]. T. Burmester, B. Ebner, B. Weich, and E. T. Hankeln, Il faut distinguer cette quantité des termes croisés qui apparaissent lorsque l'on calcule la fonction de Wigner d'une somme de deux champs 3.4.3.1 page 56 qui sont eux réels Cytoglobin : A Novel Globin Type Ubiquitously Expressed in Vertebrate Tissues, p.416, 2002.

X. D. Tang, R. Xu, M. F. Reynolds, M. L. Garcia, S. H. Heinemann et al., Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels, Nature, vol.425, issue.6957, p.531, 2003.
DOI : 10.1038/nature02003

M. Négrerie, L. Bouzhir-sima, J. Martin, and E. U. Liebl, Control of Nitric Oxide Dynamics by Guanylate Cyclase in Its Activated State, Journal of Biological Chemistry, vol.276, issue.50, p.46815, 2001.
DOI : 10.1074/jbc.M102224200

U. Liebl, L. Bouzhir-sima, M. Négrerie, J. Martin, and M. H. Vos, Ultrafast ligand rebinding in the heme domain of the oxygen sensors FixL and Dos: General regulatory implications for heme-based sensors, Proc. Natl. Acad. Sci. USA 99, p.12771, 2002.
DOI : 10.1073/pnas.96.26.14753

URL : https://hal.archives-ouvertes.fr/hal-00845092

M. Négrerie, V. Berka, M. H. Vos, U. Liebl, J. Lambry et al., Geminate Recombination of Nitric Oxide to Endothelial Nitric-oxide Synthase and Mechanistic Implications, Journal of Biological Chemistry, vol.274, issue.35, p.24694, 1999.
DOI : 10.1074/jbc.274.35.24694

U. Liebl, G. Lipowski, M. Négrerie, J. Lambry, J. Martin et al., Coherent Reaction Dynamics in a Bacterial Cytochrome C Oxydase, Nature, vol.401, p.181, 1999.

J. Kendrew, R. Dickerson, B. Strandberg, R. Hart, D. Davis et al., Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 ???. Resolution, Nature, vol.178, issue.4711, p.422, 1960.
DOI : 10.1107/S0365110X5900007X

M. Perutz, M. Rossman, A. Cullis, H. Muirhead, G. Will et al., Structure of H??moglobin: A Three-Dimensional Fourier Synthesis at 5.5-???. Resolution, Obtained by X-Ray Analysis, Nature, vol.254, issue.4711, p.416, 1960.
DOI : 10.1085/jgp.36.1.1

J. Monod, J. Wyman, and E. J. Changeux, On the nature of allosteric transitions: A plausible model, Journal of Molecular Biology, vol.12, issue.1, p.88, 1965.
DOI : 10.1016/S0022-2836(65)80285-6

M. Perutz, Stereochemistry of Cooperative Effects in Hemoglobin, Cold Spring Harbor Symposia on Quantitative Biology, vol.36, issue.0, 1970.
DOI : 10.1101/SQB.1972.036.01.040

U. Flogel, M. Merx, A. Godecke, U. Decking, and E. J. Schrader, Myoglobin: A scavenger of bioactive NO, Proc. Natl. Acad. Sci. USA 98, p.735, 2001.
DOI : 10.1073/pnas.96.18.9967

J. K. Møller and L. H. Skibsted, Nitric Oxide and Myoglobins, Nitric Oxide and Myoglobins, p.1167, 2002.
DOI : 10.1021/cr000078y

H. Wajcman and L. Kiger, L???h??moglobine, des micro-organismes ?? l???homme??: un motif structural unique, des fonctions multiples, Comptes Rendus Biologies, vol.325, issue.12, p.1159, 2002.
DOI : 10.1016/S1631-0691(02)01537-8

E. Antonini and M. Brunori, Hemoglobin and Myoglobin in Their Reactions with Ligands, North-Holland, 1971.

K. A. Merchant, W. G. Noid, D. E. Thompson, R. Akiyama, R. F. Loring et al., Structural Assignments and Dynamics of the A Substates of MbCO:?? Spectrally Resolved Vibrational Echo Experiments and Molecular Dynamics Simulations, The Journal of Physical Chemistry B, vol.107, issue.1, 2003.
DOI : 10.1021/jp026793o

S. Franzen, An Electrostatic Model for the Frequency Shifts in the Carbonmonoxy Stretching Band of Myoglobin:?? Correlation of Hydrogen Bonding and the Stark Tuning Rate, Journal of the American Chemical Society, vol.124, issue.44, p.13271, 2002.
DOI : 10.1021/ja017708d

G. S. Kachalova, A. N. Popov, and H. D. Bartunik, A Steric Mechanism for Inhibition of CO Binding to Heme Proteins, Science, vol.284, issue.5413, p.473, 1999.
DOI : 10.1126/science.284.5413.473

E. Sigfridsson and U. Ryde, Theoretical study of the discrimination between O2 and CO by myoglobin, Journal of Inorganic Biochemistry, vol.91, issue.1, p.116, 2002.
DOI : 10.1016/S0162-0134(02)00426-9

M. Lim, T. A. Jackson, and P. A. Anfinrud, Mid???infrared vibrational spectrum of CO after photodissociation from heme: Evidence for a ligand docking site in the heme pocket of hemoglobin and myoglobin, The Journal of Chemical Physics, vol.102, issue.11, p.4355, 1995.
DOI : 10.1063/1.469484

D. Viktup, G. Petsko, and E. M. Karplus, A Comparison Between Molecular Dynamics and X-Ray Results for Dissociated CO in Myoglobin, Nat. Struct. Biol, vol.4, p.202, 1997.

F. Schott, M. Lim, T. A. Jackson, A. V. Smirnov, J. Soman et al., Watching a Protein as it Functions with 150-ps Time-Resolved X-ray Crystallography, Science, vol.300, issue.5627, p.1944, 2003.
DOI : 10.1126/science.1078797

R. F. Tilton, I. D. Kuntz, and G. A. Petsko, Cavities in proteins: structure of a metmyoglobin xenon complex solved to 1.9 .ANG., Biochemistry, vol.23, issue.13, p.2849, 1984.
DOI : 10.1021/bi00308a002

M. Brunori, Structural dynamics of myoglobin, Biophysical Chemistry, vol.86, issue.2-3, p.221, 2000.
DOI : 10.1016/S0301-4622(00)00142-3

M. Brunori, B. Vallone, F. Cutruzzola, C. Travaglini-allocatelli, J. Berendzen et al., The role of cavities in protein dynamics: Crystal structure of a photolytic intermediate of a mutant myoglobin, Proc. Natl. Acad. Sci. USA 97, p.2058, 2000.
DOI : 10.1016/S0968-0004(99)01421-8

J. L. Martin, A. Migus, C. Poyart, Y. Lecarpentier, R. Astier et al., Femtosecond Photolysis of CO-Ligated Protoheme and Hemoproteins ? Appearance of a Deoxy Species with a 350-Fs Time Constant, Proc. Natl. Acad. Sci. USA, p.173, 1983.

J. W. Petrich, C. Poyart, and J. Martin, Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin, and protoheme, Biochemistry, vol.27, issue.11, p.4049, 1988.
DOI : 10.1021/bi00411a022

S. Franzen, L. Kiger, C. Poyart, and J. Martin, Heme Photolysis Occurs by Ultrafast Excited State Metal-to-Ring Charge Transfer, Biophysical Journal, vol.80, issue.5, p.2372, 2001.
DOI : 10.1016/S0006-3495(01)76207-8

URL : https://hal.archives-ouvertes.fr/hal-00838171

D. Ye and . Champion, and the Vibrational Relaxation of the Six-Coordinate Heme Species, Journal of the American Chemical Society, vol.124, issue.20, p.5914, 2002.
DOI : 10.1021/ja017359n

C. Ramos, E. Ramírez, C. Ruiz, R. Pietri, J. L. Garriga et al., BY FEMTOSECOND TRANSIENT ABSORPTION, Femtochemistry and Femtobiology, p.720, 2002.
DOI : 10.1142/9789812777980_0071

R. B. Dyer, K. A. Peterson, P. O. Stoutland, and W. H. Woodruff, Picosecond infrared study of the photodynamics of carbonmonoxy-cytochrome c oxidase, Biochemistry, vol.33, issue.2, p.500, 1994.
DOI : 10.1021/bi00168a015

J. Meller and R. Elber, Computer Simulations of Carbon Monoxide Photodissociation in Myoglobin: Structural Interpretation of the B States, Biophysical Journal, vol.74, issue.2, p.789, 1998.
DOI : 10.1016/S0006-3495(98)74004-4

E. E. Rovira, . Schulze, and . Parrinello, Influence of the Heme Pocket Conformation on the Structure and Vibrations of the Fe-CO Bond in Myoglobin: A QM/MM Density Functional Study, Biophysical Journal, vol.81, issue.1, p.435, 2001.
DOI : 10.1016/S0006-3495(01)75711-6

M. Karplus, Molecular Properties from Combined QM/MM Methods. I. Analytical Second Derivative and Vibrational Calculations, J. Chem. Phys, vol.112, p.1133, 2000.

T. Li, M. L. Quillin, G. N. Jr, J. S. Et, and . Olson, Structural Determinants of the Stretching Frequency of CO Bound to Myoglobin, Biochemistry, vol.33, issue.6, p.1433, 1994.
DOI : 10.1021/bi00172a021

E. M. Dioum, J. Rutter, J. R. Tuckerman, G. Gonzalez, M. Gilles-gonzalez et al., NPAS2: A Gas-Responsive Transcription Factor, NPAS2: A Gas-Responsive Transcription Factor, p.2385, 2002.
DOI : 10.1126/science.1078456

S. Aano, N. H. , K. Saito, and E. M. Okada, A Novel Heme Protein That Acts as a Carbon Monoxide-Dependent Transcriptional Activator inRhodospirillum rubrum, Biochemical and Biophysical Research Communications, vol.228, issue.3, p.752, 1996.
DOI : 10.1006/bbrc.1996.1727

D. Shelver, R. L. Kerby, Y. He, and G. P. Roberts, CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein, Proc. Natl. Acad. Sci. USA 94, p.11216, 1997.
DOI : 10.1016/0022-2836(87)90315-9

D. E. Baranano, C. D. Ferris, and S. H. Snyder, Atypical neural messengers, Trends in Neurosciences, vol.24, issue.2, p.99, 2001.
DOI : 10.1016/S0166-2236(00)01716-1

B. Vojtechovsky and C. Schlichting, Crystal Structures of Myoglobin-Ligand Complexes at Near-Atomic Resolution, Biophysical Journal, vol.77, issue.4, p.2153, 1999.
DOI : 10.1016/S0006-3495(99)77056-6

A. Dong and W. S. Caughey, [9] Infrared methods for study of hemoglobin reactions and structures, Methods Enzymol, vol.232, p.139, 1994.
DOI : 10.1016/0076-6879(94)32047-0

J. O. Alben, D. Beece, S. F. Bowne, W. Doster, L. Eisenstein et al., Infrared spectroscopy of photodissociated carboxymyoglobin at low temperatures., Proc. Natl. Acad. Sci. USA 79, p.3744, 1982.
DOI : 10.1073/pnas.79.12.3744

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC346503

M. Lim, T. Jackson, and P. A. Anfinrud, Binding of CO to myoglobin from a heme pocket docking site to form nearly linear Fe-C-O, Science, vol.14, issue.10, p.962, 1995.
DOI : 10.1038/nsb1094-701

D. E. Sagnella, J. E. Straub, T. A. Jackson, M. Lim, and P. A. Anfinrud, Vibrational Population Relaxation of Carbon Monoxyde in the Heme Pocket of Photolysed Carbonmonoxy Myglobin: Comparison of Time-Resolved Mid-IR Absorbance Experiments and Molecular Dynamics Simulations, Proc. Natl. Acad. Sci. USA 96, p.14324, 1999.

M. Lim, T. A. Jackson, and P. A. Anfinrud, Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin, Nature Structural Biology, vol.4, issue.3, p.209, 1997.
DOI : 10.1016/0301-0104(91)87068-7

R. B. Dyer, K. A. Peterson, P. O. Stoutland, and W. H. Woodruff, Ultrafast photoinduced ligand transfer in carbonmonoxy cytochrome c oxidase. Observation by picosecond infrared spectroscopy, Journal of the American Chemical Society, vol.113, issue.16, p.6276, 1991.
DOI : 10.1021/ja00016a057

M. R. Armstrong, J. P. Ogilvie, M. L. Cowan, A. M. Nagy, and R. J. Miller, Observation of the cascaded atomic-to-global length scales driving protein motion, Proc. Natl. Acad. Sci. USA, p.4990, 2003.
DOI : 10.1002/prot.340160403

. Rosca, . Kumar, . Ionascu, . Sjodin, . Demidov et al., Wavelength selective modulation in femtosecond pump???probe spectroscopy and its application to heme proteins, The Journal of Chemical Physics, vol.114, issue.24, p.10884, 2001.
DOI : 10.1063/1.1363673

E. J. Lambry and -. Martin, Coherent Infrared Emission from Myoglobin Crystals : An Electric Field Measurement, Proc. Natl. Acad. Sci. USA 99, p.1323, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00836886

A. Bonvalet, J. Nagle, V. Berger, A. Migus, J. Martin et al., Femtosecond Infrared Emission Resulting from Coherent Charge Oscillations in Quantum Wells, Femtosecond Infrared Emission Resulting from Coherent Charge Oscillations in Quantum Wells, p.4392, 1996.
DOI : 10.1103/PhysRevLett.76.4392

M. Joffre, D. Hulin, J. Foing, J. Chambaret, A. Migus et al., Dynamics and Fourier transform studies of the excitonic optical Stark effect, IEEE Journal of Quantum Electronics, vol.25, issue.12, p.2505, 1989.
DOI : 10.1109/3.40635

F. Fournier, Spectroscopie Non-Linéaire Femtoseconde de Molécules Adsorbées et Dynamique de L'interaction Adsorbat-Substrat: Application`AApplication` Application`A CO, A la Glace et Aux Molécules Auto-Assemblées sur Pt Thèse de Doctorat, 2003.

A. T. Kumar, F. Rosca, A. Widom, and P. M. Champion, Investigations of amplitude and phase excitation profiles in femtosecond coherence spectroscopy, The Journal of Chemical Physics, vol.114, issue.2, p.701, 2001.
DOI : 10.1063/1.1329640

W. P. De-boeij, M. S. Pshenichnikov, and D. A. Wiersma, Short-time solvation dynamics probed by phase-locked heterodyne detected pump-probe, Chemical Physics Letters, vol.247, issue.3, p.264, 1995.
DOI : 10.1016/0009-2614(95)01217-6

M. F. Emde, W. P. De-boeij, M. S. Pshenichnikov, and D. A. Wiersma, Spectral interferometry as an alternative to time-domain heterodyning, Optics Letters, vol.22, issue.17, p.1338, 1997.
DOI : 10.1364/OL.22.001338

H. Tan and W. S. Warren, Mid infrared pulse shaping by optical parametric amplification and its application to optical free induction decay measurement, Optics Express, vol.11, issue.9, p.1021, 2003.
DOI : 10.1364/OE.11.001021.m001

M. Joffre, D. Hulin, A. Migus, A. Antonetti, C. B. Guillaume et al., Coherent effects in pump???probe spectroscopy of excitons, Optics Letters, vol.13, issue.4, p.276, 1988.
DOI : 10.1364/OL.13.000276

S. L. Mccall and E. L. Hahn, Self-Induced Transparency by Pulsed Coherent Light, Physical Review Letters, vol.18, issue.21, p.908, 1967.
DOI : 10.1103/PhysRevLett.18.908

H. M. Gibbs and R. Slusher, Peak Amplification and Breakup of a Coherent Optical Pulse in a Simple Atomic Absorber, Physical Review Letters, vol.24, issue.12, p.638, 1970.
DOI : 10.1103/PhysRevLett.24.638

J. P. Sokoloff, M. Joffre, B. Fluegel, D. Hulin, M. Lindberg et al., Transient oscillations in the vicinity of excitons and in the band of semiconductors, Physical Review B, vol.38, issue.11, 1988.
DOI : 10.1103/PhysRevB.38.7615

P. Hamm, Coherent effects in femtosecond infrared spectroscopy, Chemical Physics, vol.200, issue.3, p.415, 1995.
DOI : 10.1016/0301-0104(95)00262-6

C. L. Tobias-guenther, V. M. Thomas-elsaesser, M. Glanemann, S. E. Tilmann-kuhn, and E. A. Wieck, Coherent Nonlinear Optical Response of Single Quantum Dots Studied by Ultrafast Near-Field Spectroscopy, Physical Review Letters, vol.89, issue.5, p.57401, 2002.
DOI : 10.1103/PhysRevLett.89.057401

N. Belabas, Spectroscopie Femtoseconde Cohérente Bidimensionnelle Dans L'infrarouge, Thèse de Doctorat, Ecole Polytechnique, 2002.

N. Belabas and M. Joffre, Visible???infrared two-dimensional Fourier-transform spectroscopy, Optics Letters, vol.27, issue.22, p.2043, 2002.
DOI : 10.1364/OL.27.002043

URL : https://hal.archives-ouvertes.fr/hal-00845086

L. Lepetit and M. Joffre, Two-dimensional nonlinear optics using Fourier-transform spectral interferometry, Optics Letters, vol.21, issue.8, p.564, 1996.
DOI : 10.1364/OL.21.000564

I. Rubtsov, J. Wang, and E. R. Hochstrasser, Dual frequency 2D-IR of peptide amide-A and amide-I modes, The Journal of Chemical Physics, vol.118, issue.17, p.7733, 2003.
DOI : 10.1063/1.1570398

M. Joffre, Comment on ???Coherent Nonlinear Optical Response of Single Quantum Dots Studied by Ultrafast Near-Field Spectroscopy???, Physical Review Letters, vol.90, issue.13, p.139701, 2002.
DOI : 10.1103/PhysRevLett.90.139701

URL : https://hal.archives-ouvertes.fr/hal-00836430

C. J. Bardeen, Q. Wang, and C. V. Shank, Femtosecond Chirped Pulse Excitation of Vibrational Wave Packets in LD690 and Bacteriorhodopsin, The Journal of Physical Chemistry A, vol.102, issue.17, p.2759, 1998.
DOI : 10.1021/jp980346k

J. D. Hybl, A. W. Albrecht, S. G. Faeder, and D. M. Jonas, Two-dimensional electronic spectroscopy, Chemical Physics Letters, vol.297, issue.3-4, p.307, 1998.
DOI : 10.1016/S0009-2614(98)01140-3

J. Paye, Applications of the Chronocyclic Representation of Ultrashort Light Pulses, Ultrafast Phenomena IX, 1994.
DOI : 10.1007/978-3-642-85176-6_2

M. K. Reed and M. K. Shepard, Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier, IEEE Journal of Quantum Electronics, vol.32, issue.8, p.1273, 1996.
DOI : 10.1109/3.511538

M. Joffre, A. Bonvalet, A. Migus, and J. Martin, Femtosecond diffracting Fourier-transform infrared interferometer, Optics Letters, vol.21, issue.13, p.964, 1996.
DOI : 10.1364/OL.21.000964

V. A. Gregory, D. Goodno, and R. J. Miller, Diffractive Optics-Based Heterodyne-Detected Grating Spectroscopy: Application to Ultrafast Protein Dynamics, J. Phys. Chem. B, vol.103, p.603, 1999.

Y. K. Lian, B. Locke, and R. M. Hochstrasser, Energy Flow from Solute to Solvent Probed by Femtosecond IR Spectroscopy: Malachite Green and Heme Protein Solutions, The Journal of Physical Chemistry, vol.98, issue.45, p.11648, 1994.
DOI : 10.1021/j100096a005