Modélisation du comportement des mousses solides à porosité ouverte: une approche micromécanique
Myriam Laroussi

To cite this version:

HAL Id: tel-00005743
https://pastel.archives-ouvertes.fr/tel-00005743
Submitted on 5 Apr 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THÈSE
pour obtenir le grade de

DOCTEUR DE L’ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES

Spécialité : Structures et Matériaux

présentée et soutenue publiquement par

Myriam LAROUSSI

le 12 juillet 2002 à l’ENPC Champs-sur-Marne

Titre :

MODÉLISATION DU COMPORTEMENT DES MOUSSES SOLIDES A POROSITÉ OUVERTE :
UNE APPROCHE MICROMÉCANIQUE

Jury composé de :

Président : M. Giuseppe GEYMONAT
Rapporteurs : M. Claude BOUTIN
M. Quoc Son NGUYEN
Examinateurs : Mme. Amina ALAOUI SOULIMANI
M. Alain LÉGER
Directeur de thèse : M. Karam SAB

Université de Montpellier II
ENTPE de Lyon
École Polytechnique
ENPC
EDF R&D
LCPC
Résumé
Le comportement des mouches solides est complexe. Selon le solide qui les constitue, elles peuvent être élastiques, visco-élastiques, élasto-plastiques ou encore visco-élasto-plastiques. Cependant, elles présentent toutes une même particularité : une phase de plateau à faible niveau d’effort dans les courbes contrainte-déformation (ou force-déplacement).
Ce travail est dédié à l’étude de l’origine de la phase de plateau dans le cas des mouches élastiques à porosité ouverte. Celle-ci est attribuée au flambement élastique des arêtes des cellules. L’étude repose sur la théorie de l’homogénéisation non convexe. En effet, on modélise la mousse par une microstructure tridimensionnelle périodique en prenant en compte les non-linéarités géométriques.
Dans un premier temps, on étudie deux cas de chargement en grandes transformations : une compression uniaxiale et une déformation uniaxiale (ou compression oedométrique). Les calculs sont faits sur des cellules d’étude de plus en plus grandes. Dans le cas de cellules d’étude “non suffisamment grandes”, on introduit une imperfection dans la position des nœuds pour initier le flambement.
Ensuite, on applique des chargements multiaxiaux pour déterminer une surface de charge, dans l’espace des contraintes macroscopiques, marquant la limite de passage de la phase élastique initiale à la phase de plateau définie par le flambement. La surface de charge, dite micro, est obtenue en considérant des variations du déplacement périodiques sur des cellules d’étude de plus en plus grandes. C’est une surface de charge du type Drucker-Prager modifiée. On introduit également une nouvelle surface de charge, dite mixte, plus facile à déterminer et qui coïncide avec la surface micro dans le cas étudié.
Enfin, pour valider les résultats numériques, on réalise une étude expérimentale sur une mousse de caril.
Mots clés mouches solides - cellules périodiques - homogénéisation - flambement - surface de charge - grandes transformations - postflambement

Abstract
Foam behavior is complex. Depending on the constitutive material, it can be elastic, visco-elastic, elasto-plastic or visco-elasto-plastic. However, foams have the same characteristic: an extended load plateau at low forces in the stress-strain curves.
This study deals with the reason of the load plateau in open-cell elastic foams. It is shown to be due to the elastic buckling in cell edges. Because of geometrical non-linearities, the study is based on non-convex homogenization theory.
First, we consider two particular loadings: uniaxial compression and uniaxial deformation. Calculations are made on periodic cells of increasing size. For “not big enough” cells, we introduce an imperfection in nodal positions to initiate buckling.
Then, we apply multiaxial loadings in order to determine a failure surface in the macroscopic stress space. This surface is defined by the onset of the first buckling-type instability encountered along proportional load paths. The analysis is carried out through two methods. The first one consists in increasing specimen size with periodic boundary conditions. This leads to the termed microfailure surface. It has been modeled as a modified Drucker-Prager surface. The second one consists in considering both periodic and nonperiodic displacement variations on a minimum unit cell. The resulting failure surfaces are shown to coincide.
Finally, an experimental study on a caril foam is performed to validate the numerical results.

Keywords solid foams - periodic cells - homogenization - buckling - failure surface - finite strains - postbuckling

Laboratoire Analyse, Matériaux et Identification
Unité Mixte de Recherche ENPC / LCPC
École Nationale des Ponts et Chaussées - 6 & 8 avenue Blaise Pascal, Cité Descartes, Champs-sur-Marne - 77455 Marne la Vallée, Cedex 2.
THÈSE
pour obtenir le grade de

DOCTEUR DE L’ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES
Spécialité : Structures et Matériaux

présentée et soutenue publiquement par

Myriam LAROUSSI
le 12 juillet 2002 à l’ENPC Champs-sur-Marne

Titre :
MODÉLISATION DU COMPORTEMENT DES MOUSSES SOLIDES À POROSITÉ OUVERTE :
UNE APPROCHE MICROMÉCANIQUE

Jury composé de :

Président : M. Giuseppe GEYMONAT Université de Montpellier II
Rapporteurs : M. Claude BOUTIN ENTPE de Lyon
 M. Quoc Son NGUYEN École Polytechnique
Examinateurs : Mme. Amina ALAOUI SOULIMANI ENPC
 M. Alain LÉGER EDF R&d
Directeur de thèse : M. Karam SAB LCPC
Remerciements

La génèse d’un ouvrage comporte en général deux phases : une lente maturation suivie d’une réalisation accélérée. Le texte qui suit n’échappe malheureusement pas à la deuxième phase de cette règle.

Je souhaite exprimer ma profonde gratitude à l’égard de mon directeur de thèse, Karam SAB, Directeur de Recherches au Laboratoire des Matériaux et des Structures du Génie Civil (LCPC), pour m’avoir accordé toute sa confiance et pour m’avoir fait profiter de ses vastes connaissances. Sa rigueur, sa créativité ainsi que ses qualités humaines m’ont énormément appris.

Monsieur Giuseppe GEYMONAT, Directeur de Recherches au Laboratoire de Mécanique et Génie Civil (Université de Montpellier II), a accepté de présider mon jury. Qu’il soit remercier pour l’intérêt et les conseils qu’il m’a accordés.

Monsieur Quoc Son NGUYEN, Directeur de Recherches au Laboratoire de Mécanique des Solides (Ecole Polytechnique), et Monsieur Claude BOUTIN, Directeur du Laboratoire de GéoMatériaux (ENTPE de Lyon), ont accepté la tâche de rapporteurs et ce malgré leur importante charge de travail. Je les remercie pour le soin avec lequel ils ont examiné ce rapport et pour la qualité de leurs commentaires.

Mes sincères remerciements vont également à Alain LÉGER, Ingénieur-Chercheur à EDF-R & D et Directeur de Recherches associé au Laboratoire de Mécanique et d’Acoustique à Marseille, qui a accepté de participer au jury. Qu’il trouve ici l’expression de ma reconnaissance pour l’intérêt qu’il a manifesté à ce travail.

Ma gratitude va tout particulièrement à Amina ALAOUI, Chargée de Recherches au LAMI (ENPC), qui m’a aidée à diverses occasions. Je rends en particulier hommage à son enthousiasme, sa disponibilité et sa rigueur scientifique.

Je voudrais remercier chaleureusement tous les membres du LAMI, doctorants, permanents ou stagiaires, avec qui les échanges aussi bien scientifiques qu’amicaux ont fait de ces trois années une étape inoubliable de ma vie.

Sans l’accueil d’Alain EHRLACHER au sein de son laboratoire, ce début de carrière se serait sans doute orienté très différemment. Pour cela je le remercie, ainsi que pour ses qualités scientifiques, humaines et pédagogiques exceptionnelles.

Je remercie enfin mes parents qui ont su m’offrir sans cesse leur soutien et leur amour. Ils m’ont beaucoup appris et toujours encouragée au cours de ma vie pour former ma personnalité et pour rendre possible mes études et par conséquent, cette thèse.

Je remercie également Elyes, mon époux, pour m’avoir aidée dans la rédaction de ce mémoire et aussi pour m’avoir supportée!
Table des matières

Présentation du sujet

<table>
<thead>
<tr>
<th>I Études bibliographiques</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Les matériaux alvéolaires</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Structure et propriétés</td>
<td>17</td>
</tr>
<tr>
<td>1.1.1 Structure des matériaux alvéolaires</td>
<td>17</td>
</tr>
<tr>
<td>1.1.2 Propriétés des mousseux</td>
<td>19</td>
</tr>
<tr>
<td>1.2 Particularité du comportement</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Géométrie et pavage de l’espace</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Les polyèdres</td>
<td>25</td>
</tr>
<tr>
<td>2.2 Pavage de l’espace</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Modélisations des mousseux</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Modélisations macromécaniques</td>
<td>31</td>
</tr>
<tr>
<td>3.2 Modélisations micromécaniques</td>
<td>33</td>
</tr>
<tr>
<td>3.2.1 Les réseaux cubiques</td>
<td>33</td>
</tr>
<tr>
<td>3.2.2 Les tétraèdres</td>
<td>37</td>
</tr>
<tr>
<td>3.2.3 Les dodécaèdres</td>
<td>39</td>
</tr>
<tr>
<td>3.2.4 Les structures aléatoires</td>
<td>40</td>
</tr>
<tr>
<td>3.2.5 Les tétrakaidécaèdres : la modélisation adoptée</td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 Homogénéisation et analyse du flambement</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Quelques rappels sur l’homogénéisation</td>
<td>43</td>
</tr>
<tr>
<td>4.2 Cas de l’homogénéisation non convexe</td>
<td>46</td>
</tr>
<tr>
<td>4.3 Analyse du flambement</td>
<td>47</td>
</tr>
<tr>
<td>4.4 Détermination d’une surface de charge</td>
<td>48</td>
</tr>
<tr>
<td>4.4.1 Surface de charge micro</td>
<td>48</td>
</tr>
<tr>
<td>4.4.2 Surface de charge macro</td>
<td>51</td>
</tr>
<tr>
<td>4.5 Définition d’une nouvelle surface de charge</td>
<td>52</td>
</tr>
</tbody>
</table>
TABLE DES MATIÈRES

II Compression et déformation uniaxiales des mousse

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Description de l'étude numérique</td>
<td>55</td>
</tr>
<tr>
<td>5.1</td>
<td>Géométrie du problème et choix d'une cellule de base</td>
<td>59</td>
</tr>
<tr>
<td>5.2</td>
<td>Comportement adopté</td>
<td>63</td>
</tr>
<tr>
<td>5.3</td>
<td>Discrétisation du problème</td>
<td>64</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Type d'éléments</td>
<td>64</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Section des arêtes</td>
<td>68</td>
</tr>
</tbody>
</table>

6 Compression et déformation uniaxiales

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Définition du chargement</td>
<td>71</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Déformation imposée</td>
<td>72</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Cas de la compression uniaxiale</td>
<td>72</td>
</tr>
<tr>
<td>6.2</td>
<td>Études numériques</td>
<td>73</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Élasticité linéaire en petites perturbations</td>
<td>74</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Élasticité linéaire en grandes transformations</td>
<td>75</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Flambement élastique</td>
<td>76</td>
</tr>
</tbody>
</table>

7 Résultats et discussions

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Élasticité linéaire en petites perturbations</td>
<td>79</td>
</tr>
<tr>
<td>7.2</td>
<td>Élasticité linéaire en grandes transformations</td>
<td>79</td>
</tr>
<tr>
<td>7.3</td>
<td>Flambement élastique</td>
<td>81</td>
</tr>
<tr>
<td>7.4</td>
<td>Postflambement élastique</td>
<td>84</td>
</tr>
</tbody>
</table>

III Surfaces de charge des mousse

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Surfaces de charge des mousse à porosité ouverte</td>
<td>89</td>
</tr>
<tr>
<td>8.1</td>
<td>Chargements imposés</td>
<td>93</td>
</tr>
<tr>
<td>8.2</td>
<td>Études numériques</td>
<td>96</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Surface de charge micro</td>
<td>96</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Surface de charge mixte</td>
<td>97</td>
</tr>
</tbody>
</table>

9 Résultats et discussions

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Détermination des surfaces de charge</td>
<td>99</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Surface de charge micro</td>
<td>99</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Surface de charge mixte</td>
<td>101</td>
</tr>
<tr>
<td>9.2</td>
<td>Modélisation de la surface de charge</td>
<td>104</td>
</tr>
<tr>
<td>9.3</td>
<td>Études paramétriques</td>
<td>106</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Densité relative</td>
<td>106</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Type de poutre</td>
<td>110</td>
</tr>
</tbody>
</table>
TABLE DES MATIÈRES

10 Étude expérimentale .. 113
 10.1 Procédé expérimental .. 113
 10.1.1 Choix de la mousse .. 113
 10.1.2 Densités de la mousse 114
 10.1.3 Application des chargements 115
 10.1.4 Traitement des résultats 117
 10.1.5 Détermination de E_s 120
 10.2 Résultats .. 121
 10.2.1 Observations .. 121
 10.2.2 Caractéristiques mécaniques 122
 10.2.3 Modules des deux phases et contraintes critiques 123
 10.2.4 Surface de charge ... 126
 10.3 Conclusion .. 130

Conclusions & Perspectives ... 133

Annexes ... 139

A. Résolution du problème de flambement 139

B. Aperçu des modèles de poutre dans ABAQUS 145

Références bibliographiques .. 149

Notations ... 157

Liste des figures .. 165

Liste des tableaux .. 167
Présentation du sujet

En vue d’une amélioration de la sécurité des passagers et des piétons, un consortium de constructeurs européens s’est réuni dans le cadre du projet Brite-Euram “EAMLIFE” : Energy Absorbing Materials at Low Impact Forces. Le travail entrepris consiste à approfondir l’étude du comportement des matériaux susceptibles d’absorber l’énergie produite en cas d’impact à niveau d’effort relativement faible. Les matériaux alvéolaires admettent cette propriété (voir Maiti et al. [Maiti et al., 1984]). Leur réponse force - déplacement (ou contrainte - déformation) est caractérisée par trois phases : une montée initiale relativement raide jusqu’à une charge limite, suivie d’un plateau en charge assez étendu, qui se termine par une montée raide. Ils sont de ce fait de bons prétendants, en plus de leurs faibles poids et coût, pour une utilisation à cet effet.

Dans notre travail, on se propose de modéliser le comportement de mousse élastique en grandes transformations par le biais d’un passage micro - macro de type homogénéisation.

Plusieurs auteurs (e. g. [Ashby, 1983], [Gibson et Ashby, 1982], [Gibson et al., 1982], [Gibson et al., 1989], [Triantafillou et al., 1989], [Pradel et Sab, 1998a], [Zhu et al., 1997a]) ont étudié le comportement mécanique des nids d’abeilles bidimensionnels et des solides cellulaires tridimensionnels. Cependant, bien que ces travaux soient un excellent point de départ en raison de leur large champ d’action et malgré une bonne modélisation de la partie élastique du comportement en petites perturbations, ils ne s’intéressent pas tous en profondeur aux mécanismes intervenant dans les différentes étapes de déformation de tels solides, telles que le rôle crucial des instabilités engendrées par les non-linéarités géométriques et matérielles sur la réponse en compression du matériau. De ce fait la partie non linéaire, et plus particulièrement le comportement après flambement demeure non maîtrisé.

Dans sa thèse [Pradel, 1998], Pradel a modélisé la microstructure de la mousse par un réseau
tridimensionnel à base de cellules tétrakaidécaédriques. Il a considéré une cellule d'étude périodique minimale. Par la théorie de l'homogénéisation, il a déterminé analytiquement ses coefficients élastiques. Puis il a étudié le flambement avec l'hypothèse que les longueurs d'onde du mode de flambement sont très grandes par rapport à la taille de la cellule d'étude. Son étude constitue le point de départ de cette thèse.

Par ailleurs, Geymonat et al. [Geymonat et al., 1993] se sont intéressés à la perte de convexité de la fonction énergie de déformation dans les matériaux élastiques non linéaires. Ils ont montré que dans ce cas, il est nécessaire dans le processus d'homogénéisation de tenir compte de toutes les cellules périodiques possibles, en vue d'une procédure de minimisation. Ce résultat fondamental est à la base de notre étude où, dans le cas d'une analyse de flambement ou de calculs en grandes transformations, on considère plusieurs cellules d'étude, de taille de plus en plus grande.

La mousse étudiée dans ce travail est élastique et à porosité ouverte. La non-linéarité considérée est de nature géométrique. Cette restriction aux mousse élastiques va nous permettre d'étudier en profondeur l'origine de la phase de plateau pour ce type de mousse. On l'attribue au flambement élastique des arêtes des cellules. L'objectif de ce travail est en fait double. D'une part, il s'agit de **réussir à obtenir la phase de plateau caractéristique des mousse en compression**. Pour cela, on étudie deux cas de chargement en grandes transformations : la compression uniaxiale et la déformation uniaxiale (ou compression cédonmétrique). D'autre part, il s'agit de **déterminer la surface de charge de tels matériaux**, surface qui donne dans l'espace des contraintes la limite de passage de l'élasticité linéaire à la phase de plateau.

Ce travail s'articule autour de trois parties.

La première partie présente des études bibliographiques en quatre chapitres.

Le premier chapitre expose les matériaux alvéolaires, dits aussi matériaux cellulaires. Cette terminologie regroupe le cas de cellules bidimensionnelles (les nids d'abeilles) et celui de cellules tridimensionnelles (les mousse). Les mousse à porosité ouverte et celles à porosité fermée sont distinguées. La notion de densité relative des mousse est introduite. La particularité de leur comportement est détaillée phase par phase.

Comme on souhaite modéliser la microstructure des mousse, le chapitre 2 est dédié au voyage de l'espace par des polyèdres. Une distinction est faite entre les solides platoniciens et les solides archimédiens. La partition de Kelvin, qu'on adopte dans ce travail pour modéliser les mousse, est exposée. La partition de Weaire-Phelan est aussi présentée. Celle-ci, en associant deux types de polyèdres de même volume, bat la partition de Kelvin dans l'optimisation de l'aire totale des interfaces entre les cellules.

Par la suite, on s'intéresse plus particulièrement aux modélisations des mousse proposées dans la littérature. C'est pourquoi dans le chapitre 3, on présente les modélisations macroscopiques programmées dans le code de calcul par éléments finis qu'on utilise et on regarde de plus près certaines modélisations micromécaniques, telles que celles à partir de réseaux cubiques, de dodécaèdres, de tétrakaidécaédres, ou encore celles avec des structures aléatoires.

Comme on se base sur la théorie de l'homogénéisation pour faire le passage micro - macro, le chapitre 4 introduit des notions sur l'homogénéisation des structures périodiques ou
aléatoires. Est introduit aussi le cas de l’homogénéisation non convexe et l’analyse de flambement. Ce chapitre expose aussi la détermination de surfaces de charge dites micro et macro. On termine le chapitre et la partie des études bibliographiques en définissant une nouvelle surface de charge, qu’on appelle surface de charge mixte. C’est une surface de charge qui dans le cas général se situe entre la charge micro et la charge macro, la charge macro étant une borne supérieure à la surface de charge micro.

La deuxième partie est dédiée à la modélisation de la compression et de la déformation uniaxiales des mousses.

Dans le chapitre 5, on présente la géométrie du problème et les différentes cellules périodiques d’étude qu’on a adoptées. On donne les coefficients élastiques homogénéisés des mousses obtenues par Pradel [Pradel, 1998]. Et on détaille les choix du type d’éléments et de la section des arêtes dans la discrétisation du problème.

Après avoir mis en évidence l’influence du flambement dans le comportement des mousses, on s’intéresse à établir une surface de charge marquant la limite de passage de la phase élastique linéaire à la phase plateau. C’est l’objet de la troisième partie.

Dans le chapitre 8, on définit les chargements multiaxiaux imposés pour parcourir une surface de charge dans l’espace des contraintes. Les surfaces de charge étudiées sont la micro et la mixte. On expose pour chacun des deux cas la procédure numérique sur laquelle l’étude est basée.

Les résultats et les interprétations des surfaces de charge étudiées sont donnés dans le chapitre 9. En outre, une étude paramétrique sur la densité relative et une comparaison entre les types de poutre choisis sont réalisées. Ce qui permet de vérifier l’adimensionnement utilisé dans la présentation des résultats en contrainte.

Enfin, le chapitre 10 est dédié à une étude expérimentale qui clôture cette partie et toute la thèse. Cette étude est faite sur une mousse de caril. Elle a pour but de valider la surface de charge obtenue numériquement.
Première partie

Études bibliographiques
Introduction

Dans ce qui suit, on présente l’état de l’art sur les matériaux alvéolaires et les différentes études menées sur leurs caractéristiques mécaniques et leurs lois de comportement (chapitres 1 et 3). Les articles présentés sont les plus cités dans la littérature. La liste est non exhaustive, mais a pour but de montrer les phénomènes les plus importants tant observés que modélisés. Dans le chapitre 2, on sort du contexte de la bibliographie sur les mousse, pour voir des études purement géométriques. Le chapitre 4 a pour but d’introduire les notions de base sur lesquelles notre étude s’appuie, à savoir l’homogénéisation et l’étude du flambement. De plus, on y définit une nouvelle surface de charge.
Chapitre 1

Les matériaux alvéolaires

1.1 Structure et propriétés

1.1.1 Structure des matériaux alvéolaires

Les matériaux alvéolaires sont des matériaux qui forment un réseau inter-connecté de poutres et de plaques solides qui représentent respectivement les arêtes et les faces des cellules. Les caractéristiques structurales d’un matériau cellulaire sont la topologie de ces cellules, leur taille et leur forme.

1. Topologie
 Il existe deux distinctions topologiques à faire :

 La classe géométrique : Les matériaux cellulaires peuvent être classés en deux groupes. Le premier, nommé "nids d’abeilles", concerne les matériaux cellulaires à microstructure bidimensionnelle. Dans ce cas, les cellules admettent un générateur commun dans le plan (Fig. 1.1- a). Le deuxième, nommé "mousses", concerne les matériaux cellulaires à microstructure tridimensionnelle. Dans ce cas, les cellules ont des orientations aléatoires dans l’espace (Fig. 1.1- b).

 ![Images of cellular structures](image)

 Fig. 1.1 - Exemples de solides cellulaires : (a) nid d’abeilles bidimensionnel [Gibson et Ashby, 1988]; (b) mousse de polychlorure de vinyle et polyuréthane [Papon et Leblond, 1990]

 La connectivité du squelette et de l’espace poreux : Dans le cas d’une microstructure tridimensionnelle, il faut distinguer les mousses à porosité ouverte et
les mousse à porosité fermée. La microstructure de trois mousse polymériques est montrée dans la Fig. 1.2. Les deux premières montrent la distinction entre la porosité ouverte où il n’y a que les arêtes des cellules qui sont constituées du polymère solide, et la porosité fermée où les faces des cellules sont également solides. Bien entendu, il existe aussi des mousse à porosité partiellement ouverte et partiellement fermée, c’est le cas de la troisième figure.

Fig. 1.2 – Trois types de matériaux cellulaires tridimensionnels [Gibson et Ashby, 1988] : (a) polyuréthane à porosité ouverte; (b) polyéthylène à porosité fermée; (c) polyéther à cellules ouvertes et fermées

2. Taille des cellules
La taille des cellules est variable d’un solide cellulaire à un autre et également au sein du même solide. La distribution de la taille des cellules peut être très étroite comme pour les nids d’abeilles, ou encore tellement large que les plus grandes cellules sont cent fois plus importante que les plus petites, comme c’est le cas dans la Fig. 1.3. Cette dispersion n’implique pas l’anisotropie.

Fig. 1.3 – (a) Schéma d’une mousse à très large distribution de la taille des cellules [Weaire et Rivier, 1984]; (b) Micrographe d’une mousse en polymère montrant une structure qui ressemble au schéma (a) de cette figure [Gibson et Ashby, 1988]

3. Formes des cellules
La forme des cellules a une plus grande influence sur le comportement que leur taille. Lorsque la forme des cellules n’a pas de direction privilégiée, les propriétés sont isotropes. En revanche, si les cellules sont allongées ou aplatis, une anisotropie est induite au niveau macroscopique. C’est pourquoi, la géométrie des cellules des mousse a fait
1.1. STRUCTURE ET PROPRIÉTÉS

l’objet de plusieurs études. Plateau a identifié la forme des cellules comme un dodécaèdre rhombique (polyèdre à 12 faces) [Plateau, 1873], Lord Kelvin l’a remplacé par un tétraëdrique (polyèdre à 14 faces) [Thomson, 1887], Gibson et Ashby, pour simplifier, les ont modélisées par des cubes [Gibson et Ashby, 1988]. Différentes géométries de cellules permettant de paver l’espace sont développées dans le chapitre suivant.

1.1.2 Propriétés des mousse

1. Densité relative des mousse

Les mousse sont essentiellement caractérisées par leur densité relative. Elle représente leur fraction volumique de matière :

\[d_r = \frac{\rho_m}{\rho_s} \]

(1.1)

où

\[\{ \begin{align*}
\rho_m & \text{ est la masse volumique de la mousse ;} \\
\rho_s & \text{ est la masse volumique du solide qui la compose.}
\end{align*} \]

En général, pour les matériaux cellulaires \(d_r < 0.3 \). Certains ont une densité relative aussi faible que 0.003, et elle peut aller jusqu’à 0.001 : c’est une densité spéciale ultra basse. Les mousse utilisées pour l’isolation, l’emballage et l’amortissement ont une densité relative entre 0.05 et 0.2. Au dessus d’environ 0.3, on a une transition d’une structure cellulaire à un solide contenant des pores isolés.

Par idéalisations géométriques de la forme des cellules dans les études micromécaniques (objet du chapitre 3), on peut relier la densité relative aux dimensions des arêtes et des faces des cellules. Une manière simple consiste à considérer :

- \(d_r = c_1 \xi^2 \) pour une mousse à porosité ouverte,
- \(d_r = c_2 \xi \) pour une mousse à porosité fermée,

où \(c_i \) est un paramètre proche de 1 qui dépend de la forme des cellules et \(\xi = t/l \) est le rapport de l’épaisseur \(t \) d’une arête d’une cellule sur sa longueur \(l \) (\(t << l \) pour une densité relative faible).

La fraction d’espace poreux dans la mousse est la porosité. Elle est donnée par :

\[\phi = 1 - d_r \]

(1.2)

La distinction entre porosité ouverte et porosité fermée est claire sur un microgroupe (Fig. 1.2). On peut également la déterminer à partir d’une mesure de perméabilité de la mousse.

2. Plage des propriétés des mousse

Parmi les propriétés d’une mousse, on distingue sa densité, son module de Young, sa résistance à la compression et sa conductivité thermique (voir Fig. 1.4). La grande plage de propriétés couverte par les mousse permet des applications qui ne peuvent pas être remplis facilement par les solides denses qui les composent :

- les faibles densités permettent de fabriquer des structures légères à composantes rigides ;
la faible conductivité thermique permet une isolation thermique fiable et économique;
la faible rigidité rend les mousses attractives pour les applications d’absorption d’énergie.

Fig. 1.4 - Plage de propriétés des mousses et des solides qui la composent [Gibson et Ashby, 1988] : (a) Densité ; (b) Module de Young ; (c) Résistance à la compression ; (d) Conductivité thermique

3. Absorption d’énergie
L’énergie par unité de volume nécessaire pour déformer un matériau jusqu’à une valeur \(\varepsilon \) est l’aire comprise sous la courbe contrainte-déformation jusqu’à cette valeur \(\varepsilon \). La Fig. 1.5 est un schéma où sont représentées les réponses en compression d’un solide élastique dense et d’une mousse fabriquée à partir de ce solide. Les énergies absorbées par unité de volume sont les aires hachurées.
On voit que pour une même contrainte, une mousse absorbe une quantité d'énergie beaucoup plus importante que celle absorbée par le solide qui la compose. Ce qui implique que, pour la même quantité d'énergie absorbée, la mousse produit un moindre pic de contrainte.

Comme la Fig. 1.5 le montre, c'est le long plateau de la courbe contrainte-déformation qui permet une grande absorption d'énergie à contrainte Σ_p presque constante. En moyenne, ce plateau peut aller jusqu'à une déformation ϵ de 70%.

Selon le type de matériau solide qui constitue la mousse, ce plateau est dû à l'effondrement des cellules par flambement élastique, fléchissement plastique ou écrasement fragile. Il peut y avoir également d'autres mécanismes qui interviennent dans l'absorption d'énergie tel que la compression ou la diffusion du fluide dans les cellules [Laroussi, 1998]. Cette particularité du comportement, i.e. la présence d'un plateau dans la courbe contrainte-déformation, est développée plus loin.

4. Procédés de fabrication des mousse
Il existe des mousse en métal, en céramique, en verre et même en composites. Dans le cadre de cette étude, on s'intéresse plus particulièrement aux mousse de polymères. Celles-ci sont obtenues en introduisant des bulles de gaz dans un liquide monomère ou un polymère chauffé, en permettant aux bulles de croître et de se stabiliser, puis en
solidifiant le tout par refroidissement. L'introduction de gaz se fait soit par agitation mécanique soit par addition d'un agent de soufflage dans le polymère.
Chaque procédé peut produire des mousse à porosité ouverte ou fermée : la structure finale dépend de la rhéologie et de la tension de surface des fluides à la fusion. Les mousse à porosité fermée subissent parfois un autre procédé appelé la réticulation dans lequel les faces des cellules sont rompues pour donner des mousse à porosité ouverte.
Les mousse de polymères peuvent également être produites par des méthodes plus subtiles. Par exemple, pour produire des mousse à très faible densité, on précipite le polymère en gel dans un fluide, puis on évapore ce dernier.

5. Application des matériaux cellulaires
Les quatre diagrammes de la Fig. 1.4 révèlent quatre domaines majeurs d'application des matériaux cellulaires :
- l'isolation thermique ;
- l'emballage ;
- la construction ;
- la flottabilité.
La Fig. 1.4 montre que la résistance de la mousse peut être ajustée sur un large intervalle en contrôlant sa densité relative. En plus, les mousse peuvent subir de fortes déformations en compression (plus de 70%) à contrainte presque constante, ce qui fait que de fortes quantités d'énergie peuvent être absorbées sans générer de fortes contraintes. On peut également noter que les mousse offrent un bon nombre d'avantages supplémentaires. En effet, la faible densité des mousse permet de réaliser des structures légères. Le faible coût par unité de volume et la facilité de moulage font que les mousse sont économiques. Les mousse les plus utilisées pour cela sont le polystyrène, le polyuréthane et le polyéthylène.

De nos jours, les panneaux en sandwich dans les avions modernes utilisent des peau de composites en verre ou en fibre de carbone séparées par des nids d'abeilles d'aluminium, de résine ou encore par des mousse en polymères rigides. La même technologie est étendue à d'autres applications où le poids joue un rôle critique, tels que les véhicules de l'espace, les yachts, les skis, etc.
Vu l'intérêt actuel pour la sécurité dans les transports, nous étudions les mousse utilisées pour l'absorption de choc et par conséquent nous nous intéressons plus particulièrement à leur comportement en grandes transformations et aux mécanismes qui y interviennent.

1.2 Particularité du comportement

Les mousse se déforment considérablement à faible niveau d'effort. Leur réponse force-déplacement (ou contrainte-déformation) en compression uniaxiale est caractérisée par trois régimes (voir le schéma de la Fig. 1.5 et la courbe expérimentale de la Fig. 1.6). D'abord, le matériau admet une raideur relativement élevée qui donne lieu à une montée initiale relativement raide jusqu'à une charge critique. C'est généralement une phase élastique linéaire.
1.2. PARTICULARITÉ DU COMPORTEMENT

Ensuite, le matériau admet une rigidité relativement faible et une phase dite de plateau en contrainte est observée. Enfin, la réponse devient rigide donnant lieu à une montée raide de nouveau. C’est la phase de densification du matériau.

Fig. 1.6 – Compression uniaxiale d’une mousse de polypropylène réalisée par A. Alaoui

Il est à noter que lors d’une décharge pendant la phase plateau, certaines mousse en polymère recouvrent leur état initial sans avoir subi de dommages significatifs. Ce qui s’explique par un micro-flambement réversible des parois des alvéoles.

D’une manière générale, les propriétés d’une mousse dépendent de sa structure et des propriétés du matériau solide dont elle est constituée. Les paramètres structuraux pertinents sont sa densité relative \(d_r \), le degré auquel les cellules sont ouvertes ou fermées, et les ratios d’anisotropie de forme. Les propriétés du solide les plus importantes sont sa densité \(\rho_s \), son module de Young \(E_s \), sa limite d’elasticité \(\sigma_e \) et sa contrainte limite à la rupture \(\sigma_r \). Des facteurs tels que le taux de déformation, la température, l’anisotropie et les chargements multiaxiaux ont également une influence sur les propriétés de la mousse.

Une représentation schématique des courbes contrainte-déformation de trois types de mousse en compression uniaxiale permet de mieux comprendre les différents types de comportement (Fig. 1.7).

La première phase des courbes, correspondant aux faibles niveaux d’effort, est celle de l’élas-
Fig. 1.7 - Courbes contrainte-déformation schématiques de mousse en compression uniaxiale: (a) mousse élastomérique; (b) mousse élasto-plastique; (c) mousse élastique fragile.

ticité linéaire. Cette phase est due au fléchissement des arêtes des cellules et, dans le cas de cellules fermées, à la tension des parois des cellules. Le module de Young E_m correspond à la pente initiale de ces courbes. La deuxième phase est celle du plateau. Elle correspond à l'effondrement des cellules par flambement élastique pour les mousse élastomériques (les mousse de caoutchouc par exemple); par formation de rotules plastiques pour les mousse élasto-plastiques (telles que les mousse métalliques); et par écrasement fragile pour les mousse élastiques fragiles (telles que les mousse céramiques). Enfin, lorsque les cellules se sont presque complètement écrasées en se mettant en contact les unes sur les autres et que l'on continue à écraser la mousse, la dernière phase, où la contrainte augmente rapidement, est observée. C'est la phase de densification du matériau où le comportement peut être assimilé à celui du solide constituant la mousse.

L'effet de l'accroissement de la densité relative de la mousse se traduit par l'augmentation du module de Young et du niveau du plateau, et par la diminution de la valeur de la déformation à laquelle la phase de densification commence. Ces phénomènes ont été étudiés et ont été calibrés avec les données expérimentales pour donner les équations citées dans le chapitre 3.
Chapitre 2

Géométrie et pavage de l'espace

La microstructure tridimensionnelle d'une mousse est constituée de cellules qui peuvent être assimilées à des polyèdres. Ces polyèdres doivent être capable de s'assembler entre eux pour paver l'espace. Dans ce chapitre, on présente la terminologie des motifs géométriques susceptibles de paver l'espace. Parmi celles-ci figure les polyèdres adoptés pour modéliser les mousse : le cube, le tétraèdre, le dodécaèdre et le tétrakaidécaèdre.

2.1 Les polyèdres

Les polyèdres sont des motifs géométriques tridimensionnels formés par l'assemblage de polygones dans l'espace. Les surfaces polygonales qui les délimitent sont appelées faces. Les côtés des faces sont appelés arêtes. Un polyèdre est dit semi-régulier lorsqu'il est formé de polygones réguliers, i.e. des polygones qui admettent des angles égaux et des longueurs d'arêtes égales. Un polyèdre est dit régulier lorsqu'en plus d'être semi-régulier, ses faces sont les mêmes et de tout sommet est issu le même nombre d'arêtes. À titre d'exemple, le cube est un polyèdre régulier alors que le tétrakaidécaèdre (ou octaèdre tronqué, schématisé plus loin) est un polyèdre semi-régulier.

Étudiés depuis l'antiquité, les polyèdres ont trouvé des applications dans des domaines très variés tels que la chimie (les molécules), la biologie (les séquences de protéines et les virus), la minéralogie (la cristallographie), la zoologie (les yeux d'insectes, les nids d'abeilles), la botanique (les particules de pollen) et la physique (les quasi-cristaux et les mousse aqueuses ou solides).

On distingue deux groupes de polyèdres : les solides platoniciens et les solides archimédiens.

1. Les solides platoniciens

Ce sont des polyèdres réguliers et convexes. Après avoir été étudiés par Théétète et Platon, ils constituent l'aboutissement des "Éléments" d'Euclide [Euclide, 3e siècle av. JC]. Un résultat étonnant, mais démontré, est qu'il n'en existe que cinq : le cube, le tétraèdre, l'octaèdre, l'icosahèdre et le dodécaèdre (voir Fig. 2.1).

On note que le mot dodécaèdre est ambigu. Parfois il désigne le dodécaèdre régulier. Mais certains l'emploient pour désigner l'ensemble des polyèdres à 12 faces.
Le tableau ci-après (Tab. 2.1) résume les différentes caractéristiques de chacun des polyèdres de Platon. Le symbole de Schläfli d’un polyèdre régulier convexe désigne le couple \(\{P, Q\} \) où \(P \) est le nombre d’arêtes de chaque face polygonale et \(Q \) est le nombre d’arêtes issues de chaque sommet. Ce nombre \(Q \) correspond également au nombre de faces par sommet.

<table>
<thead>
<tr>
<th>Solide platonien</th>
<th>Type des faces</th>
<th>Nombre de faces</th>
<th>Nombre d’arêtes</th>
<th>Nombre de sommets</th>
<th>Symbole de Schläfli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cube</td>
<td>Carrés</td>
<td>6</td>
<td>12</td>
<td>8</td>
<td>({4,3})</td>
</tr>
<tr>
<td>Tétraèdre</td>
<td>Triangles</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>({3,3})</td>
</tr>
<tr>
<td>Octaèdre</td>
<td>Triangles</td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>({3,4})</td>
</tr>
<tr>
<td>Icosaèdre</td>
<td>Triangles</td>
<td>20</td>
<td>30</td>
<td>12</td>
<td>({3,5})</td>
</tr>
<tr>
<td>Dodécaèdre</td>
<td>Pentagones</td>
<td>12</td>
<td>30</td>
<td>20</td>
<td>({5,3})</td>
</tr>
</tbody>
</table>

Sur ces exemples, on observe une relation entre les nombres \(F \) de faces, \(A \) d’arêtes et \(S \) de sommets. C’est la relation d’Euler :

\[F - A + S = 2 \]

(2.1)

2. Les polyèdres archimédiens

Une généralisation possible des polyèdres réguliers conduit aux polyèdres semi-réguliers ou archimédiens, du nom d’Archimède.

En dehors des prisms et antiprismes, on obtient 18 polyèdres dont les 5 réguliers. Peu connus, il existe des polyèdres semi-réguliers orientés gauches ou droits. On les appelle les “\(\text{snub} \)” polyèdres. Le mot “\(\text{snub} \)” réfère au processus d’entourer chaque polygone avec des triangles. Il s’agit du “\(\text{snub} \)” cube (dit aussi “\(\text{snub} \)” cuboctaèdre) et du “\(\text{snub} \)” dodécaèdre (dit aussi “\(\text{snub} \)” icosidodécaèdre).

Il reste donc 11 polyèdres semi-réguliers dont les polygones générateurs sont les polygones “classiques”, c’est-à-dire le carré, le triangle et/ou le pentagone. Ces 11 polyèdres
sont le tétraèdre tronqué, le cuboctaèdre, l'octaèdre tronqué (dit aussi tétrakaidécaèdre), le cube tronqué, le petit rhombicuboctaèdre, le grand rhombicuboctaèdre (dit aussi cuboctaèdre tronqué), l'icosidodécaèdre, l'icosaèdre tronqué, le dodécaèdre tronqué, le petit rhombicosidodécaèdre, et le grand rhombicosidodécaèdre (dit aussi icosidodécaèdre tronqué). Le mot "tronqué" réfère au processus de couper les coins. Ces noms sont adaptés à partir de la terminologie latine de Képler [Képler, 1619]. La caractéristique des solides d’Archimède est que chaque face est un polygone régulier, et qu’autour de chaque sommet les mêmes polygones apparaissent avec la même séquence. Contrairement aux solides de Platon qui ne contiennent chacun qu’un seul type de polygone, les solides d’Archimède admettent chacun deux ou plusieurs polygones réguliers différents. Un exemple de ce type de polyèdres est le ballon de football.

2.2 Pavage de l’espace

Une autre manière de classer les polyèdres, est de s’intéresser aux différentes façons de paver l’espace.

Les trois pavages réguliers du plan de Képler

Connectivité 6
Connectivité 4
Connectivité 3

Pas de pavage périodique du plan avec des pentagones

Fig. 2.2 – Pavages réguliers du plan de Képler [Képler, 1619]

A deux dimensions, avec des polygones réguliers, il n’y a que 11 solutions possibles. Parmi elles, 3 correspondent à des pavages avec un type unique de polygone : ce sont les pavages réguliers du plan de Képler (Fig. 2.2).

En 1887, Lord Kelvin (nom d’origine Williams Thomson) [Thomson, 1887] chercha comment paver l’espace avec des cellules de volume unité telles que l’aire totale des interfaces entre les cellules soit minimale. La meilleure partition de Kelvin est atteinte avec des polyèdres à arêtes légèrement courbées. Ces polyèdres à 14 faces, 34 arêtes et 24 nœuds sont les tétrakaidécaèdres (voir Fig. 2.3).

Le tétrakaidécaèdre est appelé aussi mécon, ou encore octaèdre tronqué. L'appellation d'octaèdre tronqué vient du fait qu'il peut être obtenu en coupant les sommets d’un octaèdre. Ce qui produit 6 carrés à la place des six sommets, et 8 hexagones à la place des faces triangulaires de l'octaèdre. De plus, lorsque l'octaèdre est tronqué au 1/3 de la longueur de chaque arête, toutes les arêtes du tétrakaidécaèdre ainsi construit sont égales.

Durant tout un siècle personne n’a pu améliorer la partition de Kelvin. Par la suite, en 1994, Denis Weaire et Robert Phelan [Weaire et Phelan, 1994] ont réalisé une partition de l'espace avec 2 types de cellules d'égal volume et qui bat la partition de Kelvin avec 0.3% en surface. La Fig. 2.4 est une vue de la partition de Weaire-Phelan. Une région fondamentale avec 8 cellules de couleurs différentes est montrée. Deux cellules (vert et bleu) sont des dodécaèdres et les autres 6 cellules sont des cellules à 14 arêtes avec 2 faces hexagonales opposées et 12 faces pentagonales. Les cellules à 14 arêtes se positionnent sur 3 colonnes orthogonales et les dodécaèdres se positionnent dans les interstices entre les colonnes.

Il n'y a pas de preuve que la partition de Weaire-Phelan soit optimale ou que la partition de Kelvin soit optimale pour les cellules de même forme. En revanche, le mathématicien russe Fedorov a pu démontrer qu'il n'existait pas plus de 5 polyèdres réguliers ou semi-réguliers
susceptibles de paver l'espace (Fig. 2.5) : le cube, le prisme hexagonal, l'octaèdre tronqué, le dodécaèdre allongé et le dodécaèdre rhombique.

![Diagrams of geometric shapes](image)

Fig. 2.5 – Les cinq polyèdres réguliers ou semi-réguliers possibles pour paver l'espace

On note que le seul polyèdre régulier capable à lui tout seul de paver l'espace est le cube. Mais on peut également paver l'espace avec des polyèdres différents. Par exemple, avec des tétraèdres et des octaèdres combinés. On a alors deux fois plus de tétraèdres que d'octaèdres. En cristallographie cela donne lieu au réseau cubique à faces centrées ou fcc (face-centered cubic).

Dans la littérature sur la modélisation micromécanique des mousse, parmi les cinq polyèdres réguliers ou semi-réguliers permettant de paver l'espace, seulement trois ont été utilisés. Deux sont réguliers : le cube (le seul polyèdre régulier permettant un pavage compact de l'espace) et le dodécaèdre, et deux sont semi-réguliers : le dodécaèdre rhombique et le tétraenkaidécaèdre. D'autres microstructures sont également adoptées. Ces différentes études sont développées dans le chapitre suivant.
Chapitre 3

Modélisations des mousses

Dans le cas des matériaux hétérogènes (i.e. à plusieurs constituants), on peut distinguer deux échelles dans la modélisation de leur comportement. Une échelle, dite microscopique, de l'ordre de grandeur des constituants et une échelle, dite macroscopique, de l'ordre de grandeur du matériau. En ce qui concerne les mousses, à l'échelle micro on voit des arêtes dans le cas des mousses à porosité ouverte et des arêtes liées entre elles par des faces dans le cas des mousses à porosité fermée. Celles-ci peuvent donc être décrites par un assemblage de poutres ou de plaques. En revanche, à l'échelle macro, les mousses sont décrites par des milieux continues.

Comme on souhaite mener une étude numérique sur ce type de matériau, on commence par voir si le code de calcul par éléments finis utilisé traite ce genre de problème, et si oui comment. Puis, on procède à une bibliographie sur les différentes études micromécaniques menées sur les mousses.

3.1 Modélisations macromécaniques

On utilise le code de calcul par éléments finis ABAQUUS [ABAQUUS, 1998-2001]. Ce code traite deux types de modèle pour les mousses. Le premier est appelé “CRUSHABLE FOAM”. Il permet de modéliser les mousses qui subissent des déformations anélastiques. Ce modèle est défini par une surface de charge (délimitant le domaine élastique du domaine plastique), une loi d’écoulement et une loi d’écrouissage. Il y a 5 paramètres à déterminer : la limite élastique en traction, la limite élastique initiale en compression, l’indice des vides initial, le module logarithmique d’écrouissage et le module logarithmique d’incompressibilité. Dans la Figg. 3.1, on montre une courbe expérimentale de compression d’une mousse de polypropylène et des courbes numériques réalisées par le module “CRUSHABLE FOAM” suivant différents jeux de paramètres (cas A, B, C et D). Ce travail a été réalisé par A. Alaoui et S. Gervillers dans le cas quasi-statique, mais aussi dans le cas dynamique [Alaoui et Gervillers, proposé].

Sont exclues donc les mousses élastomériques qui sont purement élastiques. On rappelle que pour ces mousses, le solide qui les constitue peut se déformer élastiquement jusqu’à 500% ou plus en tension et 80% ou plus en compression. Le deuxième modèle d’ABAQUUS, appelé “HYPERFOAM”, est destiné aux mousses élastiques. Comme notre travail se limite au cadre
Fig. 3.1 – Compressions quasi-statiques expérimentale et numériques d’une mousse de polypropylène [A. Alaoui et S. Gervillers]

de l’élasticité en transformation finie, on développe la formulation mathématique utilisée dans ce module. En fait, ce modèle utilise une fonction énergie similaire à celle utilisée dans le modèle d’Ogden (1972), à la différence qu’elle est adaptée au cas d’un matériau compressible :

$$\Psi = \sum_{i=1}^{N} \frac{2\mu_i}{K_i} \left[\hat{\lambda}_1^{\kappa_i} + \hat{\lambda}_2^{\kappa_i} + \hat{\lambda}_3^{\kappa_i} - 3 + \frac{1}{\beta_i} \left(J_{el}^{-\kappa_i \beta_i} - 1 \right) \right], \quad (3.1)$$

où
- μ_i, κ_i et β_i sont des constantes positives de calibration ;
- λ_i sont les allongements principaux (valeurs propres de U et de V : tenseurs de la décomposition polaire de \mathbf{F} ($\mathbf{F} = \mathbf{R} \cdot \mathbf{U} = \mathbf{V} \cdot \mathbf{R}$ avec $\mathbf{R}^t \cdot \mathbf{R} = \mathbf{I}$)) ;
- J est le Jacobien de la transformation ($J = \det \mathbf{F}$) et aussi le rapport du volume élémentaire dans la configuration actuelle sur le volume élémentaire dans la configuration de référence ($J = dV/dV_0$) avec $J > 0$: condition d’impénétrabilité de la matière ;
- J_{el} est le rapport de volume lors d’une déformation élastique ;
- J_{th} est le rapport de volume lors d’une dilatation thermique ;
- $\hat{\lambda}_i = J_{th}^{-1/3} \lambda_i$

et avec
- $\sum_{i=1}^{N} \mu_i = \mu_0$ le coefficient de Lamé initial ;
3.2. MODÉLISATIONS MICROMÉCANIQUES

- \[\sum_{i=1}^{N} 2 \mu_i (\beta_i + 1/3) = k_0 \] le module de cisaillement initial;
- \[J_{cl} = J/J_{th} = \hat{\lambda}_1 \hat{\lambda}_2 \hat{\lambda}_3 ; \]
- \[J_{th} = (1 + \epsilon_{th})^3 \] où \(\epsilon_{th} \) est l’expansion thermique linéaire qui à son tour est calculée à partir de la température et du coefficient d’expansion thermique définis dans l’option EXPANSION du matériau.

En fait, pour chaque terme de la fonction énergie, le coefficient \(\beta_i \) détermine le degré de compressibilité. Il est relié au coefficient de Poisson \(\nu_i \) par l’expression : \(\beta_i = \nu_i/(1 - 2\nu_i) \).

En prenant \(\beta_i = 0 \) (i.e. \(\nu_i = 0 \)), il n’y a pas d’effet Poisson, et avec l’expansion en série de Taylor, on obtient :

\[
\Psi = \sum_{i=1}^{N} \frac{2\mu_i}{\kappa_i^2} \left(\hat{\lambda}_1^{\kappa_i} + \hat{\lambda}_2^{\kappa_i} + \hat{\lambda}_3^{\kappa_i} - 3 - \kappa_i \ln J_{cl} \right). \tag{3.2}
\]

Les coefficients de la fonction énergie de déformation sont par la suite calibrés à partir d’expériences telles que le test uniaxial, le test équilibaxial, le test plan, le test de cisaillement simple et le test volumétrique.

Cette procédure permet donc de retrouver le comportement des mousse élastomériques, mais comme elle ne se base pas sur la notion de surface de charge, elle ne permet pas de retrouver le passage relativement “brutal” entre la phase élastique et la phase de plateau.

La démarche qu’on souhaite adopter consiste à retrouver le comportement global à partir des caractéristiques micro (caractéristiques du solide qui constitue la mousse, caractéristiques de forme, etc.). Pour ce faire, on expose dans la suite une bibliographie sur les modélisation micromécániques des mousse.

3.2 Modélisations micromécaniques

3.2.1 Les réseaux cubiques

Gent et ses collaborateurs ([Gent et Thomas, 1959c] à [Gent et Rusch, 1966b]) furent les premiers historiquement à construire un modèle poutre. Ils ont considéré un réseau cubique périodique comme le montre la FIG. 3.2.
A ce réseau, ils appliquent un chargement uniaxial et ils procèdent à des calculs de type résistance des matériaux. Ils obtiennent un module de Young suivant la direction de chargement proportionnel à la densité relative d_r de la mousse. Cependant, cette approche n’a été validée expérimentalement que pour peu de mousse.

Par la suite, Gibson et ses collaborateurs ont repris ces travaux en considérant d’autres géométries des cellules, aussi bien en deux dimensions [Gibson et al., 1982] qu’en trois dimensions [Gibson et Ashby, 1982]. La géométrie présentée dans la Fig. 3.3 correspond à un réseau de cubes dont chaque arête est une poutre de section carrée.

Cette nouvelle description de la cellule introduit la flexion comme nouveau phénomène important dans la déformation des cellules. Le module de Young E_m, le module de cisaillement G_m et le coefficient de Poisson ν_m de la mousse peuvent alors être calculés pour un comportement élastique et en chargement uniaxial. Suivant le type de porosité, ouverte ou fermée, ils obtiennent :

- Cellules ouvertes

$$\begin{align*}
E_m &= C_1 \, E_s \, d_r^2 \\
G_m &= C_2 \, E_s \, d_r^2 \\
\nu_m &= \frac{C_1}{2C_2} - 1
\end{align*}$$

où E_s est le module de Young du solide et C_1 et C_2 sont des paramètres qui dépendent
3.2. MODÉLISATIONS MICROMÉCANIQUES

de la géométrie des cellules. Par calage avec des données expérimentales de différentes
densités relatives, ils obtiennent \(C_1 \approx 1 \) et \(C_2 \approx \frac{3}{8} \).

- Cellules fermées

En tenant compte des contraintes membranaires et de la pression du gaz, après calage
avec des données expérimentales, ils obtiennent :

\[
\begin{align*}
E_m & \simeq \varphi^2 E_s d_r^2 + (1 - \varphi) E_s d_r + \frac{p_0(1 - 2\nu_m)}{1 - d_r} \\
G_m & \simeq \frac{3}{8} E_s \{ \varphi^2 d_r^2 + (1 - \varphi) d_r \} \\
\nu_m & \simeq \frac{1}{3}
\end{align*}
\]

(3.4)
où \(p_0 \) est la pression du gaz initiale dans les cellules et \(\varphi \) est la fraction volumique de
solide contenu dans les arêtes des cellules. Elle peut être calculée à partir de :

\[
\varphi = \frac{t_a^2}{t_a^2 + (Q/\overline{P})t_f l},
\]

(3.5)
où \(t_a \) est l’épaisseur des arêtes des cellules, \(t_f \) est l’épaisseur des faces des cellules, \(Q \)
est le nombre de faces par sommet (2ème symbole de Schlaffi) et \(\overline{P} \) est le nombre moyen
d’arêtes par face dans une cellule.

Il est à noter que, quel que soit le solide constituant la mousse, le coefficient de Poisson
admet une valeur quasi-constante dans la phase élastique : \(\nu_m \approx 1/3 \). Dans la phase de
plateau, ce coefficient chute pour s’amenuiser. Gibson et Ashby dépassent d’ailleurs la simple
phase élastique de la mousse (typiquement 5\% ou moins) pour introduire, selon le type de
mousse considéré, le flambement élastique, la plasticité et la rupture dans leur modèle.

Mousses élastoméristiques : Après la phase élastique linéaire, la déformation de cer-
taines mousses reste réversible (donc élastique) mais elle est non linéaire. Dans ce cas, les
courbes contrainte-déformation en compression admettent une phase plateau au niveau de
contrainte \(\Sigma_p^c \). C’est la contrainte élastique de plateau. Cet effondrement élastique dans les
mousses est dû à un flambement élastique des arêtes des cellules [Gent et Thomas, 1959b,
Patel et Finnie, 1970, Gibson et Ashby, 1982, ...].

La contrainte élastique de plateau et le comportement en postflambement dépendent de la
porosité ouverte ou fermée des mousse. Les mousse à porosité ouverte s’effondrent à charge
presque constante donnant lieu à un plateau presque horizontal. Dans les mousse à porosité
fermée, la compression du gaz contenu dans les cellules et les contraintes membranaires qui
apparaissent dans les faces des cellules, donnent une courbe contrainte-déformation dont le
plateau croît avec la déformation (écrouissage apparent).

Pour procéder à une analyse du flambement, les formules d’Euler sont appliquées aux poutres
de ces cellules. Pour des densités relatives faibles (inférieures à 0.3), elles donnent :

- Cellules ouvertes

\[
\Sigma_p^c = C_3 \ E_s \, d_r^2,
\]

ou encore, en incluant une correction sur la densité relative lorsque celle-ci n’est pas
suffisamment petite et qu’il y a une certaine densité de matière dans les sommets :

\[
\Sigma_p^d = C_4 \ E_s \, d_r^2 \ (1 + d_r^{1/2})^2,
\]

(3.7)
où $C_3 \simeq 0.05$ et $C_4 \simeq 0.03$ par calage avec des courbes expérimentales.

- Cellules fermées

On considère l'initiation de l'effondrement dans une mousse où le fluide est emprisonné. Lorsque la pression initiale p_0 du gaz est supérieure à la pression atmosphérique p_{atm}, la différence de pression $p_0 - p_{atm}$ met les faces et les arêtes des cellules en tension. Ils ne peuvent donc pas flamber jusqu'à ce que la contrainte imposée dépasse cette tension et la charge critique de flambement des arêtes des cellules. D'où :

$$\Sigma_p^{cl} \simeq 0.05 \ E_s \ d_r^2 + (p_0 - p_{atm}), \quad (3.8)$$

Ou encore, en incluant une correction sur la densité relative :

$$\Sigma_p^{cl} \simeq 0.03 \ E_s \ d_r^2 \ (1 + d_r^{1/2})^2 + (p_0 - p_{atm}), \quad (3.9)$$

Le comportement en postflambement est terminé par la densification du matériau. En effet, à de grands niveaux de déformation, les cellules s'écrasent les unes sur les autres et sont elles mêmes comprimées. Lorsque cela a lieu, la courbe contrainte-déformation présente une augmentation brute de la contrainte en tendant vers une pente de valeur E_s (module de Young du solide) à une déformation limite ϵ_p. Cette pente est tellement plus grande que E_m qu'elle a l'air d'être verticale. On pourrait s'attendre à ce que cette déformation limite soit simplement égale à la porosité ϕ parce que c'est la déformation à laquelle tout l'espace poreux disparaît. En réalité les cellules s'écrasent les une contre les autres à une plus petite déformation. Gibson et ses collaborateurs donnent, après un calage expérimental, l'expression suivante :

$$\epsilon_D \simeq 1 - 1.4 \ d_r. \quad (3.10)$$

La phase de densification a donc lieu à 93-72% de déformation pour des mousses de densité relative variant respectivement de 0.05 à 0.2.

Mousses élasto-plastiques : Il existe des mousses qui présentent de la ruine plastique lorsqu'elles sont chargées au-delà du régime élastique linéaire. Tel est le cas des mousses fabriquées à partir de polymères rigides ou de métaux par exemple. Cette ruine plastique, comme le flambement élastique, donne lieu à un long plateau horizontal dans les courbes contrainte-déformation, sauf que dans ce cas la déformation n'est plus réversible. Pour les mousses à cellules ouvertes, cette ruine a lieu lorsque le moment exercé dépasse le moment élastique limite [Gibson et Ashby, 1982]. Ce qui se traduit par des rotules plastiques aux jonctions des poutres. Dans le cas des cellules fermées, il faut rajouter comme précédemment la contribution due à l'extension des membranes et celle due à la compression du gaz. Ils obtiennent alors les seuils de plasticité Σ_p^{pl} suivants :

- Cellules ouvertes

$$\frac{\Sigma_p^{pl}}{\sigma_c} = C_4 \ d_r^{3/2}, \quad (3.11)$$

où σ_c est la limite d'élasticité du solide et où par calage aux expériences $C_4 \simeq 0.3$.
3.2. MODÉLISATIONS MICROMÉCANIQUES

- Cellules fermées

\[\frac{\Sigma_{pl}}{\sigma_e} \simeq 0.3 \left(\varphi d_r \right)^{3/2} + \left(1 - \varphi \right) d_r + \frac{p_0 - p_{atm}}{\sigma_e}. \] (3.12)

Mousses élastiques fragiles : Dans le cas d'un écrouissage fragile, suivant le même principe que la plasticité, Gibson et Ashby ont déterminé une contrainte de rupture \(\Sigma_{pf} \) pour laquelle les poutres cassent. Ainsi pour de céramique (ou de certains polymères) dont le solide admet un module de rupture \(\sigma_r \) et selon que les cellules soient ouvertes ou fermées, ils obtiennent :

- Cellules ouvertes

\[\frac{\Sigma_{pf}}{\sigma_r} \simeq 0.65 \ d_r^{3/2}, \] (3.13)

- Cellules fermées

\[\frac{\Sigma_{pf}}{\sigma_r} \simeq 0.65 \left(\varphi d_r \right)^{3/2} + \left(1 - \varphi \right) d_r. \] (3.14)

Par ailleurs, Gibson et Ashby ont étudié l’effet de la température et celui du taux de déformation. Ils trouvent que lorsque la température augmente de -100 à 200°C, le module de Young de la mousse diminue linéairement. Mais cette chute dépend de la densité relative de la mousse. Elle est plus accentuée lorsque la densité relative est plus élevée. Quant au taux de déformation, lorsqu’il augmente le niveau du plateau augmente.

En outre, ils ont introduit de l’anisotropie en remplaçant les cubes représentant les cellules par des parallélépipèdes de faces différentes. Plus précisément, ils ont considéré une cellule axisymétrique de longueur et de largeur égales (l) et de hauteur différente (h), avec un rapport d’anisotropie \(R = h/l \) de 1.5. Cette modélisation est intéressante pour étudier l’influence des cellules allongées dans le cas de chargements multiaxiaux. Cependant, elle a une forte orientation \((R = 1.5) \), et elle est 2D plus que 3D (longueur et largeur égales), alors que les mouches par leur structure géométrique sont généralement orthorhombiques.

3.2.2 Les tétraèdres

Une deuxième famille de description géométrique est celle des tétraèdres. La structure étudiée est un assemblage de quatre poutres faisant toutes deux à deux un angle de 109° (Fig. 3.4). Comme on l’a vu dans le chapitre précédent, ce type de pavage est théoriquement impossible. Les auteurs qui utilisent cette approche supposent pouvoir paver l’espace par des tétraèdres microscopiques réguliers sans introduire une erreur trop grande au niveau macroscopique.

niveau macroscopique pour obtenir la réponse globale en contrainte-déformation. Ils donnent ainsi le module de Young et le coefficient de Poisson pour une mousse tridimensionnelle supposée élastique isotrope. De même, différents comportements (flammement élastique, plasticité ou bien rupture fragile) ont été étudiés. Des critères de flambement, de plasticité ou en contrainte de rupture ont été obtenus, représentés graphiquement et comparés avec des résultats expérimentaux.

Cette description géométrique a été également utilisée par d'autres auteurs tels que Warren et Kraynik. Ces deux derniers ont fait une analyse de la mousse en phase élastique linéaire [Warren et Kraynik, 1988] et en phase élastique non-linéaire [Warren et Kraynik, 1991]. Leur procédure consiste à partir de la poutre pour décrire une mousse à cellules ouvertes en considérant les grandeurs cinématiques des points extrêmes des poutres approchées par des déplacements et des rotations affines. Puis ils supposent que les déplacements sont reliés linéairement aux efforts et moments associés. Dans le but d'obtenir le comportement reliant les contraintes aux déformations, ils simulent des essais de traction et de cisaillement sur le tétraèdre en supposant une répartition équiprobable au niveau macroscopique des orientations des microstructures tétraédriques. Les contraintes effectives au niveau du volume élémentaire représentatif sont alors obtenues en procédant à la moyenne sur toutes les orientations des contraintes liées aux tétraèdres. Ils obtiennent ainsi le module de Young et le coefficient de Poisson pour un comportement élastique linéaire au niveau macroscopique. L'introduction de la section droite \(A \) et de la longueur \(l \) des poutres, donne la densité relative suivante :

\[
d_r = \frac{A}{2\sqrt{3}l^2}.
\]

(3.15)

Et pour \(d_r \ll 1 \), ils obtiennent :

\[
\frac{E_m}{E_s} = \frac{33\sqrt{3}}{5} \frac{I_1}{A^2} d_r^2.
\]

(3.16)

où \(I_1 \) est le moment d'inertie de la poutre suivant son premier axe principal.

D'où pour trois sections droites différentes, on obtient:
3.2. MODÉLISATIONS MICROMÉCANIQUES

- Section circulaire

\[
\frac{I_1}{A^2} = \frac{1}{4\pi} \quad \text{alors} \quad \frac{E_m}{E_s} \simeq 0.91 \, d_r^2. \tag{3.17}
\]

- Section triangulaire

\[
\frac{I_1}{A^2} = \frac{1}{6\sqrt{3}} \quad \text{alors} \quad \frac{E_m}{E_s} \simeq 1.1 \, d_r^2. \tag{3.18}
\]

- Section de Plateau

\[
\frac{I_1}{A^2} = \frac{20\sqrt{3} - 11\pi}{6(2\sqrt{3} - \pi)^2} \quad \text{alors} \quad \frac{E_m}{E_s} \simeq 1.53 \, d_r^2. \tag{3.19}
\]

Il est à noter que la section de Plateau est une section de forme triangulaire dont les arêtes sont des arcs de cercle orientés vers l’extérieur du triangle (qui devient alors concave). On comprend facilement que c’est la section qui se rapproche le plus du cas réel, vu les procédés de fabrication des mousse.

3.2.3 Les dodécaèdres

En 1965, Ko [Ko, 1965] a étudié les mousse à porosité ouverte. En partant de pavages compacts périodiques de l’espace, l’auteur élabore une répartition des arêtes de la mousse suivant un pavage hexagonal, cube à faces centrées ou à volume centré. La répartition obtenue des centres des cellules microscopiques s’effectue suivant un dodécaèdre rhomboïdal ou bien un dodécaèdre rhomboïde pour les pavages les plus compacts. Les poutres considérées sont des poutres de type Euler-Bernoulli à section triangulaire. Afin de déterminer le module de Young et le coefficient de Poisson de ces matériaux considérés comme élastiques linéaires, l’auteur effectue un chargement uniaxial pour chacun des pavages retenus. À partir du chargement macroscopique, il calcule le chargement au niveau des poutres constitutives de la microstructure. Il obtient alors différents types de micro-chargements de poutres suivant le pavage considéré (trois types dans le cas du pavage hexagonal de l’espace, et deux dans le cas du pavage cube à faces centrées). Puis, il procède à des calculs de moyennes pour trouver les coefficients élastiques au niveau macroscopique dans chacun des cas.

Dans les travaux de Patel et Finnie [Patel et Finnie, 1970], trois composantes dans le comportement des mousse rigides sont prises en compte : la phase gazeuse, la phase solide et l’arrangement géométrique de ces deux phases qui pourrait par exemple influencer la rupture des parois des cellules.

Pour les mousse à porosité fermée, avant chargement, le gaz emprisonné est presqu’à la pression atmosphérique. Lors du chargement, en supposant le processus isotherme, la résistance due au changement de pression du gaz est de l’ordre du produit de la pression atmosphérique par la déformation macroscopique. Puis en augmentant le chargement, il y a des ruptures de parois de cellules qui entraînent la diminution de cette pression.

Pour les matériaux à porosité ouverte, la résistance due à l’écoulement du gaz est peu importante même à des vitesses de chargement relativement grandes. Cette observation conduit les auteurs à négliger la contribution de la phase gazeuse pour les mousse rigides.
Dans leur étude, les auteurs veulent déterminer l’influence de l’arrangement géométrique de la structure cellulaire des mousse sur le comportement global. Pour la définition d’une cellule élémentaire, ils construisent un modèle à partir d’un dodécaèdre pentagonal. Ce qui leur a permis de mettre en évidence, entre autre, deux aspects du comportement :

- L’influence sur la résistance des mousse de la direction des parois des cellules par rapport à la direction de chargement.
- La relation entre la résistance à la compression des mousse et leur densité.

Les résultats qu’ils obtiennent donnent une comparaison satisfaisante avec des résultats expérimentaux.

3.2.4 Les structures aléatoires

Outre les structures périodiques, certains auteurs se sont intéressés à l’étude des structures aléatoires aussi bien bidimensionnelles que tridimensionnelles. Certaines études sont assez récentes [Zhu et al., 2000, Roberts et Garboczi, 2001, Zhu et Windle, à paraître]. Christensen figure parmi les précurseurs [Christensen, 1986] : il s’est intéressé à l’étude du comportement des mousse à porosité aussi bien ouverte et que fermée. Il prend une poutre comme élément représentatif de la microstructure de la mousse. Il rajoute une membrane dans le cas des mousse à porosité fermée. Puis il définit deux repères, l’un propre lié à la poutre où le premier axe a la direction de l’axe neutre de la poutre et l’autre quelconque. En se plaçant dans le repère quelconque, il effectue une déformation uniaxiale suivant l’un des axes afin de déterminer le module de Young et le coefficient de Poisson de la mousse. En passant au repère propre, il détermine la contrainte grâce à une loi de comportement uniaxiale. Puis, pour passer au niveau macroscopique, il suppose une orientation aléatoire et équiprobable des “fibres” dans la mousse. Il passe toutes les grandeurs dans le repère quelconque fixé et somme suivant toutes les directions possibles du repère propre. Suivant la composante du tenseur de contrainte choisie, il obtient plusieurs relations liant le module de compression K et le module de cisaillement μ macroscopiques. Cela donne au final les coefficients élastiques suivants :

\[
\begin{align*}
\frac{E_m}{E_s} &= \frac{d_r}{6} \\
\nu &= \frac{1}{4}
\end{align*}
\]

(3.20)

Cette approche, comme on l’a déjà cité, a été étendue au cas englobant des parois de cellules. Au lieu d’avoir un seul axe privilégié dans le repère propre, deux deviennent nécessaires pour décrire une membrane. Ensuite, les calculs sont faits de la même façon pour aboutir aux coefficients élastiques de ce cas. De plus, Christensen rappelle l’approche possible pour les mousse à cellules fermées par les sphères de Hashin où chaque cellule est considérée comme une inclusion sphérique. Et en faisant tendre d_r vers 0, il obtient les mêmes coefficients élastiques que Hashin. Ce qui tend à prouver que les propriétés d’une mousse à porosité fermée à faible fraction volumique ne dépendent pas de la géométrie de la cellule mais seulement de la densité relative de la mousse.
3.2. MODÉLISATIONS MICROMÉCANIQUES

3.2.5 Les tétrakaïdéraèdres : la modélisation adoptée

Certains auteurs ont choisi de modéliser la microstructure des mousse par des tétrakaïdéraèdres formés par assemblage de poutres ou de plaques. Renz et Ehrenstein en font partie [Renz et Ehrenstein, 1982]. Ils ont développé une approche numérique pour calculer la déformation élastique par la méthode des éléments finis. Dans leur modélisation, ils considèrent deux types de mousse avec des cellules élémentaires identiques mais dont la différence réside dans les données de la distribution de matière et de module de Young entre les poutres et les plaques. Ces différences de données sont motivées par des observations microscopiques des textures des mousse à porosité fermée. En effet, pour les mousse en PVC (polychlorure de vinyl), le réseau des poutres et des joints est moins imposant que celui des parois. Ce qui privilégie un choix avec une plus forte distribution de la matière sur les plaques. Tandis que pour les mousse en polyuréthane, la distribution non homogène de la masse est concentrée sur les poutres et les joints (sommes des poutres). Les résultats numériques, en terme de modules élastiques des mousse, ont été comparés aux résultats expérimentaux. La différence maximale est de l'ordre de 50%.

Dans notre travail, on se limite au cas des mousse élastiques à porosité ouverte. Comme Renz et Ehrenstein, et comme les auteurs dont les travaux sont cités ci-après, on modélise la microstructure de ces mousse par la partition périodique de Kelvin (FIG 2.3) : les tétrakaïdéraèdres. La photo de mousse réelle dans la FIG 1.2 a du premier chapitre en est une bonne illustration.

On rappelle que le tétrakaïdéraèdre est l’un des 13 polyèdres semi-réguliers décrit par Archimède. Il admet 24 sommets, 36 arêtes et 14 faces. Les tétrakaïdéraèdres sont connus pour exister naturellement dans les cristaux, les mousse, etc. On rappelle également qu’ils ont la propriété de paver l’espace lorsque leurs diamètres sont égaux et qu’ils sont correctement orientés. De plus, ils sont la solution de la conjecture de Kepler, c’est-à-dire qu’ils représentent le moyen le plus efficace pour une partition de l’espace tridimensionnel.

Comme il s’agit du cas des cellules ouvertes, on décrit ces tétrakaïdéraèdres seulement par leurs arêtes. Après étude du rapport de leur section par leur longueur, on modélise ces arêtes par des poutres. On divise chaque poutre en éléments finis. La description de cette étude numérique est développée dans la deuxième partie de ce manuscrit.

Outre la géométrie adoptée, il existe plusieurs façons pour appliquer le chargement. En effet, Zhu, Mills et Knott [Zhu et al., 1997a, Zhu et al., 1997b], à la manière de Gibson et Ashby, procèdent à une descente de charge sur le réseau pour déduire la charge résultante appliquée sur chaque poutre de la cellule d’étude. Alors que Pradel, Sab et Alaoui [Pradel, 1998] utilisent la théorie de l’homogénéisation périodique en imposant des conditions de périodicité sur les déplacements des nœuds extrêmes du réseau de poutres considéré, et c’est cette dernière méthode qu’on applique dans ce travail. D’ailleurs, pour obtenir un passage micro-macro qui rende compte des apports de la rotation interne dans la microstructure du matériau, ces derniers conservent une cinématique riche au niveau macroscopique en considérant des milieux de Cosserat élastiques. Pour ce faire, ils ont d’abord procédé à une homogénéisation des milieux continus périodiques de Cosserat en élasticité linéaire en y introduisant des développements asymptotiques. Ce qui leur a permis d’aboutir à deux schémas d’homogénéisation, notés (SH1) et (SH2), qui diffèrent par le comportement asymptotique des
coefficients élastiques. À l’ordre e^0, le premier schéma (SH1) donne un milieu de Cauchy alors que le deuxième (SH2) donne un milieu de Cosserat. Puis, ils ont transposé cette démarche au cas discret sur un exemple simple de réseau mono-atomique, c’est-à-dire un réseau dont les particules sont indiscernables. Ensuite, ils ont étendu l’étude à la détermination de la charge critique de flambement d’une bande infinie du réseau mise en compression uniaxiale. Ils ont par la suite généralisé la méthode au cas multi-atomique où plusieurs types de particules engendrent le réseau par périodicité. Grâce à leur analyse théorique, l’identification du comportement macroscopique en élasticité linéaire de n’importe quel réseau de poutres est systématiquement effectuée. Ils ont également déterminé la charge et le mode de flambement correspondant par homogénéisation selon les deux schémas lorsque la longueur d’onde du mode de flambement est grande devant la longueur des poutres. Enfin, ils ont appliqué ces études au flambement de milieux discrets orientés tels que les nids d’abeilles et les mousse.

Leur travail constitue donc un point de départ essentiel pour ce mémoire puisque d’une part on considère la même géométrie adoptée pour les mousse et le même principe d’application de conditions de périodicité. De plus, on considère leur résultat sur les mousse en élasticité linéaire comme moyen de vérifier nos études numériques.
Chapitre 4

Homogénéisation et analyse du flambement

4.1 Quelques rappels sur l’homogénéisation

L’homogénéisation permet de déduire les propriétés homogènes équivalentes d’un matériau hétérogène à partir de celles de ses constituants et de leur répartition géométrique. Il s’agit donc du passage de l’échelle micro à l’échelle macro. Au niveau micro le matériau est modélisé par un milieu continu très fortement hétérogène ou bien encore par un milieu discret comme un assemblage granulaire. Tandis qu’au niveau macro, le matériau est modélisé par un milieu continu homogène. Dans cette procédure, il y a bien sûr une perte d’information sur les champs locaux. Cependant, elle est indispensable pour l’ingénieur puisqu’elle lui permet d’éviter des calculs complexes très coûteux.

l’homogénéisation des opérateurs différentiels et des fonctionnelles intégrales [Jikov et al., 1994].

Pour mieux illustrer la démarche de l’homogénéisation, on cite l’exemple de l’homogénéisation des matériaux élastiques linéaires modélisés par un milieu continu hétérogène. Pour ce faire, on considère $S(X)$ le tenseur de souplesse élastique défini en chaque point X de la microstructure. Un domaine Ω de ce matériau est soumis, en chaque point X de son bord $\partial \Omega$, à un chargement donné par le vecteur contrainte $T(X) = \sum u(X)$, où u est la normale extérieure à Ω en X et \sum un tenseur symétrique d’ordre 2 (le tenseur des contraintes). Nous savons alors que l’énergie élastique Ψ emmagasinée dans Ω est une forme quadratique de \sum et qu’il existe un unique tenseur de souplesse S_{Ω} tel que cette énergie soit égale à $\frac{1}{2} \sum \cdot S_{\Omega} \cdot \sum$.

Pour Ω suffisamment grand, le tenseur S_{Ω} ne dépend plus explicitement de Ω. Sa valeur limite, quand le volume de Ω tend vers l’infini, est le tenseur de souplesse homogénéisé et tout Ω pour lequel S_{Ω} peut être identifié à la valeur limite est un V.E.R.

Dans le cas périodique, la microstructure est générée par périodicité à partir d’une cellule, dite cellule de base, $Y = [0,Y_1] \times [0,Y_2] \times [0,Y_3]$ suivant le repère (e_1, e_2, e_3). Le tenseur de souplesse est alors Y-périodique, c’est-à-dire :

$$S(X) = S(X + iY_1 e_1 + jY_2 e_2 + kY_3 e_3) \quad \forall X \in \mathbb{R}^3 \quad \forall (i, j, k) \in \mathbb{Z}^3. \quad (4.1)$$

Dans ce cas, le calcul de S_{Ω}, lorsque le volume de Ω tend vers l’infini, se ramène à un calcul sur Y. Pour ce faire, on cherche un champ de contrainte σ et un champ de déformation ε sur Y vérifiant :

$$\left\{ \begin{array}{l}
\text{(a) Equilibre :} \\
\text{(b) Vecteur contrainte antipériodique :} \\
\text{(c) Chargement :} \\
\text{(d) Vecteur déplacement :} \\
\text{(e) Compatibilité :} \\
\text{(f) Comportement :} \\
\end{array} \right. \quad \begin{array}{l}
\text{Div} \sigma = 0 \\
\sigma \cdot n \text{ opposés sur les faces opposées de } Y \\
\langle \sigma \rangle_Y = \sum \\
u(X) = E \cdot X + u(X) \\
\varepsilon \text{ compatible avec } u \\
\varepsilon = \tilde{S} : \sigma \\
\end{array} \quad (4.2)$$

Lorsqu’une contrainte σ satisfait les équations (4.2-a, b et c), on dit qu’elle est statiquement admissible. Dans ce cas :

$$\langle \sigma \rangle_Y = \sum, \quad (4.3)$$

où on note par $\langle f \rangle_Y$ la moyenne volumique de f sur Y.

Lorsqu’un déplacement u satisfait l’équation (4.2-d), on dit qu’il est cinématiquement admissible. Dans ce cas :

$$\langle \varepsilon(u) \rangle_Y = E, \quad (4.4)$$
Le problème (4.2) admet une solution unique \((\varepsilon, \sigma) \) et la souplesse homogénéisée \(S_{\text{hom}} \) est définie par :

\[
E = \langle \varepsilon \rangle_Y = S_{\text{hom}} : \langle \sigma \rangle_Y = S_{\text{hom}} : \Sigma
\]

(4.5)

Dans le cas aléatoire, on se donne un espace de probabilité et un processus aléatoire de loi connue qui à \((\omega, X) \) associe \(S(\omega, X). \) \(S^\Omega \) est alors un tenseur aléatoire \(S^\Omega(\omega). \) Dans ce cas, il a été démontré (sous une condition d’homogénéité statistique et d’ergodicité sur le processus) que \(S^\Omega(\omega) \) converge vers un tenseur de souplesse constant \(S_{\text{hom}}^\text{hom} \) quand le rayon de \(\Omega \) tend vers l’infini [Sab, 1992]. Ceci veut dire que pour calculer \(S_{\text{hom}} \), il suffit de simuler la microstructure puis de prendre un domaine \(\Omega \) suffisamment grand pour être représentatif du matériau. Ensuite, il faut effectuer six calculs élastiques sur \(\Omega. \)

Ainsi, pour éviter à l’ingénieur un calcul très lourd de \((\varepsilon, \sigma) \) en chaque point \(X \) d’un matériau hétérogène, l’homogénéisation lui permet de calculer \(S_{\text{hom}}^{\text{hom}} \) au point \(X \) d’un milieu homogène. Dans ce cas, \(\varepsilon_{\text{hom}}^{\text{hom}}(X) \) et \(\sigma_{\text{hom}}^{\text{hom}}(X) \) sont les moyennes volumiques sur un domaine \(\Omega(X) \) de \(\varepsilon \) et \(\sigma \) respectivement. Le domaine \(\Omega(X) \) étant un domaine de centre \(X \) qui est assez petit à l’échelle macroscopique pour que \(\varepsilon_{\text{hom}} \) et \(\sigma_{\text{hom}}^{\text{hom}} \) y soient pratiquement constants, et assez grand à l’échelle microscopique pour que \(S_{\text{hom}}^{\text{hom}}(X) \) y soit pratiquement égale à \(S_{\text{hom}}. \) Plus précisément, l’homogénéisation fournit le comportement limite du matériau lorsque le rapport \(\epsilon \) de la taille des hétérogénéités sur la taille de la structure devient très petit devant 1 [Sanchez-Palencia, 1974].

tout en tenant compte de la rotation des grains.

D’autre part, l’homogénéisation classique en élasticité linéaire a été étendue au cas de l’élasticité non linéaire mais toujours en petites perturbations (H.P.P.). Dans tous ces cas, grâce à l’hypothèse des petites perturbations, le potentiel d’énergie élastique \(\Psi \) est convexe, c’est-à-dire qu’il vérifie :

\[
\forall (\varepsilon_1, \varepsilon_2) \quad \Psi(\varepsilon_2) - \Psi(\varepsilon_1) \geq \frac{\partial \Psi}{\partial \varepsilon}(\varepsilon_1) : (\varepsilon_2 - \varepsilon_1).
\] (4.6)

4.2 Cas de l’homogénéisation non convexe

Dans un problème de mécanique, les positions d’équilibre d’une structure chargée sont données par la stationnarité de son énergie potentielle. Si on se place sur une courbe d’équilibre et qu’on augmente la charge appliquée progressivement, la configuration d’équilibre peut cesser d’être unique et bien déterminée. On dit alors que la structure a flambé et que la charge à laquelle ce phénomène a eu lieu est dite charge critique de flambement. Physiquement, une poutre par exemple, à une certaine amplitude d’un effort de compression flambe en fléchissant transversalement. Ce flambement est accompagné de grands déplacements. Son étude doit donc se faire au delà du cadre de la linéarité géométrique. On exprime alors le potentiel d’énergie en fonction du gradient de la transformation et il y a perte de convexité de ce potentiel.

On revient dans le paragraphe suivant à l’étude de flambement. Mais d’abord, illustrons le cas de l’homogénéisation non convexe. Pour ce faire, on considère un solide hyperélastique à microstructure parfaitement périodique, décrit par la densité d’énergie de déformation par unité de volume de référence \(w(X, f) \). Cette densité d’énergie dépend de la position \(X \) d’un point matériel dans la configuration de référence et du gradient de la transformation locale \(f \) défini par \(\partial X/\partial x \), où \(\alpha \) est la position du point matériel dans la configuration actuelle. On dit que \(w \) est \(Y \)-périodique en \(X \) si :

\[
w(X + \sum_{i=1}^{3} n_i \varepsilon_i, f) = w(X, f) \quad \forall X \in \mathbb{R}^3, \forall f \in \mathbb{R}^3 \times \mathbb{R}^3 \text{ et } \forall n_i \in \mathbb{N},
\] (4.7)

où \(Y = [0, 1]^3 \) est une cellule périodique unitaire et où \(\varepsilon_i |_{i=1,3} \) sont des vecteurs de base dans la configuration de référence.

Dans ce cas, Müller [Müller, 1987] a montré que (sous des conditions de croissance polynomiale en \(f \) la densité d’énergie de déformation homogénéisée est donnée par :

\[
\mathcal{W}^{hom}(f) = \inf_{\kappa} \left\{ \inf_{u^{kper}} \langle w(X, f + \underbrace{\text{Grad } u^{kper}}) \rangle_X \right\},
\] (4.8)

où \(\kappa = (k_i)_{i=1,3} \) sont des entiers positifs et \(u^{kper} \) est un champ de déplacements \(kY \)-périodique, avec \(kY = \prod_{i=1}^{3} [0, k_i] \) (i. e. \(u^{kper}(X + \sum_{i=1}^{3} n_i k_i \varepsilon_i) = u^{kper}(X) \) avec \(n_i |_{i=1,3} \) des entiers arbitraires). De plus, par \(\text{Grad } u \) on désigne le gradient Lagrangien d’un vecteur \(u \) i. e. \(\partial u/\partial X \), alors que par \(\langle f \rangle \Omega \) on désigne la moyenne volumique de \(f \) sur \(\Omega \).

Il est à noter que le premier tenseur des contraintes de Piola-Kirchhoff (ou Boussinesq), noté
ici \(b(f) \), est obtenu en dérivant \(w(X, f) \) par rapport à \(f \) (\(b = \partial w / \partial f \)).

Ainsi, la densité d'énergie de déformation homogénéisée \(Y_{\text{hom}} \) est obtenue en prenant l'infini-nimum de la moyenne volumique de \(w \), non seulement sur tous les champs de déplacements périodiques possibles dans une cellule périodique \(Y \), mais en plus en procédant à l'infini-nimum sur toutes les cellules périodiques possibles \(Y \).

D'autre part, il est à noter que, Marcellini [Marcellini, 1978] a montré que lorsque \(w \) est convexe (par rapport à \(f \)), l'infini-nimum dans (4.8) est atteint pour \(Y \), i.e. pour \(k = (1, 1, 1) \). L'équation (4.8) est par conséquent à appliquer lorsque la fonction énergie de déformation n'est pas convexe : c'est ce qu'on appelle l'homogénéisation non convexe.

4.3 Analyse du flambement

Le flambement est l'état d'une structure qui, sous un changement minime de ses paramètres de chargement, voit sa configuration d'équilibre changer considérablement. Lorsque ce changement de configuration est progressif, le flambement est dit par divergence. Dans le cas d'une poutre, la courbe flèche - charge typique présente alors un maximum au niveau de la charge critique. Tandis que, lorsqu'il y a flambement, il est caractérisé par la présence, au voisinage de la charge critique, d'au moins deux configurations d'équilibre différentes associées à des courbes flèche - charge distinctes, alors le flambement est dit par bifurcation. Il s'agit en fait, toujours dans le cas d'une poutre, du cas limite du flambement par divergence réalisé pour une structure parfaite.

Les phénomènes de flambement peuvent se manifester dans des parties isolées d'une structure (par exemple, flambement des barres comprimées dans les poutres en treillis), auquel cas il est généralement possible de les prévoir et de les étudier assez facilement. Cependant, ils peuvent aussi affecter l'ensemble d'une structure (flambement de l'ensemble des poutres en treillis ou des portiques), auquel cas leur prévision et leur étude deviennent très ardues et incertaines. On peut néanmoins les résoudre par voie numérique : cas de ce travail pour un réseau de poutres assemblées suivant des tétrakaidécaèdres.

Dans cette étude du flambement, on a supposé que la structure est parfaite, tout en sachant que dans le cas des structures sensibles aux imperfections, il faut prévoir un abaissement de la charge critique à cause de la chute de la capacité portante de la structure [Nguyen, 1995]. Ensuite, on s'est intéressé au cas du flambement élastique. Il suffit de vérifier par la suite si on est bien encore dans le domaine élastique lorsque la charge critique calculée est atteinte. Par ailleurs, l'hypothèse des petites pré-déformations permet d'écrire une cinématique non linéaire mais d'ordre 2. Ce qui permet de développer une approche énergétique. Pour ce faire, on considère des trajets de chargement proportionnels définis par une orientation donnée \(E \) du chargement macroscopique et un paramètre positif croissant \(\lambda \) comme suit :

\[
E(\lambda) = \lambda E,
\]

(4.9)
où \mathbf{E} est le tenseur de déformation de Biot, défini par :

$$
\mathbf{E} = \mathbf{F} - \mathbf{I},
$$

(4.10)

avec \mathbf{I} le tenseur identité.

Le principe de l’approche énergétique consiste à dériver une première fois l’énergie potentielle, dérivée qui en s’annule donne les positions d’équilibre. Puis, parmi ces points d’équilibre, on cherche ceux qui vérifient une dérivée seconde nulle de l’énergie potentielle. Ces points sont alors soit des points de bifurcation soit des points limites : c’est le théorème des fonctions implicites qui en est la base [Potier-Ferry, 1978].

Dans l’annexe A, on expose le principe de résolution d’un problème de flambement par la méthode énergétique et la procédure de détermination des charges critiques de flambement par ABAQUS.

4.4 Détermination d’une surface de charge

On désigne par surface de charge l’ensemble des charges critiques de flambement correspondant aux différentes directions de chargement \mathbf{E}. On choisit de représenter cette surface de charge dans l’espace des contraintes. Selon le type d’approche utilisée, on trouve dans la littérature deux types de surface de charge : une est dite micro et l’autre est dite macro.

4.4.1 Surface de charge micro

Lorsqu’on fait croître le paramètre de chargement λ à partir de zéro, tant que λ est suffisamment faible ($\lambda \ll 1$), l’hypothèse d’élasticité linéaire est valide. La solution du problème (4.8) est alors Y-périodique. C’est la solution triviale notée $u^\text{per} (\lambda)$ (définie à une constante près). Puis, lorsque λ croit, cette solution peut devenir multiple. Il s’agit alors
4.4. DÉTERMINATION D’UNE SURFACE DE CHARGE

d’un point de bifurcation où au moins deux courbes d’équilibre se croisent. Ou bien elle peut
ne plus exister. Il s’agit dans ce cas d’un point limite. Dans les deux cas, la charge atteinte
est une charge critique de flambeu. Pour la déterminer, on considère le tenseur module
incrémental microscopique \(l(X, \lambda) \) défini par :

\[
l_{ijkl}(X, \lambda) = \frac{\partial^2 w}{\partial F_{ij} \partial F_{kl}}(X, F(\lambda) + \text{Grad} \ u_{\text{per}}(\lambda)),
\]

et on cherche une variation des déplacements \(\delta u(X) \) non constante telle que :

\[
(l_{ijkl}(X, \lambda) \delta u(X)_{kl})_j = 0,
\]

où on note par \(f_i \) la dérivée \(\partial f / \partial X_i \).

Plus particulièrement, étant dans le cas d’une homogénéisation non convexe, on considère
des variations des déplacements \(kY \)-périodiques : \(\delta u(X) = \delta u_{\text{per}}(X) \). Une valeur critique
\(\lambda^{(k)} \) peut être alors définie comme étant l’infinum des \(\lambda \) pour lesquelles des instabilités
\(kY \)-périodiques ont lieu. La valeur critique \(\lambda_c \) est par la suite définie comme étant l’infini-
num des \(\lambda^{(k)} \) sur toutes les cellules périodiques possibles \(kY \).
Cette approche est dite approche par ondes périodiques arbitraires, puisqu’elle consiste à
prendre l’infinum des charges critiques de flambeu pour des champs perturbés périodi-
quiques sur toutes les cellules périodiques possibles \(kY \). L’approche a été utilisée par Abdelmoula,
Krasucki et Marigo pour calculer la charge critique de flambeu dans un composite
[Abdelmoula et al., 1993, Abdelmoula et al., 1994]. De la même manière, on adopte cette ap-
proche pour calculer la charge critique de flambeu dans un réseau de poutres représentant
la microstructure d’un milieu infini.

Par ailleurs, il existe une autre méthode d’homogénéisation des milieux périodiques : l’ho-
mgénéisation par ondes de Bloch. Parmi les références sur cette approche, on retrouve
le livre de Bensoussan et al. [Bensoussan et al., 1978], ou encore les livres de Sanchez-Hubert
et Sanchez-Palencia [Sanchez-Hubert et Sanchez-Palencia, 1989 et 1992]. On cite également Al-
laire et Conca qui ont réussi, en utilisant ces ondes, à étudier le comportement asymptotique
spectral de certaines structures périodiques [Alaire et Conca, 1998]. Contrairement à la pre-
mière approche où on doit considérer des cellules de plus en plus grandes, cette approche
consiste à ne considérer que la cellule unitaire \(Y \) mais avec des champs de déplacements non
périodiques définis par :

\[
\delta u(X) = \delta u_{\text{per}}(X) e^{i\omega \cdot X},
\]

où \(\delta u_{\text{per}} \) est une fonction \(Y \)-périodique en \(X \) et \(\omega = (\omega_i)_{i=1,3} \in [0, 2\pi]^3 \) sont des nombres
d’onde adimensionnels du mode de bifurcation correspondant suivant les directions \((X_i)_{i=1,3} \)
respectivement.
Triantafyllidis et Schraad ont utilisé cette approche pour déterminer la surface de charge
d’un nid d’abeilles en aluminium (Fig. 4.1). On note que la taille de la cellule de base qu’ils
ont considéré est plus grande que la taille d’une cellule périodique minimale.
FIG. 4.1 – Nid d’abeilles en aluminium [Triantafyllidis et Schraad, 1998] : (a) Cellule de base ; (b) Surface de charge issue d’une homogénéisation par ondes de Bloch

Pour ω fixé, l’infiniimum des λ pour lesquelles l’équation (4.12) est vérifiée pour des ondes de Bloch est noté $\lambda_m(\omega)$. Geymonat, Müller et Triantafyllidis ont démontré que l’infiniimum des $\lambda_m(\omega)$ sur tous les vecteurs nombres d’onde (i. e. pour $0 \leq \omega_i|_{i=1,3} < 2\pi$) est égal au paramètre de chargement critique λ_c introduit ci-dessus [Geymonat et al., 1993]. Ce qui veut dire que l’analyse par ondes de Bloch est équivalente à l’analyse par ondes périodiques arbitraires. Les deux méthodes donnent lieu à ce qu’on appelle une surface de charge micro. On note le résultat λ_c par λ_{micro}.
4.4. DÉTERMINATION D’UNE SURFACE DE CHARGE

4.4.2 Surface de charge macro

Dans l’approche par ondes de Bloch, une importante caractéristique du paramètre de chargement critique \(\lambda_m(\omega) \) concerne la présence d’une singularité à l’origine du domaine des nombres d’onde, i. e. à \(\omega = (0,0,0) \) (voir [Schaad et Triantafyllidis, 1997]). Ces nombres d’onde sont en fait définis comme étant le rapport des dimensions de la cellule d’étude \(h_i \) sur les longueurs d’onde \(L_i \) du mode de bifurcation \((\omega_i = 2\pi h_i / L_i) \). Au voisinage de l’origine, deux types différents de mode de bifurcation sont tracés :

- \(\omega = 0 \) qui donne lieu à des modes \(Y \)-périodiques (i. e. \(\delta u(x) = \delta u^{per}(x) \)).
- \(\omega \to 0 \) qui donne lieu à des modes à grandes longueurs d’onde, bien plus grandes que les dimensions de la cellule d’étude (i. e. \(L_i \gg h_i \)).

Comme la charge critique d’un mode à grande longueur d’onde ne coïncide pas, en général, avec la charge critique d’un mode \(Y \)-périodique, alors la surface du paramètre de chargement critique \(\lambda_m(\omega) \) est singulière à l’origine.

On distingue donc deux situations différentes dans l’approche par ondes de Bloch. Si la charge critique \(\lambda_c \) est atteinte pour un \(\omega_c \) fini alors le flambeau est dit “local”. Si \(\lambda_c \) est obtenue lorsque \(\omega_c \) tend vers zéro (i. e. \(\omega_c \to 0 \)), le flambeau est dit “global”. Dans ce dernier cas, d’après Schraad et Triantafyllidis [Schaad et Triantafyllidis, 1997], le mode de flambeau ne dépend que des propriétés globales du milieu à l’état de chargement en question, et la charge critique peut être retrouvée en considérant les propriétés macroscopiques (homogénéisées) du modèle de la manière suivante.

Les auteurs définissent ainsi une nouvelle surface de charge comme étant la première perte d’ellipticité du tenseur module incrémental macroscopique \(I_{hom}(\lambda) \), obtenue par homogénéisation du tenseur module incrémental microscopique \(Y \)-périodique \(I(X, \lambda) \). Plus précisément, la charge critique macroscopique suivant un trajet de chargement donné, notée \(\lambda_c^{macro} \), est définie comme étant le minimum du paramètre de chargement \(\lambda \) pour lequel il existe un vecteur unitaire \(\mathbf{u} \) tel que le tenseur d’ordre 2 \(\mathbf{u} \cdot I_{hom}(\lambda) \cdot \mathbf{u} \) (dit tenseur acoustique) n’est plus défini positif. La surface de charge résultante est appelée surface de charge macro.

Il est à noter que la charge critique macroscopique est déterminée à partir de \(I_{hom}(\lambda) \) alors que la charge critique microscopique est déterminée à partir de \(I(X, \lambda) \), et que comme il y a perte d’information au niveau local avec \(I_{hom}(\lambda) \), alors il a été démontré que \(\lambda_c^{macro} \geq \lambda_c^{micro} \).

De même, on a bien \(\lambda_c^{macro} \geq \lambda_c^{micro} \), si on considère les ondes de Bloch et qu’on fait la minimisation sur tous les \(\mathbf{u} \) possibles pour déterminer \(\lambda_c^{micro} \), alors qu’on ne considère que \(\omega \to 0 \) pour déterminer \(\lambda_c^{macro} \). Par conséquent, la surface de charge macro donne une limite supérieure à la surface de charge micro.

Par ailleurs, il a été démontré que \(\lambda_c^{macro} \) est aussi l’infinium des \(\lambda \) pour lesquelles l’équation (4.12) est vérifiée pour des modes de flambeau de la forme suivante :

\[
\delta u(X) = \delta u^{per}(X) + (m \otimes n) \cdot X, \tag{4.14}
\]

où \(\delta u^{per} \) est \(Y \)-périodique et \(m \) et \(n \) sont des vecteurs unitaires.

En outre, lorsque l’égalité est atteinte (\(\lambda^{macro} = \lambda^{micro} \)), c’est-à-dire lorsque, dans l’analyse microscopique, le minimum de \(\lambda_m(\omega) \) sur tous les \(\omega \) est obtenu pour \(\omega = 0 \), alors le mode
en postflambement se développe suivant un mode localisé macroscopiquement dont la bande de localisation est caractérisée par \(\mathbf{n} \) et \(\mathbf{m} \), où \(\mathbf{n} \) est le vecteur normal au plan de la bande et \(\mathbf{m} \) donne la direction de déplacement de la bande.

4.5 Définition d’une nouvelle surface de charge

Dans leur étude sur les nids d’abeilles (voir Fig. 4.1-a), Triantafyllidis et Schraad ont obtenu que, dans leur cas particulier, \(\lambda_c^{\text{micro}} \) est atteinte à l’origine du domaine des nombres d’onde [Triantafyllidis et Schraad, 1998]. C’est-à-dire soit pour des modes \(Y \)-périodiques (\(\omega = 0 \)), soit pour des modes à grandes longueurs d’onde (\(\omega \to 0 \)) (voir Fig. 4.1-b).

C’est pour cette raison que nous avons développé une procédure simple qui tienne compte des variations à la fois des modes \(Y \)-périodiques et à grandes longueurs d’onde. Pour ce faire, on remarque que si \(\mathbf{m} \) dans (4.14) est nul alors \(\delta \mathbf{u} \) est \(Y \)-périodique. Alors, pour un vecteur unitaire fixé \(\mathbf{n} \), on considère \(\lambda_c^{\text{mixte}}(\mathbf{n}) \) comme étant l’infimum des \(\lambda \) pour lesquelles l’équation (4.12) est vérifiée pour des modes de flambement de la forme :

\[
\delta \mathbf{u}(X) = \delta \mathbf{u}^{\text{per}}(X) + (\delta \mathbf{U} \otimes \mathbf{n}) \cdot X,
\]

où \(\delta \mathbf{u} \) est arbitraire et \(\delta \mathbf{u}^{\text{per}} \) est \(Y \)-périodique. Puis, \(\lambda_c^{\text{mixte}} \) est défini comme étant le minimum des \(\lambda_c^{\text{mixte}}(\mathbf{n}) \) sur \(\mathbf{n} \) (i.e. \(\lambda_c^{\text{mixte}} = \min_{\mathbf{n}} \lambda_c^{\text{mixte}}(\mathbf{n}) \)). On appelle la surface de charge résultante, qu’on définie dans l’espace des contraintes macroscopiques, surface de charge mixte.

On introduit cette surface de charge, d’une part parce qu’elle est plus facile à calculer que les ondes de Bloch (voir la méthode de calcul dans le chapitre 8), et d’autre part parce qu’elle permet d’avoir des informations sur la bande de localisation à travers les vecteurs \(\mathbf{n} \) et \(\mathbf{m} \).

Il est à noter que la charge critique macroscopique est toujours supérieure ou égale à la charge critique mixte (puisque \(\lambda_c^{\text{macro}} \) est déterminée en considérant seulement \(\omega \to 0 \) alors que \(\lambda_c^{\text{mixte}} \) est déterminée en prenant le minimum des \(\lambda_m(\omega) \) données par \(\omega \to 0 \) et \(\omega = 0 \)), et que la charge critique mixte est supérieure ou égale à la charge critique microscopique (puisque \(\lambda_c^{\text{mixte}} \) est déterminée en prenant le minimum des \(\lambda_m(\omega) \) données par \(\omega \to 0 \) et \(\omega = 0 \) alors que \(\lambda_c^{\text{micro}} \) est déterminée en prenant l’infimum des \(\lambda_m(\omega) \) sur tous les vecteurs nombres d’onde \(\omega \) :

\[
\lambda_c^{\text{micro}} \leq \lambda_c^{\text{mixte}} \leq \lambda_c^{\text{macro}}
\]

En notant \(\mathbf{n}_c \) le vecteur \(\mathbf{n} \) pour lequel \(\lambda_c^{\text{mixte}} = \lambda_c^{\text{mixte}}(\mathbf{n}_c) \), l’égalité \(\lambda_c^{\text{mixte}} = \lambda_c^{\text{macro}} \) est atteinte lorsque dans l’approche mixte le vecteur \(\delta \mathbf{U} \) correspondant à \(\mathbf{n}_c \) n’est pas nul. De plus, dans les travaux cités ci-dessus [Triantafyllidis et Schraad, 1998], on remarque que la dite surface de charge mixte coïncide avec la surface de charge micro qu’ils ont obtenue après étude par ondes de Bloch.

Comme on l’a vu précédemment, pour des trajets de chargement proportionnels (4.9), la solution H.P.P. du problème (4.8), notée \(\mathbf{u}^{\text{per}}(\lambda) \), est \(Y \)-périodique. Cependant, lorsque \(\lambda \) croit, la solution peut perdre sa stabilité. Afin de faire une analyse de stabilité, on adopte la méthode de Nguyen [Nguyen, 1995] en introduisant deux hypothèses. La première (H1), appelée hypothèse des petites pré-déformations, consiste à supposer que \(\mathbf{u}^{\text{per}}(\lambda) \) est “petit”et linéaire en \(\lambda \) (i.e. \(\mathbf{u}^{\text{per}}(\lambda) \approx \lambda \mathbf{u}^{\text{per}} \), où \(\mathbf{u}^{\text{per}} \) est la solution pour \(\lambda = 1 \) en elasticité linéaire.
La seconde (H2), consiste à négliger les termes de second ordre en λ dans les variations de second ordre de l’énergie de la cellule d’étude.
Ainsi, si λc est la valeur critique de λ pour des variations données, on obtient :

\[λ_c = \min_{\delta \bar{\sigma}} - \frac{\int_\Omega \delta \varepsilon : \bar{\sigma}_c : \delta \varepsilon d\Omega}{\int_\Omega (\text{Grad} \delta u \cdot \text{Grad} \delta u) d\Omega}, \]

où \(\delta \varepsilon = \frac{1}{2} (\text{Grad} \delta u + \text{Grad}^t \delta u) \) est le tenseur des déformations linéarisé, et \(\bar{\sigma}_c \) est le champ de contraintes correspondant à \(\bar{\sigma}^\sigma \).

On doit faire l’analyse de stabilité des trajets de chargements proportionnels (4.9) avec :

\[\mathbf{F}(\alpha_1, \alpha_2) = \alpha_1 \mathbf{e}_1 \otimes \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 \otimes \mathbf{e}_2 + \mathbf{e}_3 \otimes \mathbf{e}_3, \]

où \(\mathbf{e}_1, \mathbf{e}_2 \) et \(\mathbf{e}_3 \) sont les axes principaux, et \(\alpha_1 \) et \(\alpha_2 \) sont les paramètres qu’on fait varier.
C’est pourquoi, les chargements sont des déformations macroscopiques qui dépendent du paramètre croissant \(\lambda = F_{33} - 1 \). Ces chargements sont appliqués au réseau infini via des conditions de périodicité appliquées sur les nœuds situés sur les bords de la cellule d’étude et reliés deux à deux entre eux.
Les surfaces de charge décrites plus haut sont obtenues en faisant varier \(\alpha_1 \) et \(\alpha_2 \) dans (4.18) et sont tracées dans l’espace des contraintes macroscopiques principales calculées numériquement. En fait, pour \(\alpha_1 \) et \(\alpha_2 \) données, on calcule la première valeur critique positive \(\lambda_+^c \) et la première valeur critique négative \(\lambda_-^c \). Cette dernière correspond à la première valeur critique positive du trajet de chargement :

\[\mathbf{F}(\lambda) = -\lambda \mathbf{F}(\alpha_1, \alpha_2). \]

Afin de calculer ces surfaces, on utilise l’approche par ondes périodiques arbitraires, i.e. pour un trajet de chargement donné, on considère des variations des déplacements périodiques sur des cellules d’étude de plus en plus grandes, ainsi que l’approche par ondes mixtes, i.e. pour un trajet de chargement donné, on considère des variations des déplacements non périodiques sur une cellule d’étude minimale.

Dans le présent travail, nous allons également faire des analyses en grandes déformations sur des cellules de plus en plus grandes. En fait, en considérant uniquement des modes de déformations symétriques induites par de “petites” cellules d’étude, Zhu et ses collaborateurs [Zhu et al., 1997] n’ont pas réussi à prédire la phase plateau en compression en grandes déformations. Les cellules d’étude qu’on considère dans notre analyse en grandes déformations sont chargées en déplacement contrôlé suivant la direction verticale (\(\mathbf{e}_3 \) dans les figures).
Deuxième partie

Compression et déformation uniaxiales des mousses
Introduction

On modélise la microstructure des mousses solides à porosité ouverte par un réseau périodique infini de poutres. L’assemblage des poutres forme des cellules tétrakaidécaédriques disposées de manière à paver l’espace. On rappelle que, dans les expériences d’écrasement des mousses, leur comportement est caractérisé par une phase élastique linéaire (jusqu’à 5% de déformation en moyenne) suivie d’une phase de plateau (jusqu’à 80% de déformation en moyenne) et se termine par une phase de densification du matériau. La première phase a déjà été étudiée par Pradel [Pradel, 1998]. Il a déterminé les coefficients élastiques homogénéisés du réseau de tétrakaidécaédres en fonction des coefficients élastiques du solide dans les poutres. Dans ce travail, on veut poursuivre l’étude jusqu’à la deuxième phase, phase permettant aux mousses d’être de bons prétendants pour absorber l’énergie à un faible niveau d’effort. Celle-ci résulte probablement d’une interaction complexe entre plusieurs facteurs tels que la non-linéarité géométrique, la non-linéarité matérielle et les problèmes de contact. On se limite au premier cas, c’est-à-dire la non-linéarité géométrique due aux grandes transformations. Par conséquent, on considère le solide dans les poutres élastique linéaire, et on étudie la réponse du réseau en grandes transformations. On choisit deux types de chargement : une compression uniaxiale et une compression oédrométrique (déformation uniaxiale). De plus, on essaye de voir l’effet du flambement des poutres (arêtes des cellules) sur le comportement du réseau (la mousse). Pour simuler le réseau infini, on choisit une cellule de base périodique à laquelle on applique le chargement sous forme de conditions de periodicité. On introduit ensuite la géométrie discrétisée, le comportement (micro) et le chargement dans un code de calcul par éléments finis (ABAQUS).
Chapitre 5

Description de l’étude numérique

5.1 Géométrie du problème et choix d’une cellule de base

L’étude d’une mousse tridimensionnelle, modélisée par un pavage en tétrakaïdéraèdres de l’espace qu’elle occupe, est beaucoup trop lourde numériquement. Par conséquent, on simplifie l’étude en choisissant un micro-volume qui, une fois comprimé, donne des résultats représentatifs de ceux que l’on observe sur de grands spécimens multicellulaires. Pradel [Pradel, 1998] a identifié une cellule représentative minimale que l’on note C_{min} (voir Fig. 5.1). Cette cellule est inscrite dans un parallélépipède de dimensions $(a,a,a/2)$, où a est la hauteur d’un tétrakaïdéraèdre. Elle est équivalente, au sens des volumes, à un tétrakaïdéraèdre. Elle admet 12 nœuds géométriques et 12 arêtes. Les vecteurs qui permettent d’obtenir le réseau à partir de la reproduction d’une cellule périodique par translation, sont appelés vecteurs directeurs de cette cellule. Des vecteurs directeurs de la C_{min} sont trois vecteurs dont les extrémités ont des nœuds de même numéro (n_5 ou n_6). On note que ces vecteurs ne sont pas orthogonaux.

![Diagram](image)

Fig. 5.1 – Une cellule périodique minimale : C_{min}

Cependant, ce type de cellule périodique minimale n’est suffisant que dans le cadre des petites perturbations, mais il risque de ne plus l’être pour des modes de déformations non symétriques nécessitant une moindre énergie en grandes transformations. D’ailleurs, Papka
et Kyriakides [Papka et Kyriakides, 1994] se sont déjà intéressés à ce type de problème. Ils ont alors défini des conditions minimales à satisfaire dans le choix du micro-volume, qui sont les suivantes :

1. le micro-volume doit avoir la même rigidité que la structure mère en régime élastique stable ;
2. il doit avoir la taille, les degrés de liberté et les symétries qui permettent la simulation et la progression des modes d'instabilité appropriés ;
3. il doit être capable de reproduire correctement le mécanisme d'arrêt de flambement des cellules.

De plus, dans les problèmes de structure où ont lieu des propagations d'instabilité, Kyriakides [Kyriakides, 1993] a montré qu'on peut avoir une assez bonne vue sur la mécanique du problème en analysant un micro-volume représentatif de la structure sous le même chargement que la structure mère.

Papka et Kyriakides ont appliqué cette approche sur des nids d'abeilles bidimensionnels [Papka et Kyriakides, 1998, par exp.]. En procédant de la même façon, on obtient la cellule périodique présentée dans la Fig. 5.3. On l'appelle cellule de base et on la note CB. Cette nouvelle cellule est constituée d'un tétrakaidécaèdre central entouré de dix demi-tétrakaidécaèdres latéraux et de deux demi-tétrakaidécaèdres, l'un au-dessus et l'autre au-dessous du tétrakaidécaèdre central.

![Diagramme](image)

FIG. 5.2 - Cellule de base du réseau tétrakaidécaédrique : vues suivant trois plans

Cette cellule est incluse dans un parallélépipède de dimensions (2a,a,2a). Elle est équivalente, au sens des volumes, à huit tétrakaidécaèdres. En effet :

- Le volume V_l d'un tétrakaidécaèdre est donné par [Gibson et Ashby, 1988] :

$$V_l = 11.31 \, l^3. \tag{5.1}$$

- Le volume V_{CB} de la cellule de base est :

$$V_{CB} = 4a^3 = 64\sqrt{2} \, l^3, \tag{5.2}$$
5.1. GÉOMÉTRIE DU PROBLÈME ET CHOIX D’UNE CELLULE DE BASE

\[a = 2\sqrt{2} l. \] (5.3)

D'où

\[\frac{V_{CB}}{V_l} = 8. \] (5.4)

Comme dans un premier temps on s’est intéressé à des chargements uniaxiaux, on a superposé au-dessus et au-dessous de la CB (suivant l’axe du chargement) deux autres CB. La cellule résultante est appelée CB3 (Fig. 5.4-a). Cette cellule est incluse dans un parallélépipède de dimensions \(2a, a, 6a\). Elle est équivalente à 24 tétrakaïdéraèdres. Ensuite, on a encore rajouté encore deux autres CB suivant le même axe de chargement. On obtient alors la CB5 (Fig. 5.4-b). Cette cellule est incluse dans un parallélépipède de dimensions \(2a, a, 10a\). Elle est équivalente à 40 tétrakaïdéraèdres.

Par ailleurs, dans la dernière partie de ce manuscrit, on va s’intéresser au cas des chargements multiaxiaux. Pour cette raison, on a construit également une cellule dont la dimension suivant chacun des trois axes est égale à la dimension maximale de la CB3, c’est-à-dire 6a. On l’appelle CB333 (Fig. 5.4-c). Elle est incluse dans un cube (d’arêtes 6a) et elle est équivalente à 432 tétrakaïdéraèdres.

On note que le choix de la taille des cellules s’est fait, au fur et à mesure, en fonction des résultats obtenus. D’autres cellules ont été construites à titre de vérification de l’invariance d’un résultat. Par exemple, dans le cas où la CB donne le même résultat que la CB3 pour un chargement prépondérant suivant l’axe \(z_3\) (l’axe verticale), on vérifie qu’en doublant la taille de la CB latéralement, le résultat ne change pas (Fig. 5.6).

Dans toutes ces cellules, afin de reproduire correctement un réseau infini de tétrakaïdéraèdres par assemblage des cellules périodiques, les poutres situées sur le bord parallélépipédique de ces cellules ont une section moitié de celle des poutres situées à l’intérieur du parallélépipède. Ces différences de section sont illustrées sur la Fig. 5.5 de la CB où les sections entières sont
représentées en vert et les demi-sections en rouge, et sur la Fig. 5.6 de la CB et de la CB dédoublée latéralement où les sections entières sont représentées en bleu et les demi-sections en vert.

Fig. 5.5 – La cellule de base : deux sections différentes
5.2. COMPORTEMENT ADOPTÉ

Comme on veut étudier l’effet des non-linéarités géométriques sur la réponse de ce type de matériau, on considère le comportement le plus simple pour le solide constitutif de la mousse : l’élasticité linéaire isotrope. Celle-ci est donnée par la densité d’énergie de déformation :

\[w(f) = \frac{1}{2} \epsilon^t : \epsilon^e \]

(5.5)

où \(\epsilon = 1/2 (f^t f - I) \) est le tenseur de déformations Lagrangien local et \(f \) est le tenseur gradient de la transformation locale défini par \(f = \partial \mathbf{x} / \partial \mathbf{X} \). \(\mathbf{X} \) et \(\mathbf{x} \) désignent respectivement la position du point matériel dans la configuration de référence et dans la configuration actuelle. \(c_{ijkl} \) sont les coefficients élastiques :

\[c_{ijkl} = \frac{E_s}{2(1 + \nu_s)} (\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \frac{\nu_s E_s}{(1 + \nu_s)(1 - 2\nu_s)} \delta_{ij}\delta_{kl}, \]

(5.6)

avec \(\delta_{ij} \) le symbole de Kronecker.

Les méthodes d’évaluation des propriétés élastiques linéaires (dans l’hypothèse des petites perturbations) des matériaux à microstructure sont bien établies et ne font pas l’objet d’une étude dans le cadre de cette thèse. Dans le cas du réseau de tétraèdres, le matériau obtenu est cubique. Le comportement est donc entièrement décrit par trois coefficients élastiques indépendants : le module de Young homogénéisé \(E_m \) (m pour mousse), le coefficient de Poisson homogénéisé (dit aussi coefficient de Poisson apparent) \(\nu_m \) et le module de cisaillement homogénéisé \(G_m \). On note que \(E_m \) est le même suivant les trois directions principales.
du réseau cubique. La loi de comportement de ces mousse dans ce référentiel a été déterminée notamment par Pradel [Pradel, 1998]. Si on note \(\varepsilon_{ij} \) les composantes du tenseur de déformation linéarisé et \(\sigma_{ij} \) les composantes du tenseur des contraintes de Cauchy, cette loi de comportement est donnée par :

\[
\begin{align*}
\varepsilon_{11} &= \frac{\sigma_{11}}{E_m} - \frac{\nu_m}{E_m} (\sigma_{22} + \sigma_{33}) \\
\varepsilon_{22} &= \frac{\sigma_{22}}{E_m} - \frac{\nu_m}{E_m} (\sigma_{33} + \sigma_{11}) \\
\varepsilon_{33} &= \frac{\sigma_{33}}{E_m} - \frac{\nu_m}{E_m} (\sigma_{11} + \sigma_{22}) \\
\varepsilon_{ij} &= \frac{1}{2G_m} \sigma_{ij} \text{ pour } i \neq j
\end{align*}
\]

avec

\[
\frac{1}{E_m} = \frac{1}{6\sqrt{2}} \left(\frac{12l^2}{E_s A} + \frac{l^4}{E_s I_1} \right),
\]

\[
\nu_m = -\frac{1}{2} \frac{12l_I - l^2 A}{12l_I + l^2 A},
\]

\[
G_m = \frac{3\sqrt{2} AE_s I_2 (I_2 + \frac{G_m}{E_s} I_1 + 4I_1)}{l^2 (12l_I^2 + 48l_0 I_1 + 12l_J^2 \frac{G_m}{E_s} I_1 + l^4 \frac{G_m}{E_s} AI_1 + 4l^2 AI_2 + 4l^2 AI_1)},
\]

et où on note \(l \) la longueur de la poutre, \(A \) sa section, \(I_1 \) son inertie suivant le premier axe principal \(n_1 \), \(I_2 \) son inertie suivant le second axe principal \(n_2 \) et \(I_t \) son inertie de torsion. \(G_m = E_s / 2(1 + \nu_s) \) étant le coefficient de cisaillement du solide constituant la mousse.

Dans la FIG. 5.7, on représente les axes principaux \((n_1, n_2, t) \) d’une poutre à section rectangulaire.

5.3 Discrétisation du problème

5.3.1 Type d’éléments

Considérer les arêtes des cellules comme des poutres est une hypothèse pour réduire mathématiquement le problème à une dimension ; c’est-à-dire un problème dont les solutions dépendent uniquement de la position du point matériel sur l’axe de la poutre. Pour qu’une telle hypothèse soit raisonnable, il est clair que l’élément doit être un milieu continu dans lequel on peut définir un axe tel que la plus courte distance de l’axe à n’importe quel point du milieu est petite comparée à la longueur de l’axe.
Il existe plusieurs niveaux de complexité pour lesquels la réduction à un problème unidimensionnel peut être faite et différents types de poutre utilisent différentes hypothèses. L’approche la plus simple de la théorie des poutres est l’hypothèse classique d'Euler-Bernoulli qui impose que les sections planes initialement normales à l’axe de la poutre restent planes, normales à l’axe de la poutre et sans distorsion. Les éléments de type poutre dans ABAQUS qui utilisent une interpolation cubique (éléments type B23, B33, B34, etc.) utilisent tous cette hypothèse implémentée dans le contexte des grandes rotations mais des petites déformations. Cette approximation peut être également utilisée pour formuler des poutres avec, outre les grandes rotations, les grandes déformations axiales. Les éléments du type poutre qui utilisent une interpolation linéaire ou quadratique dans ABAQUS (B21, B22, B31, B32, etc.) sont basées sur une telle formulation, avec en plus le fait que ces éléments permettent les déformations dues au cisaillement ; c’est-à-dire que la section peut ne pas nécessairement rester normale à l’axe de la poutre. Cette extension conduit à la théorie des poutres de Timoshenko [Timoshenko, 1956] et est généralement considérée comme plus réaliste pour des poutres plus épaisses dont la flexibilité au cisaillement peut être importante. Ces éléments dans ABAQUS sont formulés de telle sorte qu’ils soient efficaces pour les poutres minces, où la théorie d’Euler-Bernoulli est précise, aussi bien que pour les poutres épaisses : C’est ce type de poutres qu’on utilise dans notre étude numérique.

D’autre part, dans la formulation du modèle, ABAQUS suppose qu’au cours du mouvement, le rayon de courbure de la poutre est grand comparé aux distances dans une section. Une hypothèse supplémentaire est que la déformation dans une section de la poutre est la même.
dans toutes les directions et que cette déformation change l’aire de la section de telle manière que le produit de l’aire par la longueur suivant l’axe de la poutre entre deux points matériels reste constante dans le temps. Ce qui revient à supposer que le matériau est incompressible. Certaines autres hypothèses sont également faites lors des dérivations (voir Annexe B pour la formulation des modèles de poutre dans ABAQUS).

Si on note par l la longueur de l’élément et par d la plus grande distance qui sépare un point de la section de l’axe de cet élément, le choix du type de poutre dans ABAQUS est donné par les inégalités suivantes :

- Poutre d’Euler-Bernoulli :

$$
\zeta = \frac{d}{l} \leq \frac{1}{15}. \tag{5.11}
$$

- Poutre de Timoshenko :

$$
\zeta = \frac{d}{l} \leq \frac{1}{8}. \tag{5.12}
$$

Pour les mousses, ce rapport ζ dépend de sa densité relative d_r. Dans le cas de cellules tétrakaïédéraïques, Zhu et al. [Zhu et al., 1997a] montrent que pour des arêtes de section A, la densité relative est donnée par :

$$
d_r = \frac{3}{2\sqrt{2}} \frac{A}{l^2}. \tag{5.13}
$$

On note que dans leur calcul du volume des cellules, ils négligent le volume occupé par les arêtes.

Suant la forme de la section des arêtes adoptée dans la modélisation, il y a une valeur maximale de la densité relative pour laquelle le cadre d’application des poutres d’Euler-Bernoulli est valide (de même pour les poutres de Timoshenko) :

- Pour une section carrée de côté t (section utilisée notamment par Dement’ev et Taranova [Dement’ev et Taranova, 1970a et 1970b]), la densité relative devient :

$$
d_r = \frac{3}{2\sqrt{2}} \xi^2 \text{ avec } \xi = \frac{t}{l}. \tag{5.14}
$$

Or pour une section carrée, $d = t\sqrt{2}/2$ (la plus grande distance qui sépare un point de la section de l’axe de cet élément). En utilisant (5.11) et (5.12), on en déduit que la modélisation par des poutres d’Euler-Bernoulli reste valable pour les mousses de densité relative inférieure ou égale à $3/(15\sqrt{2}) \approx 0.009$ et celle par des poutres de Timoshenko est valable jusqu’à $3/(8\sqrt{2}) \approx 0.033$.

- Pour une section triangulaire d’arêtes b (section utilisée notamment par Zhu et al. [Zhu et al., 1997a]), la densité relative devient :

$$
d_r = \frac{3}{8} \sqrt{3} \frac{b^2}{2} \xi^2 \text{ avec } \xi = \frac{b}{l}. \tag{5.15}
$$

Or dans ce cas, $d = 2h/3 = b\sqrt{3}$. La modélisation par des poutres d’Euler-Bernoulli s’applique alors pour $d_r \leq 9\sqrt{3}/(8\sqrt{2} 15^2) \approx 0.006$ et celle par des poutres de Timoshenko est valable jusqu’à $d_r = 9\sqrt{3}/(8\sqrt{2} 8^2) \approx 0.022$.

5.3. DISCRÉTISATION DU PROBLÈME

- Pour une section circulaire de rayon \(r \), on a :
 \[
d_r = \frac{3\pi}{2\sqrt{2}} \xi^2 \quad \text{avec} \quad \xi = \frac{r}{t}.
\]

Et comme \(d = r \), alors on ne peut considérer que les mousses de densité relative inférieure ou égale à \(3\pi/(2\sqrt{2}15^2) \simeq 0.015 \) pour une modélisation par des poutres d'Euler-Bernoulli alors qu'on peut aller jusqu'à \(3\pi/(2\sqrt{2}8^2) \simeq 0.052 \) pour des poutres de Timoshenko.

Par ailleurs, dans [Zhu et al., 1997a], les auteurs considèrent que pour un rapport supérieur à 3 de la longueur sur le diamètre \(\phi \) de l'arête, la théorie des poutres peut être adoptée.

- Pour la section carrée de côté \(t \), \(\phi = \sqrt{2}t \). Pour satisfaire à la théorie des poutres, on ne peut donc considérer que les mousses de densité relative inférieure à \(1/12\sqrt{2} \simeq 0.059 \).
- Pour la section triangulaire d'arêtes \(b \), \(\phi = h = b\sqrt{3}/2 \). Pour satisfaire à la théorie des poutres, on ne peut donc considérer que les mousses de densité relative inférieure à \(1/6\sqrt{6} \simeq 0.068 \).
- Pour la section circulaire de rayon \(r \), \(\phi = 2r \). Pour satisfaire à la théorie des poutres, on ne peut donc considérer que les mousses de densité relative inférieure à \(\pi/24\sqrt{2} \simeq 0.093 \).

On récapitule ces résultats dans le tableau ci-dessous (5.1).

<table>
<thead>
<tr>
<th>Modélisation de l'arête</th>
<th>Poutres</th>
<th>Euler-Bernoulli</th>
<th>Timoshenko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critère</td>
<td>(\phi/\ell \leq 1/3)</td>
<td>(d/\ell \leq 1/15)</td>
<td>(d/\ell \leq 1/8)</td>
</tr>
<tr>
<td>Carrée</td>
<td>0.059</td>
<td>0.009</td>
<td>0.033</td>
</tr>
<tr>
<td>Triangulaire</td>
<td>0.068</td>
<td>0.006</td>
<td>0.022</td>
</tr>
<tr>
<td>Circulaire</td>
<td>0.093</td>
<td>0.015</td>
<td>0.052</td>
</tr>
</tbody>
</table>

Tab. 5.1 – Les densités relatives maximales pour des modélisations valables de : (1) poutres; (2) poutres d'Euler-Bernoulli ; (3) poutres de Timoshenko

Malgré un large éventail des densités relatives des mousses commercialisées, les mousses utilisées pour l’absorption de choc ont en général une densité relative qui se situe autour de 0.05. On ne remet pas en cause l’utilisation des poutres pour modéliser ce type de matériau, mais on remarque qu’à ces valeurs de \(d_r \), il serait peut-être préférable de ne pas considérer les arêtes comme étant des poutres minces. C’est pour cette raison, sauf pour faire des comparaisons avec des poutres classiques du type Euler-Bernoulli (élément type B33 dans ABAQUS), que l’on adopte des éléments du type poutres de Timoshenko dans les calculs numériques. Ainsi, on utilise des poutres linéaires de premier ordre (à deux nœuds) basées sur une théorie de poutres tenant compte du cisaillement, de la compression des arêtes et de cinématiques non linéaires permettant des grandes déformations axiales (élément type B31 dans ABAQUS). Le nombre d’éléments utilisé dans les calculs a été déterminé en raffinant le maillage de 1 à 8 éléments de type poutre par arête. D’après les résultats de calcul, on a
considéré qu'un nombre de 4 éléments par arête suffit. Dans ce cas, la cellule CB333 contient 32160 nœuds et 22464 éléments alors que la cellule minimale \(C_{\text{min}} \) ne contient que 91 nœuds et 48 éléments.

Le tableau ci-après (Tab. 5.2) résume les différentes caractéristiques des cellules d'études adoptées. Chaque élément de poutre du type B31 admet un point d'intégration Gaussien sur sa longueur, 17 points d'intégration à travers son épaisseur, et est intégré par le biais des formules de Simpson.

<table>
<thead>
<tr>
<th>Cellule d'étude</th>
<th>Taille du parallélépipède</th>
<th>Nombre de Nœuds</th>
<th>Nombre d'éléments</th>
<th>Nombre équivalent de tétrakaidécaèdres</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{\text{min}})</td>
<td>(a,a,a/2)</td>
<td>91</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>CB</td>
<td>(2a,a,2a)</td>
<td>1936</td>
<td>512</td>
<td>8</td>
</tr>
<tr>
<td>CB3</td>
<td>(2a,a,6a)</td>
<td>5168</td>
<td>1472</td>
<td>24</td>
</tr>
<tr>
<td>CB5</td>
<td>(2a,a,10a)</td>
<td>7894</td>
<td>2432</td>
<td>40</td>
</tr>
<tr>
<td>CB333</td>
<td>(6a,6a,6a)</td>
<td>32160</td>
<td>22464</td>
<td>432</td>
</tr>
</tbody>
</table>

Tab. 5.2 – Résumé sur les cellules d'étude adoptées : taille, nombres de nœuds, d'éléments et de tétrakaidécaèdres

5.3.2 Section des arêtes

Chaque poutre formant le réseau de cellules tétrakaidécaédiqques est à l’intersection d’un carré et de deux hexagones. C'est pour cette raison que les sections des arêtes peuvent être modélisées par des triangles [Zhu et al., 1997a], ou encore par des sections formées de trois arcs circulaires en contact [Plateau, 1873]. Pour passer outre les problèmes de définition intrinsèque des axes d'inertie, on propose d'étudier une section circulaire définie à partir d'une équivalence en inertie à une section triangulaire. En effet, dans le comportement des poutres en flexion, le terme prépondérant est l'inertie :

\[
\frac{12l^2}{E_sA} \ll \frac{t^4}{E_sI_1}. \tag{5.17}
\]

D'où en considérant une section circulaire et en remplaçant \(A \) et \(I_1 \) dans (5.17) par leurs expressions en fonction du rayon \(r \), on obtient \(r/l \ll 1/\sqrt{3} \). D’après (5.16), ceci est vérifié pour \(d_e \ll 1 \).

On se propose donc de partir des données d'une section triangulaire \((b,d_r^\Delta \text{ et } t^\Delta)\) pour déterminer celles de la section circulaire équivalente \((r,d_r^O \text{ et } t^O)\) :

1. On impose une équivalence en inertie :

\[
I_1^O = I_1^\Delta, \tag{5.18}
\]
5.3. DISCRÉTISATION DU PROBLÈME

avec

\[
\begin{aligned}
I^\square_1 &= \frac{\pi r^4}{4} : \text{ le moment d'inertie de la section circulaire} \\
I^\triangle_1 &= \frac{\sqrt{3}}{96} b^4 : \text{ le moment d'inertie de la section triangulaire}
\end{aligned}
\]

(5.19)

D'où :

\[r = \left(\frac{\sqrt{3}}{24\pi}\right)^{\frac{1}{2}} b. \]

(5.20)

On obtient donc directement le rayon \(r \) de la section circulaire à partir du côté \(b \) de la section triangulaire.

2. On considère la même densité relative :

\[d_r^\square = d_r^\triangle. \]

(5.21)

Ce qui, d'après (5.16), donne :

\[\frac{r}{l} = \sqrt{\frac{2\sqrt{2}}{3\pi} d_r}. \]

(5.22)

On obtient donc la longueur \(l \) de la poutre à section circulaire à partir de la densité relative \(d_r \) de la section triangulaire et du rayon \(r \) précédemment calculé.

On note que la densité relative \(d_r \) exprimée en fonction de la section \(A \) de la poutre dans (5.13), peut être également exprimée en fonction du moment d'inertie \(I_1 \). Dans ce cas, l'expression dépend de la forme de la section à travers un paramètre \(\theta_{\text{sect}} \) :

\[d_r = \theta_{\text{sect}} \frac{\sqrt{I_1}}{l^2}. \]

(5.23)

Pour les cas d'une section triangulaire et d'une section circulaire, on a :

\[
\begin{aligned}
\theta_\triangle &= \frac{3\sqrt{3}}{2} (3)^{\frac{1}{2}} \\
\theta_\square &= \frac{3}{\sqrt{2}} \sqrt{\pi}
\end{aligned}
\]

(5.24)

Comme on prend une même densité relative \(d_r \) et un même moment d'inertie \(I_1 \) pour les deux sections, on peut donc calculer la longueur \(l_\square \) de la poutre à section circulaire à partir de la longueur \(l_\triangle \) de la poutre à section triangulaire :

\[l_\square = \frac{\theta_\square}{\theta_\triangle} l_\triangle = \sqrt{\left(\frac{2\pi}{3\sqrt{3}}\right) l_\triangle}. \]

(5.25)
Application numérique :

En partant, par exemple, des données de la section triangulaire de Zhu et al. [Zhu et al., 1997] :

\[
\begin{align*}
 b &= 3 \times 10^{-5} \text{ m} \\
 d_r &= 0.0252, \\
 (\text{donc} \quad l &= 1.28 \times 10^{-4} \text{ m})
\end{align*}
\]

(5.26)

on obtient les données correspondant à la section circulaire équivalente :

\[
\begin{align*}
 r &= 1.17 \times 10^{-5} \text{ m} \\
 l &= 1.34 \times 10^{-4} \text{ m}
\end{align*}
\]

(5.27)

On note que les résultats en contrainte sont donnés suivant un adimensionnement qu'on exposera plus loin, et que pour étudier différentes valeurs de la densité relative de la mousse, on fera varier la longueur \(l \) des poutres.
Chapitre 6
Compression et déformation uniaxiales

Dans ce chapitre, on définit le mode de chargement sur la structure périodique. Puis on l’applique aux deux premiers cas de chargements considérés : la compression et la déformation uniaxiales. Ensuite on détaillle les calculs numériques réalisés.

6.1 Définition du chargement

Par définition, le tenseur gradient de transformation est tel que :

\[dx = F \cdot dX \] \hspace{1cm} (6.1)

où \(X\) et \(x\) sont respectivement les positions d’un point matériel dans la configuration de référence et dans la configuration actuelle.

Soit \(u\) le vecteur déplacement de ce point matériel \((u(X) = x - X)\). Comme il s’agit d’un milieu périodique, les champs de déplacements cinématiquement admissibles avec la périodicité sont de la forme :

\[
\begin{aligned}
\{ u(X) &= E \cdot X + u^{\text{per}} \\
\varphi &= \varphi^{\text{per}}
\end{aligned}
\] \hspace{1cm} (6.2)

où \(\varphi\) est le vecteur rotation du point matériel, \(E\) est le tenseur de déformation de Biot défini par :

\[E = F - I \] \hspace{1cm} (6.3)

et \(u^{\text{per}}\) et \(\varphi^{\text{per}}\) sont respectivement des champs de déplacement et de rotation périodiques.

Sur une cellule d’étude, les conditions de périodicité lient les nœuds situés sur ces bords. La structure infinie est obtenue, à partir des cellules notées CB, CB3, CB5 et CB333, par translations de \(h\), où \(h\) est la hauteur de la cellule suivant la direction \(e_i\). Les nœuds associés par les conditions de périodicité sont alors les paires de nœuds situés sur les faces opposées du parallélépipède dans lequel s’inscrit la cellule d’étude (faces situées à \(X_i = \pm h_i/2\) et \(X_i = -h_i/2\)).

Cependant, pour la cellule minimale \(C_{\text{min}}\), les vecteurs directeurs du réseau périodique ne coïncident pas avec les axes principaux du parallélépipède dans lequel s’inscrit la cellule. On
schématise les nœuds associés par la périodicité dans la Fig. 5.1 par des boules de même couleur et de même numéro \(n_i \) avec \(i = 5 \) ou \(i = 6 \).

Pour faciliter la mise en équation des conditions de périodicité, on introduit les notations suivantes :
- \(C \) désigne la cellule d’étude ;
- \(\partial C^{i+} \) et \(\partial C^{i-} \) désignent les faces au bord de \(C \), respectivement normales à \(e_i \) et \(-e_i \);
- \(X^{i+} \) et \(X^{i-} \) désignent les vecteurs positions dans la configuration de référence des nœuds associés, respectivement situées sur \(\partial C^{i+} \) et \(\partial C^{i-} \);
- \(\dot{U}^{i+} \) et \(\dot{U}^{i-} \) sont les déplacements totaux de ces nœuds associés ;
- \(\dot{\varphi}^{i+} \) et \(\dot{\varphi}^{i-} \) sont leurs rotations.

Ainsi, excepté pour \(C_{\text{min}} \), on a \(X_i^{j+} = X_j^{i-} \) pour \(j \neq i \) et \(X_i^{i+} = X_i^{i-} + h_i \).

6.1.1 Déformation imposée

Dans un problème où le chargement est imposé par la donnée de \(\underline{F} \), les conditions de périodicité sur le déplacement total sont données par :

\[
\begin{align*}
\left\{ \begin{array}{l}
\dot{U}^{i+} - \dot{U}^{i-} = \underline{F} \times (X^{i+} - X^{i-}) \\
\dot{\varphi}^{i+} - \dot{\varphi}^{i-} = 0
\end{array} \right. \\
\end{align*}
\tag{6.4}
\]

On appelle une déformation uniaxiale le cas d’une déformation cédimétrique, c’est-à-dire le cas où seule une composante diagonale du tenseur des déformations est non nulle. Une déformation uniaxiale d’intensité \(\lambda \) suivant \(e_3 \) est définie par \(\underline{E} = \lambda e_3 \otimes e_3 \). Ce qui revient à imposer aux degrés de liberté des couples de nœuds associés les conditions suivantes :

\[
\begin{align*}
\left\{ \begin{array}{l}
\dot{U}^{1+} - \dot{U}^{1-} = 0 \\
\dot{U}^{2+} - \dot{U}^{2-} = 0 \\
\dot{U}^{3+} - \dot{U}^{3-} = \lambda h_3 e_3 \\
\dot{\varphi}^{i+} - \dot{\varphi}^{i-} = 0
\end{array} \right. \\
\end{align*}
\tag{6.5}
\]

En outre, pour des raisons de stabilité numérique, on élimine les déplacements de solides rigides en annulant les déplacements horizontaux \(u_1, u_2 \) et la rotation \(\varphi_3 \) d’un nœud de la cellule d’étude (autre que les nœuds du bord).

Il est à noter que cette façon d’imposer le chargement ne fait pas intervenir le comportement du matériau. Elle est donc valable aussi bien en petites perturbations qu’en grandes déformations.

6.1.2 Cas de la compression uniaxiale

Une compression uniaxiale est un chargement où seule une composante diagonale du tenseur des contraintes est non nulle. Une compression suivant l’axe \(e_3 \) est définie par le tenseur de contraintes macroscopique de Boussinesq (ou premier tenseur de Piola-Kirchhoff) :

\(\Sigma = \Sigma_{33} e_3 \otimes e_3 \). Sachant que les conditions de périodicité de la forme (6.4) doivent être réalisées, le problème devient le suivant : définir \(\underline{E} \) de manière à ce que la contrainte macro
résultante soit une compression uniaxiale. Pour résoudre ce problème, on se donne \(E_{33} \) tandis que les \(E_{ij}(i,j)\neq(3,3) \) sont considérés comme des degrés de liberté inconnus. En effet, on rappelle que dans le cas de l’élasticité, le premier tenseur des contraintes de Piola-Kirchhoff est défini par :

\[
\Sigma(F) = \frac{\partial W^{\text{hom}}(F)}{\partial F}.
\]

(6.6)

où \(W^{\text{hom}} \) est la densité d’énergie de déformation homogénéisée. Par conséquent, la stationnarité de l’énergie de déformation de la cellule d’étude à l’équilibre implique :

\[
\frac{\partial W^{\text{hom}}}{\partial E_{ij}} = \frac{\partial W^{\text{hom}}}{\partial F_{ij}} = \Sigma_{ij} = 0 \quad \text{pour} \quad (i,j) \neq (3,3).
\]

(6.7)

C’est pourquoi on choisit, pour chaque paire de faces opposées \((\partial C^{i+}, \partial C^{i-}) \), une paire de nœuds associés de référence \((\Sigma^i_{\text{ref}})^+, (\Sigma^i_{\text{ref}})^- \). Leurs déplacements et rotations sont respectivement notés \((U^{i+}_{\text{ref}}, U^{i-}_{\text{ref}}) \) et \((\phi^{i+}_{\text{ref}}, \phi^{i-}_{\text{ref}}) \). Et les conditions de périodicité deviennent :

1. sur les paires de nœuds de référence

\[\phi^{i+}_{\text{ref}} - \phi^{i-}_{\text{ref}} = 0; \]

2. sur les nœuds associés de \((\partial C^{1+}, \partial C^{1-}) \)

\[
\begin{align*}
(U^{1+} - U^{1-}) - (U^{1+}_{\text{ref}} - U^{1-}_{\text{ref}}) &= 0, \\
\phi^{1+} - \phi^{1-} &= 0;
\end{align*}
\]

3. sur les nœuds associés de \((\partial C^{2+}, \partial C^{2-}) \)

\[
\begin{align*}
(U^{2+} - U^{2-}) - (U^{2+}_{\text{ref}} - U^{2-}_{\text{ref}}) &= 0, \\
\phi^{2+} - \phi^{2-} &= 0;
\end{align*}
\]

4. sur les nœuds associés de \((\partial C^{3+}, \partial C^{3-}) \)

\[
\begin{align*}
(U^{3+} - U^{3-}) - (U^{3+}_{\text{ref}} - U^{3-}_{\text{ref}}) &= 0, \\
(U^{3+}_{2} - U^{3-}_{2}) - (U^{3+}_{2\text{ref}} - U^{3-}_{2\text{ref}}) &= 0, \\
\phi^{3+} - \phi^{3-} &= \lambda h_3.
\end{align*}
\]

De plus, on annule les mouvements rigifiants en fixant un nœud de la cellule d’étude (hormis les bords) en translation suivant les trois axes et en rotation autour de l’axe \(c_3 \).

6.2 Études numériques

La densité relative des mousse à porosité ouverte varie généralement de 0.02 à 0.1. Les résultats présentés dans le chapitre suivant concernent un réseau de cellules tétraédriques dont la densité relative est de 0.06. Les arêtes de ces cellules sont modélisées par
des poutres de Timoshenko. Les calculs sont faits sur une cellule minimale C_{min} $(a,a,a/2)$, puis la cellule dite de base CB $(2a,a,2a)$, ensuite sur trois cellules de base CB3 $(6a,a,2a)$ et enfin sur cinq cellules de base CB5 $(10a,a,2a)$ superposées selon l’axe de chargement prépondérant e_3 (Fig. 5.3 et (a) et (b) de Fig. 5.4). On rappelle que des cas où la cellule a été doublée suivant l’axe e_2 ont été étudiés pour vérifier l’invariance des résultats suivant cet axe (Fig. 5.6).

6.2.1 Élasticité linéaire en petites perturbations

Pour vérifier que l’on retrouve bien les résultats déjà obtenus analytiquement par certains auteurs, on réalise une première étude numérique dans le cadre de l’hypothèse des petites perturbations.

En déformation uniaxiale, le module apparent, dit oedrométrique, suivant la direction e_3 est donné analytiquement par :

$$ E^{\text{app}}_m = \frac{E_m(1 - \nu_m)}{(1 + \nu_m)(1 - 2\nu_m)} = \frac{E_m}{2\nu_m^2 + 1}. $$

(6.8)

L’énergie de déformation macroscopique est :

$$ W^{\text{macro}} = \frac{1}{2} E^{\text{app}}_m E_{33}^2 V_{CE}, $$

(6.9)

où V_{CE} est le volume apparent de la cellule d’étude (par exemple $V_{CE} = 4a^3$ pour la CB).

L’énergie de déformation microscopique W^{micro} est calculée par ABAQUS. Par homogénéisation, on a :

$$ W^{\text{micro}} = W^{\text{macro}} = W^{\text{hom}}. $$

(6.10)

Et comme la déformation de Biot est donnée par $E_{33} = (U_{3}^{3+} - U_{3}^{3-})/h_3$, $(h_3 = 2a$ pour la CB, $6a$ pour la CB3 et la CB333, et $10a$ pour la CB5), alors on peut retrouver le module oedrométrique numériquement à partir de :

$$ E^{\text{app}}_m = \frac{2h_3^2 W^{\text{hom}}}{(U_{3}^{3+} - U_{3}^{3-})^2 V_{CE}}. $$

(6.11)

En compression uniaxiale, l’énergie de déformation macroscopique est :

$$ W^{\text{macro}} = \frac{1}{2} E_m E_{33}^2 V_{CE}, $$

(6.12)

Par le même raisonnement, on peut retrouver le module de Young numériquement à partir de :

$$ E_m = \frac{2h_3^2 W^{\text{hom}}}{(U_{3}^{3+} - U_{3}^{3-})^2 V_{CE}}. $$

(6.13)
De plus, en notant par γ_i la déformation suivant l’axe e_i, on peut vérifier que l’on a bien, dans le cas de la compression uniaxiale, $\gamma_1 = \gamma_2$, à partir de :
\[
\gamma_1 = \frac{U_1^+ - U_1^-}{h_1} \quad \text{et} \quad \gamma_2 = \frac{U_2^+ - U_2^-}{h_2},
\]
(6.14) où h_i est la hauteur de la cellule d’étude suivant e_i. Après vérification de l’égalité $\gamma_1 = \gamma_2 = \gamma$, en raison de la symétrie cubique du modèle, on peut procéder au calcul du coefficient de Poisson apparent :
\[
\nu_m = -\frac{\gamma}{E_{33}}.
\]
(6.15)

L’énergie de déformation W^{micro} et les déplacements aux nœuds U_i^+ et U_i^- étant donnés par les résultats du calcul ABAQUS, on peut alors procéder à une comparaison avec les valeurs attendues de E_{33}^a, E_m et ν_m.

6.2.2 Élasticité linéaire en grandes transformations

Dans le cas de l’élasticité en grandes transformations, on peut tracer la courbe $\Sigma_{33} - E_{33}$, de la compression uniaxiale ou de la déformation uniaxiale, à partir de l’énergie de déformation W^{micro} obtenue numériquement par le biais de la formule :
\[
\Sigma_{33} = \frac{\partial W_{\text{hom}}}{\partial E_{33}} = \frac{1}{V_C} \frac{\partial W^{\text{micro}}}{\partial E_{33}}.
\]
(6.16)

On rappelle que dans le cas de la compression uniaxiale, le comportement élastique linéaire en grandes transformations a déjà fait l’objet d’une étude analytique avec des poutres d’Euler-Bernoulli [Zhu et al., 1997b]. La contrainte adimensionnelle ($\Sigma^* = \Sigma/E_{33}^d$) et la déformation suivant l’axe de chargement e_3 sont données par :
\[
\left\{ \begin{array}{l}
\Sigma_{33}^* \quad = \quad \frac{2\sqrt{2}}{3} \frac{l}{l^2} \left(K[p^2] - E[\delta, p^2] \right)^2 \\
E_{33} \quad = \quad 1 - \sqrt{2} \left(\frac{E[p^2]}{K[p^2]} - \frac{E[\delta, p^2]}{K[\delta, p^2]} - 1 \right)
\end{array} \right.,
\]
(6.17)
avec :
\[
\left\{ \begin{array}{l}
p \quad = \quad \sin \frac{\chi}{2} \\
\delta \quad = \quad \arcsin \frac{\sin \frac{\psi}{2}}{\sin \frac{\chi}{2}} \\
\psi \quad = \quad 45^\circ \\
\chi \quad \in \quad [\psi, 176^\circ]
\end{array} \right.,
\]
(6.18)
et où on note par :
- $F[\phi, m]$: l’intégrale elliptique de premier type

$$F[\phi, m] = \int_0^\phi \frac{1}{\sqrt{1 - m \sin^2 \theta}} \, d\theta \quad \text{où} \quad \frac{-\pi}{2} \leq \phi \leq \frac{\pi}{2}; \quad (6.19)$$

- $K[m]$: l’intégrale elliptique complète de premier type

$$K[m] = F[\frac{\pi}{2}, m]; \quad (6.20)$$

- $E[\phi, m]$: l’intégrale elliptique de deuxième type

$$E[\phi, m] = \int_0^\phi \sqrt{1 - m \sin^2 \theta} \, d\theta \quad \text{où} \quad \frac{-\pi}{2} \leq \phi \leq \frac{\pi}{2}; \quad (6.21)$$

- $E[m]$: l’intégrale elliptique complète de deuxième type

$$E[m] = E[\frac{\pi}{2}, m]. \quad (6.22)$$

Afin de procéder à une comparaison avec le résultat numérique, ce résultat analytique a été programmé sur MATHEMATICA.

6.2.3 Flambement élastique

Outre le fait des non-linéarités géométriques engendrées par les grands déplacements que subit le matériau, il existe un autre phénomène qui expliquerait le palier obtenu et raison pour laquelle les mousse présentent un intérêt pour l’absorption d’énergie lors d’un choc. D’après les observations lors des expériences, les arêtes des mousse subissent des microflambements ou des flambements globaux tout en s’écrasant de façon importante à de faibles niveaux de contrainte. Ce phénomène a été observé par Pradel et Alaoui en dessinant un grillage sur un échantillon de mousse de caril (voir Fig. 6.1).

![Flambement global d'une mousse de caril](image)

Fig. 6.1 - Flambement global d’une mousse de caril [F. Pradel et A. Alaoui]

On s’intéresse, dans un premier temps, à l’étude du flambement des mousse pour les deux cas de chargement de déformation et de compression uniaxiales, sur les différentes tailles des
cellules d'étude. ABAQUS dispose de deux méthodes pour calculer les charges critiques de flambement. Une première, dite méthode du "subspace", consiste à décomposer le problème en plusieurs sous-problèmes et est utile dans le cas où l'on recherche plus des 20 premières valeurs propres. La deuxième, qui est celle qu'on a utilisée puisqu'on ne s'intéresse qu'à la première valeur propre, est la méthode de Lanczos. La valeur de la charge critique donnée par ABAQUS correspond à un facteur \(\lambda \) qui multiplié par la déformation imposée donne la déformation critique de flambement. Pour cette raison, dans le fichier de données, on impose une différence de déplacement égale à 1 entre les nœuds de la face supérieure et ceux de la face inférieure, et on déduit directement la déformation critique de chargement en divisant \(\lambda \) par la hauteur de la cellule d'étude.
CHAPITRE 6. COMPRESSION ET DÉFORMATION UNIAXIALES
Chapitre 7

Résultats et discussions

Les résultats obtenus sont représentés en utilisant la contrainte adimensionnelle Σ^* par le module de Young du solide E_s multiplié par le carré de la densité relative d_r de la mousse ($\Sigma^* = \Sigma/(E_s d_r^2)$).

7.1 Élasticité linéaire en petites perturbations

- D'une part, les résultats des calculs numériques faits sur différentes tailles de cellules sont les mêmes (erreur relative maximale de 0.07 %). Ce qui est prévisible : quel que soit le chargement imposé, en H.P.P. une cellule minimale telle que la C_{min} suffit pour retrouver les caractéristiques mécaniques du réseau périodique. Ceci parce qu'en petites perturbations l'énergie de déformation est convexe.

- D'autre part, ces résultats correspondent aux résultats analytiques de Pradel et de Zhu et al. [Pradel, 1998, Zhu et al., 1997] avec une erreur relative maximale de 1.4 %. Différence probablement due à l'hypothèse de poutres d'Euler-Bernoulli dans les expressions analytiques. Plus précisément, à partir d'une compression uniaxiale on retrouve bien le module de Young apparent dans la direction de chargement prépondérant ϵ_3 donné analytiquement par (5.8) et le coefficient de Poisson apparent de la mousse donné analytiquement par (5.9). De plus, en n'imposant qu'une différence de déplacement entre deux couples de nœuds, on vérifie bien que l'on a $\gamma_1 = \gamma_2$. On retrouve aussi à partir d'une déformation uniaxiale le module cédométrique donné analytiquement par (6.8).

7.2 Élasticité linéaire en grandes transformations

Dans les calculs réalisés numériquement sur ABAQUS, on a vérifié que :
- les courbes de la compression uniaxiale des CB, CB3 et CB5, et le résultat analytique sont presque confondus (Fig. 7.1);
- en compression et en déformation uniaxiales, les pentes initiales sont identiques à celles obtenues dans les analyses correspondantes en petites perturbations (Fig. 7.1 pour la compression uniaxiale et Fig. 7.2 pour la déformation uniaxiale);
- pour les deux cas de chargements, les résultats ne varient presque pas lorsqu’on fait croître la taille de la cellule d’étude.

![Graphique 7.1 - Courbes contrainte adimensionnelle-déformation des CB, CB3 et CB5 en compression uniaxiale](image1)

![Graphique 7.2 - Courbes contrainte adimensionnelle-déformation des CB et CB3 en déformation uniaxiale](image2)

Cependant, pour ces cellules d’étude avec une dimension latérale maximale de 2a (a étant la hauteur d’un tétrakaidécadre), les analyses géométriquement non linéaires, comme les calculs analytiques de [Zhu et al., 1997], ne présentent pas le palier observé expérimentalement et qui caractérise les courbes contrainte-déformation (ou force-déplacement) de ce type de matériau.
7.3 Flambement élastique

- Dans le cas de la déformation uniaxiale, la taille de la cellule de base CB est suffisante pour une étude de flambement. En effet, on obtient la même valeur de la charge critique que celle de la CB3 (Fig. 7.2). De plus, le mode de flambement est également le même (Fig. 7.3 et Fig. 7.4) dans le sens où l’on obtient le mode de flambement de la CB3 par superposition des trois CB en flambement : on l’appelle mode de flambement “local”.

Fig. 7.3 – Premier mode de flambement de la CB en déformation uniaxiale : vues suivant les plans \((x_1, x_3)\) et \((x_2, x_3)\)

Fig. 7.4 – Premier mode de flambement de la CB3 en déformation uniaxiale : vues suivant les plans \((x_1, x_3)\) et \((x_2, x_3)\)
Dans le cas de la compression uniaxiale, la valeur de la charge critique de flambement de la CB3 est inférieure à celle de la CB (Fig. 7.1). Une seule cellule de base n’est donc plus représentative dans ce cas de chargement (Fig. 7.5). Pour vérifier que la CB3 est suffisante, on a construit la CB5. Les charges critiques obtenues pour la CB3 et la CB5 sont les mêmes. Cependant, le mode de déformation de la CB5 n’est pas obtenu par superposition de modes de la CB3. Il s’agit plutôt de la même forme mais avec une longueur d’onde plus grande : on l’appelle mode de flambement global (Fig. 7.6 et Fig. 7.7).

Fig. 7.5 – Premier mode de flambement de la CB en compression uniaxiale (vues suivant les plans \((x_1, x_3)\) et \((x_2, x_3)\))

Fig. 7.6 – Premier mode de flambement de la CB3 en compression uniaxiale (vues suivant les plans \((x_1, x_3)\) et \((x_2, x_3)\))
7.3. FLAMBEMENT ÉLASTIQUE

Fig. 7.7 – Premier mode de flambement de la CB5 en compression uniaxiale (vues suivant les plans \((x_1, x_3)\) et \((x_2, x_3)\))

Afin de mieux illustrer la notion de flambement global, on a superposé schématiquement plusieurs CB3 déformées suivant le plan \((x_2, x_3)\). On voit bien dans Fig. 7.8, que cette superposition ne donne pas lieu au mode de la CB5 (Fig. 7.7).

Fig. 7.8 – Superposition des modes de déformation de la CB3 en compression uniaxiale

Suite à ces études, on déduit que, bien qu’une cellule minimale telle que la \(C_{\text{min}}\) soit suffisante pour déterminer les propriétés élastiques du réseau, son analyse de flambement donne lieu à des modes de déformation symétriques de plus grande énergie que les modes de déformation non symétriques engendrés par une cellule d’étude plus grande. D’autre part, puisque pour la déformation uniaxiale une CB suffit alors que pour la compression uniaxiale il faut la CB3, on en déduit que le nombre de cellules nécessaire à une analyse de flambement dépend du chargement (Fig. 7.9). A noter que pour ces calculs, on a vérifié qu’en doublant latéralement la CB et la CB3, engendrant des cellules de tailles \((2a,2a,2a)\) et \((2a,2a,6a)\), les résultats sont les mêmes. Ce qui veut dire que c’est suivant l’axe de chargement prépondérant que l’on doit étudier le nombre de cellules nécessaires.
7.4 Postflambement élastique

Étant donné que le plateau caractéristique du comportement des mousse n’a pas été obtenu par une analyse géométriquement non linéaire classique, on procède à une analyse de postflambement en introduisant une imperfection dans la géométrie des cellules. Le défaut géométrique est un faible pourcentage p du premier mode de flambement obtenu sur la structure parfaite. On réalise ensuite un calcul géométriquement non linéaire. Résultat : Sans aller jusqu’à la densification, où l’on doit tenir compte des contacts dans la modélisation, les courbes contrainte-déformation obtenues présentent bien le palier mis en évidence par les expériences. Pour la déformation uniaxiale comme pour la compression uniaxiale, ce plateau se trouve au niveau de la charge critique de flambement correspondante (Fig. 7.10 et Fig. 7.11). De plus, on remarque que la taille de la cellule d’étude nécessaire pour le postflambement est la même que celle nécessaire pour le flambement [Laroussi et al., 2000].

On note que lorsque l’imperfection introduite, en pourcentage p du mode de flambement, est trop faible (par exemple $p = 0.1\%$ dans le cas de la déformation uniaxiale), la structure se comporte comme si elle était parfaite, et on obtient une courbe confondue avec celle obtenue dans une analyse non linéaire sans introduction d’imperfection. Alors que lorsque l’imperfection est trop grande (6% dans ce cas), on s’éloigne de la bifurcation qui a lieu au niveau de la charge critique de flambement. Pour p variant de 0,5% à 4%, on a des courbes initialement tangentes à la pente élastique linéaire apparente, puis asymptotiquement tangentes (avec un faible raidissement) à la droite horizontale correspondant à la charge critique de flambement. Entre les deux, les courbes se rejoignent en s’éloignant en dessous du point de bifurcation lorsque l’imperfection est plus grande.
7.4. POSTFLAMBEMENT ÉLASTIQUE

FIG. 7.10 – Courbes contrainte adimensionnelle-déformation en compression uniaxiale dans les deux cas de modes de déformation symétriques et “non symétriques”

FIG. 7.11 – Courbes contrainte adimensionnelle-déformation en déformation uniaxiale dans les deux cas de modes de déformation symétriques et “non symétriques”
On rappelle que les non-linéarités géométriques font que le potentiel énergie de déformation n'est plus convexe. On rappelle également que dans ce cas, d'après Müller [Müller, 1987], pour une structure périodique, il faut procéder à une homogénéisation sur des cellules de plus en plus grandes. Pour les études de flambement, on les a bien réalisé sur des cellules de plus en plus grandes jusqu'à convergence des résultats. Pour les études en grandes transformations, on a commencé par initier le flambement en introduisant une imperfection. La question qui se pose est que, si on suit le même raisonnement que pour les études de flambement, n'obtient-on pas le plateau sans introduire d'impérfections, mais en considérant une cellule d'étude suffisamment grande ?

En conduisant une étude géométriquement non linéaire en déformation uniaxiale sur la CB333 de dimensions (6a,6a,6a), on obtient bien un plateau. De plus ce plateau est au niveau de la charge critique de flambement (FIG. 7.12).

FIG. 7.12 - Courbe contrainte adimensionnelle-déformation de la CB333 en déformation uniaxiale

Dans la **FIG. 7.13**, on voit le mode de déformation de la CB333 en déformation uniaxiale. Ce mode est issu du calcul en grandes transformations sur une structure parfaite.
Fig. 7.13 – Déformation uniaxiale de la CB333 à $E_{33} = 0.16$: flambement structural
Troisième partie

Surfaces de charge des mousses
Introduction

Après avoir mis en évidence le rôle du flambement dans le comportement des mousse
en compression et en déformation uniaxiales, on approfondit l'étude du flambement en
considérant des chargements multiaxiaux. On rappelle qu'une surface de charge est l'en-
semble des charges critiques de flambement. On la représente dans l'espace des contraintes
adimensionnelles. On rappelle également qu'il y a deux types de surface de charge : la surface
de charge micro et la surface de charge macro. La première est obtenue soit en considérant
des variations de déplacement périodiques sur des cellules de plus en plus grandes, soit en
considérant sur une cellule des variations de déplacement non périodiques sous forme d'ondes
de Bloch. La seconde n'est autre qu'un cas particulier de la méthode par ondes de Bloch.
Elle est obtenue dans le cas où le vecteur nombres d'onde tend vers zéro.
Dans le chapitre 4, on a défini une nouvelle surface de charge qu'on a appelée surface de
charge mixte. Elle correspond au cas où on considère le vecteur nombres d'onde égal à zéro
ou tendant vers zéro. C'est un cas singulier où les deux résultats sont différents. Le premier
correspond à des variations de déplacements périodiques, le second correspond à des varia-
tions de déplacements de grandes longueurs d'onde.
Dans cette partie, on procède au calcul de deux surfaces de charge. La surface micro qu'on
étudie en considérant des cellules de plus en plus grandes et la surface mixte qu'on a in-
troduite. La surface de charge obtenue est par la suite comparée aux résultats d'une étude
expérimentale sur une mousse réelle.
Chapitre 8

Surfaces de charge des mousses à porosité ouverte

8.1 Chargements imposés

On considère les chargements situés dans les deux plans suivants:
- plan $\Sigma_1 = \Sigma_2$ défini par un tenseur de déformations macroscopique:

$$
\mathbf{E} = \begin{pmatrix}
\alpha \mathbf{E}_3 & 0 & 0 \\
0 & \alpha \mathbf{E}_3 & 0 \\
0 & 0 & \mathbf{E}_3
\end{pmatrix},
$$

(8.1)

donnant lieu à un tenseur de contraintes macroscopique:

$$
\Sigma = \begin{pmatrix}
\beta \Sigma_3 & 0 & 0 \\
0 & \beta \Sigma_3 & 0 \\
0 & 0 & \Sigma_3
\end{pmatrix},
$$

(8.2)

où, en H.P.P.,

$$
\alpha = \frac{\beta(1 - \nu_m) - \nu_m}{1 - 2\nu_m\beta},
$$

(8.3)

et

$$
\mathbf{E}_3 = \frac{\Sigma_3}{E_m}(1 - 2\nu_m\beta),
$$

(8.4)

avec E_m le module de Young de la mousse et ν_m son coefficient de Poisson;
- plan $\Sigma_2 = 0$ défini par un tenseur de déformations macroscopique:

$$
\mathbf{E} = \begin{pmatrix}
\alpha_1 \mathbf{E}_3 & 0 & 0 \\
0 & \alpha_2 \mathbf{E}_3 & 0 \\
0 & 0 & \mathbf{E}_3
\end{pmatrix},
$$

(8.5)

93
donnant lieu à un tenseur de contraintes macroscopique :
\[
\Sigma = \begin{pmatrix}
\beta \Sigma_3 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \Sigma_3 \\
\end{pmatrix},
\]
(8.6)

où, en H.P.P.,
\[
\alpha_1 = \frac{\beta - \nu_m}{1 - \nu_m \beta},
\]
(8.7)
\[
\alpha_2 = \frac{-\nu_m (\beta + 1)}{1 - \nu_m \beta},
\]
(8.8)
et
\[
E_3 = \frac{\Sigma_3}{E_m} (1 - \nu_m \beta^2).
\]
(8.9)

- On note que, à cause de la symétrie cubique engendrée par le choix de cellules tétra-
kaïdécaédriques, on peut déduire les résultats du plan de chargements $\Sigma_1 = 0$ à partir
de ceux du plan de chargements $\Sigma_2 = 0$.

Ces chargements sont imposés par le biais des conditions de périodicité (6.4) appliquées aux
six degrés de liberté des nœuds associés. Suivant le chargement appliqué, on obtient :

1. pour le plan de chargements $\Sigma_1 = \Sigma_2$:
 - sur les nœuds associés de $(\partial C^{1+}, \partial C^{1-})$
 \[
 \begin{align*}
 & \frac{U^{1+} - U^{1-}}{\phi^{1+} - \phi^{1-}} = \alpha h_1 E_3 \xi_1, \\
 & \frac{U^{2+} - U^{2-}}{\phi^{2+} - \phi^{2-}} = 0 \\
 \end{align*}
 \]
 - sur les nœuds associés de $(\partial C^{2+}, \partial C^{2-})$
 \[
 \begin{align*}
 & \frac{U^{2+} - U^{2-}}{\phi^{2+} - \phi^{2-}} = \alpha h_2 E_3 \xi_2, \\
 & \frac{U^{3+} - U^{3-}}{\phi^{3+} - \phi^{3-}} = h_3 E_3 \xi_3.
 \end{align*}
 \]
 - sur les nœuds associés de $(\partial C^{3+}, \partial C^{3-})$
 \[
 \frac{U^{3+} - U^{3-}}{\phi^{3+} - \phi^{3-}} = 0
 \]

2. pour le plan de chargements $\Sigma_2 = 0$:
 - sur les nœuds associés de $(\partial C^{1+}, \partial C^{1-})$
 \[
 \begin{align*}
 & \frac{U^{1+} - U^{1-}}{\phi^{1+} - \phi^{1-}} = \alpha h_1 E_3 \xi_1, \\
 & \frac{U^{2+} - U^{2-}}{\phi^{2+} - \phi^{2-}} = 0
 \end{align*}
 \]
8.1. CHARGEMENTS IMPOSÉS

- sur les nœuds associés de \((\partial C^{2+}, \partial C^{2-})\)

\[
\begin{align*}
\frac{U^{2+}}{\phi^{2+}} - \frac{U^{2-}}{\phi^{2-}} &= \alpha h_2 E_3 \xi_2 ; \\
\frac{U^{3+}}{\phi^{3+}} - \frac{U^{3-}}{\phi^{3-}} &= h_3 E_3 \xi_3.
\end{align*}
\]

De plus, on annule les mouvements rigidiﬁants en fixant en translation un nœud central.

Dans les deux plans de chargements \(\Sigma_1 = \Sigma_2\) et \(\Sigma_2 = 0\), on prend des valeurs de \(\beta\) et de \(\beta'\) variant de -1 à 1 à intervalle de 0.2 (\(\beta\) est le rapport de \(\Sigma_1\) sur \(\Sigma_3\) dans le plan \(\Sigma_1 = \Sigma_2\) et \(\beta'\) est le rapport de \(\Sigma_1\) sur \(\Sigma_3\) dans le plan \(\Sigma_2 = 0\)).

Dans le plan \(\Sigma_2 = 0\), la droite \(\Sigma_3 = \Sigma_1\) est un axe de symétrie (à cause de la symétrie cubique du modèl). On commence donc par faire les calculs sur le quart de plan délimité par la demi-droite \(\Sigma_3 = -\Sigma_1\) (donc \(\beta' = -1\)) avec \(\Sigma_1 > 0\) et \(\Sigma_3 < 0\) et la demi-droite \(\Sigma_3 = \Sigma_1\) (donc \(\beta' = 1\)) avec \(\Sigma_1 < 0\) et \(\Sigma_3 < 0\). Ensuite, on trace sa partie symétrique par rapport à la droite \(\Sigma_3 = \Sigma_1\). On explore ainsi la moitié inférieure du plan délimitée par la droite \(\beta' = -1\). L’autre moitié du plan correspond à des chargements directement opposés à ceux qu’on vient de décrire. Pour avoir leur charge critique de flambement, il sufﬁt de prendre (quand elle existe) la première valeur critique négative des chargements déjà étudiés.

Pour le plan \(\Sigma_1 = \Sigma_2\), pour explorer la moitié du plan, on considère des valeurs supplémentaires pour \(\beta\) (\(\beta = -4; -2; 2\) et 4). De plus, on peut déﬁnir dans ce plan, la valeur de \(\beta\) pour laquelle on a une déformation uniaxiale. Elle est obtenue à partir de (8.3), et pour \(\alpha = 0\):

\[
\beta = \frac{\nu_m}{1 - \nu_m}.
\]

(8.10)

On note que cette valeur de \(\beta\) dépend de la densité relative.

Pour explorer la deuxième moitié du plan, on procède de la même manière que pour le plan \(\Sigma_2 = 0\), en considérant les valeurs critiques négatives.

À partir de ces calculs de flambement, on déduit la déformation critique \(E_3 = \lambda_{cr}/h_3\) où \(h_3\) est la hauteur de la cellule considérée. Puis, suivant le plan de chargements, on calcule les valeurs des contraintes critiques :

- Plan \(\Sigma_1 = \Sigma_2\) :

\[
\begin{align*}
\Sigma_3 &= \frac{E_m}{1 - 2\nu_m\beta} E_3 \\
\Sigma_1 &= \beta \Sigma_3
\end{align*}
\]

(8.11)

- Plan \(\Sigma_2 = 0\) :

\[
\begin{align*}
\Sigma_3 &= \frac{E_m}{1 - \nu_m\beta} E_3 \\
\Sigma_1 &= \beta \Sigma_3
\end{align*}
\]

(8.12)
D’autre part, pour une meilleure interprétation des résultats, on trace les courbes dans le plan (p,q) où :
- p désigne la pression hydrostatique :
 \[p = -\frac{1}{3} \text{tr}(\Sigma) \] \[(8.13) \]
- q désigne la contrainte équivalente de Von-Mises :
 \[q = \sqrt{\frac{3}{2} \text{tr}(S \cdot S)} \] \[(8.14) \]

avec \(S \) le tenseur déviatorique des contraintes défini par :

\[S = \Sigma + p I \] \[(8.15) \]

et avec \(\text{tr}(T) \) la trace du tenseur \(T \) (\(\text{tr}(T) = T : I = T_{ii} \)).

Après calcul, ces valeurs des contraintes deviennent :
- Plan \(\Sigma_1 = \Sigma_2 \) :
 \[
 \begin{align*}
 p &= -\frac{1}{3} \Sigma_3(2\beta + 1) \\
 q &= |\Sigma_3(\beta - 1)|
 \end{align*}
 \] \[(8.16) \]
- Plan \(\Sigma_2 = 0 \) :
 \[
 \begin{align*}
 p &= -\frac{1}{3} \Sigma_3(\beta + 1) \\
 q &= |\Sigma_3|\sqrt{(\beta^2 - \beta + 1)}
 \end{align*}
 \] \[(8.17) \]

L’ensemble des charges critiques de flambement est représenté dans un premier temps dans les plans \((\Sigma_1', \Sigma_2') \) et \((\Sigma_1^* = \Sigma_2', \Sigma_2^* \)). Dans ce cas, on représente donc séparément les plans de chargements \(\Sigma_2 = 0 \) et \(\Sigma_1 = \Sigma_2 \). Puis on le représente dans le plan \((p^*, q^*) \). Ce qui permet de regrouper les deux plans de chargement dans un même plan.

(* désigne l’adimensionnement des contraintes en les divisant par \(E_s d^2_t \)).

8.2 Études numériques

8.2.1 Surface de charge micro

L’étude sur la variation de la valeur de la charge critique de flambement en fonction du nombre de cellules de base (Fig. 7.9 du chapitre 7) a montré que selon qu’il s’agisse d’une déformation uniaxiale ou d’une compression uniaxiale, le nombre de cellules de base nécessaire est différent. Ce qui conduit à étudier la convergence des résultats, pour chaque
chargement, sur plusieurs tailles de cellules d’étude. Pour ce faire, on considère des trajets de chargement de la forme (4.9) et (4.18) :

\[
\mathbf{E}(\lambda, \alpha_1, \alpha_2) = \lambda \mathbf{\tilde{E}}(\alpha_1, \alpha_2) = \lambda \left(\alpha_1 \mathbf{e}_1 \otimes \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 \otimes \mathbf{e}_2 + \mathbf{e}_3 \otimes \mathbf{e}_3 \right).
\]

Pour \(\alpha_1, \alpha_2 \) et \(\lambda \) fixés, on réalise une étude de flambement classique sur la cellule d’étude \(kY \), en utilisant le module de BUCKLE dans ABAQUAS. Ce qui permet de déterminer \(\lambda(\tilde{E}) \) précédemment défini. On note que, comme le chargement est appliqué par le biais des conditions de périodicité (6.4) :

\[
\begin{align*}
U^{i+} - U^{i-} &= \mathbf{\tilde{E}}(\alpha_1, \alpha_2) \cdot (X^{i+} - X^{i-}) , \\
\phi^{i+} - \phi^{i-} &= 0 ,
\end{align*}
\]

il en résulte des variations de déplacements et de rotations \(kY \)-périodiques :

\[
\begin{align*}
\frac{\delta U^{i+}}{\delta \phi^{i+}} - \frac{\delta U^{i-}}{\delta \phi^{i-}} &= 0 , \\
\frac{\delta \phi^{i+}}{\delta \phi^{i-}} - \frac{\delta \phi^{i-}}{\delta \phi^{i+}} &= 0 .
\end{align*}
\]

En faisant varier \(\alpha_1 \) et \(\alpha_2 \), on obtient une surface de charge pour chaque cellule d’étude. La surface de charge micro est alors celle pour laquelle les charges critiques de flambement sont minimales.

8.2.2 Surface de charge mixte

Dans cette approche, on considère les mêmes trajets de chargement ((4.9) et (4.18)). Dans le but de déterminer \(\lambda^{\text{mixte}}(\mathbf{n}) \) pour \(\alpha_1, \alpha_2 \) et un vecteur unitaire \(\mathbf{n} \) fixés, on introduit dans \(Y \) (dans ce cas \(C_{\text{min}} \)) les conditions aux limites suivantes :

\[
\begin{align*}
U^{i+} - U^{i-} &= \lambda \mathbf{\tilde{E}}(\alpha_1, \alpha_2) \cdot (X^{i+} - X^{i-}) + (\mathbf{n} \cdot (X^{i+} - X^{i-})) \mathbf{U} , \\
\phi^{i+} - \phi^{i-} &= 0 ,
\end{align*}
\]

où \(\mathbf{U} \) est un vecteur déplacement inconnu d’un nœud dit virtuel (qui n’appartient pas au maillage du modèle).

Ces équations donnent lieu à des variations des conditions aux limites du type :

\[
\begin{align*}
\delta U^{i+} - \delta U^{i-} &= (\mathbf{n} \cdot (X^{i+} - X^{i-})) \delta \mathbf{U} , \\
\delta \phi^{i+} - \delta \phi^{i-} &= 0 .
\end{align*}
\]

Les variations des déplacements dans ce cas ne sont plus périodiques. Elles correspondent à des variations de la forme (4.15) :

\[
\delta \mathbf{u}(X) = \delta \mathbf{n}^{\text{per}}(X) + (\delta \mathbf{U} \otimes \mathbf{n}) \cdot X .
\]

L’idée est d’appliquer une force, notée \(R \), au nœud virtuel de sorte que le déplacement résultant \(\mathbf{U} \) soit nul. De cette manière, l’application de (8.18) et de \(R \) donne le même chargement défini par (6.4), tandis que les variations sont de la forme (4.15).
Pour calculer R, il suffit de fixer le nœud virtuel et de déterminer la réaction R en ce nœud. Pour α_1 et α_2 fixés, on note que R dépend linéairement de n et λ ($R = \lambda \frac{D}{\nabla} \cdot n$). On calcule alors le tenseur du second ordre D pour $\lambda = 1$, en considérant trois vecteurs de base $n_1 = (1, 0, 0)$, $n_2 = (0, 1, 0)$ et $n_3 = (0, 0, 1)$. Une fois D est déterminé pour α_1 et α_2 donnés, on procède à des calculs de flambement sur différents vecteurs unitaires n.

On note que, pour des conditions de symétrie dans les milieux périodiques, il suffit de faire parcourir n dans un quart de sphère de rayon unité. Ce qui revient à prendre :

\[
\begin{align*}
&n_1 \text{ variant de } 0 \text{ à } 1 \\
&n_2 \text{ variant de } 0 \text{ à } 1 \text{ avec } n_1^2 + n_2^2 \leq 1 \\
&n_3 = \sqrt{1 - (n_1^2 + n_2^2)}
\end{align*}
\]

Suivant l’écart Δn qu’on prend, on parcourt un nombre fini de vecteurs n :

<table>
<thead>
<tr>
<th>Δn</th>
<th>Nombre de n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>26</td>
</tr>
<tr>
<td>0.05</td>
<td>352</td>
</tr>
<tr>
<td>0.01</td>
<td>8050</td>
</tr>
</tbody>
</table>

Tab. 8.1 – Nombres de vecteurs unitaires étudiés

Pour chaque (α_1, α_2), la charge critique λ_c^{mixte} est alors le minimum des $\lambda^{\text{mixte}}(n)$. La surface de charge mixte est donnée par l’ensemble des λ_c^{mixte}.
Chapitre 9

Résultats et discussions

9.1 Détermination des surfaces de charge

9.1.1 Surface de charge micro

Pour une densité relative intermédiaire de 0.06, l’approche par ondes périodiques arbitrées sur différentes tailles de cellules, à partir de la C_{min} jusqu’à la CB333, donne des résultats qui convergent lorsque la taille de la cellule d’étude croît (voir Fig. 9.1 pour une coupe de la surface de charge suivant le plan $\Sigma_1 = \Sigma_2$ et Fig. 9.2 pour une coupe de la surface de charge suivant le plan $\Sigma_2 = 0$). Chaque point de ces courbes correspond à un calcul de flambement sur une cellule d’étude donnée et suivant un chargement donné. Le rapport $\beta = \Sigma_1/\Sigma_3$ (Σ_3 est la contrainte principale macroscopique suivant la direction e_3) est l’inverse de la pente que fait la droite joignant l’origine du repère à la valeur de la charge critique de flambement pour un chargement donné. On voit que la cellule minimale surestime la valeur de la charge critique de flambement pour toutes les valeurs de β calculées dans les deux plans de chargement $\Sigma_1 = \Sigma_2$ et $\Sigma_2 = 0$. Pour la CB, elle est suffisante pour certains cas de chargement, tel que la déformation uniaxiale, mais ne l’est pas dans la plupart des cas. Plus précisément, elle n’est suffisante dans le plan de chargement $\Sigma_2 = 0$ que pour $\beta \in [0,8,1]$. Dans le plan de chargement $\Sigma_1 = \Sigma_2$, elle est suffisante pour $\beta \geq 0.8$. Les CB3 et CB5 donnent le même résultat. Elles sont toutes deux suffisantes pour toutes les valeurs de β dans le plan de chargement $\Sigma_1 = 0$ et pour $\beta \geq -1$ dans le plan de chargement $\Sigma_1 = \Sigma_2$.

D’après ces résultats, on déduit qu’une cellule est suffisante lorsque sa longueur est de 6a suivant la direction de la compression prépondérante.

D’autre part, on note que pour un chargement Σ avec $\beta < 0$, le chargement prépondérant en compression est automatiquement dans la direction e_3. Si on considère le chargement directement opposé $-\Sigma$, les directions de compression prépondérante deviennent e_1 et e_2.

Ce qui implique que, si dans un même calcul de flambement, on veut récupérer la première valeur positive et la première valeur négative des charges critiques de flambement, il faut considérer une cellule de dimension 6a suivant les trois directions : donc la CB333.
Fig. 9.1 – Convergence des surfaces de charge issues d’une analyse par ondes périodiques arbitraires : plan \(\Sigma_1 = \Sigma_2 \)

Fig. 9.2 – Convergence des surfaces de charge issues d’une analyse par ondes périodiques arbitraires : plan \(\Sigma_2 = 0 \)
9.1. DÉTERMINATION DES SURFACES DE CHARGE

L'étude de flambement par ondes périodiques de la CB333 pour divers chargements donne la surface de charge micro. Elle est tracée dans les deux plans de coupe \(\Sigma_1 = \Sigma_2 \) et \(\Sigma_2 = 0 \). On rappelle que, par des considérations de symétrie, le plan \(\Sigma_2 = 0 \) est équivalent au plan \(\Sigma_1 = 0 \). Le nombre de calculs par cellule d'étude fait pour tracer cette surface suivant le plan \(\Sigma_1 = \Sigma_2 \) est de 18. Comme en général, chaque calcul donne une valeur propre positive et une autre négative, le nombre total de valeurs propres tracées est de 29 (Fig. 9.3). Pour le plan de coupe \(\Sigma_2 = 0 \), on a procédé à 16 calculs de flambement, et par des considérations de symétrie en plus des valeurs propres positive et négative par calcul, on trace au total 40 valeurs propres (Fig. 9.4).

On note que pour la déformation uniaxiale, l'erreur relative est de 24.8% entre la \(C_{\text{min}} \) et la CB333 et de 2.2% entre la CB3 et la CB333. Pour la compression uniaxiale, elle est de 71.8% entre la \(C_{\text{min}} \) et la CB333 et de 0% entre la CB3 et la CB333.

Par ailleurs, dans le cas d'une traction pure définie par \(\Sigma = \Sigma_3 \frac{I}{E} \) (donc par \(\beta = 1 \) dans le plan \(\Sigma_1 = \Sigma_2 \)), on voit bien qu'il n'y a pas de charge critique de flambement (Fig. 9.3).

9.1.2 Surface de charge mixte

On réalise l'approche mixte qu'on a définie sur la cellule minimale \(C_{\text{min}} \). On rappelle qu'on l'a appelée mixte parce qu'elle tient compte à la fois du vecteur nombres d'onde qui tend vers zéro, ce qui donne la surface macro, et du vecteur nombres d'onde égal à zéro, ce qui donne des variations périodiques de déplacement sur la cellule d'étude.

La surface de charge mixte obtenue (Fig. 9.3 et Fig. 9.4) coïncide avec la surface de charge micro avec une erreur relative maximale de 3.7%. Pour la déformation uniaxiale, cette erreur relative est de 0.8%. Pour la compression uniaxiale, elle est de 3.1%.

De plus, cette méthode permet d'avoir une information sur la bande de localisation. En effet, \(n \) est la normale à cette bande et \(\delta \mathbf{U} \) renseigne sur la direction de son déplacement. Par exemple, dans la déformation et la compression uniaxiales, les vecteurs obtenus \(n \) et \(\delta \mathbf{U} \) sont respectivement la parallèle et la perpendiculaire à la direction de chargement : la bande de localisation dans ces deux cas est donc une bande de cisaillement pur.

D'autre part, on remarque que pour certains cas de chargement, le vecteur \(\delta \mathbf{U} \) obtenu est nul, ce qui signifie qu'il s'agit d'une onde \(Y \)-périodique. Dans ces cas, la cellule d'étude minimale est suffisante pour prédire le mode de flambement.
FIG. 9.3 – Surfaces de charge micro et mixte dans le plan $\Sigma_1 = \Sigma_2$

FIG. 9.4 – Surfaces de charge micro et mixte dans le plan $\Sigma_2 = 0$
9.1. DÉTERMINATION DES SURFACES DE CHARGE

On rappelle que la surface de charge micro qu’on a obtenue en étudiant des variations de déplacement périodiques sur des cellules de plus en plus grandes, aurait pu être obtenue en étudiant sur une cellule des variations de déplacement non périodiques du type ondes de Bloch. Dans cette dernière étude, il aurait fallu faire la minimisation sur tous les vecteurs nombres d’onde ω. Comme la surface de charge mixte qu’on a étudiée correspond aux deux cas particuliers $\omega = 0$ et $\omega \rightarrow 0$, et comme dans notre cas, elle coïncide avec la surface de charge micro, on peut alors conclure que celle-ci est atteinte soit avec des modes Y-périodiques ($\omega = 0$) soit avec des modes à grande longueur d’onde ($\omega \rightarrow 0$) (voir Fig. 9.5 et Fig. 9.6).

Fig. 9.5 – Surfaces de charge des modes périodiques ou à grandes longueurs d’onde dans le plan $\Sigma_1 = \Sigma_2$

Fig. 9.6 – Surfaces de charge des modes périodiques ou à grandes longueurs d’onde dans le plan $\Sigma_2 = 0$
9.2 Modélisation de la surface de charge

La surface de charge obtenue est modélisée par une surface du type Drucker-Prager inversée (de pente négative ; voir Fig. 9.7). Cette surface est définie par une nouvelle mesure t de la contrainte déviatorique, en termes de pression hydrostatique p, contrainte équivalente de Mises q et troisième invariant de la contrainte déviatorique r :

$$
 t = \frac{q}{2} \left[1 + \frac{1}{K} - \left(1 - \frac{1}{K} \right) \left(\frac{r}{q} \right)^3 \right],
$$

où K est un paramètre qui dépend du matériau et p, q et r sont donnés par :

$$
 p = -\frac{1}{3} \text{tr}(\Sigma) = -\frac{1}{3} \Sigma : I
$$

$$
 q = \sqrt{\frac{3}{2} (\Sigma : \Sigma)}
$$

$$
 r = \left(\frac{9}{2} \Sigma : \Sigma : \Sigma \right)^{1/3}
$$

On note que, dans une compression uniaxiale, $(r/q)^3 = -1$ donc $t = q$. Alors que, dans une tension uniaxiale, $(r/q)^3 = 1$ donc $t = q/K$.

Cette mesure t permet de combiner différentes valeurs de la contrainte dans son plan déviatorique, comme elle permet de procéder à un calage des résultats obtenus précédemment.

La surface de Drucker-Prager est définie par :

$$
 t - p \tan \Theta - \delta = 0,
$$

où Θ est la pente de la surface linéarisée tracée dans le plan (p, t) (Fig. 9.8), et δ son ordonnée t à l’origine $p = 0$.

Dans la Fig. 9.7, on donne deux surfaces : la première correspond au meilleur calage des résultats numériques, mais celui-ci donne lieu à une surface non convexe avec $K = 1.433$. En effet, pour assurer la convexité de la surface de charge, il faut que $1 \leq K \leq 1.285$ La deuxième, avec $K = 1.285$, correspond donc au meilleur calage convexe des résultats numériques.
9.2. MODÉLISATION DE LA SURFACE DE CHARGE

Fig. 9.7 – Surfaces de Drucker-Prager modifiée dans l’espace des contraintes déviatoriques

\[t^* = -2.385(p^*) + 0.251 \quad R^2 = 0.9934 \]

Fig. 9.8 – Surface de Drucker-Prager modifiée dans le plan \((p, t)\)
9.3 Études paramétriques

9.3.1 Densité relative

On rappelle qu’on modélise la section des arêtes par une section circulaire et qu’on déduit son rayon \(r \) et sa longueur \(l \) à partir d’une équivalence en inertie à une section triangulaire de côté \(b \) et de densité relative \(d_r \).

Pour \(b = 310^{-5} \) m (valeur prise par Zhu et al.), à partir de (5.20) on obtient \(r = 1,17 \times 10^{-5} \) m. Pour différentes densités relatives \(d_r^\Delta \) de la section triangulaire (dont celle de Zhu et al. : \(d_r^\Delta = 0.0252 \)), on détermine la longueur de la poutre à partir de (5.22). On en déduit la hauteur a du tétrakaidécaèdre, donnée par :

\[
a = 2\sqrt{2}l.
\]

(9.3)

Puis on recalcul le densité relative \(d_r^O \) correspondante.

Pour différentes valeurs de la densité relative, on obtient le tableau suivant :

<table>
<thead>
<tr>
<th>(d_r^\Delta)</th>
<th>0.02</th>
<th>0.0252</th>
<th>0.04</th>
<th>0.06</th>
<th>0.08</th>
<th>0.1</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a \times 10^{-4}) m</td>
<td>4.26</td>
<td>3.79</td>
<td>3.02</td>
<td>2.462</td>
<td>2.13</td>
<td>1.91</td>
<td>1.35</td>
</tr>
</tbody>
</table>

De plus, pour \(E_s = 46.21 \times 10^6 \) Pa, d’après (5.8) et (5.9) on obtient :

<table>
<thead>
<tr>
<th>(d_r)</th>
<th>0.02</th>
<th>0.0254</th>
<th>0.04</th>
<th>0.06</th>
<th>0.08</th>
<th>0.1</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu_m)</td>
<td>0.4822</td>
<td>0.4776</td>
<td>0.4652</td>
<td>0.4486</td>
<td>0.4325</td>
<td>0.4174</td>
<td>0.3473</td>
</tr>
<tr>
<td>(E_m) (Pa)</td>
<td>11013</td>
<td>17496</td>
<td>42847</td>
<td>95334</td>
<td>167279</td>
<td>254530</td>
<td>941903</td>
</tr>
<tr>
<td>(E_m^o)</td>
<td>0.5895</td>
<td>0.5868</td>
<td>0.5793</td>
<td>0.5694</td>
<td>0.5597</td>
<td>0.5506</td>
<td>0.5085</td>
</tr>
</tbody>
</table>

Par ailleurs, on note que, en négligeant dans (5.8) le terme en section par rapport à celui en inertie comme l’indique (5.17), l’erreur relative commise sur \(E_m \) varie selon la valeur de la densité relative \(d_r \) :

<table>
<thead>
<tr>
<th>(d_r)</th>
<th>0.02</th>
<th>0.0254</th>
<th>0.04</th>
<th>0.06</th>
<th>0.08</th>
<th>0.1</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_r(%))</td>
<td>1.8</td>
<td>2.3</td>
<td>3.6</td>
<td>5.4</td>
<td>7.2</td>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>

L’erreur commise n’est pas très grande pour les faibles valeurs de la densité relative. Elle est d’autant plus grande que la densité relative est plus grande.

On rappelle que les mousse courantes utilisées pour l’absorption de choc ont une densité relative qui appartient à l’intervalle [0.02, 0.1]. Jusque là, les calculs ont été faits avec une densité relative de 0.06 et les résultats ont été présentés moyennant un adimensionnement par le module de Young du solide multiplié par le carré de la densité relative. On souhaite à présent vérifier la validité de cet adimensionnement. Pour ce faire, après avoir étudié une densité relative intermédiaire \((d_r = 0.06) \), on considère deux densités relatives extrêmes \(d_r = 0.0254 \) (choisie par Zhu et al.) et \(d_r = 0.1 \). De plus, à titre indicatif, une densité relative plus grande que celles des mousse courantes \((d_r = 0.2) \) est étudiée.
On trace dans les plans de chargements $\Sigma_1 = \Sigma_2$ et $\Sigma_2 = 0$ les résultats adimensionnels des trois densités relatives $d_r = 0.0254$, $d_r = 0.06$, $d_r = 0.1$ et $d_r = 0.2$. Les résultats de cette dernière densité sont mis en pointillés (Fig. 9.9 et Fig. 9.10). On voit bien que plus l’écart à la densité moyenne est grand, plus l’écart des résultats est grand. De plus, on note que cet écart dépend du chargement. Pour les densités des mousse courantes, l’erreur relative maximale par rapport à la moyenne des résultats est de 7.8%. Pour $d_r = 0.2$, il est d’environ 28%. Cet écart, en valeur absolue, est d’autant plus grand que $|\beta|$ est plus grand. Pour $\beta = 0$ (la compression uniaxiale), il est de 1.1%.

Fig. 9.9 – Surfaces de charge dans le plan $\Sigma_1 = \Sigma_2$ pour différentes densités relatives

Fig. 9.10 – Surfaces de charge dans le plan $\Sigma_2 = 0$ pour différentes densités relatives
Ces résultats sont prévisibles, puisque la formule d’adimensionnement de la contrainte par le produit $E_s d_i^2$ provient des équations (5.8), (5.13) et (5.23) :

\[
\begin{align*}
\frac{1}{E_m} &= \frac{1}{6\sqrt{2}} \left(\frac{12l^2}{E_s A} + \frac{l^4}{E_s I_1} \right) \\
\hat{d}_r &= \frac{3}{2\sqrt{2}} \frac{A}{l^2} \\
\hat{d}_r &= \theta_{\text{sect}} \frac{\sqrt{I_1}}{l^2}
\end{align*}
\]

qui dans le cas d’une section circulaire deviennent :

\[
E_m = \frac{4\sqrt{2} d_i^2}{3\pi (1 + \frac{2\sqrt{2} d_r}{\pi})} E_s.
\]

(9.4)

De plus, en négligeant le terme en section par rapport à celui en inertie (5.17) :

\[
\frac{12l^2}{E_s A} \ll \frac{l^4}{E_s I_1},
\]

ou encore en considérant que $d_r \ll 1$, on obtient :

\[
E_m \simeq \frac{6\sqrt{2} d_i^2}{l^4} = \frac{4\sqrt{2} d_i^2}{3\pi} E_s.
\]

(9.5)

On voit donc que cet adimensionnement est valable pour une compression uniaxiale et pour des densités relatives assez faibles. Pour les autres chargements, on le considère valable à environ 8% près.

Par ailleurs, la représentation dans le plan (p^*, q^*) est intéressante car on y obtient des courbes quasiment linéaires (Fig. 9.11). De plus, dans ce plan, les points du plan de chargements $\Sigma_2 = 0$ coïncident avec une partie de ceux du plan de chargements $\Sigma_1 = \Sigma_2$.

Suivant la densité relative considérée, les paramètres de la surface de Drucker-Prager inversée varient. Pour une valeur moyenne de d_r de 0.06, on obtient une droite de pente -2.288 et d’ordonnée à l’origine 0.249. Pour $d_r = 0.0254$ et $d_r = 0.1$, les écarts relatifs à cette pente ne dépassent pas 7% et les écarts relatifs à cette ordonnée à l’origine ne dépassent pas 3%. Une autre façon de voir ces écarts, est de tracer les écarts relatifs maximaux en p^* et q^* de $d_r = 0.0254$, $d_r = 0.06$ et $d_r = 0.1$ par rapport à la moyenne des résultats (Fig. 9.12 et Fig. 9.13). On y présente aussi l’écart relatif de $d_r = 0.2$ par rapport à cette moyenne.
Fig. 9.11 – Surfaces de charge dans le plan \((p^*, q^*)\) du type Drucker-Prager inversé
9.3.2 Type de poutre

Dans tout ce qui précède, afin de couvrir le cas général des poutres minces et épaisses, on a modélisé les arêtes des cellules tétraïdècaédriques par des poutres de Timoshenko. Cependant, dans la littérature, les études ont été faites avec des poutres du type Euler-Bernoulli. Pour voir si le choix de poutres de Timoshenko est justifié, on procède à quelques calculs de flambement avec des poutres d’Euler-Bernoulli. Pour ce faire, on considère le plan de chargement $\Sigma_1 = \Sigma_2$ et les deux valeurs extrêmes de la densité relative $d_r = 0.0254$ et
9.3. ÉTUDES PARAMÉTRIQUES

$d_r = 0.1$. En représentant les contraintes dans le plan (p^*, t^*), on observe une différence remarquable de l'allure de la surface de charge (Fig. 9.14). En effet, celle d'Euler-Bernoulli admet une forme parabolique tandis que celle de Timoshenko est quasiment linéaire. Comme les résultats sont différents, la modélisation par des poutres d'Euler-Bernoulli n'est donc pas valable pour ces valeurs de densité relative. D'autre part, l'allure de la surface de charge des poutres d'Euler-Bernoulli n'est pas linéaire. On ne peut donc plus considérer la surface de charge comme une surface du type Drucker-Prager.

![Graphique de surfaces de charge](image)

Fig. 9.14 – Surfaces de charge dans le plan (p^*, t^*) suivant le type de poutres : Euler-Bernoulli ou Timoshenko

Pour vérifier que l'écart entre la surface de charge d'Euler-Bernoulli et celle de Timoshenko est d'autant plus grand que la densité relative est plus grande, on trace dans le plan $(\Sigma_1^* = \Sigma_2^*, \Sigma_3^*)$ les résultats obtenus avec les deux types de poutre pour les deux valeurs extrêmes de la densité relative 0.0254 et 0.1 (Fig. 9.15). Une autre façon de visualiser ces écarts est de tracer les écarts relatifs entre les modélisations de poutre en p^* et q^* et pour chaque valeur de la densité relative (Fig. 9.16).
CHAPITRE 9. RÉSULTATS ET DISCUSSIONS

FIG. 9.15 – Surfaces de charge dans le plan (p^*, t^*) suivant le type de poutres : Euler-Bernoulli ou Timoshenko

FIG. 9.16 – Surfaces de charge dans le plan (p^*, t^*) suivant le type de poutres : Euler-Bernoulli ou Timoshenko
Chapitre 10

Étude expérimentale

Dans le cadre du projet BRITE-EURAM, EAMLIFE (Energy Absorbing Materials for Low Impact Forces), en collaboration avec RENAULT, A. Alaoui a mené une approche macroscopique axée sur la caractérisation expérimentale du comportement des mousse. Elle a réalisé, dans sa campagne d’essais qui a démarré en 1998, 150 essais de compression uniaxiale quasi-statique. Elle a étudié l’influence de différents facteurs tels que la taille des échantillons, la vitesse d’écrasement et les conditions d’environnement (température et humidité). Elle a également réalisé une machine de chocs pour faire des essais dynamiques jusqu’à 4m/s. Dans notre étude expérimentale, outre les essais uniaxiaux qui permettent de déterminer les caractéristiques de la mousse en terme de module de Young et de coefficient de Poisson, on s’intéresse à réaliser différents chargements pour comparer les résultats avec la surface de charge obtenue numériquement. Pour ce faire, on a décidé de réaliser des essais biaxiaux. Cette étude a fait l’objet d’un stage scientifique de l’ENPC par E. Caudron.

10.1 Procédé expérimental

10.1.1 Choix de la mousse

Les caractéristiques utilisées dans les simulations numériques (module de Young et coefficient de Poisson du solide constituant la mousse) correspondent à celles d’une mousse de polyuréthane. Cette mousse est bien à porosité ouverte, cependant elle admet un comportement visco-élastique fragile. Comme le montre la Fig. 10.1-c, il est difficile dans ce cas de déduire une éventuelle contrainte critique de flambement à partir des courbes contrainte-déformation.

Quant à la mousse de polypropylène (Fig. 1.6 du chapitre 1), c’est une mousse visco-élastique à porosité fermée. La proportion de matière dans les faces des cellules est assez élevée. On ne peut donc pas négliger l’effet de la pression du gaz emprisonné dans les cellules. Dans ce cas, la courbe contrainte-déformation a une phase de plateau ascendante.

Le caril est une mousse composée de polystyrène. Il s’agit d’une mousse élasto-plastique à porosité fermée. Cependant, la phase de plateau dans cette mousse n’est pas fortement ascendante, ce qui laisse présager que la matière est davantage concentrée dans les arêtes

113
et que les membranes fines perméables permettent au gaz de s’évacuer normalement à des vitesses de chargement relativement faibles (de l’ordre de 10\(^{-2}\) s). De plus, d’après la courbe rouge de la Fig. 10.2, lorsqu’on décharge au début de la phase de plateau, après un certain temps, le matériau revient à l’état initial. Ceci prouve, que dans le cas du caril, ce n’est pas la plasticité qui est à l’origine de la phase de plateau. Par conséquent, on a décidé de choisir cette mousse pour réaliser l’étude expérimentale.

![Fig. 10.1 – Schémas qualitatifs de courbes contrainte-déformation de compression de matériaux alvéolaires : (a) élastomériques; (b) élasto-plastiques; (c) élastiques fragiles](image)

Fig. 10.2 – Courbes de charges/décharges de compression uniaxiale du caril

10.1.2 Densités de la mousse

On considère deux densités différentes du caril : 55 et 75 g/l. Ces données proviennent de l’indication du fournisseur sur les lots d’échantillons utilisés. Ils correspondent à une valeur
10.1. PROCÉDÉ EXPÉRIMENTAL

moyenne pour l'ensemble d'un lot. Pour chaque échantillon découpé, on calcule sa densité à partir de sa masse et de ses dimensions réelles. C'est cette valeur de la densité (propre à chaque échantillon) qu'on utilise dans les calculs (l'adimensionnement par exemple).

Considérons seulement deux densités n'est évidemment pas un nombre suffisant pour faire une étude proprement dite de l'influence de la densité. Néanmoins, cela permet de vérifier la formule d'adimensionnement qu'on utilise. On rappelle que Gibson et Ashby ont établi de manière semi-empirique des adimensionnements pour les mousse à porosité ouverte (3.3) et pour les mousse à porosité fermée (3.4) [Gibson et Ashby, 1988].

Dans l'étude numérique sur les mousse à porosité ouverte, on a considéré l'adimensionnement (3.3) :

\[
\frac{E_m}{E_s} = C d_r^2, \tag{10.1}
\]

où \(C \) est un paramètre qui dépend de la géométrie des cellules et \(d_r \) est la densité relative.

Dans cette étude expérimentale, on adopte l'adimensionnement (3.4) pour les mousse à porosité fermée en négligeant l'effet de la pression du gaz :

\[
\frac{E_m}{E_s} = C_1 \varphi^2 d_r^2 + C_2 (1 - \varphi) d_r, \tag{10.2}
\]

où \(C_1 \) et \(C_2 \) sont des constantes de proportionnalité et \(\varphi \) est la fraction volumique de solide contenu dans les arêtes des cellules. \(\varphi \) est compris entre 0 et 1. \(\varphi = 1 \) dans le cas de cellules à porosité ouverte, et on retrouve la formule (10.1) avec \(C_1 = C \).

Par ailleurs, on rappelle que la densité relative d'une mousse est le rapport de la densité \(\rho_m \) de celle-ci par la densité \(\rho_s \) du solide qui la constitue. Une mousse de carill est obtenue à partir du polystyrène. Sa densité est \(\rho_s = 1000 \text{ g/l} \). Soit, pour des densités moyennes du carill de 55 et 75 g/l, les densités relatives moyennes sont donc de 0.055 et 0.075.

10.1.3 Application des chargements

On veut appliquer des charges biaxiaux aux échantillons de mousse de sorte qu'on puisse parcourir un plan de contraintes pour y tracer une surface de charge expérimentale. Or la machine dont on dispose est une machine de type Adamel qui permet de réaliser des compressions uniaxiales. Comme la surface de charge ne dépend pas du trajet de chargement, on choisit d'effectuer d'abord une pré-déformation latérale qu'on maintient appliquée, puis on procède à une compression axiale.

Pour ce faire, on a construit une boîte en polycarbonate transparent dont une des parois est amovible. On note \(e_1 \) la normale à cette paroi. Puis on a découpé des échantillons de mousse de tailles différentes suivant \(e_1 \). Ensuite, on place un échantillon dans la boîte (en le posant simplement) et on lui exerce une pré-déformation latérale par serrage, progressif et uniforme à l'état, de la paroi amovible. Par conséquent, suivant la direction \(e_1 \), une face de l'échantillon est bloquée, l'autre est comprimée. Les deux autres faces latérales (suivant la direction \(e_2 \) et \(e_3 \) sont libres. Enfin, on procède à un essai uniaxial suivant la direction \(e_3 \), et on recueille les mesures de contrainte et d'élongation subies par l'échantillon.

Plus précisément, la surface de la boîte est de 50 mm × 50 mm une fois la paroi amovible
serrée. Sa hauteur est également de 50 mm. La face supérieure de la boîte n’est pas couverte (Fig. 10.3).

Les échantillons sont découpés à la meule diamant. Ils ont 50 mm de hauteur, 50 mm de largeur et 6 séries de longueurs différentes : 49, 52, 54, 58, 63 et 68 mm. On note ces séries respectivement p_0, p_1, p_2, p_3, p_4 et p_5 (p pour pré-déformation).

La première série (p_0) a été choisie de sorte à réaliser des essais de compression uniaxiale (suivant e_3). Sur les cinq autres séries, on effectue des essais où E_{11} est imposée, $\Sigma_2 = 0$ et Σ_3 est une compression à vitesse constante.

De plus, pour chaque série, on a découpé 5 échantillons, excepté la première pour laquelle on a réalisé 6 échantillons. Soit au total 62 essais (2 densités différentes).

Pour chaque échantillon, on calcule la densité réelle (masse sur volume), et la pré-déformation imposée (E_{11} = (longueur initiale - longueur finale) / longueur initiale, la longueur finale après serrage de la paroi amovible de la boîte étant de 50 mm).

Ensuite, on calcule les valeurs moyennes de la densité et de la pré-déformation, par série p_i d’échantillons (TAB. 10.1).

On note dans TAB. 10.1 que les densités, bien que moyennées par série d’échantillons, varient dans un même lot. Les moyennes sur toutes les séries des densités d_1 et d_2 sont respectivement de 55.23 g/l et 75.93 g/l. L’écart relatif maximal par rapport à ces densités moyennes est de 5.6% pour les d_1 et de 6.9% pour les d_2. Cette différence de densité montre une anisotropie dans la distribution des cellules dans une plaque fournie par le fabricant. C’est une des raisons pour laquelle on doit rester prudents par rapport aux interprétations faîtes à partir de l’étude expérimentale.

Quant aux pré-déformations, bien que les découpes ne soient pas très exactes, elles ne varient presque pas dans une même série. Dans le TAB. 10.1, on voit qu’elles ne varient pas beaucoup par p_i pour des lots de densité différente.

Ces résultats sont visualisés dans la Fig. 10.4.

Par ailleurs, lors du découpage des échantillons, on remarque qu’il se forme une peau différente de celle due au moulage réalisé par le fabricant. En effet, cette dernière est plus uniforme et surtout plus épaisse. Ces effets de moulage/découpage vont certainement in-

Fig. 10.3 – Schéma de la boîte en polycarbonate transparent (sans la paroi amovible)
10.1. **PROCÉDÉ EXPÉRIMENTAL**

<table>
<thead>
<tr>
<th>Densité du lot</th>
<th>Série</th>
<th>Longueur initiale par série en mm</th>
<th>Densité réelle moyenne en g/l</th>
<th>Pré-déformation réelle moyenne E_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d_1 (55 g/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d_2 (75 g/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_0</td>
<td>49</td>
<td>54.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>p_1</td>
<td>52</td>
<td>55.7</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>p_2</td>
<td>54</td>
<td>55</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>p_3</td>
<td>58</td>
<td>56.5</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>p_4</td>
<td>63</td>
<td>55.9</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>p_5</td>
<td>68</td>
<td>53.8</td>
<td>0.24</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 10.1 – Densités et pré-déformations moyennes par série d’échantillons

Fig. 10.4 – Densités et pré-déformations moyennes par série d’échantillons

fluencer les mesures. On choisit alors de comprimer 3 échantillons sur 5 par série avec le moulage du fabricant suivant la verticale, excepté pour la série p_0, pour laquelle on en a réalisé 3 sur 6. On note par v le premier type de série et par h le deuxième (Fig. 10.5). On peut imaginer qu’une possible influence du moulage relativement épais est de rigidifier la réponse de la mousse lorsqu’il est mis suivant la verticale. Par opposition, s’il est mis suivant l’horizontale, il aurait peu d’effet. C’est donc les résultats de ce cas qui nous intéresseraient plus pour une comparaison avec les résultats numériques.

10.1.4 **Traitement des résultats**

Durant l’essai de compression uniaxiale suivant E, des mesures en temps (t), allongement (Δl) et force exercée (F) sont recueillies par le biais du logiciel Autotrac 5.5. Ces données sont ensuite transformées par un programme en Pascal en un fichier Excel à 3 colonnes:
temps (t), elongation (λ = l/l₀) et contrainte nominale (Σ = F/S₀). On note que la surface S₀ considérée est la surface initiale de l’échantillon avant pré-déformation latérale. Pour chaque série d’échantillons pᵣ, on peut calculer la moyenne des résultats obtenus pour tracer la courbe contrainte nominale en fonction de la déformation nominale Εᵣ₃₃ = 1 − λ (exemple Fig. 10.6).

Détermination des Σᵣ₃₃

A partir des résultats traités sur Excel de la déformation Εᵣ₃₃ et de la contrainte nominale Σᵣ₃₃, on a procédé à deux régression linéaires des phases élastique et de plateau en vue d’avoir les équations de deux droites. Puis, comme on a associé la phase de plateau au flambage des cellules dans le matériel, on a défini la valeur de la contrainte critique de flambement Σᵣ₃₃, par l’ordonnée de l’intersection de ces deux droites (Fig. 10.7).

Cette manière de déterminer la contrainte critique peut faire l’objet de critiques, puisque, dans la littérature, la contrainte critique de flambement est donnée par l’ordonnée de l’asymptote horizontale de la courbe, qui dans notre cas n’est pas tout-à-fait horizontale mais légèrement ascendante.

Quand à la contrainte critique suivant la direction Ε₁₁, elle est déduite à partir de la courbe contrainte-déformation de la compression uniaxiale p₀. En effet, il suffit de reporter la valeur de la déformation Ε₁₁ sur la courbe de la compression uniaxiale d’un échantillon de même type, et de déduire son ordonnée Σ₁₃₃, à partir de cette courbe.
Fig. 10.6 – Exemple de courbe contrainte-déformation nominales

Fig. 10.7 – Linéarisation des deux premières phases de l'exemple de courbe contrainte-déformation nominales
Par ailleurs, pour calculer la moyenne des contraintes critiques pour chaque type d’échantillon (même densité, même pré-déformation et même orientation de la peau), on peut procéder de deux façons : la première consiste à prendre pour Σ_{cr} la moyenne des contraintes critiques obtenues sur les échantillons d’un même type. La seconde consiste à tracer la moyenne des courbes contrainte-déformation des échantillons d’un même type, puis de déterminer le point d’intersection des deux premières branches linéarisées.

Ces deux méthodes de calcul donnent quasiment le même résultat du fait que la pente de la phase de plateau est très petite par rapport à la pente de la phase élastique qui correspond au module de Young de la mousse ($E_p \ll E_m$). En effet, dans le premier cas on a pour chaque essai deux branches linéarisées ayant pour équations :

$$\begin{cases}
\Sigma^i = E_m^i E^i \\
\Sigma^i = E_p^i E^i + C^i
\end{cases}$$ (10.3)

où i désigne un essai et C représente l’ordonnée à l’origine de la branche de plateau.

La valeur de la contrainte critique pour un essai i est alors donnée par :

$$\Sigma_{cr}^i = C^i \frac{E_m^i}{E_m - E_p},$$ (10.4)

car $\Sigma = E_p (E - \Sigma_{cr}) + \Sigma_{cr}$.

Par conséquent, pour n essais, la contrainte critique moyenne est simplement donnée par la somme des contraintes critiques (10.4) divisée par n.

Dans le second cas, on linéarise la moyenne pour obtenir les équations suivantes :

$$\begin{cases}
\Sigma_{moy}^{[1]} = E_m E_{moy} \\
\Sigma_{moy}^{[2]} = E_p E_{moy} + C
\end{cases}$$ (10.5)

où f_{moy} est la somme des f^i divisée par n. D’où :

$$\begin{cases}
\Sigma_{cr}^{[1]} = \frac{1}{n} \sum_{i=1}^{n} \left(C^i \frac{E_m^i}{E_m - E_p} \right) \\
\Sigma_{cr}^{[2]} = \frac{1}{n} \left(\sum_{i=1}^{n} C^i \right) \frac{\sum_{i=1}^{n} E_m^i - \sum_{i=1}^{n} E_p^i}{\sum_{i=1}^{n} E_m},
\end{cases}$$ (10.6)

où on voit bien que les deux expressions deviennent égales si on néglige E_p par rapport à E_m.

10.1.5 Détermination de E_s

Il est important de noter que le module E_s n’est pas le module de Young du polystyrène à l’état naturel, mais à l’état de mousse, donc après avoir subit la procédure de fabrication présentée dans le paragraphe 1.1.2 du premier chapitre.

Pour ce faire, on utilise la formule d’adimensionnement (10.2) donnée dans le cas des mousse à porosité fermée. Il est à noter que dans cette formule, on ne tient pas compte de la pression
du gaz dans les cellules fermées. Ce qui peut être valable lorsque la peau de moulage est disposée horizontalement, mais ne l’est plus du tout lorsqu’elle est disposée verticalement puisqu’en étant épaisse elle empêcherait l’air de s’évacuer et engendrerait des surpressions non négligeables. Par ailleurs, comme dans l’étude numérique on ne tient pas compte de la présence de cette peau, on ne traitera plus dans la suite que le cas où celle-ci n’intervient pas.

On détermine alors φ et E_s connaissant E_m et d_r en prenant $C_1 = C_2 = 1$ comme dans [Gibson et Ashby, 1988]. Pour ce faire, en supposant que E_s et φ ne dépendent que du mode de fabrication et non de la densité, on pose :

$$a = \frac{E^1_m}{E^2_m} = \frac{\varphi^2 d^2_r + (1 - \varphi) d_r}{\varphi^2 d^2_{r_2} + (1 - \varphi) d_{r_2}},$$

d’où :

$$\varphi^2 (a d^2_{r_2} - d^2_{r_1}) + (1 - \varphi) (a d_{r_2} - d_{r_1}) = 0. $$

Ce qui permet de calculer φ à partir des d_{r_1} et des E^i_m, et par suite de calculer E_s à partir de (10.2). On trouve alors :

<table>
<thead>
<tr>
<th>φ</th>
<th>E_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.94</td>
<td>2.07 GPa</td>
</tr>
</tbody>
</table>

Tab. 10.2 – Fraction volumique de solide dans les arêtes et module de Young du solide

Ces valeurs sont satisfaisantes. Celle de φ indique que le solide est fortement concentré sur les arêtes. Etant donné que la mousse considérée pour l’étude expérimentale est à porosité fermée, on savait que $\varphi < 1$. La valeur proche de 1 permet de considérer que la modélisation micro numérique retenue est assez correcte si on ne prend pas en considération l’influence du gaz à l’intérieur de la mousse. Celle de E_s est jugée acceptable puisque dans la littérature on trouve qu’elle varie entre 1.4 et 3 GPa pour les mousses de polystyrène. En tenant compte de ces valeurs, la formule (10.2) devient :

$$E_m = (1.83 d^2_r + 0.12 d_r) 10^9. $$

(10.7)

10.2 Résultats

10.2.1 Observations

On observe bien les trois phases caractéristiques de la compression d’une mousse (Fig. 10.8) : la phase élastique linéaire, puis la phase de plateau et ensuite la phase de densification. Comme ce sont les deux premières phases qui nous intéressent dans les mousses, on ne présentera pas la phase de densification dans les courbes suivant la Fig. 10.8. On voit aussi que la phase de plateau est légèrement ascendante. Par ailleurs, on n’a pas observé des cas de flambement global de l’échantillon, sachant qu’une des deux directions latérales est libre, alors que cela a été le cas dans la compression uniaxiale d’échantillons simplement posés sur un plateau. En revanche, tout au long de l’échantillon écrasé, on peut distinguer des mini-flambements périodiques sur la hauteur (Fig. 10.9).
10.2.2 Caractéristiques mécaniques

Les caractéristiques mécaniques de la mousse qu’on a déterminées sont le module de Young et le coefficient de Poisson. Ces deux caractéristiques sont identifiées par le biais d’un essai de compression uniaxiale. La pente initiale de la courbe contrainte-déformation est le module de Young. Pour la densité la plus faible (55 g/l), on trouve un module de Young de 11.7 MPa. Pour la seconde densité (75 g/l), on trouve 19 MPa, soit un quasi-doublement du module de Young. À titre indicatif, le module de Young de l’acier est d’à peu près 200 GPa. Celui du bois est autour de 10 GPa. La mousse est donc mille fois moins rigide que le bois. Quant au coefficient de Poisson, il correspond, à un signe près, au rapport de la déformation latérale par la déformation dans l’axe du chargement. Il vaut environ 1/3 lors de la phase élastique. Mais celle-ci ne dure que jusqu’à environ 5% de déformation, puis, dès la phase de plateau, celui-ci est pratiquement nul. D’ailleurs, c’est le cas pour la plupart des mousse.
10.2. RÉSULTATS

10.2.3 Modules des deux phases et contraintes critiques

Le tableau (10.3) résume les résultats obtenus en terme de pente élastique linéaire ou module apparent de la mousse noté E_a (ou E_m), pente du plateau notée E_p et leur intersection donnant lieu à la valeur de la contrainte seuil qu’on associe à la valeur de la contrainte critique notée Σ_{cr}. Ces résultats sont issus de calculs de moyennes des séries d’échantillons où la peau de moulage du fabricant est disposée horizontalement. Ils sont présentés pour les deux densités de mousse ($d_1 = 55$ g/l et $d_2 = 75$ g/l) et pour les 6 séries d’échantillons (de p_0 à p_5).

On note qu’on vérifie bien que le module apparent de la mousse, le module de plateau et la charge critique sont d’autant plus grands que la densité est plus grande. On visualise ces résultats sur un exemple de courbes dans la FIG. 10.10.

<table>
<thead>
<tr>
<th>Densité de la mousse</th>
<th>Série de pré-déformation</th>
<th>E_a en MPa</th>
<th>E_p en MPa</th>
<th>Σ_{cr} en MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1 (55 g/l)</td>
<td>p_0</td>
<td>11.7</td>
<td>0.48</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>p_1</td>
<td>14.1</td>
<td>0.45</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>p_2</td>
<td>10.3</td>
<td>0.51</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>p_3</td>
<td>8.7</td>
<td>0.55</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>p_4</td>
<td>7.7</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>p_5</td>
<td>6.8</td>
<td>0.52</td>
<td>0.51</td>
</tr>
<tr>
<td>d_2 (75 g/l)</td>
<td>p_0</td>
<td>19</td>
<td>0.64</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>p_1</td>
<td>19.9</td>
<td>0.84</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>p_2</td>
<td>20</td>
<td>0.59</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>p_3</td>
<td>15.5</td>
<td>0.81</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>p_4</td>
<td>12.2</td>
<td>0.72</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>p_5</td>
<td>11.2</td>
<td>1.11</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Tab. 10.3 – Résultats expérimentaux moyennés (échantillons à peaux de moulage horizontales)

Par ailleurs, on s’attend à ce que, pour une même densité, lorsque la pré-déformation est plus grande, le module apparent soit plus grand. Dans la FIG. 10.11, on voit que c’est vérifié pour le cas non pré-déformé (p_0) et les cas faiblement pré-déformés (p_1 pour d_1 et p_1 et p_2 pour d_2). Pour les autres cas, ce qu’on observe pourrait s’expliquer par le fait que la pré-déformation ait déjà provoqué le flambement des cellules, ou encore leur plastification. L’échantillon devient dans ce cas moins rigide que sans pré-déformation.
FIG. 10.10 – Exemple de courbes contrainte-déformation nominales pour deux densités différentes

FIG. 10.11 – Variation du module apparent en fonction de la pré-déformation
On note aussi que la pente du plateau augmente avec la densité, et varie fortement avec la pré-déformation (FIG. 10.12).

FIG. 10.12 – Variation du module de plateau en fonction de la pré-déformation

FIG. 10.13 – Variation du module de la contrainte seuil en fonction de la pré-déformation
Pour la contrainte seuil, on remarque qu'elle augmente avec la densité et qu'elle dépend de la pré-déformation (FIG. 10.13). De plus, elle varie selon l'orientation de la peau de moulage dans les échantillons : pour chaque série, les échantillons ayant la peau de moulage disposée verticalement, ont une contrainte seuil supérieure à ceux ayant la peau de moulage disposée horizontalement. On observe donc bien le résultat auquel on s'attendait : lorsque la peau épaisse est disposée suivant la direction du chargement, cela contribue à la rigidification de l'ensemble.

On note que les résultats qu'on présente sont issus de calculs de moyenne sans pour autant qu'il y ait un nombre représentatif d'essais reproduits. La FIG. 10.14, où on représente les courbes contrainte - déformation nominales linéarisées, montrent les écarts observés sur cinq essais où les échantillons ont une “même” densité d_1 et auxquels on impose une “même” pré-déformation p_2.

FIG. 10.14 – Variation expérimentale

La FIG. 10.15 n’est pas le résultat d’un calcul de moyenne. Les essais sont réalisés pour une même densité de mousse (d_2) et pour différentes pré-déformations. On y voit également les variations des résultats suivant la pré-déformation exercée, jusqu’à la pré-déformation p_5.

10.2.4 Surface de charge

On définit la surface de charge par l’ensemble des charges critiques de flambement. On la représente dans l’espace des contraintes. Comme les bords de normale e_2 des échantillons testés sont libres, la contrainte macroscopique Σ_{22} est nulle. La surface de charge est donc
représentée dans un premier temps dans le plan de contraintes \((\Sigma_{11}, \Sigma_{33})\). La contrainte \(\Sigma_3\) critique est déterminée par la procédure décrite plus haut sur l’intersection des deux branches linéarisées du comportement. Connaissant la pré-déformation \(E_{11}\), la contrainte \(\Sigma_{11}\) est déduite des essais à bords libres \((p_0)\) correspondants.

L’adimensionnement de la contrainte critique permet de regrouper les résultats dans un même graphe. Pour ce faire, on divise la contrainte par \((1.83 \, d_e^2 + 0.12 \, d_r) \times 10^9\).

Dans le tableau (10.4), on ne présente que les résultats des essais où la peau de moulage est disposée horizontalement. Comme la peau n’intervient pas a priori, dans ce cas, dans la réponse de la mousse, cela correspondrait plus à l’étude numérique où l’on ne tient pas compte de la présence d’une telle peau.

La Fig. 10.16 donne l’ensemble des charges critiques adimensionnelles pour les cas où la peau de moulage n’intervient pas (donc disposée horizontalement). Les points sont situés dans le quart de plan correspondant à des valeurs de \(\Sigma_{11}\) et \(\Sigma_{33}\) négatives car il s’agit de compressions et qu’on adopte la convention de signe de la mécanique des milieux continus. Les points situés sur l’axe des ordonnées sont ceux de la série \(p_0\). Les points des séries \(p_2, p_3, p_4\) et \(p_5\) sont proches les uns des autres car ils correspondent à des pré-déformations situées après le seuil critique dans la courbe à bords libres correspondante, et donc ils appartiennent à un domaine (phase de plateau) où la contrainte varie peu.
<table>
<thead>
<tr>
<th>Densité</th>
<th>Série</th>
<th>Essai</th>
<th>$\Sigma_{1\sigma}$ (MPa)</th>
<th>$\Sigma_{3\sigma}$ (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p_0</td>
<td>4</td>
<td>0</td>
<td>-3.44 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0</td>
<td>-3.29 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0</td>
<td>-3.37 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moy</td>
<td>0</td>
<td>-3.37 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>p_1</td>
<td>4</td>
<td>-1.61 10^{-2}</td>
<td>-4.09 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-1.58 10^{-2}</td>
<td>-4.1 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moy</td>
<td>-1.59 10^{-2}</td>
<td>-4.04 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>p_2</td>
<td>4</td>
<td>-3.42 10^{-2}</td>
<td>-3.66 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-3.46 10^{-2}</td>
<td>-3.85 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moy</td>
<td>-3.44 10^{-2}</td>
<td>-3.76 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>p_3</td>
<td>4</td>
<td>-3.54 10^{-2}</td>
<td>-3.33 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-3.4 10^{-2}</td>
<td>-3.48 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moy</td>
<td>-3.47 10^{-2}</td>
<td>-3.41 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>p_4</td>
<td>4</td>
<td>-3.52 10^{-2}</td>
<td>-3.41 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-3.93 10^{-2}</td>
<td>-3.66 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moy</td>
<td>-3.73 10^{-2}</td>
<td>-3.53 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>p_5</td>
<td>4</td>
<td>-4.25 10^{-2}</td>
<td>-3.9 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-4.04 10^{-2}</td>
<td>-3.77 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moy</td>
<td>-4.14 10^{-2}</td>
<td>-3.84 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>-3.3 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0</td>
<td>-3.41 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0</td>
<td>-2.94 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moy</td>
<td>0</td>
<td>-3.22 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>d_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p_0</td>
<td>4</td>
<td>-1.57 10^{-2}</td>
<td>-3.71 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-1.62 10^{-2}</td>
<td>-3.74 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moy</td>
<td>-1.6 10^{-2}</td>
<td>-3.72 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>p_1</td>
<td>4</td>
<td>-3.39 10^{-2}</td>
<td>-3.9 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-3.54 10^{-2}</td>
<td>-4 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moy</td>
<td>-3.46 10^{-2}</td>
<td>-3.95 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>p_2</td>
<td>4</td>
<td>-3.79 10^{-2}</td>
<td>-3.54 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-3.54 10^{-2}</td>
<td>-3.74 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moy</td>
<td>-3.67 10^{-2}</td>
<td>-3.64 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>p_3</td>
<td>4</td>
<td>-3.84 10^{-2}</td>
<td>-3.66 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-4 10^{-2}</td>
<td>-3.53 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moy</td>
<td>-3.92 10^{-2}</td>
<td>-3.6 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>p_4</td>
<td>4</td>
<td>-3.75 10^{-2}</td>
<td>-3.83 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-3.89 10^{-2}</td>
<td>-3.79 10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>moy</td>
<td>-3.82 10^{-2}</td>
<td>-3.81 10^{-2}</td>
</tr>
</tbody>
</table>

Tab. 10.4 – Résultats expérimentaux adimensionnels
10.2. RÉSULTATS

\[\Sigma_{11}, \Sigma_{33} \]

Fig. 10.16 – Ensemble des charges critiques moyennes adimensionnelles de mousse de densité \(d_i \)

Une meilleure présentation des résultats, comme pour le cas numérique, est de les tracer dans le plan déviatorique des contraintes. De plus, si on suppose le matériau orthotrope, comme c’est le cas dans l’étude numérique, alors on peut prendre en compte certaines symétries, comme c’est le cas par rapport à la première bissectrice dans le plan \((\Sigma_{11}, \Sigma_{33})\). Au final, on arrive à la surface de Fig. 10.17. Le rapport de dissymétrie de cercle obtenu vaut

\[K = 1.17 \]. Cette surface de charge expérimentale est qualitativement similaire à celle qu’on a obtenue numériquement. On rappelle que le rapport de dissymétrie de la surface de charge

\[S_{11}, S_{33}, S_{22} \]

Fig. 10.17 – Surface de charge dans le plan déviatorique des contraintes
convexe obtenue dans l’étude est $K = 1.285$. L’écart relatif de la dissymétrie de forme est donc de 9%. Cependant, on note que, quantitativement, l’écart entre les charges critiques numériques et expérimentales est important (rapport de 10).

10.3 Conclusion

L’étude expérimentale nous a permis de traiter un cas réel de mousse et de réaliser les difficultés qui s’en suivent. Sur les 62 essais effectués, on a pu constater la variation des mesures d’un essai à l’autre.

Le premier problème rencontré est la représentativité des essais. En effet, sur ces 62 essais, on fait varier plusieurs paramètres : la densité, l’intensité de la pré-déformation et la position de la peau de moulage par rapport au second chargement. Ce qui nous ramène à seulement 2 ou 3 essais du même type. Ce qui est loin d’être suffisant pour rendre les essais significatifs.

Le second problème rencontré est celui de la répétabilité des essais. Car en fait, même sur ces 2 ou 3 essais, il y a des différences, dont la densité réelle différente de celle indiquée par le fabriquant sur les plaques fournies, les dimensions initiales de l’échantillon après découpe dans la plaque et par conséquent la pré-déformation initiale imposée à l’échantillon puisque la dimension après serrage elle, est fixée par la dimension de la boîte. Cela dit, les résultats obtenus pour chaque essai sont traités en considérant les valeurs propres à chaque essai, puis sont moyennés sur les essais considérés de même type.

D’autre part, un adimensionnement est réalisé pour pouvoir regrouper tous les résultats sur une même courbe. Cet adimensionnement peut être fortement discuté. Il provient d’approches semi-empiriques trouvées dans la littérature, et est appliqué ici malgré un grand nombre d’hypothèses. Parmi ces hypothèses, c’est qu’il provient d’une modélisation des cellules par des cubes, et qu’il néglige la pression du gaz dans le cas des cellules fermées.

De plus, mais dans une moindre mesure, on définit cette contrainte seuil comme étant l’intersection des branches linéarisées des deux premières phases de la courbe contrainte-déformation nominales. Cette manière de définir la contrainte seuil peut être discutée puisque, dans le cas d’une poutre, la contrainte critique correspond à l’ordonnée de l’asymptote horizontale à la courbe contrainte-déformation. Cependant, il est assez difficile de situer la position de cette asymptote lorsque la phase de plateau n’est pas horizontale.

Malgré toutes ces approximations, certaines tendances se dégagent. En effet, on vérifie bien que lorsque la densité de la mousse est plus grande, le matériau est plus rigide et par conséquent son module apparent et son niveau de plateau augmentent. La pente de plateau et l’élongation seuil augmentent également mais de façon minime.

Comprimer initialement l’échantillon latéralement suivant une direction, rigidifie le matériau et donc fait augmenter son module apparent tant que cette pré-déformation est dans le domaine élastique avant flambement.

La peau de moulage, relativement épaisse, intervient dans le comportement lorsqu’elle est placée verticalement (donc parallèlement au second chargement). On ne considère alors que les résultats du cas où cette peau est placée horizontalement pour pouvoir les comparer aux calculs numériques.

La surface de charge obtenue expérimentalement est qualitativement similaire à celle obtenue dans l’étude numérique via un passage micro-macro. Dans le plan des contraintes déviato-
10.3. CONCLUSION

...
Conclusions & Perspectives

La démarche adoptée

On a représenté une mousse solide à porosité ouverte par un milieu périodique à cellules tétrakaidécaédriques. En tenant compte de l'intervalle de densité relative des mousses courantes (de 0.02 à 0.1), on a modélisé les arêtes des cellules par des poutres de Timoshenko. On s'est intéressé à prédire numériquement la phase de plateau caractéristique des mousses en compression, en grandes transformations. En raison des non-linéarités géométriques, on se situe dans le cadre de l'homogénéisation non convexe. C'est pourquoi, on considère différentes tailles de cellule d'étude. Dans un premier temps, par le biais des conditions de périodicité, on a appliqué des chargements uniaxiaux de déformation et de compression. Dans le cadre de l'élasticité linéaire matérielle, on a procédé à des études en petites perturbations, en grandes transformations et en flambement. Dans un deuxième temps, on s'est intéressé à la détermination de la surface de charge donnant, dans l'espace des contraintes, la limite entre la phase initiale élastique linéaire et la phase de plateau. Comme on a mis en évidence par la première étude que le flambement des arêtes des cellules est à l'origine de la phase de plateau, alors on a procédé à des études de flambement suivant des chargements proportionnels multiaxiaux. Étant de nouveau dans le cadre de l'homogénéisation non convexe, on a considéré différentes tailles de cellule pour déterminer par minimisation une surface de charge dite micro. Une deuxième méthode est introduite. Elle est appliquée seulement sur une cellule périodique minimale. En plus des variations de déplacement périodiques, on y considère les variations de déplacement à grandes longueurs d'onde. Cette surface de charge, dite mixte, est une surface intermédiaire entre une surface micro où on tient compte de toutes les longueurs d'onde, et une surface macro où on ne tient compte que des modes à grandes longueurs d'onde. Enfin, une étude expérimentale a été réalisée pour valider la surface de charge obtenue numériquement.

Les résultats essentiels

L'étude du flambement sur différentes tailles de cellules, pour les chargements de compression et de déformation uniaxiales, a montré que le choix d'une cellule d'étude dépend du chargement. Pour des cellules d'étude pas suffisamment grandes, on a vu que conduire une étude classique en élasticité linéaire mais géométriquement non linéaire ne permet pas d'ob-
tenir la phase de plateau observée dans les mouses. Ce résultat était prévisible, puisqu’une étude analytique faite sur une cellule périodique minimale présentait ce problème. Pour les cellules CB, CB3 et CB5, on a introduit une imperfection dans la position des nœuds pour initier le flambement. Ce qui nous a permis d’obtenir la phase de plateau. Son niveau se situe au niveau de la charge critique de flambement de la même cellule d’étude. On a donc, dans ce cas, la même taille suffisante de cellule d’étude. Dans le cas de la cellule CB33 qui est 432 fois plus grande en volume que la cellule minimale, un palier en contrainte est obtenu à partir d’une analyse classique géométriquement non linéaire sur la structure parfaite. De plus, ce palier se situe au niveau de la charge critique de flambement. Ce résultat montre bien qu’en présence de non-linéarités géométriques une cellule périodique minimale n’est plus représentative de l’ensemble d’un réseau infini. Il permet aussi, dans le cas des mouses élastiques à porosité ouverte, de déduire que c’est bien le flambement des arêtes des cellules qui donne lieu à une phase de plateau en contrainte. La CB33 est donc un volume élémentaire représentatif pour l’étude en postflambement.

Pour les deux surfaces de charge étudiées, elles coïncident. Les modes obtenus sont donc soit périodiques sur la cellule d’étude minimale, soit de grandes longueurs d’onde. Cette surface est une surface de Drucker-Prager modifiée. De plus, la méthode mixte donne un renseignement sur la normale et la direction du déplacement de la bande de localisation. Dans les deux cas de compression et de déformation uniaxiales, il s’agit d’une bande de cisaillement. L’étude expérimentale a permis de valider la surface de charge qualitativement. L’écart relatif de la dissymétrie de forme de cette surface est de 9%. Cependant, quantitativement il y a un écart important entre les valeurs numériques et expérimentales des charges critiques de flambement. Cet écart peut être expliqué par plusieurs facteurs. On l’attribue essentiellement au fait que la microstructure de la mousse n’est pas parfaitement périodique dans la réalité et que les imperfections, qui ont pour effet d’abaisser la valeur des charges critiques de flambement, peuvent jouer un rôle important dans le cas d’un assemblage de poutres aussi complexe.

Développements futurs

Pour compléter le passage micro-macro, il reste à construire la loi d’écoulement associée à la surface de charge. Pour la déterminer, les deux études de post-flambement réalisées en compression et en déformation uniaxiales doivent être complétées par des chargements multiaxiaux.

Une suite, intéressante et immédiate également, est dédiée à l’étude des imperfections géométriques proches du cas réel. Celles-ci peuvent se traduire par la formation de trous lors de la procédure de fabrication de la mousse. Dans ce cas, on peut envisager de programmer un processus d’élimination aléatoire d’un certain pourcentage d’arêtes de cellules, ou encore par la génération d’un réseau aléatoire dès le départ.

Une autre issue immédiate est la résolution analytique de la détermination de la surface de charge par la méthode mixte. En effet, cette méthode réduit d’une dimension la méthode par ondes de Bloch, en passant d’une minimisation sur les vecteurs nombres d’onde \(\omega \) à une minimisation sur les vecteurs unitaires \(\hat{n} \). Elle s’applique à la cellule d’étude minimale qui contient 12 nœuds géométriques dont seulement six sont indépendants. Ce qui en fait
un problème à 36 degrés de liberté. De plus, elle donne une information sur la bande de localisation.

La surface mixte, dans ce cas d'une mousse élastique, correspond à la surface de charge micro. Triantafyllidis et Schraad [Triantafyllidis et Schraad, 1998], dans le cas d'un nid d'abeilles en aluminium, ont obtenu la surface micro par la méthode des ondes de Bloch. Cette surface, après minimisation sur tous les vecteurs nombres d'onde, correspond soit aux ondes périodiques soit aux grandes longueurs d'onde, donc à la surface mixte. Ce qui suscite une question d'ordre théorique, à savoir dans quelles conditions peut-on affirmer que les surfaces micro et mixte sont équivalentes?
Annexes
Annexe A

Résolution du problème de flambement

Principe de résolution d’un problème de flambement

Par définition, on dit qu’une structure flambe, lorsque la charge appliquée atteint un niveau à partir duquel la configuration d’équilibre cesse d’être unique et bien déterminée. Cette charge est appelée charge critique de flambement. L’étude de flambement consiste de ce fait en un problème issu des équations d’équilibre.

Dans le cas de systèmes conservatifs, on peut résoudre le problème de flambement par une approche énergétique. L’équilibre est alors donné par la stationnarité de l’énergie potentielle \(E_p \):

\[
\delta E_p = E_p(u)\cdot \delta u = 0 \quad \forall \delta u \in V
\]

(8)

où \(V \) désigne l’espace des champs de déplacements cinématiquement admissibles et \(u \in V \).

L’étude de flambement d’une configuration d’équilibre peut se faire en considérant un charge- ment proportionnel \(F = \lambda E_p \). On se fixe donc une direction \(E_p \), et on fait croître le paramètre \(\lambda \) à partir de 0 jusqu’à trouver la valeur critique \(\lambda_c \) pour laquelle la structure flambe. D’après le théorème des fonctions implicites, pour trouver les points d’équilibre critiques, il suffit de résoudre l’équation suivante :

\[
\exists \ U \in V ; \ U \neq 0 / \quad E_p(u) \cdot U \cdot \delta u = 0 \quad \forall \delta u \in V
\]

(9)

Cette équation correspond à une équation aux valeurs propres \(\lambda_c \) dont les vecteurs propres associés sont les modes de flambement \(U \).

Dans la pratique du calcul des structures, la situation courante est la suivante : lorsque \(\lambda \) croît à partir de 0, on dispose souvent d’une solution triviale \(u_0(\lambda) \) “stable” pour \(0 \leq \lambda \leq \lambda_c \). La valeur propre minimale de la matrice des dérivées secondes de l’énergie potentielle aux points d’équilibre \(E_p(u) \) est positive au départ puis s’annule pour \(\lambda = \lambda_c \). De plus, la quantité \(\Delta E_p = E_p(u(\lambda) + \Delta u; \lambda) - E_p(u(\lambda); \lambda) \) est négative lorsque \(\lambda > \lambda_c \). Ce qui signifie que la (ou les) branche bifurquée, lorsqu’elle existe, correspond à un niveau d’énergie plus bas que celui de la solution triviale.
Détermination des charges critiques de flambement par ABAQUS

Le code de calcul par éléments finis ABAQUS/Standard contient un module pour estimer le flambement élastique par extraction de valeurs propres. Pour ce faire, des charges de perturbation sont rajoutées à un état de base qui représente l’état initial. Cet état de base peut être le résultat de n’importe quelle histoire de réponse, y compris d’effets non linéaires. La charge de flambement estimée est donnée sous forme d’un multiplicateur de la forme des charges de perturbation qui sont ajoutées aux charges de l’état de base. Pour que l’estimation des valeurs propres soit raisonnable, il faut donc que la réponse aux charges de perturbation soit élastique jusqu’aux valeurs des charges de flambement estimées. Par conséquent, cette estimation n’est valable que pour les structures relativement “rigides”, où la réponse avant flambement est presque linéaire.

On considère le problème physique suivant pour effectuer une analyse de flambement : Pour une configuration de base définie par des contraintes σ^B en équilibre avec des forces surfaciques T^B et des forces volumiques f^B, on considère une déformation élastique à gradients de déplacement “petits” sous des forces surfaciques additionnelles ΔT, des forces volumiques additionnelles Δf, et des déplacements de bord Δu, où les forces surfaciques et les déplacements additionnels sont appliqués sur des parties complémentaires du bord. Une telle déformation est une perturbation linéaire d’un état initial prédéformé. L’hypothèse de gradients de déplacement petits est appliquée à la cinématique et aux équations constitutives d’un état initialement contraint. Ce qui conduit à la résolution d’un problème linéaire pour déterminer la réponse à un chargement additionnel. En d’autres termes, comme le problème est linéaire, alors si $\Delta \sigma$ est la réponse en contrainte aux charges ΔT, Δf et Δu, alors pour les charges $\lambda \Delta T$, $\lambda \Delta f$ et $\lambda \Delta u$ la réponse en contrainte est $\lambda \Delta \sigma$.

Chaque valeur de λ correspond à une perturbation linéaire de l’état de base. A travers ces états perturbés, on cherche des valeurs de λ qui permettent l’existence de champs de déplacements incrémentaux non triviaux d’intensité arbitraire comme solution du problème. De tels champs de déplacements incrémentaux non triviaux sont dits modes de flambement. Dans la procédure d’analyse de flambement d’ABAQUS, il n’y a pas de différence entre la géométrie de l’état de base et celles des configurations linéairement perturbées. Suite à cette hypothèse, les modes de flambement sont des déplacements incrémentaux en dehors de la géométrie de l’état de base dont l’état de contrainte est $\lambda \Delta \sigma$, les charges surfaciques appliquées sont $\lambda \Delta T$ et les charges volumiques appliquées sont $\lambda \Delta f$.

Les équations d’équilibre d’une configuration arbitraire durant le flambement, dite configuration actuelle, sont données en terme de contrainte nominale P dans la configuration de référence. Si on désigne par X la position d’un point matériel dans la configuration de référence, les équations d’équilibre peuvent s’écrire de la manière suivante :

$$
\int_{V_B} P : \frac{\partial \tilde{u}}{\partial X} dV^B = \int_{S_B} T : \tilde{u} dS^B + \int_{V_B} f : \tilde{u} dV^B, \quad (10)
$$

où \tilde{u} est un champ de vitesses virtuel arbitraire, T est le vecteur contrainte nominal sur le bord S^B de la structure dans l’état de base, f est la force volumique par unité de volume dans l’état de base et V^B est le volume que la structure occupe dans l’état de base.
La loi constitutive peut être élastique, hypoélastique ou hyperélastique (la plasticité et la viscosité sont ignorées).

Pour procéder à la discrétisation par éléments finis, le champ de vitesses interpolé suivant est introduit :

\[\mathbf{v} = \mathbf{v}^N \mathbf{N}^N(\mathbf{X}) , \]

(11)

où \(\mathbf{X} \) est la position dans l’état de base qui est la configuration de référence. Les équations gouvernant le flambement donnent lieu alors au problème aux valeurs propres suivant :

\[(K_0^{NM} + \lambda K_{\triangle M}^{NM}) \gamma^M = 0 , \]

(12)

où \(K_0^{NM} \) est la rigidité de l’état de base et \(K_{\triangle M}^{NM} \) est la rigidité géométrique.

La rigidité de l’état de base est la somme des rigidités tangentes hypoélastiques, la rigidité de la contrainte initiale et la rigidité du chargement :

\[K_0^{NM} = \int_{\Omega_B} \left(\frac{\partial \mathbf{N}^N}{\partial \mathbf{X}} \right)^{\text{sym}} : C(\sigma^B) : \left(\frac{\partial \mathbf{N}^M}{\partial \mathbf{X}} \right)^{\text{sym}} dV^B + \int_{\Gamma_B} \sigma^B : \left[\left(\frac{\partial \mathbf{N}^N}{\partial \mathbf{X}} \right)^T \cdot \frac{\partial \mathbf{N}^M}{\partial \mathbf{X}} - 2 \left(\frac{\partial \mathbf{N}^M}{\partial \mathbf{X}} \right)^{\text{sym}} \cdot \left(\frac{\partial \mathbf{N}^N}{\partial \mathbf{X}} \right)^{\text{sym}} \right] dV^B - \int_{S_B} N^N \frac{\partial f^B}{\partial u^M} dS^B - \int_{\Gamma_B} N^N \cdot \frac{\partial \mathbf{f}^B}{\partial u^M} dV^B , \]

(13)

où \(\mathbf{u}^M \) sont les déplacements nodule et où \(C(\sigma) \) est un tenseur de quatrième ordre qui peut dépendre de la contrainte actuelle et qui définit le comportement.

La rigidité géométrique est la somme de la rigidité de la contrainte initiale et la rigidité du chargement dues aux contraintes de perturbation :

\[K_{\triangle M}^{NM} = \int_{\Omega_B} \Delta \sigma^B : \left[\left(\frac{\partial \mathbf{N}^N}{\partial \mathbf{X}} \right)^T \cdot \frac{\partial \mathbf{N}^M}{\partial \mathbf{X}} - 2 \left(\frac{\partial \mathbf{N}^M}{\partial \mathbf{X}} \right)^{\text{sym}} \cdot \left(\frac{\partial \mathbf{N}^N}{\partial \mathbf{X}} \right)^{\text{sym}} \right] dV^B - \int_{S_B} N^N \cdot \frac{\partial \Delta f^B}{\partial u^M} dS^B - \int_{\Gamma_B} N^N \cdot \frac{\partial \mathbf{f}^B}{\partial u^M} dV^B . \]

(14)

Il est à noter que, dans cette expression, la contribution qui provient de la contrainte est symétrique alors que la contribution qui provient des charges appliquées n’est pas symétrique si le chargement est conservatif, c’est-à-dire que si les charges dérivent d’une énergie potentielle. Lorsque la rigidité due au chargement n’est pas symétrique, sa contribution est symétrisée car ABAQUS ne peut résoudre les problèmes aux valeurs propres que si les matrices sont symétriques.

On note \(P^N \) les charges nodule généralisées résultant des forces appliquées \(T^B \) et \(f^B \) et des déplacements imposés \(u^B \), et on note \(Q^N \) celles dues à \(\Delta T^B \), \(\Delta f^B \) et \(\Delta u^B \). Les valeurs propres \(\lambda_i \) représentent les multiplicateurs qui estiment les charges de flambements généralisées par \(P^N + \lambda_i Q^N \). Les vecteurs propres \(\mathbf{v}^N_i \) correspondants sont les modes de flambements associés.

Bien que, dans la plupart des analyses, on ne s’intéresse qu’au premier mode de flambement, ABAQUS est capable d’extraire plusieurs modes simultanément. Par ailleurs, lorsque le comportement avant flambement est non linéaire, pour estimer la capacité de la structure, il faut procéder à une analyse non linéaire utilisant la méthode de Riks.
Algorithme de Riks modifié

Souvent, les problèmes de perte de stabilité sont caractérisés par des solutions d’équilibre statique non linéaires, où durant au moins une période de la réponse, la charge et/ou le déplacement décroît (voir Fig. 18).

\[\text{Charge } F \]

\[\text{Déplacement } u \]

Fig. 18 – schéma typique d’une réponse statique instable

Plusieurs méthodes ont été proposées et appliquées à ce type de problème. La méthode de Riks modifiée semble être la plus performante (voir par exemple [Crisfield, 1981], [Ramm, 1981] et [Powell et Simons, 1998]). C’est une version de cette méthode qui a été implémentée dans ABAQUS.

Dans cette procédure, on suppose que le chargement est proportionnel. Ce qui signifie que toutes les amplitudes du chargement varient en fonction d’un seul paramètre scalaire \(F = \lambda F_0 \). De plus, on suppose que la réponse est suffisamment “lisse”, dans le sens où il n’y a pas de bifurcation soudaine. La solution est obtenue à travers un seul trajet d’équilibre dans un espace défini par les variables nodales et le paramètre de chargement. L’algorithme de base demeure celui de la méthode de Newton. En un point solution \(A_0 \), la rigidité tangente est calculée. Puis, on passe de \(A_0 \) à un nouveau point \(A_1 \) par un incrément sur cette ligne tangente. La taille de cet incrément est initialement suggérée par l’utilisateur puis elle est ajustée dans ABAQUS par un algorithme d’incrémentation automatique de la charge, valable pour les problèmes statiques. Ensuite, le point d’équilibre \(A_2 \) est cherché sur le plan passant par \(A_1 \) et orthogonal à la ligne tangente. La Fig. 19 illustre l’utilité de cette méthode dans le cas de la présence d’une instabilité.
FIG. 19 – schéma de l’algorithme de Riks modifié
Annexe B

Aperçu des modèles de poutre dans ABAQUS

Dans l’étude numérique, on a utilisé deux types de poutre : les poutres de Timoshenko et les poutres d’Euler-Bernoulli. Dans cette annexe, on expose brièvement la cinématique sur laquelle est basée la formulation de chaque modèle.

Dans le cas le plus général, celui des poutres de Timoshenko, la position d’un point matériel de la section d’une poutre est définie dans ABAQUS par :

\[\hat{x}(s, s^\alpha) = \bar{x}(s) + f(s) s^\alpha \mathbf{n}_n(s) + \omega(s) \psi(s^\alpha) \mathbf{t}(s). \] (15)

Dans cette expression, on dénote par :

- \(\bar{x}(s) \) la position du point matériel sur l’axe neutre ;
- \(\mathbf{n}_n(s) \) deux vecteurs unitaires orthogonaux dans le plan de la section de la poutre ;
- \(\mathbf{t}(s) \) le vecteur unitaire orthogonal à \(\mathbf{n}_1 \) et \(\mathbf{n}_2 \) ;
- \(\psi(s^\alpha) \) la fonction de gauchissement de la fonction ;
- \(\omega(s) \) l’amplitude du gauchissement ;
- et \(f(s) \) est un paramètre qui dépend de l’extension de la poutre.

Ces quantités dépendent de la coordonnée \(s \) sur l’axe de la poutre et des coordonnées \(s^\alpha \) dans la section de la poutre. Ces distances sont mesurées dans la configuration de référence. La fonction de gauchissement est choisie de sorte que la valeur à l’origine de la section soit égale à zéro : \(\psi(0) = 0 \). On note que dans le cas d’une section circulaire (section choisie dans notre étude numérique), il n’y a pas de gauchissement.

Il est supposé que, aux points d’intégration tout au long de la poutre, les directions de la section de la poutre sont pratiquement orthogonales à la tangente \(\mathbf{t}(s) \) à l’axe de la poutre donnée par :

\[\mathbf{t}(s) = \lambda^{-1} \frac{dx}{ds}, \] (16)

où \(\lambda \) est l’extension axiale donnée par :

\[\lambda = |\frac{dx}{ds}|. \] (17)

145
Dans le cas des poutres d’Euler-Bernoulli, la position d’un point matériel dans la configuration courante devient :

$$
x'(s) = x(s) + g(s) + h(s),
$$

(18)

où g et h mesurent les distances dans la section.

Dans ces éléments, le taux de travail virtuel interne est associé seulement à la déformation axiale et au cisaillement en torsion. De plus, la section ne se déforme pas dans son plan, ne subit pas de gauchissement à l’extérieur de son plan et reste normale à l’axe neutre de la poutre. Ce sont les hypothèses classiques de la théorie de poutres d’Euler-Bernoulli. Ces poutres donnent des résultats satisfaisants dans le cas des poutres minces.
Références bibliographiques
Bibliographie

149

BIBLIOGRAPHIE

BIBLIOGRAPHIE

BIBLIOGRAPHIE

Notations

Cette section regroupe les notations utilisées dans ce mémoire. La convention d’Einstein est adoptée : tout indice répété dans un terme d’une expression est sommé (exemple : $a_i b_i \equiv \sum_i a_i b_i$).

Tenseurs et opérateurs

$\mathbf{e}_i |_{i=1,3}$ Vecteurs formant une base orthonormée dans la configuration de référence

ν Tenseur d’ordre 1 ou vecteur $(\nu = (\nu_i)|_{i=1,3})$

T Tenseur d’ordre 2 $(T = (T_{ij})|_{i,j=1,3})$

T^+ Tenseur d’ordre 4 $(T^+ = (T^{ijkl}|_{i,j,k,l=1,3}))$

: Produit simplement contracté (exemple : $A \cdot B = A_{ij} B_{jk}$)

: Produit doublement contracté (exemple : $A : B = A_{ij} B_{ji}$)

\otimes Produit tensoriel (exemple : $\nu \otimes \nu = \nu_i \nu_j \mathbf{e}_i \otimes \mathbf{e}_j$)

T_{ij} Composantes du tenseur T $(T = T_{ij} \mathbf{e}_i \otimes \mathbf{e}_j)$

T^t Tenseur transposé du tenseur $(T^t = T_{ji} \mathbf{e}_i \otimes \mathbf{e}_j)$

δ_{ij} Symbole de Kronecker $(\delta_{ij} = 1$ si $i = j$, $\delta_{ij} = 0$ si $i \neq j)$

I Tenseur identité $(I = \delta_{ij} \mathbf{e}_i \otimes \mathbf{e}_j)$

$\text{tr}(T)$ Trace du tenseur $(\text{tr}(T) = T : I = T_{ii})$

$\text{Grad} \ \mathbf{v}$ Gradient Lagrangien d’un vecteur $(\text{Grad} \ \mathbf{v} = (\partial v_i / \partial x_j) (\mathbf{e}_i \otimes \mathbf{e}_j))$

$\text{Div} \ T$ Divergence Lagrangienne d’un tenseur $(\text{Div} \ T = \text{Grad} \cdot T = (\partial T_{ij} / \partial x_i) \mathbf{e}_j)$

$\langle f \rangle_\Omega$ Moyenne volumique de f sur Ω
Grandeur géométriques

\begin{itemize}
\item \(a\) \quad
\text{Hauteur d’un tétrakaïdéraëdre}
\item \(A\) \quad
\text{Section d’une poutre (ou d’une arête des cellules d’une mousse)}
\item \(c_i, C_i, C'_i\) \quad
\text{Paramètres qui dépendent de la forme des cellules d’une mousse}
\item \(d\) \quad
\text{Plus grande distance séparant un point de la section d’un élément de son axe}
\item \(d_s\) \quad
\text{Densité relative ou fraction volumique de matière dans une mousse}
\item \(I_1\) \quad
\text{Moment d’inertie suivant le premier axe principal d’une poutre}
\item \(I_2\) \quad
\text{Moment d’inertie suivant le second axe principal d’une poutre}
\item \(I_t\) \quad
\text{Moment d’inertie de torsion d’une poutre}
\item \(l\) \quad
\text{Longueur d’une poutre (ou d’une arête des cellules d’une mousse)}
\item \(t\) \quad
\text{Épaisseur des arêtes des cellules d’une mousse à porosité ouverte}
\item \(t_a\) \quad
\text{Épaisseur des arêtes des cellules d’une mousse à porosité fermée}
\item \(t_f\) \quad
\text{Épaisseur des faces des cellules d’une mousse à porosité fermée}
\item \(V_{CB}\) \quad
\text{Volume de la cellule de base notée CB}
\item \(V_t\) \quad
\text{Volume d’un tétrakaïdéraëdre}
\end{itemize}

\begin{itemize}
\item \(\phi\) \quad
\text{Porosité d’une mousse}
\item \(\varphi\) \quad
\text{Fraction volumique de solide contenu dans les arêtes des cellules d’une mousse à porosité fermée}
\item \(\rho_m\) \quad
\text{Densité d’une mousse}
\item \(\rho_s\) \quad
\text{Densité du solide composant une mousse}
\item \(\theta_{\text{sect}}\) \quad
\text{Paramètre qui dépend de la forme de la section}
\item \(\theta_{\text{circulaire}}\) \quad
\text{Valeur de } \theta_{\text{sect}} \text{ dans le cas d’une section circulaire}
\item \(\theta_{\Delta}\) \quad
\text{Valeur de } \theta_{\text{sect}} \text{ dans le cas d’une section triangulaire}
\item \(\zeta\) \quad
\text{Rapport de la plus grande distance séparant un point de la section d’un élément de son axe sur la longueur de cet élément (} \zeta = \frac{d}{l} \text{)}
\item \(\xi\) \quad
\text{Rapport de l’épaisseur des arêtes sur leur longueur (} \xi = \frac{t}{l} \text{)}
\end{itemize}
Grandeurs mécaniques

Grandeurs scalaires

\(E_m \) Module de Young d’une mousse
\(E_s \) Module de Young du solide composant une mousse
\(E_{ed} \) Module "œdémétrique" d’une mousse
\(G_m \) Module de cisaillement d’une mousse
\(G_s \) Module de cisaillement du solide composant une mousse
\(K \) Paramètre qui dépend de la mousse
\(p \) Pression hydrostatique \((p = -1/3 \text{ tr}(\Sigma))\)
\(p_0 \) Pression du gaz initiale dans les cellules d’une mousse à porosité fermée
\(q \) Contrainte équivalente de Von-Mises \((q = \sqrt{3/2 \text{ tr}(\Sigma) \cdot \Sigma)}\)
\(r \) Troisième invariant de la contrainte déviatorique \((r = (9/2 \Sigma \cdot \Sigma \cdot \Sigma)^{1/3})\)
\(t \) Nouvelle mesure de la contrainte déviatorique
\(\Psi \) Potentiel d’énergie élastique
\(\omega \) Densité d’énergie de déformation par unité de volume de référence
\(W^\text{hom} \) Densité d’énergie de déformation homogénéisée
\(W^\text{micro} \) Énergie de déformation microscopique
\(W^\text{macro} \) Énergie de déformation macroscopique
\(W^\text{hom} \) Énergie de déformation homogénéisée

\(\alpha, \alpha_1, \alpha_2 \) Paramètres de chargement en déformation
\(\beta, \beta' \) Paramètres de chargement en contrainte
\(\delta \) Ordonnée à l’origine de la droite de Drucker-Prager représentée dans le plan \((p,t)\)
\(\epsilon_D \) Déformation limite de la phase plateau et initiatrice de la densification
\(\lambda \) Paramètre positif croissant pour le chargement
\(\lambda^{(k)} \) Infinisimum des \(\lambda \) pour lesquelles des instabilités \(k \)Y-périodiques ont lieu
\(\lambda_m(\omega) \) Infinisimum des \(\lambda \) pour lesquelles des instabilités non périodiques
du type ondes de Bloch ont lieu pour un \(\omega \) donné
\(\lambda_c \) Valeur critique
\(\lambda_c^{micro} \) Valeur critique définie comme étant l’infinisimum des \(\lambda^{(k)} \) sur toutes les cellules périodiques possibles \(kY \) dans la méthode dite par ondes périodiques arbitraires ou comme étant l’infinisimum des \(\lambda_m(\omega) \) sur tous les \(\omega \) dans la méthode dite par ondes de Bloch
\(\mu \) Module de cisaillement
\(\nu_m \) Coefficient de Poisson d’une mousse
\(\nu_s \) Coefficient de Poisson du solide composant une mousse
\(\sigma_e \) Contrainte limite d’élasticité d’un solide
\(\sigma_r \) Contrainte limite à la rupture d’un solide
\(\Sigma_p \) Contrainte de plateau d’une mousse
\(\Sigma_{pi} \) Contrainte de plateau d’une mousse élastomérique
\(\Sigma_{pl} \) Contrainte de plateau d’une mousse élasto-plastique
\(\Sigma_{pi} \) Contrainte de plateau d’une mousse élastique fragile
\(\Theta \) Pente de la droite de Drucker-Prager représentée dans le plan \((p,t)\)
Grandeurs tensorielles

Notation indicielle

\[
\begin{align*}
\gamma_i & \quad \text{Déformation latérale suivant l'axe } \varepsilon_{i=1,2} \\
h_i & \quad \text{Hauteur de la cellule d'étude suivant la direction } \varepsilon \\
L_i & \quad \text{Longueurs d'onde du mode de bifurcation } (L_i = 2\pi h_i / \omega_i)
\end{align*}
\]

Notation tensorielle

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{X})</td>
<td>Vecteur position du point matériel dans la configuration de référence</td>
</tr>
<tr>
<td>(\mathbf{\varepsilon})</td>
<td>Vecteur position du point matériel dans la configuration actuelle</td>
</tr>
<tr>
<td>(\mathbf{u})</td>
<td>Vecteur déplacement d'un point matériel</td>
</tr>
<tr>
<td>(\delta \mathbf{u})</td>
<td>Vecteur variation du déplacement</td>
</tr>
<tr>
<td>(\mathbf{u}^{\text{per}})</td>
<td>Champs de déplacements (Y)-périodique en (\mathbf{X})</td>
</tr>
<tr>
<td>(\mathbf{u}^{k\text{per}})</td>
<td>Champ de déplacements (kY)-périodique en (\mathbf{X}) avec (k_i) des entiers positifs</td>
</tr>
<tr>
<td>(\mathbf{\varphi})</td>
<td>Vecteur rotation d'un point matériel</td>
</tr>
<tr>
<td>(\mathbf{\varphi}^{\text{per}})</td>
<td>Vecteur rotation périodique</td>
</tr>
<tr>
<td>(\mathbf{f})</td>
<td>Tenseur gradient de la transformation locale (f = \partial x / \partial \mathbf{X})</td>
</tr>
<tr>
<td>(\mathbf{E})</td>
<td>Tenseur gradient de la transformation globale</td>
</tr>
<tr>
<td>(\mathbf{\varepsilon})</td>
<td>Orientation donnée du chargement macroscopique</td>
</tr>
<tr>
<td>(\mathbf{\varepsilon}^{\text{glob}})</td>
<td>Tenseur de déformations locales de Green-Lagrange (\varepsilon = 1/2 (\mathbf{f}^t \mathbf{f} - \mathbf{I}))</td>
</tr>
<tr>
<td>(\mathbf{E}^{\text{glob}})</td>
<td>Tenseur de déformations de Green-Lagrange (\mathbf{E}^{\text{glob}} = 1/2 (\mathbf{E}^t \mathbf{E} - \mathbf{I}))</td>
</tr>
<tr>
<td>(\mathbf{\varepsilon}^{\text{lin}})</td>
<td>Tenseur de déformations de Biot (\mathbf{E}^{\text{lin}} = \mathbf{E} - \mathbf{I})</td>
</tr>
<tr>
<td>(\mathbf{b})</td>
<td>Tenseur de contraintes microscopique de Boussinesq (ou de Piola-Kirchhoff)</td>
</tr>
<tr>
<td>(\mathbf{\Sigma})</td>
<td>Tenseur de contraintes macroscopique de Boussinesq (ou de Piola-Kirchhoff)</td>
</tr>
<tr>
<td>(\mathbf{\varphi}^{\text{lin}})</td>
<td>Tenseur déviatorique des contraintes (\mathbf{S} = \mathbf{\Sigma} + p \mathbf{I})</td>
</tr>
<tr>
<td>(E)</td>
<td>Tenseur module de l’élasticité linéaire isotrope (tel que (w = \frac{1}{2} \mathbf{E}^t : \mathbf{\Sigma} : \mathbf{E}))</td>
</tr>
<tr>
<td>(\mathbf{f}^{\text{hom}} (\lambda))</td>
<td>Tenseur module incrémental microscopique (\mathbf{f}^{\text{hom}} = \partial^2 w / \partial \mathbf{f} \partial \mathbf{f})</td>
</tr>
<tr>
<td>(\mathbf{f}^{\text{hom}})</td>
<td>Tenseur module incrémental macroscopique</td>
</tr>
<tr>
<td>(\mathbf{\varphi}^{\text{hom}})</td>
<td>Tenseur de souplesse élastique</td>
</tr>
<tr>
<td>(\mathbf{\varphi}^{\text{hom}})</td>
<td>Tenseur de souplesse élastique homogénéisé</td>
</tr>
</tbody>
</table>
NOTATIONS

Autres

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω</td>
<td>Domaine d’un matériau</td>
</tr>
<tr>
<td>$\partial \Omega$</td>
<td>Bord du domaine Ω</td>
</tr>
<tr>
<td>n</td>
<td>Normale extérieure à Ω en un point de $\partial \Omega$</td>
</tr>
<tr>
<td>Y</td>
<td>Cellule périodique minimale dont la taille est considérée unitaire $Y = [0, 1]^3$</td>
</tr>
<tr>
<td>kY</td>
<td>Cellule périodique de taille $kY = \prod_{i=1,3} [0, k_i]$ où $(k_i)_{i=1,3}$ sont des entiers positifs</td>
</tr>
<tr>
<td>N^{i+}</td>
<td>Nœud situé sur la face de normale \vec{e}_i du bord de la cellule d’étude et relié à N^{i+} par des conditions de périodicité</td>
</tr>
<tr>
<td>X^{i+}</td>
<td>Vecteur position du nœud N^{i+} dans la configuration de référence</td>
</tr>
<tr>
<td>X^{i-}</td>
<td>Vecteur position du nœud N^{i-} dans la configuration de référence</td>
</tr>
<tr>
<td>U^{i+}</td>
<td>Vecteur déplacement du nœud N^{i+}</td>
</tr>
<tr>
<td>U^{i-}</td>
<td>Vecteur déplacement du nœud N^{i-}</td>
</tr>
<tr>
<td>ϕ^{i+}</td>
<td>Vecteur rotation du nœud N^{i+}</td>
</tr>
<tr>
<td>ϕ^{i-}</td>
<td>Vecteur rotation du nœud N^{i-}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nombre d’arêtes dans un solide platonicien</td>
</tr>
<tr>
<td>F</td>
<td>Nombre de faces dans un solide platonicien</td>
</tr>
<tr>
<td>K</td>
<td>Module de compression</td>
</tr>
<tr>
<td>P</td>
<td>Nombre d’arêtes de chaque face polygonale d’un solide platonicien (1ᵉʳ symbole de Schläfli)</td>
</tr>
<tr>
<td>\overline{P}</td>
<td>Nombre moyen d’arêtes par face polygonale d’un polyédre convexe</td>
</tr>
<tr>
<td>Q</td>
<td>Nombre d’arêtes issues de chaque sommet d’un solide platonicien (2ᵉʳ symbole de Schläfli)</td>
</tr>
<tr>
<td>S</td>
<td>Nombre de sommets dans un solide platonicien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{F}[\phi, m]$</td>
<td>Intégrale elliptique de premier type</td>
</tr>
<tr>
<td>$\mathbb{K}[m]$</td>
<td>Intégrale elliptique complète de premier type ($\mathbb{K}[m] = \mathbb{F}[\frac{1}{2}, m]$)</td>
</tr>
<tr>
<td>$\mathbb{E}[\phi, m]$</td>
<td>Intégrale elliptique de deuxième type</td>
</tr>
<tr>
<td>$\mathbb{E}[m]$</td>
<td>Intégrale elliptique complète de deuxième type ($\mathbb{E}[m] = \mathbb{E}[\frac{1}{2}, m]$)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_i, κ_i et β_i</td>
<td>Constantes de calibration de la forme d’Ogden</td>
</tr>
<tr>
<td>λ_i</td>
<td>Allongements principaux (valeurs propres de U et de V) ; tenseurs de la décomposition polaire de F ($F = RU = V$, où $R^T R = D$)</td>
</tr>
<tr>
<td>$\hat{\lambda}_i$</td>
<td>Ré-définition des λ_i pour permettre le passage de la forme d’Ogden à une forme adaptée pour les mouches dans ABAQUS ($\hat{\lambda}_i = J^{-1/3}_i \lambda_i$)</td>
</tr>
<tr>
<td>J</td>
<td>Jacobien de la transformation ($J = \det F$) et aussi le rapport du volume élémentaire dans la configuration actuelle sur le volume élémentaire dans la configuration de référence ($J = dV/dV_0$) avec $J > 0$: condition d’impénétrabilité de la matière</td>
</tr>
<tr>
<td>J_{el}</td>
<td>Rapport de volume élastique</td>
</tr>
<tr>
<td>J_{th}</td>
<td>Rapport de volume thermique</td>
</tr>
<tr>
<td>ϵ_{th}</td>
<td>Expansion thermique linéaire</td>
</tr>
</tbody>
</table>
Table des figures

<table>
<thead>
<tr>
<th>Numéro</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Exemples de solides cellulaires</td>
<td>17</td>
</tr>
<tr>
<td>1.2</td>
<td>Trois types de matériaux cellulaires tridimensionnels</td>
<td>18</td>
</tr>
<tr>
<td>1.3</td>
<td>Schéma et micrographe d’une mousse à très large distribution de la taille des cellules</td>
<td>18</td>
</tr>
<tr>
<td>1.4</td>
<td>Plage de propriétés des mousses et des solides qui la composent</td>
<td>20</td>
</tr>
<tr>
<td>1.5</td>
<td>Schéma de courbes contrainte-déformation d’un solide élastique et d’une mousse du même solide</td>
<td>21</td>
</tr>
<tr>
<td>1.6</td>
<td>Compression uniaxiale d’une mousse de polypropylène</td>
<td>23</td>
</tr>
<tr>
<td>1.7</td>
<td>Courbes contrainte-déformation schématiques pour des mousses en compression uniaxiale</td>
<td>24</td>
</tr>
<tr>
<td>2.1</td>
<td>Les cinq solides platoniciens</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>Pavages réguliers du plan de Képler</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Partition de Kelvin : les tétrakaïdécaédres</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Partition de Weaire-Phelan</td>
<td>28</td>
</tr>
<tr>
<td>2.5</td>
<td>Les cinq polyèdres réguliers ou semi-réguliers possibles pour paver l’espace</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Compression quasi-statiques expérimentale et numériques d’une mousse de polypropylène</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Cellule de base adoptée par Gent et ses collaborateurs</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Première cellule de base adoptée par Gibson et ses collaborateurs</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>Modélisation par assemblage de quatre poutres inscrites dans un tétraèdre</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Nid d’abeilles en aluminium : (a) Cellule de base ; (b) Surface de charge issue d’une homogénéisation par ondes de Bloch</td>
<td>50</td>
</tr>
<tr>
<td>5.1</td>
<td>Une cellule périodique minimale : C_{min}</td>
<td>59</td>
</tr>
<tr>
<td>5.2</td>
<td>Cellule de base du réseau tétrakaïdécaédrique : vues suivant trois plans</td>
<td>60</td>
</tr>
<tr>
<td>5.3</td>
<td>Cellule de base du réseau tétrakaïdécaédrique : vue dans l’espace</td>
<td>61</td>
</tr>
<tr>
<td>5.4</td>
<td>Cellules de base parallélépipédiques : (a) CB3, (b) CB5, (c) CB333</td>
<td>62</td>
</tr>
<tr>
<td>5.5</td>
<td>La cellule de base : deux sections différentes</td>
<td>62</td>
</tr>
<tr>
<td>5.6</td>
<td>Superposition de deux cellules de base suivant l’horizontale et sections correspondantes</td>
<td>63</td>
</tr>
<tr>
<td>5.7</td>
<td>Axes principaux d’une poutre</td>
<td>65</td>
</tr>
<tr>
<td>6.1</td>
<td>Flambement global d’une mousse de polyuréthane rigide</td>
<td>76</td>
</tr>
</tbody>
</table>
7.1 Courbes contrainte adimensionnelle-déformation des CB, CB3 et CB5 en compression uniaxiale ... 80
7.2 Courbes contrainte adimensionnelle-déformation des CB et CB3 en déformation uniaxiale ... 80
7.3 Premier mode de flamement de la CB en déformation uniaxiale : vues suivant les plans (x_1, x_3) et (x_2, x_3) .. 81
7.4 Premier mode de flamement de la CB3 en déformation uniaxiale : vues suivant les plans (x_1, x_3) et (x_2, x_3) .. 81
7.5 Premier mode de flamement de la CB en compression uniaxiale (vues suivant les plans (x_1, x_3) et (x_2, x_3)) .. 82
7.6 Premier mode de flamement de la CB3 en compression uniaxiale (vues suivant les plans (x_1, x_3) et (x_2, x_3)) .. 82
7.7 Premier mode de flamement de la CB5 en compression uniaxiale (vues suivant les plans (x_1, x_3) et (x_2, x_3)) .. 83
7.8 Superposition des modes de déformation de la CB3 en compression uniaxiale .. 83
7.9 Variation de la charge critique de flamement, en fonction de la cellule d’étude, suivant deux chargements imposés : la déformation et la compression uniaxiales 84
7.10 Courbes contrainte adimensionnelle-déformation en compression uniaxiale dans les deux cas de modes de déformation symétriques et “non symétriques” . . 85
7.11 Courbes contrainte adimensionnelle-déformation en déformation uniaxiale dans les deux cas de modes de déformation symétriques et “non symétriques” . . 85
7.12 Courbe contrainte adimensionnelle-déformation de la CB333 en déformation uniaxiale ... 86
7.13 Déformation uniaxiale de la CB333 à $E_{33} = 0.16$: flamement structural . 87

9.1 Convergence des surfaces de charge issues d’une analyse par ondes périodiques arbitraires : plan $\Sigma_1 = \Sigma_2$.. 100
9.2 Convergence des surfaces de charge issues d’une analyse par ondes périodiques arbitraires : plan $\Sigma_2 = 0$.. 100
9.3 Surfaces de charge micro et mixte dans le plan $\Sigma_1 = \Sigma_2$ 102
9.4 Surfaces de charge micro et mixte dans le plan $\Sigma_2 = 0$ 102
9.5 Surfaces de charge des modes périodiques ou à grandes longueurs d’onde dans le plan $\Sigma_1 = \Sigma_2$.. 103
9.6 Surfaces de charge des modes périodiques ou à grandes longueurs d’onde dans le plan $\Sigma_2 = 0$.. 103
9.7 Surfaces de Drucker-Prager modifiée dans l’espace des contraintes déviatoriques 105
9.8 Surface de Drucker-Prager modifiée dans le plan (p, t) 105
9.9 Surfaces de charge dans le plan $\Sigma_1 = \Sigma_2$ pour différentes densités relatives .. 107
9.10 Surfaces de charge dans le plan $\Sigma_2 = 0$ pour différentes densités relatives 107
9.11 Surfaces de charge dans le plan (p^*, q^*) du type Drucker-Prager inversé .. 109
9.12 Écarts relatifs des résultats en p^* et q^* suivant la densité relative : plan de chargements $\Sigma_1 = \Sigma_2$.. 110
9.13 Écarts relatifs des résultats en p^* et q^* suivant la densité relative : plan de chargements $\Sigma_2 = 0$.. 110
TABLE DES FIGURES

9.14 Surfaces de charge dans le plan \((p^*, t^*)\) suivant le type de poutres : Euler-Bernoulli ou Timoshenko .. 111
9.15 Surfaces de charge dans le plan \((p^*, t^*)\) suivant le type de poutres : Euler-Bernoulli ou Timoshenko .. 112
9.16 Surfaces de charge dans le plan \((p^*, t^*)\) suivant le type de poutres : Euler-Bernoulli ou Timoshenko .. 112

10.1 Schémas qualitatifs de courbes contrainte-déformation de compression de matériaux alvéolaires : (a) élastomériques; (b) élasto-plastiques; (c) élastiques fragiles ... 114
10.2 Courbes de charges/décharges de compression uniaxiale du caril 114
10.3 Schéma de la boîte en polycarbonate transparent ... 116
10.4 Densités et pré-déformations moyennes par série d’échantillons 117
10.5 Dispositions des parois de moulage du fabricant lors du chargement 118
10.6 Exemple de courbe contrainte-déformation nominales 119
10.7 Linéarisation des deux premières phases de l’exemple de courbe contrainte- déformation nominales .. 119
10.8 Courbe contrainte-déformation nominales et linéarisation des 3 phases 122
10.9 Essai de compression biaxiale sur une mousse de caril 122
10.10 Exemple de courbes contrainte-déformation nominales pour deux densités dif- férentes .. 124
10.11 Variation du module apparent en fonction de la pré-déformation 124
10.12 Variation du module de plateau en fonction de la pré-déformation 125
10.13 Variation du module de la contrainte seuil en fonction de la pré-déformation 125
10.14 Variation expérimentale .. 126
10.15 Exemple de courbes contrainte-déformation nominales pour une même densité \((d_2)\) et pour différentes pré-déformations ... 127
10.16 Ensemble des charges critiques moyennes adimensionnelles de mousse à den- sité \(d_1\) ... 129
10.17 Surface de charge dans le plan déviatorique des contraintes 129
18 schéma typique d’une réponse statique instable ... 142
19 schéma de l’algorithme de Riks modifié ... 143
Liste des tableaux

2.1 Les cinq solides de Platon 26

5.1 Les densités relatives maximales pour des modélisations de type poutres valables 67
5.2 Résumé sur les cellules d’étude adoptées : taille, nombres de nœuds, d’éléments
et de tétrakaidécaèdres 68

8.1 Nombres de vecteurs unitaires étudiés 98

10.1 Densités et pré-déformations moyennes par série d’échantillons 117
10.2 Fraction volumique de solide dans les arêtes et module de Young du solide 121
10.3 Résultats expérimentaux moyennés (échantillons à peaux de moulage horizon-
tales) .. 123
10.4 Résultats expérimentaux adimensionnels 128