition leads to a formula relating the local density� N0 to the canonical

measure ofAut( N0) in these cases as well.

We use the canonical measure de�ned by Gross (called� v above) when computing local

orbital integrals. In the previous section we explained how to compute the numerators in

formula 3.3.2.7 for the local orbital integrals. Proposition 3.3.2.9 reduces the computation

of the denominators to that of local densities. Using an elegant method of explicitly

constructing smooth models, Gan and Yu [GY00] give a formula for� N0 for p > 2 in

general and forp = 2 only in the case of symplectic and general linear groups and in the

case of unitary groups ifK 0=k0 is unrami�ed. Using a similar method Cho [Choa] gives

a formula in the case of special orthogonal groups whenp = 2 and k0=Q2 is unrami�ed.

This is enough for our computations since we only need the casek0 = Q2. For m � 1

and � = � m the quadratic extension Q(� )=Q(� + � � 1) is rami�ed over a dyadic place if

and only if m is a power of2. In this case the di�erent DQ2 (� )=Q2 (� + � � 1 ) is generated by

a uniformiser of Q2(� + � � 1), which is the minimal rami�cation that one can expect from

a rami�ed quadratic extension in residue characteristic2. Cho [Chob][Case 1] also proved

an explicit formula for the local density in this case. To be honest [Chob] only asserts it

in the case wherek0 is unrami�ed over Q2. Nevertheless the proof in �Case 1� does not

use this assumption. This completes the algorithm to compute the local orbital integrals

in all cyclotomic cases overQ. Note that the result is rational and the computations are

exact (i.e. no �oating point numbers are used).

Finally, the global volume is evaluated using Gross' formula 3.3.2.8. The value ofL (M )

is known to be rational and computable by [Sie69]. However, we only need the values of

L (M ) for M which is a direct sum of Tate twists of cyclotomic Artin motives (concretely,

representations ofGal(E=F ) where E is contained in a cyclotomic extension ofQ). Thus

we only need the values of Dirichlet L-functions at non-negative integers, i.e. the values of

generalised Bernoulli numbers (see e.g. [Was97]).

Remark 3.3.2.11. Formally it is not necessary to use the results of [Gro97] to com-

pute the factors Vol( I (Q)nI (A)) in formula 3.3.1.1, the mass formula in [GY00] along

with the formulae for the local densities� N0 would su�ce. Apart from the fact that it is

less confusing and more elegant to clearly separate local and global measures, using Gross'

canonical measure, which is compatible between inner forms by de�nition, allows to com-

pute � -orbital integrals once we have computed orbital integrals. The fundamental lemma

gives a meaningful way to check the results of computations of orbital integrals. More pre-

cisely we need the formulation of the fundamental lemma for semisimple singular elements

[Kot86][Conjecture 5.5] which has been reduced to the semisimple regular case by [Kot88][Ÿ3]

and [LS90][Lemma 2.4.A]. For an unrami�ed endoscopic group the fundamental lemma for

the unit of the unrami�ed Hecke algebra at regular semisimple elements is a consequence

of the work of Hales, Waldspurger and Ngô. The case of a rami�ed endoscopic group is

[Kot86][Proposition 7.5]: the � -orbital integral simply vanishes.
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3.3.2.5 Short description of the global algorithm

Let G be one ofSO2n+1 or Sp2n or SO4n over Z, let
Q

p f p be the characteristic function

of G(bZ) and
Q

p dgp the Haar measure onG(Af ) such that G(bZ) has measure one. Let�

be a dominant weight for G C and let f 1 ;� (g1 )dg1 be the distribution on G(R) de�ned

in section 3.3.1.1. Denotef (g)dg = f 1 ;� (g1 )dg1
Q

p f p(gp)dgp. We give a short summary

of the algorithm computing Tell(f (g)dg) for a family of dominant weights � , by outlining

the main steps. RealiseG as SO(� ; q) (resp. Sp(� ; a)) where � is a �nite free Z-module

endowed with a regular quadratic formq (resp. nondegenerate alternate forma). Denote

N = rank Z(�) .

1. Enumerate the possible characteristic polynomials in the standard representation of

G for 
 2 C(G(Q)) . That is, enumerate the polynomialsP 2 Q[X ] unitary of degree

d such that all the roots of P are roots of unity, and the multiplicity of � 1 as root

of P is even.

2. For each suchP, and for any prime numberp, in Qp[X ] write P =
Q

i Pi as in section

3.3.2.1. For any i , enumerate the �nite set of isomorphism classes of quadratic or

hermitian (resp. alternate or antihermitian) lattices (� i ; hi ) as in section 3.3.2.2. For

almost all primes p, the minimal polynomial rad(P) = P=gcd(P; P0) is separable

modulo p, there is a unique isomorphism class(� i ; hi ) to consider and hi is non-

degenerate. Thus we only need to consider a �nite set of primes.

3. The combinations of these potential local data determine a �nite set of conjugacy

classes inG(Q).

4. For any such conjugacy class overQ, compute the local orbital integrals using section

3.3.2.3 and Proposition 3.3.2.9. Compute the global volumes using Gross' formula

3.3.2.8.

5. Let C0 be the set of G(Q)-conjugacy classes inC(G(Q)) . For c 2 C0 de�ne the

�mass� of c

mc =
X

cl( 
 )2 c

Vol( I (Q)nI (A))
card(Cent(
; G(Q))=I (Q)))

so that

Tell(f (g)dg) =
X

c2 C0

mcTr( cj V� ):

Using Weyl's character formula, we can �nally compute Tell(f (g)dg) for the dom-

inant weights � we are interested in. Some conjugacy classesc 2 C0 are singular,

so that a re�nement of Weyl's formula is needed: see [CC09][Proposition 1.9] and

[CR14][Proposition 2.3].

We give tables of the massesmc in section 3.7.1, for the groups of rank� 4. Our

current implementation allows to compute these masses at least up to rank6 (and for

Sp14 also), but starting with rank 5 they no longer �t on a single page.
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Remark 3.3.2.12. In the orthogonal case the groupG is not simply connected and thus in

G(Q) there is a distinction between stable conjugacy and conjugacy inG(Q). However, if


; 
 0 2 C(G(Q)) both contribute non-trivially to Tell(f (g)dg) and are conjugated inG(Q),

then they are stably conjugate. Indeed their spinor norms have even valuation at every

�nite prime, and are trivial at the archimedean place since they each belong to a compact

connected torus, therefore their spinor norms are both trivial. This implies that they lift to

elements~
; ~
 0 in the spin group G sc(Q), and moreover we can assume that~
 and ~
 0 are

conjugated in G sc(Q), which means that they are stably conjugate.

This observation allows to avoid unnecessary computations: if the spinor norm of
 is

not equal to1, the global orbital integralO
 (f (g)dg) vanishes.

3.3.3 Computation of the parabolic terms using elliptic terms for groups
of lower semisimple rank

In the previous sections we gave an algorithm to compute the elliptic terms in Arthur's trace

formula in [Art89a]. After recalling the complete geometric side of the trace formula, i.e.

the parabolic terms, we explain how the archimedean contributions to these terms simplify

in our situation where the functions f p at the �nite places have support contained in a

compact subgroup. The result is that we can express the parabolic terms very explicitely

(perhaps too explicitely) using elliptic terms for groups of lower semisimple rank in section

3.3.3.4.

3.3.3.1 Parabolic terms

Let us recall the geometric side of the trace formula given in [Art89a][Ÿ6]. We will slightly

change the formulation by using Euler-Poincaré measures on real groups instead of trans-

ferring Haar measures to compact inner forms. The translation is straightforward using

[Kot88][Theorem 1]. Let G be one ofSO2n+1 , Sp2n or SO4n . Of course the following

notions and Arthur's trace formula apply to more general groups.

First we recall the de�nition of the constant term at the �nite places. Let p be a

�nite prime, and denote K = G(Zp). Let P = MN be a parabolic subgroup ofG

having unipotent radical N admitting M as a Levi subgroup. SinceK is a hyperspecial

maximal compact subgroup ofG(Qp) it is �good�: there is an Iwasawa decomposition

G(Qp) = K P(Qp). When p is not ambiguous write � P (m) = j det(m j Lie(N )) jp. In

formulae we require the Haar measures on the unimodular groupsG(Qp), M (Qp) and

N (Qp) to be compatible in the sense that for any continuoush : G(Qp) ! C having

compact support,
Z

G (Qp )
h(g)dg =

Z

K � N (Qp )� M (Qp )
h(knm) dk dn dm =

Z

K � N (Qp )� M (Qp )
h(kmn)� P (m) dk dn dm:

If f p(g)dg is a smooth compactly supported distribution onG(Qp), the formula

f p;M (m) = � P (m)1=2
Z

K

Z

N (Qp )
f p(kmnk � 1)dndk
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de�nes a smooth compactly supported distribution f p;M (m)dm on M (Qp). Although

it seems to depend on the choice ofN and the good compact subgroupK , the or-

bital integrals of f p;M (m)dm at semisimple G-regular elements ofM (Qp) only depend

on f p (see [vD72][Lemma 9]). The case of arbitrary semisimple elements follows us-

ing [Kaz86][Theorem 0]. Whenf p is the characteristic function 1G (Zp ) of G(Zp) (and

vol(G(Zp)) = 1 ), the fact that T 0 is de�ned over Zp and the choiceK = G(Zp) imply that

for any choice ofN , f p;M = 1M (Zp ) (if vol(M (Zp)) = 1 ).

We can now de�ne the factors appearing on the geometric side of the trace formula.

As for elliptic terms, consider a smooth compactly supported distribution
Q

p f p(gp)dgp

on G(Af ). Fix a split maximal torus T 0 of G (over Z). The geometric side is a sum

over Levi subgroupsM containing T 0, they are also de�ned overZ. For such M , denote

by A M the connected center ofM and let C(M (Q)) be the set of semisimple conjugacy

classes of elements
 2 M (Q) which belong to a maximal torus ofM R which is anisotropic

modulo (A M )R = A M R . If 
 is (a representative of) an element ofC(M (Q)) , let I denote

the connected centraliser of
 in M . De�ne �M (
 ) = jCent(
; M (Q))=I (Q)j. For any

�nite prime p, to f p(gp)dgp we associate the complex Haar measureO
 (f p;M ) on I (Qp).

For p outside a �nite set (containing the primes at which I is rami�ed), the measure of a

hyperspecial maximal compact subgroup ofI (Qp) is 1. De�ne a complex Haar measure on

I (A)=A M (A) as follows:

� Give I (R)=A M (R) its Euler-Poincaré measure. It is nonzero by our assumption on


 .

� Give A M (Qp) its Haar measure such that its maximal compact subgroup (in the

case at handA M (Zp)) has measure1, and endowI (Qp)=A M (Qp) with the quotient

measure.

Now �x a dominant weight � for G and denote� = � + � (where2� is the sum of the pos-

itive roots) the associated in�nitesimal character. For f (g)dg = f 1 ;� (g1 )dg1
Q

p f p(gp)dgp,

the last ingredient occurring in Tgeom(f (g)dg) is the continuous function 
 7! � M (
; � )

de�ned for semisimple 
 2 M (R) which belong to a maximal torus of M R which is an-

isotropic modulo (A M )R. This function will be de�ned in terms of characters of discrete

series and studied at compact elements
 in section 3.3.3.3. If 
 does not satisfy these

properties de�ne � M (
; � ) = 0 .

The geometric sideTgeom(f (g)dg) of the trace formula is

X

M � T 0

�
� 1
2

� dim A M jW (T 0; M )j
jW (T 0; G)j

X


 2 C(M (Q))

vol (I (Q)nI (A)=A M (A))
card (Cent(
; M (Q))=I (Q))

� M (
; � ):

(3.3.3.1)

After the de�nition of the function � M it will be clear that the term corresponding to

M = G is Tell(f (g)dg).
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3.3.3.2 Sums of averaged discrete series constants

Harish-Chandra gave a formula for the character of discrete series representations of a

real reductive group at regular elements of any maximal torus. This formula is similar

to Weyl's character formula but it also includes certain integers which can be computed

inductively. In the case of averaged discrete series this induction is particularly simple. We

recall the characterisation of these integers given in [GKM97][Ÿ3] and compute their sum

and alternate sum. When the support of
Q

p f p(gp)dgp is contained in a compact subgroup

of G(Af ), in the trace formula only these alternate sums need to be computed, not the

individual constants.

Let X be a real �nite-dimensional vector space andR a reduced root system inX � .

Assume that � Id 2 W (R), i.e. any irreducible component ofR is of type A1, Bn (n � 2),

Cn (n � 3), D2n (n � 2), E7, E8, F4 or G2. If R1 is a subsystem ofR having the

same property, letting R2 be the subsystem ofR consisting of roots orthogonal to all

the roots in R1, � IdRR2 2 W (R2) by [Bou68][ch. V, Ÿ3, Proposition 2], andrank(R) =

rank(R1)+ rank( R2). In particular for � 2 R, R� := f � 2 R j � (� _ ) = 0 g is a root system

in Y � where Y = ker � .

Recall that X reg := f x 2 X j 8� 2 R; � (x) 6= 0g, and de�ne X �
reg similarly with respect

to R_ . For x 2 X reg we denote by� x the basis of simple roots ofR associated with the

chamber containingx. There is a unique collection of functions�cR : X reg � X �
reg ! Z for

root systemsR as above such that:

1. �c; (0; 0) = 1 ,

2. for all (x; � ) 2 X reg � X �
reg such that � (x) > 0, �cR (x; � ) = 0 ,

3. for all (x; � ) 2 X reg � X �
reg and � 2 � x , �cR (x; � ) + �cR (s� (x); � ) = 2�cR � (y; � jY ) where

Y = ker � and y = ( x + s� (x))=2.

In the third property note that for any � 2 R r f� � g such that � (x) > 0, � (y) > 0:

writing � =
P


 2 � x
n
 
 with n
 � 0, we have

� (y) = � (x) �
� (x)� (� _ )

2
=

X


 2 � x r f � g

n


�

 (x) �


 (� _ )� (x)
2

�
> 0: (3.3.3.2)

In the second property we could replace �� (x) > 0� by the stronger condition that R 6= ;

and x and � de�ne the same order: f � 2 R j � (x) > 0g = f � 2 R j � (� _ ) > 0g. By

induction �cR is locally constant, and W (R)-invariant for the diagonal action of W (R) on

X reg � X �
reg.

The existence of these functions follows from Harish-Chandra's formulae and the ex-

istence of discrete series for the split semisimple groups overR having a root system as

above. However, [GKM97] give a direct construction.

Let x0 2 X reg and � 0 2 X �
reg de�ne the same order. For w 2 W (R) de�ne d(w) =

�cR (x0; w(� 0)) = �cR (w� 1(x0); � 0).
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Proposition 3.3.3.1. Let R be a root system as above, and denote byq(R) the integer

(jRj=2 + rank( R)) =2. Then

X

w2 W (R)

d(w) = jW (R)j and
X

w2 W (R)

� (w)d(w) = ( � 1)q(R) jW (R)j:

Proof. The two formulae are equivalent by [GKM97][Theorem 3.2] so let us prove the �rst

one by induction on the rank of R. The case ofR = ; is trivial. Assume that R is

not empty and that the formula holds in lower rank. Denote W = W (R). For � 2 R

let C� = f x 2 Wx0 j � 2 � xg and D� the orthogonal projection of C� on Y = ker � .

Geometrically, C� represents the chambers adjacent to the wallY on the side determined

by � . For x 2 C� , by a computation similar to 3.3.3.2, orthogonal projection onY maps the

chamber containingx onto a connected component ofY r
S

� 2 Rnf� � g ker � , i.e. a chamber

in Y relative to R. Thus the projection C� ! D � is bijective and in any R� -chamber ofY

there is the same numberjD � j=jW (R� )j of elements inD� .

rank(R)
X

w2 W

d(w) =
X

x2 W x 0

X

� 2 � x

�cR (x; � 0)

=
1
2

X

� 2 R

X

x2C�

�cR (x; � 0) + �cR (s� (x); � 0)

=
X

� 2 R

X

y2D �

�cR � (y; � 0jY )

=
X

� 2 R

jD � j =
X

x2 W x 0

j� x j = rank( R)jW j:

At the second line we used the permutation� 7! � � of R and the fact that x 2 C� ,

s� (x) 2 C� � .

3.3.3.3 Character of averaged discrete series on non-compact tori

In this section we consider a reductive groupG over R which has discrete series. To

simplify notations we assume thatG is semisimple, as it is the case for the symplectic and

special orthogonal groups. Fix a dominant weight� for G C, and let � = � + � where 2�

is the sum of the positive roots. LetM be a Levi subgroup ofG and denote byA M the

biggest split central torus in M . If 
 2 M (R) is semisimple,G-regular and belongs to a

maximal torus anisotropic modulo A M , de�ne

� M (
; � ) := ( � 1)q(G (R))
�
�D G

M (
 )
�
�1=2 X

� 1 2 � disc (� )

� � 1 (
 )

where D G
M (
 ) = det (Id � Ad( 
 ) j g=m). Note that for 
 2 G(R) semisimple elliptic reg-

ular, � G (
; � )� EP;I (R) = Tr ( 
 jV� ) � EP;I (R) = O
 (f � (g)dg) where f � (g)dg is the smooth

compactly supported distribution of section 3.3.1.1.

When M � Q R admits a maximal torus T anisotropic modulo A M � Q R, Arthur shows

that � M (�; � ) extends continuously toT (R) (beware that the statement [Art89a][(4.7)] is

erroneous: in general� M (
; � ) is not identically zero outside the connected components
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that intersect the center of G). Following [GKM97][Ÿ4], to which we refer for details, let

us write the restriction of � M (�; � ) to any connected component ofT (R)G � reg as a linear

combination of traces in algebraic representations ofM .

Let R be the set of roots ofT on G (over C). Let RM be the set of roots ofT on

M . Let 
 2 T (R) be G-regular, and let � be the connected component of
 in T (R). Let

R� be the set of real roots� 2 R such that � (
 ) > 0. As the notation suggests, it only

depends on� . Moreover R� and RM are orthogonal sub-root systems ofR: the coroots of

RM factor through T \ M der which is anisotropic, while the roots inR� factor through the

biggest split quotient of T . Finally � M (
; � ) = 0 unless
 belongs to the image ofG sc(R),

and in that case the Weyl group W (R� ) of R� contains � Id and rk( R� ) = dim A M . In

the following we assume that
 2 Im( G sc(R) ! G(R)) .

Since
 is G-regular, it de�nes a set of positive rootsR+

 = f � 2 R
 j � (
 ) > 1g in R� .

Choose a parabolic subgroupP = MN with unipotent radical N such that R+

 is included

in the set of roots of T on N . In general this choice is not unique. Choose any set of

positive roots R+
M for RM . There is a unique Borel subgroupB � P of G containing T

such that the set of roots ofT on B \ M is R+
M . Let R+ be the set of positive roots inR

corresponding toB .

There is a uniquex 
 2 (RR� ) � = R 
 Z X � (A M ) such that for any � 2 R� , � (x 
 ) =

� (
 ). Then x 
 is R� -regular and the chamber in which x 
 lies only depends on the

connected component of
 in T (R)G � reg. Denote by pr the orthogonal projection R 
 Z

X � (T ) ! RR� . When we identify RR� with R 
 Z X � (A M ), pr is simply �restriction to

A M �. By [GKM97][proof of Lemma 4.1 and end of Ÿ4] we have

� M (
; � ) =
� P (
 )1=2

Q
� 2 R+

M
(1 � � (
 ) � 1)

X

w2 W (R)

� (w)�cR � (x 
 ; pr(w(� B ))) [ w(� B ) � � B ] (
 )

where

� P (
 ) = jdet (
 j Lie(N )) j =
Y

� 2 R+ � R+
M

j� (
 )j :

Since� B � � B \ M is invariant under W (RM ), in the above sum we can combine terms in the

same orbit underW (RM ) to identify Weyl's character formula for algebraic representations

of M . Let E =
�

w 2 W (R) j 8� 2 R+

 [ R+

M ; w� 1(� ) 2 R+
	

, a set of representatives

for the action of W (R� ) � W (RM ) on the left of W (R). Denoting VM ;� 0 the algebraic

representation ofM with highest weight � 0, we obtain

� M (
; � ) = � P (
 )1=2
X

w02 E

X

w12 W (R � )

� (w1w0)d(w1)Tr
�

 jVM ;w1w0 (� B )� � B

�

Furthermore w1w0(� B ) � w0(� B ) 2 ZR� is invariant under W (RM ), hence in the above

sum

Tr
�

 jVM ;w1w0 (� B )� � B

�
= [ w1w0(� B ) � w0(� B )] ( 
 ) � Tr

�

 jVM ;w0 (� B )� � B

�

and [w1w0(� B ) � w0(� B )] ( 
 ) is a positive real number, which does not really depend on
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but only on the coset (T \ M der)(R)
 (equivalently, on x 
 ). Finally we obtain

� M (
; � ) = � P (
 )1=2
X

w02 E

� (w0)

"
X

w12 W (R � )

� (w1)d(w1) [w1w0(� B ) � w0(� B )] ( 
 )

� Tr
�

 jVM ;w0 (� B )� � B

�
#

:

This formula is valid for 
 in the closure (in T (R)) of a connected component ofT (R)G � reg.

Proposition 3.3.3.2. If 
 is compact, i.e. the smallest closed subgroup ofG(R) containing


 is compact, then we have

� M (
; � ) = ( � 1)q(R � ) jW (R� )j
X

w02 E

� (w0)Tr
�

 jVM ;w0 (� B )� � B

�
:

Proof. This formula follows from [w1w0(� B ) � w0(� B )] ( 
 ) = 1 and Proposition 3.3.3.1.

3.3.3.4 Explicit formulae for the parabolic terms

Let G be one ofSO2n+1 or Sp2n or SO4n over Z, let
Q

p f p be the characteristic function

of G(bZ) and
Q

p dgp the Haar measure onG(Af ) such that G(bZ) has measure one. Let�

be a dominant weight for G C and let f 1 ;� (g1 )dg1 be the distribution on G(R) de�ned

in section 3.3.1.1. Denotef (g)dg = f 1 ;� (g1 )dg1
Q

p f p(gp)dgp. Using Proposition 3.3.3.2

and tedious computations, we obtain explicit formulae for the geometric sideTgeom(f (g)dg)

of Arthur's trace formula de�ned in section 3.3.3.1. For a dominant weight � = k1e1 +

� � � + knen it will be convenient to write Tgeom(G ; k) for Tgeom(f (g)dg) to precise the group

G, and similarly for Tell . If G is trivial ( SO0 or SO1 or Sp0) then Tell is of course simply

equal to 1.

Any Levi subgroup M of G is isomorphic to
Q

i GL n i � G 0whereG 0 is of the same type

as G. Note that M (R) has essentially discrete series (i.e.� M (�; �) is not identically zero)

if and only if for all i; n i � 2 and in caseG is even orthogonal,G 0 has even rank. Thus

the Levi subgroupsM whose contribution to Tgeom (that is formula 3.3.3.1) is nonzero are

isomorphic to GL a
1 � GL c

2 � G 0 for some integersa; c.

Since PGL 2 ' SO3, for k 2 Z � 0 we denoteTell(PGL 2; k) = Tell(SO3; k). For non-

negativek 2 1=2ZrZ it is convenient to de�ne Tell(PGL 2; k) = 0 , so that for any k 2 Z � 0

we haveTell(PGL 2; k=2) = Tell(Sp2; k)=2.

For a; c; d 2 Z � 0, let � a;c;d be the set of� in the symmetric group Sa+2 c+ d such that

� � (1) < � � � < � (a),

� � (a + 1) < � (a + 3) < � � � < � (a + 2c � 1),

� for any 1 � i � c, � (a + 2 i � 1) < � (a + 2 i ),

� � (a + 2c + 1) < � � � < � (n).
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For a � 0 and x 2 f 0; : : : ; ag, de�ne

� (B ) (a; x) =
(� 1)a(a� 1)=2

2a

ba=2cX

b=0

(� 1)b
2bX

r =0

�
x
r

��
a � x
2b� r

�
(� 1)r :

It is easy to check that

� (B ) (a; x) =
(� 1)a(a� 1)=2

2a+1 Tr Q(
p

� 1)=Q

�
(1 +

p
� 1)a� x (1 �

p
� 1)x �

2
1

2b(a+1) =2c
Z:

For n � a, � 2 Sn and k = ( k1; : : : ; kn ) 2 Zn , let

� (B ) (a; k; � ) = � (B ) �
a; cardf i 2 f 1; : : : ; ag j k� ( i ) + � (i ) + i = 1 (mod 2)g

�
:

Theorem 3.3.3.3 (Parabolic terms for G = SO2n+1 ). Let a; c; d 2 Z � 0 not all zero and

n = a+2c+ d. The sum of the contributions toTgeom(SO2n+1 ; k) in formula 3.3.3.1 of the

Levi subgroupsM in the orbit of GL a
1 � GL c

2 � SO2d+1 under the Weyl groupW (T 0; G)

is
X

� 2 � a;c;d

� (B ) (a; k; � )

�
cQ

i =1

�
Tell

�
PGL 2; (k� (a+2 i � 1) � k� (a+2 i ) + � (a + 2 i ) � � (a + 2 i � 1) � 1)=2

�

� Tell(PGL 2; (k� (a+2 i � 1) + k� (a+2 i ) � � (a + 2 i ) � � (a + 2 i � 1) + 2n)=2)
i

� Tell(SO2d+1 ; (k� (n� d+1) + n � d + 1 � � (n � d + 1) ; : : : ; k� (n) + n � � (n))) :

We have a similar formula for the symplectic group. Fora � 0 and x 2 f 0; : : : ; ag,

de�ne

� (C) (a; x) =
(� 1)a(a� 1)=2

2a

aX

b=0

(� 1)b(a� b)
bX

r =0

�
x
r

��
a � x
b� r

�
(� 1)r :

Then we have

� (C) (a; x) =

8
><

>:

(� 1)a=2 if a is even andx = a;

(� 1)(a� 1)=2 if a is odd and x = 0 ;

0 otherwise.

For n � a, � 2 Sn and k = ( k1; : : : ; kn ) 2 Zn , let

� (C) (a; k; � ) = � (C) �
a; cardf i 2 f 1; : : : ; ag j k� ( i ) + � (i ) + i = 1 (mod 2)g

�
:

Theorem 3.3.3.4 (Parabolic terms for G = Sp2n ). Let a; c; d 2 Z � 0 not all zero and

n = a + 2c + d. The sum of the contributions toTgeom(Sp2n ; k) in formula 3.3.3.1 of the

Levi subgroupsM in the orbit of GL a
1 � GL c

2 � Sp2d under the Weyl groupW (T 0; G) is
X

� 2 � a;c;d

� (C) (a; k; � )

�
cQ

i =1

�
Tell

�
PGL 2; (k� (a+2 i � 1) � k� (a+2 i ) + � (a + 2 i ) � � (a + 2 i � 1) � 1)=2

�

� Tell(PGL 2; (k� (a+2 i � 1) + k� (a+2 i ) � � (a + 2 i ) � � (a + 2 i � 1) + 2n + 1) =2)
i

� Tell(Sp2d; (k� (n� d+1) + n � d + 1 � � (n � d + 1) ; : : : ; k� (n) + n � � (n)))
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For a � 0 and x 2 f 0; : : : ; 2ag, de�ne

� (D ) (a; x) =
1

22a

aX

b=0

2bX

r =0

�
x
r

��
2a � x
2b� r

�
(� 1)r :

We have

� (D ) (a; x) =

8
><

>:

1 if a = 0 ;

1=2 if a > 0 and x(2a � x) = 0 ;

0 otherwise.

For n � a, � 2 S2n and k = ( k1; : : : ; k2n ) 2 Z2n , let

� (D ) (a; k; � ) = � (D ) �
a; cardf i 2 f 1; : : : ; 2ag j k� ( i ) + � (i ) + i = 1 (mod 2)g

�
:

For the group SO4n , we need only consider dominant weightsk with k2n � 0 (i.e.

the same inequalities as for the other two in�nite families) since the end result is invari-

ant under the outer automorphism of SO4n , that is Tgeom(SO4n ; (k1; : : : ; k2n� 1; � k2n )) =

Tgeom(SO4n ; (k1; : : : ; k2n� 1; k2n )) .

Theorem 3.3.3.5 (Parabolic terms for G = SO4n ). Let a; c; d 2 Z � 0 not all zero and

n = a + c + d. The sum of the contributions toTgeom(SO4n ; k) in formula 3.3.3.1 of the

Levi subgroupsM in the orbit of GL 2a
1 � GL c

2 � SO4d under the Weyl groupW (T 0; G) is
X

� 2 � 2a;c; 2d

� (D ) (a; k; � )

�
cQ

i =1

�
Tell

�
PGL 2; (k� (2a+2 i � 1) � k� (2a+2 i ) + � (2a + 2 i ) � � (2a + 2 i � 1) � 1)=2

�

+ Tell(PGL 2; (k� (2a+2 i � 1) + k� (2a+2 i ) � � (2a + 2 i ) � � (2a + 2 i � 1) + 4n � 1)=2)
i

� Tell(SO4d; (k� (2n� 2d+1) + 2n � 2d + 1 � � (2n � 2d + 1) ; : : : ; k� (2n) + 2n � � (2n))) :

3.4 Endoscopic decomposition of the spectral side

3.4.1 The spectral side of the trace formula

The previous sections give an algorithm to compute the geometric side of Arthur's trace

formula in [Art89a]. Let us recall the spectral side of this version of the trace formula.

As before G denotes one of the reductive groupsSO2n+1 , Sp2n or SO4n over Z. Let

K 1 be a maximal compact subgroup ofG(R) and denote g = C 
 R Lie(G(R)) . Let

A disc(G(Q)nG(A)) be the space ofK 1 � G(bZ)-�nite and Z (U(g)) -�nite functions in the

discrete spectrumL 2
disc(G(Q)nG(A)) . It is also the space of automorphic forms in the

sense of [BJ79] which are square-integrable. There is an orthogonal decomposition

A disc(G(Q)nG(A)) =
M

� 2 � disc (G )

m� �

where � disc(G) is a countable set of distinct isomorphism classes of unitary(g; K 1 ) �

G(Af )-modules andm� 2 Z � 1. Denote � unr
disc(G) � � disc(G) the set of � such that for

any prime number p the representation � p is unrami�ed, i.e. � G (Zp )
p 6= 0 .
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Let � be a dominant weight for G C, and denoteV� the corresponding algebraic rep-

resentation of G(C), which by restriction to G(R) we see as a(g; K 1 )-module. If X is an

admissible(g; K 1 )-module, de�ne its Euler-Poincaré characteristic with respect toV�

EP(X 
 V �
� ) =

X

i � 0

(� 1)i dim H i ((g; K 1 ); X 
 V �
� ):

We refer to [BW00] for de�nitions and essential properties of(g; K 1 )-cohomology. By

[BW00][Chapter I, Corollary 4.2] for any irreducible (g; K 1 )-module X , we have that

H � ((g; K 1 ); X 
 V �
� ) = 0 unlessX has the same in�nitesimal character asV� .

For our particular choice of function on G(Af ) the spectral side of Arthur's trace

formula in [Art89a] is X

� 2 � unr
disc (G )

m� EP(� 1 
 V �
� ): (3.4.1.1)

By [HC68][Theorem 1] there is only a �nite number of nonzero terms. Vogan and Zuck-

erman [VZ84] (see also [BW00][Chapter VI, Ÿ5]) have classi�ed the irreducible unitary

(g; K 1 )-modules having cohomology with respect toV� , and computed this cohomo-

logy. However, the integer 3.4.1.1 alone is not enough to recover the numberm(X ) of

� 2 � unr
disc(G) such that � 1 is isomorphic to a given irreducible unitary (g; K 1 )-module X

having the same in�nitesimal character asV� .

Arthur's endoscopic classi�cation of the discrete automorphic spectrum ofG [Art13]

allows to expressm(X ) using numbers of certainself-dual cuspidal automorphic repres-

entations of general linear groups. Conversely these numbers can be obtained from the

Euler-Poincaré characteristic 3.4.1.1 for various groupsG and weights� . For explicit com-

putations we will have to make Assumption 3.4.2.4 that relates the rather abstract Arthur

packets at the real place with the ones previously de�ned by Adams and Johnson in [AJ87].

Note that it will not be necessary to use [VZ84] since the Euler-Poincaré characteristic

is a much simpler invariant than the whole cohomology.

3.4.1.1 Arthur's endoscopic classi�cation

Let us review how Arthur's very general results in [Art13] specialise in our particular

situation: level one and regular in�nitesimal character. We are brief since this was done

in [CR14][Ÿ3], though with a slightly di�erent formulation. We refer to [Bor79] for the

de�nition of L-groups. For G a reductive group overF we will denote bG the connected

component of the neutral element inL G (which Borel denotesL G 0).

Let F be a local �eld of characteristic zero. The Weil-Deligne group ofF is denoted

by W 0
F : if F is archimedeanW 0

F = WF , whereas in thep-adic caseW 0
F = WF � SU(2).

Consider a quasisplit special orthogonal or symplectic groupG over F . Let  : W 0
F �

SL2(C) ! L G be a local Arthur parameter, i.e.  jW 0
F

is a continuous semisimple splitting

of L G ! W 0
F with bounded image and jSL2 (C) is algebraic. If  jSL2 (C) is trivial then  

is a tempered Langlands parameter. The general case is considered for global purposes,

which we will discuss later. Consider the groupC = Cent(  ; bG) and the �nite group

S = C =C0
 Z ( bG)Gal( F =F ) :
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For the groups G considered here the groupS is isomorphic to a product of copies of

f� 1g. Arthur [Art13][Theorem 1.5.1] associates with a �nite multiset �  of irreducible

unitary representations of G(F ), along with a character h�; � i of S for any � 2 �  . In

the even orthogonal case this is not exactly true: instead of actual representations,�  is

comprised of orbits of the groupOut( G) ' Z=2Z of outer automorphisms of G on the

set of isomorphism classes of irreducible representations ofG(F ). These orbits can be

described as modules over theOut( G)-invariants of the Hecke algebraH(G(F )) of G(F ),

which we denoteH 0(G(F )) . Here we have �xed a splitting Out( G) ! Aut( G) de�ned over

F . Note that if F is p-adic, G is unrami�ed and K is a hyperspecial subgroup ofG(F )

we can choose a splittingOut( G) ! Aut( G) that preserves K. If F is archimedean and

K is a maximal compact subgroup ofG(F ), we can also choose a splitting that preserves

K , and H 0(G(F )) is the algebra of left and right K -�nite Out( G)-invariant distributions

on G(F ) with support in K. Note that the choice of splitting does not matter when one

considers invariant objects, such as orbital integrals or traces in representations.

Denote Std : L G ! GLN (C) the standard representation, where

N =

8
><

>:

2n if G �F ' (SO2n+1 ) �F , i.e. bG ' Sp2n (C);

2n + 1 if G �F ' (Sp2n ) �F , i.e. bG ' SO2n+1 (C);

2n if G �F ' (SO2n ) �F , i.e. bG ' SO2n (C):

In the �rst two cases det � Std is trivial, whereas in the third case it takes values inf� 1g

and factors through a characterGal(F=F) ! f� 1g, which by local class �eld theory we

can also see as a character� G : F � ! f� 1g. If bG = Sp2n (C) (resp. bG = SO2n+1 (C)),

the standard representationStd induces a bijection from the set of conjugacy classes of

Arthur parameters  : W 0
F � SL2(C) ! bG to the set of conjugacy classes of Arthur

parameters  0 : W 0
F � SL2(C) ! GLN (C) such that det �  0 is trivial and there exists a

non-degenerate alternate (resp. symmetric) bilinear form onCN preserved byIm(  0). The

third case, whereG is an even special orthogonal group, induces a small complication.

Composing with Std still induces a surjective map from the set of conjugacy classes of

Arthur parameters  : W 0
F � SL2(C) ! L G to the set of conjugacy classes of Arthur

parameters  0 : W 0
F � SL2(C) ! GLN (C) having determinant � G and such that there

exists a non-degenerate bilinear form onCN preserved by Im(  0). However, the �bers

of this map can have cardinality one or two, the latter case occurring if and only if all

the self-dual irreducible constituents of  0 have even dimension. The Arthur packet�  

along with the characters h�; � i of S are characterised [Art13][Theorem 2.2.1] using the

representation ofGL N (F ) associated withStd �  by the local Langlands correspondence,

and twisted and ordinary endoscopic character identities. The characters(h�; � i ) � 2 �  of

S are well-de�ned only once we have �xed an equivalence class of Whittaker datum forG,

since this choice has to be made to normalise the transfer factors involved in the ordinary

endoscopic character identities.

In the p-adic case, we will mainly be interested inunrami�ed Arthur parameters  , i.e.

such that  jW 0
F

is trivial on the inertia subgroup and on SU(2). Of course these exist only

if G is unrami�ed, so let us make this assumption. We refer to [CS80] for the de�nition
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of unrami�ed Whittaker data with respect to a choice of hyperspecial maximal compact

subgroup. Note that several conjugacy classes of Whittaker data can correspond to the

same conjugacy class of hyperspecial subgroups, and thatG ad(F ) acts transitively on both

sets of conjugacy classes.

The following lemma is implicit in [Art13]. Note that a weak version of it is needed to

make sense of the main global theorem [Art13][Theorem 1.5.2].

Lemma 3.4.1.1. Let  : W 0
F � SL2(C) ! L G be an Arthur parameter for thep-adic �eld

F . Then �  contains an unrami�ed representation if and only if  is unrami�ed. In that

case,�  contains a unique unrami�ed representation� , which satis�es h�; � i = 1 .

Proof. This is a consequence of the proof of [Art13][Lemma 7.3.4]. We borrow Arthur's

notations for this (sketch of) proof. Let ef be the characteristic function ofGL N (OF ) o � �
gGL N (F ). Arthur shows that ef N ( ) = 1 if  is unrami�ed. If  is rami�ed, the represent-

ation of GL N (F ) associated withStd �  is rami�ed, thus ef N ( ) = 0 . The statement of

the lemma follows easily from these two identities, the characterization [Art13][Theorem

2.2.1] of the local Arthur packets by endoscopic character relations, and the twisted funda-

mental lemma (which applies even when the residual characteristic ofF is small!) proved

in [Art13][Lemma 7.3.4].

To state Arthur's global theorem we only consider the split groupsSO2n+1 , Sp2n and

SO2n over Q. From now on G denotes one of these groups. By [Art13][Theorem 1.4.1],

any self-dual cuspidal automorphic representation� of GL M over a number �eld has a

sign s(� ) 2 f� 1g, which intuitively is the type of the conjectural Langlands parameter of

� : s(� ) = 1 (resp. � 1) if this parameter is orthogonal (resp. symplectic). Unsurprisingly

if M is odd then s(� ) = 1 , and if M is even ands(� ) = � 1 then the central character

� � of � is trivial. Moreover Arthur characterises s(� ) using Sym2 and
V 2 L-functions

[Art13][Theorem 1.5.3]. This partition of the set of self-dual cuspidal automorphic repres-

entations of general linear groups allows to de�ne substitutes for discrete Arthur-Langlands

parameters for the group G. De�ne s(G) = � 1 in the �rst case ( bG = Sp2n (C)) and

s(G) = 1 in the last two cases (bG = SO2n+1 (C) or SO2n (C)). De�ne 	( G) as the set of

formal sums = � i 2 I � i [di ] where

1. for all i 2 I , � i is a self-dual cuspidal automorphic representation ofGL n i =Q,

2. for all i 2 I , di 2 Z � 1 is such that s(� i )( � 1)di � 1 = s(G),

3. N =
P

i 2 I ni di ,

4. the pairs (� i ; di ) are distinct,

5.
Q

i 2 I � di
� i

= 1 , where � � i is the central character of� i .

The last condition is automatically satis�ed if bG = Sp2n (C). The notation � i [di ] sug-

gests taking the tensor product of the putative Langlands parameter of� i with the di -

dimensional algebraic representation ofSL2(C). Each factor � i [di ] corresponds to a discrete

automorphic representation ofGL n i di over Q by [MW89].

79



Let v denote a place ofQ. Thanks to the local Langlands correspondence for general

linear groups applied to the (� i )v 's, for  2 	( G),  specialises into a local Arthur

parameter  v : W 0
Qv

� SL2(C) ! GLN (C). By [Art13][Theorem 1.4.2] we can see v as a

genuine local Arthur parameterW 0
Qv

� SL2(C) ! L G, but in the even orthogonal case v is

well-de�ned only up to outer automorphism. To be honest it is not known in general that

 v(W 0
Qv

) is bounded (this would be the Ramanujan-Petersson conjecture), but we will not

comment more on this technicality and refer to the discussion preceding [Art13][Theorem

1.5.2] for details. Thus we have a �nite multiset �  v of irreducible unitary representations

of G(Qv), each of these representations being well-de�ned only up to outer conjugacy in

the even orthogonal case.

As in the local case we want to de�neC = Cent(  ; bG) and

S = C =C0
 Z ( bG)Gal( Q=Q) = C =Z( bG):

Observe that this can be done formally for = � i 2 I � i [di ]. An element s of C is described

by J � I such that
P

i 2 J ni di is even, ands corresponds formally to � Id on the space

of � i 2 J � i [di ] and Id on the space of� i 2 I r J � i [di ]. Thus one can de�ne a �nite 2-group

S along with a natural morphism S ! S v for any place v of Q. The last ingredient

in Arthur's global theorem is the character �  of S . It is de�ned in terms of the root

numbers � (� i � � j ; 1=2) just after [Art13][Theorem 1.5.2]. If all the di 's are equal to1, in

which case we say that is formally tempered, then �  = 1 .

Fix a global Whittaker datum for G, inducing a family of Whittaker data for G Qv

wherev ranges over the places ofQ. Our reductive group is de�ned overZ, and the global

Whittaker datum can be chosen so that for any prime numberp it induces an unrami�ed

Whittaker datum on G(Qp) with respect to the hyperspecial subgroupG(Zp). Let K 1 be

a maximal compact subgroup ofG(R), and denoteg = C
 R Lie(G(R)) . The following is a

specialization of the general theorem [Art13][Theorem 1.5.2] to the �everywhere unrami�ed�

case, using Lemma 3.4.1.1.

Theorem 3.4.1.2. Recall that A disc(G(Q)nG(A)) is the space ofK 1 � G(bZ)-�nite and

Z (U(g)) -�nite functions in the discrete spectrum L 2
disc(G(Q)nG(A)) . Let 	( G)unr be the

set of  = � i � i [di ] 2 	( G) such that for any i , � i is unrami�ed at every prime. There is

a H 0(G(R)) -equivariant isomorphism

A disc(G(Q)nG(A))G (bZ) '
M

 2 	( G )unr

M

� 1 2 �  1
h�;� 1 i = �  

m � 1

where m = 1 except if G is even orthogonal and for alli n i di is even, in which case

m = 2 .

For � 1 2 �  1 the characterh�; � 1 i of S 1 induces a character ofS using the morph-

ism S ! S 1 , and the inner direct sum ranges over the� 1 's such that this character of

S is equal to �  .

In the even orthogonal case,� 1 is only an Out( G R)-orbit of irreducible representations,

and it does not seem possible to resolve this ambiguity at the moment. Nevertheless
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it disappears in the global setting. There is a splitting Out( G) ! Aut( G) such that

Out( G) preservesG(bZ), and thus if f X 1; X 2g is an Out( G R)-orbit of isomorphism classes

of irreducible unitary (g; K 1 )-modules, then X 1 and X 2 have the same multiplicity in

A disc(G(Q)nG(A))G (bZ) .

3.4.1.2 The spectral side from an endoscopic perspective

We keep the notations from the previous section. Suppose now thatG(R) has discrete

series, i.e.G is not SO2n with n odd. Let � be a dominant weight for G C. Using Theorem

3.4.1.2 we can write the spectral side of the trace formula 3.4.1.1 as
X

 2 	( G )unr

X

� 1 2 �  1
h�;� 1 i = �  

m EP(� 1 
 V �
� ): (3.4.1.2)

We need to be cautious here sinceEP(� 1 
 V �
� ) is not well-de�ned in the even orthogonal

case. If � 1 is the restriction to H 0(G(R)) of two non-isomorphic (g; K 1 )-modules � (1)
1

and � (2)
1 , we de�ne

EP(� 1 
 V �
� ) =

1
2

EP
�

(� (1)
1 � � (2)

1 ) 
 V �
�

�
:

In 3.4.1.2 we can restrict the sum to� 1 's whose in�nitesimal character equals that ofV� (up

to outer automorphism in the even orthogonal case), which is� + � via Harish-Chandra's

isomorphism, where2� is the sum of the positive roots. Thanks to the work of Mezo,

we can identify the in�nitesimal character of the elements of �  1 . To lighten notation,

we drop the subscript 1 temporarily and consider an archimedean Arthur parameter

 : WR � SL2(C) ! L G. Recall that WC = C� , WR = WC t jW C where j 2 = � 1 2 WC

and for any z 2 WC, jzj � 1 = �z. De�ne a Langlands parameter'  by composing with

WR ! WR � SL2(C) mapping w 2 WR to
�

w;
�

jjwjj1=2 0
0 jjwjj � 1=2

��

where jj � jj : WR ! R> 0 is the unique morphism mappingz 2 WC to z�z. Let T be a

maximal torus in bG. Conjugating by an element of bG if necessary, we can assume that

'  (WC) � T and write '  (z) = � 1(z)� 2(�z) for z 2 WC, where � 1; � 2 2 C 
 Z X � (T ) are

such that � 1 � � 2 2 X � (T ). The conjugacy class of(� 1; � 2) under the Weyl group W (T ; bG)

is well-de�ned. Note that for any maximal torus T of G C we can see� 1; � 2 as elements of

C 
 Z X � (T ), again canonically up to the action of the Weyl group.

Lemma 3.4.1.3. The Weyl group orbit of � 1 is the in�nitesimal character of any element

of �  .

Proof. Recall [Art13][Theorem 2.2.1] that the packet �  is characterised by twisted and

standard endoscopic character identities involving the representation ofGL N (R) having

Langlands parameter Std � '  . The lemma follows from [Mez13][Lemma 24] (see also

[Wal][Corollaire 2.8]), which establishes the equivariance of twisted endoscopic transfer for

the actions of the centers of the enveloping algebras.
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Attached to � is a unique (up to bG-conjugacy) discrete parameter ' � : WR ! L G

having in�nitesimal character � + � . We explicit the GLN (C)-conjugacy class ofStd� ' � in

each case. Forw 2 1
2Z � 0 it is convenient to denote the Langlands parameterWR ! GL2(C)

I w = Ind WR
WC

�
z 7! (z=jzj)2w �

: z 2 WC 7!
�

(z=jzj)2w 0
0 (z=jzj) � 2w

�
; j 7!

�
0 (� 1)2w

1 0

�
:

Note that this was denoted I 2w in [CR14] to emphasise motivic weight in a global setting.

We choose to emphasise Hodge weights, i.e. eigenvalues of the in�nitesimal character:

our I w has Hodge weightsw and � w. Let � C=R be the non-trivial continuous character

WR ! f� 1g, so that I 0 = 1 � � C=R. If G = SO2n+1 , we can write � = k1e1 + � � � + knen

where k1 � � � � � kn � 0 are integers, and� = ( n � 1
2)e1 + ( n � 3

2)e2 + � � � + 1
2en . In this

caseStd � ' � is
nM

r =1

I kr + n+1 =2� r :

If G = Sp2n , we can write � = k1e1 + � � � + knen where k1 � � � � � kn � 0 are integers,

and � = ne1 + ( n � 1)e2 + � � � + en . Then Std � ' � is

� n
C=R �

nM

r =1

I kr + n+1 � r :

Finally, if G = SO4n , we can write � = k1e1 + � � � + k2ne2n wherek1 � � � � � k2n� 1 � j k2n j

are integers, and� = (2 n � 1)e1 + (2 n � 2)e2 + � � � + e2n� 1. Then Std � ' � is

2nM

r =1

I kr +2 n� r :

Replacing (k1; : : : ; k2n� 1; k2n ) with (k1; : : : ; k2n� 1; � k2n ) yields the same conjugacy class

under GLN (C).

From this explicit description one can deduce several restrictions on the global paramet-

ers  2 	( G)unr contributing non-trivially to the spectral side 3.4.1.2. These observations

were already made in [CR14], using a di�erent formulation. We de�ne	( G) � as the subset

of 	( G) consisting of such that the in�nitesimal character of  1 is equal to � + � . De�ne

also 	( G)unr ;� = 	( G)unr \ 	( G) � .

1. In the �rst two cases (G = SO2n+1 of Sp2n ) the in�nitesimal character of Std � ' � is

algebraic and regular in the sense of Clozel [Clo88]. Clozel's de�nition of �algebraic�

is �C-algebraic� in the sense of [BG10], and we will also use the term �C-algebraic� to

avoid confusion. In the third case (G = SO4n ) we have that jj � jj 1=2 
 (Std � ' � ) is

C-algebraic, but not always regular. It is regular if and only if k2n 6= 0 . In all cases,

Clozel's purity lemma [Clo88][Lemme 4.9] implies that if = � i � i [di ] 2 	( G) � , then

for all i the self-dual cuspidal automorphic representation� i of GL n i =Q is tempered

at the real place. Equivalently,  1 (WR) is bounded.

2. Let 	( G)sim be the set of simple formal Arthur parameters in 	( G), i.e. those

 = � i 2 I � i [di ] such that I = f i 0g and di 0 = 1 . Denote 	( G) �
sim = 	( G)sim \ 	( G) � .
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Then 	( G) �
sim is the set of self-dual cuspidal automorphic representations ofGL N =Q

such that the central character of � is trivial and the local Langlands parameter of

� 1 is Std � ' � . Indeed in all three casesStd � ' � is either orthogonal or symplectic,

and thus � 1 determines s(� ).

3. Let m � 1 and consider a self-dual cuspidal automorphic representation� of GL 2m =Q

such that j det j1=2 
 � is C-algebraic regular. Self-duality implies that the central

character � � of � is quadratic, i.e. � � : A � =Q� ! f� 1g. Since j det j1=2 
 � is

C-algebraic and regular, there are unique integersw1 > � � � > w m > 0 such that the

local Langlands parameter of� 1 is

mM

r =1

I wr ;

which implies that � � jR� (� 1) = ( � 1)m . If moreover we assume that� is everywhere

unrami�ed, then � � is trivial on
Q

p Z �
p . Since A � = Q� R> 0

Q
p Z �

p , this implies

that � � is trivial, and thus m must be even.

4. The previous point has the following important consequence for our inductive com-

putations. Let G be a split symplectic or special orthogonal group admitting discrete

series at the real place, and� a dominant weight for G. Let  = � i � i [di ] 2 	( G)unr ;� .

Then for any i , there is a split symplectic or special orthogonal groupG 0 ad-

mitting discrete series at the real place and a dominant weight� 0 for G 0 such

that � i 2 	( G 0)unr ;� 0

sim . We emphasise that this holds even ifG = SO4n and

� = k1e1 + � � � + k2ne2n with k2n = 0 . To be precise, we have the following classi�c-

ation:

(a) G = SO2n+1 and thus bG = Sp2n (C). For a dominant weight � and  =

� i 2 I � i [di ] 2 	( G)unr ;� , there is a canonical decompositionI = I 1 t I 2 t I 3

where

i. for all i 2 I 1, di is odd, ni is even and� i 2 	( SOn i +1 )unr ;� 0

sim ,

ii. for all i 2 I 2, di is even,ni is divisible by 4 and � i 2 	( SOn i )
unr ;� 0

sim ,

iii. card(I 3) 2 f 0; 1g and if I 3 = f ig, di is even,ni is odd and� i 2 	( Spn i � 1)unr ;� 0

sim .

(b) G = Sp2n and thus bG = SO2n+1 (C). For a dominant weight � and  =

� i 2 I � i [di ] 2 	( G)unr ;� , there is a canonical decompositionI = I 1 t I 2 t I 3

where

i. I 1 = f j g, dj is odd, nj is odd and � j 2 	( Spn j � 1)unr ;� 0

sim ,

ii. for all i 2 I 2, di is odd, ni is divisible by 4 and � i 2 	( SOn i )
unr ;� 0

sim ,

iii. for all i 2 I 3, di is even,ni is even and� i 2 	( SOn i +1 )unr ;� 0

sim .

Note that nj dj = 2n + 1 mod 4.

(c) G = SO4n and thus bG = SO4n (C). For a dominant weight � and  =

� i 2 I � i [di ] 2 	( G)unr ;� , there is a canonical decompositionI = I 1 t I 2 t I 3

where
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i. for all i 2 I 1, di is odd, ni is divisible by 4 and � i 2 	( SOn i )
unr ;� 0

sim ,

ii. for all i 2 I 2, di is even,ni is even and� i 2 	( SOn i +1 )unr ;� 0

sim ,

iii. card(I 3) 2 f 0; 2g. If I 3 = f i; j g and up to exchanging i and j , di = 1

and dj is odd, ni and nj are odd, and � i 2 	( Spn i � 1)unr ;� 0

sim and � j 2

	( Spn j � 1)unr ;� 0

sim .

Note that in all three cases, if � is regular then for any  = � i 2 I � i [di ] 2 	( G)unr ;�

we have that  1 = ' � and thus all di 's are equal to1 (i.e.  is formally tempered)

and moreover in the third caseI 3 = ; .

As in the introduction, it will be convenient to have a more concrete notation for the sets

	( G)unr ;�
sim .

1. For n � 1, the dominant weights for G = SO2n+1 are the characters� = k1e1 +

� � � + knen such that k1 � � � � � kn � 0. Then � + � = w1e1 + � � � + wnen where

wr = kr + n + 1
2 � r , so that w1 > � � � > w n > 0 belong to 1

2Z r Z . De�ne

S(w1; : : : ; wn ) = 	( SO2n+1 )unr ;�
sim , that is the set of self-dual automorphic cuspidal

representations ofGL 2n=Q which are everywhere unrami�ed and with Langlands

parameter at the real place

I w1 � � � � � I wn :

Equivalently we could replace the last condition by �with in�nitesimal character hav-

ing eigenvaluesf� w1; : : : ; � wng�. Here S stands for �symplectic�, as bG = Sp2n (C).

2. For n � 1, the dominant weights for G = Sp2n are the characters� = k1e1+ � � �+ knen

such that k1 � � � � � kn � 0. Then � + � = w1e1+ � � � + wnen wherewr = kr + n+1 � r ,

so that w1 > � � � > w n > 0 are integers. De�neOo(w1; : : : ; wn ) = 	( Sp2n )unr ;�
sim , that

is the set of self-dual automorphic cuspidal representations ofGL 2n+1 =Q which are

everywhere unrami�ed and with Langlands parameter at the real place

I w1 � � � � � I wn � � n
C=R:

Equivalently we could replace the last condition by �with in�nitesimal character

having eigenvaluesf� w1; : : : ; � wn ; 0g�. Here Oo stands for �odd orthogonal�, as
bG = SO2n+1 (C).

3. For n � 1, the dominant weights for G = SO4n are the characters� = k1e1 + � � � +

k2ne2n such that k1 � � � � � k2n� 1 � j k2n j. Since we only consider quantities invariant

under outer conjugation we assumek2n � 0. Then � + � = w1e1 + � � � + w2ne2n where

wr = kr + n � r , so that w1 > � � � > w 2n� 1 > w 2n � 0 are integers. De�ne

Oe(w1; : : : ; w2n ) = 	( SO4n )unr ;�
sim , that is the set of self-dual automorphic cuspidal

representations ofGL 4n=Q which are everywhere unrami�ed and with Langlands

parameter at the real place

I w1 � � � � � I w2n :

In this case also we could replace the last condition by �with in�nitesimal character

having eigenvaluesf� w1; : : : ; � w2ng�, even whenk2n = 0 . Here Oe stands for �even

orthogonal�, as bG = SO4n (C).
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It is now natural to try to compute the cardinality of 	( G)unr ;�
sim , inductively on the

dimension ofG. Observe that for  2 	( G)sim, the group S is trivial. Thus the contri-

bution of any  2 	( G)unr ;�
sim to the spectral side 3.4.1.2 is simply

X

� 1 2 �  1

EP (� 1 
 V �
� ) :

Recall that for such a  , the local Arthur parameter  1 is ' � . In that case Arthur de�nes

� ' � as the L-packet that Langlands [Lan89] associates with' � . In the next section we

will review these packets in more detail, in particular Shelstad's de�nition of h�; � 1 i for

� 1 2 � ' � , but sinceS is trivial all that matters for now is that card(� ' � ) is positive (and

easily computed) and that all the representations in� ' � are discrete series. By [BW00][ch.

III, Thm. 5.1] for any � 1 2 � ' � ,

EP (� 1 
 V �
� ) = ( � 1)q(G (R))

and thus to compute the cardinality of 	( G)unr ;�
sim we want to compute the contribution of

	( G)unr ;� r 	( G)unr ;�
sim to the spectral side 3.4.1.2.

This is particularly easy if � is regular, since as we observed above in that case any

 2 	( G)unr ;� is �formally tempered� or �formally of Ramanujan type�, i.e.  1 = ' � .

Moreover �  is trivial. Shelstad's results reviewed in the next section allow the explicit

determination of the number of � 1 2 � ' � such that h�; � 1 i is equal to a given character

of S 1 .

The general case is more interesting. The determination of�  in the �conductor one�

case was done in [CR14], and the result is simple since it involves only epsilon factors at

the real place ofQ. In all three cases, for any = � i 2 I � i [di ] 2 	( G)unr ;� the abelian

2-group S is generated by(si ) i 2 J whereJ = f i 2 I j ni di is eveng and si 2 C is formally

� Id on the space of� i [di ] and Id on the space of� j [dj ] for j 6= i . By [CR14][(3.10)]

�  (si ) =
Y

j 2 I r f i g

� (� i � � j )min( di ;dj )

and since � i and � j are everywhere unrami�ed � (� i � � j ) can be computed easily from

the tensor product of the local Langlands parameters of(� i )1 and (� j )1 . Note that by

[Art13][Theorem 1.5.3] � (� i � � j ) = 1 if s(� i )s(� j ) = 1 . The explicit computation of �  1 ,

along with the map �  1 ! S^
 1

, does not follow directly from Arthur's work, even in our

special case where the in�nitesimal character of 1 is that of an algebraic representation

V� . We will need to make an assumption (Assumption 3.4.2.4) relating Arthur's packet

�  1 to the packets constructed by Adams and Johnson in [AJ87]. The latter predate

Arthur's recent work, in fact [AJ87] has corroborated Arthur's general conjectures: see

[Art89b][Ÿ5]. Under this assumption, we will also be able to compute the Euler-Poincaré

characteristic of any element of�  1 in section 3.4.2.2.

Remark 3.4.1.4. Our original goal was to compute, for a given groupG=Q as above,

dominant weight� and simple(g; K 1 )-module moduleX with in�nitesimal character � + � ,

the multiplicity of X in A disc(G(Q)nG(A))G (bZ) . This is possible once the cardinalities of
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	( G 0)unr ;� 0

sim are computed, under Assumption 3.4.2.3 if we do not assume that� is regular.

However, Arthur's endoscopic classi�cation shows that computingcard
�

	( G 0)unr ;� 0

sim

�
is a

more interesting problem from an arithmetic perspective, since conjecturally we are counting

the number of self-dual motives overQ with conductor 1 and given Hodge weights.

Remark 3.4.1.5. Except in the even orthogonal case with� = k1e1 + � � � + k2ne2n and

k2n = 0 , it is known that any  2 	( G)unr ;�
sim is tempered also at the �nite places by [Clo13].

Remark 3.4.1.6. If G is symplectic or even orthogonal, it has non-trivial centerZ iso-

morphic to � 2. Thus Z(R) � Z(Q)Z(bZ), and Z(R) acts trivially on A disc(G(Q)nG(A))G (bZ) .

This implies that 	( G)unr ;�
sim is empty if � jZ(R) is not trivial, since Z(R) acts by � on any

discrete series representation with in�nitesimal character � + � . Using the concrete de-

scription above, it is elementary to deduce that in fact	( G)unr ;� is empty if � jZ(R) is not

trivial.

3.4.2 Euler-Poincaré characteristic of cohomological archimedean Ar-
thur packets

3.4.2.1 Tempered case: Shelstad's parametrization of L-packets

For archimedean local �elds in the tempered case the A-packets�  in [Art13] are not

de�ned abstractly using the global twisted trace formula. Rather, Arthur de�nes � ' � as

the L-packet that Langlands [Lan89] associates with' � , and the map � ' � ! S^
' �

; � 7!

h�; � i is de�ned by Shelstad's work, which we review below. Mezo [Mez] has shown

that these Langlands-Shelstad L-packets satisfy the twisted endoscopic character relation

[Art13][Theorem 2.2.1 (a)], and Shelstad's work contains the �standard� endoscopic char-

acter relations [Art13][Theorem 2.2.1 (b)].

In this section we will only be concerned with the local �eld R and thus we drop the

subscripts 1 , and we denoteGal(C=R) = f 1; � g. Let G be a reductive group overR, and

denote byA G the biggest split torus in the connected centerZG of G. Let us assume that

G has a maximal torus (de�ned over R) which is anisotropic modulo A G , i.e. G(R) has

essentially discrete series. Consider a dominant weight� 0 for (G der)C de�ning an algebraic

representationV� 0 of G der(C) and a continuous character� 0 : ZG (R) ! C� such that � 0

and � 0 coincide on ZG (R) \ G der(C). Let � disc(� 0; � 0) be the �nite set of essentially

discrete series representations� of G(R) such that

� � jG der (R) has the same in�nitesimal character asV� 0 jG der (R) ,

� � jZ G (R) = � 0.

Harish-Chandra has shown that inside this L-packet of essentially discrete series, the rep-

resentations are parameterised by the conjugacy classes (underG(R)) of pairs (B ; T )

where T is a maximal torus of G anisotropic modulo A G and B is a Borel subgroup of

G C containing T C. For such a pair (B ; T ), � 0 and the character � 0 of T der(R) which is

dominant for B extend uniquely to a character� B of T (R). If we �x such a pair (B ; T ),

the pairs (B 0; T ) which are in the same conjugacy class form an orbit under the subgroup
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Wc := W (G(R); T (R)) of W := W (G(C); T (C)) . Concretely, if � 2 � disc(� 0; � 0) is the

representation associated with this conjugacy class, then for any
 2 T (R)G � reg,

� � (
 ) = ( � 1)q(G )
X

w2 Wc

� wB w � 1 (
 )
� wB w � 1 (
 )

where � � is Harish-Chandra's character for � , and � B (
 ) =
Q

� 2 R(T ;B ) (1 � � (
 ) � 1).

Therefore the choice of(B ; T ) as a base point identi�es the set of conjugacy classes with

WcnW , by g 2 N (G(C); T (C)) 7! (gB g� 1; T ).

Langlands [Lan89] and Shelstad [She08a], [She10], [She08b] gave another formulation

for the parameterisation inside an L-packet, more suitable for writing endoscopic character

relations. By de�nition of the L-group we have a splitting (B; T ; (X� ) � 2 � ) of bG which

de�nes a section ofAut( bG) ! Out( bG) and L G = bG o WR. Let (B ; T ) be as above. Thanks

to B we have a canonical isomorphismbT ! T , which can be extended into an embedding

of L-groups � : L T ! L G as follows. For z 2 WC, de�ne �(z) =
Q

� 2 RB
� _ (z=jzj) o z

where RB is the set of roots ofT in B. De�ne �(j ) = n0 o j where n0 2 N ( bG; T ) \ bG der

represents the longest element of the Weyl groupW ( bG; T ) for the order de�ned by B.

Then � is well-de�ned thanks to [Lan89][Lemma 3.2]. Since conjugation byn0 o j acts

by t 7! t � 1 on T \ bG der, the conjugacy class of� does not depend on the choice ofn0.

The character � B of T (R) corresponds to a Langlands parameter' � B : WR ! L T . If

G is semisimple,� B is the restriction to T (R) of an element ofX � (T ) = X � (T ) and for

any z 2 WC, ' � B (z) = � B (z=jzj). Composing ' � B with � we get a Langlands parameter

' : WR ! L G, whose conjugacy class underbG does not depend on the choice of(B ; T ).

Langlands has shown that the map(� 0; � 0) 7! ' is a bijection onto the set of conjugacy

classes of discrete Langlands parameters, i.e. Langlands parameters' such that S' :=

Cent('; bG)=Z( bG)Gal( C=R) is �nite.

Consider a discrete Langlands parameter' , and denote by� ' = �( � 0; � 0) the corres-

ponding L-packet. Assume thatG is quasisplit and �x a Whittaker datum (see [Kal] for

the general case). Then Shelstad de�nes an injective map� ' ! S^
' , � 7! h�; � i . It has the

property that h�; � i is trivial if � is the unique generic (for the given Whittaker datum)

representation in the L-packet.

Recall the relation between these two parametrizations of the discrete L-packets. Let

(B ; T ) be as above, de�ning an embedding� : L T ! L G and recall that W and Wc denote

the complex and real Weyl groups. LetC' = Cent( '; bG), so that S' = C' =Z( bG)Gal( C=R) .

Using � we have an isomorphism betweenH 1(R; T ) and � 0(C' )^ . We have a bijection

WcnW ! ker
�
H 1(R; T ) ! H 1(R; G)

�

mapping g 2 NG (C) (T (C)) to (� 7! g� 1� (g)) . Kottwitz [Kot86] has de�ned a natural

morphism H 1(R; G) ! � 0

�
Z ( bG)Gal( C=R)

� ^
and thus the above bijection yields an injec-

tion � : WcnW ! S^
' . If � 2 � ' corresponds to (the conjugacy class of)(B ; T ) and

� 0 2 � ' corresponds to(gB g� 1; T ), then for any s 2 S' ,

hs; � i
hs; � 0i

= � (g)(s):
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Finally, the generic representation in � ' corresponds to a pair(B ; T ) as above such that

all the simple roots for B are noncompact. This is a consequence of [Kos78][Theorem 3.9]

and [Vog78][Theorem 6.2]. In particular thereexists such a pair (B ; T ). We will make use

of the converse in the non-tempered case.

Lemma 3.4.2.1. Let H be a reductive group overR. Assume thatT is a maximal torus of

H which is anisotropic moduloA H , and assume that there exists a Borel subgroupB � T C

of H C such that all the simple roots ofT in B are non-compact. ThenH is quasisplit.

Proof. We can assume thatH is semisimple. We use the �R-opp splittings� of [She08b][Ÿ12].

Let � be the set of simple roots ofT in B . For any � 2 � we can choose ansl2-triple

(H � ; X � ; Y� ) in h = C
 R Lie(H (R)) . The pair (X � ; Y� ) is not unique: it could be replaced

by (xX � ; x � 1Y� ) for any x 2 C� . Since � (� ) = � � , � (X � ) = yY� for some y 2 C� ,

and y 2 R� because� is an involution. The sign of y does not depend on the choice of

(X � ; Y� ), and making some other choice if necessary, we can assume thaty = � 1. It is

easy to check that� is non-compact if and only if y > 0. Thus the hypotheses imply the

existence of anR-opp splitting, that is a splitting (X � ) � 2 � such that � (X � ) = Y� for any

� . Note that this splitting is unique up to the action of T (R).

Let H 0 be the quasisplit reductive group overR such that H 0 admits an anisotropic

maximal torus and H C ' H 0
C. We know that H 0 admits a pair (B 0; T 0) where T 0 is an

anisotropic maximal torus and all the simple roots ofB 0 are non-compact. Therefore there

exists anR-opp splitting (X 0
� ) � 02 � 0 for (B 0; T 0).

There is a unique isomorphismf : H C ! H 0
C identifying (B ; T C; (X � ) � 2 � ) with

(B 0; T 0
C; (X 0

� ) � 2 � 0) and to conclude we only have to show that it is de�ned overR, i.e.

that it is Galois-equivariant. It is obviously the case on T , since any automorphism ofT C

is de�ned over R. Moreover by construction f (� (X � )) = � (X 0
f (� ) ) for any � 2 � . Since

T C and the one-dimensional unipotent groups corresponding to� � for � 2 � generate

H C, f is � -equivariant.

There are as many conjugacy classes of such pairs(B ; T ) such that all the simple roots

are non-compact as there are conjugacy classes of Whittaker datum. For the adjoint group

SO2n+1 there is a single conjugacy class, whereas forG = Sp2n or SO4n there are two.

However, for our purposes it will fortunately not be necessary to precise which pair(B ; T )

corresponds to each conjugacy class of Whittaker datum.

For the quasi-split group G = SO(V; q) where dim V � 3 and disc(q) > 0, T is the

stabiliser of a direct orthogonal sum

P1 � � � � � Pn

where eachPi is a de�nite plane and n = bdim V=2c. Let I + (resp. I � ) be the set of

i 2 f 1; : : : ; ng such that Pi is positive (resp. negative),V� =
L

i 2 I �
Pi and V+ = V ?

� . The

group K of real points of

S (O(V+ ; q) � O(V� ; q))
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is the maximal compact subgroup ofG(R) containing T (R). For each i , choose an iso-

morphism ei : SO(Pi ; q)C ! G m arbitrarily. For dim V even, the rootse1 � e2; : : : ; en� 1 �

en ; en� 1 + en are all noncompact if and only if

f I + ; I � g = ff 1; 3; 5; : : :g; f 2; 4; : : :gg

and modulo conjugation by Wc = N (K; T (R))=T (R) there are two Borel subgroupsB �

T C whose simple roots are all noncompact. Fordim V odd the rootse1� e2; : : : ; en� 1� en ; en

are all noncompact if and only if

I � = f n; n � 2; n � 4; : : :g and I + = f n � 1; n � 3; : : :g

and there is just one conjugacy class of such Borel subgroups. In both cases

ker
�
H 1(R; T ) ! H 1(R; G)

�

is isomorphic to the set of(� i )1� i � n where � i 2 f� 1g and

cardf i 2 I + j � i = � 1g = card f i 2 I � j � i = � 1g:

For the symplectic group G = Sp(V; a) (where a is a non-degenerate alternate form)

H 1(R; G) is trivial, so that the set of h�; �i (� 2 � ' ) is simply the whole group S^
' .

However, for the non-tempered case and for the application to Siegel modular forms it will

be necessary to have an explicit description of the pairs(B ; T ) as for the special orthogonal

groups. There existsJ 2 G(R) such that J 2 = � Id and for any v 2 V r f 0g, a(Jv; v) > 0.

Then J is a complex structure onV and

h(v1; v2) := a(Jv1; v2) + ia(v1; v2)

de�nes a positive de�nite hermitian form h on V . Choose an orthogonal (forh) de-

composition V =
L n

i =1 Pi where eachPi is a complex line, then we can de�neT as the

stabiliser of this decomposition. The maximal compact subgroup ofG(R) containing T (R)

is K = U (V; h)(R), and Wc ' Sn . Thanks to the complex structure there are canonical

isomorphismsei : U (Pi ; h) ! U 1 (for i 2 f 1; : : : ; ng). Modulo conjugation by Wc, the two

Borel subgroups containingT C and having non-compact simple roots correspond to the

sets of simple roots

f e1 + e2; � e2 � e3; : : : ; (� 1)n (en� 1 + en ); (� 1)n+1 2eng;

f� e1 � e2; e2 + e3; : : : ; (� 1)n� 1(en� 1 + en ); (� 1)n2eng:

3.4.2.2 Adams-Johnson packets and Euler-Poincaré characteristics

Let us now consider the general case, which as we observed above is necessary only when

the dominant weight � is not regular. For a quasisplit special orthogonal or symplectic

group G and an Arthur parameter  : WR � SL2(C) ! L G having in�nitesimal character

� + � , we would like to describe explicitly the multiset �  along with the map �  !
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S^
 . We would also like to compute the Euler-Poincaré characteristicEP(� 
 V �

� ) for any

� 2 �  . Unfortunately it does not seem possible to achieve these tasks directly from

Arthur's characterisation [Art13][Theorem 2.2.1]. We will review Adams and Johnson's

construction of packets � AJ
 using Arthur's formulation, which will lead us naturally to

Assumption 3.4.2.4 relating Arthur's �  with � AJ
 . This review was done in [Art89b],

[Kot90] and [CR14] but we need to recall Adams and Johnson's results precisely in order

to compute Euler-Poincaré characteristics. Moreover we will uncover a minor problem in

[Art89b][Ÿ5]. Finally, [AJ87] was written before Shahidi's conjecture [Sha90][Conjecture

9.4] was formulated, and thus we need to adress the issue of normalization of transfer

factors by Whittaker datum. This is necessary to get a precise and explicit formulation of

[AJ87] in our setting, which is a prerequisite for writing an algorithm.

As in the previous sectionG could be any reductive algebraic group overR such that

G(R) has essentially discrete series. To simplify notations we assume thatG is semisimple.

To begin with, we consider general Arthur parameters : WR � SL2(C) ! L G, i.e.

continuous morphisms such that

� composing with L G ! WR, we get IdWR ,

�  jWC is semisimple and bounded,

�  jSL2 (C) is algebraic.

As before we �x a Gal(C=R)-invariant splitting (B; T ; (X� ) � 2 � ) in bG. Assume that  is

pure, i.e. the restriction of  to R> 0 � WC is trivial. Otherwise  would factor through a

Levi subgroup of L G. After conjugating by an element of bG we have aB-dominant � 0 2
1
2X � (T ) such that for any z 2 WC,  (z) = (2 � 0)(z=jzj). The set of roots� 2 R(T ; bG) such

that h� 0; � i � 0 de�nes a parabolic subgroupQ = LU of bG with Levi L = Cent(  (WC); bG)

and  (SL2(C)) � L der. After conjugating we can assume that

z 2 C� 7!  
��

z 0
0 z� 1

�
2 SL2(C)

�

takes values inT \ L der and is dominant with respect to B \ L der. Let us restrict our

attention to parameters  such that  jSL2 (C) : SL2(C) ! L der is the principal morphism.

After conjugating we can assume that

d
�
 jSL2 (C)

�
��

0 1
0 0

�
2 sl2

�
=

X

� 2 � L

X� :

We claim that  (j ) 2 bG o f j g is now determined modulo left multiplication by Z (L ).

Let n : W ( bG; T ) o WR ! N (L G; T ) = N ( bG; T ) o WR be the set-theoretic section de�ned

in [LS87][Ÿ2.1]. Letw0 2 W ( bG; T ) be the longest element in the Weyl group (with respect

to B). Since G has an anisotropic maximal torus, conjugation by (any representative of)

w0 o j acts by t 7! t � 1 on T . Let w1 be the longest element of the Weyl groupW (L ; T ).

Then w1w0 o j preserves� L and acts by t 7! t � 1 on Z (L ). By [Spr98][Proposition 9.3.5]

n(w1w0 o j ) = n(w1w0) o j preserves the splitting (X� ) � 2 � L , and thus commutes with

 (SL2(C)) . The following lemma relates (j ) and n(w1w0 o j ).
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Lemma 3.4.2.2. There is a unique elementa 2 Z (L )n
�

bG o f j g
�

commuting with  (SL2(C))

and such that for anyz 2 WC, a (z)a� 1 =  (z� 1).

Proof. If a and b are two such elements,ab� 1 2 bG commutes with  (WC), thus ab� 1 2 L .

Furthermore ab commutes with  (SL2(C)) , henceab� 1 2 Z (L ).

Sincen(w1w0 o j ) and  (j ) satisfy these two conditions, they coincide moduloZ (L ).

In particular conjugation by  (j ) acts by t 7! t � 1 on Z (L ), and thus the group

C := Cent(  ; bG) = f t 2 Z (L ) j t2 = 1g

is �nite, and so is S := C =Z( bG)Gal( C=R) . In addition, (2� 0)( � 1) =  (j )2 = n(w1w0 o j )2

only depends onL . By [LS87][Lemma 2.1.A],n(w1w0 o j )2 =
Q

� 2 RQ
� _ (� 1) where RQ

is the set of roots ofT occurring in the unipotent radical U of Q. Thus

� 0 2 X � (Z (L )0) +
1
2

X

� 2 RQ

� _ :

Conversely, using the elementn(w1w0o j ) we see that for any standard parabolic subgroup

Q = LU � B of bG and any strictly dominant (for RQ ) � 0 2 X � (Z (L )0) + 1
2

P
� 2 RQ

� _ ,

there is at least one Arthur parameter mappingz 2 WC to (2� 0)(z=jzj) and
�

0 1
0 0

�
2 sl2

to
P

� 2 � L
X� . Finally, for any u 2 Z (L ), we can form another Arthur parameter  0 by im-

posing 0jWC� SL2 (C) =  jWC� SL2 (C) and  0(j ) = u (j ). It follows that the set of conjugacy

classes of Arthur parameters 0 such that  0jWC� SL2 (C) is conjugated to  jWC� SL2 (C) is a

torsor under

Z (L )=f t2 j t 2 Z (L )g = H 1(Gal(C=R); Z (L )) where � acts by w1w0 o j on Z (L ):

Recall the norm jj � jj : WR ! R> 0 which maps j to 1 and z 2 WC to z�z, which is used

to de�ne the morphism WR ! WR � SL2(C) mapping w to

�
w;

�
jjwjj1=2 0

0 jjwjj � 1=2

��
:

Composing  with this morphism we get a Langlands parameter'  : WR ! L G which

is not tempered in general. Forz 2 WC, '  (z) = ( � � � 0)(z=jzj)( � + � 0)( jzj) (formally

� (z)� 0(�z)) where

� = � 0 +
1
2

X

� 2 RB\L

� _ and � 0 = � � 0 +
1
2

X

� 2 RB\L

� _ :

Then � 2 1
2

P
� 2 RB

� _ + X � (T ) and the following are equivalent:

1. � is regular,

2. � � 1
2

P
� 2 RB

� _ is dominant with respect to RB ,

3. � 0 � 1
2

P
� 2 RQ

� _ is dominant with respect to RQ .
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In fact for any pure Arthur parameter  , without assuming a priori that  jSL2 (C) ! L is

principal, if the holomorphic part � of '  jWC is regular, then  jSL2 (C) ! L is principal.

The orbit of � under the Weyl group is the in�nitesimal character associated with  , and

we have seen that it is the in�nitesimal character of any representation in the packet�  

associated with (Lemma 3.4.1.3). For quasisplit special orthogonal or symplectic groups

we checked this (up to outer conjugacy in the even orthogonal case) in Lemma 3.4.1.3.

From now on we also assume that the in�nitesimal character� of  is regular. Note

that � is then the in�nitesimal character of the restriction to G(R) of the irreducible algeb-

raic representationV� of G C, where � = � + � . Let us describe the set of representations

� AJ
 that Adams and Johnson associate with as well as the pairing�  ! S^

 . To be

honest Adams and Johnson do not consider parameters , they only work with repres-

entations, but [Art89b][Ÿ5] interpreted their construction in terms of parameters. We will

only add details concerning Whittaker normalisation. As in the tempered case we begin

by considering pairs(B ; T ) where T is an anisotropic maximal torus ofG and B a Borel

subgroup ofG C containing T C. We have a canonical isomorphism between the based root

data

(X � (T C); � B ; X � (T C); � _
B ) and (X � (T ); � _

B ; X � (T ); � B)

and we can associate with(Q; L ) a parabolic subgroupQ � B of G C and a Levi subgroup

L C � T C of G C. As the notation suggestsL C is de�ned over R (for any root � of T C in

G C, � (� ) = � � ), and we denote this real subgroup ofG by L . Consider the set� Q of

conjugacy classes of pairs(Q; L ) (Q a parabolic subgroup ofG C and L a real subgroup of

G such that L C is a Levi subgroup ofQ) obtained this way. The �nite set � B of conjugacy

classes of pairs(B ; T ) surjects to � Q . If we �x a base point (B ; T ), we have seen that� B

is identi�ed with WcnW . This base point allows to identify � Q with WcnW=WL where

WL = W (L (C); T (C)) , and

WcnW=WL ' ker
�
H 1(R; L ) ! H 1(R; G)

�
:

For any cl(Q; L ) 2 � Q there is a canonical isomorphismbL ' L identifying the splittings.

Given another cl(Q0; L 0) 2 � Q , there is a uniqueg 2 G(C)=L (C) conjugating (Q; L ) into

(Q0; L 0), yielding a canonical isomorphism of L-groupsL L ' L L 0. As in the tempered

case we want to extendbL ' L into an embedding � : L L ! L G as follows. For z 2 WC,

de�ne �(z) =
Q

� 2 RQ
� _ (z=jzj) o z. De�ne �(j ) = n(w1w0 o j ). We have computed

n(w1w0 o j )2 =
Q

� 2 RQ
� _ (� 1) above and thus� is well-de�ned. Note that contrary to the

tempered case, there are other choices for� (j ) even up to conjugation by Z (L ): we could

replace �(j ) by u� (j ) where u 2 Z (L ), and it can happen that u is not a square inZ (L ).

This issue seems to have been overlooked in [Art89b][Ÿ5]. We will not try to determine

whether n(w1w0 o j ) is the correct choice here and we will consider this problem in a

separate note, since for our present purpose this choice does not matter.

For any classcl(Q; L ) 2 � Q there is a unique Arthur parameter

 Q ;L : WR � SL2(C) ! L L
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such that up to conjugation by bG,  = � �  Q ;L . Now  Q ;L jSL2 (C) : SL2(C) ! bL is the

principal morphism. Thus  Q ;L jWR takes values inZ (bL ) o WR, and the conjugacy class of

 Q ;L is determined by the resulting element ofH 1(WR; Z (bL )) , which has compact image.

Recall that for any real reductive group H there is a natural morphism

� H : H 1(WR; Z ( bH )) ! Homcont (H (R); C� )

which is surjective and maps cocyles with compact image to unitary characters ofH (R).

To de�ne this morphism we can use the same arguments as [Kot86][Ÿ1]. IfH is simply

connected, then bH is adjoint and H (R) is connected. More generally, ifH der is simply

connected then the torusC = H =H der is such that Z ( bH ) = bC and

H (R)ab = ker
�
C(R) ! H 1(R; H der)

�
:

Finally if H is arbitrary there exists a z-extensionC ,! eH � H whereC is an induced torus

and eH der is simply connected. ThenH 1(Gal(C=R); C(C)) is trivial, thus eH (R) � H (R)

and

Homcont (H (R); C� ) = ker
�

Homcont ( eH (R); C� ) ! Homcont (C(R); C� )
�

:

Parallelly, bCWR is connected so thatbCWR ! H 1(WR; Z ( bH )) is trivial and thus

H 1(WR; Z ( bH )) = ker
�

H 1(WR; Z ( beH )) ! H 1(WR; bC)
�

:

As in [Kot86][Ÿ1] the morphism� H obtained this way does not depend on the choice of a

z-extension. Note that whenH is quasi-split, � H is an isomorphism, by reduction to the

case whereH der is simply connected and using the fact that a maximally split maximal

torus in a simply connected quasi-split group is an induced torus. It is not injective in

general, e.g. whenH is the group of invertible quaternions.

Hence Q ;L de�nes a one-dimensional unitary representation� 0
 ; Q ;L of L (R), and ap-

plying cohomological induction as de�ned by Zuckerman, Adams and Johnson de�ne the

representation �  ; Q ;L = Ri
q(� 0

 ; Q ;L ) of G(R), where q = Lie( Q) and i = q(G) � q(L ).

Vogan has shown that this representation is unitary. They de�ne the set� AJ
 in bijection

with � Q :

� AJ
 = f �  ; Q ;L j cl(Q; L ) 2 � Qg:

The endoscopic character relations that they prove [AJ87][Theorem 2.21] allow to identify

the map �  ! S^
 , as Arthur did in [Art89b][Ÿ5]. Assume that G is quasisplit (this is

probably unnecessary as in the tempered case using the constructions of [Kal]), and �x a

Whittaker datum for G. Then any cl(B ; T ) 2 � B determines an element ofS^
' (here '

could be any discrete parameter, the groupS' is described in terms ofB; T independently).

It is easy to check that if (B ; T ) and (B 0; T 0) give rise to pairs (Q; L ) and (Q0; L 0) which

are conjugated underG(R), then the restrictions to S of the characters ofS' associated

with (B ; T ) and (B 0; T 0) coincide. We get a map� AJ
 ! S^

 which is not injective in

general.
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Adams and Johnson ([AJ87][Theorem 8.2], reformulating the main result of [Joh84])

give a resolution of�  ; Q ;L by direct sums of standard modules

0 ! �  ; Q ;L ! X q(L ) ! � � � ! X 0 ! 0: (3.4.2.1)

Recall that a standard module is a parabolic induction of an essentially tempered rep-

resentation of a Levi subgroup ofG, with a certain positivity condition on its central

character. Johnson's convention is opposite to that of Langlands, so that�  ; Q ;L embedsin

a standard module. Apart from its length, the only two properties of this resolution that

we need are

1. X 0 is the direct sum of the discrete series representations ofG(R) having in�nitesimal

character � and corresponding to thecl(B ; T ) 2 � B mapping to cl(Q; L ) 2 � Q ,

2. for any i > 0, X i is a direct sum of standard modules induced fromproper parabolic

subgroups ofG, therefore EP(X i 
 V �
� ) = 0 .

Thus we have the simple formula

EP(�  ; Q ;L 
 V �
� ) = ( � 1)q(G )� q(L )card (�ber of cl(Q; L ) by � B ! � Q ) :

Note that �  ; Q ;L is a discrete series representation if and only ifL is anisotropic.

Let us be more precise about the endoscopic character relations a�orded by Adams-

Johnson representations, since Shahidi's conjecture was only formulated after both [AJ87]

and [Art89b]. Let s be the image by  of � 1 2 SL2(C), which we will see as an ele-

ment of S . Arthur and Kottwitz have shown that for cl(Q; L ); cl(Q0; L 0) 2 � Q , we have

hs ; �  ; Q ;L i = ( � 1)q(L )� q(L 0)hs ; �  ; Q 0;L 0i . Let (B 0; T 0) be a pair in G corresponding to

the base point (i.e. the generic representation for our �xed Whittaker datum) for any dis-

crete L-packet. It determines a pair(Q0; L 0) such that cl(Q0; L 0) 2 � Q . The simple roots

of B 0 are all non-compact and thus the same holds for the Borel subgroupB 0 \ (L 0)C of

(L 0)C. By Lemma 3.4.2.1 the groupL 0 is quasisplit. Thus for any cl(Q; L ) 2 � Q we have

hs ; �  ; Q ;L i = ( � 1)q(L 0 )� q(L ) . Note that if (B 1; T 1) corresponds to the generic element

in tempered L-packets foranother Whittaker datum, the pair (L 1; Q1) that it determines

also has the property that L 1 is quasisplit. SinceL 0 and L 1 are inner forms of each other,

they are isomorphic andq(L 0) = q(L 1). This shows that the map

f (g)dg 7!
X

� 2 � AJ
 

hs ; � i Tr ( � (f (g)dg)) ;

de�ned on smooth compactly supported distributions on G(R), is canonical: it does not

depend on the choice of a Whittaker datum for the quasisplit groupG. By [AJ87][Theorem

2.13] it is stable, i.e. it vanishes if all the stable orbital integrals of f (g)dg vanish. Consider

an arbitrary element x 2 S . It determines an endoscopic groupH of G and an Arthur

parameter  H : WR � SL2(C) ! L H whose in�nitesimal character is regular. Thanks to

the choice of a Whittaker datum we have a well-de�nedtransfer map f (g)dg 7! f H (h)dh

from smooth compactly supported distributions onG(R) to smooth compactly supported
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distributions on H (R). Adams and Johnson have proved [AJ87][Theorem 2.21] that there

is somet 2 C� such that

X

� 2 � AJ
 

hs x; � i Tr ( � (f (g)dg)) = t
X

� 2 � AJ
 H

hs ; � i Tr
�
� (f H (h)dh)

�
(3.4.2.2)

for any smooth compactly supported distribution f (g)dg on G(R). We check that t = 1 .

Let ' : WR ! L G be the discrete Langlands parameter having in�nitesimal character� .

Conjugating if necessary, we can assume that the holomorphic parts of' jWC and '  jWC

are equal and not just conjugated. In this way we seeS as a subgroup ofS' . We restrict

to distributions f (g)dg whose support is contained in the set of semisimple regular elliptic

elements ofG(R). In that case by Johnson's resolution 3.4.2.1

X

� 2 � AJ
 

hs x; � i Tr ( � (f (g)dg)) = ( � 1)q(L 0 )
X

� 2 � '

hx; � i Tr ( � (f (g)dg))

= ( � 1)q(L 0 )
X

� 2 � ' H

Tr
�
� (f H (h)dh)

�

where the second equality is the endoscopic character relation for('; x ). Let (B H
0 ; T H

0 )

be a pair for H such that the simple roots of B H
0 are all non-compact. Then the pair

(QH
0 ; L H

0 ) that it determines is such that L H
0 is quasisplit and has same Langlands dual

group asL 0, thus L H
0 ' L 0. In particular q(L H

0 ) = q(L 0) and

(� 1)q(L 0 )
X

� 2 � ' H

Tr
�
� (f H (h)dh)

�
=

X

� 2 � AJ
 H

hs ; � i Tr
�
� (f H (h)dh)

�
:

Therefore the endoscopic character relation 3.4.2.2 holds witht = 1 for such distributions

f (g)dg. By choosingf (g)dg positive with small support around a well-chosen semisimple

regular elliptic element we can ensure that both sides do not vanish, so thatt = 1 .

This concludes the precise determination of the map� 7! h�; � i , normalised using Whit-

taker datum as in the tempered case. Note that this normalised version of [AJ87][Theorem

2.21] is completely analogous to [Art13][Theorem 2.2.1(b)]. We are led to make the follow-

ing assumption.

Assumption 3.4.2.3. Let G be a quasisplit special orthogonal or symplectic group over

R having discrete series. Fix a Whittaker datum forG. Let  be an Arthur parameter for

G with regular in�nitesimal character � = � + � . Then for any � 2 S^
 ,

M

� 2 � AJ
 

h�;� i = �

� '
M

� 2 �  
h�;� i = �

�: (3.4.2.3)

Note that in the even orthogonal case, this only assumes an isomorphism ofH 0(G(R)) -

modules.

To compute Euler-Poincaré characteristics we only need the character of the direct sum

appearing in Assumption 3.4.2.3 on an anisotropic maximal torus. This follows from the
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fact that the standard modules form a basis of the Grothendieck group of �nite length

(g; K )-modules. Using also the fact that Arthur and Adams-Johnson packets satisfy the

same endoscopic relations, we can formulate a weaker assumption which is enough to

compute the Euler-Poincaré characteristic of the right hand side of 3.4.2.3 for any� 2 S^
 .

Assumption 3.4.2.4. Let G be a quasisplit special orthogonal or symplectic group over

R having discrete series. Let be an Arthur parameter for G with regular in�nitesimal

character � = � + � , and let T be a maximal torus ofG which is anisotropic. Let L 0

denote the quasisplit reductive group de�ned in the discussion above. IfG is symplectic or

odd orthogonal, the assumption is that for any
 2 T reg(R),

X

� 2 �  

hs ; � i � � (
 ) = ( � 1)q(G )� q(L 0 )Tr( 
 jV� ):

In the even orthogonal case, this identity takes the following meaning. Let
 2 T reg(R) and

consider a 
 0 2 G(R) outer conjugated to
 . For � in �  , which is only an Out( G)-orbit

of representations, we still denote by� any element of this orbit. The assumption is

X

� 2 �  

hs ; � i
�
� � (
 ) + � � (
 0)

�
= ( � 1)q(G )� q(L 0 ) �

Tr( 
 jV� ) + Tr( 
 0jV� )
�

:

Of course it does not depend on the choice made in each orbit.

Thus under this assumption we have an algorithm to compute inductively the cardin-

ality of each 	( G)unr ;�
sim .

Remark 3.4.2.5. For this algorithm it is not necessary to enumerate the sets

WcnW=WL ' ker
�
H 1(R; L ) ! H 1(R; G)

�

parametrizing the elements of each�  . It is enough to compute, for each discrete series

� represented by a collection of signs as in the previous section, the restriction ofh�; � i to

S and the sign(� 1)q(L ) .

See the tables in section 3.7.2 for some values forcard
�

	( G)unr ;�
sim

�
in low weight �

ordered lexicographically.

3.5 Application to vector-valued Siegel modular forms

Let us give a classical application of the previous results, to the computation of dimensions

of spacesSr (� n ) of vector-valued Siegel cusp forms in genusn � 1, weight r and level one.

It is certainly well-known that, under a natural assumption on the weight r , this dimension

is equal to the multiplicity in L 2
disc(PGSp 2n (Q)nPGSp 2n (A)=PGSp 2n (bZ)) of the holo-

morphic discrete series representation corresponding tor . Although [AS01] contains �half�

of the argument, we could not �nd a complete reference for the full statement. To set our

mind at rest we give details for the other half. We begin with a review of holomorphic

discrete series. We do so even though it is redundant with [Kna86] and [AS01], in order to
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give precise references, to set up notation and to identify the holomorphic discrete series

in Shelstad's parametrisation.

Note that it is rather arti�cial to restrict our attention to symplectic groups. For any

n � 3 such that n 6= 2 mod 4, the split group G = SOn has an inner form H which is

split at all the �nite places of Q and such that

� if n = � 1; 0; 1 mod 8, H (R) is compact,

� if n = 3 ; 4; 5 mod 8, H (R) ' SO(n � 2; 2).

In the second caseH (R) has holomorphic discrete series which can be realised on a her-

mitian symmetric space of complex dimensionn � 2. In the �rst case H (R) also has holo-

morphic discrete series which can be realised on a zero-dimensional hermitian symmetric

space.

3.5.1 Bounded symmetric domains of symplectic type and holomorphic
discrete series

Let us recall Harish-Chandra's point of view on bounded symmetric domains and his

construction of holomorphic discrete series (see [Bru59], [HC55], [HC56a], [HC56b]) in the

case of symplectic groups. Letn � 1 and G = Sp2n , over R in this section, and denote

G = G(R), g0 = Lie( G) and g = C 
 R g0. Then G is the stabiliser of a non-degenerate

alternate form a on a 2n-dimensional real vector spaceV . As before chooseJ 2 G such

that J 2 = � 1 and for any v 2 V r f 0g, a(Jv; v) > 0, which endowsV with a complex

structure and realisesa as the imaginary part of the positive de�nite hermitian form h

de�ned by

h(v1; v2) = a(Jv1; v2) + ia(v1; v2):

Then K = U (V; h) is a reductive subgroup ofG, and K = K (R) is a maximal compact

subgroup of G. Note that both G and K are connected. The centerZK of K is one-

dimensional and anisotropic, and the complex structureJ yields a canonical isomorphism

ZK ' U 1. Let u+ (resp.u� ) be the subspace ofg such that the adjoint action of z 2 ZK (R)

on u+ (resp. u� ) is by multiplication by z2 (resp. z� 2). Then g = u+ � k � u� and

[u+ ; u+ ] = [ u� ; u� ] = 0 . Moreover u+ � u� = C 
 R p0 where p0 is the subspace of

g0 = Lie( G) on which J acts by � 1, i.e. g0 = p0 � k0 is the Cartan decomposition ofg0

for the Cartan involution � = Ad( J ). There are unipotent abelian subgroupsU + ; U � of

G C associated withu+ ; u� , and the subgroupsK CU + and K CU � are opposite parabolic

subgroups ofG C with common Levi subgroupK C. It follows that the multiplication map

U + � K C � U � ! G C is an open immersion. FurthermoreG � U + (C)K (C)U � (C).

For g 2 G, we can thus write g = g+ g0g� where (g+ ; g0; g� ) 2 U + (C) � K (C) � U � (C),

and Harish-Chandra showed thatg 7! log(g+ ) identi�es G=K with a bounded domain

D � u+ . This endowsG=K with a structure of complex manifold, and for any g 2 G, left

multiplication by g yields a holomorphic mapG=K ! G=K .

Remark 3.5.1.1. Let us compare this point of view with the classical one. LetV = R2n

and choose the alternate forma(�; �) having matrix A =
�

0 1n

� 1n 0

�
, that is a(v1; v2) =
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t v1Av2. The complex structureJ whose matrix is alsoA satis�es the above conditions,

and the resulting maximal compact subgroupK is the stabiliser of i1n for the usual action

of G on the Siegel upper half planeH g = f � 2 M n (C) j t � = � and Im( � ) > 0g: for

a; b; c; d 2 M n (R) such that g =
�

a b
c d

�
2 G and � 2 H g, g(� ) = ( a� + b)(c� + d) � 1.

We now have two identi�cations of G=K with domains, D and H n , and they di�er by the

Cayley transform H n ! D , � 7! (� � i 1n )( � + i1n ) � 1.

Observe that GK (C)U � (C) = exp( D)K (C)U � (C) is open in G(C). Consider an irre-

ducible unitary representation r : K ! GL(W ), i.e. an irreducible algebraic representation

of K C endowed with aK -invariant positive de�nite hermitian form. Harish-Chandra con-

sidered the space of holomorphic functionsf : GK (C)U � (C) ! W such that

1. for any (s; k; n) 2 GK (C)U � (C) � K (C) � U � (C), f (skn) = r (k) � 1f (s),

2.
R

G jj f (g)jj2dg < 1 .

It has an action of G de�ned by (g � f )(s) = f (g� 1s), and we get a unitary representation

of G on a Hilbert spaceH r . SinceG=K ' GK (C)U � (C)=K (C)U � (C), H r is isomorphic

to the space off 2 L 2(G; W ) such that

1. for any (g; k) 2 G � K , f (gk) = r (k) � 1f (g),

2. the function G=K ! W; g 7! r (g0)f (g) is holomorphic.

Harish-Chandra proved that H r is zero or irreducible, by observing that in any closed

invariant subspace, there is anf such that G=K ! W; g 7! r (g0)f (g) is constant and

nonzero. Actually this a special case of [HC56a][Lemma 12, p. 20]). Hence whenH r 6= 0 ,

there is a K -equivariant embedding � : W ! H r , and any vector in its image is u+ -

invariant. More generally, using the simple action ofZK (R) on U + we see that when

H r 6= 0 the K -�nite vectors of H r are exactly the polynomial functions onD. Note that

when H r 6= 0 it is square-integrable by de�nition, i.e. it belongs to the discrete series ofG.

Harish-Chandra determined necessary and su�cient conditions forH r 6= 0 . Let T be a

maximal torus of K , and choose an order on the roots ofT in K . This determines a unique

order on the roots of T in G such that the parabolic subgroupK CU + is standard, i.e.

contains the Borel subgroupB of G C such that the positive roots are the ones occurring

in B . To be explicit in the symplectic case,T is determined by a decomposition ofV as

an orthogonal (for the hermitian form h) direct sum V = V1 � � � � � Vn where eachVk is

a line over C. For any k we have a canonical isomorphismek : U (Vk ; h) ' U 1. We can

choose the order on the roots so that the simple roots aree1 � e2; : : : ; en� 1 � en ; 2en . Note

that among these simple roots, only2en is noncompact. Let � = m1e1 + � � � + mnen be

the highest weight of r , so that m1 � � � � � mn . This means that up to multiplication by

a scalar there is a unique highest weight vectorv 2 W r f 0g, that is such that for any

b 2 K (C) \ B (C), r (b)v = � (b)v. Let � = ne1 + � � � + en be half the sum of the positive

roots of T in G. Then H r 6= 0 if and only if for any root � of T in U + , h� _ ; � + � i < 0

(see [HC56b][Lemma 29, p. 608]). In our case this condition is equivalent tom1 + n < 0.
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Assume that H r 6= 0 . Note that � (v) is a highest weight in the g-module (H r )K � �n ,

i.e. the Lie algebra of the unipotent radical of B cancels� (v). Since H r is irreducible

and unitary, (H r )K � �n is a simpleg-module whose isomorphism class determines that of

H r (see [Kna86][chapter VIII]), and thus it is the unique simple quotient of the Verma

module de�ned by B and � . In particular, � + � is a representative for the in�nitesimal

character of H r . One can show that(H r )K � �n = U(g) 
 U(k� u+ ) W , where W is seen as a

k� u+ -module by letting u+ act trivially.

Remark 3.5.1.2. Before Harish-Chandra realised these holomorphic discrete series con-

cretely, in [HC55] he considered the simple quotient of the Verma module de�ned by� and

B , for � an arbitrary dominant weight for K C \ B . He determined a necessary condition

for this g-module to be unitarisable [HC55][Corollary 1 p.768]: for any root� of T in U + ,

h� _ ; � i � 0 (in our case this is equivalent tom1 � 0). He also determined a su�cient con-

dition [HC55][Theorem 3 p.770]: for any root � of T in U + , h� _ ; � + � i � 0 (in our case

this is equivalent tom1 + n � 0). For classical groups Enright and Parthasarathy [EP81]

gave a necessary and su�cient condition for unitarisability. In our symplectic case, this

condition is

� m1 � min
1� j � n

0

@n � i +
X

2� j � i

m1 � mj

2

1

A :

It would be interesting to determine whether all these unitary representations are globally

relevant, i.e. belong to some Arthur packet.

The character of H r was computed explicitely in [Sch75], [Mar75] and [Hec76]. There

exists a unique Borel subgroupB 0 � T CU � of G C such that B 0 \ K C = B \ K C. The

order on the roots de�ned by B 0 is such that � + � is strictly dominant, i.e. for any root

� occurring in B 0, h� _ ; � + � i > 0. Let Wc = W (T (R); G) = W (T (R); K ). Then among

the discrete series ofG with in�nitesimal character � + � , H r is determined by the G-

conjugacy class of the pair(B 0; T ) (see section 3.4.2.1). In our case the simple roots for

B 0 are e1 � e2; : : : ; en� 1 � en and � 2e1.

Remark 3.5.1.3. This characterisation of the holomorphic discrete series in their L-packet

is enough to determine which Adams-Johnson representations are holomorphic discrete

series. Using the notations of section 3.4.2.2, the representation�  ; Q ;L is a holomorphic

discrete series if and only if Q � B 0 and L is anisotropic. By [CR14][Lemma 9.4] the

packet� AJ
 contains a holomorphic discrete series representation if and only ifStd �  does

not contain [d] or � C=R[d] as a factor for somed > 1 (necessarily odd).

We have made an arbitrary choice betweenU + and U � . We could have also identi�ed

G=K with a bounded domain D 0 � u� :

G=K � U � (C)K (C)U + (C)=K (C)U + (C) ' U � (C):

The resulting isomorphism of manifoldsD ' D 0 is antiholomorphic. Given an in�nitesimal

character � which occurs in a �nite-dimensional representation ofG, we have a discrete
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series representations ofG in the L-packet associated with � , � hol
�; + := ( H r )K � �n (resp.

� hol
�; � ). It is characterised among irreducible unitary representations having in�nitesimal

character � by the fact that it has a nonzero K -�nite vector cancelled by u+ (resp. u� ).

SinceK stabilisesu+ and u� , � hol
�; + 6' � hol

�; � .

Let us now de�ne holomorphic discrete series for the groupG0 = PGSp( V; a). Assume

that
P n

k=1 mk is even, i.e. the center ofG acts trivially in � hol
�; + (and � hol

�; � ). The image ofG

in G0 has index two, and there is an element ofG0 normalizing K and exchangingU + and

U � . Thus if � is such that the kernel of� hol
�; � contains the center ofG, � hol

� := Ind G0

G

�
� hol

�; +

�

is irreducible and isomorphic to IndG0

G

�
� hol

�; �

�
. Among irreducible unitary representations

having in�nitesimal character � , � hol
� is characterised by the fact that it has a nonzero

K -�nite vector cancelled by u+ . Of course we could replaceu+ by u� .

3.5.2 Siegel modular forms and automorphic forms

Let us recall the link between Siegel modular forms and automorphic cuspidal representa-

tions for the group PGSp . Almost all that we will need is contained in [AS01], in which

the authors construct an isometric Hecke-equivariant map from the space of cuspidal Siegel

modular forms to a certain space of cuspidal automorphic forms. We will simply add a

characterisation of the image of this map.

For the de�nitions and �rst properties of Siegel modular forms, see [BvdGHZ08] or

[Fre83]. We will use the classical conventions and consider the alternate forma on Z2n

whose matrix is A =
�

0 1n

� 1n 0

�
2 M 2n (Z) for some integern � 1. Let � : GSp (A) !

GL 1 be the multiplier, de�ned by the relation a(g(v1); g(v2)) = � (g)a(v1; v2). Let G =

Sp(A) = ker( � ) and G 0 = PGSp (A) = G ad, both reductive over Z.

Recall the automorphy factor j (g; � ) = c� + d 2 GLn (C) for g =
�

a b
c d

�
2 GSp (A; R)

and � 2 H n . As in the previous section denote byK the stabiliser of i1n 2 H n under the

action of G(R). Let K 0 be the maximal compact subgroup ofG 0(R) containing the image

of K by the natural morphism G(R) ! G 0(R). Observe that the map k =
�

a b
� b a

�
2

K 7! j (k; i 1n ) = a � ib is an isomorphism betweenK and the unitary group U(1n ).

In the previous section, using the complex structureJ whose matrix is equal to A, we

have identi�ed K with the unitary group U(h) for a positive de�nite hermitian form h

on R2n with the complex structure J . We emphasise that the the resulting isomorphism

U(1n ) ' U(h) is not induced by an isomorphism between the hermitian spaces: one has

to compose with the outer automorphismx 7! t x � 1 on one side.

Let (V; r) be an algebraic representation ofGL n . We can see the highest weight ofr as

(m1; : : : ; mg) where m1 � : : : mg are integers. The representationk 2 K 7! r (j (k; i 1n )) is

the restriction to K of an algebraic representationr 0 of K C. As in the previous section we

choose a Borel pair(B c; T ) in K and denote bye1 � e2; : : : ; en� 1 � en the corresponding

simple roots. Then the highest weight ofr 0 is � mne1 � � � � � m1en .

Let � n = Sp(A; Z), and denote by Sr (� n ) the space of vector-valued Siegel modular

forms of weight r . When m1 = � � � = mg, that is when r is one-dimensional, this is the
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space of scalar Siegel modular forms of weightm1. Asgari and Schmidt associate with any

f 2 Sr (� n ) a function e� f 2 L 2(G 0(Q)nG 0(A); V ) such that

1. e� f is right G 0(bZ)-invariant,

2. for any g 2 G 0(A), the function G 0(R) ! W; h 7! e� f (gh) is smooth,

3. for any X 2 u� and any g 2 G 0(A), (X � e� f )(g) = 0 ,

4. for any g 2 G 0(A) and any k 2 K , e� f (gk) = r (j (k; i 1n )) e� f (g),

5. e� f is cuspidal.

The third condition translates the Cauchy-Riemann equation for the holomorphy off into

a condition on e� f . If the measures are suitably normalised,f 7! e� f is isometric for the

Petersson hermitian product onSr (� n ). Finally, f 7! e� f is equivariant for the action of

the unrami�ed Hecke algebra at each �nite place.

Let N c be the unipotent radical of B c, let nc be its Lie algebra and let h0 be the

Lie algebra of T . The representation r 0 allows to seeV as a simplek-module, and ncV

has codimension one inV . Let L be a linear form on V such that ker(L ) = ncV. We

can seeX � (T ) as a lattice in HomR(h0; iR) � h� . Let � = m1e1 + � � � + mnen which

we can see as an element of(h � nc � u� ) � trivial on nc � u� . For any v 2 V and any

X 2 h � nc � u� , L (� r (X )v) = � (X ). For g 2 G 0(A), de�ne � f (g) = L( e� f (g)) . Then

� f 2 L 2(G 0(Q)nG 0(A)) satis�es the following properties

1. � f is right G 0(bZ)-invariant and right K 0-�nite,

2. for any g 2 G 0(A), the function G 0(R) ! W; h 7! � f (gh) is smooth,

3. for any X 2 h � nc � u� and any g 2 G 0(A), (X � � f )(g) = � (X )� f (g),

4. � f is cuspidal.

Again f 7! � f is equivariant for the action of the unrami�ed Hecke algebras at the �nite

places, and is isometric (up to a scalar). The third condition implies that� f is an eigen-

vector for Z (U(g)) and the in�nitesimal character � + � nc � u� = ( m1� 1)e1+ � � �+( mn � n)en .

In particular � f is a cuspidal automorphic form in the sense of [BJ79], which we denote

by � f 2 A cusp(G 0(Q)nG 0(A)) .

Lemma 3.5.2.1. Any � 2 A cusp(G 0(Q)nG 0(A)) satisfying the four conditions above is

equal to � f for a unique f 2 Sr (� n ).

Proof. Since � is K 0-�nite and transforms under h � nc according to � , � = L ( e�) for a

unique function e� : G 0(Q)nG 0(A) ! V such that for k 2 K , e�( gk) = r (j (k; i 1n )) � 1e�( g).

It is completely formal to check that there is a uniquef 2 M r (� n ) such that e� = e� f , and

thanks to the Koecher principle we only need to use that� has moderate growth when

n = 1 . We are left to show that f is cuspidal. Write f (� ) =
P

s2 Symn
c(s)e2i� Tr( s� ) where

cs 2 V and the sum ranges over the setSymn of symmetric half-integral semi-positive
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de�nite n � n. We need to show that for anys0 2 Symn� 1, c
��

0 0
0 s0

��
= 0 : We use the

cuspidality condition on � for the parabolic subgroupP of G de�ned over Z by

P =

8
>>>>>>>><

>>>>>>>>:

0

B
B
B
@

1 n � 1 1 n � 1

1 � � � �

n � 1 0 � � �

1 0 0 � 0

n � 1 0 � � �

1

C
C
C
A

2 G

9
>>>>>>>>=

>>>>>>>>;

:

Denote N the unipotent radical of P, and observe thatN = N 0 o N 1 where

N 0 =

8
>><

>>:

0

B
B
@

1 0 t1 t2

0 1n� 1
t t2 0

0 0 1 0
0 0 0 1n� 1

1

C
C
A

9
>>=

>>;
and N 1 =

8
>><

>>:

0

B
B
@

1 t3 0 0
0 1n� 1 0 0
0 0 1 0
0 0 � t t3 1n� 1

1

C
C
A

9
>>=

>>;

are vector groups. MoreoverN 0(Q)nN 0(A) ' N 0(Z)nN 0(R) and similarly for N 1. There-

fore for any g 2 G(R),
Z

N 1 (Z)nN 1 (R)

Z

N 0 (Z)nN 0 (R)

e�( n0n1g)dn0dn1 = 0 :

By de�nition of e� �, for somem 2 R depending only onr ,

e�( n0n1g) = � (g)m r (j (n0n1g; i1n )) � 1f (n0n1g(i1n )) :

Fix � 2 H n of the form
�

iT 0
0 � 0

�
where T 2 R> 0 and � 0 2 H n� 1, and let g 2 G(R) be

such that � = g(i1n ). We will evaluate the inner integral �rst. Fix n1 2 N 1(R) determined

by t3 2 Rn� 1 as above. For anyn0 2 N (R) determined by (t1; t2) 2 R � Rn� 1 as above,

j (n0n1g; i1n ) = j (n1g; i1n ) and we have the Fourier expansion

e�( n0n1g) = � (g)m r (j (n1g; i1n )) � 1
X

s12 Z;s22 1=2Zn � 1

0

@
X

s02 Symn � 1

c
��

s1 s2
t s2 s0

��
e2i� Tr( s0� 0)

1

A

� exp
�
2i� (s1(t3� 0t t3 + iT + t1) + 2 s2(� 0t t3

t t2))
�

and thus
Z

N 0 (Z)nN 0 (R)

e�( n0n1g)dn0 = � (g)m r (j (n1g; i1n )) � 1
X

s02 Symn � 1

c
��

0 0
0 s0

��
e2i� Tr( s0� 0)

= � (g)m r (j (g; i1n )) � 1
X

s02 Symn � 1

c
��

0 0
0 s0

��
e2i� Tr( s0� 0)

does not depend onn1. Note that to get the last expression we used

r (j (n1; � )) � 1c
��

0 0
0 s0

��
= c

��
1 0

t t3 1

� �
0 0
0 s0

� �
1 t3

0 1

��
= c

��
0 0
0 s0

��
:

Hence we can conclude that for anys0 2 Symn� 1, c
��

0 0
0 s0

��
= 0 .
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Assume that mn � n + 1 , i.e. that � + � nc � u� is the in�nitesimal character of an L-

packet of discrete series forG 0(R). Assume also that
P n

k=1 mk is even, since otherwise

Sr (� n ) = 0 . By the theorem of Gelfand, Graev and Piatetski-Shapiro

A cusp(G 0(Q)nG 0(A)) '
M

� 2 � cusp (G 0)

m� �

where� cusp(G 0) is the set of isomorphism classes of irreducible admissible(g; K 0) � G 0(Af )-

modules occurring inA cusp(G 0(Q)nG 0(A)) and m� 2 Z � 1. Consider a� 2 � cusp(G 0). For

any prime p, � G 0(Zp )
p 6= 0 if and only if � p is unrami�ed, and in that case dimC � G 0(Zp )

p = 1 .

Since � 1 is unitary, it has a highest weight vector for (�; nc � u� ) if and only if � 1 is

the holomorphic discrete series with in�nitesimal character(m1 � 1)e1 + � � � + ( mn � n)en ,

and in that case the space of highest weight vectors has dimension one. Thusdim Sr (� n )

is equal the sum of them� for � = 
 0
v � v 2 � cusp(G 0) such that � 1 is a holomorphic

discrete series with in�nitesimal character (m1 � 1)e1 + � � � + ( mn � n)en and for any prime

number p, � p is unrami�ed. By [Wal84] any � 2 � disc(G 0) r � cusp(G 0) is such that � 1

is not tempered. Thereforedim Sr (� n ) is equal to the sum of the multiplicities m� for

� 2 � disc(G 0) such that

� for any prime number p, � p is unrami�ed,

� � 1 is the holomorphic discrete series representation� hol
� with in�nitesimal character

� = ( m1 � 1)e1 + � � � + ( mn � n)en .

Recall that G = Sp2n . Thanks to [CR14][Proposition 4.7] we have thatdim Sr (� n ) is

also equal to the sum of the multiplicities m� for � 2 � disc(G) such that � is unrami�ed

everywhere and� 1 ' � hol
�; + .

Remark 3.5.2.2. For any central isogenyG ! G 0 between semisimple Chevalley groups

over Z, the integer denoted[� 1 ; � 0
1 ] in [CR14][Proposition 4.7] is always equal to1. This

follows from the fact thatG 0(R)=G(R) is a �nite abelian group.

Thus we have an algorithm to computedim Sr (� n ) from the cardinalities of S(�), Oo(�)

and Oe(�), under Assumption 3.4.2.3 ifm1; : : : ; mn are not distinct. Note that since the

Adams-Johnson packets� AJ
 have multiplicity one, under Assumption 3.4.2.3 the multi-

plicites m� for � as above are all equal to1, and thus Siegel eigenforms in level one and

weight r satisfying mn � n + 1 have multiplicity one: up to a scalar they are determined

by their Hecke eigenvalues at primes in a set of density one. This was already observed in

[CR14][Corollary 4.10].

Remark 3.5.2.3. Without assuming that mn � n + 1 , the construction in [AS01] shows

that f 7! � f is an isometry from the space of square-integrable modular forms (for the

Petersson scalar product) to the space of square-integrable automorphic forms which are

� -equivariant under nc � u� and G 0(Z)-invariant.

In fact for mn � n +1 (evenmn � n) we could avoid using [Wal84] and Lemma 3.5.2.1

and use the fact [Wei83][Satz 3] that formn � n square-integrable Siegel modular forms

are cusp forms.

103



3.5.3 Example: genus 4

Let us give more details in casen = 4 , which is interesting because there an endoscopic

contribution from the group SO8 (the formal parameter Oe(w1; w2; w3; w4)� 1 below) which

cannot be explained using lower genus Siegel eigenforms. First we list the possible Arthur

parameters for the groupSp8 in terms of the setsS(w1; : : : ), Oo(w1; : : : ) and Oe(w1; : : : ).

The non-tempered ones only occur when� 0 = ( m1 � n � 1)e1 + � � � + ( mn � n � 1)en is

orthogonal to a non-empty subset of the simple corootsf e�
1 � e�

2; : : : ; e�
n� 1 � e�

n ; e�
ng. The

convention in the following table is that the weights wi 2 1
2Z � 0 are decreasing withi . For

exampleS(w3)[2] � Oo(w1; w2) occurs only if m3 = m4, and if this is the case then

(m1; m2; m3; m4) =
�

w1 + 1 ; w2 + 2 ; w3 +
7
2

; w3 +
7
2

�
:

Table 3.1: Unrami�ed cohomological Arthur parameters for Sp8

Oo(w1; w2; w3; w4) Oe(w1; w2; w3; w4) � 1 Oe(w1; w4) � Oe(w2; w3) � 1

Oe(w2; w3) � Oo(w1; w4) Oe(w1; w4) � Oo(w2; w3) Oe(w1; w3) � Oe(w2; w4) � 1

Oe(w2; w4) � Oo(w1; w3) Oe(w1; w3) � Oo(w2; w4) Oe(w1; w2) � Oe(w3; w4) � 1

Oe(w3; w4) � Oo(w1; w2) Oe(w1; w2) � Oo(w3; w4) Oe(w1; w2) � S(w3)[2] � 1

S(w3)[2] � Oo(w1; w2) Oe(w1; w4) � S(w2)[2] � 1 S(w2)[2] � Oo(w1; w4)

Oe(w3; w4) � S(w1)[2] � 1 S(w1)[2] � Oo(w3; w4) S(w1; w3)[2] � 1

S(w1)[2] � S(w3)[2] � 1 S(w1)[4] � 1 S(w1)[2] � [5]

Oe(w1; w2) � [5] Oo(w1)[3] [9]

Among these24 types for  2 	( Sp8)unr ;� 0
, some never yield Siegel modular forms. In

the last four cases (S(w1)[2]� [5], Oe(w1; w2) � [5], Oo(w1)[3] and [9]), �  1 does not contain

the holomorphic discrete series. In the other20 cases,�  1 contains the holomorphic

discrete series representation� hol
�; + but it can happen that h�; � hol

�; + ij S never equals�  . For

example if  is tempered (the �rst 11 cases)�  is always trivial, whereas h�; � hol
�; + ij S is

trivial if and only if  does not containOe(w1; w2) or Oe(w1; w4) or Oe(w2; w3) as a factor.

In the following table we list the 11 types that yield Siegel modular forms for some

dominant weight � 0 for Sp8. In the last column we give a necessary and su�cient condition

on the weights for havingh�; � hol
�; + ij S = �  .
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Table 3.2: The 11 possible Arthur parameters of Siegel eigenforms for� 4

Type (m1; m2; m3; m4) Occurs i�

Oo(w1; w2; w3; w4) (w1 + 1 ; w2 + 2 ; w3 + 3 ; w4 + 4) always

Oe(w1; w2; w3; w4) � 1 (w1 + 1 ; w2 + 2 ; w3 + 3 ; w4 + 4) always

Oe(w1; w3) � Oe(w2; w4) � 1 (w1 + 1 ; w2 + 2 ; w3 + 3 ; w4 + 4) always

Oe(w2; w4) � Oo(w1; w3) (w1 + 1 ; w2 + 2 ; w3 + 3 ; w4 + 4) always

Oe(w1; w3) � Oo(w2; w4) (w1 + 1 ; w2 + 2 ; w3 + 3 ; w4 + 4) always

S(w3)[2] � Oo(w1; w2) (w1 + 1 ; w2 + 2 ; w3 + 7
2 ; w3 + 7

2) w3 + 1
2 is odd

S(w2)[2] � Oe(w1; w4) � 1 (w1 + 1 ; w2 + 5
2 ; w2 + 5

2 ; w4 + 4) w2 + 1
2 is even

S(w2)[2] � Oo(w1; w4) (w1 + 1 ; w2 + 5
2 ; w2 + 5

2 ; w4 + 4) w2 + 1
2 is even

S(w1)[2] � Oo(w3; w4) (w1 + 3
2 ; w1 + 3

2 ; w3 + 3 ; w4 + 4) w1 + 1
2 is odd

S(w1; w3)[2] � 1 (w1 + 3
2 ; w1 + 3

2 ; w3 + 7
2 ; w3 + 7

2) w1 + w3 is odd

S(w1)[4] � 1 (w1 + 3
2 ; w1 + 3

2 ; w1 + 3
2 ; w1 + 3

2) w1 + 1
2 is even

3.5.4 Some dimensions in the scalar case

In genus n greater than 4 the enumeration of the possible Arthur parameters of Siegel

eigenforms is best left to a computer. Our implementation currently allows to compute

dim Sr (� n ) for n � 7 and any algebraic representationr of GL n such that its highest

weight m1 � � � � � mn satis�es mn � n + 1 .

Table 3.3 displays the dimensions of some spaces ofscalar Siegel cusp forms. Note

that our method does not allow to compute dim Sk (� n ) when k � n (question marks in

the bottom left corner), and that for scalar weights is is necessary to make Assumption

3.4.2.3. We do not include the valuesdim Sk (� n ) when n + 1 � k � 7 because they all

vanish. The question marks on the right side could be obtained simply by computing more

traces in algebraic representations (Tr( 
 j V� ) in the geometric side of the trace formula).

For more data seehttp://www.math.ens.fr/~taibi/dimtrace/ . For n � 8 we have not

(yet) managed to compute the masses forSp2n . Nevertheless we can enumerate some

endoscopic parameters, and thus give lower bounds fordim Sk (� n ): these are the starred

numbers.
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Table 3.3: Dimensions of spaces of scalar Siegel cusp forms
k 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

dim Sk (� 1) 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1
dim Sk (� 2) 0 0 1 0 1 0 1 0 2 0 2 0 3 0 4
dim Sk (� 3) 0 0 0 0 1 0 1 0 3 0 4 0 6 0 9
dim Sk (� 4) 1 0 1 0 2 0 3 0 7 0 12 1 22 1 38
dim Sk (� 5) 0 0 0 0 2 0 3 0 13 0 28 0 76 0 186
dim Sk (� 6) 0 0 1 0 3 0 9 0 33 0 117 1 486 ? ?
dim Sk (� 7) 0 0 0 0 3 0 9 0 83 0 ? 0 ? 0 ?
dim Sk (� 8) ? 0� 1� 0� 4� 1� 23� 2� 234�

dim Sk (� 9) ? ? 0� 0� 2� 0� 25� 0� 843�

dim Sk (� 10) ? ? ? 0� 2� 0� 43� 1� 1591�

dim Sk (� 11) ? ? ? ? 1� 0� 32� 0� 6478�

In principle for n � 7 one can compute the generating series
P

k� n+1 (dim Sk (� n )) T k .

We have not attempted to do so forn � 4.

3.6 Reliability

The complete algorithm computing the three families of numbers

� card (S(w1; : : : ; wn )) for n � 1, wi 2 1
2Z r Z and w1 > � � � > w n > 0,

� card (Oo(w1; : : : ; wn )) for n � 1, wi 2 Z and w1 > � � � > w n > 0,

� card (Oe(w1; : : : ; w2n )) for n � 1, wi 2 Z and w1 > � � � > w 2n � 0,

is long and complicated. Our implementation consists of more than 5000 lines of source

code (mainly in Python, using Sage [S+ 14]), therefore it certainly contains errors. There

are several mathematically meaningful checks suggesting that the tables produced by our

program are valid:

1. When computing the geometric side of the trace formula we obviously always �nd

a rational number. The trace formula asserts that it is equal to the spectral side,

which is an integer, being an Euler-Poincaré characteristic. The �rst check that our

tables pass is thus that the geometric sides are indeed integral.

2. With a one-line modi�cation, our algorithm can be used to compute global orbital

integrals for special orthogonal groupsG=Q which are split at every �nite place and

such that G(R) is compact. On a space of dimensiond such a group exists if and

only d = � 1; 0; 1 mod 8. Recall that for d 2 f 7; 8; 9g, up to isomorphism there is a

unique regular and de�nite positive quadratic form q : Zd ! Z. These are the lattices

E7, E8 and E8 � A1. Each one of these three lattices de�nes a reductive groupG

over Z such that G Q is as above, and their uniqueness is equivalent to the fact that

the arithmetic genus G(Af )=G(bZ) has one element. Chenevier and Renard [CR14]

computed the geometric side of the trace formula, which is elementary and does not

depend on Arthur's work in the anisotropic case, tocount level one automorphic
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representations for these groups. This is possible becauseG(Z) is closely related to

the Weyl groups of the root systemsE7 and E8, for which Carter [Car72] described

the conjugacy classes and their orders. We checked that we obtain the same �masses�

(see section 3.3.2.5).

3. The numberscard (S(w1; : : : ; wn )) , card (Oo(w1; : : : ; wn )) and card (Oe(w1; : : : ; w2n ))

belong to Z � 0. Our tables pass this check.

4. In low rank there are exceptional isogenies between the groups that we consider:

PGSp 2 ' SO3, PGSp 4 ' SO5, (SO4)sc ' SL2 � SL2, which by [CR14][Proposition

4.7] imply:

(a) For any odd w1 2 Z> 0, card (S(w1=2)) = card ( Oo(w1)) . Note that card (Oo(w1)) =

0 if w1 is even.

(b) For any integers w1 > w 2 > 0 such that w1 + w2 is odd,

card
�

S
�

w1 + w2

2
;
w1 � w2

2

��
= card ( Oo(w1; w2)) :

Note that card (Oo(w1; w2)) = 0 if w1 + w2 is even.

(c) For any integers w1 > w 2 > 0 such that w1 + w2 is odd,

card
�

S
�

w1 + w2

2

��
� card

�
S

�
w1 � w2

2

��
= card ( Oe(w1; w2)) ;

and for any odd integerw > 0,
�

card
�
S( w

2 )
�

2

�
= Oe(w; 0):

Note that card (Oe(w1; w2)) = 0 if w1 + w2 is even.

5. By results of Mestre [Mes86], Fermigier [Fer96] and Miller [Mil02], in low motivic

weight (that is 2w1) some of the cardinalities ofS(w1; : : : ), Oo(w1; : : : ) and Oe(w1; : : : )

are known to vanish. In forthcoming work, Chenevier and Lannes improve their

method to show that if n � 1 and � is a self-dual cuspidal automorphic representa-

tion of GL n=Q such that

� for any prime number p, � p is unrami�ed,

� the local Langlands parameter' of � 1 is either

� a direct sum of copies of1, � C=R and I r for integers 1 � r � 10, or

� a direct sum of copies ofI r for r 2 1
2Z r Z and 1

2 � r � 19
2 .

then ' belongs to the following list:

� 1,

� I 11=2; I 15=2; I 17=2; I 19=2,

� � C=R � I 10; � C=R � I 9,
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� I r=2 � I 19=2 with r 2 f 5; 7; 9; 11; 13g,

� I 4 � I 9, I r � I 10 with r 2 f 2; 3; 4; 5; 6; 7g,

� 1 � I 6 � I 10; 1 � I 7 � I 10.

Note that they make no regularity assumption. This implies the vanishing of2521

values in our tables for groups of rank� 6. In our tables, the only non-vanishing

card (S(w1; : : : )) , card (Oo(w1; : : : )) or card (Oe(w1; : : : )) with w1 � 10 are the fol-

lowing.

� For w1 2
� 11

2 ; 15
2 ; 17

2 ; 19
2

	
, card (S(w1)) = 1 . These are the well-known modular

forms.

� card
�
S

� 19
2 ; 7

2

��
= 1 .

6. Finally, we can compare the values that we obtain for the dimensions of spaces of

Siegel modular forms with known ones. Our formulae coincide with those given in

[Igu62] (genus two, scalar) and [Tsu83] and [Tsu84] (genus two, vector-valued). Tsuy-

umine [Tsu86] gave a dimension formula in the scalar case in genus3. There seems

to be a typographical error in the formula on page 832 of [Tsu86], the denominator

should be

(1 � T4)(1 � T12)2(1 � T14)(1 � T18)(1 � T20)(1 � T30)

instead of

(1 � T4)(1 � T12)3(1 � T14)(1 � T18)(1 � T20)(1 � T30):

With this correction we �nd the same formula as Tsuyumine. In [BFvdG14] Bergström,

Faber and van der Geer conjecture a formula for the cohomology of local systems on

the moduli spaceA 3 in terms of motives conjecturally associated with Siegel cusp

forms. As a corollary they obtain a conjectural formula fordim Sr (� 3) where r is an

algebraic representation ofGL 3 of highest weight m1 � m2 � m3 � 4. For m1 � 24

(1771values) we have checked that our values coincide. We have also checked that

our tables agree with Nebe and Venkov's theorem and conjecture in weight12 [NV01]

and Poor and Yuen's results in low weight [PY07].

3.7 Tables

3.7.1 Masses

Table 3.4: Masses for the groupSO3

Char. pol. mass Char. pol. mass Char. pol. mass

� 3
1 � 1=12 � 1� 2

2 1=4 � 1� 3 1=3
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Table 3.5: Masses for the groupSO5

Char. pol. mass Char. pol. mass Char. pol. mass Char. pol. mass

� 5
1 � 1=1440 � 3

1� 2
2 � 1=48 � 1� 4

2 7=288 � 1� 2
2� 4 1=4

� 1� 2
4 � 1=24 � 3

1� 3 � 1=36 � 1� 2
2� 3 1=12 � 1� 2

3 � 1=36

� 1� 2
2� 6 2=9 � 1� 2

6 � 1=36 � 1� 12 1=6 � 1� 5 2=5

Table 3.6: Masses for the groupSO7

Char. pol. mass Char. pol. mass Char. pol. mass

� 7
1 1=483840 � 5

1� 2
2 � 19=23040 � 3

1� 4
2 � 331=13824

� 1� 6
2 1=7680 � 3

1� 2
2� 4 � 11=192 � 1� 4

2� 4 1=64

� 3
1� 2

4 25=1152 � 1� 2
2� 2

4 � 7=384 � 1� 2
2� 8 3=16

� 1� 4� 8 3=16 � 5
1� 3 � 1=1440 � 3

1� 2
2� 3 � 1=36

� 1� 4
2� 3 7=864 � 1� 2

2� 3� 4 1=24 � 1� 3� 2
4 � 1=72

� 3
1� 2

3 7=144 � 1� 2
2� 2

3 � 1=144 � 1� 3
3 1=216

� 3
1� 2

2� 6 � 23=432 � 1� 4
2� 6 1=48 � 1� 2

2� 4� 6 1=8

� 1� 2
2� 3� 6 5=27 � 3

1� 2
6 1=432 � 1� 2

2� 2
6 1=48

� 1� 3� 2
6 1=216 � 3

1� 12 � 1=72 � 1� 2
2� 12 1=24

� 1� 3� 12 5=36 � 1� 9 1=3 � 3
1� 5 � 1=15

� 1� 2
2� 5 1=10 � 1� 3� 5 1=15 � 1� 2

2� 10 3=10

� 1� 7 3=7
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Table 3.7: Masses for the groupSO9

Char. pol. mass Char. pol. mass Char. pol. mass

� 9
1 1=116121600 � 7

1� 2
2 1=1935360 � 5

1� 4
2 � 4963=1658880

� 3
1� 6

2 � 31=92160 � 1� 8
2 121=116121600 � 5

1� 2
2� 4 � 67=23040

� 3
1� 4

2� 4 � 7=768 � 1� 6
2� 4 1=2560 � 5

1� 2
4 109=138240

� 3
1� 2

2� 2
4 37=4608 � 1� 4

2� 2
4 � 331=27648 � 1� 2

2� 3
4 1=128

� 1� 4
4 1=7680 � 3

1� 2
2� 8 � 1=64 � 1� 4

2� 8 1=64

� 3
1� 4� 8 � 1=64 � 1� 2

2� 4� 8 21=64 � 1� 2
8 1=32

� 7
1� 3 1=1451520 � 5

1� 2
2� 3 � 49=23040 � 3

1� 4
2� 3 � 331=41472

� 1� 6
2� 3 1=23040 � 3

1� 2
2� 3� 4 5=576 � 1� 4

2� 3� 4 1=192

� 3
1� 3� 2

4 25=3456 � 1� 2
2� 3� 2

4 � 7=1152 � 1� 2
2� 3� 8 1=16

� 1� 3� 4� 8 1=16 � 5
1� 2

3 67=17280 � 3
1� 2

2� 2
3 7=576

� 1� 4
2� 2

3 � 7=10368 � 1� 2
2� 2

3� 4 � 1=144 � 1� 2
3� 2

4 1=864

� 3
1� 3

3 � 25=2592 � 1� 2
2� 3

3 1=864 � 1� 4
3 1=25920

� 5
1� 2

2� 6 � 83=51840 � 3
1� 4

2� 6 � 7=576 � 1� 6
2� 6 37=51840

� 3
1� 2

2� 4� 6 � 1=96 � 1� 4
2� 4� 6 1=32 � 1� 2

2� 2
4� 6 � 23=864

� 1� 2
2� 6� 8 1=8 � 3

1� 2
2� 3� 6 � 11=324 � 1� 4

2� 3� 6 1=36

� 1� 2
2� 3� 4� 6 1=6 � 1� 2

2� 2
3� 6 1=324 � 5

1� 2
6 1=51840

� 3
1� 2

2� 2
6 � 1=576 � 1� 4

2� 2
6 � 133=3456 � 1� 2

2� 4� 2
6 � 1=16

� 1� 2
4� 2

6 1=864 � 3
1� 3� 2

6 � 1=2592 � 1� 2
2� 3� 2

6 � 13=288

� 1� 2
3� 2

6 41=2592 � 1� 2
2� 3

6 1=324 � 1� 4
6 1=25920

� 5
1� 12 � 1=8640 � 3

1� 2
2� 12 � 1=288 � 1� 4

2� 12 7=1728

� 1� 2
2� 4� 12 1=8 � 1� 2

4� 12 1=48 � 3
1� 3� 12 � 5=432

� 1� 2
2� 3� 12 5=144 � 1� 2

3� 12 1=432 � 1� 2
2� 6� 12 5=54

� 1� 2
6� 12 1=432 � 1� 2

12 1=48 � 1� 24 1=4

� 3
1� 9 � 1=36 � 1� 2

2� 9 1=12 � 1� 3� 9 4=9

� 1� 2
2� 18 2=9 � 1� 6� 18 1=9 � 5

1� 5 � 7=3600

� 3
1� 2

2� 5 � 1=60 � 1� 4
2� 5 7=720 � 1� 2

2� 4� 5 1=20

� 1� 2
4� 5 � 1=60 � 3

1� 3� 5 1=180 � 1� 2
2� 3� 5 1=60

� 1� 2
3� 5 � 1=90 � 1� 2

2� 5� 6 4=45 � 1� 5� 2
6 � 1=90

� 1� 5� 12 1=15 � 1� 2
5 1=100 � 3

1� 2
2� 10 � 1=40

� 1� 4
2� 10 11=200 � 1� 2

2� 4� 10 3=20 � 1� 2
2� 3� 10 1=10

� 1� 2
2� 6� 10 1=5 � 1� 2

10 1=100 � 1� 20 3=10

� 1� 15 1=5 � 1� 30 1=5 � 3
1� 7 � 1=28

� 1� 2
2� 7 3=28 � 1� 3� 7 1=7 � 1� 2

2� 14 3=7

Table 3.8: Masses for the groupSp2

Char. pol. mass Char. pol. mass Char. pol. mass

� 2
1 � 1=12 � 2

2 � 1=12 � 4 1=2

� 3 1=3 � 6 1=3
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Table 3.9: Masses for the groupSp4

Char. pol. mass Char. pol. mass Char. pol. mass Char. pol. mass

� 4
1 � 1=1440 � 2

1� 2
2 7=144 � 4

2 � 1=1440 � 2
1� 4 � 1=24

� 2
2� 4 � 1=24 � 2

4 � 1=24 � 8 1=2 � 2
1� 3 � 1=36

� 2
2� 3 � 1=36 � 3� 4 1=6 � 2

3 � 1=36 � 2
1� 6 � 1=36

� 2
2� 6 � 1=36 � 4� 6 1=6 � 3� 6 4=9 � 2

6 � 1=36

� 12 1=6 � 5 2=5 � 10 2=5

Table 3.10: Masses for the groupSp6

Char. pol. mass Char. pol. mass Char. pol. mass

� 6
1 1=362880 � 4

1� 2
2 31=17280 � 2

1� 4
2 31=17280

� 6
2 1=362880 � 4

1� 4 � 1=2880 � 2
1� 2

2� 4 7=288

� 4
2� 4 � 1=2880 � 2

1� 2
4 7=288 � 2

2� 2
4 7=288

� 3
4 1=48 � 2

1� 8 � 1=24 � 2
2� 8 � 1=24

� 4� 8 3=4 � 4
1� 3 � 1=4320 � 2

1� 2
2� 3 7=432

� 4
2� 3 � 1=4320 � 2

1� 3� 4 � 1=72 � 2
2� 3� 4 � 1=72

� 3� 2
4 � 1=72 � 3� 8 1=6 � 2

1� 2
3 25=432

� 2
2� 2

3 1=432 � 2
3� 4 � 1=72 � 3

3 1=162

� 4
1� 6 � 1=4320 � 2

1� 2
2� 6 7=432 � 4

2� 6 � 1=4320

� 2
1� 4� 6 � 1=72 � 2

2� 4� 6 � 1=72 � 2
4� 6 � 1=72

� 6� 8 1=6 � 2
1� 3� 6 � 1=27 � 2

2� 3� 6 � 1=27

� 3� 4� 6 2=9 � 2
3� 6 1=54 � 2

1� 2
6 1=432

� 2
2� 2

6 25=432 � 4� 2
6 � 1=72 � 3� 2

6 1=54

� 3
6 1=162 � 2

1� 12 � 1=72 � 2
2� 12 � 1=72

� 4� 12 5=12 � 3� 12 2=9 � 6� 12 2=9

� 9 4=9 � 18 4=9 � 2
1� 5 � 1=30

� 2
2� 5 � 1=30 � 4� 5 1=5 � 3� 5 2=15

� 5� 6 2=15 � 2
1� 10 � 1=30 � 2

2� 10 � 1=30

� 4� 10 1=5 � 3� 10 2=15 � 6� 10 2=15

� 7 4=7 � 14 4=7
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Table 3.11: Masses for the groupSp8
Char. pol. mass Char. pol. mass Char. pol. mass Char. pol. mass

� 8
1 1=87091200 � 6

1 � 2
2 � 127=4354560 � 4

1 � 4
2 871=2073600 � 2

1 � 6
2 � 127=4354560

� 8
2 1=87091200 � 6

1 � 4 1=725760 � 4
1 � 2

2 � 4 31=34560 � 2
1 � 4

2 � 4 31=34560

� 6
2 � 4 1=725760 � 4

1 � 2
4 31=34560 � 2

1 � 2
2 � 2

4 � 361=3456 � 4
2 � 2

4 31=34560

� 2
1 � 3

4 � 7=576 � 2
2 � 3

4 � 7=576 � 4
4 1=5760 � 4

1 � 8 � 1=2880

� 2
1 � 2

2 � 8 7=288 � 4
2 � 8 � 1=2880 � 2

1 � 4 � 8 � 3=16 � 2
2 � 4 � 8 � 3=16

� 2
4 � 8 � 1=48 � 2

8 1=24 � 16 1 � 6
1 � 3 1=1088640

� 4
1 � 2

2 � 3 31=51840 � 2
1 � 4

2 � 3 31=51840 � 6
2 � 3 1=1088640 � 4

1 � 3 � 4 � 1=8640

� 2
1 � 2

2 � 3 � 4 7=864 � 4
2 � 3 � 4 � 1=8640 � 2

1 � 3 � 2
4 7=864 � 2

2 � 3 � 2
4 7=864

� 3 � 3
4 1=144 � 2

1 � 3 � 8 � 1=72 � 2
2 � 3 � 8 � 1=72 � 3 � 4 � 8 1=4

� 4
1 � 2

3 241=51840 � 2
1 � 2

2 � 2
3 � 175=5184 � 4

2 � 2
3 1=51840 � 2

1 � 2
3 � 4 25=864

� 2
2 � 2

3 � 4 1=864 � 2
3 � 2

4 1=864 � 2
3 � 8 � 1=72 � 2

1 � 3
3 � 25=1944

� 2
2 � 3

3 � 1=1944 � 3
3 � 4 1=324 � 4

3 1=19440 � 6
1 � 6 1=1088640

� 4
1 � 2

2 � 6 31=51840 � 2
1 � 4

2 � 6 31=51840 � 6
2 � 6 1=1088640 � 4

1 � 4 � 6 � 1=8640

� 2
1 � 2

2 � 4 � 6 7=864 � 4
2 � 4 � 6 � 1=8640 � 2

1 � 2
4 � 6 7=864 � 2

2 � 2
4 � 6 7=864

� 3
4 � 6 1=144 � 2

1 � 6 � 8 � 1=72 � 2
2 � 6 � 8 � 1=72 � 4 � 6 � 8 1=4

� 4
1 � 3 � 6 � 1=3240 � 2

1 � 2
2 � 3 � 6 7=324 � 4

2 � 3 � 6 � 1=3240 � 2
1 � 3 � 4 � 6 � 1=54

� 2
2 � 3 � 4 � 6 � 1=54 � 3 � 2

4 � 6 � 1=54 � 3 � 6 � 8 2=9 � 2
1 � 2

3 � 6 � 25=648

� 2
2 � 2

3 � 6 � 1=648 � 2
3 � 4 � 6 1=108 � 3

3 � 6 5=243 � 4
1 � 2

6 1=51840

� 2
1 � 2

2 � 2
6 � 175=5184 � 4

2 � 2
6 241=51840 � 2

1 � 4 � 2
6 1=864 � 2

2 � 4 � 2
6 25=864

� 2
4 � 2

6 1=864 � 2
6 � 8 � 1=72 � 2

1 � 3 � 2
6 � 1=648 � 2

2 � 3 � 2
6 � 25=648

� 3 � 4 � 2
6 1=108 � 2

3 � 2
6 11=648 � 2

1 � 3
6 � 1=1944 � 2

2 � 3
6 � 25=1944

� 4 � 3
6 1=324 � 3 � 3

6 5=243 � 4
6 1=19440 � 4

1 � 12 � 1=8640

� 2
1 � 2

2 � 12 7=864 � 4
2 � 12 � 1=8640 � 2

1 � 4 � 12 � 5=144 � 2
2 � 4 � 12 � 5=144

� 2
4 � 12 7=144 � 8 � 12 1=12 � 2

1 � 3 � 12 � 1=54 � 2
2 � 3 � 12 � 1=54

� 3 � 4 � 12 5=9 � 2
3 � 12 1=108 � 2

1 � 6 � 12 � 1=54 � 2
2 � 6 � 12 � 1=54

� 4 � 6 � 12 5=9 � 3 � 6 � 12 14=27 � 2
6 � 12 1=108 � 2

12 1=36

� 24 1=3 � 2
1 � 9 � 1=27 � 2

2 � 9 � 1=27 � 4 � 9 2=9

� 3 � 9 16=27 � 6 � 9 4=27 � 2
1 � 18 � 1=27 � 2

2 � 18 � 1=27

� 4 � 18 2=9 � 3 � 18 4=27 � 6 � 18 16=27 � 4
1 � 5 � 1=3600

� 2
1 � 2

2 � 5 7=360 � 4
2 � 5 � 1=3600 � 2

1 � 4 � 5 � 1=60 � 2
2 � 4 � 5 � 1=60

� 2
4 � 5 � 1=60 � 5 � 8 1=5 � 2

1 � 3 � 5 � 1=90 � 2
2 � 3 � 5 � 1=90

� 3 � 4 � 5 1=15 � 2
3 � 5 � 1=90 � 2

1 � 5 � 6 � 1=90 � 2
2 � 5 � 6 � 1=90

� 4 � 5 � 6 1=15 � 3 � 5 � 6 8=45 � 5 � 2
6 � 1=90 � 5 � 12 1=15

� 2
5 1=75 � 4

1 � 10 � 1=3600 � 2
1 � 2

2 � 10 7=360 � 4
2 � 10 � 1=3600

� 2
1 � 4 � 10 � 1=60 � 2

2 � 4 � 10 � 1=60 � 2
4 � 10 � 1=60 � 8 � 10 1=5

� 2
1 � 3 � 10 � 1=90 � 2

2 � 3 � 10 � 1=90 � 3 � 4 � 10 1=15 � 2
3 � 10 � 1=90

� 2
1 � 6 � 10 � 1=90 � 2

2 � 6 � 10 � 1=90 � 4 � 6 � 10 1=15 � 3 � 6 � 10 8=45

� 2
6 � 10 � 1=90 � 10 � 12 1=15 � 5 � 10 24=25 � 2

10 1=75

� 20 2=5 � 15 4=15 � 30 4=15 � 2
1 � 7 � 1=21

� 2
2 � 7 � 1=21 � 4 � 7 2=7 � 3 � 7 4=21 � 6 � 7 4=21

� 2
1 � 14 � 1=21 � 2

2 � 14 � 1=21 � 4 � 14 2=7 � 3 � 14 4=21

� 6 � 14 4=21

For even orthogonal groups and when the characteristic polynomial is coprime to� 1� 2,

the characteristic polynomial de�nes two conjugacy classes overQ. They have the same

mass.
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Table 3.12: Masses for the groupSO4

Char. pol. mass Char. pol. mass Char. pol. mass

� 4
1 1=144 � 2

1� 2
2 1=8 � 4

2 1=144

� 2
4 � 1=24 � 2

1� 3 1=9 � 2
3 � 1=36

� 2
2� 6 1=9 � 2

6 � 1=36 � 12 1=6

Table 3.13: Masses for the groupSO8

Char. pol. mass Char. pol. mass Char. pol. mass

� 8
1 1=58060800 � 6

1� 2
2 1=15360 � 4

1� 4
2 1357=165888

� 2
1� 6

2 1=15360 � 8
2 1=58060800 � 4

1� 2
2� 4 1=64

� 2
1� 4

2� 4 1=64 � 4
1� 2

4 � 55=13824 � 2
1� 2

2� 2
4 17=768

� 4
2� 2

4 � 55=13824 � 4
4 1=7680 � 2

1� 2
2� 8 3=16

� 2
1� 4� 8 3=32 � 2

2� 4� 8 3=32 � 2
8 1=32

� 6
1� 3 1=25920 � 4

1� 2
2� 3 1=96 � 2

1� 4
2� 3 41=5184

� 2
1� 2

2� 3� 4 1=8 � 2
1� 3� 2

4 1=432 � 4
1� 2

3 � 19=1728

� 2
1� 2

2� 2
3 1=96 � 4

2� 2
3 � 1=5184 � 2

3� 2
4 1=864

� 2
1� 3

3 1=648 � 4
3 1=25920 � 4

1� 2
2� 6 41=5184

� 2
1� 4

2� 6 1=96 � 6
2� 6 1=25920 � 2

1� 2
2� 4� 6 1=8

� 2
2� 2

4� 6 1=432 � 2
1� 2

2� 3� 6 23=81 � 2
2� 2

3� 6 1=648

� 4
1� 2

6 � 1=5184 � 2
1� 2

2� 2
6 1=96 � 4

2� 2
6 � 19=1728

� 2
4� 2

6 1=864 � 2
1� 3� 2

6 1=648 � 2
3� 2

6 41=2592

� 2
2� 3

6 1=648 � 4
6 1=25920 � 4

1� 12 1=864

� 2
1� 2

2� 12 1=48 � 4
2� 12 1=864 � 2

4� 12 1=48

� 2
1� 3� 12 5=108 � 2

3� 12 1=432 � 2
2� 6� 12 5=108

� 2
6� 12 1=432 � 2

12 1=48 � 24 1=4

� 2
1� 9 1=9 � 3� 9 1=9 � 2

2� 18 1=9

� 6� 18 1=9 � 4
1� 5 1=100 � 2

1� 2
2� 5 3=20

� 2
1� 3� 5 1=5 � 2

5 1=100 � 2
1� 2

2� 10 3=20

� 4
2� 10 1=100 � 2

2� 6� 10 1=5 � 2
10 1=100

� 20 3=10 � 15 1=5 � 30 1=5

� 2
1� 7 3=7 � 2

2� 14 3=7

3.7.2 Some essentially self-dual, algebraic, level one, automorphic cuspidal
representations of GLn for n � 13

The following tables list the non-zero

card(S(w1; : : : ; wn )) ; card(Oo(w1; : : : ; wn )) and card(Oe(w1; : : : ; w2n ))

as de�ned in the introduction. These values depend on Assumption 3.4.2.4 whenwi =

wi +1 + 1 for somei or

� wn = 1
2 for card(S(w1; : : : ; wn )) ,
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� wn = 1 for card(Oo(w1; : : : ; wn )) ,

� wn = 0 for card(Oe(w1; : : : ; w2n )) .

Much more data is available athttp://www.math.ens.fr/~taibi/dimtrace/ .

Table 3.14: card (S(w))
2w card. 2w card. 2w card. 2w card.
11 1 23 2 33 2 43 3
15 1 25 1 35 3 45 3
17 1 27 2 37 2 47 4
19 1 29 2 39 3 49 3
21 1 31 2 41 3 51 4
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Table 3.15: card (S(w1; w2))
(2w1; 2w2) card. (2w1; 2w2) card. (2w1; 2w2) card. (2w1; 2w2) card.
(19, 7) 1 (31, 5) 1 (35, 25) 5 (39, 33) 4
(21, 5) 1 (31, 7) 3 (35, 27) 3 (39, 35) 1
(21, 9) 1 (31, 9) 2 (35, 29) 2 (39, 37) 1
(21, 13) 1 (31, 11) 3 (35, 31) 1 (41, 1) 1
(23, 7) 1 (31, 13) 4 (37, 1) 1 (41, 3) 1
(23, 9) 1 (31, 15) 4 (37, 5) 4 (41, 5) 6
(23, 13) 1 (31, 17) 3 (37, 7) 3 (41, 7) 4
(25, 5) 1 (31, 19) 4 (37, 9) 7 (41, 9) 9
(25, 7) 1 (31, 21) 3 (37, 11) 5 (41, 11) 6
(25, 9) 2 (31, 23) 2 (37, 13) 9 (41, 13) 13
(25, 11) 1 (31, 25) 2 (37, 15) 6 (41, 15) 10
(25, 13) 2 (33, 5) 3 (37, 17) 9 (41, 17) 13
(25, 15) 1 (33, 7) 2 (37, 19) 8 (41, 19) 11
(25, 17) 1 (33, 9) 5 (37, 21) 10 (41, 21) 14
(25, 19) 1 (33, 11) 2 (37, 23) 7 (41, 23) 11
(27, 3) 1 (33, 13) 6 (37, 25) 9 (41, 25) 15
(27, 7) 2 (33, 15) 4 (37, 27) 6 (41, 27) 11
(27, 9) 1 (33, 17) 6 (37, 29) 5 (41, 29) 11
(27, 11) 2 (33, 19) 5 (37, 31) 4 (41, 31) 9
(27, 13) 2 (33, 21) 5 (37, 33) 2 (41, 33) 8
(27, 15) 2 (33, 23) 3 (39, 3) 3 (41, 35) 4
(27, 17) 1 (33, 25) 4 (39, 5) 2 (41, 37) 3
(27, 19) 1 (33, 27) 2 (39, 7) 7 (43, 3) 5
(27, 21) 1 (33, 29) 1 (39, 9) 5 (43, 5) 3
(29, 5) 2 (35, 3) 2 (39, 11) 8 (43, 7) 9
(29, 7) 1 (35, 5) 1 (39, 13) 8 (43, 9) 7
(29, 9) 3 (35, 7) 5 (39, 15) 10 (43, 11) 11
(29, 11) 1 (35, 9) 4 (39, 17) 8 (43, 13) 11
(29, 13) 4 (35, 11) 5 (39, 19) 11 (43, 15) 15
(29, 15) 2 (35, 13) 5 (39, 21) 10 (43, 17) 13
(29, 17) 3 (35, 15) 6 (39, 23) 10 (43, 19) 17
(29, 19) 2 (35, 17) 5 (39, 25) 10 (43, 21) 14
(29, 21) 2 (35, 19) 7 (39, 27) 9 (43, 23) 16
(29, 25) 1 (35, 21) 6 (39, 29) 7 (43, 25) 16
(31, 3) 2 (35, 23) 5 (39, 31) 6 (43, 27) 16
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Table 3.16: card (S(w1; w2; w3))
(2wi ) i card. (2wi ) i card. (2wi ) i card. (2wi ) i card.
(23, 13, 5) 1 (27, 21, 7) 2 (29, 19, 13) 5 (31, 13, 5) 3
(23, 15, 3) 1 (27, 21, 9) 4 (29, 19, 15) 1 (31, 13, 7) 2
(23, 15, 7) 1 (27, 21, 11) 2 (29, 19, 17) 1 (31, 13, 9) 4
(23, 17, 5) 1 (27, 21, 13) 3 (29, 21, 3) 5 (31, 15, 3) 3
(23, 17, 9) 1 (27, 21, 15) 1 (29, 21, 5) 1 (31, 15, 5) 2
(23, 19, 3) 1 (27, 21, 17) 1 (29, 21, 7) 10 (31, 15, 7) 5
(23, 19, 11) 1 (27, 23, 3) 1 (29, 21, 9) 4 (31, 15, 9) 3
(25, 13, 3) 1 (27, 23, 5) 3 (29, 21, 11) 8 (31, 15, 11) 2
(25, 13, 7) 1 (27, 23, 7) 1 (29, 21, 13) 4 (31, 17, 1) 2
(25, 15, 5) 1 (27, 23, 9) 2 (29, 21, 15) 5 (31, 17, 5) 7
(25, 15, 9) 1 (27, 23, 11) 2 (29, 21, 17) 1 (31, 17, 7) 4
(25, 17, 3) 2 (27, 23, 13) 1 (29, 21, 19) 1 (31, 17, 9) 9
(25, 17, 7) 2 (27, 23, 15) 1 (29, 23, 1) 1 (31, 17, 11) 3
(25, 17, 11) 1 (27, 23, 17) 1 (29, 23, 3) 2 (31, 17, 13) 5
(25, 19, 1) 1 (27, 25, 5) 2 (29, 23, 5) 5 (31, 19, 3) 6
(25, 19, 5) 2 (27, 25, 7) 1 (29, 23, 7) 5 (31, 19, 5) 4
(25, 19, 9) 2 (27, 25, 9) 1 (29, 23, 9) 6 (31, 19, 7) 10
(25, 19, 13) 1 (27, 25, 11) 1 (29, 23, 11) 7 (31, 19, 9) 8
(25, 21, 3) 2 (27, 25, 13) 1 (29, 23, 13) 5 (31, 19, 11) 9
(25, 21, 7) 2 (27, 25, 15) 1 (29, 23, 15) 5 (31, 19, 13) 6
(25, 21, 11) 2 (27, 25, 17) 1 (29, 23, 17) 3 (31, 19, 15) 4
(25, 21, 15) 1 (29, 9, 7) 1 (29, 23, 19) 1 (31, 21, 1) 3
(27, 9, 5) 1 (29, 11, 5) 1 (29, 25, 3) 3 (31, 21, 3) 1
(27, 13, 5) 2 (29, 13, 3) 1 (29, 25, 5) 3 (31, 21, 5) 11
(27, 13, 7) 1 (29, 13, 5) 1 (29, 25, 7) 7 (31, 21, 7) 7
(27, 13, 9) 1 (29, 13, 7) 3 (29, 25, 9) 4 (31, 21, 9) 15
(27, 15, 3) 1 (29, 13, 9) 1 (29, 25, 11) 7 (31, 21, 11) 9
(27, 15, 5) 1 (29, 15, 1) 1 (29, 25, 13) 4 (31, 21, 13) 12
(27, 15, 7) 2 (29, 15, 5) 3 (29, 25, 15) 5 (31, 21, 15) 6
(27, 15, 9) 1 (29, 15, 7) 2 (29, 25, 17) 3 (31, 21, 17) 6
(27, 17, 5) 4 (29, 15, 9) 3 (29, 25, 19) 2 (31, 23, 1) 1
(27, 17, 7) 1 (29, 15, 13) 1 (29, 25, 21) 1 (31, 23, 3) 6
(27, 17, 9) 3 (29, 17, 3) 3 (29, 27, 1) 1 (31, 23, 5) 6
(27, 17, 11) 1 (29, 17, 5) 1 (29, 27, 5) 1 (31, 23, 7) 12
(27, 17, 13) 1 (29, 17, 7) 6 (29, 27, 7) 2 (31, 23, 9) 11
(27, 19, 3) 2 (29, 17, 9) 3 (29, 27, 9) 3 (31, 23, 11) 13
(27, 19, 5) 2 (29, 17, 11) 3 (29, 27, 11) 1 (31, 23, 13) 10
(27, 19, 7) 3 (29, 17, 13) 1 (29, 27, 13) 2 (31, 23, 15) 10
(27, 19, 9) 3 (29, 19, 1) 1 (29, 27, 15) 1 (31, 23, 17) 6
(27, 19, 11) 3 (29, 19, 3) 1 (29, 27, 17) 1 (31, 23, 19) 3
(27, 19, 13) 2 (29, 19, 5) 6 (29, 27, 19) 1 (31, 25, 1) 3
(27, 19, 15) 1 (29, 19, 7) 3 (31, 9, 5) 1 (31, 25, 3) 2
(27, 21, 1) 1 (29, 19, 9) 7 (31, 11, 3) 1 (31, 25, 5) 11
(27, 21, 5) 4 (29, 19, 11) 4 (31, 11, 7) 1 (31, 25, 7) 9
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Table 3.17: card (S(w1; w2; w3; w4))
(2wi ) i card. (2wi ) i card. (2wi ) i card. (2wi ) i card.
(25, 17, 9, 5) 1 (27, 19, 13, 9) 3 (27, 23, 15, 7) 7 (27, 25, 19, 7) 3
(25, 17, 13, 5) 1 (27, 19, 15, 3) 2 (27, 23, 15, 9) 4 (27, 25, 19, 9) 6
(25, 19, 9, 3) 1 (27, 19, 15, 5) 1 (27, 23, 15, 11) 5 (27, 25, 19, 11) 3
(25, 19, 11, 5) 1 (27, 19, 15, 7) 1 (27, 23, 15, 13) 1 (27, 25, 19, 13) 3
(25, 19, 13, 3) 1 (27, 19, 15, 9) 1 (27, 23, 17, 1) 5 (27, 25, 21, 3) 4
(25, 19, 13, 5) 1 (27, 19, 17, 5) 1 (27, 23, 17, 3) 2 (27, 25, 21, 7) 4
(25, 19, 13, 7) 1 (27, 19, 17, 9) 1 (27, 23, 17, 5) 6 (27, 25, 21, 9) 2
(25, 19, 13, 9) 1 (27, 21, 9, 3) 2 (27, 23, 17, 7) 5 (27, 25, 21, 11) 3
(25, 19, 15, 5) 1 (27, 21, 9, 7) 1 (27, 23, 17, 9) 7 (27, 25, 21, 13) 1
(25, 21, 11, 7) 1 (27, 21, 11, 3) 1 (27, 23, 17, 11) 3 (27, 25, 21, 15) 1
(25, 21, 13, 5) 1 (27, 21, 11, 5) 2 (27, 23, 17, 13) 4 (27, 25, 23, 3) 1
(25, 21, 13, 7) 1 (27, 21, 11, 7) 2 (27, 23, 19, 3) 5 (27, 25, 23, 9) 1
(25, 21, 15, 3) 1 (27, 21, 13, 3) 5 (27, 23, 19, 5) 1 (27, 25, 23, 11) 1
(25, 21, 15, 5) 1 (27, 21, 13, 5) 2 (27, 23, 19, 7) 6 (29, 15, 7, 5) 1
(25, 21, 15, 7) 2 (27, 21, 13, 7) 6 (27, 23, 19, 9) 2 (29, 15, 9, 3) 1
(25, 21, 15, 9) 1 (27, 21, 13, 9) 2 (27, 23, 19, 11) 3 (29, 15, 13, 3) 1
(25, 21, 17, 5) 1 (27, 21, 15, 1) 1 (27, 23, 19, 13) 1 (29, 17, 7, 3) 1
(25, 21, 17, 7) 1 (27, 21, 15, 3) 2 (27, 23, 19, 15) 1 (29, 17, 9, 5) 3
(25, 21, 17, 9) 1 (27, 21, 15, 5) 4 (27, 23, 21, 1) 1 (29, 17, 11, 3) 2
(25, 23, 9, 3) 1 (27, 21, 15, 7) 4 (27, 23, 21, 5) 1 (29, 17, 11, 7) 1
(25, 23, 11, 1) 1 (27, 21, 15, 9) 4 (27, 23, 21, 9) 1 (29, 17, 13, 1) 1
(25, 23, 11, 5) 2 (27, 21, 15, 11) 2 (27, 25, 9, 3) 2 (29, 17, 13, 5) 4
(25, 23, 13, 3) 1 (27, 21, 17, 3) 5 (27, 25, 11, 1) 1 (29, 17, 13, 7) 1
(25, 23, 13, 7) 1 (27, 21, 17, 7) 6 (27, 25, 11, 3) 1 (29, 17, 13, 9) 2
(25, 23, 15, 1) 1 (27, 21, 17, 9) 2 (27, 25, 11, 5) 2 (29, 17, 15, 3) 1
(25, 23, 15, 5) 3 (27, 21, 17, 11) 3 (27, 25, 13, 3) 5 (29, 17, 15, 7) 1
(25, 23, 15, 9) 1 (27, 21, 19, 3) 1 (27, 25, 13, 5) 1 (29, 19, 7, 5) 1
(25, 23, 15, 11) 1 (27, 21, 19, 5) 1 (27, 25, 13, 7) 4 (29, 19, 9, 3) 4
(25, 23, 17, 3) 1 (27, 21, 19, 7) 1 (27, 25, 13, 9) 1 (29, 19, 9, 5) 1
(25, 23, 17, 5) 1 (27, 21, 19, 9) 1 (27, 25, 15, 1) 3 (29, 19, 9, 7) 1
(25, 23, 17, 7) 1 (27, 21, 19, 11) 1 (27, 25, 15, 3) 2 (29, 19, 11, 1) 1
(25, 23, 17, 11) 1 (27, 23, 7, 3) 2 (27, 25, 15, 5) 5 (29, 19, 11, 3) 1
(25, 23, 19, 5) 1 (27, 23, 9, 1) 1 (27, 25, 15, 7) 3 (29, 19, 11, 5) 4
(27, 17, 9, 3) 1 (27, 23, 9, 5) 2 (27, 25, 15, 9) 5 (29, 19, 11, 7) 1
(27, 17, 9, 7) 1 (27, 23, 11, 3) 5 (27, 25, 15, 11) 1 (29, 19, 11, 9) 1
(27, 17, 13, 3) 2 (27, 23, 11, 5) 1 (27, 25, 17, 3) 7 (29, 19, 13, 3) 8
(27, 17, 13, 7) 2 (27, 23, 11, 7) 4 (27, 25, 17, 5) 2 (29, 19, 13, 5) 4
(27, 19, 9, 5) 1 (27, 23, 13, 1) 4 (27, 25, 17, 7) 7 (29, 19, 13, 7) 6
(27, 19, 11, 3) 2 (27, 23, 13, 3) 1 (27, 25, 17, 9) 4 (29, 19, 13, 9) 4
(27, 19, 11, 5) 1 (27, 23, 13, 5) 6 (27, 25, 17, 11) 5 (29, 19, 13, 11) 1
(27, 19, 13, 1) 1 (27, 23, 13, 7) 3 (27, 25, 17, 13) 1 (29, 19, 15, 1) 2
(27, 19, 13, 3) 1 (27, 23, 13, 9) 6 (27, 25, 19, 1) 3 (29, 19, 15, 3) 2
(27, 19, 13, 5) 4 (27, 23, 15, 3) 7 (27, 25, 19, 3) 2 (29, 19, 15, 5) 5
(27, 19, 13, 7) 1 (27, 23, 15, 5) 3 (27, 25, 19, 5) 5 (29, 19, 15, 7) 3
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Table 3.18: card (S(w1; w2; w3; w4))

(2wi ) i card. (2wi ) i card. (2wi ) i card.
(23, 21, 17, 11, 3) 1 (27, 19, 15, 13, 5) 1 (27, 23, 13, 7, 5) 1
(25, 19, 15, 9, 3) 1 (27, 19, 17, 9, 3) 2 (27, 23, 13, 9, 3) 4
(25, 21, 13, 9, 3) 1 (27, 19, 17, 11, 5) 2 (27, 23, 13, 9, 7) 1
(25, 21, 15, 7, 3) 1 (27, 19, 17, 13, 3) 1 (27, 23, 13, 11, 5) 1
(25, 21, 15, 9, 1) 1 (27, 21, 13, 7, 3) 2 (27, 23, 15, 7, 3) 2
(25, 21, 15, 9, 5) 1 (27, 21, 13, 9, 1) 1 (27, 23, 15, 7, 5) 1
(25, 21, 15, 11, 3) 1 (27, 21, 13, 9, 5) 1 (27, 23, 15, 9, 1) 2
(25, 21, 15, 13, 1) 1 (27, 21, 13, 11, 3) 1 (27, 23, 15, 9, 3) 1
(25, 21, 17, 9, 3) 2 (27, 21, 15, 7, 1) 1 (27, 23, 15, 9, 5) 8
(25, 21, 17, 11, 1) 1 (27, 21, 15, 7, 5) 2 (27, 23, 15, 9, 7) 1
(25, 21, 17, 11, 5) 2 (27, 21, 15, 9, 3) 4 (27, 23, 15, 11, 3) 3
(25, 21, 17, 13, 3) 1 (27, 21, 15, 9, 5) 1 (27, 23, 15, 11, 5) 4
(25, 21, 17, 13, 7) 1 (27, 21, 15, 9, 7) 2 (27, 23, 15, 11, 7) 2
(25, 21, 19, 11, 3) 2 (27, 21, 15, 11, 1) 2 (27, 23, 15, 13, 1) 1
(25, 21, 19, 13, 1) 1 (27, 21, 15, 11, 5) 4 (27, 23, 15, 13, 3) 1
(25, 21, 19, 15, 3) 1 (27, 21, 15, 13, 3) 2 (27, 23, 15, 13, 5) 4
(25, 23, 15, 9, 3) 1 (27, 21, 15, 13, 5) 1 (27, 23, 15, 13, 7) 2
(25, 23, 17, 7, 3) 1 (27, 21, 15, 13, 7) 1 (27, 23, 15, 13, 9) 1
(25, 23, 17, 11, 3) 2 (27, 21, 17, 7, 3) 5 (27, 23, 17, 5, 3) 1
(25, 23, 17, 11, 5) 1 (27, 21, 17, 9, 1) 3 (27, 23, 17, 7, 1) 2
(25, 23, 17, 11, 7) 1 (27, 21, 17, 9, 5) 5 (27, 23, 17, 7, 5) 5
(25, 23, 17, 13, 1) 1 (27, 21, 17, 9, 7) 1 (27, 23, 17, 9, 3) 11
(25, 23, 17, 13, 5) 1 (27, 21, 17, 11, 3) 7 (27, 23, 17, 9, 5) 4
(25, 23, 17, 13, 7) 1 (27, 21, 17, 11, 5) 2 (27, 23, 17, 9, 7) 4
(25, 23, 17, 13, 9) 1 (27, 21, 17, 11, 7) 5 (27, 23, 17, 11, 1) 3
(25, 23, 19, 9, 5) 1 (27, 21, 17, 13, 1) 3 (27, 23, 17, 11, 3) 3
(25, 23, 19, 11, 3) 2 (27, 21, 17, 13, 5) 7 (27, 23, 17, 11, 5) 14
(25, 23, 19, 11, 5) 1 (27, 21, 17, 13, 7) 2 (27, 23, 17, 11, 7) 6
(25, 23, 19, 11, 7) 1 (27, 21, 17, 13, 9) 2 (27, 23, 17, 11, 9) 2
(25, 23, 19, 13, 3) 1 (27, 21, 17, 15, 3) 2 (27, 23, 17, 13, 3) 12
(25, 23, 19, 13, 5) 1 (27, 21, 17, 15, 7) 1 (27, 23, 17, 13, 5) 7
(25, 23, 19, 13, 7) 1 (27, 21, 19, 7, 1) 1 (27, 23, 17, 13, 7) 12
(25, 23, 19, 15, 3) 1 (27, 21, 19, 9, 3) 5 (27, 23, 17, 13, 9) 4
(25, 23, 19, 15, 7) 2 (27, 21, 19, 11, 1) 4 (27, 23, 17, 13, 11) 1
(25, 23, 19, 15, 9) 1 (27, 21, 19, 11, 5) 6 (27, 23, 17, 15, 1) 1
(25, 23, 21, 11, 3) 1 (27, 21, 19, 11, 7) 1 (27, 23, 17, 15, 5) 5
(25, 23, 21, 11, 5) 1 (27, 21, 19, 11, 9) 1 (27, 23, 17, 15, 7) 2
(25, 23, 21, 13, 3) 1 (27, 21, 19, 13, 3) 5 (27, 23, 17, 15, 9) 2
(25, 23, 21, 13, 5) 1 (27, 21, 19, 13, 5) 1 (27, 23, 19, 7, 3) 4
(27, 19, 13, 9, 3) 1 (27, 21, 19, 13, 7) 3 (27, 23, 19, 7, 5) 1
(27, 19, 15, 7, 3) 1 (27, 21, 19, 15, 1) 3 (27, 23, 19, 9, 1) 3
(27, 19, 15, 9, 1) 1 (27, 21, 19, 15, 5) 4 (27, 23, 19, 9, 3) 4
(27, 19, 15, 9, 5) 2 (27, 21, 19, 15, 9) 2 (27, 23, 19, 9, 5) 13
(27, 19, 15, 11, 3) 1 (27, 21, 19, 17, 3) 1 (27, 23, 19, 9, 7) 2
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Table 3.19: card (S(w1; w2; w3; w4; w5; w6))
(2wi ) i card. (2wi ) i card. (2wi ) i card.
(25, 21, 17, 13, 7, 3) 1 (25, 23, 21, 19, 11, 7) 1 (27, 23, 17, 15, 7, 1) 4
(25, 23, 17, 11, 7, 3) 1 (25, 23, 21, 19, 13, 5) 1 (27, 23, 17, 15, 7, 5) 3
(25, 23, 17, 13, 7, 1) 1 (27, 21, 15, 13, 7, 3) 1 (27, 23, 17, 15, 9, 3) 8
(25, 23, 17, 13, 9, 3) 2 (27, 21, 17, 11, 7, 3) 1 (27, 23, 17, 15, 9, 5) 1
(25, 23, 19, 13, 7, 3) 2 (27, 21, 17, 13, 5, 3) 1 (27, 23, 17, 15, 9, 7) 1
(25, 23, 19, 13, 9, 1) 2 (27, 21, 17, 13, 7, 1) 1 (27, 23, 17, 15, 11, 1) 2
(25, 23, 19, 13, 9, 5) 3 (27, 21, 17, 13, 7, 5) 2 (27, 23, 17, 15, 11, 5) 3
(25, 23, 19, 13, 11, 3) 2 (27, 21, 17, 13, 9, 3) 4 (27, 23, 17, 15, 13, 3) 1
(25, 23, 19, 15, 7, 1) 2 (27, 21, 17, 13, 9, 5) 1 (27, 23, 19, 9, 5, 3) 1
(25, 23, 19, 15, 9, 3) 2 (27, 21, 17, 15, 7, 3) 2 (27, 23, 19, 9, 7, 1) 1
(25, 23, 19, 15, 9, 5) 2 (27, 21, 17, 15, 9, 5) 2 (27, 23, 19, 11, 5, 1) 1
(25, 23, 19, 15, 11, 1) 3 (27, 21, 19, 13, 7, 3) 3 (27, 23, 19, 11, 7, 3) 7
(25, 23, 19, 15, 11, 5) 3 (27, 21, 19, 13, 9, 1) 1 (27, 23, 19, 11, 9, 1) 2
(25, 23, 19, 15, 13, 3) 1 (27, 21, 19, 13, 9, 3) 2 (27, 23, 19, 11, 9, 5) 4
(25, 23, 19, 17, 9, 1) 2 (27, 21, 19, 13, 9, 5) 2 (27, 23, 19, 13, 5, 3) 7
(25, 23, 19, 17, 9, 5) 2 (27, 21, 19, 13, 11, 3) 1 (27, 23, 19, 13, 7, 1) 7
(25, 23, 19, 17, 11, 3) 2 (27, 21, 19, 13, 11, 5) 1 (27, 23, 19, 13, 7, 3) 3
(25, 23, 19, 17, 13, 1) 1 (27, 21, 19, 15, 5, 3) 1 (27, 23, 19, 13, 7, 5) 8
(25, 23, 19, 17, 13, 5) 1 (27, 21, 19, 15, 7, 1) 1 (27, 23, 19, 13, 9, 3) 25
(25, 23, 21, 11, 7, 3) 1 (27, 21, 19, 15, 9, 3) 4 (27, 23, 19, 13, 9, 5) 9
(25, 23, 21, 13, 7, 1) 2 (27, 21, 19, 15, 9, 5) 2 (27, 23, 19, 13, 9, 7) 6
(25, 23, 21, 13, 9, 3) 2 (27, 21, 19, 15, 11, 3) 2 (27, 23, 19, 13, 11, 1) 6
(25, 23, 21, 13, 11, 1) 1 (27, 21, 19, 15, 11, 5) 1 (27, 23, 19, 13, 11, 3) 3
(25, 23, 21, 15, 7, 3) 2 (27, 21, 19, 15, 11, 7) 1 (27, 23, 19, 13, 11, 5) 7
(25, 23, 21, 15, 9, 1) 2 (27, 21, 19, 17, 9, 5) 1 (27, 23, 19, 13, 11, 7) 2
(25, 23, 21, 15, 9, 5) 2 (27, 21, 19, 17, 11, 3) 2 (27, 23, 19, 15, 5, 1) 6
(25, 23, 21, 15, 11, 3) 5 (27, 23, 15, 11, 7, 3) 1 (27, 23, 19, 15, 7, 3) 13
(25, 23, 21, 15, 11, 5) 1 (27, 23, 15, 13, 7, 1) 1 (27, 23, 19, 15, 7, 5) 3
(25, 23, 21, 15, 11, 7) 2 (27, 23, 15, 13, 9, 3) 2 (27, 23, 19, 15, 9, 1) 15
(25, 23, 21, 15, 13, 5) 1 (27, 23, 17, 9, 7, 3) 2 (27, 23, 19, 15, 9, 3) 8
(25, 23, 21, 17, 7, 1) 2 (27, 23, 17, 11, 5, 3) 3 (27, 23, 19, 15, 9, 5) 24
(25, 23, 21, 17, 7, 5) 1 (27, 23, 17, 11, 7, 1) 2 (27, 23, 19, 15, 9, 7) 5
(25, 23, 21, 17, 9, 3) 3 (27, 23, 17, 11, 7, 5) 2 (27, 23, 19, 15, 11, 1) 1
(25, 23, 21, 17, 9, 7) 1 (27, 23, 17, 11, 9, 3) 3 (27, 23, 19, 15, 11, 3) 18
(25, 23, 21, 17, 11, 1) 3 (27, 23, 17, 13, 5, 1) 1 (27, 23, 19, 15, 11, 5) 8
(25, 23, 21, 17, 11, 5) 3 (27, 23, 17, 13, 7, 3) 12 (27, 23, 19, 15, 11, 7) 9
(25, 23, 21, 17, 11, 7) 1 (27, 23, 17, 13, 7, 5) 1 (27, 23, 19, 15, 11, 9) 1
(25, 23, 21, 17, 13, 3) 3 (27, 23, 17, 13, 9, 1) 6 (27, 23, 19, 15, 13, 1) 8
(25, 23, 21, 17, 13, 7) 1 (27, 23, 17, 13, 9, 3) 1 (27, 23, 19, 15, 13, 3) 2
(25, 23, 21, 17, 15, 1) 1 (27, 23, 17, 13, 9, 5) 9 (27, 23, 19, 15, 13, 5) 8
(25, 23, 21, 17, 15, 5) 1 (27, 23, 17, 13, 9, 7) 1 (27, 23, 19, 15, 13, 7) 3
(25, 23, 21, 19, 7, 3) 1 (27, 23, 17, 13, 11, 3) 4 (27, 23, 19, 15, 13, 9) 3
(25, 23, 21, 19, 9, 1) 1 (27, 23, 17, 13, 11, 7) 1 (27, 23, 19, 17, 5, 3) 4
(25, 23, 21, 19, 9, 5) 1 (27, 23, 17, 15, 5, 3) 2 (27, 23, 19, 17, 7, 1) 6
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Table 3.20: card (Oo(w))

w card. w card. w card. w card.
11 1 21 1 29 2 37 2
15 1 23 2 31 2 39 3
17 1 25 1 33 2 41 3
19 1 27 2 35 3 43 3

Table 3.21: card (Oo(w1; w2))

(w1; w2) card. (w1; w2) card. (w1; w2) card. (w1; w2) card.
(13, 6) 1 (21, 12) 5 (25, 6) 4 (28, 7) 6
(13, 8) 1 (21, 14) 5 (25, 8) 6 (28, 9) 8
(15, 6) 1 (21, 16) 4 (25, 10) 6 (28, 11) 8
(15, 8) 1 (21, 18) 3 (25, 12) 9 (28, 13) 10
(15, 10) 1 (21, 20) 1 (25, 14) 8 (28, 15) 11
(15, 12) 1 (22, 3) 1 (25, 16) 9 (28, 17) 9
(16, 7) 1 (22, 5) 1 (25, 18) 9 (28, 19) 10
(16, 9) 1 (22, 7) 2 (25, 20) 8 (28, 21) 9
(17, 4) 1 (22, 9) 4 (25, 22) 5 (28, 23) 5
(17, 8) 2 (22, 11) 2 (25, 24) 2 (28, 25) 3
(17, 10) 2 (22, 13) 4 (26, 5) 3 (29, 4) 4
(17, 12) 2 (22, 15) 3 (26, 7) 5 (29, 6) 5
(17, 14) 2 (22, 17) 2 (26, 9) 5 (29, 8) 10
(18, 5) 1 (22, 19) 1 (26, 11) 6 (29, 10) 11
(18, 7) 1 (23, 4) 1 (26, 13) 8 (29, 12) 13
(18, 9) 1 (23, 6) 3 (26, 15) 6 (29, 14) 15
(18, 11) 1 (23, 8) 4 (26, 17) 7 (29, 16) 17
(18, 13) 1 (23, 10) 6 (26, 19) 6 (29, 18) 15
(19, 6) 2 (23, 12) 5 (26, 21) 4 (29, 20) 17
(19, 8) 2 (23, 14) 7 (26, 23) 1 (29, 22) 15
(19, 10) 3 (23, 16) 7 (27, 2) 1 (29, 24) 13
(19, 12) 3 (23, 18) 6 (27, 4) 2 (29, 26) 10
(19, 14) 3 (23, 20) 5 (27, 6) 5 (29, 28) 4
(19, 16) 2 (23, 22) 2 (27, 8) 7 (30, 3) 2
(19, 18) 1 (24, 3) 1 (27, 10) 9 (30, 5) 5
(20, 5) 1 (24, 5) 2 (27, 12) 10 (30, 7) 7
(20, 7) 2 (24, 7) 3 (27, 14) 13 (30, 9) 10
(20, 9) 1 (24, 9) 4 (27, 16) 11 (30, 11) 11
(20, 11) 2 (24, 11) 5 (27, 18) 13 (30, 13) 13
(20, 13) 2 (24, 13) 5 (27, 20) 12 (30, 15) 13
(20, 15) 1 (24, 15) 5 (27, 22) 10 (30, 17) 15
(21, 4) 1 (24, 17) 4 (27, 24) 8 (30, 19) 13
(21, 6) 2 (24, 19) 3 (27, 26) 3 (30, 21) 13
(21, 8) 4 (24, 21) 1 (28, 3) 2 (30, 23) 10
(21, 10) 3 (25, 4) 2 (28, 5) 3 (30, 25) 8
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Table 3.22: card (Oo(w1; w2; w3))

(wi ) i card. (wi ) i card. (wi ) i card.
(12, 8, 4) 1 (16, 9, 5) 1 (17, 12, 7) 5
(13, 8, 5) 1 (16, 9, 7) 1 (17, 12, 9) 6
(13, 10, 3) 1 (16, 10, 2) 1 (17, 12, 11) 2
(13, 10, 5) 1 (16, 10, 4) 2 (17, 13, 2) 1
(13, 10, 7) 1 (16, 10, 6) 2 (17, 13, 4) 4
(13, 12, 5) 1 (16, 10, 8) 1 (17, 13, 6) 5
(13, 12, 7) 1 (16, 11, 3) 1 (17, 13, 8) 3
(13, 12, 9) 1 (16, 11, 5) 2 (17, 13, 10) 2
(14, 7, 3) 1 (16, 11, 7) 1 (17, 14, 3) 4
(14, 8, 4) 1 (16, 11, 9) 1 (17, 14, 5) 6
(14, 9, 5) 1 (16, 12, 2) 1 (17, 14, 7) 8
(14, 10, 4) 1 (16, 12, 4) 3 (17, 14, 9) 7
(14, 10, 6) 1 (16, 12, 6) 3 (17, 14, 11) 6
(14, 12, 2) 1 (16, 12, 8) 2 (17, 14, 13) 2
(14, 12, 6) 1 (16, 12, 10) 2 (17, 15, 2) 2
(14, 12, 8) 1 (16, 13, 3) 2 (17, 15, 4) 2
(15, 8, 3) 1 (16, 13, 5) 2 (17, 15, 6) 3
(15, 8, 5) 1 (16, 13, 7) 2 (17, 15, 8) 4
(15, 8, 7) 1 (16, 13, 9) 1 (17, 15, 10) 2
(15, 9, 4) 1 (16, 13, 11) 1 (17, 15, 12) 1
(15, 10, 3) 1 (16, 14, 2) 2 (17, 16, 1) 1
(15, 10, 5) 2 (16, 14, 4) 2 (17, 16, 3) 2
(15, 10, 7) 1 (16, 14, 6) 3 (17, 16, 5) 4
(15, 10, 9) 1 (16, 14, 8) 3 (17, 16, 7) 6
(15, 11, 4) 1 (16, 14, 10) 2 (17, 16, 9) 7
(15, 11, 6) 1 (16, 14, 12) 1 (17, 16, 11) 3
(15, 12, 3) 2 (17, 6, 3) 1 (17, 16, 13) 4
(15, 12, 5) 2 (17, 7, 4) 1 (18, 6, 4) 1
(15, 12, 7) 3 (17, 8, 3) 1 (18, 7, 3) 1
(15, 12, 9) 2 (17, 8, 5) 3 (18, 7, 5) 1
(15, 13, 4) 1 (17, 8, 7) 1 (18, 8, 2) 1
(15, 13, 6) 1 (17, 9, 2) 1 (18, 8, 4) 3
(15, 13, 8) 1 (17, 9, 4) 1 (18, 8, 6) 2
(15, 14, 1) 1 (17, 9, 6) 1 (18, 9, 3) 2
(15, 14, 5) 2 (17, 10, 3) 3 (18, 9, 5) 3
(15, 14, 7) 3 (17, 10, 5) 3 (18, 9, 7) 2
(15, 14, 9) 3 (17, 10, 7) 4 (18, 10, 2) 2
(15, 14, 13) 1 (17, 10, 9) 2 (18, 10, 4) 4
(16, 6, 4) 1 (17, 11, 2) 1 (18, 10, 6) 4
(16, 7, 5) 1 (17, 11, 4) 3 (18, 10, 8) 2
(16, 8, 2) 1 (17, 11, 6) 1 (18, 11, 3) 3
(16, 8, 4) 1 (17, 11, 8) 1 (18, 11, 5) 4
(16, 8, 6) 1 (17, 12, 3) 3 (18, 11, 7) 4
(16, 9, 3) 1 (17, 12, 5) 7 (18, 11, 9) 2
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Table 3.23: card (Oo(w1; w2; w3; w4))

(wi ) i card. (wi ) i card. (wi ) i card.
(13, 10, 9, 4) 1 (15, 12, 11, 6) 4 (15, 14, 13, 10) 3
(13, 12, 7, 4) 1 (15, 12, 11, 8) 2 (16, 8, 7, 3) 1
(13, 12, 9, 4) 1 (15, 12, 11, 10) 1 (16, 10, 7, 3) 1
(13, 12, 9, 6) 1 (15, 13, 7, 3) 2 (16, 10, 7, 5) 1
(13, 12, 11, 4) 1 (15, 13, 7, 5) 1 (16, 10, 8, 4) 1
(14, 10, 9, 5) 1 (15, 13, 8, 2) 1 (16, 10, 9, 3) 2
(14, 12, 7, 3) 1 (15, 13, 8, 4) 1 (16, 10, 9, 5) 2
(14, 12, 8, 4) 1 (15, 13, 8, 6) 1 (16, 10, 9, 7) 1
(14, 12, 9, 3) 1 (15, 13, 9, 3) 3 (16, 11, 6, 3) 1
(14, 12, 9, 5) 2 (15, 13, 9, 5) 4 (16, 11, 7, 4) 1
(14, 12, 9, 7) 1 (15, 13, 9, 7) 2 (16, 11, 8, 5) 1
(14, 12, 10, 4) 1 (15, 13, 10, 4) 2 (16, 11, 9, 2) 1
(14, 12, 10, 6) 1 (15, 13, 10, 6) 2 (16, 11, 9, 4) 2
(14, 12, 11, 3) 1 (15, 13, 10, 8) 1 (16, 11, 9, 6) 2
(14, 12, 11, 5) 1 (15, 13, 11, 1) 1 (16, 11, 9, 8) 1
(14, 12, 11, 7) 1 (15, 13, 11, 3) 2 (16, 11, 10, 3) 1
(14, 13, 8, 5) 1 (15, 13, 11, 5) 3 (16, 11, 10, 7) 1
(14, 13, 10, 5) 1 (15, 13, 11, 7) 3 (16, 12, 5, 3) 1
(14, 13, 10, 7) 1 (15, 13, 11, 9) 1 (16, 12, 6, 4) 2
(15, 10, 5, 4) 1 (15, 14, 5, 2) 1 (16, 12, 7, 3) 2
(15, 10, 7, 4) 1 (15, 14, 7, 2) 1 (16, 12, 7, 5) 3
(15, 10, 7, 6) 1 (15, 14, 7, 4) 4 (16, 12, 8, 2) 1
(15, 10, 9, 2) 1 (15, 14, 7, 6) 2 (16, 12, 8, 4) 3
(15, 10, 9, 4) 1 (15, 14, 8, 3) 1 (16, 12, 8, 6) 3
(15, 10, 9, 6) 1 (15, 14, 8, 5) 1 (16, 12, 9, 1) 1
(15, 10, 9, 8) 1 (15, 14, 9, 2) 3 (16, 12, 9, 3) 5
(15, 11, 7, 5) 1 (15, 14, 9, 4) 6 (16, 12, 9, 5) 6
(15, 11, 9, 3) 1 (15, 14, 9, 6) 7 (16, 12, 9, 7) 5
(15, 11, 9, 5) 1 (15, 14, 9, 8) 3 (16, 12, 10, 2) 2
(15, 11, 9, 7) 1 (15, 14, 10, 3) 2 (16, 12, 10, 4) 5
(15, 12, 5, 4) 2 (15, 14, 10, 5) 3 (16, 12, 10, 6) 4
(15, 12, 7, 2) 1 (15, 14, 10, 7) 1 (16, 12, 10, 8) 3
(15, 12, 7, 4) 2 (15, 14, 11, 2) 2 (16, 12, 11, 3) 5
(15, 12, 7, 6) 3 (15, 14, 11, 4) 7 (16, 12, 11, 5) 6
(15, 12, 8, 3) 1 (15, 14, 11, 6) 8 (16, 12, 11, 7) 3
(15, 12, 9, 2) 1 (15, 14, 11, 8) 7 (16, 12, 11, 9) 1
(15, 12, 9, 4) 5 (15, 14, 11, 10) 2 (16, 13, 4, 3) 1
(15, 12, 9, 6) 4 (15, 14, 12, 3) 3 (16, 13, 5, 4) 1
(15, 12, 9, 8) 3 (15, 14, 12, 5) 3 (16, 13, 6, 3) 2
(15, 12, 10, 1) 1 (15, 14, 12, 7) 2 (16, 13, 6, 5) 2
(15, 12, 10, 3) 1 (15, 14, 13, 2) 1 (16, 13, 7, 2) 1
(15, 12, 10, 5) 2 (15, 14, 13, 4) 4 (16, 13, 7, 4) 2
(15, 12, 11, 2) 2 (15, 14, 13, 6) 3 (16, 13, 7, 6) 2
(15, 12, 11, 4) 4 (15, 14, 13, 8) 3 (16, 13, 8, 3) 4
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Table 3.24: card (Oo(w1; w2; w3; w4; w5))

(wi ) i card. (wi ) i card. (wi ) i card.
(13, 10, 9, 6, 3) 1 (14, 12, 11, 6, 4) 1 (14, 13, 11, 9, 6) 2
(13, 11, 9, 8, 4) 1 (14, 12, 11, 7, 1) 1 (14, 13, 12, 7, 1) 1
(13, 12, 7, 6, 3) 1 (14, 12, 11, 7, 3) 1 (14, 13, 12, 7, 3) 1
(13, 12, 9, 4, 3) 1 (14, 12, 11, 7, 5) 1 (14, 13, 12, 8, 4) 1
(13, 12, 9, 6, 1) 1 (14, 12, 11, 8, 2) 2 (14, 13, 12, 9, 5) 1
(13, 12, 9, 6, 3) 1 (14, 12, 11, 8, 4) 2 (15, 10, 7, 6, 3) 1
(13, 12, 9, 6, 5) 1 (14, 12, 11, 8, 6) 1 (15, 10, 9, 4, 3) 1
(13, 12, 9, 8, 3) 2 (14, 12, 11, 9, 3) 1 (15, 10, 9, 6, 1) 1
(13, 12, 9, 8, 5) 1 (14, 12, 11, 9, 5) 1 (15, 10, 9, 6, 3) 2
(13, 12, 10, 6, 2) 1 (14, 12, 11, 10, 4) 1 (15, 10, 9, 6, 5) 1
(13, 12, 10, 8, 4) 1 (14, 13, 7, 5, 4) 1 (15, 10, 9, 7, 2) 1
(13, 12, 11, 6, 3) 2 (14, 13, 8, 6, 4) 1 (15, 10, 9, 8, 3) 2
(13, 12, 11, 8, 3) 1 (14, 13, 8, 7, 3) 1 (15, 11, 7, 6, 2) 1
(13, 12, 11, 8, 5) 1 (14, 13, 8, 7, 5) 1 (15, 11, 8, 6, 3) 1
(14, 10, 7, 6, 2) 1 (14, 13, 9, 3, 2) 1 (15, 11, 9, 5, 3) 1
(14, 10, 9, 6, 2) 1 (14, 13, 9, 5, 2) 1 (15, 11, 9, 6, 2) 2
(14, 10, 9, 7, 1) 1 (14, 13, 9, 5, 4) 2 (15, 11, 9, 6, 4) 2
(14, 10, 9, 8, 2) 1 (14, 13, 9, 6, 1) 1 (15, 11, 9, 7, 1) 1
(14, 11, 9, 5, 2) 1 (14, 13, 9, 7, 2) 1 (15, 11, 9, 7, 3) 2
(14, 11, 9, 6, 3) 1 (14, 13, 9, 7, 4) 3 (15, 11, 9, 7, 5) 1
(14, 11, 9, 7, 2) 1 (14, 13, 9, 7, 6) 2 (15, 11, 9, 8, 2) 3
(14, 11, 9, 7, 4) 1 (14, 13, 9, 8, 3) 1 (15, 11, 9, 8, 4) 2
(14, 11, 9, 8, 1) 1 (14, 13, 10, 5, 3) 1 (15, 11, 9, 8, 6) 1
(14, 11, 9, 8, 5) 1 (14, 13, 10, 6, 2) 1 (15, 11, 10, 5, 4) 1
(14, 12, 7, 6, 4) 1 (14, 13, 10, 6, 4) 1 (15, 11, 10, 7, 4) 1
(14, 12, 8, 6, 3) 1 (14, 13, 10, 7, 1) 1 (15, 12, 7, 4, 3) 1
(14, 12, 9, 4, 2) 1 (14, 13, 10, 7, 3) 2 (15, 12, 7, 6, 1) 1
(14, 12, 9, 5, 3) 1 (14, 13, 10, 7, 5) 2 (15, 12, 7, 6, 3) 2
(14, 12, 9, 6, 2) 2 (14, 13, 10, 8, 2) 1 (15, 12, 7, 6, 5) 1
(14, 12, 9, 6, 4) 2 (14, 13, 10, 8, 4) 2 (15, 12, 8, 4, 2) 1
(14, 12, 9, 7, 3) 2 (14, 13, 10, 8, 6) 1 (15, 12, 8, 5, 3) 1
(14, 12, 9, 7, 5) 1 (14, 13, 10, 9, 3) 2 (15, 12, 8, 6, 2) 2
(14, 12, 9, 8, 2) 1 (14, 13, 10, 9, 5) 1 (15, 12, 8, 6, 4) 2
(14, 12, 9, 8, 4) 3 (14, 13, 10, 9, 7) 1 (15, 12, 9, 4, 1) 1
(14, 12, 9, 8, 6) 1 (14, 13, 11, 5, 2) 2 (15, 12, 9, 4, 3) 2
(14, 12, 10, 5, 2) 1 (14, 13, 11, 5, 4) 1 (15, 12, 9, 5, 2) 2
(14, 12, 10, 6, 1) 1 (14, 13, 11, 6, 3) 1 (15, 12, 9, 6, 1) 2
(14, 12, 10, 6, 3) 2 (14, 13, 11, 7, 2) 3 (15, 12, 9, 6, 3) 8
(14, 12, 10, 6, 5) 1 (14, 13, 11, 7, 4) 3 (15, 12, 9, 6, 5) 4
(14, 12, 10, 7, 2) 2 (14, 13, 11, 7, 6) 1 (15, 12, 9, 7, 2) 4
(14, 12, 10, 7, 4) 1 (14, 13, 11, 8, 3) 1 (15, 12, 9, 7, 4) 4
(14, 12, 10, 8, 3) 2 (14, 13, 11, 8, 5) 1 (15, 12, 9, 8, 1) 4
(14, 12, 10, 8, 5) 2 (14, 13, 11, 9, 2) 1 (15, 12, 9, 8, 3) 6
(14, 12, 11, 6, 2) 2 (14, 13, 11, 9, 4) 2 (15, 12, 9, 8, 5) 8
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Table 3.25: card (Oo(w1; w2; w3; w4; w5; w6))

(wi ) i card. (wi ) i card. (wi ) i card.
(13, 11, 10, 8, 4, 3) 1 (14, 12, 11, 8, 4, 2) 1 (14, 13, 10, 8, 7, 1) 1
(13, 12, 9, 8, 5, 4) 1 (14, 12, 11, 8, 5, 1) 2 (14, 13, 10, 8, 7, 3) 2
(13, 12, 9, 8, 7, 2) 1 (14, 12, 11, 8, 5, 3) 4 (14, 13, 10, 8, 7, 5) 1
(13, 12, 10, 8, 5, 3) 1 (14, 12, 11, 8, 6, 2) 3 (14, 13, 10, 9, 5, 2) 1
(13, 12, 11, 6, 5, 4) 1 (14, 12, 11, 8, 6, 4) 3 (14, 13, 10, 9, 5, 4) 1
(13, 12, 11, 8, 3, 2) 1 (14, 12, 11, 8, 7, 1) 2 (14, 13, 10, 9, 7, 2) 2
(13, 12, 11, 8, 5, 2) 2 (14, 12, 11, 8, 7, 3) 3 (14, 13, 10, 9, 7, 4) 1
(13, 12, 11, 8, 5, 4) 2 (14, 12, 11, 8, 7, 5) 2 (14, 13, 11, 6, 4, 3) 2
(13, 12, 11, 8, 7, 2) 1 (14, 12, 11, 9, 4, 3) 1 (14, 13, 11, 7, 4, 2) 2
(13, 12, 11, 8, 7, 4) 2 (14, 12, 11, 9, 5, 2) 3 (14, 13, 11, 7, 5, 1) 1
(13, 12, 11, 8, 7, 6) 1 (14, 12, 11, 9, 5, 4) 3 (14, 13, 11, 7, 5, 3) 2
(13, 12, 11, 9, 5, 3) 1 (14, 12, 11, 9, 6, 3) 3 (14, 13, 11, 7, 6, 2) 2
(13, 12, 11, 9, 7, 1) 1 (14, 12, 11, 9, 7, 2) 2 (14, 13, 11, 7, 6, 4) 2
(13, 12, 11, 10, 5, 2) 1 (14, 12, 11, 9, 7, 4) 3 (14, 13, 11, 8, 4, 1) 1
(13, 12, 11, 10, 5, 4) 2 (14, 12, 11, 9, 7, 6) 1 (14, 13, 11, 8, 4, 3) 5
(13, 12, 11, 10, 7, 2) 2 (14, 12, 11, 10, 4, 2) 1 (14, 13, 11, 8, 5, 2) 3
(13, 12, 11, 10, 7, 4) 2 (14, 12, 11, 10, 5, 1) 1 (14, 13, 11, 8, 6, 1) 2
(13, 12, 11, 10, 7, 6) 2 (14, 12, 11, 10, 5, 3) 3 (14, 13, 11, 8, 6, 3) 6
(13, 12, 11, 10, 9, 2) 1 (14, 12, 11, 10, 6, 2) 3 (14, 13, 11, 8, 6, 5) 4
(13, 12, 11, 10, 9, 6) 1 (14, 12, 11, 10, 6, 4) 3 (14, 13, 11, 8, 7, 2) 1
(14, 11, 9, 8, 4, 3) 1 (14, 12, 11, 10, 7, 1) 2 (14, 13, 11, 8, 7, 4) 1
(14, 11, 9, 8, 6, 3) 1 (14, 12, 11, 10, 7, 3) 5 (14, 13, 11, 9, 4, 2) 3
(14, 11, 10, 8, 5, 3) 1 (14, 12, 11, 10, 7, 5) 3 (14, 13, 11, 9, 5, 1) 1
(14, 12, 9, 7, 5, 2) 1 (14, 12, 11, 10, 8, 2) 2 (14, 13, 11, 9, 5, 3) 6
(14, 12, 9, 7, 5, 4) 1 (14, 12, 11, 10, 8, 4) 3 (14, 13, 11, 9, 6, 2) 4
(14, 12, 9, 8, 5, 3) 2 (14, 12, 11, 10, 8, 6) 1 (14, 13, 11, 9, 6, 4) 6
(14, 12, 9, 8, 6, 2) 1 (14, 12, 11, 10, 9, 1) 1 (14, 13, 11, 9, 7, 1) 2
(14, 12, 9, 8, 6, 4) 1 (14, 12, 11, 10, 9, 3) 1 (14, 13, 11, 9, 7, 3) 4
(14, 12, 9, 8, 7, 3) 1 (14, 12, 11, 10, 9, 5) 1 (14, 13, 11, 9, 7, 5) 3
(14, 12, 10, 6, 5, 2) 1 (14, 13, 9, 6, 4, 3) 1 (14, 13, 11, 9, 8, 2) 1
(14, 12, 10, 7, 5, 1) 1 (14, 13, 9, 7, 4, 2) 1 (14, 13, 11, 9, 8, 4) 3
(14, 12, 10, 7, 5, 3) 1 (14, 13, 9, 7, 5, 3) 1 (14, 13, 11, 9, 8, 6) 2
(14, 12, 10, 8, 4, 3) 1 (14, 13, 9, 7, 6, 4) 1 (14, 13, 11, 10, 4, 1) 1
(14, 12, 10, 8, 5, 2) 2 (14, 13, 9, 8, 4, 3) 2 (14, 13, 11, 10, 4, 3) 4
(14, 12, 10, 8, 5, 4) 2 (14, 13, 9, 8, 6, 3) 3 (14, 13, 11, 10, 5, 2) 1
(14, 12, 10, 8, 6, 1) 1 (14, 13, 9, 8, 6, 5) 1 (14, 13, 11, 10, 5, 4) 1
(14, 12, 10, 8, 6, 3) 2 (14, 13, 10, 6, 4, 2) 1 (14, 13, 11, 10, 6, 1) 2
(14, 12, 10, 8, 7, 2) 2 (14, 13, 10, 6, 5, 3) 1 (14, 13, 11, 10, 6, 3) 8
(14, 12, 10, 8, 7, 4) 1 (14, 13, 10, 7, 5, 2) 2 (14, 13, 11, 10, 6, 5) 4
(14, 12, 10, 9, 5, 3) 1 (14, 13, 10, 7, 5, 4) 1 (14, 13, 11, 10, 7, 2) 3
(14, 12, 11, 6, 5, 1) 1 (14, 13, 10, 8, 4, 2) 2 (14, 13, 11, 10, 7, 4) 1
(14, 12, 11, 7, 5, 2) 1 (14, 13, 10, 8, 5, 3) 4 (14, 13, 11, 10, 8, 1) 1
(14, 12, 11, 7, 5, 4) 2 (14, 13, 10, 8, 6, 2) 1 (14, 13, 11, 10, 8, 3) 5
(14, 12, 11, 8, 3, 1) 1 (14, 13, 10, 8, 6, 4) 2 (14, 13, 11, 10, 8, 5) 4
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Table 3.26: card (Oe(w1; w2))

(w1; w2) card. (w1; w2) card. (w1; w2) card. (w1; w2) card.
(13, 2) 1 (24, 7) 2 (29, 6) 6 (33, 0) 1
(14, 3) 1 (24, 9) 2 (29, 8) 2 (33, 2) 6
(15, 4) 1 (24, 13) 2 (29, 10) 3 (33, 4) 4
(16, 1) 1 (25, 2) 4 (29, 12) 3 (33, 6) 6
(16, 5) 1 (25, 4) 2 (29, 14) 3 (33, 8) 3
(17, 2) 1 (25, 6) 2 (29, 18) 4 (33, 10) 6
(17, 6) 2 (25, 8) 2 (30, 1) 4 (33, 12) 3
(18, 1) 1 (25, 10) 3 (30, 3) 4 (33, 14) 4
(18, 3) 1 (25, 14) 3 (30, 5) 3 (33, 16) 3
(18, 7) 1 (26, 1) 2 (30, 7) 4 (33, 18) 4
(19, 2) 1 (26, 3) 4 (30, 9) 3 (33, 22) 4
(19, 4) 2 (26, 5) 2 (30, 11) 3 (34, 1) 6
(19, 8) 2 (26, 7) 2 (30, 13) 3 (34, 3) 4
(20, 1) 1 (26, 9) 3 (30, 15) 3 (34, 5) 6
(20, 3) 2 (26, 11) 2 (30, 19) 3 (34, 7) 6
(20, 5) 1 (26, 15) 3 (31, 0) 1 (34, 9) 3
(20, 9) 2 (27, 0) 1 (31, 2) 4 (34, 11) 6
(21, 2) 2 (27, 2) 2 (31, 4) 6 (34, 13) 4
(21, 4) 1 (27, 4) 4 (31, 6) 2 (34, 15) 3
(21, 6) 2 (27, 6) 2 (31, 8) 6 (34, 17) 4
(21, 10) 2 (27, 8) 3 (31, 10) 3 (34, 19) 4
(22, 1) 2 (27, 10) 2 (31, 12) 3 (34, 23) 4
(22, 3) 1 (27, 12) 3 (31, 14) 3 (35, 0) 3
(22, 5) 2 (27, 16) 3 (31, 16) 4 (35, 2) 4
(22, 7) 2 (28, 1) 4 (31, 20) 4 (35, 4) 6
(22, 11) 2 (28, 3) 2 (32, 1) 4 (35, 6) 6
(23, 0) 1 (28, 5) 4 (32, 3) 6 (35, 8) 6
(23, 2) 1 (28, 7) 3 (32, 5) 4 (35, 10) 3
(23, 4) 2 (28, 9) 2 (32, 7) 3 (35, 12) 8
(23, 6) 2 (28, 11) 3 (32, 9) 6 (35, 14) 3
(23, 8) 2 (28, 13) 3 (32, 11) 3 (35, 16) 4
(23, 12) 3 (28, 17) 3 (32, 13) 3 (35, 18) 4
(24, 1) 2 (29, 0) 1 (32, 15) 4 (35, 20) 4
(24, 3) 2 (29, 2) 4 (32, 17) 3 (35, 24) 5
(24, 5) 2 (29, 4) 2 (32, 21) 4 (36, 1) 6
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Table 3.27: card (Oe(w1; w2; w3; w4))

(wi ) i card. (wi ) i card. (wi ) i card.
(12, 9, 5, 2) 1 (14, 12, 10, 2) 1 (15, 12, 7, 2) 2
(12, 10, 7, 1) 1 (14, 12, 10, 4) 1 (15, 12, 7, 4) 3
(13, 9, 5, 1) 1 (14, 13, 6, 1) 1 (15, 12, 8, 1) 3
(13, 9, 7, 3) 1 (14, 13, 7, 2) 1 (15, 12, 8, 3) 2
(13, 10, 5, 2) 1 (14, 13, 8, 1) 2 (15, 12, 8, 5) 2
(13, 10, 7, 4) 1 (14, 13, 9, 0) 1 (15, 12, 9, 2) 4
(13, 11, 5, 3) 1 (14, 13, 9, 4) 1 (15, 12, 9, 4) 1
(13, 11, 7, 1) 1 (14, 13, 10, 3) 1 (15, 12, 9, 6) 2
(13, 12, 7, 2) 1 (14, 13, 11, 2) 1 (15, 12, 10, 1) 2
(13, 12, 8, 1) 1 (15, 7, 4, 2) 1 (15, 12, 10, 3) 2
(13, 12, 9, 4) 1 (15, 8, 5, 2) 1 (15, 12, 10, 5) 1
(13, 12, 10, 3) 1 (15, 9, 4, 2) 1 (15, 12, 10, 7) 1
(14, 8, 5, 3) 1 (15, 9, 5, 1) 1 (15, 12, 11, 4) 1
(14, 9, 4, 1) 1 (15, 9, 5, 3) 1 (15, 12, 11, 8) 1
(14, 9, 6, 1) 1 (15, 9, 6, 2) 1 (15, 13, 3, 1) 1
(14, 9, 7, 2) 1 (15, 9, 7, 1) 1 (15, 13, 4, 2) 1
(14, 10, 5, 1) 1 (15, 9, 7, 3) 1 (15, 13, 5, 1) 1
(14, 10, 6, 2) 1 (15, 10, 3, 2) 1 (15, 13, 5, 3) 2
(14, 10, 7, 1) 1 (15, 10, 5, 0) 1 (15, 13, 6, 2) 2
(14, 10, 7, 3) 1 (15, 10, 5, 2) 1 (15, 13, 6, 4) 1
(14, 10, 8, 2) 1 (15, 10, 5, 4) 1 (15, 13, 7, 1) 3
(14, 10, 8, 4) 1 (15, 10, 6, 1) 1 (15, 13, 7, 3) 1
(14, 11, 4, 1) 1 (15, 10, 7, 2) 3 (15, 13, 7, 5) 2
(14, 11, 5, 2) 1 (15, 10, 7, 4) 1 (15, 13, 8, 0) 1
(14, 11, 6, 1) 1 (15, 10, 7, 6) 1 (15, 13, 8, 2) 2
(14, 11, 6, 3) 1 (15, 10, 8, 1) 1 (15, 13, 8, 4) 1
(14, 11, 7, 0) 1 (15, 10, 8, 3) 1 (15, 13, 8, 6) 1
(14, 11, 7, 4) 1 (15, 10, 9, 4) 1 (15, 13, 9, 1) 3
(14, 11, 8, 1) 1 (15, 11, 4, 2) 1 (15, 13, 9, 3) 2
(14, 11, 8, 3) 1 (15, 11, 5, 1) 2 (15, 13, 9, 5) 1
(14, 11, 8, 5) 1 (15, 11, 5, 3) 1 (15, 13, 9, 7) 1
(14, 11, 9, 2) 1 (15, 11, 6, 2) 1 (15, 13, 10, 2) 3
(14, 12, 4, 2) 1 (15, 11, 7, 1) 2 (15, 13, 10, 4) 1
(14, 12, 5, 1) 1 (15, 11, 7, 3) 3 (15, 13, 11, 1) 1
(14, 12, 5, 3) 1 (15, 11, 8, 2) 2 (15, 13, 11, 3) 2
(14, 12, 6, 2) 1 (15, 11, 8, 4) 1 (15, 13, 11, 5) 1
(14, 12, 6, 4) 1 (15, 11, 9, 1) 1 (15, 14, 5, 2) 1
(14, 12, 7, 1) 2 (15, 11, 9, 3) 1 (15, 14, 5, 4) 1
(14, 12, 7, 5) 1 (15, 11, 9, 5) 1 (15, 14, 6, 1) 1
(14, 12, 8, 0) 1 (15, 12, 4, 1) 1 (15, 14, 7, 2) 3
(14, 12, 8, 2) 1 (15, 12, 5, 2) 3 (15, 14, 7, 6) 1
(14, 12, 8, 6) 1 (15, 12, 6, 1) 2 (15, 14, 8, 1) 2
(14, 12, 9, 1) 1 (15, 12, 6, 3) 2 (15, 14, 8, 3) 1
(14, 12, 9, 3) 1 (15, 12, 7, 0) 1 (15, 14, 9, 0) 1
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Table 3.28: card (Oe(w1; w2; w3; w4; w5; w6))

(wi ) i card. (wi ) i card. (wi ) i card.
(13, 11, 10, 6, 4, 3) 1 (14, 12, 10, 6, 3, 2) 1 (14, 12, 11, 9, 5, 0) 1
(13, 12, 8, 7, 4, 1) 1 (14, 12, 10, 6, 4, 1) 2 (14, 12, 11, 9, 5, 2) 2
(13, 12, 9, 6, 3, 2) 1 (14, 12, 10, 6, 4, 3) 2 (14, 12, 11, 9, 6, 1) 1
(13, 12, 9, 7, 5, 1) 1 (14, 12, 10, 6, 5, 2) 1 (14, 12, 11, 9, 6, 3) 1
(13, 12, 9, 8, 5, 2) 1 (14, 12, 10, 7, 3, 1) 1 (14, 12, 11, 9, 7, 2) 2
(13, 12, 10, 6, 4, 2) 1 (14, 12, 10, 7, 4, 0) 1 (14, 12, 11, 9, 7, 4) 1
(13, 12, 10, 7, 4, 1) 1 (14, 12, 10, 7, 4, 2) 2 (14, 12, 11, 9, 8, 3) 1
(13, 12, 10, 7, 4, 3) 1 (14, 12, 10, 7, 5, 1) 2 (14, 12, 11, 10, 5, 1) 2
(13, 12, 10, 8, 5, 1) 1 (14, 12, 10, 7, 5, 3) 2 (14, 12, 11, 10, 7, 3) 1
(13, 12, 10, 8, 6, 2) 1 (14, 12, 10, 7, 6, 2) 1 (14, 13, 7, 6, 4, 1) 1
(13, 12, 10, 9, 4, 1) 2 (14, 12, 10, 8, 4, 1) 3 (14, 13, 8, 6, 3, 1) 1
(13, 12, 10, 9, 6, 1) 1 (14, 12, 10, 8, 5, 0) 1 (14, 13, 8, 7, 4, 1) 1
(13, 12, 10, 9, 6, 3) 1 (14, 12, 10, 8, 5, 2) 2 (14, 13, 8, 7, 5, 2) 1
(13, 12, 11, 6, 5, 2) 1 (14, 12, 10, 8, 6, 1) 2 (14, 13, 9, 6, 2, 1) 1
(13, 12, 11, 7, 5, 3) 1 (14, 12, 10, 8, 6, 3) 2 (14, 13, 9, 6, 3, 2) 1
(13, 12, 11, 8, 3, 2) 1 (14, 12, 10, 8, 7, 2) 1 (14, 13, 9, 6, 4, 1) 2
(13, 12, 11, 8, 5, 4) 1 (14, 12, 10, 9, 4, 0) 2 (14, 13, 9, 6, 4, 3) 1
(13, 12, 11, 8, 7, 2) 1 (14, 12, 10, 9, 4, 2) 1 (14, 13, 9, 7, 3, 1) 1
(14, 10, 8, 6, 3, 2) 1 (14, 12, 10, 9, 5, 1) 3 (14, 13, 9, 7, 4, 2) 1
(14, 11, 8, 7, 3, 2) 1 (14, 12, 10, 9, 6, 0) 1 (14, 13, 9, 7, 5, 1) 2
(14, 11, 9, 6, 4, 1) 1 (14, 12, 10, 9, 6, 2) 2 (14, 13, 9, 8, 3, 0) 1
(14, 11, 9, 8, 3, 2) 1 (14, 12, 10, 9, 7, 1) 1 (14, 13, 9, 8, 4, 1) 3
(14, 11, 10, 6, 4, 2) 1 (14, 12, 10, 9, 7, 3) 2 (14, 13, 9, 8, 5, 2) 2
(14, 11, 10, 6, 5, 3) 1 (14, 12, 11, 5, 3, 2) 1 (14, 13, 9, 8, 6, 1) 1
(14, 11, 10, 7, 4, 1) 1 (14, 12, 11, 6, 3, 1) 2 (14, 13, 9, 8, 6, 3) 1
(14, 11, 10, 7, 5, 2) 1 (14, 12, 11, 6, 4, 2) 2 (14, 13, 10, 5, 4, 1) 1
(14, 11, 10, 8, 4, 2) 1 (14, 12, 11, 6, 5, 1) 1 (14, 13, 10, 6, 2, 0) 1
(14, 11, 10, 8, 5, 1) 1 (14, 12, 11, 6, 5, 3) 1 (14, 13, 10, 6, 3, 1) 2
(14, 11, 10, 9, 4, 3) 1 (14, 12, 11, 7, 2, 1) 1 (14, 13, 10, 6, 4, 2) 3
(14, 12, 8, 5, 3, 1) 1 (14, 12, 11, 7, 3, 2) 1 (14, 13, 10, 6, 5, 1) 2
(14, 12, 8, 6, 4, 1) 1 (14, 12, 11, 7, 4, 1) 2 (14, 13, 10, 6, 5, 3) 1
(14, 12, 8, 7, 4, 0) 1 (14, 12, 11, 7, 4, 3) 1 (14, 13, 10, 7, 2, 1) 1
(14, 12, 8, 7, 5, 1) 1 (14, 12, 11, 7, 5, 2) 3 (14, 13, 10, 7, 3, 2) 2
(14, 12, 9, 6, 3, 1) 1 (14, 12, 11, 7, 5, 4) 1 (14, 13, 10, 7, 4, 1) 3
(14, 12, 9, 6, 4, 2) 1 (14, 12, 11, 7, 6, 3) 1 (14, 13, 10, 7, 4, 3) 2
(14, 12, 9, 6, 5, 1) 1 (14, 12, 11, 8, 3, 1) 2 (14, 13, 10, 7, 5, 0) 1
(14, 12, 9, 7, 4, 1) 1 (14, 12, 11, 8, 4, 2) 2 (14, 13, 10, 7, 5, 2) 2
(14, 12, 9, 7, 5, 0) 1 (14, 12, 11, 8, 5, 1) 3 (14, 13, 10, 7, 5, 4) 2
(14, 12, 9, 7, 5, 2) 1 (14, 12, 11, 8, 6, 2) 2 (14, 13, 10, 7, 6, 1) 1
(14, 12, 9, 8, 5, 1) 2 (14, 12, 11, 8, 6, 4) 1 (14, 13, 10, 8, 3, 1) 2
(14, 12, 9, 8, 6, 2) 1 (14, 12, 11, 8, 7, 1) 1 (14, 13, 10, 8, 4, 0) 2
(14, 12, 10, 5, 3, 1) 1 (14, 12, 11, 8, 7, 3) 1 (14, 13, 10, 8, 4, 2) 1
(14, 12, 10, 5, 4, 2) 1 (14, 12, 11, 9, 3, 2) 1 (14, 13, 10, 8, 5, 1) 5
(14, 12, 10, 6, 2, 1) 1 (14, 12, 11, 9, 4, 1) 1 (14, 13, 10, 8, 5, 3) 1
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