H. Construction-de and G. -gpx3, His-Gpx3 et des mutants cystéines de, p.156

X. Extraits, A. Protéiques, . Électrophorétiques, and . Purification, Protocole d'extraction TCA permettant de visualiser l'état redox de myc-Yap1 et de

A. Delaunay, A. Isnard, M. Toledano, and .. J. Embo, Annexe 2 Article 1, pp.5157-66, 0197.

A. Delaunay, D. Pflieger, M. Barrault, J. Vinh, and M. Toledano, Annexe 3 Article 2, Cell, 2002.

B. Gonzalez-flecha and B. Demple, Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli., Journal of Bacteriology, vol.179, issue.2, pp.382-390, 1997.
DOI : 10.1128/jb.179.2.382-388.1997

B. Demple and J. Halbrook, Inducible repair of oxidative DNA damage in Escherichia coli, Nature, vol.193, issue.5925, pp.466-474, 1983.
DOI : 10.1038/304466a0

M. F. Christman, Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium, Cell, vol.41, issue.3, pp.41-753, 1985.
DOI : 10.1016/S0092-8674(85)80056-8

L. P. Collinson and I. W. Dawes, Inducibility of the response of yeast cells to peroxide stress, Journal of General Microbiology, vol.138, issue.2, pp.329-335, 1992.
DOI : 10.1099/00221287-138-2-329

D. J. Jamieson, Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione., Journal of Bacteriology, vol.174, issue.20, pp.6678-81, 1992.
DOI : 10.1128/jb.174.20.6678-6681.1992

J. Flattery-o-'brien, L. P. Collinson, and I. W. Dawes, Saccharomyces cerevisiae has an inducible response to menadione Which differs from that to hydrogen peroxide, J

J. T. Greenberg and B. Demple, A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress., Journal of Bacteriology, vol.171, issue.7, pp.171-3933, 1989.
DOI : 10.1128/jb.171.7.3933-3939.1989

A. P. Gasch, Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes, Process Citation], pp.4241-57, 2000.
DOI : 10.1091/mbc.11.12.4241

C. Godon, The H2O2 Stimulon in Saccharomyces cerevisiae, Journal of Biological Chemistry, vol.273, issue.35, pp.22480-22489, 1998.
DOI : 10.1074/jbc.273.35.22480

P. J. Pomposiello, M. H. Bennik, and B. Demple, Genome-Wide Transcriptional Profiling of the Escherichia coli Responses to Superoxide Stress and Sodium Salicylate, Journal of Bacteriology, vol.183, issue.13
DOI : 10.1128/JB.183.13.3890-3902.2001

M. Zheng, DNA Microarray-Mediated Transcriptional Profiling of the Escherichia coli Response to Hydrogen Peroxide, Journal of Bacteriology, vol.183, issue.15, pp.183-4562, 2001.
DOI : 10.1128/JB.183.15.4562-4570.2001

A. Carlioz and D. Touati, Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life, Embo J, vol.5, issue.3, pp.623-653, 1986.

E. C. Chang and D. J. Kosman, O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae., Journal of Bacteriology, vol.172, issue.4, pp.1840-1845, 1990.
DOI : 10.1128/jb.172.4.1840-1845.1990

E. B. Gralla and J. S. Valentine, Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates., Journal of Bacteriology, vol.173, issue.18, pp.173-5918, 1991.
DOI : 10.1128/jb.173.18.5918-5920.1991

T. Bilinski, Is hydroxyl radical generated by the Fenton reaction in vivo?, Biochemical and Biophysical Research Communications, vol.130, issue.2, pp.533-542, 1985.
DOI : 10.1016/0006-291X(85)90449-8

V. C. Culotta, Superoxide dismutase, oxidative stress, and cell metabolism, Curr Top Cell Regul, vol.36, pp.117-149, 2000.
DOI : 10.1016/S0070-2137(01)80005-4

C. Srinivasan, Yeast Lacking Superoxide Dismutase(s) Show Elevated Levels of "Free Iron" as Measured by Whole Cell Electron Paramagnetic Resonance, Journal of Biological Chemistry, vol.275, issue.38, pp.275-29187, 2000.
DOI : 10.1074/jbc.M004239200

K. Keyer and J. A. Imlay, Superoxide accelerates DNA damage by elevating free-iron levels, Proceedings of the National Academy of Sciences, vol.295, issue.2, pp.93-13635, 1996.
DOI : 10.1016/0003-9861(92)90513-V

L. Benov and I. Fridovich, Growth in iron-enriched medium partially compensates Escherichia coli for the lack of manganese and iron superoxide dismutase, J Biol Chem, issue.17, pp.273-10313, 1998.

D. Freitas and J. M. , Yeast Lacking Cu-Zn Superoxide Dismutase Show Altered Iron Homeostasis. ROLE OF OXIDATIVE STRESS IN IRON METABOLISM, Journal of Biological Chemistry, vol.275, issue.16, pp.275-11645, 2000.
DOI : 10.1074/jbc.275.16.11645

L. B. Corson, Oxidative Stress and Iron Are Implicated in Fragmenting Vacuoles of Saccharomyces cerevisiae Lacking Cu,Zn-Superoxide Dismutase, Journal of Biological Chemistry, vol.274, issue.39, pp.274-27590, 1999.
DOI : 10.1074/jbc.274.39.27590

P. C. Loewen, Isolation of catalase-deficient Escherichia coli mutants and genetic mapping of katE, a locus that affects catalase activity, J Bacteriol, vol.157, issue.2, pp.622-628, 1984.

P. C. Loewen, Genetic mapping of katG, a locus that affects synthesis of the bifunctional catalase-peroxidase hydroperoxidase I in Escherichia coli, J Bacteriol, vol.162, issue.2, pp.661-668, 1985.

A. Hartig and H. Ruis, Nucleotide sequence of the Saccharomyces cerevisiae CTT1 gene and deduced amino-acid sequence of yeast catalase T, European Journal of Biochemistry, vol.99, issue.3, pp.487-90, 1986.
DOI : 10.1016/0022-2836(83)90041-4

G. Cohen, W. Rapatz, and H. Ruis, Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it, Eur J Biochem, vol.176, issue.1, pp.159-63, 1988.

H. R. Ellis and L. B. Poole, Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium, Biochemistry, issue.43, pp.36-13349, 1997.

F. Ursini, Diversity of glutathione peroxidases, Methods Enzymol, vol.252, pp.38-53, 1995.

A. Holmgren and . Thioredoxin, Thioredoxin, Annual Review of Biochemistry, vol.54, issue.1, pp.237-71, 1985.
DOI : 10.1146/annurev.bi.54.070185.001321

URL : https://hal.archives-ouvertes.fr/hal-00188911

A. Holmgren and M. Bjornstedt, [21] Thioredoxin and thioredoxin reductase, Methods Enzymol, vol.252, pp.199-208, 1995.
DOI : 10.1016/0076-6879(95)52023-6

H. Z. Chae, S. J. Chung, and S. G. Rhee, Thioredoxin-dependent peroxyde reductase from yeast, J Biol Chem, vol.269, pp.27670-27678, 1994.

C. M. Grant, F. H. Maciver, and I. W. Dawes, Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae, Curr Genet, issue.6, pp.29-511, 1996.

M. Penninckx, A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses, Enzyme and Microbial Technology, vol.26, issue.9-10, pp.9-10, 2000.
DOI : 10.1016/S0141-0229(00)00165-4

A. Holmgren, F. Aslund, and G. , [29] Glutaredoxin, Methods Enzymol, vol.252, pp.283-92, 1995.
DOI : 10.1016/0076-6879(95)52031-7

E. J. Collinson, The Yeast Glutaredoxins Are Active as Glutathione Peroxidases, Journal of Biological Chemistry, vol.277, issue.19, pp.16712-16719, 2002.
DOI : 10.1074/jbc.M111686200

F. Aslund, K. D. Berndt, and A. Holmgren, Redox Potentials of Glutaredoxins and Other Thiol-Disulfide Oxidoreductases of the Thioredoxin Superfamily Determined by Direct Protein-Protein Redox Equilibria, Journal of Biological Chemistry, vol.272, issue.49, pp.272-30780, 1997.
DOI : 10.1074/jbc.272.49.30780

D. Spector, J. Labarre, and M. B. Toledano, A Genetic Investigation of the Essential Role of Glutathione: MUTATIONS IN THE PROLINE BIOSYNTHESIS PATHWAY ARE THE ONLY SUPPRESSORS OF GLUTATHIONE AUXOTROPHY IN YEAST, Journal of Biological Chemistry, vol.276, issue.10, 2000.
DOI : 10.1074/jbc.M009814200

H. Z. Chae and S. G. Rhee, A thiol-specific antioxidant and sequence homology to various proteins of unknown function, Biofactors, vol.4, pp.3-4, 1994.

H. Z. Chae, T. B. Uhm, and S. G. Rhee, Dimerization of thiol-specific antioxidant and the essential role of cysteine 47., Proc. Natl. Acad. Sci. USA, pp.7022-7026, 1994.
DOI : 10.1073/pnas.91.15.7022

L. E. Netto, Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties, J. biol. Chem, issue.271, pp.15315-15321, 1996.

E. O. Garrido and C. M. Grant, Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides, Molecular Microbiology, vol.43, issue.4, pp.993-1003, 2002.
DOI : 10.1074/jbc.274.28.19714

L. A. Tartaglia, Alkyl hydroperoxide reductase from Salmonella typhimurium

S. G. Park, Distinct Physiological Functions of Thiol Peroxidase Isoenzymes in Saccharomyces cerevisiae, Journal of Biological Chemistry, vol.275, issue.8, pp.5723-5755, 2000.
DOI : 10.1074/jbc.275.8.5723

J. Lee, A New Antioxidant with Alkyl Hydroperoxide Defense Properties in Yeast, Journal of Biological Chemistry, vol.274, issue.8
DOI : 10.1074/jbc.274.8.4537

C. M. Wong, Cooperation of Yeast Peroxiredoxins Tsa1p and Tsa2p in the Cellular Defense against Oxidative and Nitrosative Stress, Journal of Biological Chemistry, vol.277, issue.7, pp.5385-94, 2002.
DOI : 10.1074/jbc.M106846200

W. S. Moye-rowley, K. D. Harshman, and C. S. Parker, Yeast YAP1 encodes a novel form of the jun family of transcriptional activator proteins., Genes & Development, vol.3, issue.3, pp.283-92, 1989.
DOI : 10.1101/gad.3.3.283

A. L. Wu and W. S. Moye-rowley, GSH1, which encodes gamma-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation., Molecular and Cellular Biology, vol.14, issue.9, pp.5832-5841, 1994.
DOI : 10.1128/MCB.14.9.5832

L. Fernandes, C. Rodrigues-pousada, and K. Struhl, Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions., Molecular and Cellular Biology, vol.17, issue.12
DOI : 10.1128/MCB.17.12.6982

B. Krems, C. Charizanis, and K. Entian, The response regulator-like protein

L. L. Brown and H. Bussey, SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors., Journal of Bacteriology, vol.175, issue.21, pp.6908-6915, 1993.
DOI : 10.1128/jb.175.21.6908-6915.1993

A. P. Schmitt and K. Mcentee, Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae., Proceedings of the National Academy of Sciences, vol.93, issue.12
DOI : 10.1073/pnas.93.12.5777

M. T. Martinez-pastor, The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stressresponse element (STRE), EMBO J, vol.15, pp.227-2235, 1996.

R. Hasan, The control of the yeast H2O2 response by the Msn2/4 transcription factors, Molecular Microbiology, vol.14, issue.1, pp.233-274, 2002.
DOI : 10.1016/S0006-2952(99)00289-0

B. Gonzalez-flecha and B. Demple, Transcriptional regulation of the Escherichia coli oxyR gene as a function of cell growth., Journal of Bacteriology, vol.179, issue.19, pp.179-6181, 1997.
DOI : 10.1128/jb.179.19.6181-6186.1997

C. Michan, In vivo transcription of the Escherichia coli oxyR regulon as a function of growth phase and in response to oxidative stress, J Bacteriol, vol.181, issue.9, pp.2759-64, 1999.

G. Storz, L. A. Tartaglia, and B. N. Ames, Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation, Science, vol.248, issue.4952, pp.189-194, 1990.
DOI : 10.1126/science.2183352

I. Kullik, Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation., Journal of Bacteriology, vol.177, issue.5, pp.1275-1284, 1995.
DOI : 10.1128/jb.177.5.1275-1284.1995

M. Zheng, F. Aslund, and G. Storz, Activation of the OxyR Transcription Factor by Reversible Disulfide Bond Formation, Science, vol.279, issue.5357, pp.1718-1721, 1998.
DOI : 10.1126/science.279.5357.1718

F. Aslund, Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol--disulfide status, Proceedings of the National Academy of Sciences, vol.179, issue.2, pp.96-6161, 1999.
DOI : 10.1016/S0092-8674(00)80547-4

H. Choi, Structural Basis of the Redox Switch in the OxyR Transcription Factor, Cell, vol.105, issue.1, pp.103-116, 2001.
DOI : 10.1016/S0092-8674(01)00300-2

S. O. Kim, OxyR, Cell, vol.109, issue.3, pp.383-96, 2002.
DOI : 10.1016/S0092-8674(02)00723-7

URL : http://doi.org/10.1016/s0092-8674(02)00723-7

E. R. Rocha, G. Owens, J. , and C. J. Smith, The Redox-Sensitive Transcriptional Activator OxyR Regulates the Peroxide Response Regulon in the Obligate Anaerobe Bacteroides fragilis, Journal of Bacteriology, vol.182, issue.18, pp.182-5059, 2000.
DOI : 10.1128/JB.182.18.5059-5069.2000

S. Mongkolsuk, Mutations in oxyR Resulting in Peroxide Resistance in Xanthomonas campestris, Journal of Bacteriology, vol.182, issue.13, pp.3846-3855, 2000.
DOI : 10.1128/JB.182.13.3846-3849.2000

J. A. Kim and J. Mayfield, Identification of Brucella abortus OxyR and Its Role in Control of Catalase Expression, Journal of Bacteriology, vol.182, issue.19, pp.182-5631, 2000.
DOI : 10.1128/JB.182.19.5631-5633.2000

N. Bsat, Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors, Molecular Microbiology, vol.29, issue.1, pp.189-98, 1998.
DOI : 10.1126/science.279.5357.1718

A. F. Herbig and J. D. Helmann, Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA, Molecular Microbiology, vol.279, issue.4, pp.849-59, 2001.
DOI : 10.1046/j.1365-2958.2001.02543.x

M. Fuangthong, Regulation of the Bacillus subtilis fur and perR Genes by PerR: Not All Members of the PerR Regulon Are Peroxide Inducible, Journal of Bacteriology, vol.184, issue.12, pp.184-3276, 2002.
DOI : 10.1128/JB.184.12.3276-3286.2002

M. Fuangthong, OhrR Is a Repressor of ohrA, a Key Organic Hydroperoxide Resistance Determinant in Bacillus subtilis, Journal of Bacteriology, vol.183, issue.14, pp.183-4134, 2001.
DOI : 10.1128/JB.183.14.4134-4141.2001

M. Fuangthong and J. D. Helmann, The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative, Proceedings of the National Academy of Sciences, vol.179, issue.23, pp.99-6690, 2002.
DOI : 10.1074/jbc.M006137200

E. Hidalgo and B. Demple, An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein, Embo J, vol.13, issue.1, pp.138-184, 1994.

E. Hidalgo, Binuclear [2Fe-2S] Clusters in the Escherichia coli SoxR Protein and Role of the Metal Centers in Transcription, Journal of Biological Chemistry, vol.270, issue.36, pp.270-20908, 1995.
DOI : 10.1074/jbc.270.36.20908

T. M. Bradley, Cysteine-to-Alanine Replacements in the Escherichia Coli SoxR Protein and the Role of the [2Fe-2S] Centers in Transcriptional Activation, Nucleic Acids Research, vol.25, issue.8, pp.25-1469, 1997.
DOI : 10.1093/nar/25.8.1469

P. Gaudu and B. Weiss, SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form., Proceedings of the National Academy of Sciences, vol.93, issue.19, pp.93-10094, 1996.
DOI : 10.1073/pnas.93.19.10094

H. Ding, E. Hidalgo, and B. Demple, The Redox State of the [2Fe-2S] Clusters in SoxR Protein Regulates Its Activity as a Transcription Factor, Journal of Biological Chemistry, vol.271, issue.52, pp.271-33173, 1996.
DOI : 10.1074/jbc.271.52.33173

H. Ding and B. Demple, In vivo kinetics of a redox-regulated transcriptional switch, Proceedings of the National Academy of Sciences, vol.21, issue.5
DOI : 10.1016/0968-0004(96)10024-4

P. Gaudu, N. Moon, and B. Weiss, Regulation of the soxRS Oxidative Stress Regulon: REVERSIBLE OXIDATION OF THE Fe-S CENTERS OF SoxR IN VIVO, Journal of Biological Chemistry, vol.272, issue.8, pp.272-5082, 1997.
DOI : 10.1074/jbc.272.8.5082

H. Ding and B. Demple, Glutathione-mediated destabilization in vitro of [2Fe-2S] centers in the SoxR regulatory protein., Proceedings of the National Academy of Sciences, vol.93, issue.18, pp.93-9449, 1996.
DOI : 10.1073/pnas.93.18.9449

E. Hidalgo and B. Demple, Activation of SoxR-dependent transcription in vitro by noncatalytic or NifS-mediated assembly of [2Fe-2S] clusters into apo-SoxR, J Biol Chem, issue.13, pp.271-7269, 1996.

E. Hidalgo and B. Demple, Spacing of promoter elements regulates the basal expression of the soxS gene and converts SoxR from a transcriptional activator into a repressor, The EMBO Journal, vol.16, issue.5, pp.1056-65, 1997.
DOI : 10.1093/emboj/16.5.1056

P. Gaudu, S. Dubrac, and D. Touati, Activation of SoxR by Overproduction of Desulfoferrodoxin: Multiple Ways To Induce the soxRS Regulon, Journal of Bacteriology, vol.182, issue.6, pp.1761-1764, 2000.
DOI : 10.1128/JB.182.6.1761-1763.2000

S. T. Coleman, Yap1p Activates Gene Transcription in an Oxidant-Specific Fashion, Molecular and Cellular Biology, vol.19, issue.12, pp.8302-8313, 1999.
DOI : 10.1128/MCB.19.12.8302

A. Delaunay, A. D. Isnard, and M. B. Toledano, H 2 O 2 sensing through oxidation of the Yap1 transcription factor, EMBO J, pp.19-5157, 2000.

T. Takeuchi, Mutational analysis of Yap1 protein, an AP-1-like transcriptional activator of Saccharomyces cerevisiae, FEBS Lett, issue.416, pp.339-343, 1997.

A. Davis and . Billmers, Chemistry of Sulfenic Acids. 4. the first Direct Evidence for the Involvement of Sulfenic Acids in the Oxidation of Thiols, pp.7016-7018, 1981.

A. Claiborne, Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation, Faseb J, issue.715, pp.1483-90, 1993.

J. W. Nelson and T. E. Creighton, Reactivity and Ionization of the Active Site Cysteine Residues of DsbA, a Protein Required for Disulfide Bond Formation in vivo, Biochemistry, vol.33, issue.19, pp.33-5974, 1994.
DOI : 10.1021/bi00185a039

F. Ursini, M. Maiorino, and A. Roveri, Phospholipid hydroperoxide glutathione peroxidase (PHGPx): more than an antioxidant enzyme?, Biomed Environ Sci, vol.10, issue.2-3, pp.327-359, 1997.

F. Ursini, Dual Function of the Selenoprotein PHGPx During Sperm Maturation, Science, vol.285, issue.5432
DOI : 10.1126/science.285.5432.1393

C. Godeas, Distribution and Possible Novel Role of Phospholipid Hydroperoxide Glutathione Peroxidase in Rat Epididymal Spermatozoa1, Biology of Reproduction, vol.57, issue.6, pp.1502-1510, 1997.
DOI : 10.1095/biolreprod57.6.1502

A. Roveri, PHGPx and spermatogenesis, BioFactors, vol.17, issue.2, pp.213-235, 2001.
DOI : 10.1002/biof.5520140127

M. S. Seo, Identification of a New Type of Mammalian Peroxiredoxin That Forms an Intramolecular Disulfide as a Reaction Intermediate, Journal of Biological Chemistry, vol.275, issue.27, pp.275-20346, 2000.
DOI : 10.1074/jbc.M001943200

E. G. Muller, A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth., Molecular Biology of the Cell, vol.7, issue.11, pp.1805-1818, 1996.
DOI : 10.1091/mbc.7.11.1805

S. Izawa, Thioredoxin Deficiency Causes the Constitutive Activation of Yap1, an AP-1-like Transcription Factor in Saccharomyces cerevisiae, Journal of Biological Chemistry, vol.274, issue.40, pp.28459-28465, 1999.
DOI : 10.1074/jbc.274.40.28459

O. Epp, R. Ladenstein, and A. Wendel, The Refined Structure of the Selenoenzyme Glutathione Peroxidase at 0.2-nm Resolution, European Journal of Biochemistry, vol.6, issue.1, pp.51-69, 1983.
DOI : 10.1016/0005-2760(73)90145-8

B. Ren, The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 ?? resolution, Journal of Molecular Biology, vol.268, issue.5, pp.869-85, 1997.
DOI : 10.1006/jmbi.1997.1005

M. Smith, C. Evans, H. Thir, and S. Orrenius, Oxidative stress, Sies, pp.91-111, 1985.
URL : https://hal.archives-ouvertes.fr/hal-00562814

M. Chaput, Potentiation of oxygen toxicity by menadione in Saccharomyces cerevisiae, Biochimie, vol.65, issue.8-9, pp.501-513, 1983.
DOI : 10.1016/S0300-9084(83)80132-1

D. Monte and D. , Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes, Archives of Biochemistry and Biophysics, vol.235, issue.2, pp.334-376, 1984.
DOI : 10.1016/0003-9861(84)90206-6

N. S. Kosower and E. M. Kosower, Formation of disulfides with diamide, Methods Enzymol, issue.143, pp.264-269, 1987.
DOI : 10.1016/0076-6879(87)43050-4

E. A. Castillo, Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues, Molecular Microbiology, vol.269, issue.1, pp.243-54, 2002.
DOI : 10.1126/science.279.5357.1718

K. Uchida and E. R. Stadtman, Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra-and intermolecular cross-linking reaction, J Biol Chem, vol.268, issue.9, pp.6388-93, 1993.

A. Vlamis-gardikas, Characterization of Escherichia coli Null Mutants for Glutaredoxin 2, Journal of Biological Chemistry, vol.277, issue.13, pp.10861-10869, 2002.
DOI : 10.1074/jbc.M111024200

W. M. Toone, Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (Exportin) and the stress-activated MAP kinase??Sty1/Spc1, Genes & Development, vol.12, issue.10, pp.12-1453, 1998.
DOI : 10.1101/gad.12.10.1453

P. Billard, H. Dumond, and M. Bolotin-fukuhara, Characterization of an AP-1-like transcription factor that mediates an oxidative stress response in Kluyveromyces lactis, Molecular and General Genetics MGG, vol.257, issue.1, pp.62-70, 1997.
DOI : 10.1007/s004380050624

A. Shevchenko, Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels, Analytical Chemistry, vol.68, issue.5, pp.850-858, 1996.
DOI : 10.1021/ac950914h

. Fungi, GSHJ_YEAST(GPX3) 116 --MLGLRGIKWNFEKFLVDKKGKVYERYSSLTKPS--SLSETIEELLKEVE-163 GSHI_YEAST(GPX2) 115 --LLGFKGIKWNFEKFLVDSNGKVVQRFSSLTKPS--SLDQEIQSLLSK---160 GSHJ_SCHPO 115, p.158