A. Expériencesun-laseràlaserà, 107 4.2.1 Paramètres et résultats expérimentaux

.. Faisceaux-gaussiens, Un outil pour la propagation d'un laser : les matrices ABCD . 111 4.3.1 Rappel sur les matrices ABCD en optique photonique, p.114

H. Pakarinen and K. , Suominen, e-print physics

L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, C. E. Wieman-bouyer et al., 14 Note, however, that in time-averaged orbiting potential traps the bias field often exceeds 10 G, and hindered cooling may play a role, specially when the atomic ground-state hyperfine splitting is relatively small, as in sodium, for example. 15 P Aspect, and M. Lecrivain, e-print physics/0003050. 16 The m0 state is a trapping state in this manifold because of the nonlinearity of the Zeeman effect. 17 This conclusion was corroborated by a calculation of the energies of the dressed states for a given set rf , rf , rf . From the calculated energy splitting C eff at the (m 2, m1) level crossing, we used the two-level Landau- Zener probability that the atoms will follow an adiabatic transition. We verified that for small Rabi frequencies i.e., small evaporation efficiency, as in our experiment, this three-photon transition is the most probable transition at any sideband detuning rf . This numerical calculation can be used to fit the experimental data, We can estimate the one-photon Rabi frequency rf 284 kHz. 18 Except maybe for the case of destructive energy releasing collisions as in 23 Na. See P.S. Julienne, F.H. Mies, E. Tiesinga, and C.J. Williams, 18801997.

V. Boyer, Multifrequency evaporative cooling to Bose-Einstein condensation in a high magnetic field, Physical Review A, vol.62, issue.2, pp.21601-021601
DOI : 10.1103/PhysRevA.62.021601

. Atomes, O. Atoms, . Et, . Atomiques, . Optics et al., Experimental study of coupling Bose?Einstein condensates into weakly non-trapping and trapping states P

. Groupe-d-'optique-atomique, Institut d'optique, UMRA 8501 du CNRS, Bât. 503, Campus universitaire d'Orsay, 2001.

K. B. Davis, Bose-Einstein Condensation in a Gas of Sodium Atoms, Physical Review Letters, vol.75, issue.22, p.3969, 1995.
DOI : 10.1103/PhysRevLett.75.3969

C. C. Bradley, Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number, Physical Review Letters, vol.78, issue.6, p.985, 1997.
DOI : 10.1103/PhysRevLett.78.985

B. P. Anderson and M. Kasevich, Macroscopic Quantum Interference from Atomic Tunnel Arrays, Science, vol.282, issue.5394, p.1686, 1998.
DOI : 10.1126/science.282.5394.1686

E. W. Hagley, A Well-Collimated Quasi-Continuous Atom Laser, Science, vol.283, issue.5408, p.1706, 1999.
DOI : 10.1126/science.283.5408.1706

B. Desruelle, atoms trapped in a high magnetic field, Physical Review A, vol.60, issue.3, p.1759, 1999.
DOI : 10.1103/PhysRevA.60.R1759

K. B. Davis, Bose-Einstein Condensation in a Gas of Sodium Atoms, Physical Review Letters, vol.75, issue.22, p.3969, 1995.
DOI : 10.1103/PhysRevLett.75.3969

C. C. Bradley, Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Physical Review Letters, vol.75, issue.9, p.1687, 1995.
DOI : 10.1103/PhysRevLett.75.1687

C. C. Bradley, C. A. Sackett, and R. G. Hulet, Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number, Physical Review Letters, vol.78, issue.6, p.985, 1997.
DOI : 10.1103/PhysRevLett.78.985

D. G. Fried, Bose-Einstein Condensation of Atomic Hydrogen, Physical Review Letters, vol.81, issue.18, p.3811, 1998.
DOI : 10.1103/PhysRevLett.81.3811

M. Mewes, Output Coupler for Bose-Einstein Condensed Atoms, Physical Review Letters, vol.78, issue.4, p.582, 1997.
DOI : 10.1103/PhysRevLett.78.582

B. P. Anderson and M. A. Kasevich, Macroscopic Quantum Interference from Atomic Tunnel Arrays, Science, vol.282, issue.5394, p.1686, 1998.
DOI : 10.1126/science.282.5394.1686

E. W. Hagley, A Well-Collimated Quasi-Continuous Atom Laser, Science, vol.283, issue.5408, p.1706, 1999.
DOI : 10.1126/science.283.5408.1706

I. Bloch, T. W. Hänsch, and T. Esslinger, Atom Laser with a cw Output Coupler, Physical Review Letters, vol.82, issue.15, p.3008, 1999.
DOI : 10.1103/PhysRevLett.82.3008

URL : http://arxiv.org/abs/cond-mat/9812258

F. Shimizu, Atom Holography, Adv. Atom. Mol. Opt. Phys, vol.42, p.73, 2000.
DOI : 10.1016/S1049-250X(08)60185-8

P. T. Fisk, Trapped-ion and trapped-atom microwave frequency standards, Reports on Progress in Physics, vol.60, issue.8, p.761, 1997.
DOI : 10.1088/0034-4885/60/8/001

J. H. Thywissen, R. M. Westervelt, and M. Prentiss, Quantum Point Contacts for Neutral Atoms, Physical Review Letters, vol.83, issue.19, pp.3762-1371, 1999.
DOI : 10.1103/PhysRevLett.83.3762

B. Desruelle, Trapping cold neutral atoms with an iron-core electromagnet, The European Physical Journal D - Atomic, Molecular and Optical Physics, vol.1, issue.3, p.255, 1998.
DOI : 10.1007/s100530050090

B. Desruelle, atoms trapped in a high magnetic field, Physical Review A, vol.60, issue.3, p.1759, 1999.
DOI : 10.1103/PhysRevA.60.R1759

D. S. Hall, Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates, Physical Review Letters, vol.81, issue.8, p.1539, 1998.
DOI : 10.1103/PhysRevLett.81.1539

F. Gerbier, P. Bouyer, and A. Aspect, Quasicontinuous Atom Laser in the Presence of Gravity, Physical Review Letters, vol.86, issue.21, p.4729, 2001.
DOI : 10.1103/PhysRevLett.86.4729

URL : https://hal.archives-ouvertes.fr/hal-00116292

Y. Castin and R. Dum, Bose-Einstein Condensates in Time Dependent Traps, Physical Review Letters, vol.77, issue.27, p.5315, 1996.
DOI : 10.1103/PhysRevLett.77.5315

H. Wallis, J. Dalibard, and C. Cohen-tannoudji, Trapping atoms in a gravitational cavity, Applied Physics B Photophysics and Laser Chemistry, vol.66, issue.5, p.407, 1992.
DOI : 10.1007/BF00325387

]. S. Bibliographie and . Bose, Plancks Gesetz und Lichtquantenhypothese, Z. Phys, vol.26, issue.1, p.178, 1924.

A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzungsberg . Kgl. Preuss. Akad. Wiss, p.261, 1924.
DOI : 10.1002/3527608958.ch27

A. Einstein, Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung, Sitzungsberg. Kgl. Preuss. Akad. Wiss, vol.3, 1925.
DOI : 10.1002/3527608958.ch28

M. Anderson, J. Ensher, M. Matthews, C. Wienman, and E. E. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science, vol.269, issue.5221, p.198, 1995.
DOI : 10.1126/science.269.5221.198

K. B. Davis, M. Mewes, M. R. Andrews, N. J. Van-druten, D. S. Durfee et al., Bose-Einstein Condensation in a Gas of Sodium Atoms, Physical Review Letters, vol.75, issue.22, p.3969, 1995.
DOI : 10.1103/PhysRevLett.75.3969

C. Bradley, C. Sackett, J. Tollet, and E. R. Hulet, Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Physical Review Letters, vol.75, issue.9, p.1687, 1995.
DOI : 10.1103/PhysRevLett.75.1687

C. Bradley, C. Sackett, J. Tollet, and E. R. Hulet, Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number, Physical Review Letters, vol.78, issue.6, p.985, 1997.
DOI : 10.1103/PhysRevLett.78.985

C. Cohen-tannoudji, Cours auColì ege de France, disponible sur http

Y. Castin, Bose-Einstein condensates in atomic gases : simple theoretical results, Cours de l'´ ecole d'´ eté des Houches, 2000.

F. Dalfovo, S. Giorgini, L. Pitaevskii, and E. S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Reviews of Modern Physics, vol.71, issue.3, p.463, 1999.
DOI : 10.1103/RevModPhys.71.463

L. Mandel, Photon Degeneracy in Light from Optical Maser and Other Sources*, Journal of the Optical Society of America, vol.51, issue.7, p.797, 1961.
DOI : 10.1364/JOSA.51.000797

I. Bloch, T. Hänsch, and E. T. Esslinger, Measurement of the spatial coherence of a trapped Bose gas at the phase transition, Nature, vol.403, p.166, 2000.

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Applied Physics Letters, vol.23, issue.3, p.142, 1973.
DOI : 10.1063/1.1654836

V. Boyer, Condensation de Bose-Einstein avec unélectroaimantàunélectroaimantunélectroaimant`unélectroaimantà noyeau ferromagnétique : stratégies de refroidissement dans les champs magnétiques intenses, Thèse de doctorat, 2000.

B. Desruelle, V. Boyer, P. Bouyer, G. Birkl, M. Lécrivain et al., Trapping cold neutral atoms with an iron-core electromagnet, The European Physical Journal D - Atomic, Molecular and Optical Physics, vol.1, issue.3, p.255, 1998.
DOI : 10.1007/s100530050090

B. Desruelle, V. Boyer, S. G. Murdoch, G. Delannoy, P. Bouyer et al., atoms trapped in a high magnetic field, Physical Review A, vol.60, issue.3, p.1759, 1999.
DOI : 10.1103/PhysRevA.60.R1759

A. Roth, Vacuum technology, 3` emé ed, 1979.

C. Cohen-tannoudji, Nobel Lecture: Manipulating atoms with photons, Reviews of Modern Physics, vol.70, issue.3, p.707, 1998.
DOI : 10.1103/RevModPhys.70.707

S. Chu, Nobel Lecture: The manipulation of neutral particles, Reviews of Modern Physics, vol.70, issue.3, p.685, 1998.
DOI : 10.1103/RevModPhys.70.685

W. D. Phillips, Laser-cooling and trapping neutral atoms, Annales de Physique, vol.10, issue.6, p.721, 1998.
DOI : 10.1051/anphys:01985001006071700

T. Ido, Y. Isoya, and E. H. Katori, Optical-dipole trapping of Sr atoms at a high phase-space density, Physical Review A, vol.61, issue.6, p.61403, 2000.
DOI : 10.1103/PhysRevA.61.061403

A. Arnold, J. Wilson, and E. M. Boshier, A simple extended-cavity diode laser, Review of Scientific Instruments, vol.69, issue.3, p.1236, 1998.
DOI : 10.1063/1.1148756

J. Bouyer, Stabilisation par injection optique d'un laseràlaserà semiconducteur, Thèse de doctorat, 1992.

W. Petrich, M. Handerson, J. Enscher, and E. E. Cornell, Stable, Tightly Confining Magnetic Trap for Evaporative Cooling of Neutral Atoms, Physical Review Letters, vol.74, issue.17, p.3352, 1995.
DOI : 10.1103/PhysRevLett.74.3352

C. Monroe, W. Swann, H. Robinson, and C. Wieman, Very cold trapped atoms in a vapor cell, Physical Review Letters, vol.65, issue.13, p.1571, 1990.
DOI : 10.1103/PhysRevLett.65.1571

V. Boyer, S. Murdoch, Y. Le-coq, G. Delannoy, P. Bouyer et al., Multifrequency evaporative cooling to Bose-Einstein condensation in a high magnetic field, Physical Review A, vol.62, issue.2, p.21601, 2000.
DOI : 10.1103/PhysRevA.62.021601

Y. Castin and R. Dum, Bose-Einstein Condensates in Time Dependent Traps, Physical Review Letters, vol.77, issue.27, p.5315, 1996.
DOI : 10.1103/PhysRevLett.77.5315

M. Mewes, M. Andrews, D. Kurn, D. Durfee, C. Townsend et al., Output Coupler for Bose-Einstein Condensed Atoms, Physical Review Letters, vol.78, issue.4, p.582, 1997.
DOI : 10.1103/PhysRevLett.78.582

B. Anderson and M. Kasevich, Macroscopic Quantum Interference from Atomic Tunnel Arrays, Science, vol.282, issue.5394, p.1686, 1998.
DOI : 10.1126/science.282.5394.1686

E. Hagley, L. Deng, M. Kozuma, J. Weng, K. Helmerson et al., A Well-Collimated Quasi-Continuous Atom Laser, Science, vol.283, issue.5408, p.1706, 1999.
DOI : 10.1126/science.283.5408.1706

I. Bloch, T. Hänsch, and E. T. Esslinger, Atom Laser with a cw Output Coupler, Physical Review Letters, vol.82, issue.15, p.3008, 1999.
DOI : 10.1103/PhysRevLett.82.3008

R. Ballach, C. Savage, and A. Bec, The theory of atom laser, Physics Summer School Proceeding, p.8070, 2000.

T. Gustavson, A. Chikkatur, A. Leanhardt, A. G. Gupta, D. Pritchard et al., Transport of Bose-Einstein Condensates with Optical Tweezers, Physical Review Letters, vol.88, issue.2, p.20401, 2002.
DOI : 10.1103/PhysRevLett.88.020401

]. A. Chikkatur, Y. Shin, A. Leanhardt, D. Kielpinsky, E. Tsikata et al., A Continuous Source of Bose-Einstein Condensed Atoms, Science, vol.296, issue.5576, 2002.
DOI : 10.1126/science.296.5576.2193

E. Mandonnet, A. Minguzzi, R. Dum, I. Carusotto, Y. C. et al., Evaporative cooling of an atomic beam, The European Physical Journal D, vol.10, issue.1, 2000.
DOI : 10.1007/s100530050521

URL : https://hal.archives-ouvertes.fr/hal-00002118

P. Cren, C. Roos, A. Aclan, J. Dalibard, and D. Guéry-odelin, Loading of a cold atomic beam into a magnetic guide, The European Physical Journal D - Atomic, Molecular and Optical Physics, vol.20, issue.1, 203618.
DOI : 10.1140/epjd/e2002-00106-3

URL : https://hal.archives-ouvertes.fr/hal-00002532

T. Esslinger, I. Bloch, and E. T. Hänsch, Bose-Einstein condensation in a quadrupole-Ioffe-configuration trap, Physical Review A, vol.58, issue.4, p.2664, 1998.
DOI : 10.1103/PhysRevA.58.R2664

G. Grynberg and A. Aspect, Fabre, dans Introduction aux lasers etàetà l'optique Quantique (Ellipse, p.1, 1997.

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, American Journal of Physics, vol.34, issue.2, 1965.
DOI : 10.1119/1.1972842

G. Breit and I. Rabi, Measurement of Nuclear Spin, Physical Review, vol.38, issue.11, p.2082, 1931.
DOI : 10.1103/PhysRev.38.2082.2

F. Gerbier, P. Bouyer, and E. A. Aspect, Quasicontinuous Atom Laser in the Presence of Gravity, Physical Review Letters, vol.86, issue.21, p.4729, 2001.
DOI : 10.1103/PhysRevLett.86.4729

URL : https://hal.archives-ouvertes.fr/hal-00116292

F. Gerbier, LaseràLaserà atomes quasi-continu, 2000.

S. Seidelin, Master's thesis, Institut for Fysik og Astronomi, 2000.

P. Bouyer, Experimental study of coupling Bose???Einstein condensates into weakly non-trapping and trapping states, Comptes Rendus de l'Acad??mie des Sciences - Series IV - Physics, vol.2, issue.4, p.657, 2001.
DOI : 10.1016/S1296-2147(01)01191-X

M. Kohl, T. Hänsch, and E. T. Esslinger, Measuring the Temporal Coherence of an Atom Laser Beam, Physical Review Letters, vol.87, issue.16, p.160404, 2001.
DOI : 10.1103/PhysRevLett.87.160404

C. Bordé, Theoretical tools for atom optics and interferometry, Comptes Rendus de l'Acad??mie des Sciences - Series IV - Physics, vol.2, issue.3, p.509, 2001.
DOI : 10.1016/S1296-2147(01)01186-6

C. Bordé, dans Fundamental systems in quantum optics

T. Busch, M. Kohl, T. Esslinger, and E. K. Molmer, Transverse mode of an atom laser, Physical Review A, vol.65, issue.4, p.43615, 2002.
DOI : 10.1103/PhysRevA.65.043615

W. Shakespeare, The tempest, Acte III, Scène 1, Selected plays, The Franklin Library, p.624, 1981.

M. Andrews, C. Townsend, H. Miesner, D. Durfee, D. Kurn et al., Observation of Interference Between Two Bose Condensates, Science, vol.275, issue.5300, p.637, 1997.
DOI : 10.1126/science.275.5300.637

C. Cohen-tannoudji and P. Storey, The Feynman path integral approach to atomic interferometry. A tutorial, J. Phys II, vol.4, 1994.
URL : https://hal.archives-ouvertes.fr/jpa-00248106

J. Goodman, Introduction to Fourier Optics, 2ndéd2ndéd

M. Born and E. Wolf, Principle of Optics, pp.6-6, 1980.

J. Fils, Réalisation et caractérisation d'un gyromètrè a ondes de de Broglie, Thèse de doctorat, 2002.

M. Kohl, T. Hänsch, and E. T. Esslinger, Measuring the Temporal Coherence of an Atom Laser Beam, Physical Review Letters, vol.87, issue.16, p.21606, 2002.
DOI : 10.1103/PhysRevLett.87.160404

C. Bordé, Atomic clocks and inertial censors, Metrologia, vol.39, 2002.

W. Shakespeare, A midsummer night's dream, Acte III, Scène 1, Selected plays, The Franklin Library, p.165, 1981.

Y. , L. Coq, J. H. Thywissen, S. A. Rangwala, F. Gerbier et al., Atom Laser Divergence, Phys. Rev. Lett, vol.87, p.170403, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00116293

P. Bouyer, S. Rangwalla, J. Thywissen, Y. Le-coq, F. Gerbier et al., Production of CW and mode-locked atom lasers, Journal de Physique IV (Proceedings), vol.12, issue.5, p.115, 2002.
DOI : 10.1051/jp4:20020104

R. Les-condensats-de-bose, Einstein d'atomes en phase gazeuse obtenus dans despì eges magnétiques consistent en une accumulation macroscopique d'atomes dans la même fonction d'onde. Ils représentent donc un analogue pour l'optique atomiquè a des photons piégés dans une cavité laser en optique photonique. Tout comme en optique, afin d'utiliser ceux-ci comme source cohérente