J. Critère, Ds) Suivant une analyse en Ds, le modèle s'approche de la réalité bien que les durées de vie calculées restent supérieures aux résultats expérimentaux (Figure VII-27)

M. Akamatsu and E. Chevallier, Caractérisation chimique et mécanique des matériaux approvisionnés pour l'étude du comportement en fatigue des aciers inoxydables austénitiques, 2000.

C. Amzallag, P. Rabbe, G. Gallet, and H. Lieurade, Influence des conditions de sollicitation sur le comportement en fatigue oligocyclique d'aciers inoxydables austénitiques, Mémoires scientifiques Revue métallurgie Mars, pp.161-173, 1978.

L. Angarita, G. Pitz, K. Lang, D. H. Löhe, H. J. Sehitoglu et al., Realization of Complex Thermal-mechanical Fatigue by a Two-specimen Testing System, pp.304-318, 1371.
DOI : 10.1520/STP15268S

T. Angel, Formation of martensite in austenitic stainless steels, Journal of the iron and steel institute, p.165, 1954.

N. Baffie, J. D. Stolarz, P. Miannay, and . Costa, Influence of martensitic transformation on fatigue short crack behaviour in austenitic stainless steels with different grain sizes, in : Advances in mechanical behaviour, plasticity and damage, Proceedings of EUROMAT 2000, pp.805-810, 2000.

Y. M. Baik and K. S. Kim, The combined effect of frequency and load level on fatigue crack growth in stainless steel 304, International Journal of Fatigue, vol.23, issue.5, pp.417-425, 2001.
DOI : 10.1016/S0142-1123(00)00109-2

H. Bassler and D. Eifler, Cyclic deformation behaviour and plasticity-induced martensite formation of the austenitic steel X6CrNiTi1810, Fatigue '99, Seventh international fatigue congress, pp.205-210, 1999.

G. Baudry and A. Pineau, Influence of strain-induced martensitic transformation on the low-cycle fatigue behavior of a stainless steel, Materials Science and Engineering, vol.28, issue.2, pp.28-229, 1977.
DOI : 10.1016/0025-5416(77)90176-8

B. A. Bilby and K. H. Swinden, Representation of Plasticity at Notches by Linear Dislocation Arrays, Proceedings of the royal society of London A, pp.285-307, 1965.
DOI : 10.1098/rspa.1965.0086

D. Blanc, Effet de soluté et déformation plastique d'un acier inoxydable austénitique, 1986.

A. Bouchou and P. Delobelle, Thermo-Mechanical Behaviour and Modelling of an Austenitic Stainless Steel under Anisothermal Cyclic Loadings, 1996.
DOI : 10.1007/978-94-015-8636-8_45

S. R. Byung, U. H. Hyun, and W. N. Soo, The effect of d-ferrite on fatigue cracks in 304L steels, International journal of fatigue, pp.22-683, 2000.

G. Chalant and L. Remy, The slip character and low cycle fatigue behavior : the influence of F.C.C. twinning and strain-induced F martensitic transformation, Acta metallurgica, pp.28-75, 1980.

H. Christ, The Use of Plastic Strain Control in Thermomechanical Fatigue Testing, J. Bressers, L. Rémy, pp.1-14, 1996.
DOI : 10.1007/978-94-015-8636-8_1

G. Clark and J. F. Knott, Effects of notches and surface hardening on the early growth of fatigue cracks, Metal science, pp.345-350, 1977.

W. W. Gerberich, S. E. Harvey, D. E. Kramer, and J. W. Hoehn, Low and high cycle fatigue ? A continuum supported by AFM observations, Acta metallurgica, pp.5007-5021, 1998.

M. Gerland and P. Violan, Secondary cyclic hardening and dislocation structures in type 316 stainless steel at 600°C, Materials science and engineering, pp.23-33, 1986.

J. C. Gibeling and A. T. , Observations of plastic strain rate continuity in iron in and near the « athermal plateau », Acta metallurgica, pp.2069-2075, 1984.

J. C. Gibeling and A. T. , Strain rate continuity in aluminium and Al-Mg, Materials science and engineering A, pp.79-126, 1986.

N. L. Goldman and J. W. Hutchinson, Fully plastic crack problems : the center-cracked strip under plane strain, International journal of solids and structures, pp.575-591, 1975.

S. E. Harvey, P. G. Marsh, and W. W. Gerberich, Atomic force microscopy and modeling of fatigue crack initiation in metals, Acta metallurgica materialia, pp.3493-3502, 1994.

M. Hayashi, K. Enomoto, T. Saito, and . Miyagawa, Development of thermal fatigue testing apparatus with BWR water environment and thermal fatigue strength of stainless steel, in : Fracture mechanics applications, ASME, pp.81-85, 1994.

M. Hayashi, Thermal fatigue strength of type 304 stainless steel in simulated BWR environment, Nuclear Engineering and Design, vol.184, issue.1, pp.71-78, 1995.
DOI : 10.1016/S0029-5493(97)00372-5

M. Hayashi, High-Cycle Thermal Fatigue Crack Initiation and Growth Behavior in a Semi-Infinite Plate Model, Journal of Pressure Vessel Technology, vol.123, issue.3, pp.305-309, 2001.
DOI : 10.1115/1.1372327

M. Y. He and J. W. Hutchinson, The Penny-Shaped Crack and the Plane Strain Crack in an Infinite Body of Power-Law Material, Journal of Applied Mechanics, vol.48, issue.4, pp.48-830, 1981.
DOI : 10.1115/1.3157742

A. Hirano, High Cycle Thermal Fatigue Crack Initiation Behavior of Austenitic Type 304 Stainless Steel in Pure Water., Transactions of the Japan Society of Mechanical Engineers Series A, vol.65, issue.639, pp.19-25, 1994.
DOI : 10.1299/kikaia.65.2287

J. H. Holbrook, R. W. Rohde, and J. C. Swearengen, The continuity of plastic strain rate, Acta metallurgica, pp.29-1099, 1981.

H. U. Hong, B. S. Rho, and S. W. Nam, A study on the crack initiation and growth from d-ferrite/g phase interphase under continuous fatigue and creep-fatigue conditions in type 304L stainless steels, International journal of fatigue, pp.24-1063, 2002.

J. Oh, Y. Nam, S. W. Hong, and J. H. , A model for creep-fatigue interaction in terms of crack-tip stress relaxation, Metallurgical and materials transactions A, pp.31-1761, 2000.

K. Kanazawa, K. Yamaguchi, and S. Nishijima, Mapping of Low Cycle Fatigue Mechanisms at Elevated Temperatures for an Austenitic Stainless Steel, ASTM STP 942, pp.519-530, 1988.
DOI : 10.1520/STP24503S

A. Koster, E. Fleury, E. Vasseur, and L. Remy, Thermal-Mechanical Fatigue Testing, Automation in Fatigue and Fracture : Testing and Analysis, ASTM STP 1231, American Society for Testing and Materials, Philadelphia, pp.563-580, 1994.

A. Koster, G. Cailletaud, G. Laurent, and L. Remy, Development of a thermal fatigue facility to simulate the behaviour of superalloys components, Fatigue under thermal and mechanical loading, European Comission JRC-SF2M, 1995.

U. Krupp, H. Christ, P. Lezuo, H. J. Maier, and R. G. Teteruk, Influence of carbon concentration on martensitic transformation in metastable austenitic steels under cyclic loading conditions, Materials Science and Engineering: A, vol.319, issue.321, pp.319-527, 2001.
DOI : 10.1016/S0921-5093(01)01087-5

J. Lankford, The growth of small fatigue cracks in 7075-T6 aluminum, Fatigue of engineering materials and structures, pp.233-248, 1982.

F. Lecroisey and A. Pineau, Martensitic transformation induced by plastic deformation in the Fe-Ni-Cr-C system, Metallurgical transactions, pp.387-396, 1972.

H. J. Maier and H. Christ, Modelling of cyclic stress-strain behavior under thermomechanical fatigue conditions ? A new approach based upon a multi-component model, Scripta materialia, pp.609-615, 1996.

V. Maillot, Thermal fatigue of 304L type steel, 2001.

P. S. Maiya, Considerations of crack initiation and crack propagation in low-cycle fatigue, Scripta metallurgica, pp.1141-1146, 1975.

P. S. Maiya and S. Majumdar, Elevated-temperature low-cycle fatigue behavior of different heats of type 304 stainless steel, Metallurgical transactions A, november, pp.8-1651, 1977.

S. Majumdar, Thermomechanical fatigue of type 304 stainless steel, in : Thermal stress, material deformation, and thermo-mechanical fatigue, PVP 123, American society of mechanical engineers, pp.31-36, 1987.

J. L. Malpertu, Fatigue mécano-thermique d'un superalliage à base de nickel, Thèse, Ecole Nationale, 1987.

P. L. Mangonon and G. Thomas, Structure and properties of thermal-mechanically treated 304 stainless steel, Metallurgical transactions, pp.1587-1594, 1970.

M. J. Manjoine, Stress relaxation characteristics of type 304 stainless steel, Creep and fatigue in elevated temperature applications, pp.165-166, 1974.

J. P. Massoud, M. Berhmont, and J. Champredonde, Long term aging of cast duplex stainless steels between 300 and 400°C ? relationship between toughness properties and metallurgical parameters, Duplex stainless steels, p.93, 1991.

A. Mateo, L. Llanes, N. Akdut, and M. Anglada, High cycle fatigue behaviour of a standard duplex stainless steel plate and bar, Materials Science and Engineering: A, vol.319, issue.321, pp.319-321, 2001.
DOI : 10.1016/S0921-5093(01)01096-6

A. J. Mcevily and S. Ishihara, On the dependence of the rate of fatigue crack growth on the ??na(2a) parameter, International Journal of Fatigue, vol.23, issue.2, pp.115-120, 2001.
DOI : 10.1016/S0142-1123(00)00080-3

Z. Mei and J. W. Morris, Influence of deformation-induced martensite on fatigue crack propagation in 304-type steels, Metallurgical transactions A, pp.3137-3152, 1990.

J. Mendez, On effect of temperature and environment on fatigue damage processes in Ti alloys and in stainless steel, Materials science and engineering A, pp.187-192, 1999.

Y. Murakami, Correlation between strain singularity at crack tip under overall plastic deformation and the exponent of the Coffin-Manson law, ASTM STP 942, pp.1048-1065, 1988.

H. Nisitani, M. Goto, and N. Kawagoishi, A small-crack growth law and its related phenomena, Engineering fracture mechanics, pp.499-513, 1992.

R. Ohtani, T. Kitamura, A. Nitta, and K. Kuwabara, High-temperature low cycle fatigue crack propagation and life laws of smooth specimens derived from the crack propagation laws, 1988.

L. Pat, J. Mangonon, and G. Thomas, The martensite phases in 304 stainless steel, Metallurgical transactions, pp.1577-1586, 1970.

S. Pearson, Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks, Engineering fracture mechanics, pp.235-247, 1975.

A. Plumtree, Creep/fatigue interaction in type 304 stainless steel at elevated temperatures, Metal science, pp.425-431, 1977.

K. Rau, T. Beck, and D. Löhe, Isothermal, thermal-mechanical and complex thermal-mechanical fatigue tests on AISI 316L steel a critical evaluation, Materials science and engineering A, pp.345-309, 2003.

R. W. Rohde and T. V. Nordstrom, On stress relaxation experiments, Scripta Metallurgica, pp.317-322, 1973.
DOI : 10.1016/0036-9748(73)90213-5

C. Sarrazin-baudoux and J. Et-petit, Étude du seuil de propagation en fatigue des aciers inoxydables 304L et 316L : Rapport final, EDF, 2001.

H. Sehitoglu, Fatigue life prediction of notched members based on local strain and elastic-plastic fracture mechanics concepts, Engineering fracture mechanics, pp.3609-621, 1983.

C. F. Shih and J. W. Hutchinson, Fully Plastic Solutions and Large Scale Yielding Estimates for Plane Stress Crack Problems, Journal of Engineering Materials and Technology, vol.98, issue.4, pp.289-295, 1976.
DOI : 10.1115/1.3443380

R. P. Skelton, Application of Small Specimen Crack Growth Data to Engineering Components at High Temperature: A Review, ASTM STP 942, pp.209-235, 1988.
DOI : 10.1520/STP24484S

J. Stolarz, N. Baffie, and T. Magnin, Fatigue short crack behaviour in metastable austenitic stainless steels with different grain sizes, Materials Science and Engineering: A, vol.319, issue.321, pp.319-321, 2001.
DOI : 10.1016/S0921-5093(01)01072-3

S. Taira, Relationship between thermal fatigue and low-cycle fatigue at elevated temperatire, in : Fatigue at elevated temperatures, ASTM STP, vol.520, pp.239-254, 1973.

K. Tanaka and T. Mura, A Dislocation Model for Fatigue Crack Initiation, Journal of Applied Mechanics, vol.48, issue.1, pp.97-103, 1981.
DOI : 10.1115/1.3157599

B. Tomkins, Fatigue crack propagation ? An analysis, Philosophical magazine, pp.1041-1066, 1968.

B. Tomkins, Fatigue crack propagation ? An analysis, Philosophical magazine, pp.1041-1066, 1974.

M. A. Torres and H. J. Voorwald, An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel, International Journal of Fatigue, vol.24, issue.8, pp.24-877, 2002.
DOI : 10.1016/S0142-1123(01)00205-5

J. Wareing and H. G. Vaughan, The relationship between striation spacing, macroscopic crack growth rate, and lowcycle fatigue life of a type 316 stainless steel at 625°C, Metal science, pp.439-446, 1977.

E. Yoshihisa and S. G. Raman, Thermomechanical and isothermal fatigue behaviour of type 316 stainless steel base metal, weld metal, and joint, Science and technology of welding and joining, pp.174-182, 2000.

R. Zauter, H. Christ, and H. Mughrabi, Some aspects of thermomechanical fatigue of AISI 304L stainless steel : Part II, 1994.

C. Zener and . Schockley, Imperfections in nearly perfect crystals, p.197, 1952.

W. Zhixue, Short fatigue crack parameters describing the lifetime of unnotched steel specimens, International Journal of Fatigue, vol.23, issue.4, pp.363-369, 2001.
DOI : 10.1016/S0142-1123(00)00101-8

A. Zouani, T. Bui-quoc, and M. Bernard, Fatigue Life Parameter for Type 304 Stainless Steel Under Biaxial-Tensile Loading at Elevated Temperature, Journal of Engineering Materials and Technology, vol.121, issue.3, pp.305-312, 1999.
DOI : 10.1115/1.2812379

. Viii and . Thermique, Ce chapitre présente les résultats d'essais de fatigue thermique réalisés sur des éprouvettes coins en aciers inoxydable austénitique 304L. La première partie introduit les essais réalisés sur des éprouvettes lisses en fatigue thermique et la nature de l'endommagement produit. La deuxième partie présente les résultats d'essais de propagation d'une fissure en fatigue thermique à partir d'une entaille usinée par électroérosion sur la même géométrie d'éprouvette

A. Fatigue-thermique and .. , 256 A.1 INTRODUCTION, p.258