. Mesures-de-température-bien-qu-'´-etant-un-paramètre, Etant donné labrì eveté des phénomènes rencontrés, il n'est pas possible d'effectuer la mesure de la température de manì ere directe avec par exemple un thermocouple. La seule possibilité s'offrant aux expériences de compression dynamique est la mesure de l'´ emission propre Dans le cas de matériaux transparents en aval du front de choc (eau, plexiglass...), la luminosité du front de choc permet de remonteràremonterà sa température Dans le cas d'un matériau opaque comme le fer, la situation devient naturellement plus compliquée Ou pourrait alors imaginer une mesure de l'´ emission propre ayant lieu pendant l'intervalle de temps o` u le choc traverse l'´ epaisseur de peau juste avant le débouché. L'´ epaisseur de peau d'un métaí etant de quelques 0,1 µm et la vitesse d'un choc de ?10 km/s, le temps de transit serait de l'ordre de 10 ps, ce qui nécessite une résolution instrumentale de l'ordre de la ps. Bien que la technologie actuelle réponderépondè a de telles exigences, Zel'dovich & Raizer [1967] nous rappellent que le front de choc devraitêtredevraitêtreparalì elè a la surface librè a moins de 10 nm près, ce quì a l'heure actuelle est impossiblè a réaliser, Une mesure de température peut alorsêtrealorsêtre effectuéederrì ere l'onde de raréfaction qui remonte dans la cible comprimée après le débouché du choc. Nous avons vu dans (2.4.3) que dans le cas o` u la surface est libre C'est pourquoi dans ce chapitre nous exploitons la configuration de cible Fe/LiF pour effectuer une mesure de la température du fer en détente partielle dans le LiF

. Dans-ce-but, ´ emission propre effectuant une mesure de la luminosité de l'interface Fe/LiF au cours du temps. Dans (6.1), nous estimons le transfert thermique dans la fenêtre de LiF et le transfert radiatif dans l'´ epaisseur de peau du fer en détente. Ces effets s'avèrentavèrentêtre négligeables et la température de brillance peut ainsî etre associéè a la température d'interface, nous accédonsaccédonsà la températuré equivalente de corps

T. J. Ahrens, J. D. Bass, and J. R. Abelson, Shock temperatures in metals. Dans Shock Compression of Condensed Matter -1989, 1990.

T. J. Ahrens, K. G. Holland, and G. Q. Chen, Phase diagram of iron, revised-core temperatures, Geophysical Research Letters, vol.70, issue.7, p.54, 2002.
DOI : 10.1029/2001GL014350

L. V. Altshuler, Dans Shock Compression of Condensed Matter -1991, edité par S. C. Shmidt, 1992.

L. V. Altshuler, S. B. Kormer, M. I. Brazhnik, L. A. Vladimirov, M. P. Speranskaya et al., The isentropic compressibility of aluminium, copper, lead and iron at high pressures. Sov, p.766, 1960.

O. L. Anderson and A. Duba, Experimental melting curve of iron revisited, Journal of Geophysical Research: Solid Earth, vol.20, issue.46, pp.22659-22669, 1997.
DOI : 10.1029/97JB01641

N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1976.

L. M. Barker and R. E. Hollenbach, Shock???Wave Studies of PMMA, Fused Silica, and Sapphire, Journal of Applied Physics, vol.41, issue.10, p.4208, 1970.
DOI : 10.1063/1.1658439

L. M. Barker and K. W. Schuler, Correction to the velocity???per???fringe relationship for the VISAR interferometer, Journal of Applied Physics, vol.45, issue.8, p.4789, 1974.
DOI : 10.1063/1.1663841

A. Benuzzi, Génération de hautes pressions par choc laser : applicationàapplicationà la mesure d'´ equations d'´ etat, 1997.

A. Benuzzi, E. De-wispelaere, J. Krishnan, D. Descamps, M. Koenig et al., Calibration temporelle et spectrale d'une caméra visiblè a balayage de fente, 1995.

A. Benuzzi-mounaix, M. Koenig, B. Faral, J. Krishnan, F. Pisani et al., Preheating study by reflectivity measurements in laser-driven shocks, Phys. Plasmas, vol.6, issue.5, pp.2410-2420, 1998.

A. Benuzzi-mounaix, T. Löwer, M. K. Faral, D. Batani, D. Beretta et al., Indirect and direct laser driven shock waves and applications to copper equation of state measurements in the 10???40 Mbar pressure range, Physical Review E, vol.54, issue.2, pp.2162-2165, 1996.
DOI : 10.1103/PhysRevE.54.2162

T. Bett, C. Danson, and P. Jinks, Binary phase zone-plate arrays for laser-beam spatial-intensity distribution conversion, Applied Optics, vol.34, issue.20, p.4025, 1995.
DOI : 10.1364/AO.34.004025

E. Blanco, Température et emissivité des matériaux sous choc -Etude expérimentale par pyrométrie optiquè a travers un matériau fenêtre, Thèse de doctorat, 1997.

R. Boehler, Melting of the Fe-FeO and the Fe-FeS systems at high pressure : Constraints on core temperatures, Earth Planet. Sci. Lett, vol.111, pp.15853-15860, 1992.

R. Boehler, Temperatures in the Earth's core from melting-point measurements of iron at high static pressures, Nature, vol.363, issue.6429, p.534, 1993.
DOI : 10.1038/363534a0

R. Boehler, Melting of Mantle and Core Materials at Very High Pressures, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.354, issue.1711, pp.1265-1278, 1996.
DOI : 10.1098/rsta.1996.0048

M. Born and E. Wolf, Principles of Optics, 1980.
DOI : 10.1017/CBO9781139644181

J. M. Brown, The equation of state of iron to 450 GPa: Another high pressure solid phase?, Geophysical Research Letters, vol.214, issue.22, pp.4339-4342, 2001.
DOI : 10.1029/2001GL013759

J. M. Brown and R. G. Mcqueen, Phase transitions, Gr??neisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa, Journal of Geophysical Research: Solid Earth, vol.89, issue.B7, p.7485, 1986.
DOI : 10.1029/JB091iB07p07485

E. Burstein and P. L. Smith, Photoelastic Properties of Cubic Crystals, Physical Review, vol.74, issue.2, p.229, 1948.
DOI : 10.1103/PhysRev.74.229

R. Cauble, T. S. Perry, D. R. Bach, K. S. Budil, B. A. Hammel et al., Absolute equation-of-state data in the TPa) regime, Phys. Rev. Lett, vol.80, issue.6, pp.10-40, 1998.

P. Celliers and A. Ng, Optical probing of hot expanded states produced by shock release, Physical Review E, vol.47, issue.5, pp.3547-3565, 1993.
DOI : 10.1103/PhysRevE.47.3547

P. M. Celliers, G. W. Collins, L. B. Silva, D. M. Gold, R. Cauble et al., Shock-Induced Transformation of Liquid Deuterium into a Metallic Fluid, Physical Review Letters, vol.84, issue.24, p.5564, 2000.
DOI : 10.1103/PhysRevLett.84.5564

D. Silva, L. Celliers, P. Collins, G. W. Budil, K. S. Holmes et al., Absolute Equation of State Measurements on Shocked Liquid Deuterium up to 200 GPa (2 Mbar), Physical Review Letters, vol.78, issue.3, pp.483-486, 1997.
DOI : 10.1103/PhysRevLett.78.483

P. Drude, Annalen der Physik 1, p.566, 1900.

A. S. Eddington, The Internal constitution of the Stars, 1930.

K. Eidmann, J. Meyer-ter-vehn, T. Schlegel, and S. Huller, Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter, Physical Review E, vol.62, issue.1, pp.1202-1215, 2000.
DOI : 10.1103/PhysRevE.62.1202

R. Fabbro, Etude de l'influence de la longueur d'onde laser sur les processus de conduction thermique et d'ablation dans les plasmas créés par laser, Thèse d'etat, 1980.

E. Fabre, F. Amiranoff, R. Fabbro, and C. Labaune, Plasma Physics and Controlled Nuclear Fusion Research, 1980.

G. Fiquet, J. Badro, F. Guyot, H. Requardt, and M. Krisch, Sound Velocities in Iron to 110 Gigapascals, Science, vol.291, issue.5503, pp.468-471, 2001.
DOI : 10.1126/science.291.5503.468

V. E. Fortov and V. B. Mintsev, Strongly coupled plasma physics at megabar pressures, 2002.

A. N. Gerritsen, Metallic Conductivity, 1956.

J. H. Gladstone and T. P. Dale, Researches on the Refraction, Dispersion, and Sensitiveness of Liquids, Philosophical Transactions of the Royal Society of London, vol.153, issue.0, pp.317-343, 1863.
DOI : 10.1098/rstl.1863.0014

D. R. Goosman, Analysis of the laser velocity interferometer, Journal of Applied Physics, vol.46, issue.8, pp.3516-3524, 1975.
DOI : 10.1063/1.322079

D. R. Hardesty, On the index of refraction of shock???compressed liquid nitromethane, Journal of Applied Physics, vol.47, issue.5, 1976.
DOI : 10.1063/1.322925

E. Henry, Equation d'´ etat et métallisation de l'eau comprimée par choc laser, 2003.

D. G. Hicks, P. M. Celliers, G. W. Collins, J. H. Eggert, and S. J. Moon, and LiF into Semiconducting Liquids, Physical Review Letters, vol.91, issue.3, p.35502, 2003.
DOI : 10.1103/PhysRevLett.91.035502

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, issue.3B, p.864, 1964.
DOI : 10.1103/PhysRev.136.B864

S. Hüller, J. Meyer-ter-vehn, T. Löwer, and &. R. Sigel, Annual report. Rapport technique, pp.171-4546, 1994.

G. I. Kerley, Multiphase equation of state for iron, 1992.
DOI : 10.2172/6345571

E. Knittle and R. Jeanloz, O: A possible constituent of the Earth's core, Journal of Geophysical Research, vol.15, issue.B10, pp.16169-16180, 1991.
DOI : 10.1029/90JB00653

M. Koenig, B. Faral, J. M. Boudenne, D. Batani, A. Benuzzi et al., Relative Consistency of Equations of State by Laser Driven Shock Waves, Physical Review Letters, vol.74, issue.12, pp.2260-2263, 1995.
DOI : 10.1103/PhysRevLett.74.2260

M. Koenig, B. Faral, J. M. Boudenne, A. Benuzzi-mounaix, D. Batani et al., Optical smoothing techniques for shock wave generation in laser-produced plasmas, Physical Review E, vol.50, issue.5, pp.3314-3317, 1994.
DOI : 10.1103/PhysRevE.50.R3314

M. Koenig, A. Benuzzi-mounaix, and D. Batani, Des coeurs de planète en laboratoire, La Recherche, vol.330, p.46, 2000.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, p.1133, 1965.
DOI : 10.1103/PhysRev.140.A1133

S. B. Kormer, OPTICAL STUDY OF THE CHARACTERISTICS OF SHOCK-COMPRESSED CONDENSED DIELECTRICS, Soviet Physics Uspekhi, vol.11, issue.2, p.229, 1968.
DOI : 10.1070/PU1968v011n02ABEH003814

S. B. Kormer, K. B. Yushko, and G. V. Kirshkevich, Dependence of the refractive index on the density of the solid and liquid phases of shock-compressed ionic crystals. relaxation time of phase transformation under shock compression, JETP Lett, vol.3, p.39, 1966.

R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, Journal of the Physical Society of Japan, vol.12, issue.6, p.570, 1957.
DOI : 10.1143/JPSJ.12.570

C. Labaune, E. Fabre, C. E. Max, R. Fabbro, F. Amiranoff et al., Effect of Laser Wavelength and Pulse Duration on Laser-Light Absorption and Back Reflection, Physical Review Letters, vol.48, issue.15, p.1018, 1982.
DOI : 10.1103/PhysRevLett.48.1018

A. Laio, Simulation of Iron at Earth's Core Conditions, Thèse de doctorat, 1999.

A. Laio, S. Bernard, G. L. Chiarotti, S. Scandolo, and E. Tosatti, Physics of Iron at Earth's Core Conditions, Science, vol.287, issue.5455, p.1027, 2000.
DOI : 10.1126/science.287.5455.1027

P. Laplace, Traité de mécanique céleste, pp.48-50, 1825.

Y. T. Lee and R. M. More, An electron conductivity model for dense plasmas, Physics of Fluids, vol.27, issue.5, pp.1273-1286, 1984.
DOI : 10.1063/1.864744

F. A. Lindemann, Uber die berechnung molekularer eigenfrequezen, pp.609-612, 1910.

S. N. Luo and T. J. Ahrens, Superheating systematics of crystalline solids, Applied Physics Letters, vol.82, issue.12, pp.1836-1838, 2003.
DOI : 10.1063/1.1563046

G. A. Lyzenga and T. J. Ahrens, Multiwavelength optical pyrometer for shock compression experiments, Review of Scientific Instruments, vol.50, issue.11, pp.1421-1424, 1979.
DOI : 10.1063/1.1135731

T. Löwer, R. Sigel, and K. Eidmann, Uniform multimegabar shock waves in solids driven by laser-generated thermal radiation, Physical Review Letters, vol.72, issue.20, pp.3186-3189, 1994.
DOI : 10.1103/PhysRevLett.72.3186

H. K. Mao, P. M. Bell, J. W. Shaner, and D. J. Steinberg, fluorescence pressure gauge from 0.06 to 1 Mbar, Journal of Applied Physics, vol.49, issue.6, p.3276, 1978.
DOI : 10.1063/1.325277

L. C. Ming and W. A. Bassett, Laser heating in the diamond anvil press up to 2000??C sustained and 3000??C pulsed at pressures up to 260 kilobars, Review of Scientific Instruments, vol.45, issue.9, p.1115, 1974.
DOI : 10.1063/1.1686822

P. Mora, Theoretical model of absorption of laser light by a plasma, Physics of Fluids, vol.25, issue.6, p.1051, 1982.
DOI : 10.1063/1.863837

F. D. Murnaghan, Finite Deformations of an Elastic Solid, American Journal of Mathematics, vol.59, issue.2, 1967.
DOI : 10.2307/2371405

J. C. Nguyen and N. C. Holmes, Dans Shock Compression of Condensed Matter-1999, pp.81-84, 2000.

J. Poirier, Dislocation-mediated melting of iron and the temperature of the Earth's core, Geophysical Journal of the Royal Astronomical Society, vol.85, issue.2, pp.315-328, 1986.
DOI : 10.1111/j.1365-246X.1986.tb04515.x

J. Poirier, Light elements in the Earth's outer core: A critical review, Physics of the Earth and Planetary Interiors, vol.85, issue.3-4, pp.319-337, 1994.
DOI : 10.1016/0031-9201(94)90120-1

J. P. Poirier, Introduction to the Physics of the Earth's Interior, 2000.
DOI : 10.1017/CBO9781139164467

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, chapitre 10, 1992.

C. E. Ragan, Shock-wave experiments at threefold compression, Physical Review A, vol.29, issue.3, pp.1391-1402, 1984.
DOI : 10.1103/PhysRevA.29.1391

R. Ramis, R. Schmalz, and J. Meyer-ter-vehn, MULTI ??? A computer code for one-dimensional multigroup radiation hydrodynamics, Computer Physics Communications, vol.49, issue.3, p.475, 1988.
DOI : 10.1016/0010-4655(88)90008-2

V. Recoules, P. Renaudin, J. Clérouin, P. Noiret, and G. Zérah, calculations, Physical Review E, vol.66, issue.5, p.56412, 2002.
DOI : 10.1103/PhysRevE.66.056412

URL : https://hal.archives-ouvertes.fr/ujm-00908438

P. Renaudin, C. Blancard, G. Faussurier, and P. Noiret, Combined Pressure and Electrical-Resistivity Measurements of Warm Dense Aluminum and Titanium Plasmas, Physical Review Letters, vol.88, issue.21, p.215001, 2002.
DOI : 10.1103/PhysRevLett.88.215001

S. K. Saxena, G. Shen, and P. Lazor, Temperatures in Earth's Core Based on Melting and Phase Transformation Experiments on Iron, Science, vol.264, issue.5157, pp.405-407, 1994.
DOI : 10.1126/science.264.5157.405

R. A. Secco and H. H. Schloessin, The electrical resistivity of solid and liquid Fe at pressures up to 7 GPa, Journal of Geophysical Research, vol.34, issue.11, pp.5887-5894, 1989.
DOI : 10.1029/JB094iB05p05887

R. E. Setchell, Index of refraction of shock???compressed fused silica and sapphire, Journal of Applied Physics, vol.50, issue.12, p.8186, 1979.
DOI : 10.1063/1.325959

I. P. Shkarovsky, T. W. Johnston, and M. P. Bashynski, The Particle Kinetics of Plasmas, American Journal of Physics, vol.35, issue.6, 1966.
DOI : 10.1119/1.1974182

W. Tang, R. Zhang, F. Jing, and J. Hu, Apparent spectral radiance at shocked metal/window interface, AIP Conference Proceedings, pp.917-920, 1995.
DOI : 10.1063/1.50844

W. Tang, R. Zhang, F. Jing, and J. Hu, Restudy on the thermal relaxation at interfaces following shock compression, AIP Conference Proceedings, pp.279-282, 1995.
DOI : 10.1063/1.50759

R. F. Trunin, Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions, Physics-Uspekhi, vol.37, issue.11, pp.1123-1145, 1994.
DOI : 10.1070/PU1994v037n11ABEH000055

R. F. Trunin, M. A. Podurets, and L. V. Popov, Measurement of the compressibility of iron at 5,5 TPa, Sov. Phys. JETP, vol.75, p.777, 1992.

J. H. Weaver and H. P. Frederikse, CRC Handbook of Chemistry and Physics, 2000.

Q. Williams, E. Knittle, and R. Jeanloz, The high-pressure melting curve of iron: A technical discussion, Journal of Geophysical Research, vol.236, issue.B2, pp.2171-2184, 1991.
DOI : 10.1029/90JB01999

J. S. Wise and L. C. Chhabildas, Laser Interferometer Measurements of Refractive Index in Shock-Compressed Materials, Shock Waves in Condensed Matter, p.441, 1986.
DOI : 10.1007/978-1-4613-2207-8_63

F. Wooten, Optcal Properties of Solids, 1972.

T. Yagi, R. J. Par, &. G. Hemley, and . Chiarotti, Experimental overview of large-volume techniques, pp.41-54, 2002.

C. Yoo, N. Holmes, M. Ross, D. C. Webb, and . Pike, Shock temperatures and melting of iron at Earth core conditions, Physical Review Letters, vol.70, issue.25, pp.3931-3934, 1993.
DOI : 10.1103/PhysRevLett.70.3931

Y. B. Zel-'dovich and Y. P. Raizer, Physical phenomena that occur when bodies compressed by a strong shock wave expand in vacuo, Sov. Phys. JETP, vol.6, issue.6, pp.980-982, 1959.

Y. B. Zel-'dovich and Y. P. Raizer, Physics of shock waves and high temperature hydrodynamic phenomena, 1967.

C. S. Zha, T. S. Duffy, R. T. Downs, H. K. Mao, R. J. Hemley et al., Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa, Earth and Planetary Science Letters, vol.159, issue.1-2, pp.25-33, 1998.
DOI : 10.1016/S0012-821X(98)00063-6