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Abstract

Many interactive computer systems use menus as an important part of their inter-
face. Menus allow users to select operations but not to control their execution. A
second interactor, such as a dialog box, has to be used to control the chosen op-
eration and thus complete the interaction. This decomposition of what is a single
action from the user’s point of view into two distinct steps slows down interac-
tion with computer systems. This thesis proposes a new contextual pop-up menu,
called aControl Menu, that includes proportional control of the chosen operation
with immediate feedback. Using this menu gives a more fluid control of complex
interfaces and has the advantage of an expert form of use that is very similar to,
and thus easily learnt from, the novice usage.

Interaction with databases and navigation within large information spaces are
important tasks in many applications. Many visualization systems cause user dis-
orientation as users find it difficult to understand their position within the infor-
mation space and to locate desired information. This thesis proposes several new
contextual aids for Zoomable User Interfaces that address these issues.

The first aid, a hierarchical view of the information space, helps users under-
stand their current position and the location of the desired information, and accel-
erates navigation. The second type of aid uses dynamically generated transparent
and temporary views that are created and controlled by users in a single gesture.
These interactive views overlay the current view of the focus with contextual or
historical information which shows users what surrounds the current view or the
route taken to arrive at that view. The effective use of these new aids requires a
tight coupling between interaction and presentation which is achieved via the use
of Control Menus.
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Résumé

La plupart des logiciels interactifs font un usage intensif des systèmes de me-
nus. Ceux-ci permettent de sélectionner des opérations variées mais n’offrent gé-
néralement pas de moyen de contrôler leur exécution. Un second interacteur doit
alors être utilisé (typiquement une boîte de dialogue) ce qui impose une décom-
position d’une action unique (du point de vue de l’utilisateur) en une suite d’in-
teractions successives. Nous proposons un nouveau type de menu, appeléControl
Menu, qui permet de fluidifier l’interaction en unifiant la sélection et le contrôle
des opérations.

L’accès interactif aux bases de données et la navigation dans les espaces d’in-
formation de grande taille constituent des tâches primordiales pour de nombreuses
applications. Or, les systèmes de visualisation posent souvent des problèmes de
désorientation, les utilisateurs ayant fréquemment des difficultés à se localiser pré-
cisément dans l’espace d’information et à trouver les données recherchées. Cette
thèse propose plusieurs techniques d’aide contextuelle pour remédier à ces pro-
blèmes dans le cadre des interfaces basées sur le concept de zoom sémantique (ou
interfaces zoomables).

Le premier type d’aide, qui offre une vue « en profondeur » de l’espace d’in-
formation via une représentation hiérarchique, permet non seulement de faciliter
la localisation de la position courante et des informations recherchées mais aussi
d’accélérer la navigation. La seconde technique est basée sur la génération dyna-
mique de vues transparentes et temporaires que les utilisateurs peuvent créer et
contrôler en un seul geste. Ces vues interactives se superposent à la vue courante
en y rajoutant des informations contextuelles ou historiques qui aident l’utilisateur
à comprendre ce qui entoure le point de focus ou quel chemin a été effectué pour
arriver à ce dernier. Ces aides contextuelles nécessitent un couplage étroit entre
interaction et présentation, qui est obtenu en utilisant desControl Menus.
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Chapter 1

Introduction

The size of the world’s databases has been growing exponentially for many years
and all the signs indicate that this process will continue for the foreseeable fu-
ture. It is not sufficient however to just store data in databases to understand this
information. Bytes in databases are not knowledge. To convert databases into
knowledge, users need to be able to interact with and understand the contents of
the databases.

The huge volumes of data, their complexity and diversity, and the large num-
bers of links between data items mean that most users cannot interact with their
databases without the use of sophisticated visualization tools. These tools need to
allow users to gain a global understanding of an information space and then allow
them to concentrate on a region of the space that is interesting for a given task.
Even when users are focusing on a small region of a large information space they
need to be aware of the position of that region in the entire space. This aware-
ness must include a vision of the long distance relationships that link the region
currently being examined with other parts of the database.

Databases are typically no longer stored on the computer running the user’s
visualization program. These programs thus now need to take into account the
fact that many users will be accessing databases over long distance network con-
nections. Consideration must be given to where and how the different tasks in the
visualization process should best be carried out.

1.1 Improving Interaction

Complex visualization techniques require continuous control from users. Users
have to specify what part of a very large information space they want to see and
how this region should be presented. These are not static choices but rather re-
quire a fluid control of an interface that uses change and movement as visual-
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ization techniques as much as it uses fixed presentations. Standard techniques or
iterators have not greatly changed since the development of theWIMP (Window,
Icon, Menu and Pointer device) interface and the invention of direct manipulation.
These interactors were designed for single independent modifications of a essen-
tially static interface and are thus unsuited to frequent or continuous control of an
interface.

One type of iterator used today allows users to choose an operation from a list
of operations proposed by the system. These iterators, which are most commonly
menus, are of various different types. More recent menu types were designed so
that novices and experts use the menu in almost exactly the same way. This aids
novice users to become expert users.

Different iterators allow users to control the operation that they have chosen.
These tools, such as scroll bars and dialog boxes, are used after the selection
of an operation but are independent of the selection interactor. This separation
of the selection of operations from their control means that users have to move
backwards and forwards between the selection interactor and the control interactor
as they direct their movement through an information space.

Part I of this thesis discusses some of the types of menus used in commer-
cial software and also some more recent research projects. We then describe our
new menu, called aControl Menu, and how it relates to and fills a gap in current
menu techniques. A Control Menu combines the selection of commands and their
control into a single interactor. This interactor, even though it combines these two
functions, still only uses a mouse and a single mouse button. This integrated inter-
actor provides the rapid and fluid control that is required by complex information
space visualization systems.

1.2 Adding Context

Many different visualization systems for large information spaces have been pro-
posed by research papers; some of these systems have been used in successful
commercial products. We concentrate on visualization systems that provide a
view of the information space and with which users can interact so as to find the
information that they are seeking. These systems, a number of which are presented
in Part II of this document, can be classified into several different types. All these
systems are confronted with the same problem: how to maintain a visible repre-
sentation of the context of detailed views. If there is insufficient context, users
become disorientated; even after only a short period of navigation, they no longer
know where they are in the information space nor where to find the information
they are looking for. They are “lost in hyperspace”.

Zoomable User Interfaces (ZUIs) are one promising type of visualization sys-
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tem for large information spaces.ZUIs use semantic zooming to create a multi-
dimensional virtual world where users can find and transform the information in
databases. Interacting with these interfaces involves the frequent use of a number
of commands. The two most important are zoom and pan. We have developed
a ZUI that uses our new Control Menu and thus integrates the selection of these
commands and control of the zoom or the pan.

These interfaces suffer from a lack of context. After having navigated in the
information space and thus having left the original global view of the space, users
are shown a view of the virtual world that does not contain any context infor-
mation. As with the other types of visualization systems, users rapidly become
lost.

We use space- and depth-multiplexed displays to add the missing context to
Zoomable User Interfaces. Space multiplexed displays allow the same informa-
tion to be shown with two different representations. In ourZUI we show a zoom-
able view of the information space and a hierarchical representation of the same
space in two highly coupled parallel windows. The hierarchical representation of
the space maintains a permanent view of the structure of the information space
and the coupling between the two representations shows users their position in
that structure as they navigate through the space.

We also developed two other context aids that use transparent depth multi-
plexed views and our new interaction technique, Control Menus, to provide tem-
porary context views. These aids are created by user request and exist only during
the gesture used to create and control them. They require the fluid and continuous
interaction provided by Control Menus as their usefulness comes from their reac-
tivity. The movement that results from this continuous control is also important in
aiding users to separate mentally the transparent aid from the still visible view of
the focus.

The second part of the thesis includes a description of some information vis-
ualization techniques, including Zoomable User Interfaces, followed by a presen-
tation of our new context aids.
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Chapter 2

Today’s Menus and
Controlling Operations

Interacting with objects using computer interfaces requires selecting operations
to be performed on these objects and then controlling these operations. In most
user interfaces these two phases of the same interaction are separated into two
distinct interactors. These two types of interactor are used in very different ways.
This extra complexity slows down the interaction with the interface as actions are
performed in two steps. It also makes the action less fluid due to the multiple
changes in the user’s focus of attention. This problem can be compounded by an
initial preliminary step necessary to select the target object or objects.

In this chapter we discuss how operations are chosen, briefly how they can
be then controlled, and the problems caused by the use of multiple interactors to
perform a single operation.

We describe some types of menus as being “contextual”. By this we mean that
users can indicate, as they use the menu, the object on which they want the action
chosen from the menu to act. We ignore as non-contextual any menu in which the
target object must be selected before using the menu.

2.1 Existing Menus

Menus are one method for selecting from a normally small set of possible choices.
These choices are actions to be performed by an application.

Users are accustomed to standard menus such as pull-down menus, drop-down
menus, option menus and pop-up menus. Research projects have proposed other
types of menus such as pie menus, marking menus, etc. These menus, even though
some of them were first proposed many years ago, are not yet widely known or
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Figure 2.1: Pull-down menu in Netscape

used. In this chapter we list some of the menus used in standard applications and
some other menus that are still research projects.

These menus have different characteristics which means that certain of these
menus are more adapted than others to certain tasks. A taxonomy is proposed and
used to contrast and compare the different menus.

2.1.1 Pull-Down and Drop-Down Menus

Pull-down and drop-down menus are grouped in menu bars. These menu bars are
arranged along an edge of either the screen or an application.

If arranged along the edge of the screen, the menu bar is linked to the current
application. The names and contents of the pull-down menus in the menu bar
depend on the currently active application, and the functions chosen from a menu
are applied to this application. This type of menu is used in the Macintosh user
interface.

When a menu bar is in the same window as the application it is visually and
logically linked to the application. An example of this type of menu is shown in
Figure 2.1.

Using a pull-down or drop-down menu requires users to move to the menu-bar
and thus cannot be contextual. The object or position on which the action selected
in the menu must operate needs to be chosen before or after the use of the menu.
The movement to the menu-bar becomes more and more penalising as application
windows grow as users use bigger screens.

The user has to click on the corresponding entry in the menu bar, “Window”
in Figure 2.1, to cause a pull-down menu to be opened. A drop-down menu opens,
and is thus usable, as soon as the user moves the cursor over the corresponding
entry in the menu bar. This automatic opening of menus can be distracting if
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users are just moving the cursor from one part of the screen to another, especially
to novice users.

2.1.2 Pop-up Menus

Pop-up menus differ from pull-down menus in that they can appear anywhere in
the user interface. They are not limited to being connected to a menu bar. They are
not normally associated with a visible user interface object that users can click on
to make the menu appear. Users have to know the special operation that creates the
menu. This special operation is most often pressing on a mouse button. The menu
appears and is then used in one of two ways depending on the implementation
of the menu. The first possibility is that the user continues to hold the mouse
button down until the cursor has been moved over the desired item in the menu.
This item is then selected by releasing the mouse button. The second possibility
is that the menu is created by pressing and releasing the mouse button. Users
then click on the required menu item or outside the menu to dismiss it without
selecting an action. The first possibility means that the menu can be used in a
single mouse movement but that the button must be held down while the user is
deciding which item to choose. The second possibility means that the keyboard
can be used to select an item in the menu. Using the keyboard is probably slower
than continuing with the mouse.

The action of selecting an operation from a pop-up menu can be decomposed
into three sub-tasks: invoking the menu, moving to the desired operation, and
selecting the operation (Buxton, 1986). These sub-tasks are tied together into a
single operation by the tension (user action) of holding the mouse button down.
A pop-up menu is thus modal as during its use mouse movements have a special
meaning. The duration of the modal state is however limited to the period when
the user is pressing the button. It is the physical action of keeping the button down
that creates the mode. Interactors where the mode is linked to physical actions,
calledquasimodal interactorsby Raskin, are less error prone than normal modal
interactors.

2.1.3 Pie Menus

The principal difference between a pie menu (Hopkins, 1991; Callahan et al.,
1988) and a pop-up menu is that the menu items in a pie menu are distributed
in a circle around the centre of the menu (Figure 2.2). Pie menus are thus radial
rather than linear like standard menus. Users do not have to select a line in a
linear list but can just move the cursor in the direction of the desired menu item
and release the mouse button. A user who knows the position in the menu of
the desired operation does not have to see the menu before making the correct
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cut

bold

paste

select

Figure 2.2: Pie menu and its active regions

gesture. No menu is shown to users who do not pause between the moment when
they press on the mouse button and when they move the mouse. Pie menus thus
adapt automatically and transparently to the presence of an expert user.

Pie menus are used in the gameThe Sims(http://www.thesims.com) to fluidly
and rapidly control the game’s characters (Macedonia, 2000). As pie menus are
contextual they allow the action chosen from the menu to be associated with a
character in the game without having to first select the character. Expert players
can use these menus rapidly because they do not have to wait until the menu is
drawn, nor look at it, before selecting an action.

A circular menu has also been proposed, as one of a long list in interaction
possibilities, by the Logitech trackball in Microsoft Windows. Users click with
the second button (the wheel) to display the circular menu. They can then use the
trackball to navigate within the menu. A second mouse click is required to select
the desired operation.

2.1.4 Marking Menus

Marking menus are similar to pie menus except that a line is drawn on the screen
after each use of the menu. This line indicates the optimum gesture that the user
could have made to activate the function that was chosen. This feedback tells
novice users what gesture they could have made without seeing the menu and
reassures the user who made a selection without the menu that the correct action
was selected.

Kurtenbach and Buxton (1993) discuss how quickly amarking menucan be
used by an expert. Marking menus are radial (or pie) shaped menus that pop-up
with a press of the mouse. Menu selections can be made by either pressing a
button for a short period of time (1/3 of a second) to pop up the menu and then
by moving the mouse the over an item and releasing the button to select it, or
by pressing the button and moving the mouse in the direction of the (invisible)
menu item and releasing the button (Figure 2.3). This second method of using
a menu (marking) is used by experts. The advantage of marking menus is that
the transition from novice to expert usage is simple; the expert’s gesture is the

http://www.thesims.com
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(a) as used by a novice (b) as used by an expert

Figure 2.3: Marking menu use (adapted from Kurtenbach and Buxton, 1993)

same, except without the pause, as that of the novice. An intermediate method is
also available. In this case the intermediate user makes the expert gesture without
the menus but then waits until the menus are shown to get confirmation before
releasing the mouse button. This is very different from traditional systems of
menus and menu by-passes using an accelerator key. There the expert’s gesture is
completely different from that of the novice. Two different protocols have to be
learnt.

Marking menus can have sub-menus. In this case the sub-menu pops up when
the user moves the mouse past the appropriate menu item and pauses. An expert
can use multiple menus without having to wait until they pop up, or wait for just
one of the two menus to pop up.

Kurtenbach and Buxton (1994) describe a study where an existing program
was modified to use a simple one-level marking menu. Their results showed that
marking was used more than the menus, a user’s skill with marking increases with
use, and that marking menus can speed up the completion of a task by 10%.

Kurtenbach et al. (1999) propose the “Hotbox” (Figure 2.4), which is a new
GUI widget that allows access to 1200 menu items. The Hotbox is popped up by
holding down the space bar with the non-dominant hand. Each item is associated
with a pull-down menu and each of the five zones shown (centre, left, right, top
and bottom) has up to three marking menus (one on each button). The marking
menus and the lines of items shown can be configured by the user.

2.1.5 Command Compass

The Command Compass from Momenta is described in Kurtenbach (1993). This
menu was developed for a pen based computer system that was commercially
unsuccessful (Reinhardt, 1991). The Command Compass is a circular menu like
a pie menu. It differs however because actions are not selected by lifting the pen
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Figure 2.4: Hotbox (adapted from Alias|Wavefront, 2000)

but rather by simply moving the pen far enough into the compass sector associated
with the desired action. Subsequent pen movements are used to control the chosen
action. An example is a move operation. The pen touches the surface over the
object to be moved. The move operation is selected by moving the pen in the
direction of that action in the circular menu. Once the pen is in the compass
sector, the object starts following the cursor. The new final position of the object
is indicated by lifting the pen.

The Command Compass always draws the menu but this can be ignored by the
expert user. Only one level of menu is possible and no marks are drawn to indicate
what operation was chosen. The lack of marks was probably not a problem for
users given the simplicity of the menu.

2.1.6 FlowMenus

FlowMenus (Guimbretière and Winograd, 2000) are an extension of pie menus
and marking menus. They were however designed for pen based interfaces. The
essential difference is that the choice of an operation is indicated by returning the
cursor to the centre of the menu. This allows a number of different operations to be
performed sequentially without lifting the pen. Another possibility is the control
of the chosen operation. This control can be effected by the use of a further menu
that allows parameters to be selected or by direct manipulation. Figure 2.5 shows
the pen movements (that are not normally visible) when using a FlowMenu to
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(a) select the “Item” sub-menu (b) select “Zoom” from sub-menu
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Figure 1: To zoom, the user moves the pen from the rest area into the Items...octant (a). Submenus (Highlight, Move,
Zoom) appear and the first level menu items not selected are grayed out (b). Entering the Zoomoctant submenu, then
moving back to the rest area dismisses the root level menu and brings up the zoom menu with the current zoom value
(75%) displayed in the center (c). A new zoom value of 100% is selected by moving into the octant for the desired value
and back to the center at which point the zoom is applied (d). Several zoom values can be tried out during the same
interaction since the zoom menu stays in place until the pen is lifted. The dashed circles added to the illustration (a) and
(b) show the transition boundaries for leaving and entering the rest area (see text). For explanatory purposes, the figures
in this paper explicitly show the pen track and the underlying selected object is shown only in Figure 3. In normal use, the
pen track is not displayed and the selected object is visible behind the transparent menu.
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Figure 2: After selecting Item...→Zoomfrom the root menu (a), the user selects Numericto enter the new zoom value
as a sequence of digits (b). The zoom menu is dismissed and the Quikwriting system is brought up (c) so that she can
enter the zoom value (d).

tiple items to a menu system as well. Cirrin [9] is a soft key-
board in which letters are arranged at the circumference of a
circle. Like Quikwriting it provides a way to enter succes-
sive letters of a word in a continuous stroke without having
to lift the pen. After an initial training period, words can be
remembered as a kind of shorthand. The initial layout of 26
primary entries without hierarchy makes it less convenient to
extend to a menu system.

THE FLOWMENU

The FlowMenu is presented as a radial menu with 8 octants
and a central rest area (figure 1). Starting from the rest area,
the user selects a top-level menu item by entering the corre-
sponding octant. As she does, sub-menus for this menu ap-
pear laid out further away from the center while non-selected
top-level items are grayed out. Moving the pen to the sub-
menu octant and reentering the rest area from this octant will
trigger menu selection. The user can abort the interaction by
removing the pen from the surface before reentering the rest
area. With a simple FlowMenu, the user can access 8 top-

level menu items, each with 8 submenu items. However since
each selection of a menu ends with the cursor at the cen-
ter of the menu, successive menu interactions can be merged
together to build deeper hierarchies and arbitrarily long se-
quences of interactions. Figure 1 show an example where
after selecting the zoom submenu from the system menu, the
system menu is removed and the zoom menu is brought up
to let the user adjust the zoom.

Merging menu selection and parameter entry is easy because
commands are segmented by the return of the cursor to the
rest area. To let the user enter an alphanumerical value af-
ter a menu selection we remove the menu from the screen
and present in its place a Quikwriting pad. Figure 2 shows
such an interaction. The selectionItem...→Zoom→ Nu-
mericbrings up the Quikwriting system to let the user enter
a numeric zoom value. The user can learn a composite se-
quence of commands and text as the superposition of simple
loop gestures such as shown in figure 2d. The system can
also be used in a way similar to control menus by letting the
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Figure 1: To zoom, the user moves the pen from the rest area into the Items...octant (a). Submenus (Highlight, Move,
Zoom) appear and the first level menu items not selected are grayed out (b). Entering the Zoomoctant submenu, then
moving back to the rest area dismisses the root level menu and brings up the zoom menu with the current zoom value
(75%) displayed in the center (c). A new zoom value of 100% is selected by moving into the octant for the desired value
and back to the center at which point the zoom is applied (d). Several zoom values can be tried out during the same
interaction since the zoom menu stays in place until the pen is lifted. The dashed circles added to the illustration (a) and
(b) show the transition boundaries for leaving and entering the rest area (see text). For explanatory purposes, the figures
in this paper explicitly show the pen track and the underlying selected object is shown only in Figure 3. In normal use, the
pen track is not displayed and the selected object is visible behind the transparent menu.
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Figure 2: After selecting Item...→Zoomfrom the root menu (a), the user selects Numericto enter the new zoom value
as a sequence of digits (b). The zoom menu is dismissed and the Quikwriting system is brought up (c) so that she can
enter the zoom value (d).
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and back to the center at which point the zoom is applied (d). Several zoom values can be tried out during the same
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and back to the center at which point the zoom is applied (d). Several zoom values can be tried out during the same
interaction since the zoom menu stays in place until the pen is lifted. The dashed circles added to the illustration (a) and
(b) show the transition boundaries for leaving and entering the rest area (see text). For explanatory purposes, the figures
in this paper explicitly show the pen track and the underlying selected object is shown only in Figure 3. In normal use, the
pen track is not displayed and the selected object is visible behind the transparent menu.
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Figure 2: After selecting Item...→Zoomfrom the root menu (a), the user selects Numericto enter the new zoom value
as a sequence of digits (b). The zoom menu is dismissed and the Quikwriting system is brought up (c) so that she can
enter the zoom value (d).
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sponding octant. As she does, sub-menus for this menu ap-
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menu octant and reentering the rest area from this octant will
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removing the pen from the surface before reentering the rest
area. With a simple FlowMenu, the user can access 8 top-

level menu items, each with 8 submenu items. However since
each selection of a menu ends with the cursor at the cen-
ter of the menu, successive menu interactions can be merged
together to build deeper hierarchies and arbitrarily long se-
quences of interactions. Figure 1 show an example where
after selecting the zoom submenu from the system menu, the
system menu is removed and the zoom menu is brought up
to let the user adjust the zoom.
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such an interaction. The selectionItem...→Zoom→ Nu-
mericbrings up the Quikwriting system to let the user enter
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Figure 2.5: Fixed zoom factors in a FlowMenu (adapted from Guimbretière and
Winograd, 2000)

select the Zoom command from a sub-menu and then the choice of the 100% zoom
factor. At this point the pen is still on the surface so the user can try a different
zoom factor by moving to another quadrant and back to the centre. This method
of selecting a zoom factor only allows preset zoom factors to be chosen and is
equivalent to choosing from a sub-menu. A knob interaction method can be used,
giving a large number of zoom values in predefined increments. In Figure 2.6,
the user has selected the custom zoom factor. From this moment, until the pen is
removed from the surface, clockwise movements of the pen around the centre of
the menu increase the scale (by a fixed amount) each time a segment boundary is
crossed. Similarly, anticlockwise movements decrease the scale. Throughout this
interaction the user has to concentrate on the menu, as the segments are not very
large, and on the effect of the interaction on the objects in the interface. These
objects are visible under, and partly hidden by, the transparent FlowMenu.

A FlowMenu can also be used to directly manipulate objects in the interface.
Moving an object is one possible example. The menu is contextual so the object
to be manipulated is chosen by the position of the pen when it touches the surface
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(a) select “Zoom” from sub-menu (b) select custom zoom factor
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Figure 3: FlowMenu interaction integrates smoothly with direct manipulation. Here after selecting the move action from
the root menu (a), the user continues directly with the drag interaction (b,c). In contrast to marking menus, the selected
object follows the cursor immediately. The initial jump of the object from the center of the menu to the beginning of the drag
interaction (b) has not been a problem in practice since during a drag, users focus their attention on the target location [2].
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Figure 4: In this example, the knob interaction is used to adjust the zoom level. After selecting Item...→Zoom→Numeric
(a,b), the user circles the pen around the center area, using the menu as a knob for fine adjustment. Each time an octant
line is crossed, the value is incremented by a small amount (c) (decremented if counter-clockwise (d)). The zooming is
done real-time, with the object visible (omitted in this figure for clarity) so visual feedback is provided at all times.

user perform a drag after the action selection, as shown in
figure 3. The return to the rest area obviates the need for an
arbitrary threshold distance or time-out to distinguish mark-
ing and direct manipulation.

Finally, the FlowMenu can be used in a “knob” mode in
which the user interacts with the menu as though it was a
knob. As shown in figure 4 crossing a octant line clock-
wise (resp. counter-clockwise) increases (resp. decreases)
the value by a small amount. This kind of interaction is very
useful for dynamically fine-tuning parameter values such as
zoom level.

CURRENT USE
FlowMenu is the default menu system for the Interactive Mu-
ral. The Mural uses the ultrasonic EFI EBeam [3] system to
track the pen on the screen surface. The root menu mech-
anism is triggered by depressing the system menu button
while the pen is touching the surface. The menu button can
be released as soon as the menu interaction is initiated. Re-
moving the pen from the surface before reentering the rest
area will abort the interaction. Pressing the menu button at
any time will abort the current interaction and bring the user
back to the root of the menu hierarchy. Since the current

EBeam pens do not provide a menu activation button, we use
the button of a separate device (a wireless mouse held in the
user’s other hand) as a proxy. We plan to integrate the menu
button into the physical pen device in the next version of our
system, before extended user testing.

All of the interaction modes described above have been used
in a tool for entering and manipulating simple hand-drawn
sketches during a brainstorming session. In this application,
FlowMenu allows users to move and zoom sketches and to
enter labels. We have only informal experience to date, and
will do user testing later this year during the evaluation of
our brainstorming tool.

Note that unlike marking menus [6], we did not implement a
delay in the appearance of the menu. Given the characteris-
tics of our toolkit (use of transparency, high speed rendering
and decoupled rendering and interaction loops) there seems
to be no disadvantage to displaying them immediately even if
the user is making a coordinated combination gesture. While
immediate menu appearance has the potential for visual dis-
traction, we conjecture that user testing will show that expert
users are not distracted, and that novice users will benefit
from the absence of a time-out pause.
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Figure 4: In this example, the knob interaction is used to adjust the zoom level. After selecting Item...→Zoom→Numeric
(a,b), the user circles the pen around the center area, using the menu as a knob for fine adjustment. Each time an octant
line is crossed, the value is incremented by a small amount (c) (decremented if counter-clockwise (d)). The zooming is
done real-time, with the object visible (omitted in this figure for clarity) so visual feedback is provided at all times.
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(a,b), the user circles the pen around the center area, using the menu as a knob for fine adjustment. Each time an octant
line is crossed, the value is incremented by a small amount (c) (decremented if counter-clockwise (d)). The zooming is
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EBeam pens do not provide a menu activation button, we use
the button of a separate device (a wireless mouse held in the
user’s other hand) as a proxy. We plan to integrate the menu
button into the physical pen device in the next version of our
system, before extended user testing.

All of the interaction modes described above have been used
in a tool for entering and manipulating simple hand-drawn
sketches during a brainstorming session. In this application,
FlowMenu allows users to move and zoom sketches and to
enter labels. We have only informal experience to date, and
will do user testing later this year during the evaluation of
our brainstorming tool.

Note that unlike marking menus [6], we did not implement a
delay in the appearance of the menu. Given the characteris-
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Figure 2.6: Variable zoom factor in a FlowMenu (adapted from Guimbretière and
Winograd, 2000)

and pops up the menu. An action that involves direct manipulation is chosen in
the same way as any other command. If the action is a move, then as soon the
command is selected (by the cursor returning to the centre of the menu) the object
jumps to its new position under the cursor and then follows the cursor until the
pen is lifted from the surface.

An operation in a FlowMenu can also require the user to enter some text.
This text entry is performed using the Quikwriting system (Perlin, 1998) which
provides a way to enter a number of characters in a single gesture.

FlowMenus were developed after our Control Menu (presented in chapter 3 of
this thesis).

2.1.7 Fisheye Menus

Fisheye menus (Bederson, 2000) apply fisheye visualization techniques (Furnas,
1986) to linear menus. They are designed to facilitate the selection of an item from
a list that is too long to fit on the user’s screen. Fisheye menus change the size of
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Figure 2.7: 100 item fisheye menu (adapted from Bederson, 2000)

the font used to draw the items in the list in such a way that all the items in the list
remain visible but not necessarily readable (Figure 2.7). The user has a current
position in the list. The items in the list at and around this position are drawn
large enough to be easily readable. These are the focal items. The other items
(the non-focal items) are drawn sufficiently small so that they fit in the remaining
vertical screen space. As the user moves the cursor, and thus the current position
in the list, the position of the focus changes; previously readable items become
too small to be readable and previously unreadable items, in the direction of the
user’s movement, become readable.

As not all items are readable, the list items must be ordered to avoid users
having to scroll slowly through the entire list. It is not possible to use a fisheye
menu with unordered data nor to change the order of the items to group items
by function type. This order is normally alphabetic and fisheye menus have an
alphabetic index. This index shows, in a readable font, the letters of the alphabet
for which there is at least one item that starts with this letter. Moving the cursor
to the position of a letter makes the first item in the list starting with this letter
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readable. These menus do not require the use of scrollbars and do not unnaturally
impose a hierarchical organisation.

Figure 2.7 shows a fisheye menu being used to select the name of a web site
from a list of 100 names.

2.2 Taxonomy

A number of publications (Kurtenbach, 1993; Foley et al., 1996) propose criteria
that can be used to classify different menu designs. This section uses those criteria
to classify the different menus already presented.

2.2.1 Menu Placement

The position of menus determines the time required to find a menu and to move
the cursor to it. Menus can be placed in the following ways:

on keyboard or tablet Some menus are always available and in a fixed position
because they are printed on keys on the keyboard. These menus are always
to hand and are constant across applications; it is however impossible to
customise them for a particular application and applications need a way to
find out what menu keys are available on a given keyboard. The Xerox Star
used these menus (Figure 2.8) and Sun keyboards still include menu keys.

Other menus might be printed on the edges or even on the surface of a
graphics tablet. Again the functions are always available but users must
release the mouse and move to the keyboard to use these functions. Also,
applications cannot add to or change these menus and different keyboards
have different menu keys.

fixed screen positionThe Apple Macintosh user interface imposes a single menu
bar at the top of the screen shared by all applications. Only the current appli-
cations menu is visible and the application is limited to the format imposed
by the system. Customisation of the menu bar by a given application is lim-
ited. The contents can be changed but two line menu bars, for example, are
not possible.

with the application Other than on the Apple Macintosh, pull-down and pull-out
menus, are found in menu bars attached to the application.

user positioned A tear-off menu is a pull-down menu that has been disconnected
from its menu bar and that can be placed by the user at the desired position
for a given task. Figure 2.9 shows four tear-off menus from Sun’s Open-
Windows mailtool that have been positioned above the application.
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(a) left cluster of function keys (b) right cluster of function keys

Figure 2.8: Xerox Star function keys

Figure 2.9: Tear-off menus in Sun’s mailtool

http://www.geocities.com/SiliconValley/Office/7101/keyboard/
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under the cursor All the different pop-up menus appear directly under the cur-
sor. However, a problem arises when the cursor is too close to the edge of
the screen for the menu to be drawn in its normal position relative to the
cursor. Three solutions are possible: warping (moving) the cursor away
from the edge of the screen, clipping the menu, or drawing the menu in a
different position. Warping the cursor is often distracting for users and is
confusing when the menu is contextual as the position of the cursor is im-
portant. Clipping the menu means that some of the menu items are invisible
and thus impossible (or at least difficult) to use. Drawing the menu at a dif-
ferent position invalidates the movements users have learnt to activate menu
items.

mouse buttons Chords can be used to execute a number of different commands.
This can involve giving multiple mouse clicks a different meaning from a
single click or assigning a meaning to a second button being pressed while
another is being held down. Mouse wheels are another way of controlling
applications with additional input devices.

full-screen Some menus are sufficiently important that the menu should block
the entire screen. This is most often used for the menu which asks “do you
really want to logout?”

2.2.2 Visual Representation

The elements in menus can be depicted with textual names, icons or other graph-
ical representations. Textual names are almost always long and thin while icons
and graphics can be designed in many different shapes that are often more com-
pact that textual strings (Figure 2.10). Icons are especially compact when they
concern graphical commands as in the example. Good icon design is an art. Icons
thus give more flexibility in menu design which is particularly important when
using non-linear menus. The pie menu in Figure 2.11 from the game SimCity
(Perkins, 1993), available athttp://www.art.net/~hopkins/Don/simcity, shows how
icons can be distributed in a circle.

Menus can also be transparent. Transparent menus have the advantage of hid-
ing less of the user’s workspace than solid menus. Their disadvantage is that they
can be more difficult to read.

2.2.3 Size and Shape of Menu Items

Fitts’ Law (Fitts, 1954; Fitts and Peterson, 1964) says that larger items are easier
to select and so large menu items should be easier to use. Smaller menu items

http://www.art.net/~hopkins/Don/simcity
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circle: specify radius

circle: specify diameter

ellipse: specify radii

ellipse: specify diameters

closed approximated spline

approximated spline

closed interpolated spline

interpolated spline

polygon

polyline

rectangular box

rectangular box with rounded corners

Figure 2.10: Xfig buttons and corresponding text

Figure 2.11: Pie menu in SimCity
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(a) discrimination by angle (b) discrimination by length
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Figure 2.12: Menu item selection discrimination

take less space and allow more items to be displayed in a given area but increase
the time taken to select items and increase the number of selection errors.

Circular menus (Figure 2.11) are drawn with the cursor at the centre of the
menu; users move the cusor in the direction of the desired operation. The further
the user moves from the centre of the menu, the larger the target, and thus the
smaller the likelihood of error. Users control the speed versus error rate tradeoff.

2.2.4 Menu Shape

Regardless of the shape of menu items, menus are either linear or circular. The
shape of the menu defines the discrimination method of the menu. This can be
either by angle or by length as shown in Figure 2.12.

linear Linear menus require users to watch the menu as they move the cursor to
the required line.

circular Selecting an item from a circular menu requires a movement in the cor-
rect direction. If the menu does not contain too many items the direction of
frequently used items can be learnt and users no longer need to watch the
menu when selecting item.

Circular menus have another advantage: the length of the mouse movement
required to select each menu item is the same (Figure 2.12). Any item can
be selected as rapidly as any other, and the position of items in the menu
does not depend on the frequency of use of the items.

Choosing accurately amongst more than twelve items in a circular menu
requires an excessively large mouse movement, and laying out a very large
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Figure 2.13: Gestures in Tivoli (adapted from Kurtenbach, 1993)

circular menu consumes a lot of screen space. Circular menus thus have the
disadvantage of being limited in size.

2.2.5 Visible Versus Invisible Menus

Menus need not always be visible. Users can chose between actions using gestures
(movements with a continuous-positioning device such as a tablet or mouse). The
pattern recognition software compares the user’s gestures with a predefined set of
gestures and chooses the gesture that matches.

With this technique users do not have to move from their work area to an com-
mand input device (a keyboard for example) or to a menu bar. Tactile continuity
is thus maintained.

Some patterns are derived from already existing gestures such as proofreader’s
marks. Others are defined for a particular computer system. Figure 2.13 shows the
basic edit marks in the pen-based electronic whiteboard application calledTivoli.
Others, such as those used in marking menus, are the same as the gesture made
when using the menu. In this case, the patterns are learnt by the users as they use
the menus (Figure 2.14).
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menu hierarchy mark set

Figure 2.14: Circular menu hierarchy and the associated marks (adapted from
Kurtenbach, 1993)

2.2.6 Interactor Distance

Users work on objects near the current position of the cursor. Any interactor that
requires a large movement of the cursor from this position has a significant spatial
offset. This is the case for menus in menu bars or in other fixed positions on the
screen. Pop-up menus and gestures differ in that they are activated at any point
in the user interface. This avoids the movement of the cursor from the current
position and back.

Users not only use the mouse, they also use the keyboard. If users spend most
of their time working with the mouse then it is reasonable to concentrate on the
mouse. If users spend most of their time working with the keyboard then any use
of the mouse will be disruptive as moving from the keyboard to the mouse and
back again is a relatively long operation. In this case the use of function keys or
keyboard accelerators is more appropriate.

2.2.7 Contextual

Contextual menus, that is menus that are activated anywhere in the application,
adapt to the object currently under the cursor. This makes menus shorter as inap-
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Figure 2.15: Contextual menu in Netscape Communicator

propriate functions can be removed from the menu.

Interactors (in general) that can be activated anywhere in the application, such
as pop-up menus, are contextual in another sense as well. The action chosen from
the interactor can be associated with the position of the cursor when the interactor
was activated. The system creates a list of objects at this position. Once the action
is chosen, those objects in the list that are appropriate for this action are arguments
to the action.

The example in Figure 2.15 shows a contextual menu from Netscape Commu-
nicator. This menu is contextual in two different ways. The menu was activated
over an image that is also a link. The menu thus contains commands, such as
“View Image”, that are only appropriate for images and commands that are only
appropriate for links, such as “Open Link in Composer”. If a command that ap-
plies to images is chosen it will be applied to the image that was under the cursor
when the menu was activated. Similarly, if a command that applies to links is cho-
sen it is applied to the image’s link. The pop-up menu also contains commands,
such as “Back”, that are independent of where the menu was activated.
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2.2.8 Keyboard Accelerators

Many menu systems provide keyboard accelerators. These accelerators can be
modeless; the key stroke sequence can be used at any moment when the user is
not in another mode. In this case the accelerator normally consists of the use of
one or more modifier keys and another key. These accelerators are often displayed
in the menu that provides the equivalent function. Figure 2.1 shows a menu where
two keyboard accelerators for the first two functions in the menu, “Navigator”
and “Radio”, are indicated to on the right hand side of the menu. The keyboard
accelerator, pressing “1” while the “Alt” modifier is pressed, can be used at any
time to change windows.

Other accelerators can only be used when the menu that contains the desired
function is already shown. As these accelerators are modal and associated with
the given menu, they can be simpler and are often a single keystroke. In the menu
in Figure 2.1 the keys of the modal keyboard accelerators are underlined in the
text or the menu item. When, and only when, this menu is open, the “t” key can
be used to open the “Tools” sub-menu.

These accelerators are very common but many users do not use them. Some
users have probably not yet discovered them but others have decided not to use
them. Bederson (2000) states that this could be because their hands are already
on the mouse and recentring their hands on the keyboard and finding the right key
would take too long. Others might not know the exact name, let alone the correct
keyboard accelerator, of the function they want. Yet others might not like using
the keyboard when they are using menus. Also, the internationalisation of these
menus is difficult as the letter used in the accelerator must be in the text of the
item. When the language changes it is often necessary to change the accelerators
as well.

2.2.9 Self-Revealing

Interactors are self-revealing if users do not have to be shown where to find them.
One class of self-revealing interactors is the buttons that users just have to click on
to activate a function. An example, shown in Figure 2.16, is the most important
commands in Netscape (“Back”, “Reload”, “Home”, etc).

Even more self-revealing are the keyboard menus of the Xerox Star. They
are even too self-revealing in that the developer of an application cannot hide an
element of a keyboard menu even if it is not applicable in that application.

Pull-down menus are less self-revealing as only the name of the menu is dis-
played. Looking at the Netscape menus shown in Figure 2.16, users have no way
of knowing that the “Search Internet” function is available on the “Edit” menu. If
users do not know on which menu a given function is located, they have to search
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Figure 2.16: Buttons in Netscape Communicator

on all the available menus and sub-menus.

Pop-up menus are not self-revealing because there is no indication in a user
interface that they even exist. Users can only press the mouse button that is nor-
mally associated with contextual menus to see if there is a menu and to find out
what it contains. Pop-up menus whose contents (and not just the active items)
depend on where the menu is activated (depending, for example, on what type of
object is under the cursor at the moment of activation) are even more difficult to
find. Users have to experiment with the mouse button over each type of object to
find all the possible menus.

2.2.10 Novice and Expert Gestures Similar

Many systems provide two or more ways of activating the same function. The
most obvious, but slowest, way of activating a function is designed for novice
users. If, having already learnt the first method of selecting functions, they feel the
need to work more rapidly then they need to learn the other, less obvious, method
of selecting the same functions. This second learning step is facilitated if the faster
activation method is indicated by the novice method and greatly facilitated if the
two methods are similar.

The contextual menu shown in Figure 2.15 indicates that the “Back” operation
can be activated by hitting the “left” key while holding down the “alt” modifier
key. The novice use of the pop-up menu thus indicates how to use the more expert
method but the two methods are completely different.

Marking menus (subsection 2.1.4) are designed so that the novice’s use of
a menu is very similar to that of an expert. Novice users thus become almost
automatically expert users.
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2.2.11 Combines Selection and Control

Most menus only allow a choice to be made between a small number of options.
If the choice is a command that requires parameters, a different interactor must be
used after the menu. These other interactors can be dialog or property boxes. The
use of dialog boxes is modal since the interface is blocked until the new values
are entered into dialog box and the box dismissed. It is thus impossible to use the
interface to find the values to enter into the dialog box as the dialog box blocks
the interface. Modal interfaces are generally recognised as being error-prone and
difficult to understand (Raskin, 2000).

FlowMenus (and the short-lived Command Compass) allow parameters to be
supplied to the chosen function. This interactor is more than a simple menu as it
includes control functions that are normally absent from menus; they are provided
by other interactors such as scroll bars and dialog boxes.

FlowMenus are modal as during its use mouse movements have a special
meaning. The duration of the modal state is however limited to the period when
the pen is touching the surface of the device. This menu is thus only quasimodal
rather than modal.

2.2.12 Summary

Table 2.1 summarises the different properties and menus presented in this taxon-
omy.

2.3 Controlling Operations

As discussed in subsection 2.2.11, menus are generally only used to select an
operation. Other interactors are required to complement menus if the operation
requires parameters (other than that provided by the activation location where the
menu is contextual).

Beaudouin-Lafon (2000) introduces a model for evaluating interactors accord-
ing to their properties.

degree of indirection: a two dimensional measure of thespatial and temporal
offsets of the interactor (Figure 2.17). The spatial offset is the screen dis-
tance between the interactor and the object it operates on. The temporal
offset is the time difference between the user’s manipulation of the interac-
tor and the response of the object.

degree of integration: the ratio between the number of degrees of freedom pro-
vided by the instrument and the number used by the input device.
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Menu Type
pull-down option pop-up pie marking flow

activation method is
self-revealing

yes yes no no no no

must move to
activate

yes yes no no no no

contextual no no yes yes yes yes
discrimination
method

distance distance distance distance angle
angle &
distance

maximum items per
menu

screen
height

screen
height

screen
height

8 8 8

selection
confirmation

yes yes yes yes yes

menu visible yes yes yes
during or
after use

after pause
transpar-
ent

expert rehearsal no no no yes yes n/a
“eyes free” use no no no yes yes no
mark after use no no no no yes no
sub-menu selection
by

movement none movement pause angle

final selection by
button-up
or tap

button-up
or tap

button-up button-up button-up
move to
centre

control method
dragging
or tapping

dragging
or tapping

dragging
or tapping

dragging dragging dragging

parameters supplied no no no no no yes
designed for mouse mouse mouse mouse mouse pen

Table 2.1: Menu summary

5

scrollbars
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Figure 2: Degree of indirection
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Table 1: Comparing WIMP interaction techniques

For example, placing a light switch far from the light bulb
it controls makes it easier to turn on the light. Similar
examples can be found in user interfaces.

The temporal offset is the time difference between the
physical action on the instrument and the response of the
object. In some cases, the object responds to the user's
action in real-time. For example, clicking an arrow in a
scrollbar scrolls the document while the mouse button is
depressed. In other cases, the object responds to the user's
action only when the action reaches closure. For example,
the arguments specified in a dialog box are taken into
account only when the OK or Apply button is activated. In
general, short temporal offsets are desirable because they
exploit the human perception-action loop and give a sense
of causality [22].

Figure 2 shows the degree of indirection of various WIMP
instruments on a 2D chart. Scrollbars occupy a range in the
diagram. For example, some scrollbars provide immediate
response when the thumb is moved while others only scroll
the document when the mouse button is released. The figure
shows that the degree of indirection describes a continuum
between direct manipulation (lower-left corner) and indirect
manipulation (upper-right corner).

Degree of integration
The degree of integration measures the ratio between the
number of degrees of freedom (DOF) provided by the logical
part of the instrument and the number of DOFs captured by
the input device. This term comes from the notion of
integral tasks [17]: some tasks are performed more
efficiently when the various DOFs are contro l led
simultaneously with a single device. A scrollbar is a 1D
instrument controlled by a 2D mouse, therefore its degree of
integration is 1/2. The degree of integration can be larger
than 1: controlling 3 rotation angles with a 2D mouse [16]
has a degree of integration of 3/2. This property can be used
to compare instruments that perform similar operations.
For example, panning over a document can be achieved
with two scrollbars or a 2D panner. The latter has a degree
of integration of 1 and is therefore more efficient than two
scrollbars, which have a degree of integration of 1/2 and
incur additional activation costs.

Degree of compatibility
The degree of compatibility measures the similarity
between the physical actions of the users on the instrument
and the response of the object. Dragging an object has a
high degree of compatibility since the object follows the

movements of the mouse. Scrolling with a scrollbar has a
low degree of compatibility because moving the thumb
downwards moves the document upwards. Using text input
fields to specify  numerical values in a dialog box, e.g. the
point size of a font, has a very low degree of compatibility
because the input data type is different from the output data
type. Similarly, specifying the margin in a text document
by entering a number in a text field has a lower degree of
compatibility than dragging a tab in a ruler.

APPLYING THE MODEL
This section uses the Instrumental Interaction model to
analyze existing interaction techniques, both from WIMP
interfaces and from more recent research. It demonstrates the
descriptive power of the model. The generative power of the
model is then illustrated by the design of a new instrument
for searching and replacing text.

Analyzing WIMP Interfaces
The primary components of WIMP interfaces can be easily
mapped to instruments and compared (Table 1):

Menus and toolbars are meta-instruments used to select the
command or tool to activate. This use of meta-instruments
slows down interaction and generates shifts of attention
between the object of interest, the meta-instrument and the
instrument. Contextual menus have a small spatial offset
and are therefore more efficient than toolbars and menu bars.
Toolbars, which can be moved next to their context of use,
have a better spatial offset than menu bars.

Dialog boxes are used for complex commands. They have a
high degree of spatial and temporal indirection. They often
use a small set of standard interactors such as text fields for
numeric values, resulting in a low degree of compatibility.

Inspectors and property boxes are an alternative to dialog
boxes that have a lower degree of temporal indirection.
Since they can stay open, they can be activated with
pointing (positional activation) rather than selection in a
menu (temporal activation).

Handles are used for graphical editing and provide a very
direct interaction: low degree of indirection, high degree of
compatibility and good degree of integration.

Window titles and borders are instruments activated
positionally to manipulate the window (move, resize,
iconify, zoom, close). Scrollbars control the content of the
window. Because of their low degree of integration, they are
not optimal, especially for panning documents in 2D. Also,
their spatial offset generates a division of attention,

Figure 2.17: Degree of indirection of an interactor (adapted from Beaudouin-
Lafon, 2000)
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degree of compatibility: the similarity between the physical actions of the users
on the instrument and the response of the domain object.

Beaudouin-Lafon (2000) applies the interaction model to standardWIMP in-
teractors. New interaction techniques often found inWIMP interfaces, such as
inspector, property boxes, drag and drop, and contextual menus, are shown to be
more efficient than their standardWIMP counterparts. Post-WIMP interfaces are
also analysed following the interaction model.

Navigation in zoomable user interfaces is fast because the navigation instru-
ments (mouse buttons and modifier keys) have low temporal offsets. Their use
also has high degrees of compatibility and integration. The design of a new text
search instrument is presented and discussed in terms of the interaction model.

2.4 Problems With Existing Interactors

The problem with pop-up and marking menus is that they do not allow the chosen
operation to be controlled interactively. They also do not allow any parameters to
be supplied. For instance, an operation such as a font size change often requires a
dialog box to supply the new font size. Users must use the menu and then switch
their attention to another interactor. Once the new size has been entered the dialog
box is dismissed and the users must refocus their attention on the workspace.

An action that should be considered by the user as a single action, orchunkin
the terminology of Buxton (1986), has been decomposed into a number of actions.
A novice user must understand that these actions are linked and all need to be
executed to perform a single operation. Only when users have become experts,
through repetition of the task, will they be able to consider these actions as a
single chunk and thus ignore the low level details of multiple interactor use and
concentrate on their high level task.

Pan operations require either a dedicated mouse button (or a mouse button and
a modifier) so that users can drag the image, or two scroll bars. Panning cannot
be done with standard menus except with impractical commands such as “move a
little to the right”. Zooming is another operation that is difficult to perform with
menus. Users want to zoom until the correct scale has been obtained. Standard
menus only allow them to zoom in fixed steps, and then only via repeated uses of
the menu.

2.5 Example: the Scale in Acrobat Reader

There are four different ways to change the scale in Acrobat ReaderTM from Adobe:
a pull-down menu (Figure 2.18a), an option menu (Figure 2.18b), a dialog box

http://www.adobe.com/products/acrobat/readstep.html
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(a) pull-down menu (b) option menu

(c) dialog box (d) mouse

Figure 2.18: Changing the scale in Acrobat Reader 3

from a pull-down menu (Figure 2.18c), or via a mouse button. The use of the
mouse button to change the scale of the view requires that the mouse be in the
correct mode. The mouse button can be used to pan the view, zoom on a point (in-
crease the scale), select text, or dezoom (decrease the scale). The current mouse
mode is indicated by the cursor and three buttons shown in Figure 2.18d. The first
three mouse modes can be selected with the buttons. The fourth mode (dezoom)
must be selected using the “Tools” menu item (or a keyboard accelerator) in Ac-
robat Reader 3. With the fourth version, the dezoom mode can be selected via a
menu that appears (rather unexpectedly) when the user presses on the button that
normally selects the zoom mode (Figure 2.19).

All these four methods of changing the scale have disadvantages.

Pull-Down Menus The pull-down menu requires users to move the cursor away
from their text to the menu bar, click on the button, focus their attention to
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Figure 2.19: Selecting the dezoom mode in Acrobat Reader 4

the menu and select the correct item. Once the appropriate menu item has
been chosen, the menu disappears and users have to refocus their attention
on their text. This list of possible scales is also very limited (but the menu
is already very long). The menu bar also uses valuable screen space. This
loss (or waste) of space is particularly annoying here because menu bars
are horizontal (thus using vertical space) in an application where vertical
space is most valuable, since screens are landscape sized but documents are
normally portrait sized.

Option Menus The option menu also requires a mouse movement from the user’s
text to the menu’s button, then to the correct line in the menu, and then back
to the user’s text. The user’s attention must follow these mouse movements.
A certain amount of screen space is used by the option menu. This space is
used to show the current scale which requires the user to learn that the scale
can be changed by clicking on “200%”. The choices offered are limited, and
a user who is unhappy with a choice made must restart the whole process to
choose another scale.

Dialog Boxes The dialog box allows an exact scale to the specified but using a
dialog box is even slower than a pull-down menu or an option menu. One of
these menus must be used to display the dialog box, the correct value must
be entered, and then the dialog box dismissed. There are thus even more
mouse movements and attention changes than with the menus; attention
focus on the menu, then on the dialog box, and then back to the users text.
If the new scale is not correct, and no help is provided to aid the user in
choosing the correct scale, then the dialog box has to be redisplayed in order
to enter another scale. No “apply” button is provided, so it is not possible
to see the effect of a new scale without dismissing the dialog box.

Mouse Buttons To use the mouse button to change the scale, the program must
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be in the correct mode. If the mouse button is in a different mode, the user
must click on the appropriate button to choose the correct mode. This is an
extra step and the buttons used to change the mode occupy valuable screen
space. The usual way of changing the scale with the mouse is by clicking.
This changes the scale by fixed steps. This makes it impossible to choose
exactly the correct scale and if the desired scale is passed then program
mode has to be changed, via the buttons (Figure 2.18d), to change the scale
in the other direction. A second way to use the mouse to zoom involves
sweeping out a rectangle over the document. This rectangle indicates the
area the user wishes to see. The scale is then adjusted so that only that part
of the document is visible.

None of these methods of changing the scale is perfect. Finding the correct
scale is an iterative process, undoing a scale change is not easy, and, with the
menus, too many focus changes and mouse movements are required.
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Chapter 3

A New Interactor

The taxonomy of menus in the previous chapter shows that there is a need for
a menu that combines the selection of operations and the control of the chosen
operation. This new menu should be contextual or pop-up because such menus
do not require large mouse movements to be activated and allow the target of the
operation to be indicated by users.

We thus propose a new type of contextual pop-up menu (Figure 3.1) called a
Control Menu. These menus resemble pie menus and combine the selection of an
operation and the control of this operation. They integrate up to two scroll bars
or spin-boxes and thus allow users to keep their attention focused on the menu
during the operation. Control Menus can have sub-menus, and also retain the
novice and expert modes of use found in marking menus. This menu not only
allows operations to be selected, it also allows those operations to be controlled
via the same interactor in a fluid and continuous way.
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Figure 3.1: Control Menu in a Zoomable User Interface
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3.1 Control Menu

In this section we describe the basic properties of Control Menus; those that are
shared by other types of menus.

3.1.1 Pop-up Menu

A Control Menu can be activated anywhere in the user interface by simply press-
ing on a mouse button. Control Menus do not require users to move the mouse
(or pen) to a visible interactor such as a button or a menu bar. Users can thus keep
their attention focused on the centre object on which they are currently working
and need not make large mouse movements to and from visible menus in fixed
positions. As there are no visible indications that the menu exists, users need to
be told that pressing a mouse button will activate a menu. This very common
comportment of user interfaces is simple to explain and easy to remember.

It is possible to associate a different Control Menu with each mouse button or
even to change the contents of the menu depending on the keyboard modifiers that
are pressed when the mouse button is pressed. This technique is used by Hotbox
(subsection 2.1.4). As even non-hierarchical Control Menus can contain eight
items and hierarchical Control Menus many more, this possibility will be needed
only by more complex user interfaces.

3.1.2 Contextual Menu

Control Menus are contextual. They can be activated anywhere on the user in-
terface and the activation position can be used to indicate the point on which the
user wishes to act. This position can also indicate one or more objects that are
candidates to be used by the operation. The exact set of objects to be used by the
operation is determined once the operation has been chosen. This allows a Control
Menu to be activated over a set of objects of different types. Only those objects
that are compatible with the chosen operation are taken into account by the oper-
ation. Figure 3.2 shows a Control Menu being used at a position where there is
both a portal and a lens. Both the portal and lens sub-menus in the Control Menu
are active. The system will use the choice of the operation to decide whether it is
the portal or the lens that is to be the target of the operation.

The contents of the Control Menu can also be adapted to the position where
it is activated (or the objects at this position). This avoids proposing operations
that are not appropriate at the current position. It is however probably desirable to
organise the positions of the items in the menu so that when they are active they
are always in the same place.



3.1 Control Menu 55

9q12

AFMb335xh1
AFM234yc5

AFMb046yd5
AFMa137yb9
AFMb316yf1
AFM343td9
AFMb321yf9
AFM224zh10
AFMa044ta5
AFM321xf1
AFM186xc3
AFMa119zg9
AFM248wc9
AFM344yc9
AFMa123xg1
AFM026tg9

AFM073yb11

D9S66
AFMa131yg9

CHLC.GATA4D10.314

D9S58

no other maps

WI−14669
SGC35176
SGC32587
WI−6338
TIGR−A004Y44
WI−10904
WI−9330
WI−21068

no other maps

AFM199xf10
9, WI/MIT RH

WI−6338
TIGR−A004Y44
WI−10904
WI−9330
WI−21068

no other maps
9, WI/MIT RH

polymorphism

WI−6338
TIGR−A004Y44
WI−10904
WI−9330
WI−21068

AFM199xf10
WI−14669
SGC35176
SGC32587

9, WI/MIT RH

WI−6338
TIGR−A004Y44
WI−10904
WI−9330
WI−21068

9, WI/MIT RH

zoom
lens menu

pan
portal menu

dezoom
context

new lens
remove lens

Figure 3.2: Control Menu and two types of object

3.1.3 Circular Menu

Circular menus, such as Control Menus, are easier to use than linear menus. All
the targets in the menu are near and at the same distance from the centre of the
menu. The further users move the cursor from the centre of the menu the larger
the target and the lower the risk of error but the slower the selection. Users can
thus choose the tradeoff between the risk of error and the speed of selection and
this with each use of the menu.

Circular menus are “eyes-free”. Experiments (Kurtenbach, 1993) show that
four, eight and twelve item menus are easy to use and that even when the menus
are hidden. Bigger menus and menus with an odd number of items were found to
be difficult to use. Users thus do not have to wait until a circular menu is shown
before selecting an operation. This is not possible with linear menus. It is easy to
move the cursor down and left, or example, from the centre of a circular menu but
much more difficult to move down to say the fourth line in a linear menu.

Remembering compass quadrants, north, north-west, west, etc, appears to be
easier than positions in a linear menu. The movement to select an operation from a
Control Menu is a single action in a single direction that soon becomes automatic.
Selecting a line in a linear menu requires eye-hand coordination as the user has
to move down and to the right (depending on the exact design and position of the
menu) and then stop in the correct target. This complex operation is harder to
remember.

3.1.4 Menu Visible Only for Novices

Users press on a mouse button to activate a Control Menu. If the user does not
move the mouse within a third of a second, the menu is shown. The novice user
can then use the menu to select the desired operation. The menu is not shown
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if the user knows the position of the desired operation and immediately moves
moves the cursor in the direction of the operation.

A user who does not need the menu is not distracted by its appearance and the
focus of the user’s attention (that part of the workspace under the cursor) is not
even temporarily or partially hidden from the user.

The choice of novice or expert use of the menu is automatic. Users need not
decide if they are novices or not. There is no button to check to say whether one
is a novice, and the choice of novice or expert mode is made automatically at
each menu use. If the user hesitates in making a choice the menu is shown as a
reminder, otherwise it is not needed and not shown.

3.1.5 Novice and Expert Modes Similar

Many menus provide an expert mode. With traditional menu systems the expert
way to choose operations from a menu does not use the menu at all. Users have to
learn keyboard accelerators that are completely different from the action required
to select the same operation from the menu. Novice users do not naturally learn
the expert way of activating a function. They have to make a conscious effort to
learn a different way of activating operations. Further, the use of the keyboard
may not be well suited to the user’s task if most operations are performed with the
mouse.

In a Control Menu the novice and expert uses of the menu are very similar.
The only difference is that the novice pauses to see the menu and find the desired
operation before moving the cursor. Novices thus rehearse the expert use of the
menu every time they use the menu.

3.1.6 Menu is Transparent

A Control Menu (Figure 3.1) consists of (solid) black text drawn on top of red
arrows that indicate where to move the cursor to select a given operation. The
text is surrounded by a white border in order to increase its readability when it is
drawn on a dark background. Control Menus consist only of these items so as to
hide as little as possible of the user’s workspace.

3.1.7 Activation Based on Distance

When using pull-down, pop-up, or marking menus, users indicate that they have
chosen an operation and that this operation should now be executed by releasing
the mouse button or lifting the pen. The activation is thus indicated by the end of
gesture used to make the menu appear. When using a FlowMenu, users indicate
that they have made their choice by moving the cursor back to a region in the
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Figure 3.3: Activation based on distance

centre of the menu. Activation is thus determined by the position of the cursor
relative to the menu. The gesture continues as the user has not had to release
the mouse button and future mouse movements can be used to control the chosen
operation or choose other operations

With a Control Menu activation depends on the distance that the cursor has
moved from the point where the gesture started. As soon as this distance is passed
the chosen operation starts. The light blue circle that passes through the “e” in
“dezoom” in Figure 3.3 shows the activation distance in the Control Menu. As
soon as the cursor crosses this (normally invisible) line the appropriate operation
starts.

3.1.8 Discrimination Based on Angle

With pull-down and pop-up menus users indicate their choice of action by the
distance they move the cursor before releasing the mouse button. With pie and
marking menus it is the angle or shape of the movement made during the gesture
that is used to determine which menu item is selected. The shape is analysed
once the user releases the mouse button or stops moving the cursor (so as to see a
menu). The distance moved is not important. FlowMenus use the sector traversed
by the cursor before the return to the centre of the menu to determine which item
is selected.

A Control Menu uses the angle of the mouse movement to determine which
item is selected. As soon as the mouse is the activation distance from where the
gesture started, the angle of the movement is analysed to determine the desired
operation. The blue lines in Figure 3.4 (added to Figure 3.3) show the sectors
associated with each item in the Control Menu. As soon as the cursor moves into
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Figure 3.4: Discrimination based on angle

one of these regions, the operation whose name is indicated around outside of
Figure 3.4 is started.

Textual strings are longer than they are wide. If they were to be drawn so that
they fit completely within their region they would have to be drawn a long way
from the centre of the menu. This would make the menu too big. As in marking
menus, they can thus overlap the regions of adjacent menu items. Users do not
seem to find this a problem as they tend to follow the large red arrow when they
are learning the gesture to activate an item.

The combination of activation based on distance and discrimination based on
angle means that choosing an operation with a Control Menu is as simple as press-
ing the mouse button and moving the cursor in the current direction.

3.1.9 Control of the Operation

The selection of an operation with a pull-down, pop-up, marking or pie menu
requires users to release the mouse button. Any control of the chosen operation
requires the use of another interactor. This interactor is often a dialog box and its
use is modal. The interface is blocked until the dialog box is dismissed. Modal in-
terfaces are generally accepted to be error prone and confusing for users (Raskin,
2000). The use of two interactors to perform a single operation is also undesirable
as users have to focus their attention on the menu and then on the other interactor
before having to return to what they were working on.

FlowMenus allow the chosen operation to be controlled in the same gesture
used to choose the operation. This control can be either via fixed choices from a
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menu or via movements in a circle around the centre of the menu. This quasimode
can be left by returning to the centre of the menu. The control in one dimension
provided by a FlowMenu only uses one of the degrees of freedom of the mouse
but can be used on very small displays.

Control Menus use both of the mouse’s degrees of freedom to control the
chosen operation. The cursor can be moved anywhere on the screen as there
is no region that causes the control quasimode to stop. This control quasimode
continues until the mouse button is released. As interaction that with a FlowMenu
requires a circular action can be provided by a Control Menu with a linear action.
A linear action is easier to perform than tracing a circle but requires more space.

Control Menus thus provide more control possibilities but it is not possible
to leave the quasimode other than by ending the gesture. This means that it is
not possible to choose and execute a number of different operations in a single
gesture.

3.1.10 Comments

Control Menus have some features in common with currently used menus such as
pull-down, pop-up, pie and marking menus. They also share some of the charac-
teristics of FlowMenus which were developed after Control Menus. The control
possibilities offered by Control Menus are however quite different and are dis-
cussed in the following sections.

3.2 Controlling Operations

Control Menus are particularly useful for controlling operations with one or two
numeric parameters with a large number of possible values. With this type of
parameter the control part of the use of a control menu is simple.

3.2.1 Operations With One Parameter

If the operation has only one parameter then as soon as the operation has been se-
lected mouse movements in one direction increase the value of the parameter and
mouse movements in the other direction decrease the value of the same parameter.
Any two opposing movements can be used, for example horizontal or vertical.

Example: Zooming

Figure 3.5 shows the gesture used to control the level of zoom (either of an entire
application or of just the object at the cursor position at the beginning of the ges-
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Figure 3.5: Zooming with a Control Menu

ture). The zoom operation is on the right hand side of the Control Menu used in
this example; horizontal mouse movements are to be used to control the operation.
Movements to the right increase the zoom and movements to the left decrease the
zoom.

There are two main parts to this gesture. The first, Figure 3.5a, selects the
zoom operation. As soon as the cursor arrives at the end of this part of the gesture
the zoom operation starts and the menu vanishes (if it was visible). All subsequent
mouse movements control the operation. The movement Figure 3.5b increases the
zoom level and the movement Figure 3.5c then decreases the zoom level below
that at the beginning of the operation. The movement Figure 3.5d increases the
zoom level somewhat but the final result, when the mouse button is released, is a
dezoom.

Replaces Selection, Menu, Slider and Button

This use of a Control Menu shows how a single use of a Control Menu can incor-
porate the choice of a target object, the choice of an operation, a slider to control
the operation and the button used to indicate that the desired value has been found.
This reduction of four interactors into a Control Menu means that users need only
one interactor for even quite complicated tasks. Users avoid the focus of attention
changes required by multiple interactors.

Undo is Possible

Operations that have only one parameter to be controlled during the gesture use
only one of the two degrees of freedom of the mouse. The other degree of freedom
can be used to provide other capabilities. One possibility is undo. If horizontal
movements are being used to control the scale of the interface then a vertical
movement could undo changes made to the scale during the current use of the
Control Menu. The undo could of course be undone by returning the cursor to the
original horizontal position. Undoing and redoing the scale change would allow
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users to compare the original scale and the new scale before deciding which to
keep.

Zoom to Dezoom

Figure 3.5 shows that a menu item to change a parameter in one direction, zoom,
can also be used to change the parameter in the other direction, dezoom. If space
is at a premium in a Control Menu and there is not enough space to include zoom
and dezoom entries in the menu, just one of these entries is sufficient. The (slight)
disadvantage is that, as in this example, a dezoom has to start with a small, and
rapidly corrected, zoom.

Some users found the use of only one menu entry for zooming and dezooming
to be confusing. They quickly learnt that zooming meant moving to the right and
dezooming to the left. They forgot that moving to the left dezoomed only once the
zoom operation has been selected, i.e. after a move to the right. The Control Menu
was modified so as to have complementary zoom and dezoom menu items. Users
can still dezoom with the zoom command but they can also dezoom directly.

3.2.2 Operations With Two Parameters

Most pointer devices used today, such as mouses, trackballs, graphics tablets, and
pens, have two degrees of freedom. These devices can supply two independent
values to the computer systems. Some devices such as pens on small touch sen-
sitive screens may have two degrees of freedom but only over a limited distance.
In this case it may be necessary to reduce the two degrees of freedom to one by
requiring users to make circular movements in the limited space available.

Example: Panning

When there are two degrees of freedom, these can be used by the control menu to
control two parameters simultaneously. The simplest example is controlling thex
andy coordinates of the position of an object or a viewport. In this case a Control
Menu is used to pan (or scroll) in two dimensions thus replacing two scroll bars.
The pan operation is selected by pressing the button and moving the mouse up
(Figure 3.1 shows the pan entry at the top of the menu). During the operation,
i.e. until the mouse button is released, the view follows the cursor. The solid
line in Figure 3.6 shows the mouse movements during the choice and execution
of the pan operation. The first movement, which can be performed immediately
or after the pause to see the menu, chooses the pan action. Once the action has
been chosen, the view follows the mouse. The second movement is towards the
north and moves the view towards the north. The subsequent mouse movements
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Figure 3.6: Panning with a Control Menu

continue to move the view with the cursor until the mouse button is released. The
net result of the action is a movement of the view towards the right (or east).

Go Up to Go Down

The position of the pan operation on the menu requires users to move the cursor
towards the top of the screen to start the pan operation. Users thus move the image
up (a little) even when they want to move it down. This situation is similar to that
described in section 3.2.1, where users have to zoom (a little) to dezoom, but it
appears to be less of a problem for users.

No Undo

The pan cannot be cancelled during the operation because all the possible move-
ments of the mouse already have a meaning. The possibility to cancel the opera-
tion could be provided via the use of a different input device such as the keyboard
or another mouse button (if there is one).

Integral Parameters Work Best

Control Menus work best when controlling two parameters that are integral. In-
tegral parameters (Jacob and Sibert, 1992) are those whose attributes combine to
form a single composite attribute in the user’s mind. Thex andy coordinates of
an object are integral parameters because users combine them into the position of
the object. A diagonal mouse movement has a simple meaning in this situation:
move the object diagonally. On the other hand, the size and colour of an object
are not integral parameters. If a Control Menu is used to control two such param-
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eters simultaneously, a diagonal movement of the mouse does not have a simple
meaning.

3.2.3 Comments

Control Menus have a number of properties that aid users in controlling computer
systems.

Parameter Value Visible

The modification of the parameter starts when the operation is selected. If the
value of the parameter is associated with the position of the cursor then the value
is “jumped” to correspond to the position of the cursor when the operation starts.
This is the case if a Control Menu is being used to move a particular object. The
object should remain under the cursor.

If no visible object represents the parameter being modified then it is not nec-
essary to “jump” the value of the parameter to take into account the distance
moved (Figure 3.5a) during the selection of the operation. This is the case if the
Control Menu is being used to change a global zoom factor or to pan the entire
view.

Fine Control

The maximum change of the parameter in any direction is limited by the range of
movements of the mouse. Mouse movements can normally be tracked even when
the cursor has left the application’s window. The range of mouse movements is
thus limited by the space available on the user’s desk for mousing. The parameter
value is updated with each movement of the mouse (no matter how small). This
allows fine control of the value of the parameter limited only by the resolution of
the mouse and the space available.

Immediate Visual Feedback

In most uses of a Control Menu the representation of the interface or the object
being changed is updated after each and every mouse movement. This gives the
immediate visual feedback that allows users to continue adjusting the parameter
until they see exactly the desired result. At that point they just have to release the
mouse button to keep the desired value.

Where updating the user’s view leads to large and possibly disorientating
changes it may be better not to update the view after each mouse movement. This



64 A New Interactor

is the case where a Control Menu is being used to select and delete text. Interac-
tively deleting each character as the user moves the cursor will lead to continuous
reformatting of the document that may be distracting. It may be better, during the
gesture, merely to indicate what text is to be deleted and then to delete it at the
end of the gesture.

Temporary Parameters

If the parameter being controlled is temporary (it exists only during the gesture)
and has a limited range of values, and this use of the menu is not contextual,
then the position of the cursor at the beginning of the gesture can give the initial
value of the parameter. In this case, moving the cursor to right hand side of the
application’s window increases the parameter to its maximum value, and moving
it to the left hand side will set it to its minimum value. This possibility is described
in more detail in the section that discusses the use of Control Menus in Zoomable
User Interfaces (subsection 5.2.8).

The control of temporary parameters in this way differs from that normally
used in Control Menus. In normal use moving the cursor increases or decreases
the parameter. The change in the parameter caused by a given movement of the
input device is determined by the tradeoff between precision and rapidity. The
maximum change in a single use of a Control Menu is limited by the range of
movements provided by the input device. When controlling temporary parameters
as described in this section, the maximum value is obtained by moving to one
side of the screen and the minimum to the other. Each cursor position within the
application’s window corresponds to a fixed parameter value.

Cursor Indicates Choice

The operation that has been chosen and is active is normally obvious because of
the immediate feedback to any mouse movement. As an extra aid to reassure
users that the current operation has been chosen, the cursor changes as soon as
an operation starts. Each operation has its own cursor. Users can just look at the
cursor to check that the correct operation has been selected.

On Screen Guides

The techniques described so far in this chapter are designed for interactions where
the effect on the interface of moving the cursor during the control phase of the
gesture is obvious or is easily discovered with the help of the visual feedback.
If this is not the case, it is necessary to help users understand the effect of mouse
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movements by drawing a transparent aid on the screen. This aid indicates in which
direction users should move the cursor to obtain a desired result.

Such an aid is even more important if it is not just what effect is to be produced
by moving the cursor that is non obvious, but also where in a given direction it
is necessary to position the cursor to obtain a given result. This will be the case
if a Control Menu is being used to select between values that have no generally
recognised order. When selecting between numeric values, such as a font size,
it is generally expected that moving to the right chooses a higher value. If the
movement is vertical, it is perhaps also obvious that higher values are obtained
by moving the cursor up. When a Control Menu is being used to select between
different fonts, for example, and the current font is Helvetica, it is not at all obvi-
ous which way users should move the cursor to select the font Palatino. A guide
indicating the position of the different fonts along the chosen axis will have to be
displayed during the use of a Control Menu to select a font. In this situation, the
Control Menu incorporates the functions of a set of radio buttons rather than a
slider.

3.3 Sub-menus

A Control Menu can contain sub-menus. A sub-menu is opened the same way that
an operation is chosen: by moving in the direction of the sub-menu’s entry. As
soon as the cursor has moved the activation distance the sub-menu is opened. An
open sub-menu is shown in Figure 3.7. The sub-menu is linked to its entry in the
main menu by a solid red line. The corresponding entry in the main menu is also
shown in a different colour (green in this example) so as to remind the user which
menu is open. If the sub-menu was opened in error, it can be closed by moving
the cursor back to the centre of the main menu. The entire action of choosing an
operation can be aborted either by closing the sub-menu and releasing the button
with the cursor in the middle of the main menu or by directly releasing the button
with the cursor in the middle of the sub-menu. The circle in the centre of the sub-
menu in Figure 3.7b has turned green to indicate that no operation is currently
selected.

Once a sub-menu is open it is used in the same way as a top level menu with
the difference that moving the cursor into the small circle in the centre of the main
menu will cause the sub-menu to close.
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Figure 3.7: Lens sub-menu in our Zoomable User Interface

3.4 Buttons

A Control Menu can contain simple commands that do not have any parameters.
Commands that can be cancelled are executed as soon as the cursor has been
moved the activation distance from where the mouse button was pressed. As the
user still has the mouse button pressed, a movement in the other direction undoes
the operation. The undo can be reversed by moving the cursor back again. The
user releases the button when the desired result has been obtained. A Control
Menu could be used in this way, for example, in a text editor for the operation of
deleting text. It could not be used for the save operation because saving cannot be
reversed.

Commands that cannot be cancelled are provided an extra level of protection.
When the user moves into the sector associated with such a command the com-
mand does not start immediately. The menu is drawn if it is not already visible
and the name of the command changes colour (green in our implementation) to
indicate that it will be executed if the user releases the mouse button at that mo-
ment. User can thus change their minds by moving the cursor back to the centre of
the menu. Figure 3.7 shows a situation where the interface will create a “polymor-
phism” lens if the mouse button is released. The user can decide to not execute any
operation by moving the cursor as shown in Figure 3.7 and releasing the mouse
button.
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3.5 More Than a Menu

A Control Menu is more than a simple menu because it includes the possibility of
controlling the chosen operation. It thus incorporates one or two sliders (or sets
of radio buttons) that would normally be in a dialog box. Control Menus can thus
be analysed by a general interaction model and with regard to Fitts’ Law.

3.5.1 Interaction Model

Control Menus can be analysed by the interaction model proposed by Beaudouin-
Lafon (2000). This model was described in section 2.3

Degree of Indirection

Figure 3.8 shows how a Control Menu fits into a diagram that shows the degree
of interaction of various interactors (Beaudouin-Lafon, 2000). Control Menus
change the underlying object immediately with a visual feedback that shows chan-
ges as they occur. Their temporal offset is thus low. The spatial offset is also
initially low as the menu is contextual and must be used over the target object.
The spatial offset can however increase from the initially low value if users use it
to modify a parameter of an object that does not cause the object to move or grow
at the same rate at which the cursor moves. An example where the spatial offset
remains low is when the Control Menu is moving an object: the object follows
the cursor. If a Control Menu is being used to change the colour of an object, the
distance between the object and the cursor will become non-zero since the object
will not grow as users move the cursor to chose the new colour.
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Degree of Integration

A Control Menu can use all the degrees of freedom of an input device. This
thesis has only studied the use of Control Menus with input devices that have two
degrees of freedom, there is however no reason to suspect that they would not
be usable with input devices with multiple degrees of freedom, especially if the
parameters being controlled are integral.

It may also be possible to create a Control Menu that has more degrees of
freedom than the input device. This could be done by deciding that diagonal
movements of the cursor, with a two dimensional input device, should not affect
the vertical and horizontal parameters but should rather change the values of two
independent diagonal parameters. More work needs to be done in this area. This
could also be the solution to the problem of non-integral parameters.

Degree of Compatibility

The degree of compatibility of a given Control Menu depends on the degree of
compatibility of the mouse movements in the control phase of the gesture and the
result of changing the corresponding parameters. If a Control Menu is being used
to move an object or to pan a view, the degree of compatibility is high since the
object or view follows the cursor. If a Control Menu is being used to zoom a view,
the degree of compatibility is much lower as there is no clear correspondence
between the movements of the cursor and the movements of the object in the
view.

3.5.2 Fitts’ Law

Fitts’ Law (Raskin, 2000) states that the further a target is from the user’s current
cursor position or the smaller the target, then the longer it will take the user to
move to the target.

With a Control Menu the distance from the cursor to the menu is zero; the
menu pops up under the current cursor position. The distance from the centre of
the Control Menu to the regions that choose operations is the activation distance
given in subsection 3.1.7. This distance does not depend on which item in the
menu is to be chosen. The fact that all menu items are equally close to the cursor
means that it is not necessary to decide where items should placed as a function
of their frequency of use. The position of items in a Control Menu can be cho-
sen by taking into account the semantics of the operation, the meaning that users
might give to the movement required to chose an item in a particular position in
the Control Menu, and the movements then used to control the operation. An
operation that moves objects horizontally should probably be on the left or right
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of the Control Menu. There is some debate on whether a zoom operation should
use horizontal or vertical mouse movements but its position in the menu should
be same as the movement in the control phase.

The targets in a Control Menu have infinite size because users can move as far
as they wish in the correct direction. They do however have to be able to move
in the correct direction. The accuracy with which they need to move the cursor
depends on the number of items in the menu.

3.6 Applications

We developed Control Menus to improve the control of Zoomable User Interfaces
and to investigate the synergy between control and visualization in these inter-
faces. Control Menus are however general interactors and we have used them to
control the navigation in virtual worlds. We discuss in this section how they could
be used in more standard programs such as text editors and also how they could
be adapted to systems with limited screen space.

3.6.1 Zoomable User Interfaces

Zoomable User Interfaces are complex programs with complex user interfaces
that are normally controlled using the mouse, buttons and standard menus. When
navigating in aZUI, users zoom, dezoom, scroll, create Magic Lenses, move and
resize Magic Lenses, move and scroll portals, etc. Some of these actions are
executed very frequently. A user zooms until the desired scale has been obtained
and scrolls until the object looked for has been found. The graphical objects
used to present the information space change frequently; a zoom or dezoom can
completely change the visible objects. Making these objects active and using
them to control theZUI is can lead to unwanted operations being chosen as these
objects change and move frequently. Our Control Menu is well adapted to be used
in Zoomable User Interfaces.

We describe the use of a Control Menu to control the virtual worlds con-
structed with our Zoomable User Interface development tool, Zomit, in chapter 5.
We also describe how the fluid integrated selection and control possibilities of
Control Menus allow new types of interaction to be envisaged.

3.6.2 Interaction in a Virtual World

A modified Control Menu is used to navigate in thevreng virtual world (http:
//www.infres.enst.fr/net/vreng) developed at the École Nationale Supérieure des
Télécommunications (Figure 3.9). The Control Menu can be used to teleport the

http://www.infres.enst.fr/net/vreng
http://www.infres.enst.fr/net/vreng
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(b) control menu(a) guide

Figure 3.9: Control Menu in vreng

user or to control the speed of movement in the virtual world. When used to
control the speed of movement the Control Menu displays a visual guide (Fig-
ure 3.9a), as discussed in subsection 3.2.3, that appears once the navigation com-
mand has been selected. This guide indicates where users need to move the cursor
to accelerate their movement by a given amount.

3.6.3 Text and Presentation Editors

Control Menus can be used in more traditional text processing programs where
one of the most common operations is selecting text. Selecting text is an opera-
tion that does not have any parameters (other than the text to be selected). The
select operation is placed at the right of the Control Menu (i.e. replacing the zoom
operation in Figure 3.1). In Figure 3.10a the user has indicated the start of the
text to be selected by pressing the mouse button between the words “might” and
“bear”. The user then moves the cursor the activation distance to the right. At this
point the text between where the mouse button was first pressed and the current
position of the cursor is selected (Figure 3.10b). The user can then move the cur-
sor down to select more text (Figure 3.10c), left to select less text or up to select
text from the new position to the end of the word “might”.

Operations with parameters, such as font size changes, are decomposed into
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(a)

(b)

(c)

Feed’st thy light’s flame with self−substantial fuel,
But thou contracted to thine own bright eyes,
His tender heir might bear his memory

But thou contracted to thine own bright eyes,
His tender heir might bear his

Feed’st thy light’s flame with self−substantial fuel,

memory:

Feed’st thy light’s flame with self−substantial fuel,

His tender heir might
bright eyes,

bear his memory:
But thou contracted to thine own

Figure 3.10: Selecting text with a Control Menu

two steps. The text to be changed is selected via the menu and then the “change
font size” operation is selected with a second use of the menu. This operation
has one parameter: the change in the point size of the text. Moving the cursor
upwards increases the size; moving the cursor downwards decreases the size. The
user releases the button when the correct size has been found. As the user moves
the cursor, the selected text changes to the new point size. To avoid distraction,
and perhaps computationally expensive layout changes, the user’s document is
not reformatted to take into account the new point size during the gesture. Rather,
the selected text is shown in the new size, in the space occupied originally by
the text. The document’s layout is updated once the user ends the gesture by
releasing the mouse button. This process would be different in a program for
preparing presentations. Here there is much less text to be reformated after a font
size change and the visual aspect of the page is more important. The change in
font size would thus be performed during the operation so that the user can find
the desired visual effect.

Operation such as “cut” or “underline” which, like selecting text, do not re-
quire any parameters, can be provided in the same way as a font size change
(two menu accesses) or via a specialised menu command which allows the user
to select text and then removes or underlines the text at the end of the operation.
An underline command would underline text as it is selected. To avoid continual
formating when deleting, the deleted text would vanish as it is selected but the
document is reformated only at the end of the operation. Simple commands can
thus be performed with a minimum of menu use.

A Control Menu would be most useful in a presentation editor. Here the choice
of visual effects is larger than in text editors where they are often imposed by pre-
defined styles. In a presentation editor the immediate feedback provided by Con-
trol Menus allows users to see and adjust in a single gesture the visual effect that
they are creating. When used to select colours, fonts, font styles and other visual
effects where ordering of the possible values of the parameter is not obvious, a
visual guide would be required (subsection 3.2.3).
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3.6.4 Interfaces With Limited Screen Space

It is possible to use a Control Menu on a device that has very limited range of
movement for the pen, such as a mobile phone screen. In this case the selec-
tion part of the Control Menu is used normally but during the control phase the
two degrees of freedom of the pan are used to give one movement dimension.
This is done by moving the pen in circles around the centre of the Control Menu.
Clockwise movements increase the parameter value and anticlockwise movements
decrease the value.

3.7 Discussion

Control Menus fill a gap in the design space of menus. They provide rapid selec-
tion of operations in a way similar to pie and marking menus but also allow the
control of the chosen operation in the same gesture. Selection and control are thus
combined, leading to a more fluid interaction between humans and the computer
programs that they use.
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Chapter 4

Visualization Research

Databases of many different types are already very large and have been growing
in size at an exponential rate for years. The databases contain information spaces
that users need to understand, interrogate and control. Visualization systems have
been developed to aid users in these tasks. One of the principal problems is that
these spaces are so large that traditional techniques are no longer sufficient for
presenting the entire space to users on computer screens that have increased in
size only slightly.

The small part of the information space that does fit on the screen is such a tiny
fraction of the entire space that users find it difficult to maintain an understanding
of the position of their view in the global information space. The visualization
problem is to provide sufficient context for users’ small view into a huge data-
bases.

Bartram et al. (1995) state that the solutions to alleviate the visualization prob-
lem typically fall into one of three general classes: traditional pan and zoom, mul-
tiple window (or map view), and distorted view.

The traditional pan and zoom technique has a single but not necessarily con-
stant scale for the entire space. Users pan and zoom in the space looking for the
piece or pieces of information that interest them. The problem with this technique
is that if the information space is large users will soon get lost because they do
not have any context to help them understand how the information that they are
currently looking at fits into the complete information space.

The multiple window solution provides an overview window in addition to one
or more detailed views. The different detailed views can show different regions of
the information space or the same region in a different format. This solution con-
sumes additional space for the overview and requires users to mentally integrate
the different windows into a complete picture of their position in the information
space.
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Distorted view methods (so-called “fisheye” views) deform the information
space in order to show certain regions (the focal area) in detail while keeping
the larger context visible in the same window. We present some distorted-view
techniques and explain why their limitations mean that they are not ideal in some
visualization scenarios.

The visualization of hierarchies or trees is a subject of extensive study in the
literature. We present a description of some visualization systems for trees as
an example of the visualization of a particular type of data. These systems will
illustrate the taxonomies presented at the end of this chapter.

Another new technique is the use of transparence. This technique introduces
a new dimension into the user interface: depth. The use of depth allows multiple
views to be shown at the same time and in the same screen space. Users must be
able to distinguish the different views.

Multiscale Interfaces, also known as Zoomable User Interfaces (ZUIs), are de-
rived from the traditional pan and zoom. These interfaces allow users to control
the scale of the presentation of the information space.ZUIs use semantic zooming:
when displayed objects receive more screen space as users zoom, the representa-
tion of the objects changes so as to show the objects in more detail. This technique
differs from the multiple window solution in that it is “immersive”. When users
zoom the entire view zooms and they plunge into the information space.

The traditional pan/zoom and multiple window techniques are well understood
and used in current commercial visualization systems. They do however have their
limitations and so we chose to concentrate on the new visualization methods and
discuss how they can help to solve the visualization problem. We thus present the
other types of systems mentioned in the introduction followed by summaries of
several known taxonomies. We then present two new taxonomies. The first exam-
ines how information can be presented: with a time, depth or space multiplexed
presentation. The second describes the different types of deformations that can be
used to multiplex the user’s view.

4.1 Distorted Views

The techniques described in this section are based on the idea that users, for a
given task or at a given instant, have a focus of attention (the object or objects that
they are currently working on) and that the other objects, non-focal, are less inter-
esting. These “less interesting” non-focal objects are still important as they allow
the users to position the focus in the information space. It is also assumed that the
further the non-focal objects are from the objects of the focus of attention, then the
less interesting they are. A representation of these non-focal objects is however
required as a context for the focal objects. These techniques thus relate the screen
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area given to non-focal information to the distance from information to the focus.
The further information is from the focus the less interesting it is assumed to be
and thus the smaller it is shown. These methods deform the information space by
eliminating information or by changing the size and position of the representation
of information.

In these systems the deformation is not constant over the information space.
The further a piece of information is from the focus the more it is deformed.

It is possible to generalise these views to include the possibility that users
have several non-adjacent centres of attention. This leads to multiple foci and
more complicated distance and interest functions.

4.1.1 Fisheye Views

Fisheye views (Furnas, 1986) are one way of integrating the context and focus
into a single view.

A Degree Of Interest (DOI) function assigns, to each point in the structure to
be visualized, a number indicating how interested the user is in seeing that point,
given the current task. A basic strategy to display information on a screen of size
n, is to display then most interesting points, as indicated by theDOI function.
Furnas (1986)’s generalised fisheye views decompose theDOI function into two
components:df (x ` y) = ia(x)−D(x,y), whereia(x) is thea priori interest in a
pointx, D(x,y) is the distance betweenx andy, anddf (x` y) is the user’s degree of
interest inx given that the current focus isy. The interest decreases with distance:
the greater the distance of the information from the focus the more interesting the
information must be for it to be shown. This formulation allows fisheye views to
be defined in any sort of structure whereia(x) andd(x,y) can be defined.

Figure 4.1 shows a fisheye view of a C program (Kernighan and Ritchie, 1989).
The line numbers are shown on the left with the user’s current line indicated by
“⇒”. The “. . . ” indicates where lines have been removed. All of the code in
the currentcase is shown, as are all the control structures that enclose the current
line of code and all the declarations of variables that are visible. Other control
structures (lines 47 and 57) in the immediately surrounding block are also shown.

Noik (1993) builds on Furnas (1986)’s work and discusses how to browse a
typical hyperdocument. The Canada-U.S. Free Trade Agreement is a medium-
sized hyperdocument. It has 1680 nodes and 3852 links of three kinds: contain-
ment (e.g. from a part to a contained chapter); sequencing (e.g. the original linear
ordering); and, semantic (e.g. cross references).

4.1.2 Perspective Wall

Mackinlay et al. (1991) present the Perspective Wall as a way of visualizing linear
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1 #define DIG 40

. . . 2 #include <stdio.h>
4 main()
5 {

. . . 6 int c, i, x[DIG/4], t[DIG/4], k = DIG/4, noprint = 0;
8 while((c=getchar()) != EOF){

. . . 9 if (c >= ’0’ && c <= ’9’){
16 } else {
17 switch(c) {

. . . 18 case ’+’:

. . . 27 case ’–’:
38 case ’e’:

⇒ 39 for(i=0;i<k;i++) t[i] = x[i];
40 break;

. . . 41 case ’q:

. . . 43 default:
46 }

. . . 47 if(!noprint){
57 }
58 }
59 noprint = 0;
60 }
61 }

Figure 4.1: Fisheye view of a C program (adapted from Furnas, 1986)

information that involves spanning properties such as time. Perspective Walls
convert an arbitrary 2D layout into a 3D visualization by folding the left and right
sides of the 2D layout away from the user (Figure 4.2). (The 2D layout is assumed
not to be taller than the screen. This method cannot handle layouts large in both
dimensions.) The central part of the 2D layout remains undistorted while the sides
are represented in perspective, the objects on the sides are smaller the further they
are away from the user. Users can transfer the focus of attention by moving the
folds. They can transfer the focus of attention to the objects on left of the 2D
layout by moving the folds to the left. More of the objects on the left are thus
shown on the undistorted centre region and some of the objects previously on the
centre area are moved off onto the right side wall. This transition between views is
smooth; the user sees the objects move from the centre region to one side and new
objects move from the other side into the centre. The transition is even easier to
follow if the transition is animated. The ratio of detail and context can be adjusted
by the user by increasing or decreasing the size of the centre (focal) region.
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Figure 4.2: Perspective Wall (fromwww.parc.xerox.com)

The Perspective Wall can be used to visualize data that is linear in form, span-
ning for example a period of time. An example could be data from different
departments (the rows) over a large number of months (the columns). At any mo-
ment, the user has a number of months easily readable on the centre area. The
data from the other months are shown smaller; the further away from the centre
(the focus of attention) they are, the smaller they are shown.

One obvious problem with this visualization method is that valuable screen
real-estate is wasted in the corners. The perspective view implies that the heights
of the side walls diminish the further away they are from the user. Mackinlay
et al. (1991) precede their presentation by citing Resnikoff (1989) who says that
the retina of the human eye has only a limited centre region that perceives details.

The user is limited to one region of focus. It is not possible to compare two
widely separated regions.

This paper lists the two basic strategies for solving the visualization problem.
The first is called aspace strategy, where all the information is shown at all times,
thus a method has to be found to make the information fit on the small screen
while keeping at least the focus of attention readable. The Perspective Wall is a
space strategy. The other is thetime strategywhere different views, presented at
different times, allow access to all the information. Here the systems needs to help
prevent users getting lost as they flick from view to view.

A possible extension to this system would handle layouts that are high as well
as large. This would require perspective views in the horizontal and vertical di-
mensions. The resulting deformation would look somewhat like that proposed by
the Document Lens.

http://www.parc.xerox.com/istl/projects/uir/images/perspectivewall.gif
www.parc.xerox.com
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Figure 4.3: Document Lens (adapted from Robertson and Mackinlay, 1993)

4.1.3 Document Lens

The Document Lens (Robertson and Mackinlay, 1993) allows the user to focus
on a part of a document while keeping the surrounding pages (the context) visible
and can be used to view a very large document laid out in a rectangular array. (A
rectangular array is a suitable form to view a document, as opposed to the linear
array proposed by Mackinlay et al. (1991), because it fills the screen when used to
view a document.) With the entire document visible on the screen the text will not
be readable. The system converts the flat document into a pyramid with its top cut
off. The flat area at the top of the pyramid is the focus and contains easily readable
text. The text on the sides of the pyramid closest to the top is also readable, giving
extra context, and the entire document always remains visible. Users use the
mouse to move the lens (or top of the pyramid) in thex–yplane and the keyboard
to move the lens backwards and forwards (to make the lens bigger or smaller).
The problem is that not much of the non-focus text is readable, especially when
the lens is close to the user (and thus large) and the context is lost.
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Figure 4.4: Rubber Sheet with orthogonal stretching (adapted from Sarkar et al.,
1993)

Carpendale et al. (1997b) separate and analyse the different components used
in visualization approaches such as the Document Lens. The two principal com-
ponents are magnifying selected areas (the focus) while adjusting the relative po-
sitioning of adjacent sections in order to avoid congestion and overlap.

4.1.4 Rubber Sheets

Sarkar et al. (1993) describe a system where the screen is seen as a stretchable
(rubber) plane. The user can enlarge (stretch) any part of this sheet in one of two
ways.

The first method, calledorthogonal stretching(Figure 4.4), is to surround the
area of interest with two vertical lines (that cover the full height of the screen) and
two horizontal lines (that cover the full width of the screen). The area enclosed
by these four lines is enlarged in both dimensions, while the areas to the left,
right, top, and bottom of the central area within the lines are enlarged in only one
dimension. All areas not within these lines are reduced in size by the same factor.
It is possible to add additional lines to create additional areas of focus. The main
disadvantage of this method is that the regions close to a focus area are just as
small as remote regions and that there is a discontinuity of scale between a focus
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Figure 4.5: Rubber Sheet with polygonal stretching (adapted from Sarkar et al.,
1993)

area and adjoining regions. A second disadvantage is that the row and column
based system for selecting a focus area means that the regions in the same row
and column are enlarged (in one dimension) as well. Orthogonal stretching does
have the advantage that the orthogonal ordering of points is maintained.

The paper presents a second method calledpolygonal stretching(Figure 4.5).
The user chooses an arbitrary area to enlarge. Those regions nearby are slightly
enlarged, those further away reduced in size (to make enough space) and far dis-
tant regions are not affected. This non-orthogonal distortion does not maintain the
relative order of objects. An object that in the undistorted view is below and to the
right of another object, can, after the distortion, be found to the left of the other
object. Those parts of the view, not close but not adjacent to the focus, that are
reduced in size might not be readable. This is a problem because these might be
just those objects the user needs to see.

Editing in the focus area is possible with orthogonal stretching and, if the focus
is circular or rectangular, with polygonal stretching.
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Figure 4.6: Single focus 3D pliable surface with flattened top (adapted from
Carpendale et al., 1995)

Figure 4.7: Magnification and distortion with 3D pliable surfaces (adapted from
Carpendale et al., 1995)

4.1.5 3D Pliable Surfaces

Carpendale et al. (1995) discuss the use of three-dimensional pliable surfaces
in viewing graphs and maps. They use Gaussian curves to transform the two-
dimensional flat surface containing the graph or map into a three-dimensional
curved surface. This surface is then viewed from above (Figure 4.6). The user
can modify the distortion applied to the flat surface by, for example, pulling on a
section to magnify it (thus adding a Gaussian curve to the distortion). Figure 4.7
shows a grid and a distorted view of the same grid showing the distortion and
displacement caused by the magnification of the centre region. The overall ap-
pearance of a multi-focal view can be seen as a curved “landscape” (Figure 4.8).
The system uses a regular grid (drawn on the two-dimensional surface and trans-
formed with it) to indicate the three dimensional form of the surface. The authors
also considered using shading or a three-dimensional perspective.

Carpendale et al. (1997a) propose a summary of the different distortion pat-
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Figure 4.8: Double focus 3D pliable surface (adapted from Carpendale et al.,
1995)

stretch orthogonal non-linear orthogonal

non-linear radical step orthogonal

Figure 4.9: Distortion patterns (adapted from Carpendale et al., 1997a)

terns used in 2D visualization systems such as Rubber Sheets (subsection 4.1.4).
They show how the non-focal parts of an information space can be distorted when
space needs to be found for a magnified focal area. Figure 4.9 shows four dif-
ferent transformations in 2D. Figure 4.10 shows other, less frequently used, 2D
distortion patterns.

4.1.6 Table Lens

The Table Lens (Rao and Card, 1994, 1995) is a method of visualizing and making
sense of large tables such as those found in a spreadsheet. It is an adaption of
rubber sheets with orthogonal stretching (subsection 4.1.4) to the spreadsheet that
aligns and resizes the focal area onto cell boundaries (Figure 4.11). The focal
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Figure 4.10: Rarer distortion patterns (adapted from Carpendale et al., 1997a)

area can be manipulated with the three standard operations:zoomto change the
amount of space allocated to the focal area without changing the number of cells
contained within,adjustto change the number of cells within the focal area, and
slideto move the focus to contain different cells.

The Table Lens uses different types of graphical representations to display
cells depending on each cell’s current region (focal, column focal, row focal, or
non-focal) and size. For example, a cell containing a numeric value would show
the corresponding digits if it has been assigned enough space otherwise it could
display a graphic in the allocated space. Even if this graphic is only one pixel
high it will still be able to give users a “feeling” for the data, especially relative to
neighbouring cells. This is a form of semantic zooming in that each cell adapts its
representation to its alloted space.
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Figure 4.11: Table Lens (fromwww.parc.xerox.com)

4.1.7 Hyperbolic Display

The hyperbolic plane (Lamping and Rao, 1994; Lamping et al., 1995; Lamping
and Rao, 1996) is a non-Euclidean geometry in which parallel lines diverge away
from each other. This gives the property that exponentially more space is available
as the distance from the centre on the plane increases. Hierarchies or trees, which
tend to expand exponentially with depth, can be laid out on a hyperbolic space so
that the distance between parents, children and siblings is approximately the same
everywhere in the hierarchy. The hyperbolic plane is then mapped, using the
Poincaré model, onto a two-dimensional disk with one point, the current focus, in
the centre and the rest of the plane fading off in a perspective-like fashion towards
the edge of the disk (Figure 4.12). Once mapped onto the display the amount of
space available to a node decreases as a continuous function of its distance from
the focus node. A typical display has enough space to show several levels of the
hierarchy with each level getting less space as it is further from the centre. This
gives a degree of context around the focal node. Changes of focus (moving a
different node into the centre) are animated and performed in such a way that the
parent of the focus node is in a fixed direction from the focus. Animation speed
is maintained by drawing intermediate steps with less accuracy; lines are drawn
instead of arcs and less of the fringe in drawn.

http://www.parc.xerox.com/istl/projects/uir/images/tablelens.gif
www.parc.xerox.com
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Figure 4.12: Hyperbolic display (adapted from Lamping et al., 1995)



88 Visualization Research

Figure 4.13: Linear magnification (adapted from Keahey and Robertson, 1996a)

Lamping and Rao (1996) also present modifications to the mapping function
which allow two focal points or the possibility for users to place more nodes near
the focus.

4.1.8 Linear and Non-Linear Transformations

Keahey and Robertson (1996b) propose methods for implementing general non-
linear magnification transformations required by fisheye views, hyperbolic planes
and 3D pliable surfaces.

Keahey and Robertson state that linear transformations, that is to say constant
magnification across a part of the information space, are the simplest for users to
understand. These transformations are similar to what users are used to seeing
with a magnifying glass. A disadvantage is that users have to understand the
abrupt changes in magnification. Also, if the magnified image is in a separate
window then users have two transitions to understand: the different magnification
levels and the relationship between the two windows. If the magnified image is
in the same window as the main one then some of the main view will be hidden.
As the magnified view is often drawn on top of the area being magnified (and is
bigger than that area) some of the main image is hidden. The hidden area is that
immediately surrounding the focus and it is this part of the image that provides the
context for the focus. The context is thus lost. Figure 4.13 illustrates the problem.
Users are interested in Boris Yeltsin’s facial expressions and have thus magnified
his nose. Now the users can no longer see the rest of his face.

Non-linear transformations such as those used by fisheye views, hyperbolic
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Figure 4.14: Linear and non-linear magnification (adapted from Keahey and
Robertson, 1996a)

displays and 3D pliable surfaces avoid the discontinuities of linear transforma-
tions by a single (complex) transformation function to the information space. The
disadvantage here is that all of the information space is distorted, even the focus
of attention, and so nothing in the space can be viewed correctly.

Keahey and Robertson thus suggest combining linear and non-linear trans-
formations. With this combination, the focus of the attention is presented non-
distorted (and magnified). Those points around the focus of attention are trans-
formed with a non-linear transformation such that they fit into the remaining
space. Figure 4.14 shows views of two information spaces with the focus in the
centre. The focus is readable, as is the information far from the focus (that on the
edges on the images). The problem is that the information immediately surround-
ing the focus (often the most important information for understanding the focus)
is severely distorted. This information is not hidden is it would be with a linear
transformation in the same window but it may be unreadable.

4.2 Visualizing Hierarchies

The standard method of representing a hierarchy (or a tree) flattens the tree into
a one dimensional form. The other (horizontal) dimension is used to indicate the
depth of a node. Icons are used to represent the nodes in the tree and the links
which structure the nodes by straight lines. Users can open and close nodes by
clicking on them. A typical file system browser is shown in Figure 4.15. These
browsers use logical deformation. Closed parts of the tree do not completely
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Figure 4.15: Directory browser from Xmms

vanish but are represented but the name of the directory and a plus sign indicating
that files have been hidden. A problem with this system is that a large amount
of space is wasted in the horizontal dimension. A second problem is that if the
tree being visualized is too big for the screen then the context is lost as the user
descends in the tree.

The different visualization techniques summarised in this section provide dif-
ferent responses to these problems and illustrate the use of the taxonomies pre-
sented in the previous section for displaying a particular type of data.

4.2.1 gIBIS

The gIBIS system (Conklin and Begeman, 1988) converts a directed graph into
a tree by following a principal link. Two views of the tree are provided. The
first, shown on the left hand side of Figure 4.16, is a global view of the tree.
The second, in the upper right of the figure, is a flattened view of the entire tree.
This second view (also shown in Figure 4.17) is created by a depth-first traversal
of the tree. Nodes can be selected either through the main window or via this
index. This index is a second browsing method for the tree. The two windows are
synchronised when a node is selected in one window, the other window scrolls so
as to also display this node. This is a multi-window (space multiplexed) interface
where each window is scrollable (time multiplexed).

http://www.xmms.org
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Figure 4.16: gIBIS interface (adapted from Conklin and Begeman, 1988)

Figure 4.17: gIBIS node index window (adapted from Conklin and Begeman,
1988)
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effectively prunes a portion of the tree from the display,
reducing the detail shown for that part of the network (Figure
2). Open clusters are allocated more space than closed clus-
ters. In addition to this automatic resizing of cluster nodes,
the user can enlarge or reduce any node on the display. When
a cluster changes size, its contents are resized accordingly.

Whenever a node shrinks, it gives up display space to sib-
lings so that they may grow. Through opening and closing
clusters, and resizing nodes, the user has complete control
over the amount of detail seen in each part of the display.

Since the entire hierarchy is visible at all times (though
some of it is “summarized” by closed clusters) the detailed
portions always appear in context. Multiple areas can be
zoomed simultaneously; the technique allows more than one
focal point.

We have implemented the continuous zoom as part of a
prototype network supervision and control system (Figure
3). Several different node representations are used for moni-

toring and controlling traffic flow through the net, which is
modeled by a simulator. Each representation has a minimum
size, so the algorithm must determine if the requested set of
representations will fit on the screen. In a real application the
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Figure 3. The continuous zoom in a prototype inter-
face for a network control system

Screen with node “in alarm” bordered in white.

Screen after user has selected node in alarm.

Figure 4.18: Clustered hierarchies with 2 open clusters (adapted from Bartram
et al., 1995)

4.2.2 Clustered Hierarchies

Bartram et al. (1995) propose a system for viewing clustered hierarchies (essen-
tially trees) where the display space is managed by recursively breaking it up into
smaller rectangular areas, creating a hierarchy of nested rectangles. Each interior
node of the hierarchy can be either open or closed. If it is closed then it is rep-
resented in a summary form; none of its sub-nodes are visible. An open interior
node shows its sub-nodes, which can be either open or closed, and is allocated
more space than a closed node (Figure 4.18). The allocation of space to nodes is
done automatically and is recalculated when the user opens (or closes) nodes or
increases (or decreases) the amount of space allocated to a node.

This system is a multi-focus user interface with a continuous fisheye view. It
is possible to open a number of nodes, open nodes can have their scales changed
by small amounts, and to define many different scales.

This user interface can handle large hierarchies because normally only a small
number of nodes are open. Links between nodes (other than those creating the hi-
erarchical structure) are simply drawn as lines between the nodes. As the number
of links increases it will be become difficult to layout the graph in order not to
have too many crossing lines.

Schaffer et al. (1996) present a system similar to that proposed by Bartram
et al. (1995) and cite an experiment to validate the advantage of their system (2D
progressive exposure of hierarchical detail combined with fisheye space allocation
and multiple focal points) over a full-zoom system. Students were asked to navi-
gate through a telephone network to find and “fix” a broken telephone line. Each
student used both the fisheye and full-zoom systems and the researchers found
that the students completed the task much faster when using fisheye views.

Schaffer et al. (1996) also installed a fisheye interface in an electricity utility’s
control room (Figure 4.19). The operators preferred the fisheye system but had
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Figure 6.  Node expanded to circuit-diagram level:

a)  one expanded node.
b)  two expanded nodes, with scaling.

Figure 4.19: Two nodes expanded to circuit diagram level (adapted from Schaffer
et al., 1996)

Fisheye versus Full Zoom Views, March 24, 1998 5 Schaffer, Zuo, Greenberg, Bartram, Dill, Dubs, Roseman

Root

a

b

c

d

e

(a) (b)

Figure 1.
a) An example network, and
b) An example of how the network can be hierarchically clustered.
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Figure 2. Example of basic operation.
(a)   Network before zooming, showing which nodes will be enlarged and shrunken.
(b)  Nodes ‘a’ and ‘d’ have been zoomed to show their subnetworks; other parts are shrunk but

still show  context.

Figure 4.20: Hierarchically clustering a network (adapted from Schaffer et al.,
1996)

reservations about the screen space lost to the focus to show the context when at
the bottom level of the system. A toggle to remove the context or a control to
adjust the balance between context and focus could be the solution to this prob-
lem. They also found the same problem as Bartram et al. (1995): how to represent
links (which break the hierarchical structure of the network) between nodes. Fig-
ure 4.20 shows how a network can be hierarchically clustered. A later version of
their system will use animation to aid the user in following changes to the layout
and perhaps allow flexibility in the choice of nodes to display when a cluster is
open. Not all nodes are necessarily interesting for a given task.

It is also suggested that motion (for example, vibration) might be better than a
colour change at attracting attention to an important region such as a trouble spot.
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Figure 4.21: ZoomTree showing local focus+context views (thanks to Laurent
Robert)

4.2.3 ZoomTree

ZoomTree (Robert and Lecolinet, 1998, 2001) is a system for browsing one or
more hyperdocuments (in the form of trees) that shows multiple focal points of
varying importance while maintaining the context of these foci. Having chosen
the hyperdocuments of interest and their root nodes (or pages), users are shown
a representation of the trees with all the pages shown at the same size. Users
can enlarge (zoom) pages of interest in four different ways. The first is hierar-
chical zooming: a selected window and all its children are zoomed. The second
is contextual zooming, which resizes windows as a function of their relationship
with the selected page. Pages are given an importance that is calculated as the in-
verse of the number of links from the selected page. Important pages grow while
unimportant pages shrink. The third form of zooming grows or shrinks all the
visible pages by the same proportion. The fourth way of zooming a page is to
click on a link in another page that refers to it. (Clicking on a link to a page that
is not yet visible will cause it to be loaded into the browser.) Figure 4.21 shows
a ZoomTree where the users have zoomed on the centre page in order to see it in
detail. A number of other pages are also interesting and have been enlarged so
that their contents are more readable.
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Figure 4.22: Treemap (adapted from Johnson and Shneiderman, 1991)

4.2.4 Treemaps

Johnson and Shneiderman (1991) propose two static methods for presenting large
hierarchical information spaces (trees) by tiling two-dimensional rectangles (Turo
and Johnson, 1992). The algorithms assign the entire plane to the root node and
then divide the root node’s area among its children in proportion to each child’s
weight compared to the sum of the children’s weights. The algorithm is then
repeated for each of the non-leaf children. The weights can be any attribute of
the underlying objects interesting to the user. One example is the size of files in
a hierarchical file system but it could also be the sales results of sales people in a
hierarchically organised company.

The first algorithm, “top-down,” starts at the either the top or the left of the
display and continues in the same direction until the areas assigned become too
narrow. This happens rapidly because displays have only a limited width or height.
An alternative algorithm changes the direction of the subdivision of the display at
each recursion. This means that the regions become narrower and shorter rather
than just narrower (Figure 4.22). Instead of being 100×1 pixels, a region might
be 10×10 pixels, making selection and labelling easier.

Zooming was implemented and allowed the user replace the entire display
with the contents of a single node. Animation was used to show what was being
zoomed in to or away from but no context was provided to stop users getting lost.

TennisViewer (Jin and Banks, 1997) is a browser for the results of a tennis
match using Treemaps and Magic Lenses (subsection 4.3.6). The top level of the
Treemap is the match; and the bottom level contains graphical representations of
the points. Magic Lenses can be used to zoom on an area.
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Figure 4.23: Cone Tree (adapted from Robertson et al., 1991)

4.2.5 Cone and Cam Trees

Robertson et al. (1991) presents Cone Trees, three dimensional hierarchical repre-
sentations of trees (Figure 4.23). Three dimensional representations use an optical
deformation (a projection from three dimensional space onto a two dimensional
computer screen) that users are meant to assimilate and eliminate, thus mentally
recreating the three dimensional image. The disadvantages of this type of repre-
sentation come from the problems of occlusion and the difficulties in navigating
in a three dimensional space with a two dimensional pointing device (mouse).

Most trees in real applications tend to be broad and shallow. This aspect ratio
makes trees hard to fit into two dimensional layouts while three dimensional Cone
Trees use depth to fill the screen with more information. The node at the top of
the hierarchy is placed near the top of the screen and is the apex of a cone. The
top node’s children are equally placed around the circumference of the first cone
and further cones drawn. All cones are the same height: the height of the screen
divided by the tree depth. The entire tree is thus always visible and the cones
transparent so that they can be seen but do not block the view of the cones at the
back. Cone Trees can be pruned (all descendents of a node hidden) and rotated by
the user. All tree modifications are animated and take about a second to help the
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Figure 4.24: Cam Tree (fromwww.parc.xerox.com)

user track the changes. The data underlying the trees can be searched. At the end
of the search nodes are highlighted with a red bar whose size indicates its relative
search score.

Cone Trees also provide a fisheye view (subsection 4.1.1) without having to
define a degree of interest function. The selected path in the tree is automatically
brighter, closer and larger than than other paths, due to the three dimensional
perspective view, colouring and simulated lighting.

Cone Trees have used in the Information Visualizer (Robertson et al., 1993) to
display Unix file systems, organisational structures, and company operating plans.

The paper also discusses Cam Trees (Figure 4.24). These are very similar to
Cone Trees except that they are drawn horizontally.

Cone and Cam Trees are less effective with trees containing more that 1000
nodes, 10 layers or a branching factor greater than 30. They are more effective
with unbalanced trees because the differences in structure make the trees easier to
track when rotated.

4.2.6 Multitrees

Furnas and Zacks (1994) state that hypertext systems are frequently general graphs
and that such graphs are powerful because they allow many routes between nodes

http://www.parc.xerox.com/istl/projects/uir/images/conetree.gif
www.parc.xerox.com
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space focus change strategy deformation
directory tree 1D scroll & icons time logical
Treemap 2D zoom time position
Cone Trees 3D rotate time & depth pseudo-optic
gIBIS 1 & 2D scroll space & time logical
clustered 2D pruning time logical
ZoomTree 2D zoom time pseudo-optic
Multitrees 2D change node time logical

Table 4.1: Simple tree visualization taxonomy

(for, for example, cross references and multiple organisations) they are however
very difficult to layout and difficult for the user to understand. Trees are much
simpler structures: they can be easily laid out in a plane, they can be completely
traversed easily, and are thus easy to understand. Trees are limited because there
can only be one route between objects (thus prohibiting shortcuts, cross references
and alternative organisations). Directed acyclic graphs (DAGs) are somewhere be-
tween trees and general graphs, they support top down search strategies and a
natural orientation like trees, but they can, like general graphs, be difficult to lay
out and understand.

Multitrees are a generalisation of trees but are still more restrictive thanDAGs.
A multitree is aDAG whose nodes have descendents forming only trees and is
essentially a structure containing many trees. Each of these trees is a different use
of the data in the structure (Figure 4.25). A multitree can be more easily browsed
than aDAG because at each node there are only two trees to be laid out, one a tree
of descendants and the other a tree of ancestors. As the user moves though the tree
the context of the current focus (the ancestors and the descendants of the current
node) can always easily be shown by two trees (Figure 4.25).

4.2.7 Discussion

Table 4.1 shows a simple way of classifying the tree visualization techniques pre-
sented in this chapter. The most suitable technique depends on the size of the
tree relative to the available space. If space is at a premium then the more space-
efficient two or even three dimensional display should be used. A further consid-
eration is the choice of deformation technique.
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techniques collect fragments of the existing structure only
into unstructured lists. One might easily imagine users want-
ing to organize these sets of fragments into their own private
trees, to suit their own purposes. Thus these two problems
and their solutions have in common the notion of allowing
fragments of some existing tree to be reused, reorganized
into new trees. This simple idea turns out to have intriguing
consequences.

This paper explores those consequences by introducing a
new class of structures calledmultitrees. We will first illus-
trate the idea of a multitree with a concrete construction sce-
nario. We will then explore some of the formal properties of
such structures, particularly properties relevant to interfaces,
and illustrate them with sample views from prototype
browsers we have built. Then we will question and discuss
the constraints imposed by multitrees, finishing with a gen-
eral discussion.

AN INITIAL EXAMPLE: MUL TITREES AND THE COLLEGE
PROFESSOR

Reuse of hierarchical structure is not new. It occurs, for
example, whenever a college professor creates a structured
syllabus of readings for her course. Instead of writing a new
document from scratch, she selects fragments from the
existing body of literature. For the purposes here we let that
body of literature be represented by a great tree, with organi-
zation at higher levels coming from, for example, the
Dewey Decimal system or the Library of Congress classifi-
cation system, and the lower levels from the internal hierar-
chical structure of chapters and sections within documents.
From this large tree (Figure 1(i)), Professor A pieces
together her own structure of course readings: a book from
here, a chapter from there, a section from somewhere else,
perhaps even a few short volumes from somewhere. Con-
sider her new structure along with the original tree (Figure
1(ii)). What she has done is to select nodes from the original
structure, together with their dependent subtrees, and spin a
new hierarchical superstructure, a new tree, above those
pieces. A second professor, B, could build another such
structure, perhaps even using whole pieces from A’s sylla-
bus, or writing and including entirely new tree fragments.
The only constraint is that each syllabus be a tree, i.e., it
must start from disjoint tree fragments, and assemble them
together into some new hierarchy.

The resulting overall structure we call amultitree. It has the
unusual property that although it is not a tree, the descen-
dents of any node form a tree. Thus familiar tree presenta-
tion and navigation techniques may be used to view large
fragments of the structure. Perhaps one of the simplest
examples of such a structure is when one has two trees shar-
ing the same set of leaves, for example the Dewey Decimal
and Library of Congress classification systems for books.
General multitrees, however, may share complete subtrees,
not just leaves. (By complete subtree we mean a node and
all its descendents). That is, hierarchical structure can be
shared at multiple granularities.

In hierarchical reuse, more can be shared than just the text
itself. Joel Remde (personal communication) has been
exploring the use of hierarchical indices for huge simple
hierarchies of text. Each node in the simple tree structure

has an associated index indicating for each word which
immediate descendent node represents a text segment con-
taining that word. One follows a chain of such pointers from
index to subindex to find actual occurrences in the leaves.
There are various advantages for updating, distributing the
database, limiting the scope of searches, and displaying high
level results against views of the hierarchy. In multitrees,
such hierarchical indices can be shared as well. When Pro-
fessor A includes a chapter in her syllabus, she gains access
to the index for that chapter as well.

Multi-trees are DAGs, not trees, and as a result a node in the
structure can have multiple parents. In fact it can therefore
have multiple ancestral lineages: one for each tree that
(re)used it. Thus looking upward from a node one can see
the diverse hierarchical contexts in which the node has
appeared. So, whereas looking downward one sees the vari-
ouscontents under a node (subsection 1, subsection 2, etc.),
looking upward one sees its alternativecontexts (as a chap-
ter in Tree1, as Part 1b of Professor A’s course, etc.)

There are several further uses for these multiple contexts.
For example they can support a special kind of browsing.
Suppose Professor A teaches a course on algorithms and
includes a particular paper in her syllabus. Using the global

Figure 1 . Constructing a multitree - an example.
Beginning with an initial tree of information,
Professor A builds her course syllabus. In (a) she
chooses a disjoint set of complete subtrees and adds
new tree structure above them. Similarly , Professor B
makes another , chooses fragments, including some
of A ’s and some completely new ones, and builds a
tree above to organize them.

(ii)

(iii)

Professor A

Professor B

Volumes

Book Chpt Sect

Tree1 of Information

Tree1

(i)

Figure 4.25: Multitree showing an information tree used by two professors
(adapted from Furnas and Zacks, 1994)
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used varying amounts of the pre-existing structure (the
“original” tree from the file system). In Figure 4, the central
highlighted cell is labeled “Directions.” Looking down from
the “Directions” node (to the right in this layout) we see the
tree of files relating to how one travels to and from various
Bellcore locations and related places. Looking up from
“Directions” (to the left) we see that “Directions” is a
descendent of the original tree and of the three post hoc clas-
sifications. Proposition 2 guarantees that both the upward
and downward views are trees and that they can be shown
simultaneously as single large t-tree. (Note that a centrifugal
view may be truncated at any desired radius.)

An interesting consequence of Proposition 2 is that transi-
tions between centrifugal views can be animated nicely.
Consider browsing over multitrees using a centrifugal
viewer and moving the focus around one link at time, say
from nodea to neighboring nodeb. In such a case, ifa andb
are adjacent, then one is above the other, and Proposition 2
applies, meaning that the union of the old and new views is
in fact a t-tree, and can be displayed together in 2-D. This
allows a nice animation option, showing the transition by
first adding the new material, showing both together, then
deleting the old.1

A third consequence of proposition 2 is for presenting vari-
ous kinds of fisheye views of multitrees. Furnas[5][6] intro-

1.  In practice there is some subtlety in that one might also want
layouts to respect sibling order and direction of links (e.g., parents
to the left of children).

this acentrifugal view of the structure, because it follows
links in the direction away from some central point of focus.

Figure 4 shows our browser’s centrifugal view of a dataset
of local Bellcore information. This data set was drawn from
a database maintained on our local file system at Bellcore.
Users deposit useful information in a particular directory on
an ad hoc basis. Anyone with an account is free to add or
reorganize material. People have posted material related to
corporate practices, life in Northern New Jersey, practical
information such as directions, and diatribes on art. To cre-
ate the multitree shown in these figures, the authors and one
volunteer created new hierarchical organizations (trees) that

Figure 3 . Proposition 2 illustrated. T wo nodes in a
multitree, the unique path connecting them, and all
the descendents and ancestors of this path together
are guaranteed to form a topological tree.
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Figure 4 . Centrifugal view of the multitree built upon our /usr/public/info information repository . The view is
centered on the node called “Directions” and shows the tree of ancestors (to the left) and the tree of descendents
(to the right) of this node.

Figure 4.26: Centrifugal view centred on the node “directions” (adapted from
Furnas and Zacks, 1994)

4.3 Transparent Tools

Transparent tools are small temporary screen overlays that users can create, ma-
nipulate and destroy. They include menus, cursors, Toolglasses and Magic Lenses.

4.3.1 Introduction

The limited screen size and the increasing numbers of windows, menus, dialog
boxes and tool palettes has lead to screens becoming increasingly cluttered. Tra-
ditional tiling of these objects is unwieldy because of the number of objects and
because tiling often leads to important information (or windows) being hidden.
Dialog, help and menu popups block part of the main window and, since they pop
up near the cursor, often the part of the window that the user would most like to
see. (If they do not pop up near the cursor then users might not see them and won-
der why their program has blocked.) Kurtenbach et al. (1997) state that making
the screen bigger is not a good solution because with huge screens users spend
too long moving from one side of the display to the other, and then refocusing
on their task. Screens have also grown to almost their maximum size given the
place available on desks. Another aim of user interface research is to create new
techniques suitable for the relatively very small screens of portable devices such
as electronic organisers, Pocket PCs, and mobile phones.
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Depth Mutliplexed Strategy

Harrison et al. (1995a) attempt to transform the usual space multiplexed or tiled
strategy into a depth or layered multiplexed strategy. These two strategies are the
extremes of a continuum from fully opaque (traditional) to fully transparent and
can be combined in a way optimised for each task. Fully transparent displays are
found in aviation’s Heads Up Displays. Using more advanced hardware an extra
dimension can be used: the depth of planes. Not only can objects be transparent,
they can also appear to be closer to the user. Each object can be anywhere between
opaque and transparent. An important object should be more opaque than an
object than is currently relatively uninteresting to the user. Research has shown
that when users are presented with two transparent overlaid displays that they are
capable of ignoring one display and concentrating on the other.

Distinguishing Layers

There are many different ways of distinguishing layers, such as different colours,
different graphical or visual forms (text versus graphical window contents), font
size or styles, layer movement (Belge et al., 1993), layer jitter (Silvers, 1995),
camera movement and stereo. Semi-transparent objects can be made more legible
by “anti-interference” techniques, such as by outlining text and other objects with
a contrasting colour (black text is surrounded by a one pixel wide white outline).

Approaching Objects

The frequent need to focus attention on several items requires users to move their
attention between different screen objects in different region of the screen. Semi-
transparency will allow the user to place several different objects in the centre of
the workspace without some of them obscuring the others.

Integrating Task and Tool Space

Harrison and Vicente (1996) state that transparency is perhaps most useful in bet-
ter integrating task space and tool space. Many applications have a large work
space, which is the primary focus of attention, and tools to manipulate that work
space. These tools overlay, hide, and distract from the main work space. The
authors experimented with semi-transparent text menus on top of images in an
attempt to find which fonts and transparency levels were legible while leaving as
much of the main image as visible as possible (Figure 4.27). In these experiments
the text was always opaque, it was the transparency of the surface surrounding the
text that was varied.
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Figure 4.27: Semi-transparent text menu (adapted from Harrison and Vicente,
1996)

Kurtenbach et al. (1997) use transparency, marking menus (subsection 2.1.4),
Toolglasses (subsection 4.3.5), and other techniques in a program for creating
simple 2D graphics.

4.3.2 Semi-Transparent Tool Palettes

Harrison et al. (1995b) evaluated the usability of semi-transparent tool palettes
in a technical drawing application (Figure 4.28). Three different types of icons
were used: text, line art and solid rendered objects. Palettes were constructed
randomly, removing the possibility to learn the positions of frequency used icons.
Three different type of background images were used: text pages, wire frame
images, and solid images. Different levels of transparency, from 0% (opaque) to
90%, were assigned to the palette.

Transparency levels between 0% and 50% were found to work well. Solid
backgrounds were easiest to read, followed by text and wire-frame backgrounds.
Solid icons were the easiest to use, followed, as for the backgrounds, by text then
line art.

These tests were short term. As users learn which features distinguish icons
that they use frequently recognition could be improved and errors reduced even
with very transparent icons. As users start to know where frequently used icons
are positioned they prefer more transparent palettes and thus an increased view
of the underlying image. The transparency of the palettes should adapt to the
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Figure 4.28: Semi-transparent tool palette (adapted from Harrison et al., 1995b)

experience of the user and icons adapted for use in a semi-transparent palette.

4.3.3 Semi-Transparent 3D Cursors

Zhai et al. (1994) use a semi-transparent 3D cursor to acquire targets in a 3D envi-
ronment. The cursor, called a “Silk Cursor”, is a volume rather than a point and its
surfaces are semi-transparent or made out of “silk”. Objects are seen differently
depending on the number of layers of silk between them and the user. Objects can
thus be seen to be in front of, in, or behind the cursor. Their experiments show
that volume and occlusion cues are useful in both monocular and stereoscopic
conditions. Users were able to acquire 3D targets more easily with a silk cursor
than with comparable wire frame cursors.

Figure 4.29 shows a fish partially inside a semi-transparent 3D cursor. The
eye and part of a fin are in front of the cursor, the top and bottom fins and the top
of the tail are behind the cursor, and the body is inside.

4.3.4 Translucent Patches

Translucent Patches (Kramer, 1994, 1996) are translucent (semi-transparent), ir-
regular, user controlled windows. The central idea is to allow the user to make
freehand sketches on a window in a patch and then to apply interpretations to
the patch (Figure 4.30). Instead of choosing an application and then “filling in
the blanks”, this approach puts representation before structure and interpretation.
Any mark made on the screen is valid; meaning (from the computer’s point of
views) is assigned to the marks when and if necessary.
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Figure 4.29: Semi-transparent 3D cursor (adapted from Zhai et al., 1994)

Figure 4.30: Translucent Patch containing a list drawn over a sketch (adapted from
Kramer, 1994)
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Figure 4.31: Calculator applied to a Translucent Patch (adapted from Kramer,
1994)

For example, numbers could be drawn in a patch and then a calculator inter-
pretation applied to the patch to produce the sum of the numbers (Figure 4.31).
This patch would be transparent and thus the numbers could be drawn next to the
objects that they concern without those objects being hidden. The fact that these
patches are semi-transparent means that the user can focus, temporarily, on one
part of the display, the numbers, while still keeping the wider context visible. In
addition as the patches are temporary they can be used to experiment with a doc-
ument without modifying it directly. Patches have an order, they are stacked one
above the other, and can thus be used to record or represent a history of changes,
possibly by different authors, to a document. A patch can also be removed without
destroying it. This allows the user to see the document without a patch without
losing the patch.

A set of gestures to control patches are proposed. For example, a patch can
be emptied by drawing a zig zag that fills the patch, or, a patch can be deleted by
drawing a zig zag that crosses the patch’s border.

4.3.5 Toolglass Widgets

Patches (subsection 4.3.4) can omit some of their details when they are covered by
other patches, and, conversely, patches can modify patches that they cover. In this
sense they resemble the ToolglassTM widgets proposed by Bier et al. (1993). Tool-
glass widgets are transparent and are positioned with the non-dominant hand on an
invisible sheet between the application and the cursor. Each Toolglass widget pro-
vides a function which is applied to the application object by clicking through the
Toolglass with the cursor. One function is colour selection; the user clicks though
the part of the Toolglass widget with a red corner tab to change the colour of the
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Toolglass and Magic Lenses: The See-Through Interface
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Abstract
Toolglass widgets are new user interface tools that can appear,
as though on a transparent sheet of glass, between an application
and a traditional cursor.  They can be positioned with one hand
while the other positions the cursor.  The widgets provide a rich
and concise vocabulary for operating on application objects.
These widgets may incorporate visual filters, called Magic Lens
filters, that modify the presentation of application objects to
reveal hidden information, to enhance data of interest, or to
suppress distracting information.  Together, these tools form a
see-through interface that offers many advantages over traditional
controls.  They provide a new style of interaction that better
exploits the user’ s everyday skills.  They can reduce steps, cursor
motion, and errors.  Many widgets can be provided in a user inter-
face, by designers and by users, without requiring dedicated
screen space.  In addition, lenses provide rich context-dependent
feedback and the ability to view details and context simultaneous-
ly.  Our widgets and lenses can be combined to form operation
and viewing macros, and can be used over multiple applications.
CR Categories and Subject Descriptors: I.3.6 [Computer
Graphics]: Methodology and Techniques−interaction techniques;
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces−interaction styles; I.3.3 [Computer Graphics]:
Picture/Image Generation−viewing algorithms; I.3.4 [Computer
Graphics]: Graphics Utilities−graphics editors
Key Words: multi-hand, button, lens, viewing filter, control
panel, menu, transparent, macro

1. Introduction
We introduce a new style of graphical user interface, called the
see-through interface.  The see-through interface includes semi-
transparent interactive tools, called Toolglass widgets, that are
used in an application work area.  They appear on a virtual sheet
of transparent glass, called a Toolglass sheet, between the applica-
tion and a traditional cursor.  These widgets may provide a
customized view of the application underneath them, using
viewing filters called Magic Lens  filters.  Each lens is a screen
region together with an operator, such as ‘‘magnification’’  or
‘‘render in wireframe,’’  performed on objects viewed in the
region.  The user positions a Toolglass sheet over desired objects
and then points through the widgets and lenses.  These tools
create spatial modes that can replace temporal modes in user in-
terface systems.

Two hands can be used to operate the see-through interface.  The
user can position the sheet with the non-dominant hand, using a
device such as a trackball or touchpad, at the same time as the
dominant hand positions a cursor (e.g., with a mouse or stylus).
Thus, the user can line up a widget, a cursor, and an application
object in a single two-handed gesture. 

A set of simple widgets called click-through buttons is shown in
figure 1.  These buttons can be used to change the color of objects
below them.  The user positions the widget in the vicinity and
indicates precisely which object to color by clicking through the
button with the cursor over that object, as shown in figure 1(b).
The buttons in figure 1(c) change the outline colors of objects.  In
addition, these buttons include a filter that shows only outlines,
suppressing filled areas.  This filter both reminds the user that
these buttons do not affect filled areas and allows the user to
change the color of outlines that were obscured.

(a) (b) (c)

Figure 1.  Click-through buttons.  (a)  Six wedge objects.
(b)  Clicking through a green fill-color button. (c) Clicking
through a cyan outline-color button.

Many widgets can be placed on a single sheet, as shown in figure
2.  The user can switch from one command or viewing mode to
another simply by repositioning the sheet.

Figure 2.  A sheet of widgets.  Clockwise from upper left:
color palette, shape palette, clipboard, grid, delete button,
and buttons that navigate to additional widgets.

Widgets and lenses can be composed by overlapping them,
allowing a large number of specialized tools to be created from a
small basic set.  Figure 3 shows an outline color palette over a
magnifying lens, which makes it easy to point to individual edges.  

Figure 3.  An outline color palette over a magnifying lens.

The see-through interface has been implemented in the Multi-De-
vice Multi-User Multi-Editor (MMM) framework5 in the Cedar

Figure 4.32: Colour changing Toolglass (adapted from Bier et al., 1993)

(a) (b)

Figure 4.  Shape palette.  (a) Choosing a shape.  (b) Placing
the shape.

Figure 5 shows a design for a property palette for setting the face
of text in a document.  Each face (regular, bold, etc.) has an active
region on the right side of the tool.  Selecting the text displayed in
this region changes its face.

application work area, the cursor and

temporal modes and modes created 
by holding down a keyboard key with

bold
bold italic

italic
regular

spatial modes.
modes can be changed directly in the

Because these spatial

the user’ s attention can remain on the

Figure 5.  Font face palette. The word ‘‘directly’’  is being
selected and changed to bold face.

Clipboards

Clipboard widgets pick up shapes and properties from underlying
objects, acting as visible instantiations of the copy and paste keys
common in many applications.  Clipboards can pick up entire
objects or specific properties such as color, dash pattern or font.
They can hold single or multiple copies of an object.  The objects
or properties captured on the clipboard can be copied from the
clipboard by clicking on them, as in the palette tools.

Figure 6 shows a symmetry clipboard that picks up the shape that
the user clicks on (figure 6(a)) and produces all of the rotations of
that shape by multiples of 90 degrees (figure 6(b)).  Moving the
clipboard and clicking on it again, the user drops a translated copy
of the resulting symmetrical shape (figure 6(c)).  Clicking the
small square in the upper left corner of the widget clears the
widget so that new shapes can be clipped.

(a) (b) (c)

Figure 6.  Symmetry clipboard.  (a) Picking up an object.
(b) Rotated copies appear.  (c) The copies are moved and
pasted.

Figure 7 shows an example of a type of clipboard that we call a
rubbing.  It picks up the fill color of an object when the user
clicks on that object through the widget (figure 7(a)).  The widget
also picks up the shape of the object as a reminder of where the
color came from (figure 7(b)).  Many fill-color rubbings can be
placed on a single sheet, allowing the user to store several colors
and remember where they came from.  The stored color is applied
to new shapes when the user clicks on the applicator nib of the
rubbing (figure 7(c)).

(a) (b) (c)

Figure 7.  Fill-color rubbings. (a) Lifting a color. (b) Moving
the clipboard. (c) Applying the color.

Besides implementing graphical cut and paste, clipboards provide
a general mechanism for building customized libraries of shapes
and properties.

Previewing Lenses

In graphical editing, a lens can be used to modify the visual
properties of any graphical object, to provide a preview of what
changing the property would look like.  Properties include color,
line thickness, dash patterns, typeface, arrowheads and drop
shadows.  A previewing lens can also be used to see what an
illustration would look like under different circumstances; for
example, showing a color illustration as it would be rendered on a
black/white display or on a particular printer.  Figure 8 shows a
Celtic knotwork viewed through two lenses, one that adds drop
shadows and one that shows the picture in black and white.  The
achromatic lens reveals that the drop shadows may be difficult to
distinguish from the figure on a black/white display.

Figure 8.  An achromatic lens over a drop shadow lens
over a knotwork.  (Knotwork by Andrew Glassner)

Previewing lenses can be parameterized.  For example, the drop
shadow lens has parameters to control the color and displacement
of the shadow.  These parameters can be included as graphical
controls on the sheet near the lens, attached to input devices such
as the thumbwheel, or set using other widgets.

Selection Tools

Selection is difficult in graphical editing when objects overlap or
share a common edge.  Our selection widgets address this
problem by modifying the view and the interpretation of input
actions.  For example, figure 9 shows a widget that makes it easy
to select a shape vertex even when it is obscured by other shapes.
This tool contains a wire-frame lens that reveals all vertices by
making shape interiors transparent.  Mouse events are modified to
snap to the nearest vertex.

Select

Vertex

(a) (b)

Select

Vertex

(c)

Figure 9.  Vertex selection widget.  (a) Shapes.  (b) The
widget is placed.  (c) A selected vertex.

Figure 10.  The local scaling lens.  (Tiling by Doug Wyatt)

Figure 4.33: Creating and positioning objects with a Toolglass (adapted from Bier
et al., 1993)

object under the cursor to red (the middle image in Figure 4.32). A similar oper-
ation is changing the outline colour of an object (the right image in Figure 4.32).
Here the tabs in the Toolglass indicate that it is the outline that is to be changed. In
addition, only the outlines of those objects covered by Toolglass are drawn. This
makes the function of the Toolglass more obvious and the current and new colours
easier to see.

Another example is the creation of shapes. In Figure 4.33 the user “pushes”
a circle from the shape Toolglass onto the application screen. The user can then
position the new shape before releasing the mouse button.

Users can use Toolglasses to create macros (visual programming) as overlap-
ping Toolglasses combine their effects. Clicking through the two Toolglasses just
discussed will create a red circle. A Toolglass that creates red circles can be made
by overlapping and welding together these two Toolglasses.

A single Toolglass can also be used in different types of applications. A Tool-
glass that makes graphical objects go red in a painting program can make words
go red in a word processor.

4.3.6 Magic Lenses

Magic Lenses from XeroxPARC are (usually) rectangular regions which provide
visual transformations of the covered area (Stone et al., 1994). Magic Lenses
can provide transformations on the region covered such as activating alignment
aids (turning on a grid), modifying the way a picture is rendered on the screen
(wireframe versus shaded), and filtering (removing) data. A simple example of a



4.3 Transparent Tools 107

AFMb303zg9

AFMb030zg9

AFMb001ve9
AFMb036xf5

no other maps

AFMb017wb5

AFM347zf9
AFM234yc5

AFM320yc5

no other maps

AFMa136xa5
AFM294xc9
AFM238va7
AFMa210ze5
AFM183xh10

no other maps
AFMa058yh9
AFM303xa9

AFMb073xc1
AFMb286xb5

AFMa044ta5

AFMb347yh9

AFM186xc7

AFM336ya9

no other maps

AFMa121yf1

AFM261zh9

AFM344yc9

AFMa302ze1

AFM026tg9no other maps

polymorphism

AFM320yc5
AFMa136xa5
AFM294xc9
AFM238va7
AFMa210ze5
AFM183xh10

AFMa058yh9
AFM303xa9

dnumber

D9S1821

D9S1872
D9S177

D9S1677
D9S1784
D9S1690
D9S197
D9S1796

D9S1677
D9S1784
D9S1690
D9S197
D9S1796

Figure 4.34: Overlapping Magic Lenses

Magic Lens is a rectangle which converts a table of numbers into the correspond-
ing scatter plot. An example of possible use of lenses in molecular biology data
visualization is given in Robinson and Flores (1997).

Magic Lenses (and Toolglasses) create spatial modes that can replace the stan-
dard temporal modes (where the user changes the state of the application with, for
example, a menu) provided in user interfaces.

Combining Magic Lenses

In the same way that Toolglass widgets (subsection 4.3.5) can be combined, Magic
Lenses can be combined temporarily or welded together to provide more com-
plicated transformations. Figure 4.34 from ZoomMap (section 7.1) shows two
Magic Lenses. One, called “polymorphism”, uses the colour of objects (the shade
of blue in this case) to indicate the value of a normally hidden parameter of the
object. The second, called “dnumber”, shows an alternative name of the object.
Where the two overlap the alternative name with the indication of the value of the
parameter’s value is shown. The combination of Magic Lenses can be viewed as
the creation of visual macros (Stone et al., 1994) or as a particular and restricted
case of visual programming. The visual nature of this technique means that it is a
very intuitive way to program, and thus is useful to users who master the concepts
underlying the data transformation but are not familiar with programming.

Another example of overlapping Magic Lenses is the city map in Figure 4.35.
One of the Magic Lenses highlights the major roads in that part of the map covered
by the lens. The other shows the waterways. Where the Magic Lenses overlap
both features are highlighted.
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Figure 7.  The lens shows the text tags for the indicated
segment of road. 

In applications such as astronomy, medical imaging,
comparative cartography and structural analysis, multiple
images of the same object are compared to evaluate different
characteristics of the object.  Magic lens filters can be used to
provide coordinated views of these images.  Figure 8 shows a
pseudo-color view indicating the sign and relative magnitude
of curvature in the context of a shaded view of a 3D object.

Figure 8.  Gaussian curvature pseudo-color lens.
(Original images courtesy of Steve Mann)

Another example of alternate views that benefit by being
shown in context is views that display temporal changes.  For
example, a lens could be used to show a region of a map as a
function of time, making it easy to compare the current
geography with that of ten years ago.  Similarly, a lens could
be used to show previous versions of text in an edited
document.  Lenses could be placed over a video frame in a
video exploration application [12], each showing part of that
frame at some temporal displacement. 

An alternate view may provide a link to a separate but related
object in a different model.  For example, figure 9 shows a lens
that displays the definition of the word selected through it.
The lens starts out transparent and at any convenient size.  The
user clicks through the lens to select a word.  The lens then
resizes itself to display the definition underneath the line
containing the selection, as shown in the figure.  The original
line of text is visible, but the text under the definition is
obscured.

commands �

 Selection
�

The mouse has three buttons named LEFT, 
MIDDLE

� , and RIGHT
�  corresponding to their 

physical  layout.  Here  are  the
�  

for each button:
�
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the fact of being selected; choosing; choice.

�

b. 
	

That which is selected.  
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Figure 9.  A lens displaying the definition of a word
selected through it.  

A similar lens positioned over a function call could display the
function definition, or the function code itself.  One positioned
over a bibliographic reference could show the full reference.

In a hypertext system [14], lenses could be used to highlight
links and enable their operation.  This provides a solution to
the visual clutter caused by making the links always visible.
Lenses could also be used to activate the links.  In this case,
the lens could display either the attributes or contents of the
destination node.

Visual Macros

If two lenses overlap one another, their effects compose in the
area of intersection.  For example, if a lens filters a database
for certain characteristics then the ability to overlap and
compose lenses provides a way to incrementally and visually
construct complex database queries by direct manipulation.
The advantage of lenses over conventional methods of
defining these queries is their visual nature.  The resulting
visual macro can then be saved as a compound lens.  For
example, figure 10 contains two lenses, one which emphasizes
water, and another which emphasizes major roads.  In their
area of overlap, they emphasize both.

Figure 10.  Composing lenses to show waterways
(dashed lines) and major roads (bold lines).

Safe Exploration

Magic lens filters allow users to preview changes to a model,
and to explore different views of that model without
destroying or modifying the underlying data.  For example, the
lens in Figure 11 reverses the depth order of objects in a 2.5D
graphical editor.  Under the lens we can see hidden objects
while simultaneously seeing the standard presentation outside
of the lens.

(a) (b)

Figure 11.  (a) An illustration made of layered shapes.  (b)
The lens shows the shapes in reverse order.  

Similarly, the lens in Figure 12 scales objects based on their
depth.  The effect is to provide a 3D perspective view of their
relative positions, enabling the user to see around the objects

Figure 4.35: Overlapping Magic Lenses on a city map (adapted from Stone et al.,
1994)

Magic Lenses that Magnify

A Magic Lens can also be a magnifying glass. This provides additional space
in order to display extra information on the objects. The disadvantage of this
magnification is that the lens does not transform the entire region covered, but
only the objects in the centre of this region. Some of the objects next to the uses
focus of interest are invisible. Figure 4.36 shows a Magic Lens, called “info”,
that gives extra information on the objects that it covers. To obtain the space
to show the extra details on each object, the lens magnifies the space allocated
to each object. The Magic Lens in Figure 4.36b shows detailed information on
the objects “AFMb347yh9” and “AFMb073xc1”. Objects surrounding these two
objects, such as “AFMa119zg9”, are no longer visible. A possible solution to this
problem is to show the contents of the Magic Lens (the magnified image) in a
separate window. This avoids hiding the objects around the focus but at the price
of requiring users to shift their attention backwards and forwards between two
screen areas.

A further disadvantage of magnifying Magic Lenses is that, as the lens is
moved, the objects shown in the lens move much faster than the lens itself. If
the lens magnifies by a factor of two and the user moves the lens by one pixel,
those objects shown in the lens move by two pixels. This magnification of the
movement makes positioning the lens difficult and can be distracting for the user.
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Figure 4.36: Magnifying Magic Lens

in front to the ones behind.  Because the view changes with the
position of the lens, this lens is especially effective in motion.
Magic lens filters can also be used to explore true 3D scenes.
For example, an exploding parts lens would show an exploded
view of the objects viewed through it, or be used in molecular
visualization as in the VIEW system [4].

(b)(a)

Figure 12.  3D depth filter applied to three overlapping
objects.  (a) The large rectangle is the filter.  (b) The filter
moves right, changing the view.  

Enhance Editing Operations

So far, we have described only the use of magic lens filters to
modify output.  However, the filter can also be used as part of
a click-through tool, which handles input events such as
mouse clicks.  To use such a tool in our system, the user first
positions it over an object of interest with the non-dominant
hand using a trackball.  Next, the user points at an object
visible in the tool’s output region, using a cursor controlled by
a mouse in the dominant hand.  The tool inverts the effect of
the filter to allow the user to select the actual object behind the
filter.  In addition, the tool may apply an operation to the
selected object.  In the resulting tool, the filter and input
handling work together; the filter provides a customized view
that makes it easier to perform the tool’s operation.

Click-through tools with magic lens filters can be used to
select objects that would otherwise be difficult to select.  For
example, figure 13 shows a lens that locally shrinks each
object to separate coincident edges.  A user wishing to select
one edge of a particular shape can click through this lens to
select the edge unambiguously.
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Figure 13.  The local scaling lens.  (Tiling by Doug Wyatt)

Figure 14 shows a tool with three lenses that display grids.
Clipping the grids to a lens reduces visual clutter.  Combining
the three grids into one tool makes it easy to switch between
them; the user just moves the tool to apply a different grid.  

Figure 14.  Three grid lenses.

Figure 15 demonstrates a lens that shows recently deleted
objects in a graphical editor: the leftmost shrub, deleted from
the scene (a), appears under the lens (b).  The user can click
through the lens to restore the object to the scene (c).  Other

examples of lenses and click-through tools for editing have
been previously published [5].  

(a)
�

(b) (c)

Figure 15.  The previously deleted bush in front of the
house (a) is visible in the lens (b) and can be restored by
clicking on it (c).

Platform for Inter-application Tools

Magic lens filters can be moved from one application to
another.  As a result, the investment that a user puts into
learning to use a filter will pay off in many contexts.  Filters
that work well across many applications include filters that
magnify, change colors, or highlight objects based on
graphical properties such as size and color.

Filters may also tune their effect based on the specific
application in which they are applied.  For example, figure 16
illustrates a “highlight schools  lens positioned over two
different applications.  In the map viewer on the left, school
buildings are shown shaded, with bold outlines.  In the text
viewer on the right, words that refer to schools are shaded.
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Figure 16.  A “highlight schools  lens (dashed rectangle)
over two different applications.

In addition to providing a consistent interface for performing
operations in both of these applications, the lenses allow the
user to strongly decouple the conceptual effect of an operation
from the implementation of that operation.  The “highlight
schools  operation may be implemented quite differently
within the two applications.

IMPLEMENTATION

In this section, we give a general outline of software
architectures that support magic lenses.  The architectures vary
depending on which types of lens filters they support, and on
the lens user interface.

Types of Lens Filters

There are three types of lens filters to implement: appearance-
altering, application-specific, and multiple-application.

Appearance-altering

Applications in a graphical environment typically produce
their output by a set of procedure calls to a low-level graphics
library that draws lines, polygons, circles, text, and so forth.
The X server, the Cedar Imager, and the Microsoft Windows
GDI are examples of such packages.  Filters whose semantics
can be expressed as modifications to calls to these primitive
drawing procedures can be implemented by extending the

Figure 4.37: Magic Lens in two applications (adapted from Stone et al., 1994)

Multi-Application Magic Lenses

Magic Lenses and Toolglasses can be used across different applications. A lens or
Toolglass that changes the graphical properties of objects (the colour for example)
can be used in the same way in painting programs, word processors, etc.

Other lenses can have effects that depend on the application on which it is
applied. When a Magic Lens that highlights schools is applied to part of document
in a word processor it can highlight the names of schools wherever they appear in
the text. When used on a map it can indicate the positions of schools. An example
of such a lens is shown in Figure 4.37. These lenses allow users to learn one way
of obtaining a certain type of information that works across applications.
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3

the near end with the lens itself and at the other end with
the view frustum’s far clipping plane. Note that this lens
frustum is not rigid like a standard camera frustum
because the lens’s orientation changes with the
movement of both the lens and the user’s head (in a
head tracked environment). Now that we know the
volume of space that the lens is going to affect, shown in
figure 2, we need to change the way the graphics are
rendered inside this volume.

To achieve this effect, objects may need to be rendered
differently over parts of a polygon. Dynamically
subdividing polygons in software would be extremely
costly, but can be done efficiently with hardware support
for clipping planes. By using hardware to subdivide the
polygons and by rendering objects multiple times, we
can implement flat lenses in 3D applications.

The rendering hardware of the Silicon Graphics Reality
Engine 2 [1], allows programmers to define up to six
infinite cutting planes. While we can easily arrange
three cutting planes at mutual right angles that can cut
out three-dimensional corner cross sections of an object
[9], it is not possible to arrange six cutting planes
together to form a lens frustum that only excludes what
falls inside the frustum in a single rendering pass. Six
planes arranged in a box-like configuration with the
“clip away” direction pointed into the box would clip

wireframe

Figure 2: Flat lenses change parts of the polygons. in
perspective this requires intersecting the six
faces of the lens frustum with each of the
polygons in the scene.

View Frustum

Lens Frustum

Lens

Eye
Point

away all parts of the object. Opposite facing clipping
planes each define an infinite half space to remove, the
union of which is all of space, leaving nothing behind.
Clipping planes of finite extent would be more helpful
but most rendering hardware currently supports only
infinite clipping planes.

We might consider implementing finite-range clipping
planes in software, but we believe that clipping
polygons to finite planes would be too computationally
expensive to be done efficiently at interactive rates.

Our implementation is a straightforward engineering
compromise: we render all objects potentially affected
by a given lensonce for each side of the lens frustum,
for a maximum total of six times in the case of a single
lens. If the object intersects a side of the lens frustum,
the part of the object that falls outside the lens gets
rendered.

After we have rendered an object once per face of the
lens frustum in this manner, we will have rendered any
part of the object not within the clipping volume at least
once, leaving a “hole” where the lens frustum passes
through the object. All that remains is to render the part
of the object that falls inside the lens frustum using
whatever effect the lens was supposed to bring
(wireframe, color change, scale, etc.). To do this, we
reverse the clipping direction of the clipping planes (to
exclude everything outside the lens) and render once
more. The algorithm in pseudocode is:

for each face F of the lens frustum:

for each object OBJ in the scene:

# render the “un-lensed” graphics outside
# the lens frustum.

render OBJ against clip plane F,
removing the part of F inside the lens
frustum

# render the “lensed” graphics inside

render OBJ against this set of clipping
planes using “lens semantics,” removing the
part of F outside the lens frustum

Figure 3: Facing clipping planes clip all of space.

Figure 4.38: Flat lens in 3D space (adapted from Viega et al., 1996)

Magic Lenses and Toolglasses

Toolglasses and Magic Lenses can be combined. For example, a Toolglass that
changes the colours of objects can be combined with a Magic Lens that magnifies
to facilitate clicking on the object to be modified.

Magic Lenses in 3D

Viega et al. (1996) adapt Magic Lenses to 3D environments and propose two new
see-through visualization techniques:flat lenses in 3D(Figure 4.38) andvolumet-
ric lenses (Figure 4.39). In a 3D environment a flat lens changes parts of objects;
those parts that fall behind the lens from viewer’s eye point. Flat lenses can be
composed as in a 2D environment, however, if the lenses do not overlap com-
pletely, the resulting 3D intersection regions can be complicated and difficult to
render with current hardware.

A volumetric lens limits the effects of a transformation to a finite region. This
region is fixed, unlike the region transformed by a flat lens, and does not change
with the eye point. A volumetric lens could be used to implement, for example,
X Ray vision. The covered object disappears, revealing what is inside (the bones
inside a hand for example). Volumetric lenses do not have an order of composi-
tion. There is no front or back lens. Compositions have to be constructed from
the inside out or from the order in which the lenses were applied. Overlapping
volumetric lenses can produce many regions in different lens combinations, once
again making rendering difficult.
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Figure 4.39: Volumetric lens in 3D space (adapted from Viega et al., 1996)

4.3.7 Transparent Overview Layers

Overviews are global views of an information space. They show all the objects
in that space and the position of the user’s more detailed view of that space.
Overviews can also be active: the objects visible in the overview can be selected
and manipulated, and the representation of the user’s position moved in order to
to change the user’s position in the detailed view.

The overview is typically displayed in a window separate from that of the
detailed view. (The two views can be said to be space multiplexed.) This overview
window uses valuable screen real-estate and thus the detailed view must be smaller
(and more difficult to use) than with only one view. As the two views are separate
users must switch their attention between the two views (or ignore the overview).

Another possibility is to display the overview in the same window as the de-
tailed view and require that the user choose between the two views. (The two
views are thus time multiplexed.) This saves screen space but makes it impossible
for the user to see the two views at the same time. The user must remember the
contents of the invisible view. In addition, switching attention from one view to
the other is even more difficult than with the two separate windows as it requires
an action by the user.

Cox et al. (1998) propose and evaluate what they callTransparent Overview
Layers. They seek to avoid the problems associated with space and time mul-
tiplexing by showing the overview and the detailed view together in the same
window. The overview is drawn on top of the detailed view with the same size as
the detailed view. The objects in the overview are drawn transparent so that the
contents of both views are visible at the same time This allows users to identify
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Figure 1 : An annotated pipeline system showing a 70% transparent overviewFigure 4.40: Annotated 70% transparent overview layer in a pipeline system
(adapted from Cox et al., 1998)

to which view an object belongs. This gives what they call depth multiplexing:
the detailed view is “below” the overview. There is however visual interference
between the two views.

Figure 4.40 shows a system where users must weld virtual tubes together to
create a virtual network of pipelines. The overview shows all the tubes available
and the detailed view is a zoomed view of part of the overview. Cox et al. found
that users were able to use the overview and the detailed view. Users were also
able to easily shift their focus of attention between the two views, even in the
middle of an action. Users did however sometimes have problems in distinguish-
ing to which view an object belonged. They sometimes tried to join a tube in the
overview to a tube in the detailed view (or visa versa). The frequency with which
this happened depended on the level of transparency used in the overview.

Cox et al. tested their system with different levels of transparency (always
predefined by the system). Figure 4.40 has the overview 70% transparent. The
objects in the overview are thus drawn lighter than in the detailed view. Fig-
ure 4.41a shows an object in the detailed view (the solid object) and an object
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Figure 4.41: Representations of objects used in a transparent overview layer
(adapted from Cox et al., 1998)

Figure 4.42: Excentric Labelling (fromhttp://www.cs.umd.edu/hcil/excentric/dist/
bin/test7.html)

in an overview 70% transparent. Figure 4.41b shows the same two objects with
the difference that the object in the overview is drawn as a solid outline. In Fig-
ure 4.41c the objects in the overview is represented are a schematic stick figures.
Cox et al. found that users preferred the objects in the overview to be shown as
solid outlines.

This system is not aZUI because the scales of the two views are fixed. The
two different scales do however mean that this system has some points in common
with ZUIs and in particular with the Macroscope (subsection 4.4.6).

4.3.8 Excentric Labelling

Excentric Labelling (Fekete and Plaisant, 1999) offers a way of identifying objects
on the screen. This technique labels, with “tool tips” in the main view, those ob-
jects located around the cursor (Figure 4.42). These labels are only drawn when
the user stops moving the cursor. They then remain visible while the cursor is
moved slowly and are updated with this movement. The textual labels are dis-
tributed around but at a certain distance from the cursor in a regular layout. This

http://www.cs.umd.edu/hcil/excentric/dist/bin/test7.html
http://www.cs.umd.edu/hcil/excentric/dist/bin/test7.html
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Figure 4.43: Larger Excentric Labelling example (fromhttp://www.cs.umd.edu/
hcil/excentric/dist/bin/Eval.html)

layout allows about 20 tightly grouped objects to be labelled in a readable way.
The labels are sufficiently far from the cursor (the point that the user is most inter-
ested in) that the user’s focus of attention remains visible. The labels are enclosed
by differently coloured (the use of colour depends on the application) rectangles
and these rectangles are connected to the appropriate objects with lines of the
same colour. This allows the user to visually connect an object and its label.

Excentric Labelling is an effective way of adding temporary information to a
display but complicated displays become even more overloaded with information
(Figure 4.43).

4.3.9 Discussion

The semi-transparent objects discussed in this section are “layered” or depth mul-
tiplexed interface objects and allow users to maintain awareness of one task while
concentrating on another. These objects address two user interface problems:

http://www.cs.umd.edu/hcil/excentric/dist/bin/Eval.html
http://www.cs.umd.edu/hcil/excentric/dist/bin/Eval.html
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screen size and user attention. Transparent overview layers and the Macroscope
(subsection 4.4.6) economise screen space by showing two views of the informa-
tion space at two different scales in the same window. Local tools such as Magic
Lenses, Toolglasses, and Excentric Labelling allow users to display temporary
transformations of the information space within the representation of this space.
This both conserves screen space and removes the need for users to mentally com-
bine two distant representations of the same information.

4.4 Zoomable User Interfaces

Zoomable User Interfaces (ZUIs) present an information space to users. Users
change the scale of their view of the information space depending on the level of
detail that they want to see at a given moment. As users zoom on an object it grows
(optical zoom) until it vanishes and it replaced by other objects that represent the
same underlying information but in more detail. This change in representation is
called semantic zooming. Multiscale interfaces differ from focus+context views
(section 4.1) in that only one scale is used at a time. There is thus no graphical
distortion but objects that do not fit on the screen vanish and the context is lost. A
further difference is that users have the impression of entering into the information
space; their entire view of the space zooms as they move closer to the information
of interest.

A Zoomable User Interface is based on the concept that data are organised
in a two-dimensional virtual world. Users can travel in this world and focus on
areas of interest (Furnas and Bederson, 1995). When users approach an object,
the representation is modified and more details appear. They can also easily go to
and return from semantically related objects. They can focus on a specific area or
zoom out to have a global view of the data. This is achieved using the techniques
detailed in this section. A more complete presentation of zooming, portals and
lenses is given in Bederson et al. (1996).

4.4.1 Semantic Zooming

Furnas and Bederson (1995) discuss space-scale diagrams which can be used to
visualize the 3D nature of objects inZUIs and the changes in representation that
result from semantic zooming. They represent both a 1D spatial world and its
different magnifications explicitly in a single diagram. The objects visible at dif-
ferent magnifications, and their size at each magnification, are shown in the 2D
representation of the 1D spatial world. An extra dimension, the scale, is added to
the 1D world by piling up views of the 1D world at all the different scales (Fig-
ure 4.44). The user’s viewing window is a slice through the space-scale diagram,
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ABSTRACT

Big information worlds cause big problems for interfaces.
There is too much to see. They are hard to navigate. An
armada of techniques has been proposed to present the
many scales of information needed. Space-scale diagrams
provide a framework for much of this work. By represent-
ing both a spatial world and its different magnifications
explicitly, the diagrams allow the direct visualization and
analysis of important scale related issues for interfaces.

KEYWORDS: Zoom views, multiscale interfaces, fisheye
views, information visualization, GIS; visualization, user
interface components; formal methods, design rationale.

INTRODUCTION

For more than a decade there have been efforts to devise sat-
isfactory techniques for viewing very large information
worlds. (See, for example, [6] and [9] for recent reviews and
analyses). The list of techniques for viewing 2D layouts alone
is quite long: the Spatial Data Management System [3], Bifo-
cal Display[1], Fisheye Views [4][12], Perspective Wall [8],
the Document Lens [11], Pad [10], and Pad++ [2], the Macro-
Scope[7], and many others.

Central to most of these 2D techniques is a notion of what
might be called multiscale viewing. Information objects and
the structure embedding them can be displayed at many dif-
ferent magnifications, or scale. An interface technique is
devised that allows users to manipulate which objects, or
which part of the structure will be shown at what scale. The
scale may be constant and manipulated over time as with a
zoom metaphor, or varying over a single view as in the distor-
tion techniques (e.g., fisheye or bifocal metaphor). In either
case, the basic assumption is that by moving through space
and changing scale the users can get an integrated notion of a
very large structure and its contents, and navigate through it
in ways effective for their tasks.

This paper introducesspace-scale diagrams as a technique
for understanding such multiscale interfaces. These diagrams
make scale an explicit dimension of the representation, so
that its place in the interface and interactions can be visual-
ized, and better analyzed. We are finding the diagrams useful
for trying to understand such interfaces geometrically, for
guiding the design of code, and perhaps even as interfaces to
authoring systems for multiscale information.

This paper will first present the necessary material for under-
standing the basic diagram and its properties. Subsequent
sections will then use that material to show several examples
of their uses.

THE SPACE-SCALE DIAGRAM

The basic diagram concepts

The basic idea of a space-scale diagram is quite simple. Con-
sider, for example, a square 2D picture (Figure 1a). The
space-scale diagram for this picture would be obtained by
creating many copies of the original 2-D picture, one at each
possible magnification, and stacking them up to form an
inverted pyramid (Figure 1b). While the horizontal axes rep-

Figure 1. The basic construction of a Space-Scale dia-
gram from a 2D picture.
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Figure 4.44: Construction of a space-scale diagram (adapted from Furnas and
Bederson, 1995)

which when moved through the 2D diagram yields all the views of the 1D world.
Figure 4.45 shows three movements in a space-scale diagram of a one dimensional
space: (a) pan; (b) zoom; and (c) zoom on a point at the right hand edge of the
window. These diagrams are used to study trajectories such as pan, zoom and
joint pan-zoom. Joint pan-zooms are usefull because in a multiscale world the
shortest path between two points is not always a straight line. One way to move
between two points is to zoom out until they are both visible then zoom back in.
The fastest way to move between two points can be a more complicated path.

Zoomable User Interface space-scale diagrams can be used to visualize the
transition points (when an object changes representation as a function of scale) and
the nature of the changing representations. The slices at the bottom of Figure 4.46
show the objects visible at various different positions and scales. The view of the
virtual world at Figure 4.46a does not include the dark grey object on the right
hand side of the figure. When users zoom to view Figure 4.46b, they see part of
this object and when they zoom to Figure 4.46c they see a second representation
of this object. By the time they arrive at Figure 4.46d this object has vanished.

4.4.2 Special Objects in Zoomable User Interfaces

ZUIs can provide two different types of special objects. The first, portals, is fixed
and created by the developer of the virtual world. The second, Magic Lenses, is
defined by the developer of the virtual world and is created, moved and destroyed
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fixed point stays put in the view. In the figure, for example,
the point,q, always intersects the windows on trajectory (c) at
the far right edge, meaning that the point,q, is always at that
position in the view. If as in this case the fixed point is itself
within the window, we call it a zoom-around-within-window
or zaww. Other sorts of pan-zoom trajectories have their char-
acteristic shapes as well and are hence easily visualized with
space-scale diagrams.

The joint pan-zoom problem. There are times when the sys-
tem must automatically pan and zoom from one place to
another, e.g. moving the view to show the result of a search.
Making a reasonable joint pan and zoom is not entirely triv-
ial. The problem arises because in typical implementations,
pan is linear at any given scale, but zoom is logarithmic,
changing magnification by a constant factor in a constant
time. These two effects interact. For example, suppose the
system needs to move the view from some first point(x1 , z1)
to a second point (x2 , z2). For example, a GIS might want to
shift a view of a map from showing the state of Kansas, to
showing a zoomed in view of the city of Chicago, some thou-
sand miles away. A naive implementation might compute the
linear pans and log-linear zooms separately and execute them
in parallel. The problem is that when zooming in, the world
view expands exponentially fast, and the target pointx2 runs
away faster than the pan can keep up with it. The net result is
that the target is approached non-monotonically: it first
moves away as the zoom dominates, and only later comes
back to the center of the view. Various seat-of-the pants
guesses (taking logs of things here and there) do not work
either.

What is needed is a way to express the desired monotonicity
of the view’s movement in both space and scale. This view-
based constraint is quite naturally expressed in the UV space-
scale diagram as a bounding parallelogram (Figure 7). Three
sides of the parallelogram are simple to understand. Since
moving up in the diagram corresponds to increasing magnifi-
cation, any trajectory which exits the top of the parallelogram
would have overshot the zoom-in. A trajectory exiting the
bottom would have zoomed out when it should have been

Figure 6. Basic Pan-Zoom trajectories are shown in the
heavy dashed lines:. (a) Is a pure Pan,. (b) is a pure
Zoom (out), (c) is a “Zoom-around” the point q.

(c)
(b)

(a)

q

zooming in. One exiting the right side would have overshot
the target in space. The fourth side, on the left, is the most
interesting. Any point to the left of that line corresponds to a
view in which the targetx2 is further away from the center of
the window than where it started, i.e., violating the non-
monotonic approach. Thus any admissible trajectory must
stay within this parallelogram, and in general must never
move back closer to this left side once it has moved right. The
simplest such trajectory in UV space is the diagonal of the
parallelogram. Calculating it is simple analytic geometry. The
coordinates of points 1 and 2 would typically come from the
implementation in terms of XZ. These would first be trans-
formed to UV. The linear interpolation is done trivially there,
and the resulting equation transformed back to XZ for use in
the implementation. If one composes all these algebraic steps
into one formula, the trajectory in XZ for this 1-D case is:

Thus to get a monotonic approach, the scale factor, z, must
change hyperbolically with the panning ofx. This mathemati-
cal relationship is not easily guessed but falls directly out of
the analysis of the space-scale diagram. We implemented the
2D analog in Pad++ and found the net effect is visually much
more pleasing than our naive attempts, and count this as a
success of space-scale diagrams.

Optimal pan-zooms and shortest paths in scale-space.
Since panning and zooming are the dominant navigational
motion of these undistorted multiscale interfaces, finding
“good” versions of such motions is important.The previous
example concerned finding a trajectory where “good” was
defined by monotonicity properties. Here we explore another
notion of a “good” trajectory, where “good” means “short”.

Paradoxically, in scale-space the shortest path between two
points is usually not a straight line. This is in fact one of the
great advantages of zoomable interfaces for navigation, and
results from the fact that zoom provides a kind of exponential
accelerator for moving around a very large space. A vast dis-
tance may be traversed by first zooming out to a scale where

Figure 7. Solution to the simple joint pan-zoom problem.
The trajectorys monotonically approaches point 2 in
both pan and zoom.
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Figure 4.45: Basic trajectories in a space-scale diagram (adapted from Furnas and
Bederson, 1995)

estate available to them changes. For example, an object
could just appear as a point when small. As it grows, it could
then in turn appear as a solid rectangle, then a labeled rectan-
gle, then a page of text, etc.

Figure 11 shows how geometric zooming and semantic
zooming appear in a space-scale diagram. The object on the
left, shown as an infinitely extending triangle, corresponds to
a 1-D gray line segment, which just appears larger as one
zooms in (upward: 1,2,3). On the right is an object that
changes its appearance as one zooms in. If one zooms out too
far (a), it is not visible. At some transition point in scale, it
suddenly appears as a three segment dashed line (b), then as a
solid line (c), and then when it would be bigger than the win-
dow (d), it disappears again.

The importance of such a diagram is that it allow one to see
several critical aspects of semantic objects that are not other-
wise easily seen. The transition points, i.e., when the object
changes representation as a function of scale, is readily appar-
ent. Also the nature of the changing representations, what it
looks like before and after the change, can be made clear. The
diagram also allows one to compare the transition points and
representations of the different objects inhabiting a multi-
scale world.

We are exploring direct manipulation in space-scale diagrams
as an interface for multi-scale authoring of semantically
zoomable objects. For example, by grabbing and manipulat-
ing transition boundaries, one can change when an object will
zoom semantically. Similarly, suites of objects can have their
transitions coordinated by operations analogous to the snap,
alignment, and distribute operators familiar to drawing pro-
grams, but applied in the space-scale representation.

As another example of semantic zooming, we have also used
space-scale diagrams to implement a “fractal grid.” Since

Figure 11. Semantic Zooming. Bottom slices show views
at different points.
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grids are useful for aiding authoring and navigation, we
wanted to design one that worked at all scales -- a kind of vir-
tual graph paper over the world, where an ever finer mesh of
squares appears as you zoom in. We devised the implementa-
tion by first designing the 1D version using the space-scale
diagram of Figure 12. This is the analog of a ruler where ever
finer subdivisions appear, but by design here they appear only
when you zoom in (move upward in the figure). There are
nicely spaced gridpoints in the window at all five zooms of
the figure. Without this fractal property, at some magnifica-
tion, the grid points would disappear from most views.

Warps and fisheye views

Space-scale diagrams can also be used to produce many
kinds of image warpings. We have characterized the space-
scale diagram as a stack of image snapshots at different
zooms. So far in this paper, we have always taken each image
as a horizontal slice through scale space. Now, instead imag-
ine taking a cut of arbitrary shape through scale space and
projecting down to theu axis. Figure 13 shows a step-up-
step-down cut that produces a mapping with two levels of
magnification and a sharp transition between them. Here,(a)
shows the trajectory through scale space,(b) shows the result
that would obtain if the cut was purely flat at the initial level,
and (c) shows the warped result following.

Dif ferent curves can produce many different kinds of map-
pings. For example, Figure 14 shows how we can create a
fisheye view.*  By taking a curved trajectory through scale-
space, we get a smooth distortion that is magnified in the cen-
ter and compressed in the periphery. Other cuts can create
bifocal [1] and perspective wall [8].

*  In fact exactly this strategy for creating 2D fisheye views
was proposed years ago in [5], p 9,10.

Figure 12. Fractal grid in 1D. As the window moves up
by a factor of 2 magnification, new gridpoints appear
to subdivide the world appropriately at that scale. The
view of the grid is the same in all five windows.

v

Figure 4.46: Semantic zooming in a space-scale diagram (adapted from Furnas
and Bederson, 1995)
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by users. Both these techniques have characteristics in common with multiple
view interfaces. The difference is that these multiple views are integrated into the
main view. A portal is part of the virtual world while a Magic Lens is an in-place
user positioned transformation of the virtual world.

Portals

A portal is a special graphical object that gives a view of another part of the vir-
tual world. It is generally static (as are those created with the tool presented in
chapter 6); i.e. the user cannot create a new portal, only those provided by the
system are available. It consists of a rectangle put at a given place in the world,
in which another part of the world is displayed, often at a different scale. As with
other objects, portals grow as the user zooms, and when a portal almost fills the
user’s view, the main view can be said to be transferred to the view in the portal.
The user can manipulate (zoom, dezoom, or pan) the view seen through a portal
simply by clicking inside the portal.

Portals can be used to express the semantic relationship between two objects
that are widely separated in the virtual world, even though they are related. A
portal can be placed near the first object, pointing to the second one. If necessary,
a reciprocal portal can complete the symmetry.

Portals are useful to avoid the duplication of objects, a technique that is con-
venient in graph representation but complicates the understanding of the graph
structure.

Magic Lenses

ZUIs use the Magic Lenses described in subsection 4.3.6 so that users can filter or
transform the virtual world. These lenses can also be seen as portals that point to
another part in the world where the representation is different. This adds a tempo-
rary fourth dimension to the two spatial dimensions and the scale “dimension”.

4.4.3 Pad++

Pad++ (Bederson et al., 1996; Bederson and Hollan, 1995) is a zoomable graphi-
cal sketchpad. The computer screen is imagined to be made out of a new material
that is stretchable like rubber but continues to show a crisp image no matter what
the sheet’s size. In addition objects are not just stretched geometrically; as they get
bigger the representation of the object is adapted to the object’s size. For example,
when stretching a spreadsheet, the numbers do not keep on getting bigger and big-
ger, when there is enough space, the computations from which the numbers were
derived are shown. The authors also implement Magic Lenses (subsection 4.3.6).
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4.4.4 NaviQue

Furnas and Rauch (1998) present an information and navigation environment,
called NaviQue, implemented using Pad++. They list four technologies that have
become available recently: direct manipulation which allows the user to visualize
and directly manipulate objects, information visualization tools (subsection 4.2.4
and subsection 4.1.2) for browsing large bodies of information, lenses (subsec-
tion 4.3.6), and infinitely zoomable (“multiscale”) interfaces.

NaviQue was designed with various desirable features in mind.

• The environment should integrate the broader information world and the
user’s private workspace. This allows queries to be run on current work and
the integration of search results into the initial task.

• All conceptual items should be given visual representations so that the user
is aware of them and their statuses. This is called visual reification.

• The environment’s tools should be used by direct manipulation of visual
representations of the tools.

• The tools in the environment should support the basic tasks of basic in-
formation seeking and analysis. When performing a query the user asks a
search engine to look for a specified target in a specified collection. Brows-
ing is performed by zooming and panning in a hierarchical structure of in-
formation. The results of queries and browsing are facilitated by allowing
the user to create, copy group information objects on the workspace, and by
showing the relationship of objects to their multiple contexts. The user can
create new material such as private annotations and documents for distribu-
tion.

• NaviQue should provide multiple views where different objects can be seen
or the same objects seen in different contexts.

• Furnas and Rauch (1998) state that users perform the same actions in two
different ways: lightweight (cursory) and heavyweight (detailed). NaviQue
should support these two types of interactions.

• The environment should support interactions with other users, ranging from
asynchronous and informal “publication” of parts of documents, to tightly
coupled synchronous conversations with co-workers allowing shared sear-
ches and authoring.

Objects in NaviQue are structured, fractal (are in a structure and have struc-
ture), queryable, navigable, historical, similarity engine compatible, contextu-
alised, evalualised, annotatisable, updatable, and are able to contain metadata.
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NaviQue was implemented using Pad++ and is thus a multiscale interface.
All the information objects reside on the multiscale work surface; there is no
separate query window (the user can create a text object on any part of the surface
and use it as a query). Queries are performed using a vector-based similarity
engine. NaviQue also defines electronic sets (e-sets). These allow the user to
group objects, view them in different ways and perform actions on them. Each
e-set has an associated widget. Moving the cursor over this widget highlights
all the members of the set. The results of a query are returned in an e-set and
are highlighted in two different colours in the corresponding query and collection
e-sets, thus providing an in-context view of how the results relate to the query.

4.4.5 Information Density

Woodruff et al. (1998a) cite thePrinciple of Constant Information Densityfrom
the cartographic literature (Bertin, 1977; Tufte, 1998) which states that the number
of objects per display unit should be constant. The amount of information should
remain constant as the user pans and zooms. The information density can be
maintained constant by showing objects at greater detail as the user zooms on
them, by showing more objects as the user zooms, or both.

The authors extension to the multiscale interface, DataSplash, is aimed at the
developers of multiscale user interfaces and allows them to interactively control
when objects are visible as the user zooms. Figure 4.47 shows a map of the United
States. At the current scale (indicated by the horizontal line in the upper right hand
quadrant) only the state outlines and the dots indicating the positions of cities are
visible. As indicated by a vertical bar for each layer, the state outlines are always
visible but as the user zooms the dots will be replaced by circles indicating the
cities size and position, and later their names will be added. The developer can
move the vertical bars and immediately see the effect on the left hand side.

A later version of this program uses the width of the vertical bars to indicate
the information density of each layer at each scale, and coloured tick marks to
show if the information density at each scale is acceptable (Figure 4.48). The
information density is just the number of objects visible.

There are eight variables that provide information in two-dimensional graph-
ics: x coordinate,y coordinate, size, value, texture, colour, orientation and shape.
DataSplash provides functions to modify the position, colour, size, and shape of
objects in order to reduce or increase the information density. The user can thus
modify the width of a vertical bar and the system modifies the objects in order to
reduce or decrease the information density.

The program presented in Woodruff et al. (1998a) explored the information
density in the scale (z) dimension only. A discussed extension is to consider
whether the data is uniformly distributed in thex andy dimensions. They sug-
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Figure 4.47: Displaying and controlling information density (adapted from
Woodruff et al., 1998a)

Figure 4.48: Display and control of information density (adapted from Woodruff
et al., 1998a)



122 Visualization Research

Figure 4.49: Restaurant Finder (adapted from Plaisant et al., 1999)

gest that each equally-sized subdivision of the information space should contain a
constant amount of information. A program could show those regions that are too
sparse or too cluttered.

This interface resembles the dynamic queries and query previews proposed
by Plaisant et al. (1999). An example query preview interface is shown in Fig-
ure 4.49. The users have used the sliders to select only those restaurants open
between 7pm and 11pm and where the main courses cost between $9 and $16.
This differs from DataSplash in that it is designed as a database query tool for
users rather than as a developer’s aid for creating virtual worlds forZUIs.

4.4.6 Macroscope

Lieberman (1994, 1997) proposes a Zoomable User Interface, called Macroscope,
that uses multiple translucent layers. In a standard zooming user interface the user
loses all context after a zoom. The Macroscope maintains both the zoomed in and
zoomed out views visible in overlaid translucent layers on the display.

The user zooms on a region by selecting a region, this region is then indicated
on the still visible original image by a rectangle and the entire original image is
overlaid by an enlarged view of the area in the rectangle. Moving the rectangle
causes a pan and resizing the rectangle causes a zoom. The user can control the
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translucency levels between the layers in order to emphasise the background to
help in orientation or to emphasise the foreground in order to concentrate on the
close-up view. Macroscopes can be extended to have three layers and, in this case
and in general, moving one layer relative to the others helps users identify which
objects are in which layer.

Figure 4.50 shows how a Macroscope version of the Macintosh Finder could
be designed. Users do not open or close folders. They just zoom on parts of the
disk to see the contents in more detail. Figure 4.50a shows a directory “brazil”
and a subdirectory “Henry” as seen by a standard Finder. The Macroscope version
(Figure 4.50b) replaces the opaque “Henry” window with a miniature view of its
contents in the main window. If users want to see the contents of the “Henry”
folder in more detail they zoom the region of the screen containing the folder.
This is shown in Figure 4.50c. The original view is still visible but paler than
before and the extent of region that was enlarged is shown drawn on this view (the
box that surrounds the “Henry” folder cutting through the “System Folder” and the
“Attic”). The enlarged region is drawn on top of the original view. Figure 4.50d
shows the next step where the user has zoomed on the file containing Lisp code in
the bottom right of Figure 4.50c. Once again a rectangle has been drawn around
the enlarged region and this new region drawn on top of the previous view (which
has now been faded out).

4.4.7 Goal-Directed Zoom

Woodruff et al. (1998b) state that in a normal multiscale interface the current
elevation (or scale) determines the representation. They propose a differentgoal-
directed zoomwhere the user specifies the desired representation of an object and
the system zooms to the scale where the object is visible with that representation.
In their system, users click on an object to get a menu of the possible graphical
representations of the object. When the user selects a representation, the system
pans so that the object is in the centre of the display and zooms so that the selected
representation is visible.

4.4.8 Desert Fog

Jul and Furnas (1998) introduce the notion ofdesert fog, regions in multiscale
worlds which do not contain any navigational information. When users arrive in
desert fogareas, they have no idea whether to zoom, dezoom, or pan to find an
interesting view. Their solution to this problem requires the navigation system to
modify the virtual world so that in a region that would otherwise be empty the
user is shown what action should be taken to find a non-empty view. If a view
contains objects that are currently invisible (because they are not visible at the
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(a) two Macintosh folders in the Finder (b) Macroscope showing the top folder

(c) Macroscope showing two folders (d) two folders plus a zoom on a file

Figure 4.50: Macroscope as a Finder (adapted from Lieberman, 1997)
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current scale but will be visible after zooming) the system automatically generates
residuewhich indicates where the user should zoom to see these objects. Thus if
users are faced with an empty screen they know that they should just dezoom until
they find objects. If users seeresiduethey should zoom on theresidueuntil the
objects come into view. The problem is that when there are a large number of
invisible objects there is too much residue. Another approach produces indicators
from interesting views (those that contain objects), calledcritical zones, that are
currently invisible but can be found by zooming. These indicators are multiscale
and grow like normal objects except that they have minimum size in order to be
always visible.

4.4.9 Discussion

The distorted views presented in section 4.1 have a variable distortion over the
information space. Non-focal information is given less space (per unit of infor-
mation) than focal information. Non-focal information is thus shown at a smaller
scale than the focus. Zoomable User Interfaces have a constant scale at any mo-
ment. There is no space for non-focal information and it is not shown.

The method of deformation used in Zoomable User Interfaces is a simple form
of pseudo-optic deformation (subsection 4.5.7) as graphics grow followed by log-
ical deformation (semantic zooming) when the graphics are replaced by other
graphics showing the same underlying information but in more detail. The logical
deformation function depends on the type of information presented. This function
chooses representation appropriate to the size of the region to be displayed and
the screen space available.

Lack of Context

One of the reasons that users are sometimes unable to successfully useZUIs is
that the view of the information space shown to users, the focus, does not al-
ways contain the context needed by users to position this focus in the information
space. This is true once users have navigated away from the initial global view
and especially so once they have navigated long enough to no longer remember
exactly where they are. Once in this situation users are disoriented, sometimes to
the point of not understanding what they are looking at and not knowing whether
they should pan, zoom, or dezoom to find what they are looking for. It could be
said that they are “lost in hyperspace”.

The Macroscope (subsection 4.4.6) proposes a solution to this disorientation
problem. It always leaves the global (context) view visible and simply overlays it
with the focal view. The position of the focus is indicated on the global view in
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order to indicate the focus’s position relative to the global view. One disadvan-
tage of this solution is that screen becomes overloaded with context information
even when the user does not need it. Another disadvantage is that the maximum
difference in scale between the focus and the context is limited. If the difference
in scale is too great then the global context will be too coarse, with respect to the
focus and the user’s current point of interest, to allow the focus to be accurately
positioned.

Missing Structural Information

A second problem is a lack of structural information concerning the information
space. The initial or global view of the information space shows users what ob-
jects are in the information space but does not contain an indication of what in-
formation concerning these objects will be shown when users zoom. Desert Fog
(subsection 4.4.8) addresses a different problem. It fills in regions of the virtual
world that are empty even though they contain objects that will become visible if
users zoom on these regions.

4.5 Taxonomy

There are two important questions that need to be answered when comparing the
visualization techniques described in this chapter: in what form is the information
space presented to the users and how users control this representation.

4.5.1 Taxonomy of Distortion-Oriented Techniques

Leung and Apperley (1994) review possible solutions to the visualization prob-
lem: the small size of the user’s screen and the large amount of data available.
Their taxonomy, shown in Figure 4.51, classifies presentation techniques depend-
ing on whether or not the data to be presented is graphical and then whether dis-
torted or non-distorted views are to be used. Some of the different visualization
techniques presented can be classified using this taxonomy (Table 4.2). Other
techniques such as Treemaps or three dimensional representations such as Cone
Trees are not easy to classify using this taxonomy. A Treemap does not dis-
tort the data (except after zooming where some of the data has been removed).
Three dimensional representations can be compared to distorted views because
the view they show in two dimensions is always a distortion of the real three
dimensional space in which the data has been projected. Three dimensional rep-
resentations differ however from two dimensional distorted views in that users are
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Figure 4.51: Taxonomy of presentation techniques for large graphical data spaces
(adapted from Leung and Apperley, 1994)
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Table 4.2: Classification following the taxonomy in Figure 4.51
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meant to understand the three dimensional representation and remove the distor-
tion to mentally create a non-distorted three dimensional image of the data. Three
dimensional representations can also be said to make use of the third dimension
to gain extra space to show the information space. Once this extra space has been
used these three dimensional representations use user controlled pruning to reduce
the amount of information to be displayed.

4.5.2 “Task by Data Type” Taxonomy

The “Task by Data Type” taxonomy proposed by Shneiderman (1996) proposes a
“visual information seeking mantra”:

Overview first, zoom and filter, then details-on-demand

The method provides a task by data type taxonomy with seven data types and
seven tasks.

Data Types

This taxonomy addresses the treatment of seven different data types:

1-Dimensional One Dimensional Data is linear data which includes textual doc-
uments, computer programs, and ordered lists. The original fisheye view (subsec-
tion 4.1.1) was used to visualize a computer program seen as a 1-dimensional
information space. A computer program is not always considered as linear data.
If the dynamic behaviour of the program is to be taken into account, computer
programs are better viewed as networks (or directed graphs). The Document Lens
(subsection 4.1.3) is another technique for visualizing a linear document. The
document remains 1-dimensional even when it is laid out in a 2-dimensional grid
as the vertical dimension has no meaning. The extra dimension was created just
to reduce unused screen space.

2-Dimensional Two dimensional data includes maps, floor plans and newspa-
per layouts. Each item in the information space has a size and position in the 2D
space. Rubber Sheets, 3D pliable surfaces, non-linear transformations, Transpar-
ent Overview Layers and Macroscopes are techniques for visualizing 2D data.

3-Dimensional This includes real world objects such as the human body, aero-
planes and buildings as well as models of these objects. The visualization tech-
niques of this chapter do not treat these types of visualizations.
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Temporal Time lines or temporal data are very similar to 1-dimensional data
except that items have a start and finish time and may overlap. Many specialised
tools exist but this type of data can also be visualized with a Perspective Wall.

Multi-Dimensional The information stored in relational databases is often best
viewed as multi-dimensional data. Items withn attributes become points inn-
dimensional space. The 2- or 3-dimensional scattergrams often used to visualize
this sort of data are not otherwise discussed.

Tree The visualization of trees or hierarchies is discussed in section 4.2.

Network The visualization of networks or graphs (cyclic or acyclic, directed or
undirected) is not discussed in this thesis but details can be found in Herman et al.
(2000).

Tasks

After the description of the different types of data, this taxonomy defines the tasks
that users might wish to accomplish with the data. Shneiderman states that these
tasks are high level tasks. This is true in the sense that these tasks are abstractions
of the exact actions that users are required to perform when using a data visual-
ization program. These same tasks can however be seen as low level actions as
they are what the users have to do to accomplish what they want to do. Users do
not use information systems to “zoom” or “filter”. They are forced to “zoom” and
“filter” to find the information or understanding that they are seeking.

Overview An overview, often a separate window from the view of the focus,
helps users to gain an understanding of the entire information space.

Zoom Zooming allows users to increase the space allocated to more interesting
information in the space.

Filter Users can filter the displayed data, often via dynamic queries, to remove
uninteresting data items.

Details-on-Demand Once an data set has been reduced to a small number of
items users can ask for more details.

Relate Relating data items is an extension of details-on-demand. An extra level
of detail, the relationships between the objects, is shown when requested.
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History A history mechanism is designed to support undo, replay and progressive
refinement. It allows users to understand what they did to arrive in their
current position.

Extract Extraction allows users to save either the end result of their queries (the
resulting data items) or the queries themselves.

Comment

The taxonomy of Shneiderman is essentially static. The representation used to
display the data is chosen depending on the type of the data and users are proposed
tools that allow them to execute some (probably not all) of the listed tasks. Other
than in the section on advanced filtering, little mention is made of the dynamics
of the visualization systems nor how users interact with them.

4.5.3 Dynamics

The taxonomy of Chi and Riedl (1998); Chi (2000) takes a more dynamic ap-
proach to data visualization as it discusses the data transformations from the orig-
inal format of the data to the format presented to users. It also includes in the
taxonomy the operators that users can apply to the data at each transformation
stage.

Figure 4.52 shows the Data State Model proposed by Chi. Column b in Fig-
ure 4.52 shows the four stages in the data visualization pipeline. The three oper-
ators, shown by column c, transform the data in each stage to the format in the
following stage. In the example shown, the raw data is a web site. The web site
is translated into a graph by reading the web pages and following the internal
links. This operation is performed by the data transformation operator and gives
the analytical abstraction. The visualization abstraction, a hierarchy, is then cre-
ated by breadth first traversal (in the case of a Cone Tree, see subsection 4.2.5)
by the visualization transformation operator. The users’ view is created from the
visualization abstraction by the visual mapping operator.

When using a disk tree, users can change from a breadth first traversal to a
depth first transversal by changing the visualization transformation operator. The
rest of the visualization pipeline remains unchanged.

At each stage of the Data State Model, users can modify the data (without
modifying the data structure) by using the “within stage” operators. The operator
at this stage, the value stage, is called the “value stage” operator. The web site
is created and modified by an external tool that is not part of the visualization
process shown in the example.
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Figure 4.52: Data State Model applied to web sites (adapted from Chi, 2000)
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Figure 4.53: Types of represented information (adapted from Tweedie, 1997)

The data in the analytical abstraction is modified by the “analytical stage”
operator. In the web site example the graph of web pages can be modified by
dynamic value-filtering of nodes or edges. This filtering changes the nodes and
edges used to create the Cone Tree. The data in the visualization abstraction can
be modified by users using the “visualization stage” operator. The users’ view
can be modified by the “view stage” operator. In the web page example and when
a Cone Tree is used, the “view stage” operator allows users to change the focus
node, rotate the tree, hide subtrees, change the orientation and position of the tree,
and apply dynamic level filtering.

The Data State Model taxonomy allows visualization techniques to be split
into the different parts of a pipeline and makes explicit where the various data
transformations and users interactions occur. It does not however address the
question of how users interact with a visualization system nor the important ques-
tion of the relationship between interaction and visualization.

4.5.4 Interaction

Tweedie (1997) introduces the importance of interactivity in data visualization. It
considers the data used to create representations, the interaction with users, and
the input and output information that is visualized.

Data Representations

One part of the proposed design space comes from the different representations
of data. There are data values (Figure 4.53a) and data structure (Figure 4.53d).
Values are the numeric or categorical attributes associated with a problem while
the structure includes the relations (for example links and constraints) that charac-
terise the data as a whole. Different graphical techniques display different types of
data. A histogram, for example, is well suited to displaying data values whereas
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Figure 4.54: Direct/indirect manipulation (adapted from Tweedie, 1997)

a tree diagram can represent relationships within a data set. Raw value or struc-
tural data can be transformed into meta-data. Data can remain in its original form
as values derived from values (Figure 4.53b) and structure derived from structure
(Figure 4.53e). This is constructed data. Data can also be converted data which
comes from converting data into structure (Figure 4.53c) and structure into values
(Figure 4.53f).

Interactivity

Most current visualization tools use direct manipulation. Direct manipulation was
first defined by Shneiderman (1983). Tweedie (1997) defines direct manipulation
interactions as literal replications of physical behaviour in the real world. They
are direct as they involve manually moving an object or are mechanised via a tool
metaphor. These two possibilities are shown on the left of Figure 4.54.

More recent visualization systems have started to make use of indirect manip-
ulation. Tweedie defines indirect manipulation as interactors that cannot rely on
direct physical metaphors because they provide behaviours that do not exist in the
real world. “Magical” tools that stretch and deform objects in virtual reality envi-
ronments are one example. These indirect manipulation interactors can be based
on a tool metaphor or can be more intelligent as they move from being merely
instructable to being automated (the right side of Figure 4.54).

Input/Output Relations Across Time

Successful use of indirect manipulation requires giving users visible feedback in
response to their interactions with the visualization system. One way to provide
feed back is to explicitly represent users’ input, tightly coupled to a representation
of the results of that input (the output). Users can thus see the rules control-
ling the interaction and see and understand the effects of their actions. There are
four types of relationship between input and output information: input→ input
(understanding two handed input), input→ output (relating a scroll bar and the
window’s contents), output→ input (linking an error message with its cause),
output→ output (linking two output displays).
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Users also need to understand the passage of time or how they have moved
from one visualization to another. Linking the representations of past input and
output to the state of the interface means that past input/output relations can be
revisited. This allows users to understand how they arrived in a given state; it
provides historical context.

Examples

Cone Trees With a Cone Tree (subsection 4.2.5) users see the structural in-
formation and can rotate the tree and move the required section into focus with
manual direct manipulation. The input/output relation is limited to present: in-
put→ output. No attempt is made to represent historical input/output relation-
ships.

Pad++ Users of the Pad++ (subsection 4.4.3) Zoomable User Interface can vi-
sualize data and perform multi-scale zooming using mechanised indirect manipu-
lation. Users can also filter the data using Magic Lenses, which is also mechanised
indirect manipulation. The only input/output representation is input→ output.

Table Lens Users of a Table Lens (subsection 4.1.6) reorder the cells containing
values using mechanised direct manipulation. Only output user interactions are
represented.

Design Space

Tweedie (1997) identified five types of interaction: hiding/filtering, animated nav-
igation, labelling/Boolean encoding, reordering, and algorithmic transformation.

Visualization programs can allow either direct or indirect interaction on either
meta data or raw data. Indirect manipulation can be used to generate the meta data
interactively and thus demonstrate the algorithm used.

Most visualization systems represent input→ output relations. A special case
of this is the use of the “object symbol” (a Magic Lens for example) where both
input and output are represented as a single entity. This proximity emphasises the
relationship between them and provides visual feedback.

Output→ output relations are provided by systems that provide multiple rep-
resentations of the same output.

4.5.5 Design Patterns

Vernier (2001) defines a number of design patterns that aid in the conception of
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visualization techniques. We discuss three of these design patterns here: continu-
ity spatial, continuity temporal, and understandable deformation.

Continuity Spatial

The continuity spatial pattern states that the focus should be integrated in the con-
text in a way that assures the spatial continuity between the two. There are many
examples of systems where this design pattern is respected. We have already
presented the Perspective Wall (subsection 4.1.2), 3D Pliable Surfaces (subsec-
tion 4.1.5), and the combined linear and non-linear transformations described in
subsection 4.1.8.

The advantages, listed by Vernier (2001), that come from following this pat-
tern are:

• the display of the focus (magnified) and its context;

• the focus and its context are connected in such a way that moving between
them does not require mental effort;

• the focus and its context are joined thus facilitating comparisons between
the two;

• the focus is not deformed avoiding hindering work on the focus.

The last advantage is only realised if a combined linear/non-linear deformation is
used. In this case the focus is effectively not deformed but the context is often
severely deformed (for example in Figure 4.14). In addition, it is not only the
context which is deformed, the transition between the context and the focus is also
difficult to understand. Situating the focus in the context and making comparisons
is thus made difficult.

Continuity Temporal

The continuity temporal pattern is applied when visualization programs change
the view of the information space. This view can result from either a change in
the representation of the same data, a change in the data being represented, or both
together. The pattern is designed to:

• help users understand the changes in the view;

• stabilise the image in the view;

• analyse the movements made by navigation systems;
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• help users follow the focus or find the new focus.

The solution proposed by the pattern is animation, that is to say a sequence of
small movements in the view of the information space that helps users follow the
changes in the view.

Understandable Deformation

The third design pattern states that any deformation used must be understood by
users. Vernier asserts that:

• the continuity spatial pattern should be respected by using a non-linear
transformation;

• users must understand that the information space is deformed;

• important text should not be made unreadable by deformation;

• users should be provided with visual aids to help them understand the de-
formation.

Discussion

The problem with the understandable deformation pattern presented by Vernier
(2001) is that, as stated in subsection 4.1.8, non-linear transformations leads to
views where part of the information space is severely distorted. Thus using a non-
linear transformation to maintain spatial continuity often leads to views where
the deformation is understandable but where the information around the focus is
impossible to use. The deformations presented by Keahey and Robertson (Fig-
ure 4.14) allow users to understand the transformation of the view but at the price
of making the information around the focus unusable. Users can no longer read
the names of the metro station just out of the focus, nor read the text in the doc-
ument that is just outside the focus. The same problem exists with 3D pliable
surfaces (subsection 4.1.5). The non-focal information becomes so deformed that
it becomes unusable.

The non-linear transformations presented in Keahey and Robertson and the
transformations used in 3D pliable surfaces are independent of the contents of the
information space. As these transformations are purely graphic and not take into
account the semantics of the data in the information space they often produce un-
readable representations of the information space. In contrast to these graphical
transformations, the original fisheye views (subsection 4.1.1) are more usable be-
cause the deformations that they use are logical rather than graphic. The structure
of a C program and the user’s focus are used to decide what lines of the program
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are important are thus to be shown. The chosen lines are drawn as standard text
and are thus all readable.

Hyperbolic views (subsection 4.1.7) are also different from purely graphical
transformations. Objects are positioned in the hyperbolic space and then, using
the current position of the focus, those that fit are mapped onto 2D space. The
representations, usually limited to circles and text, of these objects are not drawn
deformed and are thus always readable. This is an example of a mathematical
deformation of the information space.

4.5.6 Presentation Taxonomy

When an information presentation system needs to display two (or more) different
parts or representations of the information space at the same moment the system
can use space, time or depth multiplexing. When the screen is too small for the
information that is to be displayed at a given moment then an information presen-
tation system has to use either time or depth multiplexing. This section presents
our taxonomy for classifying visualization systems according to how they multi-
plex their use of the screen.

Time Multiplexing

Time multiplexing means that the system presents different parts or representa-
tions of the information space at different moments. What is being presented at
any moment can be controlled either by the system or directly by users. The prin-
cipal disadvantage of time multiplexing is that users have to remember what was
displayed so as to be able to relate it to what will be displayed next.

Deformation based tools are in part time based as at a given moment some
parts of the information space might be given so little screen space that they are
invisible. In addition, other parts of the information space are visible but, if non-
focal, probably not readable. Users have to move these regions into the focal
region if they want to read them.

Depth Multiplexing

Depth multiplexing means that different parts or views of the information space
are being presented at the same time in the same screen space. Users have to
use depth clues to understand which on-screen graphic belongs to which layer.
The use of a depth strategy often leads to an overloaded display and sometimes
requires considerable effort on the behalf of users in distinguishing the different
layers.



138 Visualization Research

Depth multiplexing is used by Macroscopes, Transparent Overview Layers,
and the transparent tools presented in section 4.3. Three dimensional tools such
as Cone Trees also use depth multiplexing in some sense as users are given two
dimensional clues that must be used to create a three dimensional space.

Space Multiplexing

Space multiplexing means that the two different views are shown at the same time
but in different screen regions. Two of the principal disadvantages of space mul-
tiplexing are the screen real-estate used and the time users have to spend shifting
their attention from one area of the screen to the other.

The gIBIS system (subsection 4.2.1) uses space multiplexing to display two
representations of the information space in parallel. Many other common pro-
grams (for example Microsoft Office) use space multiplexing to display two dif-
ferent views of a document at the same time.

4.5.7 Deformation Taxonomy

The sample of distortion oriented visualization systems presented in this section
all have the common characteristic that they attempt to show the entire informa-
tion space at all times. The screen space available to a visualization program is
(almost) always smaller than the information space to be shown. These systems
thus use deformation to make the representation of the information space fit in
the available screen area. This deformation is based on a degree of interest func-
tion. Every piece of information is given a degree of interest that depends on the
goals of the users and information’s type. Information that is classified as being
less interesting is given less screen space than more interesting information. This
section describes our taxonomy that can be used to classify visualization systems
according to how they deform the information space.

Logical Deformation

The first type of distortion technique uses an understanding of the underlying
structure of the information space. If a region of the information space does not
receive enough screen space to allow it to be displayed in its entirety then an ap-
plication specific (that is, dependent on the type of information being visualized)
function to used to create a summary, that fits in the available space, of the re-
gion. This summary is then displayed non-distorted. This type of deformation
was called a “logical focus+context view” by Herman et al. (2000).

The fisheye viewer of C program text (subsection 4.1.1) is one example of this
technique. Those parts of the C program that are uninteresting (i.e. distant from
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the user’s current line in the program) are given very little screen space. They
are summarised by a function that understands C programs. This function will
convert, for example, the control block surrounding, but a little distance from, the
current line into just the line that contains thefor or while that controls the block.
If there is space the lines that declare the variables in the block might also be
displayed. The chosen program lines are shown as plain non-deformed text.

Another example is the Table Lens (subsection 4.1.6). Here users decide
which rows and columns are important. These rows and columns are given space
enough to show the numerical value contained in the cells. Other, non-focal and
thus less interesting, cells are only given enough space to show a histogram of
their values.

The advantage of this method is that the deformation is adapted and optimised
for the type of data being displayed. This method also avoids the pseudo-optic
deformation that is often time consuming to calculate and frequently leads to un-
readable text or graphics.

The disadvantage is of this type of deformation is that it requires a deformation
function that understands the information space. A new function thus has to be
developed for each type of information space.

Position Deformation

The second type of deformation uses a function to change the position, and to a
lesser extent the size, of objects in the information space. This function is de-
signed to leave the interesting (focal) objects at the centre of the user’s display
while pushing non-focal objects to the edge of the display. The objects are po-
sitioned such that each focal object is sufficiently far from other objects so that
focal objects can be labelled without the labels overlapping. The objects’ labels
are not deformed and thus remain readable. This and the following deformation
methods are called “geometric” by Herman et al. (2000).

The hyperbolic display (subsection 4.1.7) uses a complex function to position
objects on the screen. This function takes into account the user’s current focus
and the space required to label objects (which itself depends on the user’s focus).
The objects are then drawn and labelled with non-deformed graphics.

Rubber Sheets (subsection 4.1.4) are somewhat similar. A complex function
is used to position the objects and then they are labelled with non-deformed text.
Rubber Sheets differ from hyperbolic displays in that in some regions of the dis-
play the box used to represent the object is elongated or deformed.

The advantage of this method is that it requires a less complete understanding
of the information space than logical deformation. The function that positions the
objects only has to solve a positioning problem. Logical deformation requires an
understanding of the meaning of the information. Position deformation does not.
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It only requires an understanding of information’s structure.

The disadvantage of this method is that the spatial relationships between ob-
jects are often destroyed by the deformation. This problem is exacerbated by the
lack of information given to users that would allow them to understand these de-
formations.

Pseudo-Optic Deformation

The third type of deformation, pseudo-optic deformation, does not remove in-
formation from the display nor reposition objects in the information space nor
separate the deformation of objects positions from their appearance. They simply
create an image of the information space (much too big to fit on the screen) and
then deform it in such a way that it fits on the user’s screen and that the focus of
the user’s attention remains readable.

Perspective Walls (subsection 4.1.2) and Document Lenses (subsection 4.1.3)
are simple examples of this method. A one or two dimensional image of the
information space is created. Part of this information space is then bent away
from the users. The text or graphics in this area is thus deformed and becomes
difficult or impossible to read.

3D pliable surfaces (subsection 4.1.5) and non-linear transformations (subsec-
tion 4.1.8) are more complicated examples of this deformation method. Here the
deformation is more pronounced and parts of the graphical image unreadable.

The advantage of this method is that the deformation function does not need to
understand the information space. It is also independent of the graphical layout of
the information. In addition, the entire image is deformed, which makes it easier
for users to understand the deformation.

One disadvantage of this method is that the deformation leads to text and
graphics becoming unreadable. The Document Lens for example devotes a large
part of the screen space to showing unreadable text. This text will be of little use
in providing context to users.

Summary

The distortion-oriented presentation techniques presented in this section can be
classified into three different types of distortion. This classification is shown in
Table 4.3. Logical distortion is the more difficult to implement but ensures that
only readable text and recognisable graphics are shown.
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Logical Deformation Position Deformation Pseudo-Optic Deformation

fisheye view hyperbolic display Perspective Wall

Table Lens Rubber Sheet Document Lens

3D pliable surfaces

non-linear transformations

Table 4.3: Distortion methods taxonomy

interface type multiplex deformation

pan and zoom time optical

mutliple windows space none

deformation based tools time & space any

transparent tools depth position

semantic zoom time optical & logical

Table 4.4: Visualization taxonomy summary

4.6 Conclusion

The visualization techniques presented in this chapter can be divided into five
different interface types and these different types of interface each use one of the
three methods of presenting information spaces too big to fit on users’ screens.
A summary of these techniques and associated strategies in given in Table 4.4.
The techniques that use semantic zooming, Zoomable User Interfaces, use time
multiplexing of the available screen real-estate. We will see in the next chapter
how it is possible to combine space, time and depth multiplexing to create more
powerfull ZUIs. These newZUIs provide the context that is generally missing in
Zoomable User Interfaces.
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Chapter 5

New Context Aids for
Zoomable User Interfaces

Zoomable User Interfaces (ZUIs) suffer from an important problem: user disori-
entation. The information space or virtual world presented in these interfaces is
often very large and users have to move or zoom through many different graphical
representations of the data before finding the desired information. This navigation
in the information space can cause users to become lost. When in this situation
users no longer know where they are in the information space nor the meaning of
the objects currently visible.

As discussed in the previous chapter Zoomable User Interfaces are currently
time multiplexed interfaces. In this chaper we will investigate the use of space
and depth strategies inZUIs. The extra visualization “room” that space and depth
multiplexing of the user interface gives us will allow us to include new context
and navigation aids in ourZUI.

We also make use of the fluid and continuous control provided by our new
interactor, our Control Menu, to increase the ease of navigating inZUIs. With this
improved control we are also able to investigate manipulation techniques where
the dynamic nature of the interaction and resulting display is just as important as
the static form of the interface.

This chapter presents three navigation aids designed to reduce user disorien-
tation. The first, hierarchy trees, is designed to help users to better understand the
information space, their position in the space, and what information is available.
The second, the context layer, helps users reorientate themselves if they become
lost. The third, the history layer, shows users the path taken through the informa-
tion space to arrive at their current position.
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5.1 Hierarchy Trees

Hierarchy Trees were created to make the implicit hierarchy inZUIs visible to
users so that they can use it as an orientation and navigation aid. This aid is a sec-
ond window in theZUI and shows at all times the structure of the information and
the users’ current position within this structure. Users can also use this window to
change their position in the information space.

5.1.1 Zoomable User Interfaces Visualize Hierarchical Infor-
mation Spaces

ZUIs are often used on hierarchically structured datasets with a known structure.
Creating an information space for aZUI requires the developer to provide graphi-
cal objects visible in the top level view of the space that summarise those objects
found when users zoom. These objects will then summarise those objects to be
found as users continue to zoom. A hierarchical structure is thus created. Objects
in the information space that do not follow this hierarchical structure, i.e. that are
not accessible via objects visible in the top level view, will be hard to find by users
because they will have no way of knowing where to zoom to find them.

ZUIs can also been seen as three dimensional spaces (subsection 4.4.1) where
the scale is the vertical dimension. The main view in aZUI shows a horizontal
slice through the information space. We propose a second orthogonal view, called
a hierarchy tree, that is a flattened vertical slice through the information space. It
is not possible to show all the objects in the information space in this view. The
developer of the information space must thus associate a type, a simple textual
string, with all the objects in the information. It is this type of information that
is shown in the hierarchy tree. The hierarchy implicit in the design of the infor-
mation space is made explicit by the developer. When the developer positions
an object in the information space, a parent object and a type is associated with
the object. Using this information theZUI can create a summarised view of the
types of information available for the users. This view is in the form of a tree: the
hierarchy tree.

5.1.2 Make the Hierarchy Visible

The hierarchy tree is shown as soon as theZUI starts in an separate area on the
right hand side of the interface (Figure 5.1). (It is thus a space multiplexed strat-
egy.) Users can see what types of data are available in the information space
and how they are organised. In Figure 5.1 the users can see that this information
space consists of some maker indexes and a number of chromosomes, that these
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Figure 5.1: Toplevel hierarchy tree with the cursor on an object of type “chromo-
some” and name “10”

chromosomes contain arms and maps, and that maps contain the markers and the
associated sequences. With this overview, users know that the information space
contains sequences and that they need to zoom on the maps to find them.

If the hierarchy is too big to fit into the height of the window, then a sub-tree of
the hierarchy can be opened and closed as in many standard file system browsers.
One of the other techniques (described in section 4.2) could also be used if the
hierarchy is exceptionally large.

5.1.3 Make the User’s Position in the Hierarchy Visible

As users move the cursor across the information space, the hierarchy tree is mod-
ified to show the type of the object under the cursor. This is done by changing
the colour of the name of the type associated with the object and all those above
it in the hierarchy of type names. When the developer creates an object the name
of the object is supplied along with its type. The names of the object under the
cursor and all the objects above this object in the information space are shown in
the hierarchy tree. In Figure 5.1, the cursor is currently on the chromosome num-
ber 10. The text “chromosome” and the number “10” are thus shown in magenta
(or gray) in Figure 5.1.

When users zoom on a particular type of information, they will soon see a
view of the information space where all the visible objects are children of a given
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Figure 5.2: Hierarchy tree showing part of the “Généthon” map on chromosome 9

type. When the cursor is not in the interface or when cursor is not on an object,
the hierarchy tree shows the lowest level in the hierarchical structure of the in-
formation space that is the parent of all the visible objects. Figure 5.2 shows the
hierarchy tree after the users have zoomed to a point where the all the currently
visible objects are part of the “Généthon” map on chromosome 9. In this situa-
tion, the name of the “Généthon” map, the name of the associated type, “map”,
the number 9, and the name of the associated type “chromosome” are shown in
magenta (gray).

At each level in the tree that includes the current object or objects, the names
of those objects around the current object are also shown (Figure 5.2).

5.1.4 Using the Hierarchy Tree to Navigate

This technique offers an efficient method for rapid movement in the virtual world
as users can use the hierarchy view to navigate in the information space and to
directly access related but currently invisible objects.

When all the visible objects are descended from another object, the type and
name of this object and its ancestor objects are shown highlighted on the display.
Users can click on these strings to “move up” to a less detailed view in the infor-
mation space. TheZUI dezooms the view of the virtual world until the rectangle
that contains all of the objects descended from this object is wholly visible. This
allows users to move up in the information space to see the representation of a
part of an object in the information space in its entirety.
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It would possible to use to use the hierarchy tree to zoom to see a more detailed
view of the information space. The user could click on the name of a type below
the current scale and theZUI would zoom to show an object of that type. It would
not however be possible for users to choose the object to be shown among the
possibly very large number available. TheZUI would have to chose an object and
in most cases this choice would have to be random. We have not investigated this
possibility any further.

If the user clicks on the string “chromosome” shown in Figure 5.2, theZUI will
dezoom sufficiently to show all of chromosome 9. A user could also click on the
string “Généthon” to dezoom the interface so as to see all of the map “Généthon”
on the chromosome 9.

The names of objects surrounding the current object and of the same type are
also indicated in the hierarchy tree. The strings can also to be used to navigate
in the virtual world. When users click on the name of an object, the interface
moves to show this other object. The current scale is not changed and the users
are positioned at the same relative position on the new object. A user can select
the string “CHLC v3” (the name of the map next to the “Généthon” map on the
chromosome 9) to move to map “CHLC v3”. In this case, theZUI will show the
same relative position on the new map while maintaining the same scale. The new
view will be at the same distance from the start of the map “CHLC v3” as the old
view was from the start of the map “Généthon”.

5.1.5 Comparison With Other Techniques

This section compares Hierarchy Trees to some existing techniques and presents
some of the advantages of this new technique.

Tool Tips

Users does not have to ask for the information provided by the hierarchy tree.
In this respect it is similar to the “tool tips” that are found in many common
computer applications and the Excentric Labelling technique (subsection 4.3.8).
The advantage of the hierarchy tree is that the information is more complete and
the information does not clutter the main view (directly under the user’s focus of
attention). The hierarchy tree can also be used for navigation which is not the
case for “tool tips”. The price paid for this additional information is the space
used by the hierarchy tree and the fact that users have to divide their attention
between two physically separate views. Users have to mentally combine these
two separate views into a single composite understanding of the information.
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Critical Zones

The critical zones technique (subsection 4.4.8) can be used to automatically pro-
vide the clues (additional objects in the virtual world) that there are objects to be
found by further zooming. Hierarchy trees are different in that the developer of
the virtual world is assumed not to create objects that are not accessible by zoom-
ing on objects accessible from the top level view. Hierarchy trees are designed to
indicate that information is visible and on what objects the users should zoom to
find this information.

gIBIS

The gIBIS system (subsection 4.2.1) provides a node index of the displayed IBIS
graph structure that is in some ways similar to our hierarchy trees. This node
index or global view shows the subject of all the nodes in the network organised
by their primary link. As users zoom or pan the local view of the network, the
global view scrolls to show users their current position in the network. The global
view can also be used to navigate in the network. This view does however differ
from our hierarchy trees in that it shows all the nodes in the network. This means
that at any moment only a small proportion of its contents are visible and a scroll
bar must be used to navigate within the global view.ZUIs typically contain a very
large number of objects and so a global view of all the objects in the information
space would be so big as to be ineffective. As discussed above, our hierarchy trees
are designed to make use of the structure present in manyZUIs and thus show the
types of the objects in the information space and the names of only that object
under the cursor and its ancestors in the hierarchy. The hierarchy tree is much
smaller than the list of all the nodes in the information space. It is thus easier to
assimilate.

5.1.6 Limitations in Open Information Spaces

It is not possible to create a complete hierarchy tree for a virtual world that is
open. If there is no upper or lower limit on the scale in the virtual world then the
hierarchy tree can only show the types of information around the user’s current
scale. This situation would lead to a hierarchy tree that is extended as users zoom
and dezoom.

A further restriction is that the hierarchy tree must be able to be calculated
quickly. A virtual world used to browse the World Wide Web, where collect-
ing exhaustive information is effectively impossible, would have to limit the time
taken to generate the hierarchy tree. The hierarchy tree would thus have to be
incomplete but could be extended as a background task as users navigate. The
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direction of the users’ navigation would guide the background task as it seeks to
extend the hierarchy tree.

5.2 Context Layer

In ZUIs users can only see one view at a time: the focus. Users often cannot
understand where the focus fits into the information space because it only shows
a limited region of this space and ignores the surrounding context. The view of
the focus shown in Figure 5.3d shows a view that the user might see after having
navigated for a while in theZUI. This view does not contain any clues that would
let the user know what map or chromosome is visible.

Our new aid, thecontext layer, is displayed by user request command if they
become disoriented and allows the users to position the focus with respect to more
global views of the information space.

5.2.1 Context and Focus Both Visible

In contrast to the methods described in section 4.1 that integrate the context and
focus by deformation, we integrate the context and the focus by temporarily draw-
ing the context (the context layer) over the focus. There are thus two views visible,
overlaid, on the user’s screen: the context and the focus. This is depth multiplex-
ing of two views into a single space. Figure 5.4 shows how the context layer is
constructed. The users have arrived in the situation shown in Figure 5.3d and are
lost. They then ask for the context layer which gives Figure 5.4b. This view con-
sists of the context, in this case the top level (Figure 5.3a), drawn over the focus.
The position and size of the focus relative to the context is indicated by a rectangle
drawn on the context. This rectangle is indicated by the arrow in Figure 5.4.

5.2.2 Context Layer is Temporary

Our ZUI normally only shows the focus (and the hierarchy tree discussed in sec-
tion 5.1). Users can create (and control) the context layer with a single gesture.
Once this gesture is ended (by releasing the mouse button used to start the gesture)
the context layer vanishes and the users return to the view they had of the virtual
world before the creation of the layer. The fact that the context layer is temporary
avoids surcharging the user’s view of the information space with context infor-
mation that is often unnecessary. The context layer can however be created with
a simple mouse movement that makes its creation when necessary as simple and
rapid as possible.



150 New Context Aids for Zoomable User Interfaces

AFM155zg1

AFMa051xg9
AGCTTCTGAAGGGCAGGAATGATGCCATTCATCTGTCTTCAGCACACCCC
AGTCACAAGTACAGTGCTTTACTCACGAGGACTAAGTATCAATAAATATT
TTCAGAACTGAACTCTTCATCAATANCTCCTACGTGTTGAAATCTATAGA
ATCACATCTCATTGTATCCAGGGCAAAATTACACACACACACACACACCA
CACACACACATATAGTATATACATATATAAAGTNANTTATATACNTATTA
TATATACATATATAAAGTTATATATGTATCGAGTGGGACAGATATGCTAA
TAAATATTTTTTGAAATAATACAGTAAAAGCT

AFMa337ze9

AFMc026wd9

AFM063xf4

AFMb281xf1
GATCATTTGGGTTTCCATGATAGACTTGCACACTCCGAGGACAGCAACTA
ACCTCCTGTAAGCTTCTACTCCCAAATAAATTAGTGGAATTGGCTTCACC
CTGGAGCATGGAAAAATCACATCTCATTCCATATGANTCAATTGTACAAG
ANTAACCAACGGGAAAACTTCTGATACTGGGAGANTTTTCCTAAGGCACT
CAATAGGAAGGNCAGGTCAATCGNCACACACACACACACACACACACACA
CACTACATACATATTACAGCTGACCCTTGAATAACACAGGGTTTAAACTG
CACAGTCCCACTT

AFM309yd9

no other maps

no other maps

(a) top level view of the 24 chromosomes (b) chromosome bands and the 3 maps

(c) some markers on chromosome 10 (d) some sequences on chromosome 10

Figure 5.3: Lost after zooming
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Figure 5.4: Constructing the context layer
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5.2.3 Transparency Used

When the context layer is being used two views are visible on the user’s screen.
One of these views is transparent so that they can both been seen at the same time.
Users are able to control which of the two views is transparent and its level of
transparency. The users can decide which view is the more important at a given
instant, make that view solid and fade out the other view as much as necessary.
The control of the transparency must be as fluid as possible so that the user can
move very quickly from concentrating on one view to concentrating on the other.
This fluidity is obtained by the use of a Control Menu (explained later in this
chapter).

Figure 5.5b and Figure 5.5c show the same focus and context. In Figure 5.5b
the focus is drawn solid and the context is transparent. In Figure 5.5c, the users
have switched their attention to the context. It is drawn solid while the focus has
been drawn transparent. The user studies discussed in section 4.3 (Harrison et al.,
1995b) indicate that transparent views and overlays are well accepted by users.

Systems that show the focus and the context in two different display areas are
space multiplexed. Systems that show either the focus or the context (at the users
demand) in the same display area are time multiplexed. Context layers are depth
multiplexed (subsection 4.3.7). They are shown at the same time in the same place
and the users use their depth perception, aided by the interaction, to separate the
focus and the context. They can also be said to be space multiplexed because
context layers are only visible when required by the users.

5.2.4 Context is Shown at Many Different Scales

The global view visible in the context layer is not fixed. The users can choose and
rapidly change the scale of the global view. It is however always centred around
the focus. This allows the users to start with a global view that is similar to the
focus and then rapidly change the scale of the context layer (dezoom this layer).
This continuous choice of contextual views allows users to position the focus in
the many different contexts and to thus understand the location in the information
space.

Figure 5.5a shows the top level or initial view of the information space drawn
over the focus. The rectangle (indicated by the arrow) that indicates that size and
position of the focus is small as the focus is small compared to the global view.
The rectangle in Figure 5.5a is drawn over the chromosome 10. This indicates
that the focus is showing part of this chromosome.

Figure 5.5b shows the same focus as in Figure 5.5a because the focus never
moves during the use of the context layer. The context in Figure 5.5b has however
been zoomed. The rectangle that shows the size of the focus has grown because
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Figure 5.5: Interacting with a context layer
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the focus is now bigger relative to the context. Its position, over the name of a
map, shows that the focus is showing part of the “Généthon” map. The context
can be further dezoomed so as to indicated where the markers currently visible
can be found on this map.

5.2.5 No Optical or Positional Deformation

Context layers combine the focus and the context in a way that avoids the posi-
tional or optical deformation which often makes images difficult to recognise and
understand. Views such as hyperbolic displays or non-linear distortions allow a
large amount of context information to be displayed. Users often find it difficult to
use this context information because it is severely deformed, either near the edges
of the view or just around the focus. The size, form and relative positions of the in-
formation are changed. Even more difficult for users is that these transformations
are not constant. As users move through the information space and as information
moves towards and away from the focus, the deformation changes. The advantage
of deformation, that more information can be represented, is retained by the con-
text layer as it associated with a continuous and very fluid control of the scale of
this layer.

5.2.6 Distinguishing the Focus and the Context

When two different views are drawn superimposed it is not always easy to see
which object belongs to which view; distinguishing the two views may be difficult.
When a context layer is being used, one of the two views is transparent. All
transparent objects thus belong to one of the views. The most important way of
distinguishing the two views comes from the continuous control that the users
have over the scale of the context and over the relative levels of the transparency
of the two views. As the users change the scale of the context, those objects in the
context move and change while the objects in the focus never move. The users can
thus easily identify to which views belong the objects. As the users change the
transparency levels of the views, those objects that are transparent become paler
or more solid. Once again, as the users control the context layer, they can see to
which view each visible object belongs.

5.2.7 Context Layer is Quasimodal

The context layer is modal: during its use the display is modified and all mouse
movements control the layer. Modal interfaces are often problematic for users as
they need to understand how to enter the mode, how to identify when they are
in the mode, and how to leave it. These problems were avoided by having the
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context layer, and thus the mode, exist only during a single gesture. Once this
gesture is over, the interface leaves the mode. This gesture starts when the mouse
button is pressed and ends as soon as the button is released. The context layer is
thus quasimodal, a term proposed by Raskin (2000), rather than modal. Nielson
(1987) uses the term “ ‘spring-loaded’ modes” and states that they are thought not
to be as bad as modes that are entered and left with special commands. Raskin
(2000) reports tests that confirm that holding down a key, pressing a foot pedal, or
any other form of physically holding an interface in a certain state does not lead
to mode errors.

5.2.8 Synergy Between Interaction and Control

The usability of the context layer depends on the user having a fluid control of the
layer. The users must be able to create the context layer with a simple gesture and
it should disappear as easily. Users need to be able to easily change the scale of
the layer so as to see the position of the focus with respect to the global view at
many different scales. They also need to be able to easily change the transparency
levels of the focus and the context so to switch their attention from one to the
other.

People can more easily identify objects when they move, especially when
these objects move against a stationary background. The simple act of control-
ling the context layer, which moves one view in front of a stationary view, is also
very important in reducing the interference between the two layers as it allows the
users to identify to which view each visible object belongs.

When using a context layer two orthogonal controls are immediately available:
the scale of the view shown in the layer and the relative levels of transparency of
the context layer and the focal view. These two controls are shown in Figure 5.6.
The interactor, a Control Menu, used to provide these controls is described in
Part I. Figure 5.7 shows the Control Menu in Zomit and the gesture that cre-
ated and controlled the context layer through the steps shown in Figure 5.5. The
scale of the context layer can be chosen so that the context layer shows any view
between the initial view and the focus.

Users can also control the relative transparencies of the context layer and the
focus. This allows users to concentrate on either the context or the focus by mak-
ing the chosen view be drawn solid and the other as transparent as desired.

Both these controls are available at the same time and in the same gesture.
Users can change the scale, then change the transparency, and then change the
scale again all in the same movement. It is this fluidity of control that should
make the context layer usable.
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5.2.9 Example

When in the situation shown in Figure 5.3, users can ask theZUI to show the
context layer. The context layer contains a contextual view (Figure 5.4c) and is
drawn on top of the focus (Figure 5.4a) giving Figure 5.4b.

The position of the focus is indicated on the context layer by a green rectangle.
In Figure 5.4a this rectangle covers the text “10q” and tells the user that the focus
is showing the chromosome 10. In Figure 5.4b the user has zoomed the context
layer so that it shows the names of the genetic maps (the focus never changes
during the use of the context layer). The green rectangle showing the position of
the focus covers the name of the Généthon genetic map. The focus is thus showing
this map. Using the context layer the user has been able to position the focus in
two different contexts.

As discussed above, the user can choose to concentrate on either the focus or
the context by changing the relative transparency of these two views. Figure 5.4c
is similar to Figure 5.4b except that the user is now concentrating on the context
and has faded out the focus. The rectangle that shows the position of the focus is
always visible and the user can see more clearly that the focus is currently showing
the Généthon genetic map.

5.2.10 Similar Techniques

Transparent overview layers (subsection 4.3.7) are a different type of display that
differs from ours in that:

• their layer is permanent while ours is a temporary orientation aid;

• the transparency level of their layer cannot be changed by the user;

• their layer always shows the top level view of the information space while
ours can be used even if there is no top level view; and,

• their layer can be used to move or modify the objects in the information
space while ourZUI does not allow objects to be manipulated in this way.

The context layers’ advantage comes from the coupling or bonding between the
interaction (or control) and the visualization.

5.3 History Layer

Context layers allow the user to find the answer to the question “where am I?”
Another important question is “how did I get here?”ZUIs need a history so that the
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user can return to previously visited regions of the information space and see these
regions in relation to the focus and the top level view. We propose a transparent
and temporaryhistory layerthat allows the user to move interactively along the
path taken in theZUI. As with the context layer, the history layer is temporary so
as not to overload the screen and it disappears when the user releases the mouse
button at the end of the gesture used to create it.

The path taken by the user in theZUI is a sequence of views of the informa-
tion space. The first view is the initial (or top level) view (Figure 5.8a) and the
view on the screen is the last current view (Figure 5.8e). All the views (called
the historical views) seen by users are stored in this sequence. Figure 5.8b and
Figure 5.8d are historical views that the user has seen in going from the top level
view to the last current view. The history layer is drawn over the top level view
(giving Figure 5.8c) and contains a view that can be varied by users from the last
current view, via the all the historical views in order, to the initial view (and back
again). The user can thus interactively “go back in time” and see the evolution of
the current view in relation to the top level view. The comparison is done directly
because transparent views are used so as to show the top level view and the histor-
ical view simultaneously. This comparison is also aided by the rectangles, drawn
in two different colours, that show the sizes and positions, relative to the top level
view, of the last current view and the historical view.

The history layer is temporary (time multiplexing) and transparent (depth mul-
tiplexing).

The interactor used to control the history layer, a Control Menu, is described in
Part I. This interactor provides two orthogonal controls, shown in Figure 5.9. The
horizontal position of the cursor within theZUI controls the choice of historical
view. When the cursor is towards the right of the interface, the chosen historical
view is a view seen recently by the user. As the cursor is moved towards the left,
the history view is a view that was seen earlier and earlier in the user’s navigation
in theZUI.

As with the context layer, the relative transparency levels of the history layer
and the top level view can be adjusted so users can concentrate on the history
layer or on the top level view. As the user move the cursor towards the top of the
ZUI, the top level or context view becomes paler and paler until it vanishes. At the
cursor is moved towards the bottom of the interface, the historical view becomes
paler until it vanishes. The two rectangles showing the position of the current
view and the last current view are always drawn solid and are not affected by the
level of transparency.

The current implementation of history overlays requires a top level view. This
may not exist in systems where users can dezoom from a view of their own files
to a view of, potentially and for example, the whole Internet. The scale of the top
level view could also be so different from that where users are currently working
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that they are unable to see changes to the positions of the current and historical
views. Further work should investigate whether the system should choose a dif-
ferent view to replace the top level view and whether (and how) users can control
this choice.

5.4 Conclusion

The new context aids presented in this chapter use the space and time multiplexing
strategies identified in chapter 4 to facilitate navigation in Zoomable User Inter-
faces and to reduce user disorientation. These new aids avoid the often difficult to
understand positional and optical deformations used by many visualization sys-
tems. We have found that the context layer is easier to understand than the history
layer. Both these techniques are easier for the user to understand than an onlooker.
Observers have a great deal of trouble understanding the relationship between the
interaction and the display. An evaluation of the hierarchy tree is presented in the
next chapter.

The dynamic nature of these aids is important in two respects. The required
contextual information can only be obtained with a continuous interactive use
of the aid and this continuous movement is what makes the aid’s display easily
understandable.



Chapter 6

Zomit: a Development Tool
for Zoomable User Interfaces

We developed Zomit,1 a Zoomable User Interface development tool, in an attempt
to solve some of the problems described in subsection 4.4.9. In this chapter we
describe the features of Zomit and Zomit’s architecture, followed by a comparison
with otherZUIs. Zomit implements the new context aids described in the previous
chapter and uses the new interaction techniques described in chapter 3. These
techniques allow a more fluid and natural control of aZUI. This improved control
of the interface allowed us to develop the new context aids that rely on this new
more fluid control for their effectiveness.

6.1 What is Zomit?

Zomit is a tool that allows developers to rapidly develop zoomable user interfaces.
It consists of a client and a server library that are used without modification with
any virtual world. The communication between the client and the server was op-
timised so that using the client over the Internet is possible. Zomit provides all
the standard functions of a Zoomable User Interface, such as semantic zooming,
Magic Lenses and portals, plus our new context aids. The graphical objects avail-
able to create the virtual world are simple and limited to lines, rectangles (possibly
with rounded corners), text, andJPEGor GIF images.

Zomit was designed to be used with passive databases. The communication
protocol and the cache strategy used this design goal to minimise and accelerate

1The name “Zomit” was chosen because interfaces developed with this tool zoom a lot and
because I was wearing my Wallace and Gromit (http://www.aardman.com/wallaceandgromit/) T-
shirt the day I had to find a name. “Zomit” thus rhymes with “Gromit”.

http://www.aardman.com/wallaceandgromit/
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the exchanges between the server and the client. Zoomable User Interfaces devel-
oped with Zomit are used to visualize information spaces but not to modify them
interactively.

6.1.1 Navigation and Interaction

The Zomit client (the user interface part of Zomit) uses the new Control Menu
described in chapter 3 and incorporates our new navigation aids. TraditionalZUIs
rely on the presence of multiple mouse buttons to handle zooming and panning.
Other functions, such as creating and moving Magic Lenses and interacting with
portals, are implemented by special regions in the interface. For example, the title
bar of a Magic Lens is a special region where the gesture that would normally pan
theZUI has a different effect; it moves the lens.

Zomit has a different approach. Only one mouse button is needed (all the
buttons on the mouse have the same effect). Multiple functions are accessible
from one mouse button via the use of a Control Menu (chapter 3). The top level
Control Menus used in Zomit are shown in Figure 6.1. Figure 6.1a is the standard
Control Menu. This menu is automatically simplified to that shown in Figure 6.1b
if the developer of the virtual world does not declare any lenses.

The same gesture always has the same effect no matter where it occurs in the
interface. The gesture that zooms theZUI will always zoom theZUI even if it is
made over a lens or a portal. This means that users do not have to look at the
screen and find a region free of portals and lenses before making the gesture to
zoom or pan. This is especially important for portals which arrive over the Internet
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and can thus be drawn between the moment when users check to see that there are
no portals under the cursor and the moment when they start a gesture. Users can
operate on lenses and portals by using the sub-menus of the Control Menu. This
menu, shown in Figure 6.2, is only active when the cursor is over a portal. The
operations are thus separated from normal interaction. Operations on portals are
also separate from operations on lenses. It is thus easy to control a portal even
when it is covered by one or more lenses.

The pan operation is at the top of the Control Menu. Users must move the
cursor up to start the pan operation, and thus move the image up a small amount
at the start of a pan. Informal observations indicate that users do not find this
difficult or disconcerting.

Earlier menu layouts had the zoom operation only on the right hand side of
the Control Menu. This confused many users as they expected to able to dezoom
by moving directly to the left. With the Control Menu layout shown in Figure 6.1,
the zoom action is on the left and the right of the Control Menu. Users can thus
start the zoom operation with an initial zoom or an initial dezoom. The disadvan-
tage of this solution is that it requires an extra position on the top level Control
Menu. Some user studies have reported that users expect the zoom and dezoom
operations to be towards the top and bottom of the screen or, equivalently, away
from and towards the user. We have not tested this assertion.

Panning and zooming are highly correlated operations. After a zoom, or even
during a zoom, users often need to recentre their view of the information space.
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An open question is how to combine panning and zooming. Vertical movements of
the cursor do not have any meaning during a zoom. It is thus possible to redefine
the zoom operation so that a large vertical motion would cause the system to quit
the zoom mode and enter pan mode. However it is not possible to then leave the
pan mode and return to zooming because during a pan all cursor motions have a
sense.

6.1.2 Client/Server Architecture for the Internet

The Zomit system was designed to be usable over the Internet. This means that
the user of the system is often a long way from the source of the information used
to create the virtual world. The database containing this information is normally
much too large to be transfered over the Internet for each user and creating each
region of the virtual world may require reading a significant amount of informa-
tion from the database. The program that reads the database to create the virtual
world must thus be able to rapidly interrogate the database. This means that the
program must be on the same local network as the database server.

In addition, Zoomable User Interfaces are very interactive programs. The user
continuously manipulates the view of virtual world that represents the informa-
tion space. These interactions must be executed as rapidly as possible and often
require the view of the information space to be completely modified. Keeping the
response times at acceptable levels requires that the program execute on the user’s
machine.

These two requirements meant that Zomit program had to be split into two
parts, a client and server. The client runs on the user’s machine and communicates
with the server which executes close to the database server.

6.1.3 Generic Tool

Zomit is a generic tool. The structure of aZUI developed with Zomit and as used
over the World Wide Web as a Java applet is shown in Figure 6.3 (see subsec-
tion 6.3.2 for more details on the Zomit client). The same client can be used to
visualize any virtual world created with Zomit. The server library is also com-
pletely generic. The developer of a Zomit virtual world just has to replace the
the HTML page read by the user’s browser and the application specific code that
connects the Zomit server library to the data source (see subsection 6.3.1 for more
details on creating a Zomit server). These components are shown in bold text in
Figure 6.3.
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6.1.4 Creating the Virtual World

A Zomit server consists of a program, written by the developer of the virtual
world, linked with the Zomit server library. This program creates instances of
classes derived from a base class,triglyph,2 provided by the library. These in-
stances are registered with the library as covering a region of the virtual world.
This base class consists of two methods. The first returns the region associated
with this instance when it was registered. The second method,run, is a virtual
function that the developer must override. When called, therun method of these
instances generates graphical objects and new instances of triglyph. These graph-
ical objects and the new instances must lie wholly within the region associated
with the instance.

Figure 6.4 shows a view of a two dimensional virtual world (they dimension
has been removed, only thex dimension and the scale remain). As users zoom,
they move up in the virtual world shown in the figure. Five different viewports
into the virtual world are shown as hollow rectangles in the figure and labelled
with letters. The viewport always remains the same size so as they zoom to see
more details, users see an ever smaller part of the virtual world. Users start at
the position i. This position is calculated by the client such that the entire virtual
world fits into the user’s view. Users can then zoom to positions a and b, and
then zoom and pan to position c. The object A is visible at positions a and b but
has vanished, replaced by objects B and C, by the time the users have zoomed to
position d.

Some triglyphs are shown in Figure 6.4 as solid rectangles and labelled with

2The reason for the choice of this name is lost in history.
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numbers. As explained above, triglyphs are defined as covering a region of the
virtual world. They cover a rectangular region from a given scale until infinity. As
the virtual world in Figure 6.4 has only two dimensions, the rectangle becomes an
interval. The triglyph number 6 covers the part of the virtual world betweenx= x1

andx = x2 and from scalez1 to ∞. When called, therun method of this triglyph
creates graphical objects and other triglyphs in this part of the virtual world. This
triglyph could create the objects D and E and the triglyphs 11 and 12. (These
objects and triglyphs could also have been created by the triglyphs 3 or 0.)

Therun method is called when the user enters into the region associated with
the triglyph. The triglyph 0 (from Figure 6.4) is called as soon as theZUI starts.
The triglyph 2 is called when the user moves to position b or d. It would not be
called if the user moves to position c or e.

6.1.5 Lazy Evaluation

ZUIs are typically used to visualize very large databases. An extremely large num-
ber of graphical objects is required to create the virtual world for such a database.
Generating all these objects in advance would create another large database and
generating them each time a user wanted to visualize the virtual world would take
too long. It is thus important to generate the objects in the virtual world only when
they are needed.

This mechanism described in the previous section allows the objects in the
virtual to be generated only when required, i.e. by lazy evaluation. The developer
creates an instance of triglyph (number 0 in Figure 6.4) that covers the entire vir-
tual world. When this instance of triglyph is executed, it will create the objects
visible in the top level view, and, new instances (numbers 1 and 3 in Figure 6.4)
that will be called if and when the user arrives in the regions of the virtual world
associated with the new instances. Objects will thus only be created when re-
quired. This allows Zomit to be used to visualize very large databases where it is
not possible to create in advance, and store, all the possible objects in the virtual
world.

6.1.6 Positioning Regions and Objects

Each region in the virtual world is described by six coordinates: the range covered
in thex dimension, the range covered in they dimension, and the range covered
in the scale (orz) dimension. Objects in the virtual world are described using the
same coordinates (in this case the scale dimensions indicate between which scale
values the object is visible).
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Coordinates are Absolute

Objects and regions are always described in absolute coordinates in the server and
transmitted as such to the client. The client scales the currently visible objects
according to the user’s current zoom factor (scale) before drawing them. Objects
are visible when the user zooms to the scale from which they are visible. They
then grow as the user zooms and vanish when the user’s scale is no longer within
the range associated with the object. Objects grow as users zoom because the
scale changes not because the positions (coordinates) of the objects change.

The developer of the virtual world can freely position the objects in the world.
A typical virtual world will however be constructed in such a way that when users
zoom on objects, and they vanish, they will be replaced with other objects that
describe the underlying information in more detail. The process was graphically
illustrated in the section on space-scale diagrams (subsection 4.4.1) and in Fig-
ure 6.4. An object could thus be placed at coordinates(x1,x2,y1,y2,z1,z2) to
be replaced by, for example, two objects at(x1,x3,y1,y3,z2 + 1,z3) and (x3 +
1,x2,y3 + 1,y2,z2 + 1,z3) (wherex1 < x3 < x2 andy1 < y3 < y2). The different
representations of a data item thus remain at the same position in the information
space but are represented in more detail as users zoom.

Coordinates are Large Integers

The disadvantage of using absolute coordinates is that the objects that show the
virtual world in the least detail have to be large enough to be subdivided into the
very large number of objects that describe the virtual world in detail. In Zomit
all positions in the virtual world are described using 128 bit integers. This pro-
vides sufficient (and uniform) precision for even very large virtual worlds but
some care has to be taken to avoid underflow and overflow in intermediate results
when performing calculations. Another possibility would have been to use high
precision floating point numbers but calculations with floating point numbers is
often slower than with integers. The second problem with floating point arith-
metic is that floating point numbers do not have a uniform precision. They have
a very high precision near zero but the local resolution declines quickly as the
value moves away from zero. This resolution granularity could cause problems in
accurately positioning objects distant from the centre of the virtual world.

6.1.7 Portals and Lenses

A portal is an object in the form of a rectangle and that includes the coordinates,
x, y, and scale, of the region of the virtual world that is to be shown in the portal
when it is first displayed. The display of the contents of the portal, and panning
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and zooming by the user in the portal, are handled by the client. When necessary
the client requests the region to be displayed in the portal from the server. The
handling of these requests does not require any code to be written by the developer
of the virtual world.

Each Magic Lens and every possible combination of Magic Lenses is a view
into a virtual world parallel to the main virtual world. When the developer of the
virtual world creates an object or a triglyph, the object or triglyph is placed either
in the main world or in the parallel world associated with a Magic Lens. Using
this technique, the developer can create objects that are, for example, black in
the main world, but have a different colour in a lenses. Another possibility is to
change the form of objects when they are viewed through a lens. The effects can
be combined when objects are viewed through two lenses. This is discussed in
more detail in subsection 4.3.6.

Objects visible in lenses are standard graphical objects with just an extra field
which indicates in which lenses they are visible. This allows the client to treat
them like any other object and, most importantly, to cache them.

With this type of lens, the developer can create a constant transformation of
the objects covered by the lens but cannot create a lens that shows a calculation
that depends only on these objects.

6.1.8 Communication Server Side

The server receives requests from the client asking for all the objects that intersect
a plane in the virtual world (the viewports shown in Figure 6.4). This plane is
described by five coordinates(x1,x2,y1,y2,z). When a request arrives the list of
those objects already created but not yet sent to the client is examined. Those
objects that intersect the plane are sent to the client and deleted from the server.
The list of instances of triglyph that have not yet been called are then examined.
Those whose regions intersect the plane are called. The resulting objects are either
sent directly to the client if they intersect the plane, or stored. The procedure is
then repeated with those instances of triglyph generated by the instance of triglyph
that was called.

The client sends two types of request to the server. The first asks for the
objects in a (small) region of the virtual world that corresponds to the contents
of a portal or a lens. These requests are processed in the order in which they
arrive. The second type of request indicates that the user has moved (by zooming
or panning) and that all previously received requests (including those of the first
type) should be abandoned. The queue of incoming requests is thus examined,
each time an object is sent to the client and before calling a triglyph, to see if there
is a request that should cause the current request to be abandoned. This avoids
sending graphical objects that are no longer required or unnecessarily executing
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triglyphs.

6.1.9 Communication Client Side

Each time the user changes position in the virtual world (either by panning or
zooming), the client sends the user’s new position in the virtual world to the server.
The client also sends a request for the objects in a region when it needs to draw
the contents of a portal or a lens. These requests for small areas of the virtual
world are repeated when the user zooms or pans in a portal or moves a lens. As
described above, the server responds with the objects (that have not already been
sent to the client) that are visible at the requested positions. The client does not
wait for the requested objects to arrive from the server (in fact it does not even
know if any objects will arrive). It immediately draws the objects that it already
has and draws any new objects when they arrive (if the user has not moved to a
position where they are no longer visible). All the objects received from the server
are stocked for reuse when the user returns to a position where they are visible.
This method ensures that only the display of as yet unseen objects is delayed by
the latency of the network connection with the server. All other interaction is
carried out locally in the client. As objects are visible through a range of scales,
when the user zooms it is probable that at least some objects already received
from the server will still be visible at the new scale. These objects are thus drawn
immediately, thus improving the perceived responsiveness of the system, and as
the new objects arrive they fill in the empty spaces.

These is currently no indication transmitted from the server to the client saying
that a request has been satisfied. This should be added to the protocol so that the
client can tell the user when all the required objects have been received from the
client and thus the current view of the virtual world is complete. This lack has not
been a problem for our tests because over local Internet connections the objects
arrive quickly and, more importantly, in a continuous stream. Once the screen
stops changing, the user can tell that all the objects have arrived. This indication
is required when the connection has long and random delays.

6.1.10 Exchanges Between the Server and Client

Figure 6.5 shows the exchanges that occur between the Zomit server and the Zomit
client.

After Initialisation the Exchanges are Asynchronous

After handshaking with the client and testing that ensure that the client and the
server can communicate binary data correctly, the server tells the client the size
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of the virtual world. The client uses this size to calculate the user’s initial scale
(or level of zoom) that causes the entire virtual world to be visible. The names
of the available lenses are then sent, followed by the colour of the background of
the virtual world. The client then sends information on the sizes of the characters
that can be drawn by the client. This information is used by the server to calculate
the bounding boxes of strings of text and is also available to the developer of
the virtual world. Once this information has been sent, the exchanges become
asynchronous, the client asks for objects without waiting for the reply, and the
server replies as soon as it can.

Exchanges Optimised for Slow Links

Other than the transfer of the client itself, the sending of objects from the server to
the client accounts for most the bytes exchanged. The objects are sent in a binary
format that corresponds to the format of integers (and strings) in the Java virtual
machine. (The Java virtual machine is the program that executes the Java code. It
is part of the Web browser used to run the Zomit client.) These objects are thus
small and easily unpacked by the client. These objects are sufficiently small that
Zomit can be used (but not downloaded) over a mobile telephone connection at
9600 bits/second. Zomit has also been successfully used over long distance Inter-
net links such as that between Paris in France and Palermo in Italy. The capacity
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(the number of bytes per second) of the link is thus relatively unimportant. Any
delays that the user might see in the drawing of as yet unseen objects is caused by
the calculation time on the server or, more often, the latency (the time take for a
byte to travel from the server to the client) of the Internet link.

As previously explained, a further optimisation is that objects are send to the
client only when they are required.

6.2 Architecture Analysis

This section describes various architecture modelling techniques and then uses
one of them to analyse Zomit and a number of otherZUIs.

6.2.1 Architecture Modelling Techniques

There are essentially two different methods of modelling interactive systems (Bau-
del and Beaudouin-Lafon, 1998).

Seeheim

The first method of modelling interactive systems can be called “vertical”. The
modelling techniques that are descended from the Seeheim model (Pfaff, 1985),
named after the town where the workshop that invented this model was held. The
Seeheim model decomposes the entire user interface part of an interactive system
into three components: the interface with the application, the dialog controller and
the presentation component. Figure 6.6 shows these three components (Coutaz,
1993). This model emphasises the form of an interactive system and ignores the
system’s dynamics. This is unsatisfactory in computer-human interaction where
the input and the output evolve together and where multiple input channels may
be used in parallel.
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Arch

The Arch model (Arch, 1992) was created as an improvement on the Seeheim
model and with the aim of helping developers understand the advantages and dis-
advantages of different run-time architectures. The types of information that cross
the component boundaries have been made explicit in the model. There are five
layers in the Arch model (Figure 6.7). The domain specific component corre-
sponds to the Application in the Seeheim model, the domain adapter component
to application interface, and the dialog component to the dialog controller, while
the Seeheim presentation component has been split into two parts (Coutaz, 1993).
The interaction toolkit implements the interaction with the user and is often pro-
vided by an external toolkit such as Motif (The Open Group, 1997). The pre-
sentation component is a mediator between the dialog component and the toolkit,
and insulates the dialog component from changes in the toolkit. The Slinky meta-
model, a generalisation of the Arch model, is a modelling framework from which
Arch models, specialised for a particular case, can be derived. A specialised Arch
model might remove part of the presentation component if the efficiency is more
important than the ability to changing toolkits.

MVC

The second method of modelling interactive systems can be called “transver-
sal” and is exemplified by theMVC (model-view-controller) architecture from
Smalltalk (Olsen, 1998). The components of this model are shown in Figure 6.8.
MVC models a system by saying that each object in the system has a view, a con-
troller and a model. The view must provide the graphical representation of the



174 Zomit: a Development Tool for Zoomable User Interfaces

Model

user

application’s
functional 

core

View

Controller

user interface

Figure 6.8:MVC model

object that the user can manipulate. The controller receives all of the user’s in-
puts and is responsible for updating the view and calling the objects in the model
to make the required changes. The controller may need to interrogate the view
to retrieve information required by the objects’ callbacks. TheMVC model was
successfully used in the Amulet project (Myers et al., 2000). This model is called
“transversal” because eachMVC module is responsible for the presentation, user
dialog, and semantics of part of the overall application. A typical user interface
system consists of a large numberMVC modules. This can make implementing the
constraints between the modules and creating a global interaction structure diffi-
cult. The use of this model can thus become unwieldy when the dialog model is
complex. In addition the model cannot represent the application as a whole—each
part of the application is modelled independently.

PAC

As with theMVC model, thePAC (Presentation, Control, and Abstraction) model
(Coutaz, 1990) decomposes each class in the application into three components:
Presentation, Control, and Abstraction (Figure 6.9). This model differs from the
MVC model in that all the interaction with the user (that is the view and the con-
troller in the MVC model) is combined into a single component, called the pre-
sentation. The control of the module is now explicit: the Control component is
responsible for linking the presentation and, via the abstraction, the application.
The PAC model is recursive and the Control component is the liaison with the
module above this one in the module hierarchy, and with those modules below it.

PAC-Amodeus

ThePAC-Amodeus (Assimilating Models of Designers, Users and Systems) model
is a refinement of the Arch/Slinky model. The Arch/Slinky model does not for-
malise the organisation of the dialog controller. InPAC-Amodeus, this component
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is defined as a hierarchy ofPAC agents (Nigay and Coutaz, 1992). This hierar-
chy agents must sequence the tasks to be performed in the application as well
as translating the data in the system between the different formalisms of the do-
main objects and the presentation objects. ThePAC-Amodeus model was used to
model a multimodal airline travel information system (Nigay and Coutaz, 1995).
This model is rich enough to be used to describe a complex system that can merge
asynchronous spoken commands, typed natural language, and keyboard input into
a single user request.

6.2.2 Zomit Modelled byPAC-Amodeus

Figure 6.10 shows how the Zomit client/server architecture can be modelled using
the Arch model.

Domain Specific Component

The domain specific component is part of the server that runs on the server ma-
chine. This machine stores the data used to generate the virtual world. The domain
specific component reads the data used to create the virtual world. In the case of
ZoomMap, this component reads the HuGeMap database and creates the domain
objects that are passed to the domain adapter. In theCDI application (section 7.2),
the domain specific component reads theXML data files to create the domain ob-
jects. The domain objects are the class instances that are called by the domain
adapter component.



176 Zomit: a Development Tool for Zoomable User Interfaces

specific
application

code

objects
graphical

Zomit
server
library

class
instances the toolkit

calls to

Zomit

dialog
code

null

calls to
the toolkit

Java
graphics

toolkitserver client

Figure 6.10: Zomit modelled by Arch

Domain Adapter Component

The domain adapter component is part of the server that runs on the server ma-
chine and consists of the Zomit server library that translates the classes containing
executable C++ code into the simple graphical objects that are transfered over a
Internet connection to the dialog component. These simple graphical objects are
the conceptual objects that the dialog component stores and uses to control the
interaction.

Presentation Component

As indicated in Figure 6.10 there is no presentation component in Zomit. The
Zomit client executes on the user’s machine which is of unknown computing
power. The client must remain rapid even on machines with limited resources.
We thus decided for reasons of efficiency to avoid the performance loss that would
been incurred by the addition of an extra layer, the presentation component, into
the Zomit client.

Interaction Toolkit Component

In addition, the presentation component exists to allow the interaction toolkit, and
thus the environment (the X Window System versus Windows, for example) to be
changed without requiring the dialog component to be rewritten. This possibility
of changing toolkits was not important in this project and Java already provides
environment independence. What would have been interesting would have been
to replace replace Java by an another language such as C++. As the dialog com-
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ponent is written in Java it would have had to have been rewritten even in the
presence of a presentation component.

Dialog Component

The dialog component can be modelled byPAC as shown in Figure 6.11. This
figure uses the same positions for the three components of thePAC module (from
left to right, abstraction, control and presentation) as in the Figure 6.9.

Main Module The presentation part, or “axis” (Coutaz, 1993), (labelled “sub-
module positioning”) of the main module positions the two subordinate modules
(the hierarchy and virtual world modules) and handles resize requests from the
user. The abstraction axis (labelled “requests & objects”) handles all the commu-
nication with the Zomit server and contains the reader and writer threads described
in Figure 6.13. The control axis (“task sequencing”) receives requests from the
abstraction axis and passes them to the two subordinate modules so that they can
update their views of the virtual world. It also receives requests from the sub-
ordinate modules indicating that the user has moved in the virtual world. These
requests are passed to the other subordinate module so that the two views of the
virtual world stay synchronised and to the server, via the abstraction axis, so as to
receive any as yet unseen objects visible at the user’s new position.
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Hierarchy Module The control axis of the hierarchy module (“update & user
requests”) receives hierarchy information from the main module and uses its ab-
straction axis (“hierarchy positioning”) to convert this information to screen coor-
dinates. It then asks its presentation axis (“hierarchy display”) to update the user’s
view. User interaction with the view of the hierarchy is treated similarly but in the
other direction. The control axis receives notification of the user’s demand from
the presentation axis and uses the abstraction module to translate the demand to
object coordinates before sending it to the main module.

Virtual World Module The function of the control axis in the virtual world
module is similar to that of the control axis in the hierarchy module. It asks for
and receives objects from the main module, uses its abstraction module (labelled
“object positioning”) to translate these objects to screen coordinates (which are
different from those in the hierarchy module) and then calls its presentation mod-
ule (“virtual world display”) to update the user’s view of the virtual world. In
response to mouse movements and clicks, the presentation axis displays a Control
Menu and interprets the user’s use of the menu. The presentation axis then passes
the user’s command to the control axis, which once again uses the abstraction for
the conversion to the object’s coordinates, before passing the user’s new position
to the main module. If the user asks for the creation of a lens, the control axis asks
the presentation module to draw it, and, after translation by the abstraction, asks
the main module for lens’ contents.

6.3 Implementation

Zomit was implemented using the models described in the previous section and
taking into account the limitations imposed by its execution environment: large
databases, long distance access and a slow client.

6.3.1 Server

As the server executes in a known environment, the server machine, it is possible
to use a compiled programming language. This also results in a faster server. The
Zomit server library is thus written in the C++ Programming Language (Strous-
trup, 1997) and consists of almost 5000 lines of C++ code.

The main thread in the server executes the triglyphs, the code specified by
the developer of the virtual world. There are two other threads that handle the
communication with the client in order to avoid the server or the client blocking
when reading or writing the network connection. These three threads are shown
in Figure 6.12. Sending objects to the client is handled in a separate thread so that
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the main thread is not blocked if the network connection is slow and thus unable to
accept the objects as fast as they are generated. Reading the connection from the
client is also handled by a thread so that the connection from the client is emptied
as soon as possible (even when the main thread is busy). Emptying the connection
from the client is important to avoid the client becoming blocked when writing to
the server. The coordination and communications between the three threads is
handled via mutex locks and shared memory.

6.3.2 Generic Client in Java

The client was written in Java (Arnold et al., 2000) so that it can be downloaded
and executed in a standard World Wide Web browser. It has been successfully
used with Netscape and Microsoft Internet Explorer running on the Sun Solaris,
Linux, MacOS, and Windows platforms. The use of Zomit does not require any
installation by the user other than the installation of a standard browser. The Java
program, almost 6000 lines of source which compiles to 106 000 bytes of Java
code, is stored in a Java archive and is thus downloaded by the Web browser in a
single Web connection. As it is completely generic it can be cached by the user’s
browser or by standard site-wide Web page caches; subsequent downloads are
thus accelerated. When downloaded by a browser a Java program is an applet and
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can only contact servers on the same machine from which it was downloaded. The
Zomit client can also be installed and executed as an application using Sun’s Java
Development Kit (JDK). In this case the Java archive only has to be downloaded
once and can be used to communicate with any Zomit server on any machine. The
Java client is a “thin” client: everything that can be done by the server is done by
the server so that the client is as small and fast as possible.

When used as an applet, the number of theTCP/IP port of the Zomit server is
specified as parameters to the applet in theHTML code that calls the applet. (The
machine is always that from which theHTML code was downloaded.) It is thus
possible to have a number of independent Zomit servers on the same machine. A
number of different Zomit applications can also share the same port on the same
machine as the handshaking of the client/server protocol includes the name of
the Zomit server to be executed. This name is also specified as a parameter in the
HTML code. When used as an application, the user specifies the name of the server
machine, the name of the server, and the port as arguments to the application.

One of the aims of Java is to be “Write Once, Run Anywhere” (a Sun Mi-
crosystems trademark). This however turned out to be far from the case. Different
versions of Java provide different functionalities. The printing functions and some
graphics capabilities are not available in the earlier versions of Java (known as
Java 1) but only in Java 2. The standard Web browsers only provide Java 1 func-
tions and this has to be detected (without provoking an error) and compensated
for at run time. However the biggest problem came from the different implemen-
tations of the same version of the graphics libraries. The differences between the
Java 1 graphics libraries were such that continuous testing was required to ensure
that Java applet produced the same display in the different browsers.

The three threads that execute in the Zomit client are shown in Figure 6.13.
The reader and writer threads exist in the client for the same reason that they
exist in the server: to avoid the main thread blocking when reading or writing the
network connection.

The user’s position and scale are restricted so that they remain within the vir-
tual world. If users enter a region where there are no visible objects (or they
become lost) they just have to dezoom until they find known objects. In the worst
case this will be the initial view of the world. The designers of the virtual world
should take care to minimise or eliminate empty regions in the virtual world. This
can be done filling these otherwise empty spaces with “sign posts”: arrows and
text saying “go this way to find interesting objects”.

6.3.3 Graphics in Java

The virtual world shown in Zomit is graphically very simple. The user interface
consists essentially of two Java Canvas widgets from the standard Java 1AWT

http://java.sun.com/features/1998/03/byte.sidebar.html
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graphics library. Other widgets are used to position the two main Canvas widgets.
These widget are very simple: the programmer is responsible for drawing the
contents of a Canvas widget and for redrawing the contents when required (by
part of the widget being covered and then reexposed). Only lines, arcs, text,JPEG

images andGIF images are drawn. The use of graphical operations was restricted
to this set in order to minimise the time required to draw each view of the virtual
world. Users move rapidly through the virtual world so it is important that the
frame rate, the number of views of the virtual world that Zomit is able to draw
every second, be as high as possible. The limited set of operations also reduced
the number of compatibility problems between different implementations of the
AWT graphics library. JPEG and GIF images are asynchronously scaled to the
correct scale by theAWT graphics library. Once scaled they are drawn at the
correct position on the screen. TheAWT graphics library stores the scaled images
so that if they need to be redrawn at the same size, it is not necessary to recalculate
the scaled image.

The biggest remaining problem was in the handling of the redrawing of the
virtual world during panning and zooming. Zooming leads to the entire contents
of the screen being redrawn with each movement of the mouse. Even with the
restricted set of graphics operation described above, redrawing the screen can
take a significant part of a second on less powerful machines. This operation thus
required the use of double buffering to avoid excessive screen flicker. Double
buffering, drawing the new image into an off-screen buffer and then copying the
off-screen buffer to the screen, increases the time required to update the screen. It
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is thus necessary the adapt the frame rate to the time required to redraw the screen.
Rather than trying to redraw the screen each time the user zooms a fixed amount,
Zomit (during a zoom operation) reads the new mouse position, and thus the new
scale, after each redraw, and then redraws the screen with this new scale. This
prevents Zomit from “lagging behind” the user.

It was possible to avoid double buffering (and the associated extra graphics
operations) during a pan by shifting, via a copy, the on-screen image the required
amount and then redrawing the newly empty regions (Figure 6.14). As with the
zoom, no attempt was made to redraw the screen each time a mouse movement
event is received. After each redraw, all the untreated mouse movements are read,
the new position of the mouse calculated and the image “jumped” to the new
position. Once again this stops Zomit lagging behind the user. A modern machine
is however sufficiently rapid to handle every mouse event as it occurs and to update
the screen after each mouse movement.

The rapid redraws described in this section only apply to regions that contain
objects already received by the client. When the user visits a new area of the
virtual world, the screen will first be redrawn with the currently available objects.
The remaining objects will be drawn as they arrive from the server.
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Transparent Layers

The development of the new context aids (that use transparent layers) described
in section 5.2 and in section 5.3 required the use of Java 2. Java 2 includes new
graphics capabilities available in the Java2D extensions to theAWT graphics li-
brary. Zomit uses the alpha blending capabilities of Java2D to draw the transpar-
ent layers. These extensions are not available in Java 1 which is the version of
the Java graphics libraries included in the standard Web browsers. As described
above, it was thus necessary to avoid calling the Java2D extensions (or even using
class files containing calls to these extensions) when a Web browser was being
used. When the Zomit client is being used as an application, the extensions are
called and, if available, used. In Web browsers, or if the Java2D extensions are not
available, the transparent layers are simulated using thexor drawing function of
the Java 1 libraries. Thexor drawing function produces some unexpected colours
but it is usually possible to understand the idea behind the new context aids. The
xor drawing function also has the advantage of being very significantly faster than
the alpha blending functions.

The Java2D extensions are also used to create Postscript images of the screens
in Zomit. This allows images of Zomit included in reports to be drawn with the full
resolution of the printer used. The printing capabilites of Zomit are only available
when the client is run as an application in a Java2D capable Java Toolkit.

OpenGL Capable Graphics Cards

Personal computers are now often sold equiped with OpenGL capable graphics
cards. These cards include hardware that can draw complex three dimensional
scenes very rapidly and without assistance from the computer central processing
unit. The Java3D graphics library uses the OpenGL capabilites of graphics cards
if available. We considered replacing theAWT graphics library with the Java3D
graphics library but decided that the gain in speed was not certain in this applica-
tion. Zomit does not use the complex three dimensional graphics objects for which
OpenGL was designed and modern graphics cards also have hardware support for
the simple two dimensional graphics operations that Zomit does use. OpenGL
would certainly have been an advantage in the display of our transparent context
aids. We decided however not to implement an OpenGL version of Zomit because
the implementation difficulties, the subsequent need for users to have an OpenGL
card and a Java library that supports OpenGL. The Java libraries in standard web
browsers do not support OpenGL.

Further discussion of the advantages and disadvantages of the use of OpenGL
can be found in Beaudouin-Lafon and Lassen (2000).
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6.4 Other Zoomable User Interfaces

In this chapter we have described the goals of Zomit and the client/server structure
that was developed to satisfy these goals. OtherZUIs had different desiderata and
thus have different implementations. We discuss some of these other systems.

6.4.1 Pad

Pad (Perlin and Fox, 1993) was the firstZUI. Its goal was broad: to create an
infinite two dimensional information space shared among remote users. While
the goal of creating a shared information space was not realised, it is the direct
ancestor of a number of otherZUIs.

The display of objects in Pad differs from that in Zomit. The Pad Surface
contains Pad Objects that are positioned on a fixed region of the surface. These
Pad Objects are high level entities with which the user can interact. Examples
are editable text files, a clock or a calendar. When the region associated with a
Pad Object is visible, the object receives information about what parts of it are to
be visible and at what scale. The object then generates the display items (visible
graphics) that are to be drawn. Each display item has a range of magnification
(scale) outside of which it is invisible. It can also have a transparency range which
is a range of magnifications outside which the item is transparent. This allows
graphics to fade in and then fade out as users zoom.

The Pad system consists of three layers. The base layer is a real-time display
engine written in C++. Pad Objects are written are written in the Scheme lan-
guage. This code is interpreted and communicates with the display engine via a
C++ interface. Pad ran under the X Window System andMS-DOS.

6.4.2 Tabula Rasa

Tabula Rasa (Fox, 1998) is a continuation of the Pad project written by one of
the developers of Pad. The main difference between the two systems is that the
interpreted Schema code in Pad has been replaced by compiled Schema code.
Tabula Rasa only works under the X Window System but a portage to Windows
95/NT was envisaged.

6.4.3 Pad++’s Architecture

As with Zomit, Pad++ was developed as a tool for developingZUIs (Bederson
et al., 1996). The toolkit is written in C++ and uses the X Window System (Schei-
fler et al., 1992) on workstations runningUNIX (or Linux). (Further information
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and the program’s source are available for download at the Pad++ home page at
theURL http://www.cs.umd.edu/hcil/pad++/.)

Monolithic Architecture

Pad++ has a single program with monolithic architecture. This single program
reads the data source, generates the code that will be called to draw the virtual
world, draws the user’s view of the virtual world, and handles all the interaction
with the user. The only possibility for separating the execution of Pad++ from
its display is via the standard X Window System display protocol. This separa-
tion would be at the interaction toolkit component in the Arch model (subsec-
tion 6.2.1). This protocol, where every user action and all screen updates pass
by the network, was designed for use on a single workstation or over local area
networks, not for complex high-speed interactions over long distances. This is in
contrast to Zomit which has the separation between the calculation and the display
at a different level in its architecture (Figure 6.10).

Virtual World Described Using Tcl/Tk

The C++ “substrate” of Pad++ is linked with the Tcl/Tk scripting language (Ous-
terhout, 1994). The developer of a virtual world in Pad++ describes the virtual
world using Tcl/Tk. Tcl/Tk is an interpreted programming language and thus
runs quite slowly. It does however provide a high level interface to the available
graphics operations and interaction possibilities. This approach can be contrasted
to the C++ programming language used in Zomit. C++ is compiled and fast. The
developer of a virtual world in Zomit can use complex functions to generate the
virtual world. This possibility is not available with Pad++. Animations that are
not provided by the Tcl/Tk interface to the C++ substrate and that are too complex
to be written in Tcl/Tk, can be implemented in Pad++’sKPL rendering language.
This compiled language has a compact representation and executes about 100
times faster that Tcl.

Pad++ Has “Intelligent” Objects

Pad++ provides the graphical objects found in Zomit plus the inbuilt possibility
to display Web pages in the hypertext markup language (HTML ). Pad++ also pro-
vides input widgets, such as buttons and sliders, that are not available in Zomit.
Graphical objects are created and positioned in the virtual world by Tcl code. This
code specifies the size (in the virtual world as with Zomit), position, and colour. In
contrast with Zomit, the notion of scale is not exposed to the developer. The visi-
bility of objects is determined by their size. The developer specifies that an object

http://www.cs.umd.edu/hcil/pad++/
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should only be visible when its size is within a given range. It is also possible to
associate arbitrary Tcl code with events on objects. Code called when the mouse
moves over an object can, for example, change the colour of the object. This code
can also change the position of the user in the virtual world. These possibilities
are not available in Zomit. In Zomit, semantic zooming is created by having many
simple objects that are visible at different scales. In Pad++, code associated with
objects is called when objects are rendered. This code has access to the current
size in pixels of the object and can thus change the object’s appearance depending
on its size. Pad++ thus uses the capabilities provided by the interpreted language
to create intelligent objects. These objects are drawn differently at different scales
and thus remove the need, present in Zomit, for a different object to be created for
each representation of the underlying data.

Optimisations

The implementation of Pad++ includes a number of algorithms designed to im-
prove the efficiency of the display update code in order to achieve the highest
frame rate possible. These algorithms include: spatial indexing of objects, in-
dex balancing, progressive display refinement, level-of-detail control, interrupt-
ible drawing tasks, and optimised image rendering. Most of these algorithms
would be useful in Zomit. Other than some display optimisations (panning opti-
misations, asynchronous image scaling, and drawing already cached objects first),
these algorithms have not yet been added to Zomit because the efficiency gains
were not sufficiently important for the purposes of this project to justify the addi-
tional code complexity.

Conclusion

Pad++ is a now completed project for developing virtual worlds with intelligent
objects. The implementation of these intelligent objects requires a “thick” client
that has to be installed on each user’s workstation.

6.4.4 Jazz’s Architecture

Jazz is aZUI written by some of the participants in the Pad++ project (Bederson
et al., 2000). Jazz is a set of Java classes that uses the Java2D graphics library
available in Java 2. The developer of the virtual world writes Java code to create
instances of these classes. These instances can be visible components: rectangles,
ellipses, text, images, polylines, polygons, shapes or encapsulated Java Swing
widgets. Encapsulated widgets are scaled by remapping their input and output
to take into account the transformation of their appearance. The other available
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objects are called “nodes” and they allow the developer to place the visible objects
into a 2D scene graph. The visual components specify what something looks
like while nodes position visual components in the scene graph. This position
describes when and where visual components are visible.

While visual components listed above have a fixed representation, nodes can
be used to specify that they are visible only at certain magnifications. This mech-
anism is similar to that used in Zomit. The developer can, in addition to using
the provided simple visual components, create custom components by extending
a Jazz base class. In this case the rendering code in the visual component can
directly adapt the appearance of the object to the current magnification.

The developer can also create lenses using a Jazz class that implements cam-
eras. Cameras can be moved around the virtual world by the user. The rendering
code in custom visual components can find out in what camera they are being
drawn and change their representation in consequence.

The Jazz toolkit allows the user to visualize the virtual world described by the
scene graph. The default event handlers in Jazz allow the user to pan with left
mouse button, and control the scale with the right mouse button. The user presses
on the right mouse button and drags to the right to zoom in, or drags to the left to
zoom out. This interaction technique requires a mouse with at least two buttons
and each action to be explained to users. The Control Menu used in Zomit only
requires a single mouse button and once users have been told to press on a mouse
button for the menu all the other commands are self-revealing.

The developers of Jazz chose not use 3D renderers such as OpenGL because
they found that 3D renderers do not provide good support for 2D business graphics
(scalable fonts, 2D complex polygons, line styles, for example) or standard user
interface widgets (Bederson and Meyer, 1998). In addition, 3D renderers are
optimised for convex 3D polygons (which 2D applications do not require).

Jazz provides a more reactive set of visible components than those available
in Zomit. This was done by using a “thick” client (that takes longer to download),
by using a more sophisticated graphics toolkit (Java 2 rather than Java 1) and by
not having a client/server architecture (which means that the source of the virtual
world cannot be too distant from the user).

6.5 Results and Perspectives

Zomit is a tool for creating Zoomable User Interfaces directly usable over the
Internet. It is controlled by our new Control Menus that facilitate interaction with
these complex interfaces and includes our new context aids which reduce user
desorientation in large information spaces.

Zomit has been used to create two large virtual worlds. These are described
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in the next chapter. Further work is need to improve the integration of Control
Menus intoZUIs, in particular in an attempt to combine panning and zooming.



Chapter 7

Zomit Applications

Zomit is a development tool for Zoomable User Interfaces and as such has been
used to create virtual worlds in two very different domains. We used Zomit to
create an interface to a database containing genetic data and it has been used by
another research laboratory to create an interface to a virtual library. These two
virtual worlds can be tested with a standard Web browser at the Zomit home page:
http://www.infobiogen.fr/services/zomit/.

It has also been used in student projects as a base for developing information
exploration programs.

7.1 An Interface to a Genetic Database

As a demonstration of the use of Zomit, we developed a server, called ZoomMap,
that queries the HuGeMap database of the major genetic and physical maps of
the human genome. It provides a virtual world containing the human genome,
chromosomes, maps, markers and sequences.

7.1.1 Why a Zoomable User Interface?

The volume of data produced in molecular biology has been growing exponen-
tially for several years and all signs indicate that this process will continue during
the next decade. This growth applies to mapping and sequence data on everything
from microorganisms to humans.

For several years now it has been difficult for biologists to interact directly
with the data concerning their species of particular interest. The huge volumes and
the complexity of the data, and the numerous links between them, make it hard
to maintain a global view of the data. Researchers are restricted to local views
of their data, and long-distance relationships are not visible. Basically, there is

http://www.infobiogen.fr/services/zomit/
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much more information available than researchers can interact with. Therefore,
the selection of pertinent information is based on interactive, but rather arbitrary
decisions, or on the results of an algorithm that processes the data according to a
pre-established and rigid model.

With the large-scale sequencing projects now producing data at a rapid pace,
the time has come to work on extracting knowledge from rich sources of data, i.e.
to discover new models. Data mining can be used, but is not sufficient in the sense
that it can only exploit the data to test hypotheses. Researchers need to interact
globally with the data, to make incidental discoveries, find unexpected regularities
and test new putative models.

The scientific community also suffers from a lack of interaction with the data,
making the large-scale mapping and sequencing projects not as fruitful as they
should be. For example, when using a World Wide Web (WWW) browsing tool
applied to molecular biology databases, following a link from a page generates
a view of the new page that is visually independent from the view of the first
page. There is no visual track of the semantic relation between the two pages.
Therefore users quickly forget the logic of their sequence of different views, and
get lost. Often visualization software offers a view of the data according to a
given perspective and modifying this perspective is not easy. These problems are
general in most visualization and browsing software.

The technique of navigation by zooming is easily applied to molecular biology
data for two main reasons. Firstly, the large number of links between objects in
molecular biology leads to a complex graph of semantic relations which is best
navigated by zooming (e.g. when focusing on a given node, the neighbouring
nodes can be represented with edges decreasing with the minimal path length).
Secondly, biological databases frequently contain a well-defined hierarchy of in-
formation, from a genome to its sequence for example.

7.1.2 HuGeMap Database

The HuGeMap database (Barillot et al., 1998) stores the major genetic and physi-
cal maps of the human genome. It includes:

1. the genetic maps from Généthon (Dib et al., 1996) and the Cooperative
Human Linkage Consortium (Sheffield et al., 1995);

2. the physical maps fromCEPH-Généthon (Bellanné-Chantelot et al., 1992;
Cohen et al., 1993; Chumakov et al., 1995) and the Whitehead Institute-
MIT (Hudson et al., 1995); and

3. the ISCN cytogenetic description.
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Figure 7.1: Components of ZoomMap

The schema of HuGeMap has a natural and strong hierarchy and contains a
large number of links. On the top of the hierarchy is the human genome, then
the chromosomes, their cytogenetic elements, the maps, the markers and finally
the nucleotide sequences. Markers may belong to several maps. This database is,
therefore, a good testbed for data visualization and browsing.

The HuGeMap database is stored in the object oriented database manage-
ment system EyeDB (Viara et al., 1999) available at theURL http://www.sysra.
com/eyedb/.

7.1.3 Using Zomit

ZoomMap uses the Zomit server library as shown in Figure 7.1. The ZoomMap
code uses the EyeDB client library to read the HuGeMap database. It uses the data
read from the database to create the objects that the Zomit server library send to
the Zomit client. The ZoomMap server runs on the same machine as the EyeDB

server. This allows ZoomMap and EyeDB to communicate via shared memory
and to avoid the overhead of communicating viaTCP/IP.

Reading the HuGeMap database is simplified by the fact that EyeDB is an ob-
ject oriented database management system. In most cases, ZoomMap does not
have to execute queries to retrieve the relevant information. The object oriented
nature of the database means that ZoomMap just has to follow pointers to ob-
tain the data. The simple fact of following the pointer causes EyeDB to read the
required information from the database. This information is them immediately
available in in-memory structures that can be directly used to generate the graph-
ical objects from Zomit.

http://www.sysra.com/eyedb/
http://www.sysra.com/eyedb/
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ZoomMap consists of about 2200 lines of C++ code.

7.1.4 ZoomMap: Zooming and Portals

The initial view of the virtual world presented in ZoomMap consists of a kary-
otype of the human genome (Figure 7.2). The 24 chromosomes are depicted with
their names and arms at the top level (Figure 7.2a). As the user zooms on a
chromosome, its arms’ names appear (Figure 7.2b), followed by the banding (Fig-
ure 7.2c). The names of the cytogenetic bands are shown when the bands are big
enough to contain readable text. These steps are examples of semantic zooming
(modification of the visualized object according to the scale). At the same time,
more and more information on the chromosomes appears as text beside each chro-
mosome. The names of the different maps associated with each chromosome are
displayed and, if one continues to zoom, the maps themselves are drawn (Fig-
ure 7.3a) using their usual representation (markers positioned on an axis). Only
those markers for which space is available are shown, another example of seman-
tic zooming.

When there is sufficient space a series of portals are shown opposite each
marker (Figure 7.3b). They point to the other maps in which the corresponding
marker is present. After further zooming on a marker, the sequence appears under
the name (Figure 7.3c).

7.1.5 ZoomMap’s Magic Lenses

Several different types of Magic Lenses have been implemented (Figure 7.4).

• Lenses that display a map when applied to a cytogenetic description of a
chromosome (Figure 7.4a and Figure 7.4b). This representation of a chro-
mosome is also given when zooming in further from the chromosome name.
This illustrates the fact that a problem of data transformation can be ad-
dressed with different techniques: here Magic Lenses or semantic zooming.
Lenses present the advantage of offering numerous possibilities simultane-
ously (one can have as many lenses as necessary and choose among them)
while with semantic zooming there is only one possible transformation.

• A lens that, when applied to markers, uses the colour of each marker to
show the level of heterozygosity (Figure 7.4c). Here, a marker’s heterozy-
gosity is coded on a scale from blue (100% heterozygous) to white (0%
heterozygous).

• A lens that displays only those markers with high heterozygosity (>65%;
Figure 7.4d). Here the lens is used as a filter to select some data. Typically,
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Figure 7.4: ZoomMap: (a) transformation of the cytogenetic representation of a
chromosome into its Généthon genetic map; (b) as for (a) with two lenses; (c)
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on a blue scale; (d) as for (c) with a third lens that selects only the markers with
heterozygosity greater than 65% (the marker AFM326cv5 is no longer shown).
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such lenses can be combined to produce new filters on a conjunctive (logical
AND) basis.

• A lens that gives further information on each marker: name, D-number,
EMBL access number, and heterozygosity. This lens is a magnifying glass
in order to have sufficient space to display the additional information (Fig-
ure 4.36).

As discussed in subsection 4.3.6, these lenses can be combined as shown in Fig-
ure 7.4c and Figure 7.4d.

7.1.6 Zooming On Indices

Our purpose is to visualize biological data, generally stored in structured data-
bases, for which indices exist. (Indices are sorted lists of object identifiers.)
Though the logic of navigation by zooming is based on an hierarchically organised
data schema, it may be useful to browse through these indices to retrieve data.

In ZoomMap the user can zoom on three different indices (D-number,EMBL

access number, and name) that are present on the right-hand side of the world at
the beginning of a session (Figure 7.5).

In the initial view, all the possible first letters of the indexed fields are dis-
played in order and with a size reflecting the number of objects starting with each
letter. After zooming in on the desired first letter, the second and following letters
appear as soon as space is available, or a range of strings if all the possibilities
would span too much space (Figure 7.5a). Different colours encode the type of
the string shown; i.e. the current position in the index, string ranges, and complete
marker names.

This repeated zooming process leads to the complete name of the desired ob-
ject (Figure 7.5b and Figure 7.5c), and then to a series of portals that point towards
the position of the marker in the maps in which they are present (Figure 7.5d).

This example of ZoomIndex is trivial but one can imagine its use for more
sophisticated purposes; a two-dimensional ZoomIndex would for example cross
two indexed fields and could be used for interactive optimisation.

7.1.7 Evaluation

To aid the evaluation of the visualization techniques proposed in this paper we
created a modified version of theZUI without the hierarchy trees. Eight subjects,
chosen from our colleagues at Infobiogen, were taught how to use ourZUI. The
subjects were asked to answer 22 multiple choice questions. Some of the ques-
tions were (translated from French):
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Figure 7.5: ZoomMap: zooming on indices. (a) Choosing the first letters; (b) the
name is complete; (c) marker names and related maps; (d) portals to the positions
of the markers on each map.
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1. What is the name of the pink sub-band above the centromere of the
chromsome 19?
[ ] 19p13.13
[ ] 19p13.10
[ ] 19p13.11
[ ] 19p12.30

2. How many sub-bands are under the band 9q34?
[ ] 1, [ ] 2, [ ] 3, [ ] 4, [ ] 5

3. What are the names of the last marker of the mapCHLC of the
chromosomes 15, 10, & 5?

15 [ ] CHLC.GATA27A03
[ ] AFM072yb11
[ ] D15S641
[ ] AFM262xb1

A training session explained how to answer these question with and without the
hierarchy trees. This experimental design allowed us to study, using two interfaces
otherwise as similar as possible, whether the hierarchy trees were of assistance.

Ordering effects were taken into account. Half of the subjects answered their
first 11 questions with the hierarchy trees and the other half of the subjects an-
swered their first 11 questions without the hierarchy trees. Half of the subjects
were given the first 11 questions in the list of 22 to do first while the other half
of the subjects did the second half of the questions first. This lead to four equally
sized groups of subjects.

For each subject we calculated the time taken to answer 11 questions without
the hierarchy trees divided by the time taken to answer the other 11 questions
with the hierarchy trees. A value greater than one from this calculation would
mean that having the context aids was an advantage. The mean value was 1.58
with a standard deviation of 0.54. The high standard deviation was caused by the
lack of familiarity of some of the subjects withZUIs. For these people the training
session was not long enough and they thus found the second set of questions
easier. In general however the subjects were faster with the hierarchy trees and
were positive in their comments regarding these aids: in fact those that started
with the hierarchy trees were reluctant to continue the experiment without them.

7.2 CDI : a Zoomable Virtual Library

The École des Mines de Nantes used Zomit to develop an interface for a virtual
library. This virtual library contains 3000 books and is very similar to part of a
real library in a department of this university. ThisZUI, calledCDI, was developed
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Figure 7.6: Global view of the library’s shelves

as part of a project to analyse the time taken to find books using three different
types of interface to the virtual library (Lecolinet et al., 2001). The two other in-
terfaces were a three dimensional virtual reality interface and a two dimensional
tree browser similar to those discussed in section 4.2. The speeds in finding book
in these three interfaces are to be compared to those in a real library. The study
will attempt to understand the advantages and disadvantages of the different rep-
resentations and quantify any transfer of learning from the virtual interfaces to the
real world and vice versa.

With this ZUI users can zoom from a global view of the shelves (Figure 7.6)
to a view of the different subject treated in the library (Figure 7.7). Once users
have identified which shelf is likely to contain the required book they can continue
zooming to images of the books’ covers (Figure 7.8).
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Chapter 8

Conclusion and Perspectives

The visualization of databases is an important part of many tasks in research and
industry. This is summarised in the phrase: “seeing helps thought”. Zoomable
User Interfaces are one tool used to create virtual worlds for large information
spaces and to allow users to navigate in these worlds. The aim of this navigation
is to help users find the information that they are looking for and allow them to
transform this information into the required representation. Even with these tools
finding the required information is frequently difficult. The information spaces
are very large and the lack of contextual clues often means that users become
disoriented before they find what they are looking for or once they have found it
they are unable to relate it to the information space in general.

We have proposed three new contextual aids that help users understand the
information space, their position in that space, and the relationships between the
objects currently visible and the information space in general. The first of these
aids is a permanent view of the hierarchy present in many information spaces.
This view shows users where information is in the virtual world and the current
position of the user. The second aid is a transient transparent view that users
create when necessary and which vanishes automatically when no longer needed.
It shows the current view in relation to more global views. The global view is
chosen by the user with a dynamic and continuous user control. This aid thus
helps disoriented users reposition themselves with respect to whatever global or
context views are most useful. The third aid is also transient and transparent. It
is created by users when they need to find out how they arrived in their current
position in the information space and desire to see this path in relation to their
current position and a global view of the space.

All interfaces to large information spaces have the problem that there are very
large quantities of information to display on relatively small screens. Also, in
order to understand relationships between different data items, users need to ap-
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proach items from widely separate areas in the information space. It is not suf-
ficient to see information in only one representation; understanding data often
requires it to be seen in a number of different representations. The first of the two
standard solutions is to show many different views in adjacent windows, called
space multiplexing. The problem is that there is often not enough screen space
and, even if there is, the focus changes between separate windows are a hindrance
to the integration of the views into a single mental picture of the data. The second
solution is to show the views at different times, but then users have to memorise
one view in order to compare it with the next. Magic Lenses use this time multi-
plexing technique as they cover the focus of the user’s attention in order to show
this area with a different representation.

We have attempted to solve this problem with the use of transparent layers
that can show two types of information in the same screen space. Users can use
depth information or, in our system, movement caused by the user’s control of
the interface to separate the two views. We discovered that a fluid and continu-
ous control leads to movement between the views which then makes it easier to
distinguish one view from another. Our control mechanism makes it possible to
view two types of information in the same screen area. This both conserves screen
space and helps users integrate the two views by avoiding the changes of focus of
attention between two separate views.

The results presented here are preliminary. They need to be validated by con-
trolled experiments that compare the techniques presented in this thesis with the
visualization systems discussed in chapter 4. Only such experiments will show in
which situations the new techniques are superior to those used in existing visual-
ization systems.

Our contextual aids rely on a synergy between interaction and visualization for
their ease of use and effectiveness. To supply this synergy, missing from current
interactors, we proposed a new type of pop-up menu, a Control Menu, that allows
users to select operations from a menu and to then control the operation. This se-
lection and control is performed in a single gesture that creates a bonding between
menu use and execution. It also avoids the use of multiple interactors, a menu then
a dialog box containing sliders and a button, to perform what is conceptually a sin-
gle action. Control Menus have a fluidity of execution and feedback that ensures
that users have and see exactly the result that they want before they end their ges-
ture. Once again we reduce the number of changes of focus of attention, this time
by avoiding the use of several interactors for a single task.

We have concentrated on the use of Control Menus in Zoomable User Inter-
faces with some tests of their use in virtual reality environments. We consider
however that these menus can be useful in many different types of applications
and that further work, and controlled user experiments, should be conducted in
this area.
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This thesis has shown that the creaters of visualization systems must design
the visualization techniques and the interaction aspects of their systems conjointly.
What visualization systems can show to users depends on how users control these
systems. Immediate visual feedback is important in helping users understand in-
teractions and allows them to use successive refinement as they move towards the
desired result.
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Chapitre 9

Synthèse

9.1 Introduction

Les bases de données utilisées pour la recherche et dans les entreprises ont
grandi de façon exponentielle pendant de nombreuses années, et tout laisse à pen-
ser que cette croissance continuera. Il ne suffit pas de stocker des données dans
une base pour comprendre l’information qu’elles contiennent. Pour convertir ces
données en connaissances, les utilisateurs doivent pouvoir interagir avec les bases
de données.

La grande quantité de données, leur complexité, leur diversité, et le grand
nombre de liens entre ces données poussent les utilisateurs à se servir de systèmes
de visualisation sophistiqués. Ces systèmes doivent leur permettre d’obtenir une
compréhension globale d’un espace d’information et de diriger leur attention sur
la région de l’espace qui est intéressante pour une tâche donnée. Cependant, même
quand un utilisateur est en train de se concentrer sur une petite partie d’un espace
de grande taille, il doit pouvoir rester conscient de sa localisation par rapport à
l’espace entier. Ceci doit permettre une meilleure compréhension des relations
entre les données visibles et celles situées dans d’autres régions de l’espace.

9.1.1 Amélioration de l’interaction

L’utilisation effective de techniques d’interaction complexes nécessite un con-
trôle continu de l’interface par ces utilisateurs. Ceux-ci doivent spécifier quelle
partie de l’espace doit être visible et comment cette région doit être présentée.
Mais ces choix ne sont pas fixes car l’utilisateur change la region d’intérêt et la
façon de la présenter très fréquemment. Le contrôle de ces choix doit être fluide et
prendre en compte le fait que l’interface utilise changement et mouvement comme
moyens de visualisation autant qu’elle utilise des présentations fixes.
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Les interacteurs standard n’ont pas beaucoup évolué depuis le développement
du modèle d’interactionWIMP (Window, Icon, Menu and Pointer device) et l’in-
vention de la manipulation directe. Ces interacteurs ont été prévus pour effectuer
des suites de modifications distinctes sur une interface qui est essentiellement sta-
tique. Ils ne sont donc pas adaptés au contrôle fréquent ou continu d’une interface
changeante.

De nombreux interacteurs permettent aux utilisateurs de choisir une opération
parmi une liste d’opérations. Ces interacteurs sont souvent des menus dont les plus
récents ont été conçus de telle sorte que des utilisateurs novices et les utilisateurs
experts les utilisent presque de la même façon (ce qui aide les utilisateurs novices
à devenir « experts »).

D’autres types d’interacteurs permettent aux utilisateurs de contrôler interac-
tivement l’opération choisie. Ces outils, tels que les barres de défilement et les
boîtes de dialogue, sont utilisés après la sélection de l’opération mais sont indé-
pendants de l’interacteur de sélection. Cette séparation de la sélection des opéra-
tions et de leur contrôle force les utilisateurs à partager leur attention entre deux
interacteurs differents : l’un dedié à la sélection, l’autre au contrôle de l’opération.

Dans la première partie de cette thèse, nous présentons et discutons les dif-
férents menus utilisés actuellement. Nous présentons ensuite un nouveau type de
menu, appeléControl Menu, qui combine la sélection des commandes et leur con-
trôle en un seul interacteur. Cet interacteur n’utilise que la souris et un seul de
ses boutons. Cet interacteur intégré fournit un contrôle rapide et fluide pour des
systèmes complexes de visualisation.

9.1.2 Davantage de contexte

De nombreuses techniques de visualisation ont été proposées dans les commu-
nications de recherche et certaines de ces techniques ont été utilisées avec succès
dans des logiciels commerciaux. Notre travail concerne plus particulièrement les
systèmes de visualisation qui montrent une vue de l’espace d’information avec la-
quelle les utilisateurs peuvent interagir pour trouver les informations recherchées.
Les systèmes de ce type, dont un certain nombre sont présentés dans la deux-
ième partie de cette thèse, peuvent être classifiés selon différentes taxonomies.
Nous présentons d’abord quelques taxonomies proposées par d’autres auteurs puis
une nouvelle taxonomie. Tous ces systèmes sont confrontés au même problème :
comment afficher le contexte des vues de détail. Les utilisateurs deviennent vite
désorientés si la quantité de contexte visible n’est pas suffisante, même après une
courte durée de navigation : ils ne savent plus se localiser dans l’espace d’infor-
mation ni où trouver les informations recherchées. Ils sont « perdus dans l’hyper-
espace ».

Les interfaces zoomables (« zoomable user interfaces » ouZUIs) sont un type
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de systèmes de visualisation prometteur pour représenter de grands espaces d’in-
formation. LesZUIs sont basées sur le concept de zoom sémantique. Elles per-
mettent de créer un monde virtuel multidimensionnel où les utilisateurs peuvent
trouver et transformer l’information d’une base de données. L’interaction avec ces
interfaces implique une utilisation fréquente de certaines commandes. Les deux
plus importantes sont « zoomer » (agrandir) et faire défiler la vue (se déplacer
dans l’espace). Nous avons développé uneZUI qui utilise notre Control Menu et
intègre donc la sélection et le contrôle de ces commandes en un même geste.

Les ZUIs souffrent souvent d’un manque de contexte. Après avoir navigué
dans l’espace d’information (et donc après avoir quitté la vue globale initiale de
l’espace) les utilisateurs voient une vue très partielle du monde virtuel qui contient
peu d’information contextuelle. Ceci agrave les risques de désorientation.

Nous proposons un multiplexage spatial et en profondeur pour ajouter du con-
texte aux interfaces zoomables. Le multiplexage de l’espace permet d’afficher les
mêmes informations avec des représentations différentes au même moment. Notre
ZUI montre une vue zoomable de l’espace d’information et une représentation hié-
rarchique du même espace dans deux fenêtres synchronisées. La représentation
hiérarchique montre une vue en coupe de la structure de l’espace d’information et
le couplage avec la vue zoomable indique aux utilisateurs leur position pendant la
navigation.

Nous proposons également deux autres aides contextuelles qui utilisent des
vues transparentes avec multiplexage en profondeur et qui sont contrôlées par
notre nouvel interacteur, un Control Menu. Ces aides sont temporaires et crées à
la demande de l’utilisateur. Elles n’existent que pendant le geste qui les a créées
et qui les contrôle. Leur utilisation demande un contrôle fluide et continu car leur
utilité vient de leur réactivité. Ce contrôle est fourni par des Control Menus. Le
mouvement qui résulte de ce contrôle continu aide les utilisateurs à séparer l’aide
transparente de la vue, toujours visible, du focus.

Après une présentation et une classification des systèmes existants, la deux-
ième partie de cette thèse présente nos nouvelles aides contextuelles pour lesZUIs
puis Zomit, un outil de développement qui facilite la mise en œuvre des interfaces
zoomables. Cette partie se termine par une présentation des applications créées
avec cet outil.

9.2 Interaction

Cette section examine des menus actuellement utilisés pour contrôler des sys-
tèmes informatiques, les inconvénients de ces menus, et comment un nouveau
type de menu peut pallier ces inconvénients.
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FIG. 9.1 – Un pie menu et, en pointillé, ses zones actives

9.2.1 Menus classiques et contrôle des opérations

Typiquement, l’interaction via une interface utilisateur comprend la sélec-
tion d’un (ou plusieurs) objet(s), la sélection d’une opération puis le contrôle de
l’exécution de cette dernière. Dans la plupart des interfaces, la dernière phase
de cette interaction est séparée des premières phases bien qu’elles soient en fait
vues comme un tout par l’utilisateur. Ces deux parties de l’interaction sont gé-
néralement effectuées avec des interacteurs différents qui s’utilisent de façons
distinctes. Cette complexité supplémentaire ralentit l’interaction car des actions
simples doivent être exécutées en deux étapes. En effet, l’utilisation de plusieurs
interacteurs provoque une interaction moins fluide du fait des multiples change-
ments du focus d’attention de l’utilisateur. De plus, si l’utilisateur doit utiliser
encore un autre interacteur pour selectionner, l’interaction est encore plus ralen-
tie.

Dans cette sous-section, nous présentons une analyse des techniques de sélec-
tion et de contrôle, et les problèmes venant de l’utilisation d’interacteurs multiples
pour effectuer une seule opération.

Menus existants

Des menus standard tels que les menus déroulants et les menus contextuels
permettent aux utilisateurs de choisir facilement des opérations à effectuer. Les
menus contextuels sont activés à un endroit choisi par l’utilisateur dans l’inter-
face. L’interface peut alors adapter le contenu du menu à la position choisie et
associer l’action choisie à l’objet se trouvant à cette même position. Par ailleurs,
de nouveaux menus contextuels, les « pie menus » (Callahan et al., 1988; Hopkins,
1991) et les « marking menus » (Kurtenbach and Buxton, 1994), ont été proposés
afin de rendre l’utilisation des menus contextuels plus rapide.

La différence la plus importante entre un pie menu et un menu contextuel stan-
dard est le fait que les entrées dans un pie menu sont distribuées autour du centre
du menu (Figure 9.1). L’utilisateur n’a plus besoin de sélectionner une ligne dans
une liste linéaire mais peut tout simplement déplacer le pointeur dans la bonne
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(a) comme utilisé par un utilisateur novice (b) par un utilisateur expert

FIG. 9.2 – L’utilisation d’un marking menu (copié de Kurtenbach and Buxton,
1993)

direction et relâcher le bouton de la souris. Un utilisateur expert n’a même plus
besoin de voir le menu pour choisir la bonne opération et dans ce cas-ci le menu
ne s’affiche pas. Les pie menus sont par exemple utilisés dans le jeu « The Sims »
(http://www.thesims.com) pour contrôler rapidement les actions des personnages.
Ces menus contextuels permettent d’associer des actions aux personnages sans sé-
lectionner préalablement le personnage qui doit être le sujet de l’action. Ainsi, un
joueur expert peut faire des actions rapidement car il n’est pas obligé d’attendre
que le menu s’affiche pour y sélectionner une action. Un marking menu ressemble
à un pie menu sauf que chaque fois que l’utilisateur active une opération, le sys-
tème dessine un trait sur l’écran indiquant le geste optimal que l’utilisateur aurait
pu faire. Un marking menu peut également avoir des sous-menus. La Figure 9.2
montre un marking menu avec un sous-menu dans les cas d’utilisation novice (à
gauche) et experte (à droite). Dans les deux cas le système dessine le trait du geste
optimal.

Analyse de menus

La loi de Fitts (MacKenzie, 1995; Raskin, 2000) estime le temps nécessaire
pour déplacer le curseur vers un bouton sur l’écran. Ce temps est fonction de
la taille du bouton et la distance entre le curseur et ce bouton selon la formule
t = a+blog2(d/s+1) oùsest la taille du bouton etd la distance entre le curseur
et le bouton. Cette loi dit donc que les menus contextuels devraient être rapides
à utiliser car l’utilisateur n’est pas obligé de se déplacer pour se servir du menu.
D’après cette même loi, les pie et marking menus sont encore plus avantageux
car, pour choisir une opération, il suffit de déplacer le curseur vers une des zones
actives du menu (indiquées en pointillé dans la Figure 9.1). Ces zones sont grandes
et proches du curseur (le menu s’affiche de sorte que le centre du menu soit sous

http://www.thesims.com
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le pointeur). Rapidement l’utilisateur apprend la position des opérations les plus
fréquemment utilisées et peut alors se servir du menu sans avoir à le regarder.
Cette facilité de sélection contraste avec le temps pris pour sélectionner la bonne
ligne dans un menu contextuel de type linéaire.

Opérations avec des paramètres continus

Une opération continue est une opération comportant au moins un paramètre
de type numérique (avec un nombre important de valeurs possibles). La sélection
de l’échelle d’uneZUI est un exemple d’opération continue. Les menus contex-
tuels (les pie et marking menus ainsi que les menus contextuels standard) ne per-
mettent pas aux utilisateurs de contrôler l’opération choisie de façon continue
(par exemple pour effectuer un défilement ou zoomer jusqu’à ce que l’utilisateur
trouve la bonne taille). Ils ne permettent pas non plus aux utilisateurs de fournir
des paramètres pour contrôler l’opération sélectionnée. Par exemple, une opéra-
tion telle que le changement de la taille de police dans un traitement de texte
nécessite souvent l’ouverture d’une boîte de dialogue pour entrer un paramètre :
la nouvelle taille. Les utilisateurs doivent d’abord ouvrir le menu et sélectionner la
bonne opération puis se concentrer ensuite sur un deuxième interacteur, typique-
ment une boîte de dialogue. Une fois la nouvelle taille entrée, la boîte de dialogue
disparaît et l’utilisateur doit à nouveau changer de contexte. Si la taille choisie
n’est pas bonne, l’utilisateur doit alors recommencer. Cette interaction nécessite
plusieurs changement de focus et des déplacements de souris qui ralentissent l’in-
teraction.

Un exemple : l’échelle d’Acrobat Reader

Le contrôle des opérations continues telles que zoomer et défiler dans des ap-
plications comme Acrobat Reader d’Adobe est un exemple de l’insuffisance des
interacteurs existants. Cette application propose quatre façons différentes de zoo-
mer : via un menu classique (Figure 9.3a), via un « option menu » (Figure 9.3b),
via une boîte de dialogue (Figure 9.3c), ou en cliquant avec la souris mais après
avoir sélectionné un modead hoc(Figure 9.3c). L’utilisation d’un « option menu »
ou d’une boîte de dialogue provoque les problèmes d’interaction précédemment
cités. De plus l’« option menu » occupe une place non négligeable sur l’écran.
Ces deux interacteurs ne sont pas contextuels et ne permettent donc pas à l’utili-
sateur d’indiquer sur quelle région de l’écran il veut centrer le zoom. Il sera donc
nécessaire de recentrer la vue affichée après chaque zoom. Dans le quatrième cas,
l’utilisation de la souris pour zoomer minimise les changements de point d’atten-
tion et évite d’avoir à recentrer la vue mais nécessite par contre d’avoir préala-
blement sélectionné un mode spécifique (car le bouton de la souris sert également
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(a) menu classique (b) menu d’options

(c) boîte de dialogue (d) souris

FIG. 9.3 – Modifier l’échelle dans Acrobat Reader 3



212 Synthèse

à d’autres types d’actions dans d’autres modes). De plus, ces trois interacteurs
changent l’échelle par incréments pré-définis et l’utilisateur devra donc les activer
plusieurs fois avant d’obtenir l’échelle désirée. Les mêmes problèmes se posent
pour faire défiler le document à l’aide de barres de défilement qui utilisent encore
plus de place que l’« option menu » (elles fournissent néanmoins une information
sur la position de la vue courante dans le document).

9.2.2 Un nouvel interacteur

Cette section présente un nouveau type de menu contextuel, nommé « Control
Menu ». Ce nouvel interacteur est particulièrement bien adapté pour contrôler
des interfaces complexes comme lesZUIs. Son usage reste cependant tout à fait
général et n’est pas limité à ce type d’interface (comme nous le verrons dans la
section suivante).

« Control Menu »

Nous proposons un nouveau type de menu contextuel qui permet à l’utilisateur
de fournir jusqu’à deux paramètres à l’opération choisie ou de la contrôler dans
une ou deux dimensions indépendantes. Ce menu permet ainsi aux utilisateurs de
choisir et decontrôlerdes opérations en un seul geste.

Un Control Menu a des similarités de comportement avec un pie menu. Un uti-
lisateur, qui ne sait pas où se trouve l’opération qu’il désire, enfonce le bouton de
la souris, attend 0,3 secondes (temps expérimental proposé par (Kurtenbach and
Buxton, 1994)) jusqu’à ce que le menu soit affiché centré sous le curseur, puis
déplace ce dernier dans la direction de l’opération désirée (Figure 9.4). Le menu
disparaît et l’opération commence dès que le curseur a été déplacé de ladistance
d’activationdepuis le centre du menu (nous avons empiriquement choisi une dis-
tance d’activation de cinq fois le rayon du cercle au centre du menu). L’opération
se termine quand l’utilisateur relâche le bouton de la souris. Les mouvements de la
souris effectués pendant l’opération fournissent les paramètres nécessaires au con-
trôle de cette opération. Un utilisateur qui sait où se trouve la commande souhaitée
fait le même geste qu’un novice mais sans effectuer la pause qui fait apparaître le
menu. Ainsi, les utilisateurs experts ne sont pas distraits par l’apparition du menu
et les utilisateurs novices apprennent progressivement le geste expert.

Un Control Menu comprend jusqu’à huit flèches et un libellé par flèche. Les
libellés sont désignés en caractères noir sur fond blanc (ou du caractères gris pour
les choix inapplicables à ce moment). Outre ces éléments, le menu est transparent
afin de ne pas cacher la zone d’intérêt lorsque l’utilisateur est en train de choisir
l’opération.
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FIG. 9.5 – Un Control Menu sur deux types d’objet

Le contenu d’un Control Menu peut s’adapter à la position où l’utiliser le fait
afficher ou aux objets se trouvant à cette position. Ceci peut éviter de proposer des
opérations qui ne sont pas appropriés à un moment donné. La Figure 9.5 montre le
même menu que dans la Figure 9.4 sauf que davantage d’options sont disponibles
(car le menu se trouve sur un portail et sur une lentille). Dans ce cas c’est le choix
de l’opération qui déterminera quel objet sera le sujet de l’opération.

Opérations contrôlées par un seul paramètre

Une entrée dans un Control Menu peut par exemple servir à modifier le niveau
de zoom dans uneZUI. Cette opération illustre l’intégration d’un menu et d’une
barre de défilement dans un seul interacteur. La Figure 9.6 montre les mouvements
de la souris pendant l’utilisation d’un Control Menu pour choisir et contrôler une
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opération de zoom ou de dézoom. L’utilisateur enfonce le bouton de la souris
et déplace celle-ci de la distance d’activation (le mouvement numéro 1 dans la
Figure 9.6) vers la droite (l’opération « zoom » étant sur la droite du Control
Menu représenté à la Figure 9.4). Ceci amorce l’opération de zoom et la forme du
pointeur change à ce moment sur l’écran. À partir de ce moment, les mouvements
de la souris vers la droite (mouvements 2 et 4 dans la Figure 9.6) zooment la
vue et les mouvements vers la gauche (mouvement 3) la dézooment. Le contrôle
par retour d’information est immédiat : la vue change dès que l’utilisateur bouge
la souris. L’utilisateur relâche le bouton de la souris lorsque l’échelle voulue (un
dézoom dans la Figure 9.6) a été obtenue. Cet exemple montre qu’avec le menu
de la Figure 9.4, pour dézoomer il faut d’abord zoomer un peu. Alternativement,
une entrée « dézoomer » pourrait être ajoutée dans la partie gauche du menu.
L’utilisateur déplacerait alors directement la souris vers la gauche pour dézoomer.
Cette solution a cependant le désavantage d’utiliser davantage de place dans le
menu et sa mise en œuvre est donc dépendante des spécificités de l’application.

Pendant l’opération de zoom, l’utilisateur peut annuler cette opération en dé-
plaçant, sur une grande distance, la souris dans la direction orthogonale (vers le
haut ou vers le bas dans le cas de l’exemple). L’utilisateur peut alors confirmer
l’annulation en relâchant le bouton de la souris ou infirmer cette annulation en
retournant la souris vers sa position verticale initiale. Dans ce cas, le bouton de
la souris reste enfoncé et l’utilisateur peut continuer de zoomer. Il n’est pas pos-
sible d’annuler toutes les opérations de cette manière ; seules les opérations où
une seule des deux directions de déplacement de la souris est utilisée peuvent être
annulées de cette manière.

Opérations contrôlées par deux paramètres

Un Control Menu peut aussi être utilisé pour effectuer des défilements bi-
directionnels. Il remplace alors deux barres de défilement. L’opération de défile-
ment est sélectionnée en enfonçant le bouton de la souris et en déplaçant la souris
vers le haut (« pan » sur la Figure 9.4 en haut du menu). La vue suit le curseur

souris relâché
bouton de la

bouton de la
souris enfoncé

1. choisir zoom

4. zoomer résultat final (dézoom)

3. dézoomer

2. zoomer

FIG. 9.6 – Zoomer avec un Control Menu
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souris relâché
bouton de la

bouton de la
souris enfoncé

5. vers le nord−est

résultat final (vers l’est)

2. vers le nord

4. vers le sud
1. choisir pan

3. vers le sud−est

FIG. 9.7 – Défilement avec un Control Menu

pendant l’opération (Figure 9.7). Cette opération ne peut pas être annulée pendant
l’opération car les deux sens de déplacement de la souris ont déjà une significa-
tion.

Il est possible de faire la même remarque que pour l’opération « dézoomer » ;
si l’utilisateur veut déplacer la vue vers le bas, il faut d’abord qu’il la déplace
légèrement vers le haut. Nos observations informelles indiquent que ceci semble
poser moins de problèmes que la nécessité de zoomer un peu afin de pouvoir
dézoomer. Ceci est probablement dû au fait que le changement d’échelle du zoom
est généralement vu comme une opération relative (typiquement contrôlée par le
déplacement d’un curseur sur un potentiomètre autour d’une origine) tandis que
le positionnement sur une surface plane est une opération d’une autre nature (et
qui s’applique directement sur la surface affichée via la notion de pointage).

Un Control Menu est bien adapté pour contrôler deux paramètres intégraux.
Deux paramètres sont intégraux (Jacob and Sibert, 1992) lorsque leurs attributs se
combinent dans la pensée de l’utilisateur en un seul attribut composé. Par exemple,
les coordonnéesx et y d’un objet sont intégrales car les utilisateurs les combinent
et les considèrent comme la position de l’objet. Un déplacement diagonal de la
souris a alors une signification simple : déplacer l’objet sur la diagonale. Par
contre, la taille et la couleur d’un objet ne sont pas deux paramètres intégraux.
Si un Control Menu était utilisé pour contrôler de tels paramètres simultanément,
un déplacement diagonal de la souris n’aurait pas de signification immédiate.

Boutons et sous-menus

Les Control Menus peuvent également contenir des commandes simples qui
n’ont pas de paramètre. Dans ce cas les commandes qui peuvent être annulées
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FIG. 9.8 – Sous-menu des lentilles dans notre interface zoomable

sont exécutées dès que le curseur a été déplacé de la distance d’activation depuis
l’endroit où le bouton de la souris a été enfoncé. Puisque l’utilisateur maintient
le bouton de la souris enfoncé, un mouvement du curseur dans l’autre direction
annule l’opération. L’utilisateur peut alors infirmer l’annulation en déplaçant à
nouveau le curseur dans l’autre sens. L’opération ne devient définitive que lorsque
le bouton de la souris est relâché (comme avec les « boutons poussoirs » habi-
tuels).

Un Control Menu peut avoir des sous-menus. L’utilisateur enfonce le bouton
de la souris et déplace le curseur dans la direction de l’entrée dans le Control Menu
correspondant au sous-menu désiré. La Figure 9.8 montre le sous-menu qui per-
met à l’utilisateur de contrôler des lentilles affichées dans laZUI. Ce sous-menu
peut être affiché lorsque le pointeur est sur une lentille (la lentille « polymor-
phisme » dans la Figure 9.8). Le sous-menu est visuellement attaché au menu
principal par une ligne rouge avec deux flèches et l’utilisateur choisit une opéra-
tion dans le sous-menu en déplaçant le pointeur dans la direction de son entrée
dans le sous-menu.

Control Menus versus marking menus

Avec un marking menu la distance parcourue par le curseur n’a pas d’impor-
tance. Seule la forme du mouvement est significative, et celle-ci est analysée une
fois que le bouton de la souris relâché (ou quand l’utilisateur arrête de bouger le
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FIG. 9.9 – Degré d’indirection

curseur afin d’ouvrir un sous-menu). Avec un Control Menu la distance parcourue
par le curseur est informative. La position du curseur est constamment analysée et
l’opération commence dès que la distance d’activation a été atteinte.

Analyse des propriétés des Control Menus

Le modèle d’interaction de Beaudouin-Lafon (2000) définit un espace d’ana-
lyse qui peut être utilisé pour comparer de nouveaux interacteurs aux interacteurs
déjà connus.

Un Control Menu est contextuel : il agit soit sur l’objet, soit sur la position
se trouvant sous le curseur. Il ne nécessite pas non plus de se déplacer vers une
barre de menu. L’écart spatial(la distance sur l’écran entre le menu et l’objet
sur lequel il agit) est donc nul. Un Control Menu ressemble aux poignées des
objets dans un logiciel de dessin graphique ou à l’action de glisser/coller (« drag
and drop »). Lors du zoom et du défilement, l’écart temporel (le temps entre le
mouvement de la souris et la réaction de l’objet manipulé) est également nul car
l’interface réagit immédiatement quand l’utilisateur déplace la souris. De ce point
de vue, un Control Menu ressemble à une poignée ou à une barre de défilement (si
elle réagit immédiatement aux mouvements de la souris). Le degré d’indirection
(qui combine ces deux écarts) est donc faible. La Figure 9.9 montre comment
le degré d’indirection d’un Control Menu peut être comparé avec ceux d’autres
interacteurs.

Le rapport entre le nombre de degrés de liberté fourni par notre interacteur
et le nombre de degrés de liberté de la souris (le degré d’intégration) est de 2/2
car, pour toutes les interactions dans notreZUI, les deux degrés de liberté de la
souris sont utilisés. Pour faire défiler la vue dans un logiciel avec des barres de
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défilement, il est nécessaire d’en utiliser deux car chaque barre n’utilise qu’un des
deux degrés de liberté de la souris. Par contre, un Control Menu utilise les deux
degrés de liberté de la souris. Un seul Control Menu est donc suffisant pour faire
défiler la vue dans toutes les directions.

Le degré de compatibilité (la similarité entre l’action physique de l’utilisateur
et la réponse de l’objet sur lequel il agit) est élevé pendant un défilement car les
mouvements de la souris sont directement reflétés par les mouvements de la vue.
L’utilisateur déplace l’objet sous le curseur au début de l’opération jusqu’à sa
nouvelle position. Cette action présente un même niveau de compatibilité que le
glisser/coller ou que de tirer sur une poignée. Ce degré de compatibilité est moins
élevé pendant un zoom du fait de la possibilité d’annulation. En effet, tandis que
les mouvements horizontaux sont en relation directe avec les mouvements de la
souris, l’annulation requiert des mouvements verticaux, ce qui peut paraître moins
évident à l’utilisateur. Des utilisateurs ont également suggéré que le choix des
mouvements horizontaux pour contrôler le niveau de zoom était sous-optimal et
que des mouvements verticaux seraient plus naturels pour réaliser cette opération.

Cette analyse permet de constater que les Control Menus partagent de nom-
breux attributs avec les poignées des objets graphiques.

Enfin, un Control Menu a les mêmes avantages qu’un pie menu en ce qui
concerne la loi de Fitts. L’utilisateur n’a pas besoin de bouger la souris pour faire
afficher le menu, le menu s’affiche sous le pointeur, et les zones de l’écran sur
lesquelles il faut déplacer le pointeur pour sélectionner une opération sont grandes
et proches du pointeur.

Applications

Un Control Menu est un nouveau type de menu contextuel qui peut être utile
pour de nombreuses applications. Nous l’avons utilisé dans deux exemples de
ZUIs et dans une interface de monde virtuel. Nous donnons aussi des indications
sur la manière dont il pourrait être utilisé dans un traitement de texte.

Interaction dans un monde virtuel Un Control Menu a été utilisé pour se dé-
placer dans le monde virtuelvreng(Figure 9.10) disponible à l’URL http://www.
infres.enst.fr/net/vreng/. Ce Control Menu a une forme légèrement différente de
celle utilisée dans lesZUIs car ici le Control Menu est principalement utilisé
pour se déplacer. Il n’est donc pas nécessaire d’afficher du texte dans le menu,
les opérations disponibles (qui contrôlent la vitesse de déplacement dans diverses
directions) étant indiquées par des flèches (Figure 9.10b). À la différence du cas
précédent, un guide visuel est affiché une fois l’opération sélectionnée. Ce guide
indique la liste des vitesses disponibles et, par conséquent, la distance nécessaire
de déplacement de la souris pour choisir la vitesse souhaitée.

http://www.infres.enst.fr/net/vreng/
http://www.infres.enst.fr/net/vreng/
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(b) control menu(a) guide

FIG. 9.10 – Le Control Menu dans vreng ; (a) le guide, et (b) le Control Menu

Traitements de texte et logiciels de présentationsDans ces logiciels, la souris
est typiquement utilisée pour sélectionner du texte. Un Control Menu permet de
choisir une opération parmi plusieurs opérations puis de contrôler celle-ci. On
pourrait ainsi sélectionner et modifier du texte en un seul geste.

Quand un Control Menu est utilisé pour un logiciel de ce type, l’opération
« sélectionner » est placée à la droite du Control Menu (c’est-à-dire qu’elle rem-
place l’opération « zoom » de la Figure 9.4). Dans la Figure 9.11a l’utilisateur
a indiqué le début du texte devant être sélectionné en enfonçant le bouton de la
souris lorsque le pointeur était entre les mots « might » et « bear ». Il déplace alors
le pointeur de la distance d’activation vers la droite. À ce moment l’opération de
sélection de texte commence et le texte situé entre la position initiale du pointeur
et sa position actuelle est sélectionné (Figure 9.11b). La sélection de texte se fait
alors normalement jusqu’à ce que l’utilisateur relâche le bouton de la souris.

Les opérations nécessitant de fournir des paramètres (des tailles de police par
exemple) sont décomposées en deux gestes. Le texte à modifier est sélectionné
comme décrit ci-dessus puis le menu est à nouveau utilisé pour exécuter l’opéra-
tion de changement de taille.

Des opération telle que « couper », « souligner », et « mettre en gras » peuvent
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(a)

(b)

(c)

Feed’st thy light’s flame with self−substantial fuel,
But thou contracted to thine own bright eyes,
His tender heir might bear his memory

But thou contracted to thine own bright eyes,
His tender heir might bear his

Feed’st thy light’s flame with self−substantial fuel,

memory:

Feed’st thy light’s flame with self−substantial fuel,

His tender heir might
bright eyes,

bear his memory:
But thou contracted to thine own

FIG. 9.11 – Sélectionner du texte avec un Control Menu

être réalisées de la même manière (deux utilisations du menu) ou via une seule
entrée dans le Control Menu. Dans ce dernier cas, l’opération choisie sera effec-
tuée au fur à mesure (cas de la mise en gras) ou à la fin (cas du « couper ») de la
sélection de texte. Ceci donne un retour de contrôle encore plus direct et permet
d’exécuter des commandes simples en minimisant l’usage des menus.

Un Control Menu pourrait également être utilisé dans un logiciel de prépara-
tion de présentations. Ce cas est un peu différent du cas précédent dans la mesure
ou la taille et forme du texte sont choisies plus librement dans une présentation
afin que l’utilisateur puisse créer l’effet visuel souhaité. Dans le cas d’un traite-
ment de texte, la taille et la forme sont souvent précisées par un style pré-défini.
Un guide visuel serait alors nécessaire pour choisir le style approprié, comme
dans le cas du monde virtuel. Par contre, dans le cas d’un éditeur de présentation,
l’utilisateur pourrait directement changer la taille des polices de manière relative
comme dans le cas des interfaces zoomables. Le retour visuel est alors immédiat,
ce qui permet de choisir l’effet voulu en une seule interaction. Les autres para-
mètres de formatage (couleur du texte, mise en gras, indentation, etc.) pourraient
également être sélectionnés de la même façon (via l’utilisation ou non d’un guide
visuel selon le cas).

9.2.3 FlowMenus

Les FlowMenus ont été développés après les Control Menus. Ils sont une ex-
tension des pie et marking menus et sont optimisés pour les systèmes interactifs
contrôlés par un stylo. La différence principale est que le choix d’une opération
est indiqué par le retour du curseur au centre de menu. Ceci permet d’exécuter
plusieurs d’opérations séquentiellement sans soulever le stylo. Un autre possibi-
lité est le contrôle de l’opération choisie. Ce contrôle peut être accompli avec
un sous-menu où l’utilisateur peut sélectionner des paramètres ou par manipula-
tion directe. La Figure 9.12 montre les mouvements (normalement invisibles) du
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(a) sélectionner le sous-menu
« Item »

(b) sélectionner « Zoom » de
ce menu

a b c d

Figure 1: To zoom, the user moves the pen from the rest area into the Items...octant (a). Submenus (Highlight, Move,
Zoom) appear and the first level menu items not selected are grayed out (b). Entering the Zoomoctant submenu, then
moving back to the rest area dismisses the root level menu and brings up the zoom menu with the current zoom value
(75%) displayed in the center (c). A new zoom value of 100% is selected by moving into the octant for the desired value
and back to the center at which point the zoom is applied (d). Several zoom values can be tried out during the same
interaction since the zoom menu stays in place until the pen is lifted. The dashed circles added to the illustration (a) and
(b) show the transition boundaries for leaving and entering the rest area (see text). For explanatory purposes, the figures
in this paper explicitly show the pen track and the underlying selected object is shown only in Figure 3. In normal use, the
pen track is not displayed and the selected object is visible behind the transparent menu.

a b c d

Figure 2: After selecting Item...→Zoomfrom the root menu (a), the user selects Numericto enter the new zoom value
as a sequence of digits (b). The zoom menu is dismissed and the Quikwriting system is brought up (c) so that she can
enter the zoom value (d).

tiple items to a menu system as well. Cirrin [9] is a soft key-
board in which letters are arranged at the circumference of a
circle. Like Quikwriting it provides a way to enter succes-
sive letters of a word in a continuous stroke without having
to lift the pen. After an initial training period, words can be
remembered as a kind of shorthand. The initial layout of 26
primary entries without hierarchy makes it less convenient to
extend to a menu system.

THE FLOWMENU

The FlowMenu is presented as a radial menu with 8 octants
and a central rest area (figure 1). Starting from the rest area,
the user selects a top-level menu item by entering the corre-
sponding octant. As she does, sub-menus for this menu ap-
pear laid out further away from the center while non-selected
top-level items are grayed out. Moving the pen to the sub-
menu octant and reentering the rest area from this octant will
trigger menu selection. The user can abort the interaction by
removing the pen from the surface before reentering the rest
area. With a simple FlowMenu, the user can access 8 top-

level menu items, each with 8 submenu items. However since
each selection of a menu ends with the cursor at the cen-
ter of the menu, successive menu interactions can be merged
together to build deeper hierarchies and arbitrarily long se-
quences of interactions. Figure 1 show an example where
after selecting the zoom submenu from the system menu, the
system menu is removed and the zoom menu is brought up
to let the user adjust the zoom.

Merging menu selection and parameter entry is easy because
commands are segmented by the return of the cursor to the
rest area. To let the user enter an alphanumerical value af-
ter a menu selection we remove the menu from the screen
and present in its place a Quikwriting pad. Figure 2 shows
such an interaction. The selectionItem...→Zoom→ Nu-
mericbrings up the Quikwriting system to let the user enter
a numeric zoom value. The user can learn a composite se-
quence of commands and text as the superposition of simple
loop gestures such as shown in figure 2d. The system can
also be used in a way similar to control menus by letting the
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interaction since the zoom menu stays in place until the pen is lifted. The dashed circles added to the illustration (a) and
(b) show the transition boundaries for leaving and entering the rest area (see text). For explanatory purposes, the figures
in this paper explicitly show the pen track and the underlying selected object is shown only in Figure 3. In normal use, the
pen track is not displayed and the selected object is visible behind the transparent menu.
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Figure 2: After selecting Item...→Zoomfrom the root menu (a), the user selects Numericto enter the new zoom value
as a sequence of digits (b). The zoom menu is dismissed and the Quikwriting system is brought up (c) so that she can
enter the zoom value (d).
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enter the zoom value (d).
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and present in its place a Quikwriting pad. Figure 2 shows
such an interaction. The selectionItem...→Zoom→ Nu-
mericbrings up the Quikwriting system to let the user enter
a numeric zoom value. The user can learn a composite se-
quence of commands and text as the superposition of simple
loop gestures such as shown in figure 2d. The system can
also be used in a way similar to control menus by letting the

a b c d

Figure 1: To zoom, the user moves the pen from the rest area into the Items...octant (a). Submenus (Highlight, Move,
Zoom) appear and the first level menu items not selected are grayed out (b). Entering the Zoomoctant submenu, then
moving back to the rest area dismisses the root level menu and brings up the zoom menu with the current zoom value
(75%) displayed in the center (c). A new zoom value of 100% is selected by moving into the octant for the desired value
and back to the center at which point the zoom is applied (d). Several zoom values can be tried out during the same
interaction since the zoom menu stays in place until the pen is lifted. The dashed circles added to the illustration (a) and
(b) show the transition boundaries for leaving and entering the rest area (see text). For explanatory purposes, the figures
in this paper explicitly show the pen track and the underlying selected object is shown only in Figure 3. In normal use, the
pen track is not displayed and the selected object is visible behind the transparent menu.

a b c d

Figure 2: After selecting Item...→Zoomfrom the root menu (a), the user selects Numericto enter the new zoom value
as a sequence of digits (b). The zoom menu is dismissed and the Quikwriting system is brought up (c) so that she can
enter the zoom value (d).

tiple items to a menu system as well. Cirrin [9] is a soft key-
board in which letters are arranged at the circumference of a
circle. Like Quikwriting it provides a way to enter succes-
sive letters of a word in a continuous stroke without having
to lift the pen. After an initial training period, words can be
remembered as a kind of shorthand. The initial layout of 26
primary entries without hierarchy makes it less convenient to
extend to a menu system.

THE FLOWMENU

The FlowMenu is presented as a radial menu with 8 octants
and a central rest area (figure 1). Starting from the rest area,
the user selects a top-level menu item by entering the corre-
sponding octant. As she does, sub-menus for this menu ap-
pear laid out further away from the center while non-selected
top-level items are grayed out. Moving the pen to the sub-
menu octant and reentering the rest area from this octant will
trigger menu selection. The user can abort the interaction by
removing the pen from the surface before reentering the rest
area. With a simple FlowMenu, the user can access 8 top-

level menu items, each with 8 submenu items. However since
each selection of a menu ends with the cursor at the cen-
ter of the menu, successive menu interactions can be merged
together to build deeper hierarchies and arbitrarily long se-
quences of interactions. Figure 1 show an example where
after selecting the zoom submenu from the system menu, the
system menu is removed and the zoom menu is brought up
to let the user adjust the zoom.

Merging menu selection and parameter entry is easy because
commands are segmented by the return of the cursor to the
rest area. To let the user enter an alphanumerical value af-
ter a menu selection we remove the menu from the screen
and present in its place a Quikwriting pad. Figure 2 shows
such an interaction. The selectionItem...→Zoom→ Nu-
mericbrings up the Quikwriting system to let the user enter
a numeric zoom value. The user can learn a composite se-
quence of commands and text as the superposition of simple
loop gestures such as shown in figure 2d. The system can
also be used in a way similar to control menus by letting the

FIG. 9.12 – Échelles fixes dans un FlowMenu (copié de Guimbretière and Wino-
grad, 2000)

stylo pendant l’utilisation d’un FlowMenu pour choisir l’opération de zoom d’un
sous-menu et le choix d’un niveau de zoom de 100%. À la fin de cette opération, le
stylo est toujours sur la surface et l’utilisateur peut donc choisir un autre niveau de
zoom en bougeant le stylo vers la région d’un autre échelle puis de nouveau vers
le centre du menu. Cette façon d’utiliser un FlowMenu ne permet que la sélection
parmi une liste pré-définie. Une autre façon d’utiliser un FlowMenu ressemble à
l’utilisation d’une poignée que l’on peut tourner. Ceci permet la sélection par pas
prédéfini parmi un grand nombre de valeurs. Dans la Figure 9.13, l’utilisateur a
décidé de choisir une échelle sur mesure. À partir de ce moment, jusqu’à ce que
le stylo soit enlevé de la surface, des mouvements dans le sens des aiguilles d’une
montre autour du centre du menu augmentent l’échelle chaque fois que le curseur
traverse un segment. Des mouvements dans l’autre sens diminuent l’échelle.
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(a) sélectionner « Zoom »
d’un sous-menu

(b) sélectionner choisir une
valeur sur mesure

a b c

Figure 3: FlowMenu interaction integrates smoothly with direct manipulation. Here after selecting the move action from
the root menu (a), the user continues directly with the drag interaction (b,c). In contrast to marking menus, the selected
object follows the cursor immediately. The initial jump of the object from the center of the menu to the beginning of the drag
interaction (b) has not been a problem in practice since during a drag, users focus their attention on the target location [2].

a b c d

Figure 4: In this example, the knob interaction is used to adjust the zoom level. After selecting Item...→Zoom→Numeric
(a,b), the user circles the pen around the center area, using the menu as a knob for fine adjustment. Each time an octant
line is crossed, the value is incremented by a small amount (c) (decremented if counter-clockwise (d)). The zooming is
done real-time, with the object visible (omitted in this figure for clarity) so visual feedback is provided at all times.

user perform a drag after the action selection, as shown in
figure 3. The return to the rest area obviates the need for an
arbitrary threshold distance or time-out to distinguish mark-
ing and direct manipulation.

Finally, the FlowMenu can be used in a “knob” mode in
which the user interacts with the menu as though it was a
knob. As shown in figure 4 crossing a octant line clock-
wise (resp. counter-clockwise) increases (resp. decreases)
the value by a small amount. This kind of interaction is very
useful for dynamically fine-tuning parameter values such as
zoom level.

CURRENT USE
FlowMenu is the default menu system for the Interactive Mu-
ral. The Mural uses the ultrasonic EFI EBeam [3] system to
track the pen on the screen surface. The root menu mech-
anism is triggered by depressing the system menu button
while the pen is touching the surface. The menu button can
be released as soon as the menu interaction is initiated. Re-
moving the pen from the surface before reentering the rest
area will abort the interaction. Pressing the menu button at
any time will abort the current interaction and bring the user
back to the root of the menu hierarchy. Since the current

EBeam pens do not provide a menu activation button, we use
the button of a separate device (a wireless mouse held in the
user’s other hand) as a proxy. We plan to integrate the menu
button into the physical pen device in the next version of our
system, before extended user testing.

All of the interaction modes described above have been used
in a tool for entering and manipulating simple hand-drawn
sketches during a brainstorming session. In this application,
FlowMenu allows users to move and zoom sketches and to
enter labels. We have only informal experience to date, and
will do user testing later this year during the evaluation of
our brainstorming tool.

Note that unlike marking menus [6], we did not implement a
delay in the appearance of the menu. Given the characteris-
tics of our toolkit (use of transparency, high speed rendering
and decoupled rendering and interaction loops) there seems
to be no disadvantage to displaying them immediately even if
the user is making a coordinated combination gesture. While
immediate menu appearance has the potential for visual dis-
traction, we conjecture that user testing will show that expert
users are not distracted, and that novice users will benefit
from the absence of a time-out pause.
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EBeam pens do not provide a menu activation button, we use
the button of a separate device (a wireless mouse held in the
user’s other hand) as a proxy. We plan to integrate the menu
button into the physical pen device in the next version of our
system, before extended user testing.

All of the interaction modes described above have been used
in a tool for entering and manipulating simple hand-drawn
sketches during a brainstorming session. In this application,
FlowMenu allows users to move and zoom sketches and to
enter labels. We have only informal experience to date, and
will do user testing later this year during the evaluation of
our brainstorming tool.
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delay in the appearance of the menu. Given the characteris-
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FIG. 9.13 – Valeur variable dans un FlowMenu (copié de Guimbretière and Wi-
nograd, 2000)

9.3 Visualisation

9.3.1 Recherche en visualisation

Les utilisateurs doivent comprendre et contrôler des bases de données sans
cesse plus grandes et plus complexes de par la variété des types de données
qu’elles contiennent. De nombreux systèmes de visualisation ont été développés
pour aider les utilisateurs dans ces tâches. Cependant, les espaces d’information
sont maintenant si grands que les techniques traditionnelles de présentation d’in-
formation ne sont plus suffisantes pour représenter globalement ces espaces sur
un écran d’ordinateur.

La partie de l’espace d’information qui peut tenir sur l’écran est une fraction
tellement réduite de l’espace global que l’utilisateur ne peut pas facilement main-
tenir une compréhension de sa perspective dans cet espace. Pour être utilisable
un système de visualisation doit donc fournir suffisamment de contexte pour per-
mettre à l’utilisateur de se repérer.
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Selon Bartram et al. (1995), trois catégories de techniques sont utilisées pour
résoudre ce type de problème : l’association du défilement et du zoom, les vues
multiples, et les vues déformées.

Un système de défilement et zoom (traditionnel) impose une échelle unique,
mais pas nécessairement constante, pour la vue de l’utilisateur. Le problème clas-
sique de ce type de technique est que l’utilisateur sera vite perdu en présence d’un
espace d’information de grande taille car il n’a pas d’information contextuelle
pour l’aider à comprendre comment sa vue se positionne dans l’espace global.

Les systèmes de vues multiples fournissent une fenêtre globale plus une ou
plusieurs vues détaillées. Les vues détaillées peuvent montrer plusieurs régions
de l’espace d’information ou la même région mais avec des représentations dif-
férentes. Cette solution demande de l’espace écran supplémentaire (pour des fe-
nêtres additionnelles) et nécessite que l’utilisateur intègre mentalement les dif-
férentes fenêtres en une compréhension globale de leur position dans l’espace
d’information.

Les vues déformées (ou vues « fisheye» ou œil de poisson) distordent l’espace
d’information afin de montrer de manière détaillée quelques régions spécifiques
(le focus) tout en gardant visible le contexte dans la même fenêtre. Nous présen-
tons ci-après quelques techniques qui utilisent des vues déformées et expliquons
pourquoi elles ne constituent pas toujours la solution idéale.

La visualisation des arbres ou des hiérarchies est le sujet de nombreuses ét-
udes. Nous présenterons une description des systèmes de visualisation pour les
arbres. Celle-ci servira comme exemple de la visualisation d’un type de données
précis. Ces systèmes seront utilisés pour illustrer les taxonomies présentées à la
fin de ce chapitre.

D’autres systèmes utilisent des vues transparentes. L’utilisation de ce type de
technique introduit une nouvelle dimension dans l’interface homme machine : la
profondeur. L’utilisation de la profondeur permet à plusieurs vues d’être visibles
au même moment sur le même espace écran. Ces systèmes nécessitent des tech-
niques spécifiques pour faciliter la séparation des différentes vues.

Les interfaces à échelle variable, nommées également interfaces zoomables ou
« Zoomable User Interfaces » (ZUIs), sont dérivées des interfaces traditionnelles
de défilement et zoom. Ces interfaces permettent aux utilisateurs de contrôler di-
rectement l’échelle de la représentation de l’espace d’information. LesZUIs sont
basées sur le principe de zoom sémantique : la représentation des objets change
afin de montrer ceux-ci en plus de détail en fonction de l’espace qui leur est al-
loué sur l’écran. Cette technique se distingue des techniques de vues multiples car
elle est immersive. Lorsqu’un utilisateur change l’échelle, la vue entière change
d’échelle et l’utilisateur « plonge » dans l’espace d’information.

Les techniques traditionnelles de défilement/zoom et de fenêtres multiples
sont bien connues et sont largement utilisées dans les systèmes commerciaux ac-
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tuels. Elles ont cependant montré leurs limites. Nous avons donc choisi de nous
concentrer sur des techniques nouvelles, principalement lesZUIs, et sur les fa-
çons de les utiliser pour aider à résoudre les problèmes de visualisation. Nous
présentons ci-après les techniques mentionnées ainsi qu’une analyse de ces tech-
niques par rapport à quelques taxonomies existantes. Nous introduirons enfin deux
nouvelles taxonomies. La première analyse comment un système interactif peut
présenter de l’information : par un multiplexage du temps, de l’espace, ou de la
profondeur. La seconde décrit les différent types de déformations qui peuvent être
utilisés pour faire du multiplexage.

Vues déformées

Les techniques présentées dans cette section sont fondées sur l’idée que les
utilisateurs ont un focus d’attention (c’est-à-dire l’objet ou les objets sur lesquels
ils sont en train de travailler actuellement), pour une tâche donnée ou à un moment
donné, et que les autres éléments (ceux hors du focus) sont moins intéressants. Ces
objets non-focaux sont cependant importants car ils permettent aux utilisateurs de
positionner le focus dans l’espace d’information global. Une représentation de
ces objets est nécessaire comme contexte du focus. Elles supposent également
que l’intérêt de l’objet est inversement proportionnel à la distance entre le focus et
l’objet. Ces techniques créent donc une correspondance entre l’espace accordé aux
objets et leur distance par rapport au focus. Plus une information est éloignée du
focus, moins elle est supposée être intéressante et moins il lui est alloué d’espace.
Ces techniques déforment la représentation de l’espace en éliminant de l’informa-
tion ou en changeant la taille ou la position de la représentation de l’information.
La déformation n’est pas constante sur l’espace d’information : les informations
loin du focus sont plus déformées que celles qui en sont proches. Il est possible
de généraliser ces techniques pour prendre en compte la possibilité d’avoir plu-
sieurs focus d’attention. Ceci nécessite des fonctions de distance et d’estimation
de focus d’attention plus complexes.

Vues fisheye Les vues fisheye (Furnas, 1986) constituent une façon d’intégrer
le contexte et le focus dans une vue unique.

Une fonction de niveau d’intérêt (DOI) donne à chaque point dans la structure
devant être visualisée une valeur qui indique le niveau d’intérêt de l’utilisateur
pour ce point pour une tâche donnée. Une stratégie simple d’affichage d’infor-
mation, sur un écran de taillen, affiche lesn points les plus intéressants selon
la fonction DOI. La généralisation de ces vues par Furnas (1986) décompose la
fonction DOI en deux composants :df (x ` y) = ia(x)−D(x,y), où ia(x) est l’in-
térêta priori dans un pointx, D(x,y) est la distance entrex et y, et df (x ` y) le
niveau d’intérêt dex si le focus actuel esty. L’intérêt décroît avec la distance : si
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1 #define DIG 40

. . . 2 #include <stdio.h>
4 main()
5 {

. . . 6 int c, i, x[DIG/4], t[DIG/4], k = DIG/4, noprint = 0;
8 while((c=getchar()) != EOF){

. . . 9 if (c >= ’0’ && c <= ’9’){
16 } else {
17 switch(c) {

. . . 18 case ’+’:

. . . 27 case ’–’:
38 case ’e’:

⇒ 39 for(i=0;i<k;i++) t[i] = x[i];
40 break;

. . . 41 case ’q:

. . . 43 default:
46 }

. . . 47 if(!noprint){
57 }
58 }
59 noprint = 0;
60 }
61 }

FIG. 9.14 – Vue fisheye d’un programme C (copié de Furnas, 1986)

la distance au focus est grande, l’information ne sera affichée que si elle est très
intéressante. Cette formulation peut être utilisée avec tout type de structure où les
fonctionsia(x) etd(x,y) peuvent être définies.

La Figure 9.14 montre une vue Fisheye d’un programme C (Furnas, 1986).
Les numéros de ligne dans le programme sont affichés sur la gauche de la figure
et la ligne courante est indiquée par «⇒ ». Les « . . . » indiquent où des lignes
ont été enlevées. Tout le code dans lecase courant est affiché, ainsi que les struc-
tures de contrôle qui enferment la ligne courante et les déclarations de variables
accessibles à cette ligne. D’autres structures de contrôle (les lignes 47 et 57) dans
le bloc de code source à coté de la ligne courante sont également affichées.

Table Lens Les Table Lenses (Rao and Card, 1994, 1995) sont un moyen de
visualiser et comprendre les grands tableaux, du type de ceux que l’on peut trouver
dans les tableurs. Cette technique peut être vue comme une adaptation du principe
des « feuilles en caoutchouc » (sous-section 4.1.4) aux tableurs. Elle aligne et
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FIG. 9.15 – Table Lens (dewww.parc.xerox.com)

retaille la région du focus au bord des cellules dans le tableur (Figure 9.15). La
région du focus peut être manipulée avec trois opérateurs standard :zoomerpour
modifier l’espace alloué à la région du focus sans modifier le nombre de cellules
dans le focus,ajusterpour modifier le nombre de cellules dans la région du focus,
et glisserpour déplacer la région du focus afin de modifier les cellules dans cette
région.

Les Table Lenses utilisent différents types de représentations graphiques pour
afficher le contenu des cellules. La choix de la représentation dépend de la région
de la cellule (dans la région du focus, dans la même colonne, dans la même ligne,
hors de la région du focus) et sa taille. Par exemple, une cellule qui contient une
valeur numérique affichera des chiffres si on lui a alloué suffisamment d’espace ;
sinon elle sera représentée sous une forme graphique plus compacte. Ce graphique
pourrait n’être qu’un pixel en hauteur, ceci donnant une idée de la valeur dans
la cellule comparativement aux cellules voisines. Cette technique est une forme
de zoom sémantique dans la mesure où chaque cellule ajuste sa représentation à
l’espace alloué.

Interfaces zoomables

Les interfaces zoomables (« zoomable user interfaces » ouZUIs) ne sont plus
une nouveauté et leurs principes (Furnas and Bederson, 1995) et applications pra-

http://www.parc.xerox.com/istl/projects/uir/images/tablelens.gif
www.parc.xerox.com
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tiques (Bederson et al., 1996) ont déjà été présentés dans plusieurs publications.
Quand un utilisateur interagit avec uneZUI, il voit une vue d’un espace d’informa-
tion. La vue initiale montre l’espace à une échelle qui permet de l’afficher en entier
sur l’écran de l’utilisateur. Celui-ci peut alors « zoomer » (agrandir) la partie de la
vue qu’il trouve intéressante. Les objets graphiques s’agrandissent jusqu’à ce qu’il
y ait suffisamment de place sur l’écran pour remplacer ces objets graphiques par
des représentations alternatives montrant les données sous-jacentes avec plus de
détails. Nous avons employé cette technique, nommée « zoom sémantique », pour
visualiser et parcourir la base de données HuGeMap qui regroupe les principales
cartes génétiques et physiques du génome humain. CetteZUI a été utilisée pour
expérimenter les nouvelles techniques décrites dans cette thèse. Pour comprendre
les exemples présentés, il suffit de savoir que la première vue montre 24 chro-
mosomes (Figure 9.16a), que ces chromosomes possèdent trois cartes génétiques
(Figure 9.16b), et que ces cartes consistent en des marqueurs génétiques posi-
tionnés le long d’un axe (Figures 9.16d et 9.16e). Enfin, la séquence de chaque
marqueur génétique lui est associée sous forme d’une chaîne de caractères.

Deux nouvelles taxonomies

Les deux questions importantes qu’une taxonomie doit prendre en compte lors
de la classification des systèmes de visualisation sont : sous quelle forme l’infor-
mation est présentée aux utilisateurs et comment les utilisateurs contrôlent cette
représentation. Nous proposons deux nouvelles taxonomies qui permettent de ré-
pondre directement à ces questions.

Taxonomie de présentation Quand un système de présentation de l’informa-
tion affiche simultanément plusieurs parties ou représentations de l’espace d’in-
formation, le système utilise du multiplexage de l’espace, du temps ou de la pro-
fondeur. Si l’écran est trop petit pour afficher ce qu’un système de visualisation
doit afficher à un moment donné seuls le multiplexage temporel ou en profondeur
restent disponibles.

Multiplexage du temps Le multiplexage du temps implique que le système
présente différentes parties ou représentations de l’espace d’information séquen-
tiellement. Ce que le système affiche à un moment donné peut être contrôlé par le
système ou directement par l’utilisateur. Le désavantage principal du multiplexage
temporel est que l’utilisateur doit se souvenir de ce qu’il a vu précédemment pour
pouvoir le rapprocher de ce qui sera affiché ensuite.

Les outils basés sur la déformation se servent également du multiplexage tem-
porel car certaines parties deviendraient si petites qu’elles seraient alors invisibles.
L’utilisateur doit alors déplacer le focus vers ces régions pour pouvoir les lire.
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Multiplexage en profondeur Le multiplexage en profondeur signifie que
différentes parties de l’espace d’information sont superposées sur le même es-
pace écran. L’utilisateur doit se servir des indices de profondeur pour déterminer
l’appartenance des éléments graphiques aux différentes couches. L’utilisation du
multiplexage en profondeur peut amener à une surcharge de l’écran, ceci deman-
dant un effort important de la part de l’utilisateur pour distinguer les différentes
couches.

Multiplexage de l’espace Le multiplexage spatial affiche deux vues diffé-
rentes au même moment mais dans des espaces écran séparés. Les deux désa-
vantages principaux du multiplexage spatial sont la quantité d’espace sur l’écran
utilisé et le temps que l’utilisateur doit consacrer à déplacer sa vue d’une partie de
l’écran à l’autre (et à la compréhension synthétique de l’ensemble).

Taxonomie de déformation Les systèmes de visualisation par déformation pré-
sentés dans cet état de l’art essaient de montrer l’espace d’information en entier
à tout moment. L’espace sur l’écran étant presque toujours plus petit que l’espace
d’information, ces systèmes utilisent donc des techniques de déformation afin de
réduire la taille de la représentation. Cette déformation utilise une fonction qui re-
présente le niveau d’intérêt de chaque donnée par rapport à la tâche de l’utilisateur
et le type d’information. L’espace accordé à une information est proportionnel au
niveau d’intérêt de cette information. Cette section présente les trois techniques
de déformation les plus courantes.

Déformation logique Ce type de déformation nécessite une compréhension
de la structure de l’espace d’information. Lorsqu’une region de l’espace d’infor-
mation nécessite trop d’espace écran pour être affichée complètement, une fonc-
tion spécifique à l’application (c’est-à-dire dépendante du type d’information af-
fiché) crée un résumé de cette region qui puisse tenir dans l’espace disponible. Ce
résumé est alors affiché sans déformation physique. Ce type de déformation a été
appelé « vue focus+contexte logique » par Herman et al. (2000).

Le système de visualisation des programmes C est un exemple de ce type de
technique. Les parties du programme C qui ne sont pas intéressantes (c’est-à-dire
distantes de la ligne courante de l’utilisateur) n’obtiennent que peu d’espace sur
l’écran. Elles sont résumées par une fonction capable d’analyser des programmes
C. Cette fonction convertira, par exemple, les blocs de contrôle qui entourent la
ligne courante mais en sont un peu distantes, en une seule ligne comprenant uni-
quement lefor ou while qui contrôle le bloc. Si l’espace disponible le permet,
les lignes qui déclarent les variables dans le bloc seront également affichées. Les
lignes appartenant au focus sont affichées comme du texte sans déformation.
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Un autre exemple de déformation logique est la Table Lens. Dans ce système
l’utilisateur décide quelles sont les lignes et colonnes qui sont importantes. Une
taille suffisante est allouée aux lignes et colonnes pour afficher leur valeur en
format numérique. Aux autres lignes et colonnes (celles qui ne font pas partie du
focus et sont donc moins intéressantes pour l’utilisateur) est alloué moins d’espace
et elles sont représentées de manière plus compacte.

L’avantage de ce type de déformation vient du fait que la déformation est
adaptée et optimisée pour le type de données à visualiser. Cette déformation évite
les déformations pseudo-optiques qui demandent souvent des ressources de calcul
importantes et rendent souvent le texte ou les graphiques illisibles.

Le désavantage de ce type de déformation vient de la nécessité d’avoir une
fonction de déformation qui comprenne la structure de l’espace d’information.
Une nouvelle fonction de déformation doit donc être développée pour chaque type
d’espace d’information.

Déformation de la position Une autre façon de déformer un espace d’infor-
mation consiste à modifier la position et la taille des objets dans l’espace. Ce type
de déformation laisse les objets intéressants (ceux du focus) au centre de la fenêtre
tout en poussant les objets hors focus vers les bords. Les objets sont positionnés de
telle sorte les objets du focus soient suffisamment écartés pour être étiquetés avec
l’information demandée. Les étiquettes des objets ne sont pas déformées et restent
donc lisibles. Ce type de déformation est appelé « géométrique » par Herman et al.
(2000).

Ce type de déformation a l’avantage d’exiger une fonction de déformation
nécessitant une moindre connaissance de l’espace d’information. Dans le cas de
la déformation logique, la fonction de déformation n’a besoin que de résoudre
un problème de positionnement. Contrairement à une fonction de déformation
logique, une fonction de déformation de la position doit simplement comprendre
la structure de l’information.

Un désavantage de ce type de déformation est que les relations spatiales entre
les objets sont souvent perdues. Ce problème est exacerbé par le fait que l’utili-
sateur n’a souvent à sa disposition que peu d’informations qui peuvent l’aider à
comprendre la déformation.

Déformation pseudo-optique Une déformation pseudo-optique n’élimine
pas d’information de l’affichage et ne repositionne pas les objets dans l’espace
d’information. Elle se contente de déformer globalement une image de l’espace
d’information qui serait trop grande pour pouvoir tenir dans la fenêtre de l’utili-
sateur et pour que le focus d’attention de celui-ci reste est lisible.

Ce type de déformation a l’avantage de ne pas exiger de compréhension de
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déformation

logique positionnel pseudo-optique

vue fisheye affichage hyperbolique Perspective Wall

Table Lens Rubber Sheet Document Lens

zoom sémantique zoom sémantique

3D Pliable Surfaces

transformation non-linéaire

TAB . 9.1 – Taxonomie de modes de déformation

type d’interface multiplexage mode de déformation

défiler & zoomer temporel optique

fenêtres multiples spatial aucun

basé distorsion temporel & spatial tous

transparence en profondeur positionnel

zoom sémantique temporel optique & logique

TAB . 9.2 – Sommaire de la taxonomie de visualisation

l’espace d’information. Il est également indépendant de la disposition de l’espace
d’information. De plus, l’espace entier est déformé, ce qui facilite la compréhen-
sion de la déformation par l’utilisateur.

Le désavantage principal de la déformation pseudo-optique est que les élé-
ments graphiques et textuels sont souvent tellement déformés qu’ils deviennent
difficilement lisibles.

Résumé Les systèmes de visualisation d’information utilisant la déforma-
tion peuvent être classifiés dans une des catégories ci-dessus. Cette classifica-
tion est résumée dans la Table 9.1. Les déformations logiques sont plus difficile à
mettre en œuvre mais comportent l’avantage de créer des vues où le texte et les
graphiques restent lisibles.

Conclusion

Les techniques de visualisation présentées peuvent être divisées en cinq types.
Ceux-ci utilisent une des trois stratégies pré-citées afin d’afficher un espace d’in-
formation dans une fenêtre de taille réduite. Un sommaire de ces techniques et
des stratégies associées se trouve dans la Table 9.2. Les techniques basées sur du
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zoom sémantique (les interfaces zoomables) utilisent un multiplexage du temps.
La section suivante explique comment combiner le multiplexage spatial, temporel
et en profondeur pour créer des interfaces zoomables plus puissantes.

9.3.2 Nouvelles aides de contexte pour les interfaces zoomables

Avec uneZUI, un utilisateur ne voit qu’une vue à la fois : le focus. Le contexte
a été perdu. D’autres types d’interfaces telles que les vues « fisheye » (Furnas,
1986) et le « Document Lens » (Robertson and Mackinlay, 1993) intègrent le
focus et le contexte en affichant une partie de l’information qui entoure le focus.
Ces techniques déforment la représentation graphique de l’espace d’information
en éliminant certains objets ou en modifiant leur taille ou leur position. D’autres
techniques proposent une vue du contexte affichée à côté de la vue du focus (un
multiplexage spatial) ou bien une vue du contexte affichée à la place de la vue du
focus (un multiplexage temporel).

Couche de contexte

Contrairement à ces techniques, nous proposons une couche de contexte qui
combine le focus et son contexte dans une seule fenêtre et sans déformation.
Ceci peut être vu comme un multiplexage de la profondeur (Cox et al., 1998).
La couche de contexte est temporaire et affichée uniquement quand l’utilisateur le
désire. Pendant son utilisation elle se superpose en transparence à la vue princi-
pale (le focus). L’affichage de cette couche est temporaire afin de ne pas surcharger
l’écran quand l’utilisateur n’a pas besoin de voir le contexte. Elle disparaît dès que
l’utilisateur termine le geste qui a provoqué l’apparition de cette couche à l’écran.

La couche de contexte peut être contrôlée dans deux directions : l’échelle du
contexte (c’est-à-dire le niveau de zoom sémantique) et le niveau relatif de trans-
parence des deux vues. Le réglage de l’échelle permet de montrer une vue contex-
tuelle dont l’échelle peut varier de manière continuelle entre celle de la vue initiale
et celle du focus courant. Ceci permet d’obtenir une « quantité de contexte » adé-
quate pour une vue focale donnée.

La Figure 9.16d montre une vue que l’utilisateur peut voir après avoir navigué
pendant quelques temps dans laZUI d’une base de données biogénétiques. Cette
vue ne contient pas d’élément permettant à l’utilisateur de savoir sur quelle carte
de quel chromosome il se trouve. L’utilisateur peut alors afficher la couche de con-
texte, ce qui donne la Figure 9.17a. Celle-ci est une superposition du contexte (Fi-
gure 9.16a) sur le focus (Figure 9.16d). La position du focus relative au contexte
est indiquée par un rectangle situé au centre. Dans la Figure 9.17a ce rectangle
est sous le mot « 10q » et l’utilisateur sait donc que le focus montre une partie du
chromosome 10. Dans la Figure 9.17b, l’utilisateur a zoomé la couche de contexte
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position et taille
du focus

(c) vue pâlie avec couche de contexte

(b) vue avec couche de contexte zoomée(a) vue avec couche de contexte

FIG. 9.17 – Construction de la couche de contexte
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(mais pas le focus) ce qui donne maintenant comme contexte une vue où les noms
des cartes génétiques sont visibles. L’utilisateur peut voir le rectangle (indiqué par
une flèche) qui rappelle la position du focus sur le texte « Généthon ». L’utilisateur
sait donc que le focus montre actuellement cette carte génétique. L’utilisateur a pu
voir le contexte à deux échelles différentes de manière à pouvoir situer le focus
dans deux contextes différents.

Notre système permet d’autre part à l’utilisateur de se concentrer sur l’une des
deux vues en changeant la transparence relative de ces deux vues. La transparence
peut varier continuellement d’un état où seul le focus est visible jusqu’à l’état
opposé où seule la couche de contexte est visible. Par exemple, la Figure 9.17c
est similaire à la Figure 9.17b sauf que l’utilisateur est maintenant en train de se
concentrer sur le contexte et a légèrement fait disparaître le focus. Le rectangle
qui rappelle la position du focus est toujours visible et l’utilisateur peut voir plus
clairement que le focus montre actuellement la carte Généthon.

Contrôle des couches de contexte et d’historiqueUn Control Menu est uti-
lisé pour contrôler les couches de contexte et d’historique dans notreZUI. Ainsi,
la couche de contexte a-t-elle deux paramètres : l’échelle et le niveau de trans-
parence. L’échelle est contrôlée par les mouvements horizontaux de la souris et
la transparence par les mouvements verticaux. Le contrôle de la couche histo-
rique est similaire : la position sur le chemin de l’utilisateur est contrôlée par les
mouvements horizontaux et la transparence par les mouvements verticaux. Ces
paramètres ne sont pas intégraux car les deux paramètres pris ensemble n’ont pas
un sens simple : un mouvement diagonal de la souris n’a pas de sens intrinsèque.
Nous examinons actuellement si cela crée des problèmes aux utilisateurs et si
l’option qui consisterait à ne prendre en compte que la composante principale des
mouvements diagonaux aiderait à résoudre cette difficulté éventuelle.

Comme expliqué précédemment, les couches de contexte et d’historique n’ex-
istent que pendant l’exécution du geste qui fait apparaître le Control Menu ; dès
que l’utilisateur relâche le bouton de la souris, la couche transparente disparaît.

La différenciation entre les deux vues Harrison et al. (1995b) ont testé l’utili-
sation de palettes transparentes d’outils sous forme d’icones superposées sur une
fenêtre d’information. Cette surimposition crée deux couches : la couche avant
contenant la palette d’icones et celle contenant la fenêtre d’information. La couche
avant, la palette, est transparente afin de ne pas (complètement) cacher les objets
situés sous la palette. Harrison et al. ont fait des expériences afin de trouver le ni-
veau de transparence optimal. Leurs expériences présentaient une icone aux sujets
pendant quelques secondes, puis, une palette de douze icones. La première icone
était positionnée aléatoirement dans la palette et les sujets devaient la retrouver.
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Différents niveaux de transparence de la palette ont été testés afin de trouver le
niveau le mieux adapté à la lecture des icones. Cette étude a montré qu’il est pos-
sible de lire et d’utiliser de telles palettes si le niveau de transparence est adapté à
la tâche de l’utilisateur. Par ailleurs, Harrison et al. (1995a) ont proposé plusieurs
façons de différencier deux vues surimposées sur l’écran : les vues peuvent conte-
nir des couleurs différentes, des polices différentes, des contenus différents (par
exemple graphiques ou textuels), etc.

Notre couche de contexte est différenciée de la vue du focus par le mouvement
des objets sur l’écran et par leurs niveaux de transparence respectifs. Quand l’utili-
sateur change l’échelle du contexte les objets graphiques de cette couche bougent
sur l’écran alors que ceux de la vue du focus ne bougent pas. Ce mouvement aide
l’utilisateur à situer des objets, soit dans le contexte, soit dans la vue du focus. De
plus, le changement interactif des niveaux de transparence n’affecte qu’une des
vues à la fois, ce qui favorise également la différenciation des deux vues.

Cox et al. (1998) ont évalué un système où les utilisateurs doivent rechercher
et connecter des tubes. Ce système affiche une vue détaillée, et donc partielle, de
l’espace, sur laquelle est superposée une vue transparente de tout l’espace. Les
utilisateurs peuvent se servir de ces deux vues pour trouver et déplacer les tubes.
La vue globale est permanente ; elle est toujours affichée, même quand l’utilisateur
n’en a pas besoin (ce qui peut éventuellement gêner l’utilisateur). Cette vue a un
niveau de transparence fixe. L’échelle de la vue globale est également fixe ce qui
empêche l’utilisation de ce système dans les environnements où il n’existe pas de
vue globale (tel que le Web) ou si la différence d’échelle entre la vue d’ensemble
et la vue du détail est trop importante. Les auteurs ont testé l’utilisabilité de ce
système avec différents niveaux de transparence de la vue globale. Ils ont mis en
évidence que les utilisateurs trouvaient la vue globale utile pour des niveaux de
transparence situés entre 50% et 70%.

Notre couche de contexte ressemble à la vue globale utilisé par ces auteurs
dans la mesure où les deux systèmes superposent une vue globale à une vue lo-
cale en utilisant un effet de transparence. Il est donc raisonnable de s’attendre,
dans notre cas, à des performances d’utilisabilité comparables. Notre système
comporte toutefois trois améliorations importantes. D’une part, notre couche de
contexte existe de manière temporaire uniquement lorsque l’utilisateur en a be-
soin. Son espace de représentation n’est donc encombré que de façon temporaire.
D’autre part, le niveau de transparence de la couche de contexte peut être mo-
difié interactivement par l’utilisateur : il peut donc choisir un niveau optimal en
fonction de sa tâche courante. Enfin, comme expliqué précédemment, l’échelle
de notre couche de contexte est également variable et le « mouvement » qui en
résulte facilite la différenciation des deux couches.

Ce dernier point illustre l’importance des techniques d’interaction pour amé-
liorer la compréhension des représentations visuelles. De même que pour le con-
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trôle de l’échelle ou du niveau de transparence, il est vraisemblable que le « bou-
clage interactif » entre les actions de l’utilisateur et la réalisation d’effets visuels
immédiats facilite la perception de certaines structures. Ceci est dû au fait que le
système visuel humain est généralement plus efficace pour détecter des objets en
mouvement. Cet effet devrait de plus être logiquement renforcé lorsque ce mou-
vement est lui-même contrôlé par l’utilisateur.

Couche historique

La couche de contexte décrite ci-dessus permet à l’utilisateur de trouver une
réponse à la question « où suis-je ? ». Une autre question importante est « com-
ment suis-je arrivé ici ? ». LesZUIs nécessitent un mécanisme d’historique pour
que l’utilisateur puisse retourner aux régions déjà visitées dans l’espace d’infor-
mation afin de voir ces régions en relation avec le focus et la vue initiale. Nous
proposons une autre vue temporaire appeléecouche historique. Cette vue permet
de se déplacer interactivement entre la vue initiale et la vue courante en suivant
le chemin emprunté par l’utilisateur. Comme la couche de contexte, la couche
historique est temporaire afin de ne pas surcharger l’écran.

De même que la couche de contexte, la couche historique est affichée en su-
perposition de la vue courante du focus. Cette couche historique est contrôlée
interactivement par l’utilisateur de telle sorte que le mouvement de la souris fasse
apparaître successivement toutes les vues intermédiaires que l’on a préalable-
ment affichées pour arriver à la vue courante. Lacouchehistorique (Figure 9.16c)
contient une desvueshistoriques (Figure 9.16d) et se superpose à la vue initiale
(Figure 9.16a) ; cette combinaison s’affiche temporairement en lieu et place de la
vue courante. La vue courante (Figure 9.16e) n’est donc pas visible pendant l’uti-
lisation de la couche historique. La position et la taille de la vue historique et de la
vue courante sont indiquées sur la vue initiale par des rectangles de couleurs dif-
férentes (Figure 9.16c). L’utilisateur, en se déplaçant dans la succession des vues
historiques (Figure 9.16a, b, d et e) peut donc revoir son parcours dans l’espace
d’information et à tout moment mettre en relation la dernière vue courante avec
une vue intermédiaire de son parcours.

Vue hiérarchique

Les techniques présentées dans la section précédente facilitent la contextue-
lisation du focus dans l’espace d’information. Cependant, elles n’informent pas
l’utilisateur sur ce qui se trouve dans d’autres régions ni sur ce qui peut être trouvé
en « zoomant » davantage. LesZUIs sont souvent utilisées pour visualiser des don-
nées organisées hiérarchiquement mais l’utilisateur ne peut généralement pas uti-
liser cette organisation pour naviguer dans l’espace d’information. Par exemple,
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FIG. 9.18 – Notre interface zoomable avec la hiérarchie sur la droite

il est habituellement impossible de dézoomer automatiquement pour voir un objet
en entier, ni d’utiliser la hiérarchie pour se déplacer d’un sous-objet vers un autre.

Une nouvelle vue hiérarchique Les ZUIs fournissent une vue qui peut être
considérée comme une tranche horizontale de l’espace 3D d’information (en con-
sidérant que la dimension verticale est celle du zoom). Nous proposons une se-
conde vue orthogonale à la première, qui est une tranche verticale « aplatie » de
l’espace d’information. Cette seconde vue (Figure 9.18) affiche les noms des ob-
jets qui sont situés au dessus de la vue courante dans la hiérarchie. Comme les
objets ont également des types (un objet peut être un chromosome, une carte, une
séquence, etc) la hiérarchie entière des types d’objets peut être montrée dans la
seconde vue si l’espace d’information est suffisamment régulier. Sinon, seule une
partie de la hiérarchie des types, centrée sur la position de l’utilisateur, peut être
montrée. Cette seconde vue indique à l’utilisateur la structure de l’espace d’infor-
mation, sa position courante, les autres informations disponibles, leur disposition
spatiale, et comment les trouver.

Dans l’espace régulier de notreZUI biogénétique, les chromosomes possèdent
deux « bras », des données et des cartes. Cette structure est affichée dans la vue de
la hiérarchie (Figure 9.18) dès que laZUI est lancée. La position de l’utilisateur
dans la structure est indiquée en gris (en magenta sur l’écran) ; dans cet exemple
l’utilisateur est en train de regarder la carte « Généthon » sur le chromosome 9 (Fi-
gure 9.18a). Cette vue indique également que si l’utilisateur continue de zoomer
sur la carte il trouvera les séquences des marqueurs génétiques (Figure 9.18c).

La hiérarchie offre également à l’utilisateur un moyen efficace de se dépla-
cer des objets visibles vers les objets non encore affichés qui leur sont liés. Par
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exemple, si l’utilisateur clique sur le mot « chromosome » dans la Figure 9.18, la
ZUI dézoomera suffisamment pour montrer le chromosome 9 en entier. L’utilisa-
teur pourrait également cliquer sur les mots «CHLC v3 » (Figure 9.18b), le nom
de la carte à coté de la carte « Généthon » sur la chromosome 9, afin de se déplacer
vers la même région sur la carte «CHLC v3 ».

Évaluation Afin d’évaluer l’efficacité de la hiérarchie proposée dans cette thèse
nous avons créé une version modifiée de notreZUI sans la hiérarchie. Huit su-
jets, des volontaires parmi nos collègues d’Infobiogen, ont été formés à notreZUI.
Ces volontaires étaient des informaticiens, des biologistes, et des assistants ad-
ministratifs. Pendant l’évaluation il leur a été demandé de répondre à vingt-deux
questions à choix multiples. La séance d’entraînement leur a montré comment
répondre à ce genre de question avec et sans la vue de la hiérarchie. Les sujets
ont été divisés en quatre groupes et ont traité onze questions avec aide de la hié-
rarchie, et onze sans. Deux groupes ont commencé par répondre à onze questions
avec l’aide de la hiérarchie, les deux autres groupes ont commencé sans cette aide.
Ainsi chaque question a été traitée avec l’aide de la hiérarchie par deux groupes
de sujets, et sans par les deux autres groupes. De plus, dans chaque cas, les deux
séries de onze questions ont été présentées dans un ordre différent à chacun des
deux groupes afin d’éviter que l’ordre des questions n’influe sur les résultats.

Les questions étaient du type « quel est le nom du dernier marqueur de la
carte Généthon des chromosomes 1, 8, 13 ? ». Celles-ci ne concernaient pas di-
rectement la structure de l’espace d’information mais une connaissance de cette
structure (fournie par l’entraînement) aidait les sujets à répondre plus rapidement
aux questions.

Pour chaque sujet nous avons calculé le temps pris pour répondre aux onze
questions sans la vue hiérarchique divisé par le temps pris pour répondre aux onze
questions avec la vue hiérarchique. Une valeur supérieure à 1 signifiait donc que
la vue hiérarchique aidait à l’exécution des tâches demandées. La moyenne était
de 1,58 avec un écart type de 0,54. Ce grand écart type venait du fait que certains
utilisateurs ne connaissaient pas la structure de l’espace d’information avant cette
étude. Ces utilisateurs trouvaient que la séance d’entraînement n’était pas suffi-
sante et donc que la seconde partie des questions était plus facile. Cependant, les
sujets étaient en général plus rapides avec la vue hiérarchique et les commentaires
étaient positifs.

Autres techniques La technique d’« Excentric Labeling » (Fekete and Plai-
sant, 1999) permet d’identifier des objets sur l’écran. Cette technique étiquette,
au moyen de bulles d’aide situées dans la vue principale, les objets se trouvant
autour du pointeur. Nous proposons une autre technique, non intrusive, pour iden-
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tifier les objets autour du pointeur. Quand l’utilisateur déplace le pointeur sur la
vue principale, la vue de la hiérarchie est mise à jour en affichant le type et le nom
de l’objet qui est situé sous le pointeur. Si le pointeur quitte la vue principale ou
s’il n’est pas sur un objet, la vue hiérarchique indique le plus bas niveau dans la
hiérarchie auquel tous les objets visibles appartiennent. Cette technique d’étique-
tage présente des similarités avec les bulles d’aide dans la mesure où l’utilisateur
n’a pas besoin de demander l’information explicitement. Elle a toutefois pour
avantage de ne pas empiéter sur la vue principale.

L’interface du système gIBIS (Conklin and Begeman, 1988) inclut une vue
globale du grapheIBIS. Cette vue montre tous les nœuds du graphe (organisés
selon leur liens primaires) ainsi que l’un de leurs attributs (le sujet du nœud). Elle
est généralement trop grande pour être affichée en entier ce qui nécessite d’utiliser
des ascenseurs pour naviguer. Quand l’utilisateur se déplace dans le graphe, en
zoomant ou en défilant, la vue globale se déplace afin de montrer la position de
l’utilisateur dans le graphe. Cette vue peut également être utilisée pour se déplacer
dans le graphe car l’utilisateur peut cliquer sur un nœud sur lequel il souhaite
recentrer le focus. Notre hiérarchie se distingue de cette vue globale du fait qu’elle
ne montre que la structure de l’espace (au lieu de l’espace en entier) et les noms
des objets situés hiérarchiquement « au-dessus » des objets visibles. Ainsi, même
les ZUIs de grande taille (mais structurées) peuvent tenir dans un espace réduit
et des ascenseurs ne sont pas nécessaires. Comme uneZUI contient typiquement
un très grand nombre d’objets, une vue exhaustive de tous les objets serait trop
grande pour être utilisable.

9.3.3 L’outil de développement deZUI s : Zomit

Les techniques d’interaction présentées dans cette thèse ont été réalisées et
testées dans uneZUI nommé ZoomMap, de type client/serveur, conçue pour être
utilisée sur Internet. ZoomMap visualise les données de la base HuGeMap. Celle-
ci est stockée dans une base de données objet gérée par le système EyeDB (Viara
et al., 1999).

ZoomMap repose sur l’outil de développement Zomit. Cet outil implémente
toutes les fonctionnalités de base d’uneZUI, telles que le zoom sémantique (Fur-
nas and Bederson, 1995), les portails et les lentilles magiques. Un portail est po-
sitionné dans le monde virtuel par le développeur d’uneZUI et contient une vue
d’une autre région du monde virtuel. L’utilisateur peut zoomer et faire défiler la
vue dans le portail. Une liste de lentilles magiques possibles est proposée par la
ZUI et l’utilisateur peut en créer une nouvelle quand il le souhaite et ensuite la
déplacer. Une lentille magique contient une transformation, propre à la lentille, de
la région du monde virtuel qu’elle couvre.

Zomit consiste en un client Java et une bibliothèque C++ qui communiquent
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FIG. 9.19 – Implémentation client/serveur de Zomit

par une connexionTCP/IP. La Figure 9.19 montre la structure d’uneZUI construite
avec l’outil de développement Zomit. Quand l’utilisateur lit une page Web qui
fait référence à un client Zomit, l’appletJava est chargée dans le navigateur de
l’utilisateur puis se connecte au serveur Zomit (qui doit se trouver sur la machine
ayant envoyé la page). Le serveur Zomit lit la base de données et crée les objets
du monde virtuel. Ce programme se charge de stocker ces objets et de les envoyer
au client quand nécessaire.

Le client s’exécute dans un navigateur Web standard et ne nécessite pas d’ins-
tallation préalable de la part de l’utilisateur. L’appletest complètement générique
et le même code Java peut être utilisé pour communiquer avec n’importe quel
serveur Zomit. L’appletpeut aussi être installée en tant qu’application Java. Dans
ce cas, le même client peut être utilisé pour communiquer avec n’importe quel
serveur Zomit sur n’importe quelle machine.

Lorsque le client envoie au serveur la position de l’utilisateur dans l’espace
d’information, le serveur répond en lui envoyant les objets graphiques qu’il doit
afficher à cette position. Ces objets sont simples à dessiner et nécessitent peu de
bande passante lors de leur transmission. Le client stocke les objets en mémoire
locale et peut donc répondre rapidement aux changements d’échelle ou de position
qui redemandent l’affichage de ces objets ; seul l’affichage des objets nouveaux
est ralenti par la latence de la connexion avec le serveur. L’interaction avec des
lentilles magiques et les portails est également gérée par le client ; seul l’affichage
de nouveaux objets dans ces interacteurs peut éventuellement être ralenti.

La transparence des couches est simulée dans l’appletJava au moyen de fonc-
tions XOR car les commandes graphiques utilisées pour réaliser la transparence
ne sont pas encore disponibles dans de nombreux navigateurs. La fonctionXOR

est également nettement plus rapide que l’affichage de couches vraiment trans-
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parentes par composition de couches (ou « alpha blending »). La transparence est
par contre effective quand le client tourne comme uneapplicationJava en utilisant
les bibliothèques Java 2.

Le serveur s’exécute sur la même machine que la base de données afin de
pouvoir lire rapidement les nombreuses informations requises pour construire les
objets graphiques à envoyer au client. De même que le client, la bibliothèque du
serveur est générique ; il n’est donc pas nécessaire de la modifier pour visualiser
un autre type de données. Seul le code qui lit la base de données et celui qui
appelle la bibliothèque, en texte gras dans la Figure 9.19, doivent être modifiés
pour une application particulière.

Le développement d’un serveur Zomit

Le serveur d’uneZUI utilise la bibliothèque C++ Zomit et doit créer, au moyen
de celle-ci, des instances d’une classe. Chaque instance est enregistrée comme
couvrant une région en trois dimensions (x, y, et le niveau d’échelle) du monde
virtuel. Quand le client demande des objets dans une partie de la région associée
à une instance (car l’utilisateur y est entré), le code de cette instance est appelé.
Ce code peut créer des objets graphiques, exclusivement situés dans la région
initialement associée avec l’instance, et enregistrer d’autres instances de la classe
couvrant les sous-régions de la région initiale. Ces sous-régions sont normalement
celles que l’utilisateur verra en zoomant davantage. Cette technique, où les objets
graphiques ne sont pas générés avant d’en avoir besoin, est une forme d’évaluation
paresseuse. Un serveur peut ainsi être utilisé pour visualiser un monde virtuel de
très grande taille où il n’est pas possible de générer (et stocker) tous les objets
graphiques par avance.

Chaque objet a une position en coordonnées absolues dans le monde virtuel et
deux niveaux d’échelle entre lesquelles il est déclaré visible. L’utilisateur voit une
partie rectangulaire du monde à une échelle donnée. Quand il zoome ou dézoome
ce niveau d’échelle change. Ainsi quand l’utilisateur zoome sur un objet il devient
de plus en plus grand jusqu’au moment où il n’est plus visible. Le concepteur peut
placer les objets arbitrairement mais fera généralement en sorte qu’un objet qui
disparaît soit remplacé par d’autres objets représentant la même information mais
de manière plus détaillée.

Un portail est un objet semblable à un rectangle mais avec les coordonnées
de la partie de monde virtuel à afficher. L’affichage du contenu d’un portail, le
défilement et le zoom dans le portail sont gérés par le client sans intervention de
la part du développeur.

Une lentille magique est une vue dans un monde virtuel parallèle au monde
virtuel principal. Quand le développeur crée des objets graphiques, il peut préciser
s’ils sont visibles dans le monde virtuel principal ou dans le monde associé à une
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lentille. Les objets visibles dans les lentilles sont des objets graphiques standard,
qui peuvent être stockés et affichés par le client comme des objets classiques.
Ce type de lentille permet de transformer la représentation graphique des objets
concernés mais ne permet pas d’y appliquer des calculs spécifiques.

9.3.4 Applications de Zomit

Zomit est un outil de développement des interfaces zoomables et a été uti-
lisé pour créer des mondes virtuels dans deux domaines très différents. Zomit a
été utilisé pour créer une interface à une base de données biogénétiques et par
une autre laboratoire de recherche pour créer une interface à une bibliothèque vir-
tuelle. Ces deux mondes virtuels peuvent être testés avec un navigateur standard
auxURL http://www.infobiogen.fr/services/zomit/ et http://www.enst.fr/~elc/. Zomit
a également été utilisé dans des projets d’élèves pour développer des programmes
d’exploration d’information.

Bibliothèque virtuelle

En plus de l’interface de la base HuGeMap, notre outil de développement
d’interfaces zoomables, nommé Zomit, a été utilisé pour créer l’interface d’une
bibliothèque virtuelle. CetteZUI, qui permet de naviguer dans les rayons d’une
bibliothèque, a été développée à l’École de Mines de Nantes (Lecolinet et al.,
2001). L’objectif de ce projet était de comparer la vitesse de la recherche de livres
en utilisant uneZUI, une interface tridimensionnelle, et une bibliothèque réelle.
CetteZUI permet de zoomer d’une vue globale de la bibliothèque (Figure 9.20)
à une vue des différentes matières (Figure 9.21) puis des livres contenus dans les
différents « rayons » (Figure 9.22). Cette bibliothèque contient plus de trois mille
livres groupés dans des rayons, eux-mêmes regroupés par sujets. Cette interface
contient également les images de couverture des livres, qui sont affichées quand
l’utilisateur zoome dessus.

9.3.5 Conclusion

Nous avons présenté de nouvelles aides contextuelles, les couches de contexte
et d’historique, qui sont destinées à faciliter l’orientation et la navigation des uti-
lisateurs dans de grands espaces d’information représentés à l’aide d’interfaces
zoomables. La superposition de couches transparentes permet d’intégrer le focus
et le contexte dans la même vue.

Les hiérarchies présentées fournissent un nouveau moyen de combiner le fo-
cus et le contexte dans lesZUIs. Elles aident les utilisateurs à ne pas se perdre

http://www.infobiogen.fr/services/zomit/
http://www.enst.fr/~elc/
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dans l’espace d’information et elles les renseignent sur les informations dispo-
nibles (mais non encore visibles à un niveau de zoom donné). Une évaluation a
montré l’utilité de cette technique de représentation. Des évaluations complémen-
taires seront nécessaires pour examiner comment les utilisateurs se servent des
hiérarchies et des couches transparentes quand ces deux aides sont conjointement
disponibles.

Notre nouveau Control Menu facilite la maîtrise de ces interfaces zoomables
complexes.

9.4 Conclusion et perspectives

La visualisation des bases de données est importante pour de nombreuses
tâches qu’elles soient liées à la recherche ou de nature commerciale. Ceci peut
se résumer par la phrase : « voir aide à penser ». Les interfaces zoomables sont
des outils qui permettent de créer des mondes virtuels destinés à représenter de
grands espaces informationnels. Elles aident également les utilisateurs à naviguer
dans ces mondes pour trouver les informations recherchées et transformer ces
dernières en la représentation souhaitée. Malgré tout, la vaste taille des espaces
d’information et le manque d’indices de contexte amènent souvent les utilisateurs
à se perdre avant d’avoir trouvé l’information recherchée. Et, s’ils la trouvent, il
est fréquent qu’ils rencontrent alors des difficultés à la situer dans l’espace d’in-
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formation global.
Nous avons proposé trois nouvelles aides contextuelles qui aident les utilisa-

teurs à comprendre l’espace d’information, leur position dans cet espace, et les
liens entre les informations actuellement visibles et l’espace d’information glo-
bal. La première des ces aides est une vue permanente de la hiérarchie. Cette vue
montre où se trouvent les informations dans le monde virtuel et la position ac-
tuelle de l’utilisateur. La deuxième aide est une vue transparente transitoire que
les utilisateurs créent lorsque cela est nécessaire et qui disparaît immédiatement
quand elle n’est plus utile. Elle montre la vue actuelle en relation avec des vues
plus globales. La vue globale est contrôlé interactivement par l’utilisateur de ma-
nière dynamique et continue. Cette aide permet aux utilisateurs de comprendre
leur position dans le monde virtuel relativement à des vues contextuelles globales.
La troisième aide est également transitoire et transparente. Elle est créée par les
utilisateurs lorsqu’ils veulent connaître ou revisiter le chemin pris pour arriver à
leur position actuelle dans l’espace et désirent voir ce chemin en relation avec leur
vue actuelle.

Toutes les interfaces homme-machine pour les grands espaces informationnels
sont confrontées au problème de l’affichage de vastes quantités d’information sur
des écrans de taille réduite. De plus, afin de comprendre les relations entre dif-
férentes informations, les utilisateurs doivent pouvoir approcher des objets situés
dans des endroits distants dans l’espace d’information. Il n’est pas suffisant de
voir des données sous une seule représentation ; bien comprendre des données
demande de les voir sous plusieurs formes à l’aide de plusieurs vues.

La première des deux solutions standard à ce problème montre plusieurs vues
différentes dans des fenêtres adjacentes (multiplexage de l’espace). Cependant
l’espace sur l’écran est souvent trop limité et l’intégration mentale des ces vues
séparées est parfois difficile.

La seconde solution est de montrer ces vues séquentiellement ce qui force
les utilisateurs à se souvenir des vues afin de pouvoir les comparer. Les lentilles
magiques utilisent cette technique de multiplexage spatial car elles couvrent et
cachent le focus d’attention de l’utilisateur afin de montrer cette région sous une
autre représentation.

Nous avons choisi une autre technique utilisant des couches transparentes qui
peuvent montrer des vues simultanément dans le même espace. Les utilisateurs
peuvent utiliser des indices de profondeur afin de séparer mentalement ces deux
vues. Nous avons découvert qu’un contrôle fluide et continu provoque des mou-
vements entre les vues qui aident les utilisateurs à mieux les séparer. Notre méca-
nisme de contrôle permet donc d’interagir avec deux types d’informations dans le
même espace sur l’écran. Ceci réduit l’espace utilisé par un système de visualisa-
tion et facilite l’intégration des deux vues par les utilisateurs.

Nos aides contextuelles exigent une synergie entre interaction et visualisation
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pour faciliter leur utilisation et augmenter leur efficacité. Cette synergie a été obte-
nue grâce à l’utilisation d’un nouveau type de menu, appelé « Control Menu », qui
permet aux utilisateurs de choisir une opération puis de la contrôler. Cette sélec-
tion et ce contrôle sont exécutés dans un seul geste qui crée un lien entre sélection
et exécution. Il évite également l’utilisation de plusieurs interacteurs pour exécuter
ce qui est logiquement constitué d’une seule opération (Buxton, 1986). La fluidité
d’exécution et le retour de contrôle permis par les Control Menus donnent aux
utilisateurs la capacité d’obtenir et de voir le résultat souhaité avant de terminer
leur geste.

Nous nous sommes concentré sur l’utilisation des Control Menus dans les
interfaces zoomables en faisant également quelques essais de leur utilisation dans
des environnements de réalité virtuelle. Nous pensons que ces menus peuvent être
utiles dans de nombreux types d’applications, ce qui devra être validé par des
évaluations auprès des utilisateurs.

Cette thèse a mis en évidence l’importance d’une synergie entre visualisation
et interaction. Ce qu’un système de visualisation peut montrer aux utilisateurs
est déterminé en grande partie par la manière dont les utilisateurs contrôlent le
système. Un retour de contrôle immédiat aide les utilisateurs à comprendre les
interactions et leur permet de faire les raffinements successifs nécessaires pour
arriver au résultat souhaité.
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