A. Alamo, V. Lambard, X. Averty, and M. H. Mathon, Assessment of ODS-14%Cr ferritic alloy for high temperature applications, Journal of Nuclear Materials, vol.329, issue.333, pp.329-333, 2004.
DOI : 10.1016/j.jnucmat.2004.05.004

]. R. Bates, Micromechanical modeling for prediction of lower shelf, transition region, and upper shelf fracture properties, in : Fracture mechanics : microstructure and micromechanisms, ASM Materials Science Seminar, pp.10-11, 1987.

A. Blachowski, J. Cieslak, S. M. Dubiel, and J. Zukrowski, Effect of titanium on the kinetics of the ??-phase formation in a small grain Fe???Cr alloy, Journal of Alloys and Compounds, vol.308, issue.1-2, pp.189-192, 2000.
DOI : 10.1016/S0925-8388(00)00835-5

M. Blat, J. L. Boutard, V. Garat, O. Martin, and C. Vahlas, Oxide Dispersion Strengthened Ferritic Steels A Basic Research Joint Program in France, th International Conference on Fusion Reactor Materials (ICFRM16), p.16, 2013.

]. B. Bramfitt and A. R. Marder, A study of the delamination behavior of a very lowcarbon steel, Metallurgical Transactions A, pp.8-1263, 1977.

L. Brandes, M. K. Kovarik, G. S. Miller, M. J. Daehn, and . Mills, Creep behavior and deformation mechanisms in a nanocluster strengthened ferritic steel, Acta Materialia, vol.60, issue.4, pp.60-1827, 2012.
DOI : 10.1016/j.actamat.2011.11.057

]. P. Bridgman, Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure, pp.9-37, 1964.

M. Brocq, B. Radiguet, S. Poissonnet, F. Cuvilly, P. Pareige et al., Nanoscale characterization and formation mechanism of nanoclusters in an ODS steel elaborated by reactive-inspired ball-milling and annealing, Journal of Nuclear Materials, vol.409, issue.2, pp.80-85, 2011.
DOI : 10.1016/j.jnucmat.2010.09.011

]. E. Brown, M. E. Burnett, R. T. Purtscher, and G. Krauss, Intermetallic phase formation in 25Cr-3Mo-4Ni ferritic stainless steel, Metallurgical Transactions A, vol.9, issue.no. 2, pp.14-791, 1983.
DOI : 10.1007/BF02644282

]. T. Byun, J. H. Yoon, S. H. Wee, D. T. Hoelzer, and S. A. Maloy, Fracture behavior of 9Cr nanostructured ferritic alloy with improved fracture toughness, Journal of Nuclear Materials, vol.449, issue.1-3, pp.39-48, 2014.
DOI : 10.1016/j.jnucmat.2014.03.007

C. Capdevila, M. K. Miller, K. F. Russell, J. Chao, and J. L. Gonzalez-carrasco, Phase separation in PM 2000??? Fe-base ODS alloy: Experimental study at the atomic level, Materials Science and Engineering: A, vol.490, issue.1-2, pp.277-288, 2008.
DOI : 10.1016/j.msea.2008.01.029

C. Capdevila, M. K. Miller, I. Toda, and J. Chao, Influence of the ?????????? phase separation on the tensile properties of Fe-base ODS PM 2000 alloy, Materials Science and Engineering: A, vol.527, issue.29-30, pp.7931-7938, 2010.
DOI : 10.1016/j.msea.2010.08.083

M. K. Miller and J. Chao, Phase separation kinetics in a Fe?Cr?Al alloy, Acta Materialia, vol.60, pp.4673-4684, 2012.

J. Chao, C. Capdevila-montes, and J. L. Gonzalez-carrasco, On the delamination of FeCrAl ODS alloys, Materials Science and Engineering: A, vol.515, issue.1-2, pp.190-198, 2009.
DOI : 10.1016/j.msea.2009.03.017

. Urones-garrote, Notch Impact Behavior of Oxide-Dispersion-Strengthened (ODS) Fe20Cr5Al Alloy, Metallurgical and Materials Transactions A 44A, pp.4581-4594, 2013.

R. Chaouadi and A. Fabry, On the utilization of the instrumented Charpy impact test for characterizing the flow and fracture behaviour of reactor pressure vessel steels, in : From Charpy to present impact testing, pp.103-117, 2002.

]. T. Chen and J. R. Yang, Effects of solution treatment and continuous cooling on ??-phase precipitation in a 2205 duplex stainless steel, Materials Science and Engineering: A, vol.311, issue.1-2, pp.311-339, 2001.
DOI : 10.1016/S0921-5093(01)00911-X

A. Echeverria and J. M. Rodriguez-ibabe, The role of grain size in brittle particle induced fracture of steels, Materials Science and Engineering A, vol.346, issue.1-2, pp.149-158, 2003.
DOI : 10.1016/S0921-5093(02)00538-5

C. Fazio, D. Briceno, M. Rieth, A. Gessi, J. Henry et al., Innovative materials for Gen IV systems and transmutation facilities: The cross-cutting research project GETMAT, Nuclear Engineering and Design, vol.241, issue.9, pp.3514-3520, 2011.
DOI : 10.1016/j.nucengdes.2011.03.009

T. Furukawa, S. Kato, and E. Yoshida, Compatibility of FBR materials with sodium, Journal of Nuclear Materials, vol.392, issue.2, pp.249-254, 2009.
DOI : 10.1016/j.jnucmat.2009.03.003

]. A. Garcia-junceda, M. Hernandez-mayoral, and M. Serrano, Influence of the microstructure on the tensile and impact properties of a 14Cr ODS steel bar, Materials Science and Engineering: A, vol.556, pp.696-703, 2012.
DOI : 10.1016/j.msea.2012.07.051

. A. Griffith-1921-]-a and . Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.221, issue.582-593, pp.163-198, 1921.
DOI : 10.1098/rsta.1921.0006

. S. Grot-1975-]-a, J. E. Grot, and . Spruiell, Microstructural Stability of Titanium-Modified Type 316 and Type 321 Stainless Steel, Metallurgical Transactions A, pp.6-2023, 1975.

]. P. Gustafson, An experimental study and a thermodynamic evaluation of the cr- fe- w system, Metallurgical Transactions A, vol.9, issue.10, pp.2531-2546, 1988.
DOI : 10.1007/BF02645481

D. Auroy, A. Mas, S. Saint-jevin, and . Pasquier-tilliette, Impact of the use of the ferritic/martensitic ODS steels cladding on the fuel reprocessing PUREX process, Journal of Nuclear Materials, vol.428, pp.110-116, 2012.

H. Hadraba, B. Fournier, L. Stratil, J. Malaplate, A. L. Rouffié et al., Influence of microstructure on impact properties of 9???18%Cr ODS steels for fusion/fission applications, Journal of Nuclear Materials, vol.411, issue.1-3, pp.112-118, 2011.
DOI : 10.1016/j.jnucmat.2011.01.038

]. E. Hall and S. H. Algie, The Sigma Phase, Metallurgical Reviews, vol.11, pp.61-88, 1966.

]. J. Henry, X. Averty, and A. Alamo, Tensile and impact properties of 9Cr tempered martensitic steels and ODS-FeCr alloys irradiated in a fast reactor at 325??C up to 78dpa, Journal of Nuclear Materials, vol.417, issue.1-3, pp.99-103, 2011.
DOI : 10.1016/j.jnucmat.2010.12.203

. S. Kasper-1954-]-j and . Kasper, The ordering of atoms in the chi-phase of the iron-chromium-molybdenum system, Acta Metallurgica, vol.2, issue.3, pp.456-461, 1954.
DOI : 10.1016/0001-6160(54)90066-8

]. S. Kim, K. W. Paik, and Y. G. Kim, Effect of Mo substitution by W on high temperature embrittlement characteristics in duplex stainless steels, Materials Science and Engineering: A, vol.247, issue.1-2, pp.67-74, 1998.
DOI : 10.1016/S0921-5093(98)00473-0

A. Lambert-perlade, A. F. Gourgues, J. Besson, T. Sturel, and A. Pineau, Mechanisms and Modeling of Cleavage Fracture in Simulated Heat-Affected Zone Microstructures of a High- Strength Low Alloy Steel, Metallurgical and Materials Transactions A 35A, pp.1039-1053, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00166068

. K. Lai-1983-]-j and . Lai, A Review of Precipitation Behaviour in AISI Type 316 Stainless Steel, Materials Science and Engineering, pp.61-101, 1983.

M. L. Lescoat, J. Ribis, A. Gentils, O. Kaïtasov, Y. De-carlan et al., In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation, situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation, pp.176-182, 2012.
DOI : 10.1016/j.jnucmat.2011.12.009

URL : https://hal.archives-ouvertes.fr/in2p3-00658301

]. E. Luçon, A. Leenaers, and W. Vandermeulen, Mechanical response of oxide dispersion strengthened (ODS) EUROFER97 after neutron irradiation at 300??C, Fusion Engineering and Design, vol.82, issue.15-24, pp.2438-2443, 2007.
DOI : 10.1016/j.fusengdes.2007.05.018

]. N. Luzginova, H. S. Nolles, P. Ten-pierick, T. Bakker, R. K. Mutnuru et al., Irradiation response of ODS Eurofer97 steel, Journal of Nuclear Materials, vol.428, issue.1-3, pp.192-196, 2012.
DOI : 10.1016/j.jnucmat.2011.08.030

J. Merlin, V. Massardier, and X. Kleber, La mesure du pouvoir thermoélectrique : une technique originale de contrôle des alliages métalliques, 2005.

]. F. Mudry, A local approach to cleavage fracture, Nuclear Engineering and Design, vol.105, issue.1, pp.65-76, 1987.
DOI : 10.1016/0029-5493(87)90230-5

Y. Nam, S. H. Kim, and . Nahm, Evaluation of fracture appearance transition temperature to forged, 25V steel using ultrasonic characteristics, pp.3-4, 2006.

J. Nohava, P. Hausild, M. Karlik, and P. Bompard, Electron backscattering diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel, Materials Characterization, vol.49, issue.3, pp.211-217, 2003.
DOI : 10.1016/S1044-5803(02)00360-1

T. Ohmura, K. Tsuzaki, K. Sawada, and K. Kimura, Inhomogeneous nano-mechanical properties in the multi-phase microstructure of long-term aged type 316 stainless steel, Journal of Materials Research, vol.21, issue.05, pp.1229-1236, 2006.
DOI : 10.1557/jmr.2006.0143

P. Olier, A. Bougault, A. Alamo, and Y. De-carlan, Effects of the forming processes and Y2O3 content on ODS-Eurofer mechanical properties, Journal of Nuclear Materials, vol.386, issue.388, pp.388-561, 2009.
DOI : 10.1016/j.jnucmat.2008.12.177

M. Couvrat, C. Cayron, N. Lochet, and L. Chaffron, Incidence of mechanical alloying contamination on oxides and carbides formation in ODS ferritic steels, Journal of Nuclear Materials, vol.442, pp.106-111, 2013.

]. A. Padilha, D. M. Escriba, E. Materna-morris, M. Rieth, and M. Klimenkov, Precipitation in AISI 316L(N) during creep tests at 550 and 600??C up to 10 years, Precipitation in AISI 316L(N) during creep tests at 550 and 600°C up to 10 years, pp.132-138, 2007.
DOI : 10.1016/j.jnucmat.2006.12.027

]. C. Park, M. K. Ahn, and H. S. Kwon, Influences of Mo substitution by W on the precipitation kinetics of secondary phases and the associated localized corrosion and embrittlement in 29% Cr ferritic stainless steels, Materials Science and Engineering: A, vol.418, issue.1-2, pp.418-211, 2006.
DOI : 10.1016/j.msea.2005.11.053

]. A. Pineau and B. Tanguy, Advances in cleavage fracture modelling in steels: Micromechanical, numerical and multiscale aspects, Comptes Rendus Physique, vol.11, issue.3-4, pp.316-325, 2010.
DOI : 10.1016/j.crhy.2010.07.013

URL : https://hal.archives-ouvertes.fr/hal-00542464

M. Pohl, O. Storz, and T. Glogowski, Effect of intermetallic precipitations on the properties of duplex stainless steel, Materials Characterization, vol.58, issue.1, pp.65-71, 2007.
DOI : 10.1016/j.matchar.2006.03.015

M. Pozuelo, F. Carreno, and O. A. Ruano, Delamination effect on the impact toughness of an ultrahigh carbon???mild steel laminate composite, Composites Science and Technology, vol.66, issue.15, pp.2671-2676, 2006.
DOI : 10.1016/j.compscitech.2006.03.018

]. G. Raynor and V. G. Rivlin, Phase Equilibria in Iron Ternary Alloys, The Institute of metals, 1988.

J. Delabrouille and . Malaplate, Stability of nano-oxides upon heavy ion irradiation of an ODS material, Journal of Nuclear Materials, vol.417, pp.262-265, 2011.

M. Rieth and A. Hoffmann, Influence of microstructure and notch fabrication on impact bending properties of tungsten materials, International Journal of Refractory Metals and Hard Materials, vol.28, issue.6, pp.679-686, 2010.
DOI : 10.1016/j.ijrmhm.2010.04.010

H. Sakasegawa, T. Hirose, and A. Kohyama, Correlation Between Creep Properties and Microstructure of Reduced Activation Ferritic/Martensitic Steels, Effects of Radiation on Materials : 20th International Symposium, ASTM STP 1405, pp.546-556, 2001.
DOI : 10.1520/STP10556S

H. Sakasegawa, L. Chaffron, F. Legendre, L. Boulanger, T. Cozzika et al., Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy, Journal of Nuclear Materials, vol.384, issue.2, pp.115-118, 2009.
DOI : 10.1016/j.jnucmat.2008.11.001

A. Tournié, A. Tancray, P. Bougault, and . Bonnaillie, Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel, Journal of Nuclear Materials, vol.405, pp.95-100, 2010.

A. Steckmeyer, R. Vargas-hideroa, J. M. Gentzbittel, V. Rabeau, and B. Fournier, Tensile anisotropy and creep properties of a Fe???14CrWTi ODS ferritic steel, Journal of Nuclear Materials, vol.426, issue.1-3, pp.182-188, 2012.
DOI : 10.1016/j.jnucmat.2012.03.016

]. B. Tanguy, J. Besson, R. Piques, and A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test, Engineering Fracture Mechanics, vol.72, issue.1, pp.49-72, 2005.
DOI : 10.1016/j.engfracmech.2004.03.010

URL : https://hal.archives-ouvertes.fr/hal-00142084

B. Tanguy, J. Besson, R. Piques, and A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test, Engineering Fracture Mechanics, vol.72, issue.3, pp.413-434, 2005.
DOI : 10.1016/j.engfracmech.2004.03.011

URL : https://hal.archives-ouvertes.fr/hal-00142084

M. Praud, P. Ratti, D. Wident, and . Nt, Caractérisations microstructurales et mécaniques des ODS CEA : 2 ème rapport d'avancement, 2009.

A. Rouesne, R. Montani, Y. Logé, and . De-carlan, Assessment of a new fabrication route for Fe?9Cr?1W ODS cladding tubes, Journal of Nuclear Materials, vol.428, pp.47-53, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00679120

]. F. Versnyder and H. J. Beattie, The laves and chi phases in a modified 12cr stainless alloy, Transactions of the ASM, pp.47-211, 1955.

]. R. Williams, Further Studies of the Iron-Chromium System, Transactions of the Metallurgical Society, AIME, vol.212, pp.497-502, 1958.

T. D. Wilshire and . Lieu, Deformation and damage processes during creep of Incoloy MA957, Materials Science and Engineering A, vol.386, issue.1-2, pp.81-90, 2004.
DOI : 10.1016/S0921-5093(04)00969-4

A. Figure, Vues macroscopique des faciès de rupture et coefficients de striction de la nuance J27 vieillie à 400°C pendant 5000 heures et testée en traction à la vitesse de déformation moyenne de, pp.10-13

A. Figure, Vues macroscopique des faciès de rupture et coefficients de striction de la nuance J27 vieillie à 400°C pendant 10000 heures et testée en traction à la vitesse de déformation moyenne de, pp.10-13

A. Figure, Vues macroscopique des faciès de rupture et coefficients de striction de la nuance J27 vieillie à 500°C pendant 5000 heures et testée en traction à la vitesse de déformation moyenne de, pp.10-13

A. Figure, Vues macroscopique des faciès de rupture et coefficients de striction de la nuance J27 vieillie à 500°C pendant 10000 heures et testée en traction à la vitesse de déformation moyenne de, pp.10-13

A. Figure, Vues macroscopique des faciès de rupture et coefficients de striction de la nuance J27 vieillie à 600°C pendant 5000 heures et testée en traction à la vitesse de déformation moyenne de, pp.10-13

A. Figure, Vues macroscopique des faciès de rupture et coefficients de striction de la nuance J27 vieillie à 600°C pendant 5000 heures et testée en traction à la vitesse de déformation moyenne de, pp.10-13

A. Figure, Vues macroscopique des faciès de rupture et coefficients de striction de la nuance J03 vieillie à 400°C, 500°C et 600°C pendant 5000 heures et testée en traction à la vitesse de déformation de 10 -3 s -1, p.261

A. Figure, Evolution de l'intensité diffusée selon les directions perpendiculaire et parallèle de la nuance J27 vieillie à 600°C pendant 5000 heures, et à 400°C pendant 5000 (J27-M3) et 10000 heures (J27- M6). L'état vieilli à 600°C pendant 5000 heures est considéré comme