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Résumé

Cette thèse traite de la modélisation de prix boursiers par les exponentielles de processus

de Lévy. La première partie développe une méthode non-paramétrique stable de calibration

de modèles exponentielle-Lévy, c’est-à-dire de reconstruction de ces modèles à partir des prix

d’options cotées sur un marché financier. J’étudie les propriétés de convergence et de stabilité

de cette méthode de calibration, décris sa réalisation numérique et donne des exemples de son

utilisation. L’approche adoptée ici consiste à reformuler le problème de calibration comme

celui de trouver un modèle exponentielle-Lévy risque-neutre qui reproduit les prix d’options

cotées avec la plus grande précision possible et qui a l’entropie relative minimale par rapport

à un processus “a priori” donné. Ce problème est alors résolu en utilisant la méthode de

régularisation, provenant de la théorie de problèmes inverses mal posés. L’application de ma

méthode de calibration aux données empiriques de prix d’options sur indice permet d’étudier

certaines propriétés des mesures de Lévy implicites qui correspondent aux prix de marché

La deuxième partie est consacrée au développement d’une méthode permettant de car-

actériser les structures de dépendance entre les composantes d’un processus de Lévy multidi-

mensionnel et de construire des modèles exponentielle-Lévy multidimensionnels. Cet objectif

est atteint grâce à l’introduction de la notion de copule de Lévy, qui peut être considérée

comme l’analogue pour les processus de Lévy de la notion de copule, utilisée en statistique

pour modéliser la dépendance entre les variables aléatoires réelles. Les exemples de familles

paramétriques de copules de Lévy sont donnés et une méthode de simulation de processus de

Lévy multidimensionnels, dont la structure de dépendance est décrite par une copule de Lévy,

est proposée.

Mots clefs: processus de Lévy, produits dérivés, calibration, problèmes inverses, régularisation,

problèmes mal posés, entropie relative, copules, dépendance.



Abstract

This thesis deals with the modelling of stock prices by the exponentials of Lévy processes.

In the first part we develop a non-parametric method allowing to calibrate exponential Lévy

models, that is, to reconstruct such models from the prices of market-quoted options. We

study the stability and convergence properties of this calibration method, describe its numerical

implementation and give examples of its use. Our approach is first to reformulate the calibration

problem as that of finding a risk-neutral exponential Lévy model that reproduces the option

prices with the best possible precision and has the smallest relative entropy with respect to a

given prior process, and then to solve this problem via the regularization methodology, used in

the theory of ill-posed inverse problems. Applying this calibration method to the empirical data

sets of index options allows us to study some properties of Lévy measures, implied by market

prices.

The second part of this thesis proposes a method allowing to characterize the dependence

structures among the components of a multidimensional Lévy process and to construct multi-

dimensional exponential Lévy models. This is done by introducing the notion of Lévy copula,

which can be seen as an analog for Lévy processes of the notion of copula, used in statistics

to model dependence between real-valued random variables. We give examples of parametric

families of Lévy copulas and develop a method for simulating multidimensional Lévy processes

with dependence given by a Lévy copula.

Key words: Lévy processes, option pricing, calibration, inverse problems, regularization,

ill-posed problems, relative entropy, copulas, dependence
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1.1.1 Stochastic exponential of Lévy processes . . . . . . . . . . . . . . . . . . . 36

1.1.2 Change of measure and absolute continuity of Lévy processes . . . . . . . 38
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5.1 Parametric families of Lévy copulas . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.2 Simulation of multidimensional dependent Lévy processes . . . . . . . . . . . . . 174
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Remarks on notation

Basic notation For a function F , DomF and RanF denote, respectively, the domain and

the range of F .

δx is a measure given by δx(A) = 1x∈A for every Borel set A and λ|A is the restriction of

the Lebesgue measure onto a Borel set A.

Rd
+ denotes [0,∞)d \ {0} and R̄ denotes the extended real line: R̄ := R ∪ {−∞} ∪ {∞}

For two vectors a, b ∈ R̄d, inequalities like a ≤ b should be interpreted as ai ≤ bi for

i = 1, . . . , d. For any such vectors, [a, b) denotes a right-open left-closed interval of R̄d: [a, b) :=

[a1, b1) × · · · × [ad, bd). Other types of intervals: (a, b], [a, b] and (a, b) are defined similarly.

When we want to consider an interval as a set of its vertices, without specifying whether the

boundary is included, we will use the notation |a, b|. Finally, 〈a, b〉 denotes the scalar product

of a and b.

Measures and processes In this thesis, we fix a time horizon T∞ < ∞ and Ω denotes the

space of Rd-valued càdlàg functions on [0, T∞], equipped with the Skorokhod topology (see [54]).

Unless otherwise mentioned, X is the coordinate process: for every ω ∈ Ω, Xt(ω) := ω(t). F is

the smallest σ-field, for which the mappings ω ∈ Ω 7→ ω(s) are measurable for all s ∈ [0, T∞].

For any t ∈ [0, T∞], Ft is the smallest σ-field, for which the mappings ω ∈ Ω 7→ ω(s) are

measurable for all s ∈ [0, t].

For a semimartingale X, [X] denotes is quadratic variation and [X]c is the continuous part

of [X].

P(Ω) denotes the set of all probability measures (stochastic processes) on (Ω,F). For two

probability measures P,Q ∈ P(Ω), Q≪ P means that Q is absolutely continuous with respect

to P , that is, for every B ∈ F , P (B) = 0 implies Q(B) = 0.

11
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For {Pn}n≥1, P ∈ P(Ω) the notation Pn ⇒ P means that the sequence {Pn}n≥1 converges

weakly to P , that is, for every continuous bounded function f : Ω → R, Pn(f) → P (f).

The set L consists of all probability measures P ∈ P(Ω), under which (X,P ) is a Lévy

process.

For a constant B > 0, LB and L+
B denote the sets of all probabilities P ∈ L such that (X,P )

satisfies, P [|∆Xt| ≤ B ∀t : 0 ≤ t ≤ T∞] = 1 for LB (jumps are bounded by B in absolute value)

and P [∆Xt ≤ B ∀t : 0 ≤ t ≤ T∞] = 1 for L+
B (jumps are bounded by B from above).

LNA is the set of all probability measures P ∈ L corresponding to Lévy processes describing

markets with no arbitrage opportunity, as defined in Proposition 1.8.

Finally, M stands for the set of all probability measures P ∈ P(Ω), under which eXt is a

martingale.



Introduction et principaux résultats

Un processus de Lévy est un processus stochastique aux accroissements indépendants et sta-

tionnaires: si {Xt}t≥0 est un processus de Lévy, Xt−Xs avec t > s est indépendant de l’histoire

du processus avant le temps s et sa loi ne dépend pas de t ou s séparément mais seulement

de t − s. Cette propriété des accroissements évoque une analogie avec des fonctions linéaires:

on peut dire que les processus de Lévy sont, dans un certain sens, des “processus linéaires” ou

additifs.

Malgré cette simplicité apparente, les processus de Lévy ont des nombreuses propriétés

intéressantes et constituent un domaine d’étude en plein développement: plusieurs ouvrages ont

été publiés récemment [17, 87] et une série de conférences internationales dédiées aux processus

de Lévy et applications a rencontré un grand succès [6].

Sur le plan de modélisation financière, les processus de Lévy fournissent une classe de

modèles avec sauts qui est à la fois suffisamment riche pour bien décrire les données empiriques

et assez simple pour faire beaucoup de calculs analytiquement. L’intérêt de tels modèles en

finance est principalement dû aux trois facteurs suivants.

Premièrement, dans un modèle aux trajectoires continues comme un modèle de diffusion,

le processus de prix se comporte localement comme un mouvement brownien et la probabilité

que le prix bouge beaucoup pendant un temps court est très petite si la valeur de volatilité de

volatilité n’est pas déraisonnablement grande. Cela implique que dans de tels modèles les prix

des options “hors de la monnaie” doivent être beaucoup plus petits que ce que l’on observe

en réalité. Par contre, si le processus de prix peut sauter, même pour une maturité courte on

ne peut pas négliger la probabilité d’un mouvement inattendu du prix qui déplacerait l’option

dans la monnaie.

Deuxièmement, du point de vue de la couverture, les modèles aux trajectoires continues

13



14 INTRODUCTION EN FRANCAIS

correspondent en général aux marchés complets ou aux marchés qui peuvent être complétés

en ajoutant un ou deux actifs supplémentaires comme dans les modèles à volatilité stochas-

tique. Ceci implique que le flux terminal de n’importe quel actif contingent est parfaitement

repliquable, et les options cotées deviennent donc redondantes. Le “mystère” est facilement

expliquée par la présence de sauts dans les prix: en présence de sauts la couverture parfaite est

impossible et les options permettent aux participants du marché de couvrir les risques qui ne

sont pas repliquables par une stratégie de trading ne faisant intervenir que le sous-jacent.

Le troisième argument en faveur de l’utilisation de modèles discontinus, qui est peut-être le

plus fort, est la présence-même de sauts dans les prix. Figure 1 de page 28 trace l’évolution

du taux de change DM/USD pendant une période de deux semaines en 1992. Sur ce graphique

il y a au moins trois endroits ou le taux a bougé de plus de 100 points de base en moins de 5

minutes. Il est claire que des variations de prix comme celles-là ne peuvent pas être expliquées

par un modèle aux trajectoires continues, mais elles doivent être prises en compte pour une

gestion de risques fiable.

Quand cet étude a été commencé, plusieurs thèses de doctorat avaient déjà été soutenues [78,

79, 81, 86, 96] et quelques centaines d’articles avaient été publiés dans le domaine de modélisation

financière avec des processus de Lévy. Cependant, deux questions majeures, qui apparaissent

dans le titre de cette thèse étaient restées ouvertes.

Premièrement, alors que la piste de recherche, privilégiée dans la litterature, était le déve-

loppement de méthodes efficaces de valorisation de produits dérivés dans les modèles exponenti-

elle-Lévy, une étape essentielle d’utilisation d’un tel modèle est de trouver les valuers des

paramètres, où, plus généralement, le triplet caractéristique du processus de Lévy sous-jacent,

qui soit compatible avec les prix des options cotées sur le marché financier. Ce problème,

connu sous le nom du problème de calibration, est un problème inverse à celui de valorisation

des options européennes dans un modèle exponentielle-Lévy et il est nettement plus difficile à

résoudre que ce dernier. Le problème de calibration a été traité par plusieurs auteurs (cf. par

exemple [4, 35, 53, 85]) dans le cadre d’un modèle de diffusion markovienne, où le paramètre

inconnu est la fonction de volatilité locale σ(St, t). Cependant, dans le contexte de processus

avec sauts, bien que plusieurs articles proposent des modèles paramétriques à base de proces-

sus de Lévy [5, 22, 36, 62, 67, 71], il n’existait pas, avant cet étude, de méthode permettant d’en

choisir un parmi cette multitude de modèles ni d’algorithme stable de calibration de paramètres
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de tels modèles à partir de prix d’options européennes. Dans la première partie de la thèse je

développe donc une méthode non-paramétrique robuste de calibration de modèles exponentielle-

Lévy, étudie ses propriétés de convergence et de stabilité, décris sa réalisation numérique et

donne des exemples de son utilisation. Mon approche consiste à reformuler le problème de

calibration comme celui de trouver un processus de Lévy risque neutre qui reproduit les prix

d’options cotées avec la plus grande précision possible et qui a l’entropie relative minimale par

rapport à un processus a priori donné. Ce problème est alors résolu en utilisant la méthode de

régularisation, provenant de la théorie de problèmes inverses mal posés [40].

Le deuxième problème, traité dans cette thèse est celui de la modélisation multidimension-

nelle avec des processus de Lévy. Alors que la plupart d’applications financières nécessitent

un modèle multidimensionnel permettant de prendre en compte la dépendance entre les act-

ifs, la quasi-totalité de modèles paramétriques disponibles dans la littérature ne s’appliquent

qu’au cas d’un seul actif. Les deux méthodes permettant de construire des modèles multidi-

mensionnels à base de processus de Lévy que l’on trouve dans la littérature concernent soit le

cas d’un mouvement brownien multivarié changé de temps par un processus de Lévy croissant

unidimensionnel [79] soit le cas où toutes les composantes ont une intensité finie de sauts [65].

Dans les deux cas, la gamme de structures de dépendance que l’on peut obtenir est très limitée.

La deuxième partie de cette thèse est alors consacrée au développement d’une méthodologie

générale permettant de caractériser les structures de dépendance entre les composantes d’un

processus de Lévy multidimensionnel et de construire des modèles multidimensionnels à base

de processus de Lévy. Cet objectif est atteint grâce à l’introduction de la notion de copule de

Lévy, qui peut être considérée comme l’analogue pour les processus de Lévy de la notion de

copule, utilisée en statistique pour modéliser la dépendance entre les variables aléatoires réelles

[56, 76].

Principaux résultats

Le premier chapitre de la thèse commence par une brève présentation des processus de Lévy,

complétée d’un recueil de leurs principales propriétés, utilisées dans la suite de la thèse, et des

modèles exp-Lévy, c’est-à-dire, les modèles où le prix d’une action est décrit par l’exponentielle

d’un processus de Lévy. Dans la section suivante je passe en revue les différents modèles exp-
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Lévy paramétriques, disponibles dans la littérature financière. La dernière section de ce chapitre

décrit une méthode, due à Carr et Madan [23], permettant de valoriser les options européennes

dans les modèles exp-Lévy à l’aide de la transformée de Fourier. La méthode est fondée sur

l’observation suivante: si on soustrait du prix de l’option call sa valeur intrinsèque:

zT (k) = e−rTE[(erT+XT − ek)+] − (1 − ek−rT )+,

alors la quantité qui reste est, sous certaines conditions, intégrable et on peut évaluer sa trans-

formée de Fourier:

ζT (v) :=

∫ +∞

−∞
eivkzT (k)dk = eivrT

ΦT (v − i) − 1

iv(1 + iv)
,

où ΦT est la fonction caractéristique de XT . Les prix d’options peuvent donc être évalués en

calculant la transformée de Fourier inverse de ζT .

Cette section est la seule du premier chapitre à contenir des résultats originaux. Première-

ment, j’ai démontré qu’on peut diminuer considérablement l’erreur de troncature dans le calcul

de la transformée de Fourier inverse en remplaçant la valeur intrinsèque de l’option par son prix

dans le modèle de Black et Scholes: si on dénote

z̃T (k) = e−rTE[(erT+XT − ek)+] − CΣ
BS(k),

où CΣ
BS(k) est le prix Black et Scholes d’une option call avec volatilité Σ et log-strike k, et

ΦΣ
T (v) = exp(−Σ2T

2 (v2 + iv)), alors la transformée de Fourier de z̃T (k) est donnée par

ζ̃T (v) = eivrT
ΦT (v − i) − ΦΣ

T (v − i)

iv(1 + iv)
.

Pour presque tous les modèles paramétriques, discutés dans la littérature cette quantité converge

vers zéro plus vite que toute puissance de |v| lorsque |v| → ∞ (notons que ζT (v) converge

seulement comme |v|−2).

Le deuxième apport de cette section est le développement d’une méthode de contrôle d’erreur

pour l’algorithme de Carr et Madan. Supposons que la transformée de Fourier inverse de ζ̃T

est approchée comme suit:

1

2π

∫ ∞

−∞
e−ivk ζ̃T (v)dv =

L

2π(N − 1)

N−1∑

m=0

wmζ̃T (vm)e−ikvm + εT + εD, (1)
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où εT est l’erreur de troncature, εD est l’erreur de discrétisation, vm = −L/2 + m∆, ∆ =

L/(N − 1) est le pas de discrétisation et wm sont les poids qui correspondent à la méthode

d’intégration choisie. Alors, notant le triplet caractéristique de X par (A, ν, γ), l’erreur de

troncature peut être évaluée comme suit:

1. Si on suppose A > 0 alors l’erreur de troncature satisfait:

|εT | ≤
8

πTΣ2L3
e−

TL2Σ2

8 +
8

πTAL3
e−

TL2A
8

2. Si on suppose que ν a une densité de la forme ν(x) = e−x

|x| f(x), où f est une fonction

croissante sur (−∞, 0) et décroissante sur (0,∞) alors l’erreur de troncature satisfait:

|εT | ≤
8

πTΣ2L3
e−

TL2Σ2

8 +
|ΦT (L/2 − i)| + |ΦT (−L/2 − i)|

πL
.

Si l’intégrale dans l’équation (1) est approchée en utilisant la méthode de trapèzes, l’erreur

de discrétisation εD satisfait

|εD| ≤
∆2

6π

2∑

l=0

C3−l + CΣ
3−l

(3 − l)!
×
{
(

∆ +
π

2

)

e|k−rT | + log

(

L

2
+

√

L2

4
+ 1

)

|k − rT |l
l!

}

,

où

Ck =







|Φ(k)
T (−i)|, k pair

|Φ(k+1)
T (−i)|

k
k+1 , k impair

et CΣ
k sont calculés en utilisant la même formule à partir de la fonction caractéristique ΦΣ

T .

Calibration de modèles exponentielle-Lévy

Le deuxième chapitre est consacré au traitement théorique du problème de calibration. Je

commence par discuter la calibration au sens de moindres carrés linéaires, qui est la méthode

couramment utilisée par les praticiens et chercheurs. Dans cette approche, pour trouver une

solution, on minimise la somme pondérée des carrés des écarts entre les prix de marché et les

prix du modèle:
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Calibration au sens de moindres carrés non-linéaires. Etant donnés les prix CM des

options cotées sur le marché financier, trouver un modèle exponentielle-Lévy risque neutre Q∗,

tel que

‖CM − CQ
∗‖2
w = inf

Q
‖CM − CQ‖2

w,

où le inf est calculé sur tous les modèles exponentielle-Lévy risque neutres, CQ dénote les prix

calculés dans le modèle Q et

‖CM − CQ‖2
w :=

N∑

i=1

wi(CM (Ti,Ki) − CQ(Ti,Ki))
2.

L’ensemble des solutions du problème de calibration au sens de moindres carrés sera noté

QLS . Je commence par démontrer que dans le contexte de calibration non-paramétrique de

modèles exp-Lévy cette méthode ne permet pas toujours de trouver une solution et est, dans

certaines situations, instable par rapport aux perturbations des données d’entrée CM . Ensuite

je donne des conditions suffisantes (assez restrictives), sous lesquelles le problème de calibration

admet une solution continue par rapport aux données d’entrée (Théorème 2.1 et Proposition

2.5). Comme ces conditions sont rarement vérifiées en pratique, il est nécessaire de trouver

une méthode plus fiable de résolution du problème de calibration. Le premier pas dans cette

direction est de le reformuler comme le problème de trouver un processus de Lévy risque neutre

qui reproduit les prix d’options cotées avec la plus grande précision possible et qui a l’entropie

relative minimale par rapport à un processus a priori à donné parmi toutes les solutions du

problème de calibration au sens de moindres carrés:

Calibration au sens de moindres carrés avec minimisation d’entropie Etant donnés

les prix CM des options cotées sur le marché financier, et un processus de Lévy a priori P ,

trouver un modèle exponentielle-Lévy risque neutre Q∗ ∈ QLS , tel que

I(Q∗|P ) = inf
Q∈QLS

I(Q|P ).

Les solutions du problème ci-dessus seront appelées solutions au sens de moindres carrés
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d’entropie minimale. Le lien de cette approche avec d’autres méthodes de calibration et de

valorisation d’options à l’aide de l’entropie relative, disponibles dans la littérature, est discuté

dans section 2.3.

Cette formulation résout le problème de non-identifiabilité, mais souffre toujours de manque

de stabilité. Cependant, elle peut être transformée en un problème de calibration stable et

admettant toujours une solution, en utilisant la méthode de régularisation, provenant de la

théorie de problèmes inverses mal-posés. Pour régulariser le problème de calibration au sens de

moindres carrés, je propose de minimiser la somme de l’erreur de valorisation et d’un terme de

pénalisation donné par l’entropie relative du modèle par rapport à P :

Problème de calibration régularisé Etant donnés les prix CM des options cotées sur

le marché et un processus de Lévy a priori P , trouver un modèle exponentielle-Lévy risque

neutre Q∗, tel que

Jα(Q∗) = inf
Q
Jα(Q),

où le inf est calculé sur tous les modèles exponentielle-Lévy risque neutres,

Jα(Q) = ‖CM − CQ‖2
w + αI(Q|P )

et α est le paramètre de régularisation qui détermine l’intensité de pénalisation.

Dans le cadre de processus de Lévy, l’entropie relative peut être calculée explicitement

(Théorème 2.9):

I(Q|P ) = I(Q|FT∞
|P |FT∞

) =
T∞
2A

{

γQ − γP −
∫ 1

−1
x(νQ − νP )(dx)

}2

1A6=0+

T∞

∫ ∞

−∞

(
dνQ

dνP
log

dνQ

dνP
+ 1 − dνQ

dνP

)

νP (dx).

Cette formule permet d’étudier les propriétés de solutions du problème de calibration régularisé

et démontrer les résultats suivants, sous condition que les sauts du processus a priori P sont

bornés supérieurement par une constante B et que P correspond à un modèle exponentielle-Lévy

sans opportunité d’arbitrage

• Le problème de calibration régularisé admet au moins une solution.
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• Si P satisfait une condition de régularité supplémentaire (2.28), alors la solution Q est une

mesure équivalente à P (en général, Q est une mesure martingale, absolument continue

par rapport à P ).

• Les solutions du problème de calibration régularisé sont continues par rapport aux données

de marché: si {CnM}n≥1 est une suite de données telle que ‖Cn
M − CM‖w → 0, et pour

chaque n, Qn est la solution du problème de calibration régularisé avec donnée Cn
M , loi

a priori P et paramètre de régularisation α, alors {Qn}n≥1 a une sous-suite faiblement

convergente, et la limite de chaque sous-suite faiblement convergente de {Qn}n≥1 est la

solution du problème de calibration régularisé avec donnée CM , loi a priori P et paramètre

de régularisation α.

• Lorsque le niveau d’erreur dans les données de marché tend vers 0, si le paramètre de

régularisation α est choisi de façon appropriée, alors les solutions du problème régularisé

convergent vers les solutions au sens de moindres carrés d’entropie minimale (lorsqu’il

existe plusieurs solutions au sens de moindres carrés d’entropie minimale, la convergence

est entendue dans le même sens que ci-dessus).

Le troisième chapitre traite la résolution numérique du problème de calibration régularisé,

construit au chapitre précédent. Tout d’abord, pour se ramener dans un espace fini-dimensionnel,

la mesure de Lévy du processus a priori P est discrétisée sur une grille:

νP =
M−1∑

k=0

pkδ{xk}(dx), (2)

ce qui implique que la mesure de Lévy de la solution Q a la même forme:

νQ =
M−1∑

k=0

qkδ{xk}(dx).

Ensuite, je démontre que la solution du problème de calibration avec une loi a priori quelconque

peut être approchée avec une précision arbitraire par une suite de solutions avec lois a priori de

la forme (2) (théorème 3.2 et lemme 3.1). Section 3.2 discute le choix du processus a priori et

estime son influence sur la solution, en effectuant des tests numériques. La conclusion de cette

section est que la solution est peu sensible aux petites variations du processus a priori, mais

qu’il est important de spécifier sa forme qualitative correctement.
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Section 3.3 présente un algorithme de choix du paramètre de régularisation α “a posteriori” à

partir des données. Ma méthode, qui est une adaptation du principe de discrépance, développé

par Morozov [74] pour la régularisation de Tikhonov dans les espaces de Banach, consiste à

choisir deux constantes c1 et c2 proches de 1, telles que 1 < c1 < c2 et trouver la valeur de

paramètre α pour laquelle c1δ
2 ≤ εδ(α) ≤ c2δ

2, où δ est le niveau de bruit dans les données et

la discrépance εδ(α) est définie par

εδ(α) := ‖CQδ
α − CδM‖2,

avec Qδα la solution du problème régularisé avec paramètre de régularisation α et niveau de

bruit δ.

Section 3.5 est consacrée à l’algorithme numérique permettant de résoudre le problème de

calibration discrétisé, une fois que le processus a priori et le paramètre de régularisation ont

été choisis. Le problème est résolu en minimisant la fonctionnelle de calibration approchée

Ĵα(Q) par la méthode BFGS, faisant intervenir le gradient de la fonctionnelle à minimiser. La

fonctionnelle approchée est donnée par

Ĵα(Q) =
N∑

i=1

wi(Ĉ
Q(Ti,Ki) − CM (Ti,Ki))

2

+
α

2A




A

2
+ bP +

M−1∑

j=0

(exj − 1)qj





2

+ α
M−1∑

j=0

(qj log(qj/pj) + 1 − qj) ,

où ĈQ(Ti,Ki) est l’approximation du prix d’une option call avec maturité Ti et prix d’exercice

Ki, calculée dans le modèle Q en utilisant la méthode de transformée de Fourier. Le gradient

de la fonctionnelle de calibration est évalué analytiquement en utilisant l’équation (3.32).

Dans section 3.6 l’algorithme est appliqué d’abord aux données simulées (à partir d’un

modèle exp-Lévy avec une mesure de Lévy connue) et ensuite aux données réelles. Les tests

sur des données artificielles mettent en évidence la stabilité de l’algorithme et sa capacité de

reconstruire la vraie mesure de Lévy partout sauf dans un petit voisinage de 0 (parce que les

sauts de taille 0 n’ont pas d’influence sur les prix d’options). Les tests sur les données réelles

permettent de tirer un nombre de conclusions importantes.

- Premièrement, un modèle exp-Lévy permet de calibrer des prix d’options d’une seule

maturité avec une grande précision. Cette conclusion contredit les résultats de Medvedev
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et Scaillet [70] qui ont observé que “les sauts dans les prix ne permettent pas d’expliquer

la pente de volatilité implicite à la monnaie”. Toutefois, il est important de remarquer

que l’étude de Medvedev et Scaillet porte sur les options sur l’indice S&P 500 de courte

maturité, tandis que les tests de cette thèse ont été effectués en utilisant les options sur

l’indice DAX.

- De plus, la qualité de calibration est déjà excellente en utilisant seulement des modèles à in-

tensité finie de sauts, ce qui remet en question la nécessité, du point de vue de modélisation

du smile de volatilité, des modèles plus compliqués à intensité infinie.

- La troisième conclusion est que même dans le cadre non-paramétrique, il est impossible,

en utilisant un modèle exp-Lévy, de calibrer des prix d’options de plusieurs maturités

avec une précision satisfaisante. Les tests ont donc confirmé l’observation déjà faite par

certains auteurs [13, 68] que le cadre de modèles exp-Lévy est trop rigide pour pouvoir

décrire correctement la structure par terme de volatilités implicites.

Modélisation multidimensionnelle avec les processus de Lévy

Le quatrième chapitre commence par une revue de deux méthodes, disponibles dans la littérature,

permettant de construire des modèles multidimensionnels à base de processus de Lévy. Dans la

première approche il s’agit de changer l’échelle de temps d’un mouvement brownien multivarié

par un processus de Lévy croissant, le même pour toutes les composantes [79], et la deuxième

méthode, qui ne concerne que le cas de processus de Lévy à intensité finie de sauts, consiste à

modéliser directement la dépendance entre les tailles des sauts dans les différentes composantes,

en utilisant les copules. Malheureusement, dans ces méthodes la gamme de types de dépendance

possibles est très limitée et des contraintes sont imposées sur le choix de modèles paramétriques

pour les composantes (on ne peut pas coupler des composantes quelconques). La discussion

des défauts de ces méthodes permet d’établir une liste de conditions qu’une bonne méthode de

modélisation multidimensionnelle doit satisfaire:

• On doit pouvoir choisir librement un processus de Lévy unidimensionnel pour chacune de

composantes.
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• La gamme de structures de dépendance possibles doit inclure l’indépendance et la dépen-

dance complète avec une transition continue entre ces deux cas extrêmes.

• La méthode doit permettre de construire des modèles de dépendance paramétriques.

Pour atteindre ces conditions, je propose de séparer la structure de dépendance d’un processus

de Lévy des lois marginales de ces composantes. Dans le cadre plus restreint de variables

aléatoires à valeurs dans Rd, cette séparation est réalisée par la notion de copule. Je développe

une notion analogue, applicable au cas des processus de Lévy.

Section 4.4 introduit les copules de Lévy dans le cas plus simple de processus de Lévy

n’admettant que des sauts positifs dans chacune de composantes. Dans ce cas la copule de

Lévy est définie comme une fonction F : [0,∞]d → [0,∞] avec les propriétés suivantes:

1. F (u1, . . . , ud) = 0 dès que ui = 0 pour au moins un i ∈ {1, . . . , d},

2. F est une fonction croissante en d dimensions, c.-à-d., pour tout a, b ∈ DomF ,

∑

(−1)N(c)F (c) ≥ 0,

où la somme est calculé sur tous les sommets c de [a, b] et N(c) := #{k : ck = ak}.

3. F a les fonctions marginales uniformes: F (u1, . . . , ud)|ui=∞,i6=k = uk pour tout k ∈
{1, . . . , d}, uk ∈ [0,∞].

En représentant une mesure de Lévy ν sur Rd
+ par son intégrale de queue:

U(x1, . . . , xd) = ν([x1,∞) × · · · × [xd,∞)),

je démontre que

• Pour toute mesure de Lévy ν sur Rd
+ ayant l’intégrale de queue U et les mesures de Lévy

marginales ν1, . . . , νd, il existe une copule de Lévy F sur [0,∞]d, telle que

U(x1, . . . , xd) = F (U1(x1), . . . , Ud(xd)), (x1, . . . , xd) ∈ [0,∞)d, (3)

où U1, . . . , Ud sont des intégrales de queue de ν1, . . . , νd.

• Si F est une copule de Lévy sur [0,∞]d et ν1, . . . , νd sont des mesures de Lévy sur (0,∞)

avec les intégrales de queue U1, . . . , Ud, alors équation (3) définit une intégrale de queue

d’une mesure de Lévy sur Rd
+ ayant les mesures de Lévy marginales ν1, . . . , νd.
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Ce résultat montre que pour chaque processus de Lévy il existe une copule de Lévy qui décrit

sa structure de dépendance, et que pour chaque copule de Lévy et chaque combinaison de lois

unidimensionnelles il existe un processus de Lévy avec des lois de composantes données et dont

la dépendance est décrite par cette copule de Lévy.

Section 4.5 étend la notion de copule de Lévy et les résultats associés aux processus de Lévy

généraux. Les résultats de cette section ont été obtenus dans un travail joint avec Jan Kallsen

[59]. En particulier, la structure de dépendance d’un processus de Lévy général est caractérisé

par une copule de Lévy sur (−∞,∞]d, c.-à-d., une fonction F : (−∞,∞]d → (−∞,∞] avec les

propriétés suivantes:

1. F (u1, . . . , ud) <∞ si (u1, . . . , ud) 6= (∞, . . . ,∞),

2. F (u1, . . . , ud) = 0 si ui = 0 pour au moins un i ∈ {1, . . . , d},

3. F est une fonction croissante en d dimensions,

4. F a les fonctions marginales uniformes: pour tout k ∈ {1, . . . , d} et pour tout xk ∈
(−∞,∞],

lim
c→∞

∑

(xj)j 6=k∈{−c,∞}d−1

F (x1, . . . , xd)
∏

j 6=k
sgnxj = xk.

Dans la dernière section de ce chapitre je calcule les copules de Lévy qui correspondent aux

types de dépendance particuliers. Les composantes d’un processus de Lévy multidimensionnel

sans partie martingale continue sont indépendantes si et seulement s’il a une copule de Lévy

suivante:

F⊥(x1, . . . , xd) :=
d∑

i=1

xi
∏

j 6=i
1{∞}(xj).

Les sauts d’un processus de Lévy d-dimensionnel sont dits complètement dépendants s’il existe

un sous-ensemble strictement ordonné S de K := {x ∈ Rd : sgnx1 = · · · = sgnxd}, tel que

∆Xt := Xt −Xt− ∈ S, t ≥ 0. La copule de Lévy de la dépendance complète est

F‖(x1, . . . , xd) := min(|x1|, . . . , |xd|)1K(x1, . . . , xd)

d∏

i=1

sgnxi.

Le dernier chapitre de la thèse est dédié aux applications de copules de Lévy en finance.

Dans les applications on n’a souvent pas assez d’information sur la dépendance pour employer
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des méthodes non-paramétriques et je commence donc par donner des outils permettant de

construire des familles paramétriques de copules de Lévy. Un exemple de famille de copules de

Lévy en deux dimensions, dépendant de deux paramètres est donné par

F (u, v) = (|u|−θ + |v|−θ)−1/θ(η1uv≥0 − (1 − η)1uv<0). (4)

Pour faire des calculs en utilisant la méthode de Monte Carlo il est crucial de pouvoir

simuler les processus de Lévy avec la dépendance donnée par une copule de Lévy. Je présente

une méthode de simulation de tels processus en utilisant une représentation en série qui peut

être considérée comme une extension de résultats de Rosinski [84]. Chaque copule de Lévy F

sur (−∞,∞]d définit une mesure positive µ sur Rd, qui peut être décomposée comme

µ(dx1 . . . dxd) = λ(dx1) ⊗K(x1, dx2 · · · dxd),

oùK(x1, dx2 · · · dxd) est, pour presque tout x, une mesure de probabilité sur Rd−1. Un processus

de Lévy d-dimensionnel avec mesure de Lévy ν, telle que
∫

(|x| ∧ 1)ν(dx) < ∞ et intégrales de

queue marginales Ui, i = 1, . . . , d peut alors être simulé comme suit.

• Soit {Γ1
i }i≥1 une suite de variables aléatoires telle que

∑∞
i=1 δΓ1

i
est une mesure aléatoire

de Poisson sur R ayant la mesure de Lebesgue comme mesure d’intensité.

• Pour chaque i, soit (Γ2
i , . . . ,Γ

d
i ) un vecteur aléatoire, qui est, conditionnellement à Γ1

i ,

indépendant de Γkj avec i 6= j et tout k et distribué selon la loi K(Γ1
i , ∗).

• Soit {Vi}i≥1 une suite indépendante de variables aléatoires indépendantes, distribuées

uniformément sur [0, 1].

Alors

{Zt}0≤t≤1 où Zkt =
∞∑

i=1

U
(−1)
i (Γki )1[0,t](Vi), k = 1, . . . , d,

est un processus de Lévy sur l’intervalle de temps [0, 1] avec fonction caractéristique

ei〈u,Zt〉 = exp

(

t

∫

Rd

(ei〈u,z〉 − 1)ν(dz)

)

.

Enfin je construis un modèle exp-Lévy bidimensionnel paramétrique avec la structure de

dépendance donnée par la copule de Lévy ((4)) et les composantes unidimensionnelles qui sont

des processus variance gamma, et je montre comment on peut valoriser des options sur panier
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dans un tel modèle en utilisant la méthode de Monte Carlo. Pour estimer l’importance de la

dépendance dans les queues de distribution pour la valorisation des options, je prends deux jeux

de paramètres η et θ, qui correspondent tous les deux à la corrélation de rendements de 50%

mais ont les structures de dépendance différentes. Les prix des options sur panier pour les deux

jeux de paramètres diffèrent de 10% à la monnaie, ce qui montre que la dépendance dans les

queues de distribution est importante à prendre en compte pour la valorisation d’options sur

panier, et que les copules de Lévy sont un outil adapté pour décrire cette dépendance.



Introduction

Lévy processes are defined as stochastic processes with stationary and independent increments:

if {Xt}t≥0 is a Lévy process, then Xt−Xs with t > s is independent of the history of the process

up to time s, and its law only depends on t− s but not on t or s separately. This property of

increments suggests an analogy with linear functions: one can say that Lévy processes are, in

some sense, “linear processes”.

Despite this apparent simplicity, Lévy processes have many interesting properties and con-

stitute an exciting field of study: this is shown by the recent publication of several monographs

(see for example [17, 87]) and by the success of the series of international conferences on Lévy

processes and applications (see [6]).

From the point of view of financial modelling, Lévy processes provide a class of models

with jumps that is both sufficiently rich to reproduce empirical data and simple enough to do

many computations analytically. The interest of jump models in finance is mainly due to three

reasons.

First, in a model with continuous paths like a diffusion model, the price process behaves

locally like a Brownian motion and the probability that the stock moves by a large amount

over a short period of time is very small, unless one fixes an unrealistically high value of the

volatility of volatility. Therefore, in such models the prices of short term out of the money

options should be much lower than what one observes in real markets. On the other hand,

if stock prices are allowed to jump, even when the time to maturity is very short, there is a

non-negligible probability that after a sudden change in the stock price the option will move in

the money.

Second, from the hedging point of view, continuous models of stock price behavior generally

lead to a complete market or to a market that can be made complete by adding one or two

27
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Figure 1: Jumps in the trajectory of DM/USD exchange rate, sampled at 5-minute intervals.

additional instruments, like in stochastic volatility models. Since in such a market every terminal

payoff can be exactly replicated, the very existence of traded options becomes a puzzle. The

mystery is easily solved by allowing for discontinuities: in real markets, due to the presence of

jumps in the prices, perfect hedging is impossible and options enable the market participants

to hedge risks that cannot be hedged by using the underlying only.

The third and the strongest argument for using discontinuous models is simply the presence

of jumps in observed prices. Figure 1 depicts the evolution of the DM/USD exchange rate over

a two-week period in 1992, and one can see at least three points where the rate moved by over

100 bp within a 5-minute period. Price moves like these ones clearly cannot be accounted for

in the framework of a diffusion model with continuous paths, but they must be dealt with if

the market risk is to be measured and managed correctly.

Although when this thesis was started, the field of financial modelling with Lévy processes

was already a well-developed one, with several Ph. D. theses [78, 79, 81, 86, 96] and a few hundred

research papers (see references in [27]) already written on the subject, two major issues, that

appear in the title of the present study, remained unresolved.

First, while the main concern in the literature has been to find efficient analytical and

numerical procedures for computing option prices in exponential Lévy models, an essential

step in using such models is to obtain the parameters — here the characteristic triplet of the
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underlying Lévy process — consistent with the market-quoted prices of traded options. This

problem — called model calibration — is an inverse problem to that of pricing a European option

in an exponential Lévy model and is much more difficult to solve than the latter. The calibration

problem was addressed by several authors (see for example [4, 35, 53, 85]) in the framework of a

markovian diffusion model, the unknown parameter being the local volatility function σ(St, t).

However, in the setting of processes with jumps, although many papers proposed parametric

Lévy-based models [5, 22, 36, 62, 67, 71], prior to this study there existed no systematic approach

to model selection, and no stable calibration method, that could be implemented in practice

was available. In the first part of the thesis we develop a non-parametric method allowing to

calibrate exponential-Lévy models, study its stability and convergence properties, describe its

numerical implementation and give examples of its use. Our approach is first to reformulate the

calibration problem as that of finding a risk-neutral exponential Lévy model that reproduces

the observed option prices with the best possible precision and has the smallest relative entropy

with respect to a given prior, and then to solve this problem via the regularization approach,

used in the theory of ill-posed inverse problems [40].

The second issue, addressed in this thesis, is that of multidimensional modelling with Lévy

process. Although most financial applications (basket option pricing, risk management, port-

folio optimization etc.) require a multidimensional model taking into account the dependence

between various assets, the vast majority of parametric models, available in the literature cover

only the case of a single asset. The only attempts to construct multidimensional Lévy-based

models that were made prior to this study concern either the case of a multivariate Brownian

motion, time-changed with a one-dimensional increasing Lévy process [79] or the case where all

components have finite jump intensity [65]. In both cases the scope of dependence structures

that one can obtain is quite limited. In the second part of this thesis we therefore propose a

general methodology to characterize dependence among the components of multidimensional

Lévy processes and to construct multidimensional exp-Lévy models. This is done by introduc-

ing the notion of Lévy copula, which can be seen as an analog for Lévy processes of the notion

of copula, used in statistics to model dependence between real random variables [56, 76].

This thesis is structured as follows. The first chapter contains a brief review of the properties

of Lévy processes and exponential Lévy models, that are used in the sequel. The last section

describes a method, due to Carr and Madan [23], for pricing European options in exponential
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Lévy models by Fourier transform. This section is the only one of the first chapter to contain

new results: we propose original improvements to this method and obtain estimates for the

truncation and discretization errors, that are not given in the original reference [23].

The second chapter is dedicated to the theoretical treatment of the calibration problem.

We start by discussing the least squares calibration method, commonly used by academics

and practitioners. We show that in the context of non-parametric calibration of exponential

Lévy models, least squares calibration does not always allow to find a solution and even if it

does, the solution is typically very sensitive to small perturbations of input data. To solve the

calibration problem in a stable manner, we first reformulate it as the problem of finding an

exponential Lévy model that has the smallest relative entropy with respect to the prior among

all solutions of the least squares calibration problem. This problem, called minimal entropy

least squares calibration, is still ill-posed, so we regularize it using the technique of minimal

entropy regularization, from the theory of ill-posed inverse problems.

The third chapter discusses the numerical implementation of our calibration algorithm. To

solve the calibration problem numerically, it is expressed in terms of the characteristic triplets

of the prior and the solution and the Lévy measure of the prior is discretized on a uniform grid

so that the calibration problem becomes finite-dimensional.

In the fourth chapter we first review the two available methods to model dependence be-

tween components of Lévy processes. Understanding the drawbacks of these methods allows to

formulate the desirable properties of a multidimensional modelling approach. These properties

lead us to defining the notion of Lévy copula, first in the case of Lévy processes with only

positive jumps in every component and then in the general case. After proving a representation

theorem, which shows that Lévy copulas completely characterize dependence structures of Lévy

processes, we compute Lévy copulas that correspond to various special types of dependence.

The fifth and the last chapter provides the tools necessary to apply Lévy copulas to finance.

We first give methods to construct parametric families of Lévy copulas and then develop an effi-

cient algorithm to simulate multidimensional Lévy processes with dependence structures given

by Lévy copulas. The last section of this chapter contains an example of a multidimensional

exponential Lévy model for option pricing, constructed using Lévy copulas.
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Chapter 1

Lévy processes and exp-Lévy models

This introductory chapter serves essentially two purposes. First, in Section 1.1, we give an

overview of the probabilistic properties of Lévy processes that will be used in the sequel. Second,

we define exponential Lévy models (Section 1.2), review various parametrizations of the Lévy

measure, proposed by other authors (Section 1.3) and discuss a method for option pricing in

these models, based on Fourier transform (Section 1.4). This option pricing method is later used

for the numerical solution of the calibration problem. While the results of the first three sections

can be found in the literature, Section 1.4 contains new material: we improve the method due

to Carr and Madan [23] in a number of ways and provide estimates of the truncation and

discretization error, not found in the original paper.

1.1 Lévy processes

Proofs of the the results of this section can be found, unless otherwise mentioned in [87]. For

additional details on Lévy processes the reader may consult [17] or [54]. The latter book treats

a far more general class of semimartingales but properties of Lévy processes are often discussed

as examples or corollaries of the general results.

Definition 1.1 (Lévy process). A stochastic process {Xt}t≥0 on (Ω,F , P ) such that X0 = 0

is called a Lévy process if it possesses the following properties:

1. Independent increments: for every increasing sequence of times t0 . . . tn, the random vari-

ables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

33
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2. Stationary increments: for every h > 0, the law of Xt+h −Xt does not depend on t.

The law of a Lévy process is completely identified by its characteristic triplet (A, ν, γ), where

A is a symmetric nonnegative-definite d× d matrix, γ ∈ Rd and ν is a Lévy measure, that is, a

positive measure on Rd \ {0}, satisfying

∫

Rd\{0}
(|x|2 ∧ 1)ν(dx) <∞.

In particular, the characteristic function of Xt can be computed from this triplet as follows.

Theorem 1.1 (Lévy-Khintchine representation). Let {Xt}t≥0 be a Lévy process on Rd

with characteristic triplet (A, ν, γ). Then

E[ei〈z,Xt〉] = etψ(z), z ∈ Rd (1.1)

with ψ(z) = −1

2
〈z,Az〉 + i〈γ, z〉 +

∫

Rd

(ei〈z,x〉 − 1 − i〈z, x〉1|x|≤1)ν(dx).

Remark 1.1. Let h : Rd → Rd be a measurable function, such that for every z, ei〈z,x〉 − 1 −
i〈z, h(x)〉 is integrable with respect to ν. Then the second equation in the Lévy-Khintchine

formula (1.1) may be rewritten as

ψ(z) = −1

2
〈z,Az〉 + i〈γh, z〉 +

∫

Rd

(ei〈z,x〉 − 1 − i〈z, h(x)〉)ν(dx),

where γh = γ +

∫ ∞

−∞
(h(x) − x1|x|≤1)ν(dx).

The triplet (A, ν, γh) is called the characteristic triplet of {Xt}t≥0 with respect to the truncation

function h. For instance, if
∫

Rd(|x|∧1)ν(dx) <∞, one may take h ≡ 0 and the Lévy-Khintchine

representation becomes

ψ(z) = −1

2
〈z,Az〉 + i〈γ0, z〉 +

∫

Rd

(ei〈z,x〉 − 1)ν(dx).

The vector γ0 is in this case called drift of the process X.

The tail behavior and moments of the distribution of a Lévy process at a given time are

determined by the Lévy measure, as shown by the following proposition (see Proposition 2.5

and Theorems 25.3 and 25.17 in [87]).



1.1. LEVY PROCESSES 35

Proposition 1.2 (Moments and cumulants of a Lévy process).

1. Let {Xt}t≥0 be a Lévy process on R with characteristic triplet (A, ν, γ) and let n ≥ 1.

E[|Xt|n] <∞ for some t > 0 or equivalently for every t if and only if
∫

|x|≥1 |x|nν(dx) <∞.

In this case Φt(z), the characteristic function of Xt, is of class Cn and the first n moments

of Xt can be computed by differentiation:

E[Xk
t ] =

1

ik
∂k

∂zk
Φt(z)|z=0, k = 1, . . . , n.

The cumulants of Xt, defined by

ck(Xt) :=
1

ik
∂k

∂zk
log Φt(z)|z=0,

have a particularly simple structure:

c1(Xt) ≡ E[Xt] = t(γ +

∫

|x|≥1
xν(dx)),

c2(Xt) ≡ VarXt = t(A+

∫ ∞

−∞
x2ν(dx)),

ck(Xt) = t

∫ ∞

−∞
xkν(dx) for 3 ≤ k ≤ n.

2. Let {Xt}t≥0 be a Lévy process on R with characteristic triplet (A, ν, γ) and let u ∈ R.

E[euXt ] <∞ for some t or, equivalently, for all t > 0 if and only if
∫

|x|≥1 e
uxν(dx) <∞.

In this case

E[euXt ] = etψ(−iu).

where ψ is the characteristic exponent of the Lévy process defined by (1.1).

Corollary 1.1. Let {Xt}t≥0 be a Lévy process on R with characteristic triplet (A, ν, γ).

1. {Xt}t≥0 is a martingale if and only if
∫

|x|≥1 |x|ν(dx) <∞ and

γ +

∫

|x|≥1
xν(dx) = 0.

2. {exp(Xt)}t≥0 is a martingale if and only if
∫

|x|≥1 e
xν(dx) <∞ and

A

2
+ γ +

∫ ∞

−∞
(ex − 1 − x1|x|≤1)ν(dx) = 0. (1.2)
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1.1.1 Stochastic exponential of Lévy processes

The stochastic (Doléans-Dade) exponential of a semimartingale {Xt}t≥0 (see [54, Theorem

I.4.61]) is defined as the unique càdlàg process {Zt}t≥0 such that

dZt = Zt−dXt, Z0 = 1. (1.3)

Z is given by:

Zt = eXt−X0− 1
2
[X]ct

∏

0≤s≤t
(1 + ∆Xs)e

−∆Xs . (1.4)

The stochastic exponential of X is denoted by E(X). The following result, due to Goll and

Kallsen [47] clarifies the relation between the stochastic and the ordinary exponential when X

is a Lévy process.

Proposition 1.3 (Relation between ordinary and stochastic exponentials).

1. Let {Xt}t≥0 be a real-valued Lévy process with characteristic triplet (A, ν, γ) and Z = E(X)

its stochastic exponential. If Z > 0 a.s. then there exists another Lévy process {Lt}t≥0

such that for all t, Zt = eLt, where

Lt = logZt = Xt −
At

2
+
∑

0≤s≤t

{
log(1 + ∆Xs) − ∆Xs

}
. (1.5)

Its characteristic triplet (AL, νL, γL) is given by:

AL = A,

νL(B) = ν({x : log(1 + x) ∈ B}) =

∫ ∞

−∞
1B(log(1 + x))ν(dx), B ∈ B(R \ {0}), (1.6)

γL = γ − A

2
+

∫ ∞

−∞
ν(dx)

{
log(1 + x)1[−1,1](log(1 + x)) − x1[−1,1](x)

}
.

2. Let {Lt}t≥0 be a real-valued Lévy process with characteristic triplet (AL, νL, γL) and St =

expLt its exponential. Then there exists a Lévy process {Xt}t≥0 such that St is the

stochastic exponential of X: S = E(X) where

Xt = Lt +
At

2
+
∑

0≤s≤t

{
e∆Ls − 1 − ∆Ls

}
. (1.7)



1.1. LEVY PROCESSES 37

The characteristic triplet (A, ν, γ) of X is given by:

A = AL,

ν(B) = νL({x : ex − 1 ∈ B}) =

∫ ∞

−∞
1B(ex − 1)νL(dx), B ∈ B(R \ {0}), (1.8)

γ = γL +
AL
2

+

∫ ∞

−∞
νL(dx)

{
(ex − 1)1[−1,1](e

x − 1) − x1[−1,1](x)
}
.

Equation (1.3) shows that the stochastic exponential of a martingale is necessarily a local

martingale. For Lévy processes, however, a stronger result is true, namely, the stochastic

exponential of a martingale Lévy process is a (true) martingale. This fact seems to belong

to the folklore of the Lévy process theory but we have been unable to find its proof in the

literature.

Proposition 1.4 (Martingale preserving property). If {Xt}t≥0 is a Lévy process and a

martingale, then its stochastic exponential Z = E(X) is also a martingale.

Proof. Let {Xt}t≥0 be a Lévy process on R with triplet (A, ν, γ) such that γ+
∫

|x|≥1 xν(dx) = 0

(this implies that X is a martingale). First, suppose that |∆Xs| ≤ ε < 1 a.s. Then

log(1 + ∆Xs) − ∆Xs ≥ − ∆X2
s

2(1 − ε)2

and Equation (1.4) implies that

Zt ≥ exp



Xt −X0 −
1

2
[X]ct −

1

2(1 − ε)2

∑

0≤s≤t
∆X2

s



 > 0 a.s.

Therefore by Proposition 1.3 there exists a Lévy process L such that eLt = Zt for all t. Moreover,

this process has bounded jumps and therefore admits all exponential moments. Again, by

Proposition 1.3, we can write:

γL +
AL
2

+

∫ ∞

−∞
(ez − 1 − z1|z|≤1)νL(dz) = γ +

∫ 1

−1
{zνL(dz) − zν(dz)}

+

∫ ∞

−∞
(ez − 1 − z1|z|≤1)νL(dz) =

∫ ∞

−∞
{(ez − 1)νL(dz) − zν(dz)} = 0

because ∆Xs = e∆Ls − 1 for all s. Therefore, by Corollary 1.1, Zt = eLt is a martingale.

The second step is to prove the proposition when X is a compensated compound Poisson

process. In this case, the stochastic exponential has a very simple form:

Zt = ebt
∏

0≤s≤t
(1 + ∆Xs),
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where b = −
∫∞
−∞ xν(dx). Denoting the jump intensity of X by λ, and the generic jump of X

by ∆X, we obtain, conditioning on the number of jumps of X in the interval [0, t]:

E[Zt] = e−λt+bt
∞∑

n=0

(λt)n

n!
(1 +E[∆X])n = 1.

Because the increments of X are independent and stationary, this proves that Z is a martingale.

Now let X be an arbitrary martingale Lévy process. It can be decomposed into a sum

of a compensated compound Poisson process X ′ and an independent martingale Lévy process

with jumps smaller than ε, denoted by X ′′. Since these two processes never jump together,

E(X ′ + X ′′) = E(X ′)E(X ′′) (cf. Equation II.8.19 in [54]). Moreover, each of the factors is a

martingale and they are independent, hence E(X ′ +X ′′) is a martingale.

1.1.2 Change of measure and absolute continuity of Lévy processes

The following proposition (see [54], Theorem IV.4.39) provides a criterion of absolute continuity

of one Lévy process with respect to another in terms of their characteristic triplets.

Proposition 1.5 (Absolute continuity of Lévy processes). Let {Xt}t≥0 be a real-valued

Lévy process on (Ω,F , Q) and on (Ω,F , P ) with respective characteristic triplets (AQ, νQ, γQ)

and (AP , νP , γP ). Then Q|Ft ≪ P |Ft for all t ∈ [0, T∞] or, equivalently, Q|Ft ≪ P |Ft for some

t ∈ (0, T∞] if and only if the following conditions are satisfied:

1. AQ = AP := A.

2. νQ ≪ νP .

3.
∫∞
−∞(

√

φ(x) − 1)2νP (dx) <∞, where φ :=
dνQ

dνP
.

4.
∫

|x|≤1 |x(1 − φ(x))|νP (dx) <∞.

5. If A = 0 then γQ − γP =
∫

|x|≤1 x(φ(x) − 1)νP (dx).

Remark 1.2. In fact, condition 4 above is a consequence of condition 3. Indeed, on the set

{x : φ(x) > 4}, we have (
√

φ(x) − 1)2 > 1 and
(
√
φ(x)−1)2

φ(x) > 1
4 . Therefore, condition 3 implies

∫

{φ(x)>4}
νP (dx) ≤

∫

{φ(x)>4}
(
√

φ(x) − 1)2νP (dx) <∞

and

∫

{φ(x)>4}
φ(x)νP (dx) < 4

∫

{φ(x)>4}
(
√

φ(x) − 1)2νP (dx) <∞.
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On the other hand,
∫

|x|≤1
|x(1−φ(x))|νP (dx) =

∫

|x|≤1;φ(x)>4
|x(1−φ(x))|νP (dx)+

∫

|x|≤1;φ(x)≤4
|x(1−φ(x))|νP (dx).

The first term in the right-hand side satisfies:
∫

|x|≤1;φ(x)>4
|x(1 − φ(x))|νP (dx) ≤

∫

|x|≤1;φ(x)>4
νP (dx) +

∫

|x|≤1;φ(x)>4
φ(x)νP (dx) <∞,

and for the second term one can write:

∫

|x|≤1;φ(x)≤4
|x(1 − φ(x))|νP (dx)

≤
∫

|x|≤1;φ(x)≤4
|x|2νP (dx) +

∫

|x|≤1;φ(x)≤4
(
√

φ(x) − 1)2(
√

φ(x) + 1)2νP (dx) <∞.

A real-valued Lévy process with characteristic triplet (A, ν, γ) is said to be of jump-diffusion

type if A > 0 and ν(R \ {0}) <∞.

Corollary 1.2. Let {Xt}t≥0 be a Lévy process of jump-diffusion type under P . Then Q|Ft ≪
P |Ft for all t ∈ [0, T∞] or, equivalently, Q|Ft ≪ P |Ft for some t ∈ (0, T∞] if and only if X is of

jump-diffusion type under Q and conditions 1 and 2 of Proposition 1.5 are satisfied.

Proof. Observe that for all u, v and r > 0,

(1 − r)u2 + (1 − 1/r)v2 ≤ (u+ v)2 ≤ (1 + r)u2 + (1 + 1/r)v2.

Taking u =
√

φ(x), v = −1 and r = 1/2, we obtain:

1

2
φ(x) − 1 ≤ (

√

φ(x) − 1)2 ≤ 3

2
φ(x) + 3. (1.9)

Suppose that Q|Ft ≪ P |Ft for all t. Then (1.9) implies that

νQ(R \ {0}) ≤ 2νP (R \ {0}) + 2

∫ ∞

−∞
(
√

φ(x) − 1)2νP (dx) <∞

and therefore {Xt}t≥0 is of jump-diffusion type under Q.

Suppose that {Xt}t≥0 is of jump-diffusion type under Q and conditions 1 and 2 are satisfied.

On account of Remark 1.2, we only need to verify condition 3 of the proposition. Equation

(1.9) implies that
∫ ∞

−∞
(
√

φ(x) − 1)2νP (dx) ≤ 3νP (R \ {0}) +
3

2
νQ(R \ {0}) <∞,

which completes the proof.
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1.1.3 Tightness and convergence of sequences of Lévy processes

Let E be a Polish space with Borel σ-field F . The space of all probability measures on (E,F) is

denoted by P(E). The weak topology on P(E) is the coarsest topology for which the mappings

µ ∈ P(E) 7→ µ(f) are continuous for all bounded continuous functions f on E. We recall that

a subset B ⊂ P(E) is called tight if for every ε > 0 there exists a compact subset K ⊂ E such

that µ(E \K) ≤ ε for all µ ∈ B. Prohorov’s theorem states that a subset B ⊂ P(E) is relatively

compact for the weak topology if and only if it is tight.

The space of all càdlàg functions on [0, T∞], equipped with Skorokhod topology (see Chapter

VI in [54]) is a Polish space and all of the above remains valid. The following result is a corollary

(an adaptation for the case Lévy processes) of Theorem VI.4.18 in [54].

Proposition 1.6. Let {Xn}n≥1 be a sequence of real-valued Lévy processes with characteristic

triplets (An, νn, γn). For {Xn} to be tight it suffices that

1. The sequence of Lévy measures {νn} satisfies

lim
a→∞

sup
n
νn({x : |x| > a}) = 0.

2. The sequence {γn} is bounded.

3. The sequence {Cn} is bounded, where Cn = An +
∫∞
−∞(x2 ∧ 1)νn(dx).

The next result characterizes the weak convergence of sequences of Lévy processes (cf.

Corollary VII.3.6 in [54]).

Proposition 1.7. Let {Xn}n≥1 and X be real-valued Lévy processes with characteristic triplets

(An, νn, γ
h
n)n≥1 and (A, ν, γh) with respect to a truncation function h (cf. Remark 1.1), that

is continuous, bounded and satisfies h(x) ≡ x on a neighborhood of 0. There is equivalence

between

1. Xn d→ X.

2. Xn
1

d→ X1.

3. The following conditions are satisfied:

(a) γhn → γh.
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(b) Cn → C, where C∗ = A∗ +
∫∞
−∞ h2(x)ν∗(dx).

(c)
∫∞
−∞ f(x)νn(dx) →

∫∞
−∞ f(x)ν(dx) for every continuous bounded function f such that

f(x) ≡ 0 on a neighborhood of zero, or, equivalently, for every continuous bounded

function f satisfying f(x) = o(|x|2) when x→ 0.

1.2 Exponential Lévy models: definition and main properties

Exponential Lévy models are obtained by replacing the Brownian motion with drift in the

classical Black-Scholes-Samuelson model of asset price, by a Lévy process:

St = S0e
rt+Xt , (1.10)

where X is a Lévy process on (Ω,F , P ), and the interest rate term rt is introduced to simplify

the notation below. When P is the probability that describes the evolution of stock prices

in the real world, also called the historical probability, the model (1.10) is called a historical

exponential Lévy model.

By the first fundamental theorem of asset pricing (see [34]), a financial market does not

allow for arbitrage opportunity (more precisely, satisfies the No Free Lunch with Vanishing Risk

condition) if there exists a probability measure Q, equivalent to P , such that the discounted

prices e−rtVt of all assets are Q-local martingales. Q is called a risk-neutral probability. The

absence of arbitrage in the model (1.10) is therefore equivalent to the existence of a probability

Q ∼ P , such that eX is a Q-local martingale. The following result shows that if X is a Lévy

process under P , one can almost always find a probability Q ∼ P , under which X is still a Lévy

process and eX is a martingale.

Proposition 1.8 (Absence of arbitrage in exp-Lévy models). Let {Xt}t≥0 be a Lévy

process on (Ω,F , P ) with characteristic triplet (A, ν, γ). If the trajectories of X are neither

almost surely increasing nor almost surely decreasing, then there exists a probability measure Q

equivalent to P such that under Q, {Xt}t≥0 is a Lévy process and {eXt}t≥0 is a martingale.

Q may be chosen in such way that (X,Q) will have the characteristic triplet (AQ, νQ, γQ),
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where

AQ = A, νQ = e−x
2+θxν, (1.11)

γQ = γ +Aθ +

∫

|x|≤1
x(e−x

2+θx − 1)ν(dx) (1.12)

for some θ ∈ R.

In other words, this proposition shows that exponential Lévy models are arbitrage-free in

the following (not mutually exclusive) cases:

• X has infinite variation
∫ 1
−1 |x|ν(dx) = ∞ and/or A > 0.

• X has both positive and negative jumps.

• X has positive jumps and negative drift or negative jumps and positive drift.

In the sequel, we will denote the set of Lévy processes satisfying at least one of these conditions

by LNA and the corresponding exponential Lévy models will be called arbitrage-free exponential

Lévy models.

The first part of this proposition was proved in [55], see also [25, Theorem 4.6]. Since the

second part will also be used below, we give a proof here.

Proof of Proposition 1.8. For any θ ∈ R we denote the probability measure under which X has

the characteristic triplet (1.11)–(1.12) by Qθ. From Proposition 1.5 it follows easily that for

every θ ∈ R, both Qθ ≪ P and P ≪ Qθ. Therefore, we only need to prove that for some θ, the

triplet (A, νQ
θ
, γQ

θ
) satisfies the martingale condition (1.2), or equivalently, that the equation

f(θ) + γ = 0 (1.13)

has a solution, where

f(θ) :=
A

2
+Aθ +

∫

|x|≤1
x(e−x

2+θx − 1)ν(dx) +

∫ ∞

−∞
(ex − 1 − x1|x|≤1)e

−x2+θxν(dx)

The dominated convergence theorem implies that f is continuous and differentiable and that

f ′(θ) = A +
∫∞
−∞ x(ex − 1)e−x

2+θxν(dx) ≥ 0, which means that f(θ) is an increasing function.

Moreover, if A > 0 or if ν((0,∞)) > 0 and ν((−∞, 0)) > 0 then f ′ is everywhere bounded from

below by a positive number. Therefore in these cases limθ→+∞ f(θ) = +∞, limθ→−∞ f(θ) =

−∞ and Equation (1.13) admits a solution.
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It remains to treat the case when A = 0 and ν is supported by one of the half-axes. Suppose

that ν((−∞, 0)) = 0 and ν((0,∞)) > 0. In this case limθ→+∞ f(θ) = +∞ and

lim
θ→−∞

f(θ) = −
∫

0<x≤1
xν(dx).

Therefore, Equation (1.13) admits a solution unless γ −
∫

0<x≤1 xν(dx) ≥ 0, which is the case

when X has almost surely increasing trajectories (cf. Proposition 3.10 in [27]). By symmetry

we can treat the case of decreasing trajectories and complete the proof.

Risk-neutral exp-Lévy models An exponential Lévy model of type (1.10), where X is a

Lévy process with characteristic triplet (A, ν, γ), satisfying condition (1.2) (that is, {eXt}t≥0 is a

martingale) is called a risk-neutral exponential Lévy model. Since γ is uniquely determined from

A and ν by the martingale condition, a risk-neutral exponential Lévy model can be parametrized

by A and ν only: Q = Q(A, ν).

Under a risk-neutral probability Q(A, ν), call option prices can be evaluated as discounted

expectations of terminal payoffs:

CQ(A,ν)(T,K) = e−rTEQ(A,ν)[(ST −K)+] = e−rTEQ(A,ν)[(S0e
rT+XT −K)+]. (1.14)

1.3 Exponential Lévy models in finance

This section reviews different exponential Lévy models found in the financial literature. These

models can be used to describe stock price evolution under both historical and risk-neutral prob-

ability, but under the risk-neutral probability the drift parameter (γ) is fixed by the martingale

condition.

Financial models with jumps fall into two categories. In the first category, called jump-

diffusion models, the “normal” evolution of prices is given by a diffusion process, punctuated

by jumps at random intervals. Here the jumps represent rare events — crashes and large

drawdowns. Such an evolution can be represented by modelling the log-price as a Lévy process

with a nonzero Gaussian component and a jump part, which is a compound Poisson process

with finitely many jumps in every time interval:

Xt = γt+ σWt +

Nt∑

i=1

Yi, (1.15)
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where {Nt}t≥0 is the Poisson process counting the jumps of X and Yi are jump sizes (i.i.d.

variables).

In the Merton model [71], which is the first model of this type, suggested in the literature,

jumps in the log-price X are assumed to have a Gaussian distribution: Yi ∼ N(µ, δ2). In the

risk-neutral version the characteristic exponent of the log stock price takes the following form:

ψ(u) = −Au
2

2
+ λ{e−δ2u2/2+iµu − 1} − iu

(
A

2
+ λ(eδ

2/2+µ − 1)

)

. (1.16)

In the Kou model [62], jump sizes are distributed according to an asymmetric Laplace law

with a density of the form

ν0(dx) = [pλ+e
−λ+x1x>0 + (1 − p)λ−e

−λ−|x|1x<0]dx (1.17)

with λ+ > 0, λ− > 0 governing the decay of the tails for the distribution of positive and negative

jump sizes and p ∈ [0, 1] representing the probability of an upward jump. The probability

distribution of returns in this model has semi-heavy (exponential) tails.

In the above two models, the dynamical structure of the process is easy to understand and

describe, since the distribution of jump sizes is known. They are easy to simulate and efficient

Monte Carlo methods for pricing path-dependent options have been developed. Models of this

type also perform quite well for the purposes of implied volatility smile interpolation. However,

they do not lead to closed-form densities: statistical estimation and computation of moments

or quantiles may be quite difficult.

The second category consists of models with infinite number of jumps in every interval,

which we will call infinite activity or infinite intensity models. In these models, one does not

need to introduce a Brownian component since the dynamics of jumps is already rich enough

to generate nontrivial small time behavior [21] and it has been argued [21, 43, 66] that such

models give a more realistic description of the price process at various time scales. In addition,

many models from this class can be constructed via Brownian subordination, which gives them

additional tractability compared to jump-diffusion models.

Table 1.1 compares the advantages and drawbacks of these two categories. It should be kept

in mind that since the price process is observed on a discrete grid, it is difficult if not impossible

to see empirically to which category the price process belongs. The choice is more a question

of modelling convenience than an empirical one.
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Table 1.1: Compound Poisson or infinite intensity: a comparison of two modelling approaches

Jump-diffusion models Infinite intensity models

Must contain a Brownian component. Brownian component is not needed.

Jumps are rare events. The process moves only by jumps and de-

terministic linear drift.

Distribution of jump sizes is known. “Distribution of jump sizes” does not exist:

jumps arrive infinitely often.

Perform well for implied volatility smile in-

terpolation.

Give a realistic description of the historical

price process.

Densities not known in closed form. Closed form densities available in some

cases.

Easy to simulate. In some cases can be represented via Brow-

nian subordination, which gives additional

tractability.
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There are three standard ways to define a parametric Lévy process with infinite jump in-

tensity, summarized in Table 1.2.

The first approach is to obtain a Lévy process by subordinating a Brownian motion with an

independent increasing Lévy process (such a process is called a subordinator). Here the charac-

teristic function of the resulting process can be obtained immediately, but an explicit formula

for the Lévy measure is not always available. Due to the conditionally Gaussian structure of

the process, simulation and some computations can be considerably simplified (for instance, call

option price can be expressed as an integral involving Black-Scholes prices). The interpretation

of the subordinator as “business time” [44] makes models of this type easier to understand and

interpret. Multidimensional extensions are also possible: one can take a multivariate Brownian

motion and change the time scale of all components with the same subordinator. Two exam-

ples of models from this class are the variance gamma process and the normal inverse Gaussian

process. The variance gamma process [23, 67] is obtained by time-changing a Brownian motion

with a gamma subordinator and has the characteristic exponent of the form:

ψ(u) = − 1

κ
log(1 +

u2σ2κ

2
− iθκu). (1.18)

The density of the Lévy measure of the variance gamma process is given by

ν(x) =
c

|x|e
−λ−|x|1x<0 +

c

x
e−λ+x1x>0, (1.19)

where c = 1/κ, λ+ =

√
θ2+2σ2/κ

σ2 − θ
σ2 and λ− =

√
θ2+2σ2/κ

σ2 + θ
σ2 .

The normal inverse Gaussian process [5, 7, 86] is the result of time-changing a Brownian

motion with the inverse Gaussian subordinator and has the characteristic exponent:

ψ(u) =
1

κ
− 1

κ

√

1 + u2σ2κ− 2iθuκ.

The second approach is to specify the Lévy measure directly. The main example of this

category is given by the tempered stable process, introduced by Koponen [61] and used for

financial modelling in [18, 26, 27], as well as in [22] (under the name of CGMY model) and in

[19] (under the name of KoBoL process). The tempered stable process has a Lévy measure with

density of the form:

ν(x) =
c−

|x|1+α−
e−λ−|x|1x<0 +

c+
x1+α+

e−λ+x1x>0 (1.20)



1.4. PRICING EUROPEAN OPTIONS 47

with α+ < 2 and α− < 2. This rich parametric form of the Lévy measure is probably sufficient

for most applications.

The third approach is to specify the density of increments of the process at a given time

scale, say ∆, by taking an arbitrary infinitely divisible distribution. Generalized hyperbolic

processes (see [36–38]) can be constructed in this way. In this approach it is easy to simulate

the increments of the process at the same time scale and to estimate parameters of the dis-

tribution if data are sampled with the same period ∆, but, unless this distribution belongs to

some parametric class closed under convolution, we do not know the law of the increments at

other time scales. Also, given an infinitely divisible distribution, one may not know its Lévy-

Khintchine representation, so it may not be easy to see whether the corresponding Lévy process

has a Gaussian component, finite or infinite jump intensity, etc.

1.4 Pricing European options in exp-Lévy models via Fourier

transform

In this section we present a method, adapted from [23], for pricing European call options in exp-

Lévy models using Fourier transform and, in particular, the Fast Fourier transform algorithm

[29]. We suggest several improvements to the original procedure and give a rigorous analysis of

truncation and discretization errors. These results are of independent interest and will also be

used for the numerical solution of the calibration problem in Chapter 3. Similar analysis has

recently appeared in [63].

Let {Xt}t≥0 be a Lévy process satisfying the martingale condition (1.2). To compute the

price of a call option

C(k) = e−rTE[(erT+XT − ek)+], (1.21)

we would like to express its Fourier transform in log strike in terms of the characteristic function

ΦT (v) of XT and then find the prices for a range of strikes by Fourier inversion. However we

cannot do this directly because C(k) is not integrable (it tends to 1 as k goes to −∞). The

key idea is to instead compute the Fourier transform of the (modified) time value of the option,

that is, the function

zT (k) = e−rTE[(erT+XT − ek)+] − (1 − ek−rT )+. (1.22)
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Table 1.2: Three approaches to building parametric exp-Lévy models

Brownian subordination Specifying the Lévy

measure

Specifying probability

density for t = ∆

Interpretation as “Brownian

motion in business time”.

Clear vision of the pathwise

properties.

Structure of jumps is not

known.

Simulation is easy if we know

how to simulate the subordi-

nator.

Simulation is quite involved. Simulation is easy on a grid

of size ∆.

Estimation via maximum

likelihood may be difficult.

Estimation can be done by

approximating the transi-

tion density.

Estimation is easy for data

with sampling interval ∆.

Multivariate generalizations

possible using multidimen-

sional Brownian motion.

Rich variety of models. The infinite divisibility of a

given model may be difficult

to prove.
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Proposition 1.9 (Carr and Madan [23]). Let {Xt}t≥0 be a real-valued Lévy process satis-

fying the martingale condition (1.2), such that

E[e(1+α)Xt ] <∞ (1.23)

for some α > 0. Then the Fourier transform in log-strike k of the time value of a call option is

given by:

ζT (v) :=

∫ +∞

−∞
eivkzT (k)dk = eivrT

ΦT (v − i) − 1

iv(1 + iv)
(1.24)

Remark 1.3. Since typically ΦT (z) → 0 as ℜz → ∞, ζT (v) will behave like |v|−2 at infinity which

means that the truncation error in the numerical evaluation of the inverse Fourier transform

will be large. The reason of such a slow convergence is that the time value (1.22) is not smooth;

therefore its Fourier transform does not decay sufficiently fast at infinity. For most models

the convergence can be improved by replacing the time value with a smooth function of strike.

Instead of subtracting the (non-differentiable) intrinsic value of the option from its price, we

suggest to subtract the Black-Scholes call price with a non-zero volatility (which is a smooth

function). The resulting function will be both integrable and smooth. Suppose that hypothesis

(1.23) is satisfied and denote

z̃T (k) = e−rTE[(erT+XT − ek)+] − CΣ
BS(k),

where CΣ
BS(k) is the Black-Scholes price of a call option with volatility Σ and log-strike k for

the same underlying value and the same interest rate. Proposition 1.9 then implies that the

Fourier transform of z̃T (k), denoted by ζ̃T (v), satisfies

ζ̃T (v) = eivrT
ΦT (v − i) − ΦΣ

T (v − i)

iv(1 + iv)
, (1.25)

where ΦΣ
T (v) = exp(−Σ2T

2 (v2 + iv)). Since for most exp-Lévy models found in the literature

(except variance gamma) the characteristic function decays faster than every power of its argu-

ment at infinity, this means that the expression (1.25) will also decay faster than every power

of v as ℜv → ∞, and the truncation error in the numerical evaluation of the inverse Fourier

transform will be very small for every Σ > 0.

Figure 1.1 shows the behavior of |ζ̃T | for different values of Σ compared to the behavior of

|ζT | in Merton’s jump-diffusion model with volatility 0.2, jump intensity equal to 5 and jump



50 CHAPTER 1. LEVY PROCESSES AND EXP-LEVY MODELS

−50 0 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
No smoothing
Σ=0.2
Σ=0.3575

−50 0 50
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

No smoothing
Σ=0.2
Σ=0.3575

Figure 1.1: Convergence of Fourier transform of option’s time value to zero in Merton model.

Left graph: linear scale; right graph: logarithmic scale.

parameters µ = −0.1 and δ = 0.1 for the time horizon T = 0.5. The convergence of ζ̃T to zero

is faster than exponential for all values of Σ and it is particularly good for Σ = 0.3575, the

value of Σ for which ζ̃(0) = 0.

Proof of Proposition 1.9. Since the discounted price process is a martingale,

zT (k) = e−rT
∫ ∞

−∞
µT (dx)(erT+x − ek)(1k≤x+rT − 1k≤rT ),

where µT is the probability distribution of XT . Condition (1.23) enables us to compute ζT (v)

by interchanging integrals:

ζT (v) = e−rT
∫ ∞

−∞
dk

∫ ∞

−∞
µT (dx)eivk(erT+x − ek)(1k≤x+rT − 1k≤rT )

= e−rT
∫ ∞

−∞
µT (dx)

∫ rT

x+rT
eivk(ek − erT+x)dk

=

∫ ∞

−∞
µT (dx)

{

eivrT (1 − ex)

iv + 1
− ex+ivrT

iv(iv + 1)
+
e(iv+1)x+ivrT

iv(iv + 1)

}

The first term in braces disappears due to the martingale condition and the other two, after

computing the integrals, yield (1.24).
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Numerical Fourier inversion. Option prices can be computed by evaluating numerically

the inverse Fourier transform of ζ̃T :

z̃T (k) =
1

2π

∫ +∞

−∞
e−ivk ζ̃T (v)dv (1.26)

This integral can be efficiently computed for a range of strikes using the Fast Fourier trans-

form, an algorithm due to Cooley and Tukey [29] which allows to compute the discrete Fourier

transform DFT[f ]N−1
n=0 , defined by,

DFT[f ]n :=
N−1∑

k=0

fke
−2πink/N , n = 0 . . . N − 1, (1.27)

using only O(N logN) operations.

To approximate option prices, we truncate and discretize the integral (1.26) as follows:

1

2π

∫ ∞

−∞
e−ivk ζ̃T (v)dv =

1

2π

∫ L/2

−L/2
e−ivk ζ̃T (v)dv + εT

=
L

2π(N − 1)

N−1∑

m=0

wmζ̃T (vm)e−ikvm + εT + εD, (1.28)

where εT is the truncation error, εD is the discretization error, vm = −L/2+m∆, ∆ = L/(N−1)

is the discretization step and wm are weights, corresponding to the chosen integration rule (for

instance, for the trapezoidal rule w0 = wN−1 = 1/2 and all other weights are equal to 1).

Now, choosing kn = k0 + 2πn
N∆ we see that the sum in the last term becomes a discrete Fourier

transform:

L

2π(N − 1)
eiknL/2

N−1∑

m=0

wmζ̃T (km)e−ik0m∆e−2πinm/N

=
L

2π(N − 1)
eiknL/2DFTn[wmζ̃T (km)e−ik0m∆]

Therefore, the FFT algorithm allows to compute z̃T and option prices for the log strikes kn =

k0 + 2πn
N∆ . The log strikes are thus equidistant with the step d satisfying

d∆ =
2π

N
.

Error control. We start with the truncation error.

Lemma 1.10. Let {Xt}t≥0 be a Lévy process with characteristic triplet (A, ν, γ) and charac-

teristic function ΦT . Then
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1. ∀ v ∈ R, |ΦT (v − i)| ≤ exp(−TAv2

2 ).

2. Suppose that ν has a density of the form ν(x) = e−x

|x| f(x), where f is increasing on (−∞, 0)

and decreasing on (0,∞). Then |ΦT (v − i)| is increasing on v ∈ (−∞, 0) and decreasing

on v ∈ (0,∞).

Proof. The martingale condition implies that ∀ v ∈ R,

|ΦT (v − i)| = exp

{

−TAv
2

2
−
∫ ∞

−∞
ex(1 − cos(vx))ν(dx)

}

. (1.29)

This immediately entails the first part of the lemma. For the second part, let 0 > v1 > v2 (the

case v1 < v2 < 0 can be shown in the same way). Then, for all t ∈ R,

et/v1ν(t/v1)

v1
≤ et/v2ν(t/v2)

v2
.

Therefore,

∫ ∞

−∞
ex(1 − cos v1x)ν(dx) =

∫ ∞

−∞
(1 − cos t)

et/v1ν(t/v1)

v1
dt

≤
∫ ∞

−∞
(1 − cos t)

et/v2ν(t/v2)

v2
dt =

∫ ∞

−∞
ex(1 − cos v2x)ν(dx),

and it follows from Equation (1.29) that |ΦT (v1 − i)| ≥ |ΦT (v2 − i)|.

Proposition 1.11. Let {Xt}t≥0 be a real-valued Lévy process with triplet (A, ν, γ) and charac-

teristic function ΦT and let Σ > 0.

1. Suppose A > 0. Then the truncation error in Equation (1.28) satisfies:

|εT | ≤
8

πTΣ2L3
e−

TL2Σ2

8 +
8

πTAL3
e−

TL2A
8 . (1.30)

2. Suppose that ν has a density of the form ν(x) = e−x

|x| f(x), where f is increasing on (−∞, 0)

and decreasing on (0,∞). Then the truncation error in Equation (1.28) satisfies:

|εT | ≤
8

πTΣ2L3
e−

TL2Σ2

8 +
|ΦT (L/2 − i)| + |ΦT (−L/2 − i)|

πL
.

Proof. From Equation, (1.28),

|εT | ≤
1

2π

∫ ∞

L/2
|ζ̃T (v)|dv +

1

2π

∫ −L/2

−∞
|ζ̃T (v)|dv

≤ 1

2π

∫

(−∞,−L/2)∪(L/2,∞)

|ΦT (v − i)|dv
v2

+
1

2π

∫

(−∞,−L/2)∪(L/2,∞)

|ΦΣ
T (v − i)|dv

v2
.
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By the first part of Lemma 1.10,

1

2π

∫ ∞

L/2

|ΦT (v − i)|
v2

dv ≤ 1

2π

∫ ∞

L/2

dv

v2
e−TAv

2/2 =
1

4π

∫ ∞

L2/4

dz

z3/2
e−TAz/2

≤ 1

4π

8

L3

∫ ∞

L2/4
dze−TAz/2 =

4

πTAL3
e−

L2AT
8 ,

and since a similar bound can be obtained for ΦΣ
T , this proves the first part of the proposition.

To prove the second statement, observe that from the second part of Lemma 1.10,

1

2π

∫ ∞

L/2

|ΦT (v − i)|
v2

dv ≤ |ΦT (L/2 − i)|
2π

∫ ∞

L/2

dv

v2
=

|ΦT (L/2 − i)|
πL

.

To compute a bound for the discretization (sampling) error εD in Equation (1.28), we define

constants Ck, k ≥ 1 by

Ck =







|Φ(k)
T (−i)|, k is even,

|Φ(k+1)
T (−i)|

k
k+1 , k is odd,

(1.31)

and start by proving a technical lemma.

Lemma 1.12. Let {Xt}t≥0 be a real-valued Lévy process with triplet (A, ν, γ) and characteristic

function ΦT , such that the condition (1.23) is satisfied. Let ΓT (v) := ΦT (v−i)−1
v . Then for all

n ≥ 0,

|Γ(n)
T (v)| ≤ Cn+1

n+ 1
∀ v ∈ R

Proof. Under the condition (1.23), for all n ≥ 1, E[|XT |neXT ] < ∞. Therefore, by Lebesgue’s

dominated convergence theorem, for all n ≥ 1,

Φ
(n)
T (v − i) =

∫ ∞

−∞
(ix)nei(v−i)xµT (dx),

where µT is the probability distribution of XT . For even n > 1 this implies:

|Φ(n)
T (v − i)| ≤

∫ ∞

−∞
xnexµT (dx) = Cn,

and for odd n ≥ 1, using Jensen’s inequality for the probability measure µ̃T = exµT yields:

|Φ(n)
T (v − i)| ≤

∫ ∞

−∞
|x|nexµT (dx) ≤

(∫ ∞

−∞
|x|n+1exµT (dx)

) n
n+1

= Cn,
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From the martingale condition,

ΓT (v) =
ΦT (v − i) − ΦT (−i)

v
=

∫ 1

0
Φ′
T (vt− i)dt.

Applying the dominated convergence theorem once again, we conclude that

Γ
(n)
T (v) =

∫ 1

0
tnΦ

(n+1)
T (vt− i)dt,

and therefore |Γ(n)
T (v)| ≤ Cn+1

n+1 for all n ≥ 0.

Proposition 1.13. Suppose that the integral in (1.28) is approximated using the trapezoidal

rule. Then the discretization error εD satisfies

|εD| ≤
∆2

6π

2∑

l=0

C3−l + CΣ
3−l

(3 − l)!

{
(

∆ +
π

2

)

e|k−rT | + log

(

L

2
+

√

L2

4
+ 1

)

|k − rT |l
l!

}

, (1.32)

where CΣ
k is computed as in (1.31) for the characteristic function ΦΣ

T .

If this integral is approximated using the Simpson rule, εD satisfies

|εD| ≤
∆4

5π

4∑

l=0

C5−l + CΣ
5−l

(5 − l)!

{
(

2∆ +
π

2

)

e|k−rT | + log

(

L

2
+

√

L2

4
+ 1

)

|k − rT |l
l!

}

, (1.33)

Proof. The trapezoidal rule (cf. [32]) is defined by

∫ x+h

x
f(ξ)dξ =

1

2
h(f(x) + f(x+ h)) +R with R = − 1

12
h3f ′′(x∗)

for some x∗ ∈ [x, x+ h]. The sampling error in (1.28) therefore satisfies:

|εD| ≤ ∆3

24π

N−2∑

m=0

sup
v∈[−L/2+m∆,−L/2+(m+1)∆]

∣
∣
∣
∣

∂2

∂v2
e−ivk ζ̃T (v)

∣
∣
∣
∣

=
∆3

24π

N−2∑

m=0

{

sup

∣
∣
∣
∣

∂2

∂v2
e−ivkζT (v)

∣
∣
∣
∣
+ sup

∣
∣
∣
∣

∂2

∂v2
e−ivkζΣ

T (v)

∣
∣
∣
∣

}

, (1.34)

where ζΣ
T (v) := eivrT

ΦΣ
T (v − i) − 1

iv(1 + iv)
.

Observe that e−ivkζT (v) = e−iv(k−rT )

i(1+iv) ΓT (v), and therefore

∣
∣
∣
∣

∂n

∂vn
(eivkζT (v))

∣
∣
∣
∣

≤
n∑

l=0

|Γ(n−l)
T (v)| n!

(n− l)!

l∑

j=0

|k − rT |j
j!

(
1√

1 + v2

)l−j+1

≤ n!
n∑

l=0

Cn−l+1

(n− l + 1)!

l∑

j=0

|k − rT |j
j!

(
1√

1 + v2

)l−j+1

:= g̃n(v).
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Since the bound g̃n(v) is increasing on (−∞, 0) and decreasing on (0,∞),

∆3

24π

N−2∑

m=0

sup

∣
∣
∣
∣

∂2

∂v2
e−ivkζT (v)

∣
∣
∣
∣
≤ ∆3

12π
g̃2(0) +

∆2

24π

∫ L/2

−L/2
g̃2(v)dv

≤ ∆2

12π

2∑

l=0

C3−l
(3 − l)!






2∆

l∑

j=0

|k − rT |j
j!

+
l−1∑

j=0

|k − rT |j
j!

∫ L/2

−L/2

dv

1 + v2
+

|k − rT |l
l!

∫ L/2

−L/2

dv√
1 + v2







≤ ∆2

6π

2∑

l=0

C3−l
(3 − l)!

{
(

∆ +
π

2

)

e|k−rT | + log

(

L

2
+

√

L2

4
+ 1

)

|k − rT |l
l!

}

.

To complete the proof of (1.32) it remains to substitute this bound and a similar bound for

∆3

24π

∑N−2
m=0 sup

∣
∣
∣
∂2

∂v2
e−ivkζΣ

T (v)
∣
∣
∣ into (1.34).

The Simpson rule (cf. [32]) is defined by:

∫ x+2h

x
f(ξ)dξ =

1

3
h(f(x) + 4f(x+ h) + f(x+ 2h)) +R,

where R =
1

90
h4f (4)(x∗)

for some x∗ ∈ [x, x + 2h]. The proof of (1.33) can be carried out in the same way as for the

trapezoidal rule.

Example 1.1. Let us compute the truncation and discretization errors in the Merton model

(1.16) with parameters σ = 0.1, λ = 2, δ = 0.1, µ = 0 for options with maturity T = 0.25.

Taking Σ = 0.1, we obtain the following values of the coefficients Ck and CΣ
k :

k Ck CΣ
k

1 0.0871 0.05

2 0.0076 0.0025

3 0.0024 2.85 · 10−4

4 3.29 · 10−4 1.88 · 10−5

5 1.82 · 10−4 2.99 · 10−6

With 4048 points and the log strike step d equal to 0.01, the truncation error is extremely small:

εT = 2 · 10−59, and the discretization error for at the money options is given by εD = 0.0013

for the trapezoidal rule and by εD = 3.8 · 10−5 for the Simpson rule. Since the call option price

in this setting (S = K = 1, r = q = 0) is C = 0.0313, we conclude that the Simpson rule gives

an acceptable pricing error for this choice of parameters.
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Chapter 2

The calibration problem and its

regularization

This chapter lays the theoretical foundations of our calibration method. Discretization of the

regularized calibration problem and numerical implementation of the calibration algorithm are

addressed in the next chapter.

The calibration problem consists, roughly speaking, of finding a risk-neutral exponential

Lévy model consistent with market prices of traded options {CM (Ti,Ki)}i∈I for some index set

I. In other words, the solution of the calibration problem is a probability Q on the path space

(Ω,F), such that (X,Q) is a Lévy process, satisfying the martingale condition (1.2) and such

that the option prices, computed using (1.14) are in some sense close to market prices CM .

Suppose first that the market data CM are consistent with the class of exponential Lévy

models. This is for example the case when the true model underlying market data is an expo-

nential Lévy model, but this is not the only situation where the above is true: many models

may give the same prices for a given set of European options. For instance, it is easy to con-

struct, using Dupire’s formula, a local volatility model that gives the same prices, for a set of

European options, as a given exp-Lévy model. Denoting by L the set of all probabilities Q

such that (X,Q) is a Lévy process and by M the set of probabilities Q such that {eXt}t≥0 is a

Q-martingale, the calibration problem assumes the following form:

57
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Calibration problem for data, consistent with exp-Lévy model. Given market prices

of call options {CM (Ti,Ki)}i∈I , find Q∗ ∈ M∩L, such that

∀i ∈ I, CQ
∗
(Ti,Ki) = CM (Ti,Ki). (2.1)

In most cases, however, Equations (2.1) cannot be solved exactly, either because the observed

option prices contain errors or because the market in question cannot be described by an

exponential Lévy model. In this case a common practice is to replace the exact constraints

(2.1) by a nonlinear least squares calibration problem. Section 2.1 takes a critical look at

this approach and establishes some limits of its applicability to non-parametric calibration of

exponential Lévy models.

An important difficulty of least squares calibration is its lack of identification, meaning

that a finite number of observed option prices does not allow to reconstruct the law of a Lévy

process in a unique fashion. To address this issue, we suggest, in Section 2.2 to reformulate

the calibration problem as that of finding the risk-neutral exponential Lévy model that has the

smallest relative entropy with respect to a given prior probability measure among all solutions

of the least squares calibration problem. Section 2.3 reviews the literature on the use of relative

entropy for pricing and calibration and places the present study into the context of previous

work on this subject.

The use of relative entropy for selection of solutions removes to some extent the identification

problem but the resulting calibration problem is still ill-posed: small errors in market data may

lead to large changes of its solution. The last section of this chapter uses the method of

regularization to approximate the solutions of this problem in a stable manner in presence of

data errors.

2.1 Least squares calibration

When the market data is not consistent with the class of exponential Lévy models, the exact

calibration problem may not have a solution. In this case one may consider an approximate

solution: instead of reproducing the market option prices exactly, one may look for a Lévy triplet

which reproduces them in the best possible way in the least squares sense. Let w be a probability
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measure on [0, T∞] × [0,∞) (the weighting measure, determining the relative importance of

different options). An option data set is defined as a mapping C : [0, T∞]× [0,∞) → [0,∞) and

the data sets that coincide w-almost everywhere are considered identical. One can introduce a

norm on option data sets via

‖C‖2
w :=

∫

[0,T∞]×[0,∞)
C(T,K)2w(dT × dK). (2.2)

The quadratic pricing error in model Q is then given by ‖CM − CQ‖2
w. If the number of con-

straints is finite then w =
∑N

i=1wiδ(Ti,Ki)(dT × dK) (we suppose that there are N constraints),

where {wi}1≤i≤N are positive weights that sum up to one. Therefore, in this case

‖CM − CQ‖2
w =

N∑

i=1

wi(CM (Ti,Ki) − CQ(Ti,Ki))
2. (2.3)

The calibration problem now takes the following form:

Least squares calibration problem. Given prices CM of call options, find Q∗ ∈ M∩ L,

such that

‖CM − CQ
∗‖2
w = inf

Q∈M∩L
‖CM − CQ‖2

w. (2.4)

In the sequel, any such Q∗ will be called a least squares solution and the set of all least

squares solutions will be denoted by QLS .

Several authors (see for example [2, 10]) have used the form (2.4) without taking into account

that the least squares calibration problem is ill-posed in several ways. The principal difficulties

of theoretical nature are the lack of identification (knowing the prices of a finite number of

options is not sufficient to reconstruct the Lévy process), absence of solution (in some cases

even the least squares problem may not admit a solution) and absence of continuity of solution

with respect to market data. On the other hand, even if a solution exists, it is very difficult to

find numerically, because the functional ‖CM−CQ‖2 is typically non-convex and has many local

minima, preventing a gradient-based minimization algorithm from finding the true solution. In

the rest of this section we discuss these difficulties in detail.
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2.1.1 Lack of identification

If the data are consistent with an exponential Lévy model and call option prices are known for

one maturity and all strikes, the characteristic triplet of the underlying Lévy process could be

deduced in the following way:

• Compute the characteristic function ΦT of log stock price by Fourier transform as in

Equation (1.24).

• Deduce the unit variance of the Gaussian component A and the Lévy measure ν from the

characteristic function ΦT . First, A can be found as follows (see [87, page 40]):

A = lim
u→∞

−2 log ΦT (u)

Tu2
(2.5)

Now, denoting ψ(u) ≡ log ΦT (u)
T + Au2

2 , it can be shown (see Equation (8.10) in [87]) that

∫ 1

−1
(ψ(u) − ψ(u+ z))dz = 2

∫ ∞

−∞
eiux(1 − sinx

x
)ν(dx) (2.6)

Therefore, the left-hand side of (2.6) is the Fourier transform of the positive finite measure

2(1 − sinx
x )ν(dx). This means that this measure, and, consequently, the Lévy measure ν

is uniquely determined by ψ.

However, call prices are only available for a finite number of strikes. This number may be quite

small (between 10 and 40 in real examples). Therefore, the above procedure cannot be applied

and ν and A must be computed by minimizing the pricing error ‖CM − CQ‖2
w. Given that

the number of calibration constraints (option prices) is finite and not very large, there may be

many Lévy triplets which reproduce call prices with equal precision. This means that the error

landscape may have flat regions in which the error has a low sensitivity to variations in A and

ν.

One may think that in a parametric model with few parameters one will not encounter this

problem since there are (many) more options than parameters. This is not true, as illustrated by

the following empirical example. Figure 2.1 represents the magnitude of the quadratic pricing

error for the Merton model (1.16) on a data set of DAX index options, as a function of the

diffusion coefficient σ and the jump intensity λ, other parameters remaining fixed. It can be

observed that if one increases the diffusion volatility while simultaneously decreasing the jump
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intensity in a suitable manner, the calibration error changes very little: there is a long “valley”

in the error landscape (highlighted by the dashed white line in Figure 2.1). A gradient descent

method will typically succeed in locating the valley but will stop at a more or less random point

in it. At first glance this does not seem to be too much of a problem: since the algorithm finds

the valley’s bottom, the best calibration quality will be achieved anyway. However, after a small

change in option prices, the outcome of this calibration algorithm may shift a long way along

the valley. This means that if the calibration is performed every day, one may come up with

wildly oscillating parameters of the Lévy process, leading to important changes in the quantities

computed from these parameters, like prices of exotic options, even if the market option prices

change very little.

0.1
0.12

0.14
0.16

0.18
0.2

0

0.5

1

1.5

2
0

0.5

1

1.5

2

2.5

3

x 10
5

σλ

Figure 2.1: Sum of squared differences between market prices (DAX options maturing in 10

weeks) and model prices in Merton model, as a function of parameters σ and λ the other ones

being fixed. Dashed white line shows the “valley” along which the error function changes very

little.

Figure 2.2 illustrates the same problem in the non-parametric setting. The two graphs

represent the result of a non-linear least squares minimization where the variable is the vector

of discretized values of ν on a grid (see Section 3.1). In both cases the same option prices are

used, the only difference being the starting points of the optimization routines. In the first case

(solid line) a Merton model with intensity λ = 1 is used and in the second case (dashed line)
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we used a Merton model with intensity λ = 5. As can be seen in Figure 2.2 (left graph), the

results of the minimization are totally different! However, although the calibrated measures are

different, the prices that they correspond to are almost the same (see Figure 2.2, right graph),

and the final values of the calibration functional for the two curves differ very little.

The identification problem will be addressed in the next section by adding information in

the form of a prior Lévy process to the calibration problem.
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Figure 2.2: Left: Lévy measures calibrated to DAX option prices, maturity 3 months via non-

linear least squares method. The starting jump measure for both graphs is Gaussian; the jump

intensity λ0 is initialized to 1 for the solid curve and to 5 for the dashed one. ε denotes the

value of the calibration functional when the gradient descent algorithm stops. Right: implied

volatility smiles corresponding to these two measures.

2.1.2 Existence of solutions

In this section, we will first give an (artificial) example which shows that the least squares

formulation (2.4) does not in general guarantee the existence of solution. However, under

additional conditions we are able to prove the existence of a solution of the least squares

calibration problem.

Example 2.1. Suppose that S0 = 1, there are no interest rates or dividends and the (equally

weighted) market data consist of the following two observations:

CM (T = 1,K = 1) = 1 − e−λ and CM (T = 1,K = eλ) = 0, (2.7)
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with some λ > 0. It is easy to see that these prices are, for example, compatible with the

(martingale) asset price process St = eλt1t≤τ1 , where τ1 is the time of the first jump of a

Poisson process with intensity λ. We will show that if the market data are given by (2.7), the

calibration problem (2.4) does not admit a solution.

Absence of arbitrage implies that in every risk-neutral model Q, for fixed T , CQ(T,K) is a

convex function of K and that CQ(T,K = 0) = 1. The only convex function which satisfies this

equality and passes through the market data points (2.7) is given by C(T = 1,K) = (1−Ke−λ)+.

Therefore, in every arbitrage-free model that is an exact solution of the calibration problem with

market data (2.7), for everyK ≥ 0, P [S1 ≤ K] = e−λ1K≤eλ . Since in an exponential Lévy model

P [S1 > 0] = 1, there is no risk-neutral exponential Lévy model for which ‖CM − CQ‖w = 0.

On the other hand, infQ∈M∩L ‖CM − CQ‖2
w = 0. Indeed, let {Nt}t≥0 be a Poisson process

with intensity λ. Then for every n, the process

Xn
t := −nNt + λt(1 − e−n) (2.8)

belongs to M∩L and

lim
n→∞

E[(eX
n
t −K)+] = lim

n→∞

∞∑

k=0

e−λt
(λt)k

k!

(

e−nk+λt(1−e
−n) −K

)+
= (1 −Ke−λt)+.

We have shown that infQ∈M∩L ‖CM −CQ‖2 = 0 and that for no Lévy process Q ∈ M∩L,

‖CM − CQ‖2 = 0. Together this entails that the calibration problem (2.4) does not admit a

solution.

This example makes clear that to solve the calibration problem (2.4), we must at least

impose a bound on the jumps of the solution. The following theorem provides an existence

result under this and another important condition (informally speaking, to control the variance

of the solution we need to find a Lévy process for which the pricing error is already sufficiently

low). In the theorem and below LB denotes the sets of all probabilities P ∈ L such that

P [|∆Xt| ≤ B ∀t : 0 ≤ t ≤ T∞] = 1.

Theorem 2.1. Suppose that for some Q0 ∈ M ∩ LB and some couple (T0,K0) with nonzero

weight w0 := w({T0,K0}) > 0,

‖CQ0 − CM‖w <
√
w0(S0 − CM (T0,K0)). (2.9)
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Then the problem (2.4) has a solution in M∩LB: there exists Q∗ ∈ M∩LB, such that

‖CM − CQ
∗‖2
w = inf

Q∈M∩LB

‖CM − CQ‖2
w.

The proof is based on the following lemmas.

Lemma 2.2. The pricing error functional Q 7→ ‖CM − CQ‖2
w, defined by (2.2), is uniformly

bounded and weakly continuous on M∩L.

Proof. From Equation (1.14), CQ(T,K) ≤ S0. Absence of arbitrage in the market implies that

the market option prices satisfy the same condition. Therefore, (CM (T,K)−CQ(T,K))2 ≤ S2
0

and since w is a probability measure, ‖CM − CQ‖2
w ≤ S2

0 .

Let {Qn}n≥1 ⊂ M∩L and Q ∈ M∩L be such that Qn ⇒ Q. For all T,K,

lim
n
CQn(T,K) = e−rT lim

n
EQn [(S0e

rT+XT −K)+]

= e−rT lim
n
EQn [S0e

rT+XT −K] + e−rT lim
n
EQn [(K − S0e

rT+XT )+]

= S0 −Ke−rT + e−rTEQ[(K − S0e
rT+XT )+] = CQ(T,K).

Therefore, by the dominated convergence theorem, ‖CM − CQn‖2
w → ‖CM − CQ‖2

w.

Lemma 2.3. For all B > 0, T > 0, K > 0 and all C with 0 < C < S0, the set of Lévy processes

Q ∈ M∩LB satisfying CQ(T,K) ≤ C is relatively weakly compact.

Proof. By Prohorov’s theorem, weak relative compactness is implied by the tightness of this

family of probability measures. Since the jumps are bounded, to prove the tightness, by Propo-

sition 1.6 it is enough to show that there exist constants C1 and C2 such that for every Lévy

process Q ∈ M∩LB such that CQ(T,K) ≤ C, its characteristic triplet (A, ν, γ) satisfies |γ| ≤ C1

and A+
∫ 1
−1 x

2ν(dx) ≤ C2.

By the risk-neutrality condition (1.2),

γ = −A
2
−
∫ B

−B
(ex − 1 − x1|x|≤1)ν(dx)

It is easy to see that |ex − 1 − x1|x|≤1| ≤ eB∧1x2 for x ∈ (−∞, B] and therefore |γ| ≤
eB∧1(A +

∫∞
−∞ x2ν(dx)). This means that to prove the lemma, it is sufficient to show that
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A+
∫∞
−∞ x2ν(dx) < C3 for some constant C3, independent on the choice of the Lévy process Q.

Since for all α ∈ [0, 1], ex ∧ 1 ≤ eαx, we have:

S0 − CQ(T,K) = Ke−rTE[eXT−m ∧ 1] ≤ Ke−rTE[eα(XT−m)] = Sα0 (Ke−rT )1−αE[eαXT ],

where m = log(Ke−rT /S0). The right-hand side can be computed using the Lévy-Khintchine

formula:

E[eαXT ] = expT

{

−A
2

(α− α2) −
∫ ∞

−∞
(αeαx − eαx − α+ 1)ν(dx)

}

.

Choosing α = 1/2, the above reduces to

E[eXT /2] = expT{−A
8
− 1

2

∫ ∞

−∞
(ex/2 − 1)2ν(dx)}.

On the other hand, it is easy to check that

A

8
+

1

2

∫ ∞

−∞
(ex/2 − 1)2ν(dx) ≥ e−B

8
(A+

∫ ∞

−∞
x2ν(dx))

and therefore

A+

∫ ∞

−∞
x2ν(dx) ≤ 8eB

T
log

√

S0Ke−rT

S0 − CQ(T,K)
≤ 8eB

T
log

√

S0Ke−rT

S0 − C
,

which finishes the proof of the lemma.

In the following lemma, L+
B denotes the sets of all probabilities P ∈ L such that P [∆Xt ≤

B ∀t : 0 ≤ t ≤ T∞] = 1.

Lemma 2.4. Both M∩LB and M∩L+
B are weakly closed for every B > 0.

Proof. We give the proof for M∩LB; the proof for M∩L+
B can be done in a similar fashion.

Let {Qn}∞n=1 ⊂ M ∩ LB with characteristic triplets (An, νn, γ
h
n) with respect to a continuous

bounded truncation function h, satisfying h(x) = x in a neighborhood of 0, and let Q be a Lévy

process with characteristic triplet (A, ν, γh) with respect to h, such that Qn ⇒ Q. Note that

a sequence of Lévy processes cannot converge to anything other than a Lévy process because

due to convergence of characteristic functions, the limiting process must have stationary and

independent increments. Define a function f by

f(x) :=







0, |x| ≤ B,

1, |x| ≥ 2B,

|x|−B
B B < |x| < 2B.
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By Proposition 1.7,
∫∞
−∞ f(x)ν(dx) = limn→∞

∫∞
−∞ f(x)νn(dx) = 0, which implies that the

jumps of Q are bounded by B.

Define a function g by

g(x) :=







ex − 1 − h(x) − 1
2h

2(x), x ≤ B,

eB − 1 − h(B) − 1
2h

2(B), x > B.

Then, by Proposition 1.7 and because Qn satisfies the martingale condition (1.2) for every n,

γh +
A

2
+

∫ ∞

−∞
(ex − 1 − h(x))ν(dx) = γh +

A+
∫∞
−∞ h2(x)ν(dx)

2
+

∫ ∞

−∞
g(x)ν(dx)

= lim
n→∞

{

γhn +
An +

∫∞
−∞ h2(x)νn(dx)

2
+

∫ ∞

−∞
g(x)νn(dx)

}

= 0,

which shows that Q also satisfies the condition (1.2).

Proof of Theorem 2.1. Let {Qn}n≥1 ⊂ M∩LB be such that

lim
n→∞

‖CM − CQn‖2
w = inf

Q∈M∩LB

‖CM − CQ‖2
w

and ‖CM − CQn‖2
w ≤ ‖CM − CQ0‖2

w for all n.

Condition (2.9) implies that for every n,

|S0 − CQn(T0,K0)| ≥ |S0 − CM (T0,K0)| − |CM (T0,K0) − CQn(T0,K0)|

≥ |S0 − CM (T0,K0)| −
‖CM − CQn‖w√

w0

≥ |S0 − CM (T0,K0)| −
‖CM − CQ0‖w√

w0
> 0.

Therefore, by Lemmas 2.3 and 2.4, there exists a subsequence {Qnm}m≥1 of {Qn}n≥1 and

Q∗ ∈ M∩LB such that Qnm ⇒ Q. By Lemma 2.2,

‖CM − CQ
∗‖2
w = lim

m→∞
‖CM − CQnm‖2

w = inf
Q∈M∩LB

‖CM − CQ‖2
w,

which shows that Q∗ is a solution of the least squares calibration problem (2.4).

2.1.3 Continuity

Market option prices are typically defined up to a bid-ask spread and the close prices used for

calibration may therefore contain numerical errors. If the solution of the calibration problem
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is not continuous with respect to market data, these small errors may dramatically alter the

result of calibration, rendering it completely useless. On the other hand, even if market data

did not contain errors, in absence of continuity, small daily changes in prices could lead to large

variations of calibrated parameters and of other quantities computed using these parameters

(like prices of exotic options).

When the calibration problem has more than one solution, care should be taken in defining

what is meant by continuity. In the sequel, we will use the following definition (see, e.g. [40]),

that applies to all calibration problems, discussed in this chapter.

Definition 2.1. The solutions of a calibration problem are said to depend continuously on input

data at the point CM if for every sequence of data sets {Cn
M}n≥0 such that ‖CnM−CM‖w −−−→

n→∞
0,

if Qn is a solution of the calibration problem with data Cn
M then

1. {Qn}n≥1 has a weakly convergent subsequence {Qnm}m≥1.

2. The limit Q of every weakly convergent subsequence of {Qn}n≥1 is a solution of the

calibration problem with data CM .

Note that if the solution of the calibration problem with the limiting data CM is unique, this

definition reduces to the standard definition of continuity, because in this case every subsequence

of {Qn} has a further subsequence converging towards Q, which implies that Qn ⇒ Q.

It is easy to construct an example of market data leading to a least squares calibration

problem (2.4) that does not satisfy the above definition.

Example 2.2. Suppose that S0 = 1, there are no interest rates or dividends and the market data

for each n are given by a single observation:

CnM (T = 1,K = 1) = E[(eX
n
1 − 1)+] for n ≥ 1 and CM (T = 1,K = 1) = 1 − e−λ,

where Xn
t is defined by Equation (2.8) and λ > 0. Then ‖Cn

M−CM‖w −−−→
n→∞

0 and Xn
t is clearly

a solution for data CnM , but the sequence {Xn
t } has no convergent subsequence (cf. Proposition

1.7).

Under conditions, similar to those of Theorem 2.1, Lemmas 2.2–2.4 allow to prove a conti-

nuity result for the least squares calibration problem (2.4).
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Proposition 2.5. Suppose that there exists a couple (T0,K0) with w0 := w({T0,K0}) > 0 and

let CM be such that the condition (2.9) is satisfied for some Q0 ∈ M∩LB. Then the solutions

of the least squares calibration problem (2.4) on M ∩ LB depend continuously on the market

data at the point CM .

Proof. Let {CnM}n≥0 be a sequence of data such that ‖Cn
M − CM‖w −−−→

n→∞
0, and for every

n let Qn be a solution of the calibration problem (2.4) on M ∩ LB with data CnM (we can

suppose without loss of generality that a solution exists for all n because it exists starting with

a sufficiently large n by Theorem 2.1). Then, using the triangle inequality several times, we

obtain:

|S0 − CQn(T0,K0)|

≥ |S0 − CM (T0,K0)| − |CnM (T0,K0) − CQn(T0,K0)| − |CnM (T0,K0) − CM (T0,K0)|

≥ |S0 − CM (T0,K0)| −
‖CnM − CQ0‖w√

w0
− |CnM (T0,K0) − CM (T0,K0)|

≥ |S0 − CM (T0,K0)| −
‖CM − CQ0‖w√

w0
− 2

‖CnM − CM‖w√
w0

> C ′ > 0

for some C ′, starting from a sufficiently large n. Therefore, by Lemmas 2.3 and 2.4, {Qn} has

a subsequence that converges weakly towards some Q∗ ∈ M∩LB.

Let {Qnm} ⊆ {Qn} with Qnm ⇒ Q∗ ∈ M∩LB and let Q ∈ M∩LB. Using Lemma 2.2 and

the triangle inequality, we obtain:

‖CQ∗ − CM‖w = lim
m

‖CQnm − CM‖w ≤ lim inf
m

{‖CQnm − Cnm

M ‖w + ‖Cnm

M − CM‖w}

≤ lim inf
m

‖CQnm − Cnm

M ‖w ≤ lim inf
m

‖CQ − Cnm

M ‖w ≤ ‖CQ − CM‖w,

which shows that Q∗ is indeed a solution of the calibration problem (2.4) with data CM .

2.1.4 Numerical difficulties of least squares calibration

A major obstacle for the numerical implementation of the least squares calibration is the non-

convexity of the optimization problem (2.4), which is due to the non-convexity of the domain

(M∩L), where the pricing error functional Q 7→ ‖CQ − CM‖2 is to be optimized. Due to this

difficulty, the pricing error functional may have several local minima, and the gradient descent
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algorithm used for numerical optimization may stop in one of these local minima, leading to a

much worse calibration quality than that of the true solution.

Figure 2.3 illustrates this effect in the (parametric) framework of the variance gamma model

(1.18). The left graph shows the behavior of the calibration functional in a small region around

the global minimum. Since in this model there are only three parameters, the identification

problem is not present, and a nice profile appearing to be convex can be observed. However,

when we look at the calibration functional on a larger scale (κ changes between 1 and 8),

the convexity disappears and we observe a ridge (highlighted with a dashed black line), which

separates two regions: if the minimization is initiated in the region (A), the algorithm will

eventually locate the minimum, but if we start in the region (B), the gradient descent method

will lead us away from the global minimum and the required calibration quality will never be

achieved.
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Figure 2.3: Sum of squared differences between market prices (DAX options maturing in 10

weeks) and model prices in the variance gamma model (1.18) as a function of σ and κ, the third

parameter being fixed. Left: small region around the global minimum. Right: error surface on

a larger scale.

2.2 Selection of solutions using relative entropy

When the option pricing constraints do not determine the exponential Lévy model completely

(this is for example the case if the number of constraints is finite), additional information may
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be introduced into the problem by specifying a prior model : we suppose given a Lévy process

P and look for the solution of the problem (2.4) that has the smallest relative entropy with

respect to P . For two probabilities P and Q on the same measurable space (Ω,F), the relative

entropy of Q with respect to P is defined by

I(Q|P ) =







EP
[
dQ
dP log dQ

dP

]

, if Q≪ P,

∞, otherwise,
(2.10)

where by convention x log x = 0 when x = 0. For a time horizon T ≤ T∞ we define IT (Q|P ) :=

I(Q|FT
|P |FT

).

Minimum entropy least squares calibration problem Given prices CM of call options

and a prior Lévy process P , find a least squares solution Q∗ ∈ QLS , such that

I(Q∗|P ) = inf
Q∈QLS

I(Q|P ). (2.11)

In the sequel, any such Q∗ will be called a minimum entropy least squares solution (MELSS)

and the set of all such solutions will be denoted by QMELS .

The prior probability P must reflect our a priori knowledge about the risk-neutral distribu-

tion of the underlying. A natural choice of prior, ensuring absence of arbitrage in the calibrated

model, is an exponential Lévy model, estimated from the time series of returns. The effect of

the choice of prior on the solution of the calibration problem and the possible ways to choose

it in practice are discussed in Section 3.2.

Using relative entropy for selection of solutions removes, to some extent, the identification

problem of least-squares calibration. Whereas in the least squares case, this was an important

nuisance, now, if two measures reproduce market option prices with the same precision and have

the same entropic distance to the prior, this means that both measures are compatible with all

the available information. Knowledge of many such probability measures instead of one may be

seen as an advantage, because it allows to estimate model risk and provide confidence intervals

for the prices of exotic options. However, the calibration problem (2.11) remains ill-posed: since

the minimization of entropy is done over the results of least squares calibration, problem (2.11)

may only admit a solution if problem (2.4) does. Also, QLS is not necessarily a compact set,
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so even if it is nonempty, the least squares solution minimizing the relative entropy may not

exist. Other undesirable properties like absence of continuity and numerical instability are also

inherited from the least squares approach. In Section 2.5 we will propose a regularized version

of problem (2.11) that does not suffer from these difficulties.

The choice of relative entropy as a method for selection of solutions of the calibration

problem is driven by the following considerations:

• The relative entropy is a convenient notion of distance for probability measures. Indeed,

it is convex, nonnegative functional of Q for fixed P , equal to zero if and only if dQ
dP = 1

P -a.s. To see this, observe that

EP
[
dQ

dP
log

dQ

dP

]

= EP

[
dQ

dP
log

dQ

dP
− dQ

dP
+ 1

]

,

and that z log z − z + 1 is a convex nonnegative function of z, equal to zero if and only if

z = 1.

• The relative entropy of two Lévy processes is easily expressed in terms of their character-

istic triplets (see Theorem 2.9).

• Relative entropy, also called Kullback-Leibler distance, is a well-studied object. It appears

in many domains including the theory of large deviations and the information theory. It

has also already been used in finance for pricing and calibration (see Section 2.3). We can

therefore use the known properties of this functional (see e.g. [93]) as a starting point of

our study.

The minimum entropy least squares solution need not always exist, but if the prior is chosen

correctly, that is, if there exists at least one solution of problem (2.4) with finite relative entropy

with respect to the prior, then the MELSS will also exist, as shown by the following lemma.

We recall that LNA stands for the set of Lévy processes, satisfying the no arbitrage conditions

of Proposition 1.8.

Lemma 2.6. Let P ∈ LNA ∩ L+
B for some B > 0 and suppose that the problem (2.4) admits a

solution Q+ with I(Q+|P ) = C <∞. Then the problem (2.11) admits a solution.

Proof. The proof of this lemma uses the properties of the relative entropy functional (2.10)

that will be proven in Section 2.4 below. Under the condition of the lemma, it is clear that the
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solution Q∗ of problem (2.11), if it exists, satisfies I(Q∗|P ) ≤ C. This entails that Q∗ ≪ P ,

which means by Proposition 1.5 that Q∗ ∈ L+
B. Therefore, Q∗ belongs to the set

L+
B ∩ {Q ∈ M∩L : ‖CQ − CM‖ = ‖CQ+ − CM‖} ∩ {Q ∈ L : I(Q|P ) ≤ C}. (2.12)

Lemma 2.10 and the Prohorov’s theorem entail that the level set {Q ∈ L : I(Q|P ) ≤ C}
is relatively weakly compact. On the other hand, by Corollary 2.1, I(Q|P ) is weakly lower

semicontinuous with respect to Q for fixed P . Therefore, the set {Q ∈ P(Ω) : I(Q|P ) ≤ C} is

weakly closed and since by Lemma 2.4, M∩L+
B is also weakly closed, the set M∩L+

B ∩ {Q ∈
L : I(Q|P ) ≤ C} is weakly compact. Lemma 2.2 then implies that the set (2.12) is also weakly

compact. Since I(Q|P ) is weakly lower semicontinuous, it reaches its minimum on this set.

2.3 The use of relative entropy for pricing and calibration: re-

view of literature

2.3.1 Pricing with minimal entropy martingale measure

It is known (see [25, Theorem 4.7] or [27, Remark 10.3]) that all exponential Lévy models

with the exception of the Black-Scholes model and the model driven by the compensated Pois-

son process correspond to incomplete markets meaning that there exists no unique equivalent

martingale measure.

In the incomplete market setting many authors including [24, 41, 42, 49, 72, 73, 89] have in-

vestigated the minimal entropy martingale measure, that is, the pricing measure that minimizes

the relative entropy with respect to the historical probability P . A probability measure Q∗ ∈ M
is called minimal entropy martingale measure if

I(Q∗|P ) = min
Q∈M

I(Q|P ). (2.13)

Frittelli [42] proves the existence of a minimal entropy martingale measure provided that the

stock price process is bounded and that there exists a martingale measure with finite relative

entropy with respect to P . He further shows that if there exists an equivalent martingale

measure with finite relative entropy with respect to P , the MEMM is also equivalent to P .

Several authors including [24, 49, 73] discuss minimal entropy martingale measures for ex-

ponential Lévy models. The following result is proven in Miyahara and Fujiwara [73].
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Theorem 2.7. Let P be a Lévy process with characteristic triplet (A, ν, γ). If there exists a

constant β ∈ R such that

∫

{x>1}
exeβ(ex−1)ν(dx) <∞, (2.14)

γ +

(
1

2
+ β

)

A+

∫

|x|≤1

{

(ex − 1)eβ(ex−1) − x
}

ν(dx) +

∫

|x|>1
(ex − 1)eβ(ex−1)ν(dx) = 0,

then there exists a minimal entropy martingale measure Q∗ with the following properties:

1. The measure Q∗ corresponds to a Lévy process: Q∗ ∈ L with characteristic triplet

A∗ = A,

ν∗(dx) = eβ(ex−1)ν(dx),

γ∗ = γ + βA+

∫

|x|≤1
x(eβ(ex−1) − 1)ν(dx).

2. The measure Q∗ is an equivalent martingale measure: Q∗ ∼ P .

3. The minimal relative entropy is given by

I(Q∗|P ) = −T
{
β

2
(1 + β)A+ βγ +

∫ ∞

−∞
{eβ(ex−1) − 1 − βx1|x|≤1}ν(dx)

}

. (2.15)

Remark 2.1. It is easy to show, along the lines of the proof of Proposition 1.8, that condition

(2.14) is satisfied, in particular, if P ∈ LNA ∩L+
B for some B > 0, which corresponds to a stock

price process with jumps bounded from above in a market without arbitrage opportunity.

Since large positive jumps do not happen very often in real markets, (2.14) turns out to be

much less restrictive (and easier to check) than the general hypotheses in [42]. This shows that

the notion of MEMM is especially useful and convenient in the context of exponential Lévy

models.

In addition to its computational tractability, the interest of the minimal entropy martingale

measure is due to its economic interpretation as the pricing measure that corresponds to the

limit of utility indifference price for the exponential utility function when the risk aversion

coefficient tends to zero. Consider an investor with initial endowment c, whose utility function

is given by

Uα(x) := 1 − e−αx, (2.16)
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where α is a risk-aversion coefficient. Given some set of admissible trading strategies Θ, the

utility indifference price pα(c,H) of a claim H for this investor is defined as the solution of the

following equation:

sup
θ∈Θ

E[Uα(c+ pα(c,H) +

∫

(0,T ]
θudSu −H)] = sup

θ∈Θ
E[Uα(c+

∫

(0,T ]
θudSu)].

Due to the special form (2.16) of the utility function, the initial endowment c cancels out of the

above equation and we see that

pα(c,H) = pα(0, H) := pα(H).

Using the results in [33], Miyahara and Fujiwara [73] established the following properties of

utility indifference price in exponential Lévy models. Similar results have been obtained by El

Karoui and Rouge [39] in the setting of continuous processes.

Proposition 2.8. Let (X,P ) be a Lévy process such that P ∈ L+
B ∩ LNA, and let Q∗ be the

MEMM defined by (2.13). Let St := eXt and let Θ include all predictable S-integrable processes

θ such that
∫

(0,t] θudSu is a martingale for each local martingale measure Q, with I(Q|P ) <∞.

Then the corresponding utility indifference price pα(H) of a bounded claim H has the following

properties:

1. pα(H) ≥ EQ∗
[H] for any α > 0.

2. If 0 < α < β then pα(H) ≤ pβ(H).

3. limα↓0 pα(H) = EQ∗
[H].

The price of a claim H computed under the MEMM thus turns out to be the highest price

at which all investors with exponential utility function will be willing to buy this claim.

Kallsen [58] defines neutral derivative prices for which the optimal trading strategy consists

in having no contingent claim in one’s portfolio. This approach to valuation in incomplete

markets corresponds to the notion of fair price introduced by Davis [31]. Kallsen further shows

that such prices are unique and correspond to a linear arbitrage-free pricing system, defined

by an equivalent martingale measure (neutral pricing measure). If the utility function of an

investor has the form (2.16), the neutral pricing measure coincides with the minimal entropy
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martingale measure. The neutral pricing measure Q∗ also corresponds to the least favorable

market completion from the point of view of the investor in the following sense. Let

V (c,Q) := sup{E[U(c+X −EQ[X])] : X is FT -measurable}

be the maximum possible expected utility that an investor with initial endowment c and utility

function U can get by trading in a market where the price of every contingent claim X is equal

to EQ[X]. Then

V (c,Q∗) = inf
Q∈EMM(P )

V (c,Q),

that is, the neutral pricing measure minimizes the maximum possible expected utility that an

investor can get in a completed market, over all possible arbitrage-free completions. The notion

of neutral pricing measure thus coincides with the minimax measures studied in [16], [49] and

other papers.

2.3.2 Calibration via relative entropy minimization

Despite its analytic tractability and interesting economic interpretation, the MEMM has an im-

portant drawback which makes it impossible to use for pricing in real markets: it does not take

into account the information obtained from prices of traded options. To tackle this problem, Goll

and Rüschendorf [48] introduced the notion of minimal distance martingale measure consistent

with observed market prices. In particular, given prices of call options {CM (Ti,Ki)}Ni=1, a prob-

ability measure Q∗ ∈ M is called consistent minimal entropy martingale measure (CMEMM)

if

I(Q∗|P ) = min
Q

I(Q|P ),

where the minimum is taken over all martingale measures Q such that CM (Ti,Ki) = CQ(Ti,Ki)

for i = 1, . . . , N .

Kallsen [58] shows that consistent minimal distance martingale measures correspond to

constant demand derivative pricing (when the optimal portfolio must contain not zero but

a fixed amount of each traded derivative), thus providing an economic rationale for distance

minimization under constraints, and, in particular, for entropy minimization.

A drawback of CMEMM is that it may be very difficult to compute numerically. In par-

ticular, if X is a Lévy process under the historical measure P , it will in general no longer be
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a Lévy process under a consistent minimal entropy martingale measure and no analytic results

similar to Theorem 2.7 are available for the constrained case. For example, let {Xt}t≥0 be a

real-valued Lévy process on (A, ν, γ) such that for every t,

Xt = N ′
t −N ′′

t , (2.17)

where N ′ and N ′′ are independent Poisson processes with intensity 1 under P . It follows from

Proposition 1.5 that the set of Lévy processes equivalent to P and satisfying the martingale

condition (1.2) contains all processes under which X has the form (2.17) where N ′ and N ′′ are

still independent and have respective intensities λ′ = λ and λ′′ = eλ for some λ > 0. The set of

all equivalent martingale measures under which X remains a Lévy process is thus parametrized

by one parameter λ. If one allows X to be an additive process (process with independent

increments, continuous in probability) under the new measure, the class of equivalent martingale

measures is much larger: it follows from Theorem IV.4.32 in [54] that N ′ and N ′′ can now

have variable (but deterministic) intensities λ′(t) = λ(t) and λ′′(t) = eλ(t) for some function

λ : [0, T∞] → (0,∞). It is clear that many market data sets (involving several maturities) can

be reproduced by an equivalent martingale measure, under which X is an additive process but

not by a martingale measure under which X is a Lévy process, which implies that under the

consistent minimal entropy martingale measure X will not be a Lévy process.

Stutzer [91] suggests a three-step algorithm for numerical evaluation of derivative prices

under the CMEMM in a model with a single time horizon T . This method allows to compute

prices of European options with maturity T , consistent with prices of market-quoted European

options with the same maturity. First, possible asset price values at time T , {Ph}Nh=1 and the

corresponding probabilities π̂(h) are estimated nonparametrically using a histogram estimator

from the historical return values. Second, one needs to find the probabilities π∗(h), that satisfy

the martingale constraint and the pricing constraints and have the smallest relative entropy with

respect to π̂. In this simplified one period model the martingale condition reduces to a single

constraint that the discounted expectation of stock price under π∗ be equal to its present value.

The European options expiring at T can then be priced using these martingale probabilities π∗.

In this paper, Stutzer suggests an information theoretic rationale for using the relative

entropy (also called Kullback-Leibler information criterion) for pricing and calibration. From

a Bayesian point of view, the historical prices constitute a prior information about the future
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risk-neutral distribution of asset prices. This prior must be updated to take into account

the martingale constraint and the observed option prices, and it is natural to demand that the

updated distribution incorporate no additional information other than the martingale constraint

and the pricing constraints. One must therefore minimize some quantitative measure of relative

information of the two distributions, and it has been shown (see [52]) that every measure of

information satisfying a set of natural axioms must be proportional to Kullback-Leibler relative

entropy.

Because it only allows to reconstruct the asset price distribution for one specified time

horizon, and only takes into account the prices of options that expire at this horizon, Stutzer’s

method does not provide any information about the risk-neutral process and thus cannot be

used to price any derivative that depends on the stock price at times other than T . Avellaneda

et al. [3] pursue the same logic further and propose a method allowing to construct a discrete

approximation of the law of the process underlying the observed option prices. They consider

N <∞ fixed trajectories {X1, . . . , XN} that the price process can take, simulated beforehand

from a prior model. The new state space Ω′ thus contains a finite number of elements: Ω′ =

{X1, . . . , XN}. The new prior P ′ is the uniform law on Ω′: P ′(Xi) = 1
N and the paper

suggests to calibrate the weights (probabilities) of these trajectories qi := Q′(Xi) to reproduce

market-quoted option prices correctly. Minimizing relative entropy I(Q′|P ′) is then equivalent

to maximizing the entropy of Q′ and the calibration problem becomes:

maximize −
N∑

i=1

qi log qi under constraints EQ′
[Hj ] = Cj , j = 1, . . . ,M,

where Hj are terminal payoffs and Cj the observed market prices of M traded options. Denoting

by gij the payoff of j-th option on the i-th trajectory, and introducing Lagrange multipliers

λ1, . . . , λM , Avellaneda et al. reformulate the calibration problem as a minimax problem:

min
λ

max
q






−

N∑

i=1

qi log qi +
M∑

j=1

λj

(
N∑

i=1

qigij − Cj

)





.

The inner maximum can be computed analytically and, since it is taken over linear functions

of λ1, . . . , λM , yields a convex function of Lagrange multipliers. The outer minimum can then

be evaluated numerically using a gradient descent method.

This technique (weighted Monte Carlo) is attractive for numerical computations but has

a number of drawbacks from the theoretical viewpoint. First, the result of calibration is a
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probability measure on a finite set of paths chosen beforehand; it does not allow to reconstruct

a process on the original space Ω. Second, the martingale condition is not imposed in this

approach (because this would correspond to an infinite number of constraints). As a result,

derivative prices computed with the weighted Monte Carlo algorithm may contain arbitrage

opportunities, especially when applied to forward start contracts.

Nguyen [77] studies the convergence of the above method by Avellaneda et al. when the

number of paths tends to infinity as well as the stability of the calibration procedure, minimiza-

tion criteria other than relative entropy, possible ways to impose the (approximate) martingale

condition and many other issues related to this calibration methodology. Statistical properties

of weighted Monte Carlo estimators are also studied in [46].

Chapter 8 of [77] introduces an interesting theoretical approach to minimal entropy calibra-

tion, that is related to the present work and is worth being discussed in more detail. Starting

with a very general prior jump-diffusion model P for the stock price St of the form

dSt = St−[b(t, St−)dt+ σ(t, St−)dWt +

∫

z∈R

Φ(t, St−, z)(Π(dt, dz) − π(dt, dz))], (2.18)

where Π is a homogeneous Poisson random measure with intensity measure π(dt, dz) = dt ×
ρ(dz), and the coefficients satisfy some regularity hypotheses not listed here, Nguyen suggests

to find a martingale measure Q∗ which reproduces the observed option prices correctly and has

the smallest relative entropy with respect to P in a subclass M′ of all martingale measures on

(Ω,F). This subclass M′ contains all martingale measures QK under which St has the same

volatility σ and the compensator of Π is given by K(t,Xt−, z)π(dt, dz) with

K ∈ KH := {K(t, x, z) : [0, T ] × R × R → (0,∞) Borel with | logK| ≤ log(H)φ0}

for some φ0 ∈ L2(ρ) positive with ‖φ0‖∞ ≤ 1. In other words, the object of calibration here is

the intensity of jumps of a Markovian jump diffusion.

The fact that the set

M′ :=
{
QK : K ∈ KH

}

is convex enables Nguyen to use classical convex analysis methods to study the calibration

problem. In particular, he proves the existence and uniqueness of the solution of the (penalized)

calibration problem under the condition that the coefficients appearing in (2.18) are sufficiently

regular and the drift b and option price constraint C belong to some neighborhood of (r, Cr),
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where r is the interest rate and Cr denotes the option prices computed for St given by (2.18)

with b = r. Unfortunately, no insight is given as to the size of this neighborhood.

An important drawback of the calibration methodology advocated by Nguyen [77] is the

difficulty of numerical implementation. The solution is obtained by minimizing a certain func-

tion of Lagrange multipliers (the value function), which is itself a solution of nonlinear partial

integro-differential equation of HJB type, and the author gives no indication about the numer-

ical methods that can be used. In addition, since a finite set of option prices does not typically

contain enough information to identify a three-dimensional intensity function K(t, x, z), the

choice of the prior process, not discussed in [77], will play a crucial role.

2.3.3 The present study in the context of previous work on this subject

In this thesis, we suppose that the prior probability P is a Lévy process and restrict the class

of martingale measures Q that we consider as possible solutions of the calibration problem to

those under which (X,Q) remains a Lévy process. Since this class is rather narrow, it may not

contain a measure that reproduces the observed option prices exactly. Therefore, in problem

(2.11) we only require that these prices be reproduced in the least squares sense.

Restricting the calibration to the class of Lévy processes enables us to compute the solution

of the calibration problem numerically using a relatively simple algorithm (see Chapter 3). Our

method can thus be seen as a computable approximation of the consistent minimal entropy

martingale measure, discussed by Kallsen [58] and Goll and Rüschendorf [48]. However, con-

trary to the approach by Avellaneda et al. [3], we do not discretize the space of sample paths:

our method yields a Lévy process on the initial state space Ω and not on the finite space of

trajectories simulated beforehand. The solution of calibration problem (2.11) and its regular-

ized version (2.27) can therefore be used for all types of computations with arbitrary precision.

Another advantage of restricting the class of martingale measures is that using a finite num-

ber of option prices it is easier to calibrate a one-dimensional object (the Lévy measure) than

a three-dimensional object (the intensity function as in [77, Chapter 8]). Therefore, in our

approach the influence of the prior on the solution is less important (see Chapter 3).

Unlike the class of all Markov processes and unlike the class of probabilities considered in

[77, Chapter 8], the class of all probabilities Q, under which (X,Q) remains a Lévy process is
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not convex. We are therefore unable to apply the methods of convex analysis to our formulation

of the calibration problem and are limited to standard functional analysis tools. In particular,

in our setting we cannot hope to obtain a uniqueness result for the solution of the calibration

problem, but, as mentioned in Section 2.2, uniqueness is not always a desirable property from

the financial viewpoint.

2.4 Relative entropy of Lévy processes

In this subsection we explicitly compute the relative entropy of two Lévy processes in terms of

their characteristic triplets. Under additional assumptions this result was shown in [24] (where

it is supposed that Q is equivalent to P and the Lévy process has finite exponential moments

under P ) and in [77] (where log dνQ

dνP is supposed bounded from above and below). We consider

it important to give an elementary proof valid for all Lévy processes.

Theorem 2.9 (Relative entropy of Lévy processes). Let {Xt}t≥0 be a real-valued Lévy

process on (Ω,F , Q) and on (Ω,F , P ) with respective characteristic triplets (AQ, νQ, γQ) and

(AP , νP , γP ). Suppose that the conditions 1–5 of Proposition 1.5 are satisfied and denote A :=

AQ = AP . Then for every time horizon T ≤ T∞ the relative entropy of Q|FT
with respect to

P |FT
can be computed as follows:

IT (Q|P ) = I(Q|FT
|P |FT

) =
T

2A

{

γQ − γP −
∫ 1

−1
x(νQ − νP )(dx)

}2

1A 6=0+

T

∫ ∞

−∞

(
dνQ

dνP
log

dνQ

dνP
+ 1 − dνQ

dνP

)

νP (dx). (2.19)

Proof. Let {Xc
t }t≥0 be the continuous martingale part of X under P (a Brownian motion), µ

be the jump measure of X and φ := dνQ

dνP . From [54, Theorem III.5.19], the density process

Zt :=
dQ|Ft

dP |Ft

is the Doléans-Dade exponential of the Lévy process {Nt}t≥0 defined by

Nt := βXc
t +

∫

[0,t]×R

(φ(x) − 1){µ(ds× dx) − ds νP (dx)},

where β is given by

β =







1
A{γQ − γP −

∫

|x|≤1 x(φ(x) − 1)νP (dx)} if A > 0,

0 otherwise.
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Choose 0 < ε < 1 and let I := {x : ε ≤ φ(x) ≤ ε−1}. We split Nt into two independent

martingales:

N ′
t := βXc

t +

∫

[0,t]×I
(φ(x) − 1){µ(ds× dx) − ds νP (dx)} and

N ′′
t :=

∫

[0,t]×(R\I)
(φ(x) − 1){µ(ds× dx) − ds νP (dx)}.

Since N ′ and N ′′ never jump together, [N ′, N ′′]t = 0 and E(N ′ + N ′′)t = E(N1)tE(N2)t (cf.

Equation II.8.19 in [54]). Moreover, since N ′ and N ′′ are Lévy processes and martingales, their

stochastic exponentials are also martingales (Proposition 1.4). Therefore,

IT (Q|P ) = EP [ZT logZT ]

= EP [E(N ′)TE(N ′′)T log E(N ′)T ] +EP [E(N ′)TE(N ′′)T log E(N ′′)T ]

= EP [E(N ′)T log E(N ′)T ] +EP [E(N ′′)T log E(N ′′)T ] (2.20)

if these expectations exist.

Since ∆N ′
t > −1 a.s., E(N ′)t is almost surely positive. Therefore, from Proposition 1.3,

Ut := log E(N ′)t is a Lévy process with characteristic triplet:

AU = β2A,

νU (B) = νP (I ∩ {x : log φ(x) ∈ B}) ∀B ∈ B(R),

γU = −β
2A

2
−
∫ ∞

−∞
(ex − 1 − x1|x|≤1)ν

U (dx).

This implies that eUt is a martingale and that Ut has bounded jumps and all exponential

moments. Therefore, E[UT e
UT ] <∞ and can be computed as follows:

EP [UT e
UT ] = −i d

dz
EP [eizUT ]|z=−i = −iTψ′(−i)EP [eUT ] = −iTψ′(−i)

= T (AU + γU +

∫ ∞

−∞
(xex − x1|x|≤1)ν

U (dx))

=
β2AT

2
+ T

∫

I
(φ(x) log φ(x) + 1 − φ(x))νP (dx) (2.21)

It remains to compute EP [E(N ′′)T log E(N ′′)T ]. Since N ′′ is a compound Poisson process,

E(N ′′)t = ebt
∏

s≤t(1 + ∆N ′′
s ), where b =

∫

R\I(1 − φ(x))νP (dx). Let ν ′′ be the Lévy measure of

N ′′ and λ its jump intensity. Then

E(N ′′)T log E(N ′′)T = bTE(N ′′)T + ebT
∏

s≤T
(1 + ∆N ′′

s )
∑

s≤T
log(1 + ∆N ′′

s )
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and

EP [E(N ′′)T log E(N ′′)T ] = bT + ebT
∞∑

k=0

e−λT
(λT )k

k!
E[
∏

s≤T
(1 + ∆N ′′

s )
∑

s≤T
log(1 + ∆N ′′

s )|k jumps]

Since, under the condition that N ′′ jumps exactly k times in the interval [0, T ], the jump sizes

are independent and identically distributed, we find, denoting the generic jump size by ∆N ′′:

EP [E(N ′′)T log E(N ′′)T ]

= bT + ebT
∞∑

k=0

e−λT
(λT )k

k!
kE[1 + ∆N ′′]k−1E[(1 + ∆N ′′) log(1 + ∆N ′′)]

= bT + λTE[(1 + ∆N ′′) log(1 + ∆N ′′)]

= bT + T

∫ ∞

−∞
(1 + x) log(1 + x)ν ′′(dx)

= T

∫

R\I
(φ(x) log φ(x) + 1 − φ(x))νP (dx).

In particular, EP [E(N ′′)T log E(N ′′)T ] is finite if and only if the integral in the last line is finite.

Combining the above expression with (2.21) and (2.20) finishes the proof.

2.4.1 Properties of the relative entropy functional

Lemma 2.10. Let P, {Pn}n≥1 ⊂ L+
B for some B > 0, such that Pn ⇒ P . Then for every r > 0,

the level set Lr := {Q ∈ L : I(Q|Pn) ≤ r for some n} is tight.

Proof. For any Q ∈ Lr, PQ denotes any element of {Pn}n≥1, for which I(Q|PQ) ≤ r. The

characteristic triplet of Q is denoted by (AQ, νQ, γQ) and that of PQ by (APQ , νPQ , γPQ). In

addition, we define φQ := dνQ

dν
PQ

. From Theorem 2.9,

∫ ∞

−∞
(φQ(x) log φQ(x) + 1 − φQ(x))νPQ(dx) ≤ r/T∞.

Therefore, for u sufficiently large,

∫

{φQ>u}
φQνPQ(dx) ≤

∫

{φQ>u}

2φQ[φQ logφQ + 1 − φQ]νPQ(dx)

φQ logφQ
≤ 2r

T∞ log u
,

which entails that for u sufficiently large,

∫

{φQ>u}
νQ(dx) ≤ 2r

T∞ log u
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uniformly with respect to Q ∈ Lr. Let ε > 0 and choose u such that
∫

{φQ>u} ν
Q(dx) ≤ ε/2 for

every Q ∈ Lr. By Proposition 1.7,

∫ ∞

−∞
f(x)νPn(dx) →

∫ ∞

−∞
f(x)νP (dx)

for every continuous bounded function f that is identically zero on a neighborhood of zero.

Since the measures νP and νPn for all n ≥ 1 are finite outside a neighborhood of zero, we can

choose a compact K such that νPn(R \K) ≤ ε/2u for every n. Then

νQ(R \K) =

∫

(R\K)∩{φQ≤u}
φQνPQ(dx) +

∫

(R\K)∩{φQ>u}
νQ(dx) ≤ ε,

which proves property 1 of Proposition 1.6.

It is easy to check by computing derivatives that for every u > 0, on the set {x : φQ(x) ≤ u},

(φQ − 1)2 ≤ 2u(φQ logφQ + 1 − φQ).

Therefore, for u sufficiently large and for all Q ∈ Lr,

∣
∣
∣

∫

|x|≤1
x(φQ − 1)νPQ(dx)

∣
∣
∣

≤
∣
∣
∣
∣
∣

∫

|x|≤1, φQ≤u
x(φQ − 1)νPQ(dx)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫

|x|≤1, φQ>u
x(φQ − 1)νPQ(dx)

∣
∣
∣
∣
∣

≤
∫

|x|≤1
x2νPQ(dx) +

∫

|x|≤1, φQ≤u
(φQ − 1)2νPQ(dx) + 2

∫

φQ>u
φQνPQ(dx)

≤
∫

|x|≤1
x2νPQ(dx) + 2u

∫ ∞

−∞
(φQ log φQ + 1 − φQ)νPQ(dx) +

4r

T∞ log u

≤
∫

|x|≤1
x2νPQ(dx) +

3ru

T∞
. (2.22)

By Proposition 1.6, applied to the sequence {Pn}n≥1,

APn +

∫

|x|≤1
x2νPn(dx) (2.23)

is bounded uniformly on n, which implies that the right hand side of (2.22) is bounded uniformly

with respect to Q ∈ Lr. From Proposition 1.5, AQ = APQ for all Q ∈ Lr because for the relative

entropy to be finite, necessarily Q≪ PQ. From Theorem 2.9 and Proposition 1.5 it follows that

{

γQ − γP −
∫ 1

−1
x(νQ − νP )(dx)

}2

≤ 2APQr

T∞
.
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From (2.23), APn is bounded uniformly on n. Therefore, inequality (2.22) shows that |γQ| is

bounded uniformly with respect to Q, which proves property 2 of Proposition 1.6.

Once again, for u sufficiently large,

AQ +

∫ ∞

−∞
(x2 ∧ 1)φQνPQ(dx) ≤ AQ + u

∫

φQ≤u
(x2 ∧ 1)νPQ(dx)

+

∫

φQ>u
φQνPQ(dx) ≤ APQ + u

∫ ∞

−∞
(x2 ∧ 1)νPQ(dx) +

2r

T∞ log u

and (2.23) implies that the right hand side is bounded uniformly with respect to Q ∈ Lr.

Therefore, property 3 of Proposition 1.6 also holds and the proof is completed.

Lemma 2.11. Let Q and P be two probability measures on (Ω,F). Then

I(Q|P ) = sup
f∈Cb(Ω)

{∫

Ω
fdQ−

∫

Ω
(ef − 1)dP

}

, (2.24)

where Cb(Ω) is space of bounded continuous functions on Ω.

Proof. Observe that

φ(x) =







x log x+ 1 − x, x > 0,

∞, x ≤ 0

and φ∗(y) = ey − 1 are proper convex functions on R, conjugate to each other and apply

Corollary 2 to Theorem 4 in [83].

Corollary 2.1. The relative entropy functional I(Q|P ) is weakly lower semicontinuous with

respect to Q for fixed P .

Lemma 2.12. Let P, {Pn}n≥1 ⊂ LNA ∩ L+
B for some B > 0 such that Pn ⇒ P . There exists a

sequence {Qn}n≥1 ⊂ M∩L+
B and a constant C <∞ such that I(Qn|Pn) ≤ C for every n.

Proof. For every n ≥ 1, by Remark 2.1, Theorem 2.7 can be applied to Pn. Let Qn be the

minimal entropy martingale measure and βn be the corresponding constant, defined in (2.14).

We must show that the minimal relative entropy, given by Equation (2.15), is bounded uniformly

on n.

First, let us show that the sequence {βn}n≥1 is bounded. Let h be a continuous bounded

truncation function, satisfying h(x) = x in a neighborhood of zero and for any Lévy process Q
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with characteristic triplet (A, ν, γh) with respect to the truncation function h, define

f(β,Q) := γh +

(
1

2
+ β

)

A+

∫ ∞

−∞

{

(ex − 1)eβ(ex−1) − h(x)
}

ν(dx)

= γh +

(
1

2
+ β

)(

A+

∫ ∞

−∞
h2(x)ν(dx)

)

+

∫ ∞

−∞

{

(ex − 1)eβ(ex−1) − h(x) −
(

1

2
+ β

)

h2(x)

}

ν(dx). (2.25)

Since (ex − 1)eβ(ex−1) − x−
(

1
2 + β

)
x2 = o(|x|2) and the integrand in the last term of (2.25) is

bounded on (−∞, B], by Proposition 1.7, for every β, limn f(β, Pn) = f(β, P ).

The support of νPn is bounded from above by B, and the dominated convergence theorem

allows to compute the derivative of f(β, Pn) by interchanging the derivative and the integral:

f ′β(β, Pn) = APn +

∫ ∞

−∞
(ex − 1)2eβ(ex−1)νPn(dx) > 0.

Therefore, βn is the unique solution of f(β, Pn) = 0. Let β∗ be the solution of f(β, P ) = 0. The

support of νP is also bounded from above by B and f ′β(β
∗, P ) > 0. This means that there exist

ε > 0 and finite constants β− < β∗ and β+ > β∗ such that f(β−, P ) < −ε and f(β+, P ) > ε.

One can then find N such that for all n ≥ N , f(β−, Pn) < −ε/2 and f(β+, Pn) > ε/2, which

means that βn ∈ [β−, β+] and the sequence {βn} is bounded.

To show that the sequence of relative entropies is bounded, observe that for |x| ≤ 1,

∣
∣
∣eβ(ex−1) − 1 − βx

∣
∣
∣ ≤ βeβ(e−1)+1(1 + βe)|x|2

and that for x ≤ B,

∣
∣
∣eβ(ex−1) − 1 − βx1|x|≤1

∣
∣
∣ ≤ βeβ(eB+1) + 1 + βB.

The uniform boundedness of the sequence of relative entropies I(Qn|Pn) now follows from

Proposition 1.6 and Equation (2.15).

2.5 Regularizing the calibration problem

As observed in Section 2.2, problem (2.11) is ill-posed and hard to solve numerically. In partic-

ular, its solutions, when they exist, may not be stable with respect to perturbations of market

data. If we do not know the prices CM exactly but only know the perturbed prices Cδ
M that
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are within an error δ of CM , and want to construct an approximation to MELSS(CM ), the

solution of problem (2.11) with the true data, it is not a good idea to solve problem (2.11) with

the noisy data CδM because MELSS(CδM ) may be very far from MELSS(CM ). We therefore

need to regularize the problem (2.11), that is, construct a family of continuous “regularization

operators” {Rα}α>0, where α is the parameter which determines the intensity of regularization,

such that Rα(CδM ) converges to MELSS of the calibration problem as the noise level δ tends to

zero if, for each δ, the regularization parameter α is chosen appropriately. The approximation

to MELSS(CM ) using the noisy data CδM is then given by Rα(CδM ) with an appropriate choice

of α.

Following classical results on regularization of ill-posed problems (see [40]), we suggest to

construct a regularized version of (2.11) by using the relative entropy for penalization rather

than for selection, that is, to define

Jα(Q) = ‖CδM − CQ‖2
w + αI(Q|P ), (2.26)

where α is the regularization parameter, and solve the following regularized calibration problem:

Regularized calibration problem Given prices CM of call options, a prior Lévy process

P and a regularization parameter α > 0, find Q∗ ∈ M∩L, such that

Jα(Q∗) = inf
Q∈M∩L

Jα(Q). (2.27)

Problem (2.27) can be thought of in two ways:

• If the minimum entropy least squares solution with the true data CM exists, (2.27) allows

to construct a stable approximation of this solution using the noisy data.

• If the MELSS with the true data does not exist, either because the set of least squares

solutions is empty or because the least squares solutions are incompatible with the prior,

the regularized problem (2.27) allows to find a “compromise solution”, achieving a trade-

off between the pricing constraints and the prior information.

In the rest of this section we study the regularized calibration problem. Under our standing

hypothesis that the prior Lévy process has jumps bounded from above and corresponds to
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an arbitrage free market (P ∈ LNA ∩ L+
B), we show that the regularized calibration problem

always admits a solution that depends continuously on the market data. In addition, we give the

condition that the prior P must satisfy in order for the solution to be an equivalent martingale

measure, and show how the regularization parameter α must be chosen depending on the noise

level δ if the regularized solutions are to converge to the solutions of the minimum entropy least

squares calibration problem (2.11).

2.5.1 Properties of regularized solutions

We start with an existence theorem showing that if the prior Lévy process has jumps bounded

from above and corresponds to an arbitrage-free market, the regularized calibration problem

admits a solution.

Theorem 2.13. Let P ∈ LNA ∩ L+
B for some B > 0. Then the calibration problem (2.27) has

a solution Q∗ ∈ M∩L+
B.

Proof. By Lemma 2.12, there exists Q0 ∈ M ∩ L with I(Q0|P ) < ∞. The solution, if it

exists, must belong to the level set LJα(Q0) := {Q ∈ L : I(Q|P ) ≤ Jα(Q0)}. Since Jα(Q0) =

‖CM − CQ
0‖2
w + I(Q0|P ) < ∞, by Lemma 2.10, LJα(Q0) is tight and, by Prohorov’s theorem,

weakly relatively compact. Corollary 2.1 entails that I(Q|P ) is weakly lower semicontinuous

with respect to Q. Therefore {Q ∈ P(Ω) : I(Q|P ) ≤ Jα(Q0)} is weakly closed and since by

Lemma 2.4, M ∩ L+
B is weakly closed, M ∩ L+

B ∩ LJα(Q0) is weakly compact. Moreover, by

Lemma 2.2, the squared pricing error is weakly continuous, which entails that Jα(Q) is weakly

lower semicontinuous. Therefore, Jα(Q) achieves its minimum value on M ∩ L+
B ∩ LJα(Q0),

which proves the theorem.

Since every solution Q∗ of the regularized calibration problem (2.27) has finite relative

entropy with respect to the prior P , necessarily Q∗ ≪ P . However, Q∗ need not in general be

equivalent to the prior. When the prior corresponds to the real world (historical) probability,

absence of arbitrage is guaranteed if options are priced using an equivalent martingale measure.

The next theorem gives a sufficient condition for this equivalence.

Theorem 2.14. Let P ∈ LNA ∩ L+
B and suppose that the characteristic function ΦP

T of P
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satisfies

∫ ∞

−∞
|ΦP
T (u)|du <∞ (2.28)

for some T < T0, where T0 is the shortest maturity, present in the market data. Then every

solution Q∗ of the calibration problem (2.27) satisfies Q∗ ∼ P .

Remark 2.2. Condition (2.28) implies that the prior Lévy process has a continuous density at

time T and all subsequent times. Two important examples of processes satisfying the condition

(2.28) for all T are

• Processes with non-trivial Gaussian component (A > 0). This follows directly from the

Lévy-Khintchine formula (1.1).

• Processes with stable-like behavior of small jumps, that is, processes whose Lévy measure

satisfies

∃β ∈ (0, 2), lim inf
ε↓0

ε−β
∫ ε

−ε
|x|2ν(dx) > 0. (2.29)

For proof, see Proposition 28.3 in [87]. This class includes tempered stable processes

(1.20) with α+ > 0 and/or α− > 0.

Theorem 2.14 will be proven after the following technical lemma.

Lemma 2.15. Let P ∈ M∩L+
B with characteristic triplet (A, ν, γ) and characteristic exponent

ψ. There exists C <∞ such that
∣
∣
∣
∣

ψ(v − i)

(v − i)v

∣
∣
∣
∣
≤ C ∀v ∈ R.

Proof. From (1.1) and (1.2),

ψ(v − i) = −1

2
Av(v − i) +

∫ ∞

−∞
(ei(v−i)x + iv − ex − ivex)ν(dx). (2.30)

Observe first that

ei(v−i)x + iv − ex − ivex = iv(xex + 1 − ex) +
θv2x2ex

2
for some θ with |θ| ≤ 1.

Therefore, for all v with |v| ≥ 2,
∣
∣
∣
∣
∣

ei(v−i)x + iv − ex − ivex

(v − i)v

∣
∣
∣
∣
∣
≤ xex + 1 − ex + x2ex. (2.31)
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On the other hand,

ei(v−i)x + iv − ex − ivex

(v − i)v
=
iex(eivx − 1)

v
− i(ei(v−i)x − 1)

v − i

= −xex − ivx2

2
eθ1ivx + x+

i(v − i)x2

2
eθ2i(v−i)x

with some θ1, θ2 ∈ [0, 1]. Therefore, for all v with |v| ≤ 2,

∣
∣
∣
∣
∣

ei(v−i)x + iv − ex − ivex

(v − i)v

∣
∣
∣
∣
∣
≤ x(1− ex) +

x2

2
(v +

√

1 + v2ex) ≤ x(1− ex) + x2(1 + 2ex). (2.32)

Since the support of ν is bounded from above, the right-hand sides of (2.31) and (2.32) are

ν-integrable, and the proof of the lemma is completed.

Proof of Theorem 2.14. Let Q∗ be a solution of (2.27) with prior P . By Theorem 2.7, there

exists Q0 ∈ M∩L such that Q0 ∼ P . Denote the characteristic triplet of Q∗ by (A, ν∗, γ∗) and

that of Q0 by (A, ν0, γ0).

Let Qx be a Lévy process with characteristic triplet

(A, xν0 + (1 − x)ν∗, xγ0 + (1 − x)γ∗).

From the linearity of the martingale condition (1.2), it follows that for all x ∈ [0, 1], Qx ∈ M∩L.

Since Q∗ realizes the minimum of Jα(Q), necessarily Jα(Qx) − Jα(Q∗) ≥ 0 for all x ∈ [0, 1].

Our strategy for proving the theorem is first to show that ‖CM−CQx‖2−‖CM−CQ∗‖2

x is bounded

as x→ 0 and then to show that if I(Qx|P )−I(Q∗|P )
x is bounded from below as x→ 0, necessarily

Q∗ ∼ P .

The first step is to prove that the characteristic function Φ∗ of Q∗ satisfies the condition

(2.28) for some T < T0. If A > 0, this is trivial; suppose therefore that A = 0. In this case,

|Φ∗
T (u)| = exp(T

∫∞
−∞(cos(ux) − 1)ν∗(dx)). Denote dν∗

dνP := φ∗. Since Q∗ ≪ P , by Theorem

1.5,
∫∞
−∞(

√

φ∗(x) − 1)2νP (dx) ≤ K <∞ for some constant K. Therefore, there exists another

constant C > 0 such that

∫

{φ∗(x)>C}
(1 − cos(ux))|φ∗ − 1|νP (dx) < C
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uniformly on u. For all r > 0,

∫ ∞

−∞
(1 − cos(ux))|φ∗ − 1|νP (dx) ≤ C +

∫

{φ∗(x)≤C}
(1 − cos(ux))|φ∗ − 1|νP (dx)

≤ C +
r

2

∫

{φ∗(x)≤C}
(1 − cos(ux))2νP (dx) +

1

2r

∫

{φ∗(x)≤C}
(φ∗ − 1)2νP (dx)

≤ C + r

∫ ∞

−∞
(1 − cos(ux))νP (dx) +

K(
√
C + 1)2

2r
.

This implies that

∫ ∞

−∞
(cos(ux) − 1)ν∗(dx) ≤ (1 + r)

∫ ∞

−∞
(cos(ux) − 1)νP (dx) + C +

K(
√
C + 1)2

2r

for all r > 0. Therefore, if the characteristic function of P satisfies the condition (2.28) for some

T , the characteristic function of Q∗ will satisfy it for every T ′ > T .

Since P ∈ LNA ∩L+
B, Qx ∈ M∩L+

B for all x ∈ [0, 1]. Therefore, condition (1.23) is satisfied

and option prices can be computed by inverting the Fourier transform (1.24):

CQx(T,K) = (1−Ke−rT )++
1

2π

∫ ∞

−∞
e−iv logK+ivrT exp(T (1 − x)ψ∗(v − i) + Txψ0(v − i)) − 1

iv(1 + iv)
dv,

where ψ0 and ψ∗ denote the characteristic exponents of Q0 and Q∗. It follows that

CQx(T,K) − CQ
∗
(T,K)

x
=

1

2π

∫ ∞

−∞
e−iv logK+ivrT e

T (1−x)ψ∗(v−i)+Txψ0(v−i) − eTψ
∗(v−i)

iv(1 + iv)x
dv

The fact that ℜψ0(v − i) ≤ 0 and ℜψ∗(v − i) ≤ 0 for all v ∈ R together with Lemma 2.15

implies that

∣
∣
∣
∣
∣
e−iv logK+ivrT e

T (1−x)ψ∗(v−i)+Txψ0(v−i) − eTψ
∗(v−i)

iv(1 + iv)x

∣
∣
∣
∣
∣

≤ T
|eT (1−x)ψ∗(v−i)||ψ0(v − i) − ψ∗(v − i)|

|v(1 + iv)| ≤ T |eT (1−x)ψ∗(v−i)|C ′

for some constant C ′. From the dominated convergence theorem and since Q∗ satisfies (2.28),

∂CQx(T,K)
∂x |x=0 exists and is bounded uniformly on T and K in the market data set. This in

turn means that ‖CM−CQx‖2−‖CM−CQ∗‖2

x is bounded as x→ 0.

To complete the proof, it remains to show that if I(Qx|P )−I(Q∗|P )
x is bounded from below as

x→ 0, necessarily Q∗ ∼ P . Using the convexity (with respect to νQ and γQ) of the two terms
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in the expression (2.19) for relative entropy, we have:

I(Qx|P ) − I(Q∗|P )

x

=
T∞
2Ax

{

xγ0 + (1 − x)γ∗ − γP −
∫

|z|≤1
z(xν0 + (1 − x)ν∗ − νP )νP (dz)

}2

1A6=0

− T∞
2Ax

{

γ∗ − γP −
∫

|z|≤1
(ν∗ − νP )νP (dz)

}2

1A6=0

+
T∞
x

∫ ∞

−∞
{(xφ0 + (1 − x)φ∗) log(xφ0 + (1 − x)φ∗) − xφ0 − (1 − x)φ∗ + 1}νP (dz)

− T∞
x

∫ ∞

−∞
{φ∗ log(φ∗) − φ∗ + 1}νP (dz)

≤ T∞
2A

{

γ0 − γP −
∫

|z|≤1
(ν0 − νP )νP (dz)

}2

1A6=0

− T∞
2A

{

γ∗ − γP −
∫

|z|≤1
(ν∗ − νP )νP (dz)

}2

1A 6=0

+ T∞

∫

{φ∗>0}
{φ0 log(φ0) − φ0 + 1}νP (dz) − T∞

∫

{φ∗>0}
{φ∗ log(φ∗) − φ∗ + 1}νP (dz)

+ T∞

∫

{φ∗=0}
{φ0 log(xφ0) − φ0}νP (dz) ≤ I(Q0|P ) + T∞

∫

{φ∗=0}
(φ0 log x− 1)νP (dx)

Since Jα(Qx)−Jα(Q∗) ≥ 0, this expression must be bounded from below. Therefore, νP ({φ∗ =

0}) = 0, and Proposition 1.5 entails that P ≪ Q∗.

Continuity of solutions with respect to data

Theorem 2.16. Let {CnM}n≥1 and CM be data sets of option prices such that

lim
n

‖CnM − CM‖w → 0.

Let P ∈ LNA ∩ L+
B, α > 0, and for each n, let Qn be a solution of the calibration problem

(2.27) with data CnM , prior Lévy process P and regularization parameter α. Then {Qn}n≥1 has

a subsequence, converging weakly to a process Q∗ ∈ M∩L+
B, and the limit of every converging

subsequence of {Qn}n≥1 is a solution of calibration problem (2.27) with data CM , prior P and

regularization parameter α.

Proof. By Lemma 2.12, there exists Q0 ∈ M ∩ L with I(Q0|P ) < ∞. Since, by Lemma 2.2,

‖CQ0 − CnM‖2 ≤ S2
0 for all n, αI(Qn|P ) ≤ S2

0 + αI(Q0|P ) for all n. Therefore, by Lemmas 2.4
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and 2.10 and Prohorov’s theorem, {Qn}n≥1 is weakly relatively compact, which proves the first

part of the theorem.

Choose any subsequence of {Qn}n≥1, converging weakly to a process Q∗ ∈ M ∩ L+
B. , To

simplify notation, this subsequence is denoted again by {Qn}n≥1. The triangle inequality and

Lemma 2.2 imply that

‖CQn − CnM‖2 −−−→
n→∞

‖CQ∗ − CM‖2 (2.33)

Since, by Lemma 2.11, the relative entropy functional is weakly lower semicontinuous in Q,

for every Q ∈ M∩L+
B,

‖CQ∗ − CM‖ + αI(Q|P ) ≤ lim inf
n

{‖CQn − CnM‖2 + αI(Qn|P )}

≤ lim inf
n

{‖CQ − CnM‖2 + αI(Q|P )}

= lim
n

‖CQ − CnM‖2 + αI(Q|P )

= ‖CQ − CM‖2 + αI(Q|P ),

where the second inequality follows from the fact that Qm is the solution of the calibration

problem with data CmM and the last line follows from the triangle inequality.

2.5.2 Convergence of regularized solutions

In this section we study the convergence of solutions of the regularized calibration problem

(2.27) to the solutions of the minimum entropy least squares calibration problem (2.11) when

the noise level in the data tends to zero.

Theorem 2.17. Let {CδM} be a family of data sets of option prices such that ‖CM −CδM‖ ≤ δ,

let P ∈ LNA ∩ L+
B and suppose that there exist a solution Q of problem (2.4) with data CM (a

least squares solution) such that I(Q|P ) <∞.

If ‖CQ − CM‖ = 0 (the constraints are reproduced exactly), let α(δ) be such that α(δ) → 0

and δ2

α(δ) → 0 as δ → 0. Otherwise, let α(δ) be such that α(δ) → 0 and δ
α(δ) → 0 as δ → 0.

Then every sequence {Qδk}, where δk → 0 and Qδk is a solution of problem (2.27) with data

CδkM , prior P and regularization parameter α(δk), has a weakly convergent subsequence. The

limit of every convergent subsequence is a solution of problem (2.11) (MELSS) with data CM

and prior P . If such a MELSS Q+ is unique then limδ→0Q
δ = Q+.
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Proof. By Lemma 2.6, there exists at least one MELSS with data CM and prior P , that has

finite relative entropy with respect to the prior. Let Q+ be any such MELSS. Since Qδk is the

solution of the regularized problem, for every k,

‖CQδk − CδkM‖2 + α(δk)I(Q
δk |P ) ≤ ‖CQ+ − CδkM‖2 + α(δk)I(Q

+|P ).

Using the fact that for every r > 0 and for every x, y ∈ R,

(1 − r)x2 + (1 − 1/r)y2 ≤ (x+ y)2 ≤ (1 + r)x2 + (1 + 1/r)y2,

we obtain that

(1 − r)‖CQδk − CM‖2 + α(δk)I(Q
δk |P )

≤ (1 + r)‖CQ+ − CM‖2 +
2δ2k
r

+ α(δk)I(Q
+|P ), (2.34)

and since Q+ is a least squares solution with data CM , this implies for all r ∈ (0, 1) that

α(δk)I(Q
δk |P ) ≤ 2r‖CQ+ − CM‖2 +

2δ2k
r

+ α(δk)I(Q
+|P ). (2.35)

If the constraints are reproduced exactly, then ‖CQ+−CM‖ = 0 and with the choice r = 1/2,

the above expression yields:

I(Qδk |P ) ≤ 4δ2k
α(δk)

+ I(Q+|P ).

Since, by the theorem’s statement, in the case of exact constraints
δ2
k

α(δk) → 0, this implies that

lim sup
k

{I(Qδk |P )} ≤ I(Q+|P ). (2.36)

If ‖CQ+ − CM‖ > 0 (misspecified model) then the right-hand side of (2.35) achieves its

maximum when r = δk‖CQ
+ − CM‖−1, in which case we obtain

I(Qδk |P ) ≤ 4δk
α(δk)

‖CQ+ − CM‖ + I(Q+|P ).

Since in the case of approximate constraints, δk
α(δk) → 0, we obtain (2.36) once again.

Inequality (2.36) implies in particular that I(Qδk |P ) is uniformly bounded, which proves,

by Lemmas 2.10 and 2.4, that {Qδk} is relatively weakly compact in M∩L+
B.
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Choose a subsequence of {Qδk}, converging weakly to Q∗ ∈ M∩L+
B. To simplify notation,

this subsequence is denoted again by {Qδk}k≥1. Substituting r = δ into Equation (2.34) and

making k tend to infinity shows that

lim sup
k

‖CQδk − CM‖2 ≤ ‖CQ+ − CM‖2.

Together with Lemma 2.2 this implies that

‖CQ∗ − CM‖2 ≤ ‖CQ+ − CM‖2,

hence Q∗ is a least squares solution. By weak lower semicontinuity of I (cf. Lemma 2.11) and

using (2.36),

I(Q∗|P ) ≤ lim inf
k

I(Qδk |P ) ≤ lim sup
k

I(Qδk |P ) ≤ I(Q+|P ),

which means that Q∗ is a MELSS. The last assertion of the theorem follows from the fact that

in this case every subsequence of {Qδk} has a further subsequence converging toward Q+.



Chapter 3

Numerical implementation of the

calibration algorithm

Before solving the calibration problem (2.27) numerically, we reformulate it as follows:

• The calibration problem (2.27) is expressed in terms of the characteristic triplets (A, νQ, γQ)

and (A, νP , γP ) of the prior Lévy process and the solution. This can be done using Equa-

tions (1.1), (1.25) and (1.26) (option pricing by Fourier transform) and Equation (2.19)

(expression of the relative entropy in terms of characteristic triplets).

• The Lévy measure νQ is discretized (approximated by a finite-dimensional object). This

discussed in detail in Section 3.1.

The prior Lévy process P is a crucial ingredient that must be specified by the user. Section

3.2 suggests different ways to do this and studies the effect of a misspecification of the prior

on the solutions of the calibration problem. Section 3.3 discusses the methods to choose the

regularization parameter α based on the data and Section 3.4 treats the choice of weights wi of

different options. Section 3.5 details the numerical algorithm that we use to solve the calibration

problem once the prior, the regularization parameter and the weights have been fixed.

The calibration algorithm, including the automatic choice of the regularization parameter,

has been implemented in a computer program levycalibration and various tests have been

carried out, both on simulated option prices (computed in a known exponential Lévy model)

and using real market data. Section 3.6 discusses the results of these tests.

95
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3.1 Discretizing the calibration problem

A convenient way to discretize the calibration problem is to take a prior Lévy process P with

Lévy measure supported by a finite number of points:

νP =
M−1∑

k=0

pkδ{xk}(dx). (3.1)

In this case, by Proposition 1.5, the Lévy measure of the solution necessarily satisfies νQ ≪ νP ,

therefore

νQ =
M−1∑

k=0

qkδ{xk}(dx), (3.2)

that is, the solution belongs to a finite-dimensional space and can be computed using a numerical

optimization algorithm. The advantage of this discretization approach is that we are solving the

same problem (2.27), only with a different prior measure, so all results of Section 2.5 (existence

of solution, continuity etc.) hold in the finite-dimensional case.

Taking Lévy measures of the form (3.1) we implicitly restrict the class of possible solutions

to Lévy processes with bounded jumps and finite jump intensity. However, in this section we

will see that this restriction is not as important as it seems: the solution of a calibration problem

with any prior can be approximated (in the weak sense) by a sequence of solutions of calibration

problems with priors having Lévy measures of the form (3.1). Moreover, in Section 3.6.1 we

will observe empirically that smiles produced by infinite intensity models can be calibrated with

arbitrary precision by such jump-diffusion models.

We start with a lemma showing that every Lévy process can be approximated by Lévy

processes with atomic Lévy measures.

Lemma 3.1. Let P be a Lévy process with characteristic triplet (A, ν, γ) with respect to a

continuous bounded truncation function h, satisfying h(x) = x in a neighborhood of 0, and for

every n, let Pn be a Lévy process with characteristic triplet (A, νn, γ) (with respect to the same

truncation function) where

νn :=

2n∑

k=1

δ{xk}(dx)
µ([xk − 1/

√
n, xk + 1/

√
n))

1 ∧ x2
k

,

xk := (2(k − n) − 1)/
√
n and µ is a finite measure on R, defined by µ(B) :=

∫

B(1 ∧ x2)ν(dx)

for all B ∈ B(R). Then Pn ⇒ P .
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Proof. For a function f ∈ Cb(R), define

fn(x) :=







0, x ≥ 2
√
n,

0, x < −2
√
n,

f(xi), x ∈ [xi − 1/
√
n, xi + 1/

√
n) with 1 ≤ i ≤ 2n,

Then clearly
∫

(1 ∧ x2)f(x)νn(dx) =

∫

fn(x)µ(dx).

Since f(x) is continuous, fn(x) → f(x) for all x and since f is bounded, the dominated conver-

gence theorem implies that

lim
n

∫

(1 ∧ x2)f(x)νn(dx) = lim
n

∫

fn(x)µ(dx) =

∫

f(x)µ(dx) =

∫

(1 ∧ x2)f(x)ν(dx). (3.3)

With f(x) ≡ h2(x)
1∧x2 the above yields:

lim
n

∫

h2(x)νn(dx) =

∫

h2(x)ν(dx).

On the other hand, for every g ∈ Cb(R) such that g(x) ≡ 0 on a neighborhood of 0, f(x) := g(x)
1∧x2

belongs to Cb(R). Therefore, from Equation (3.3), lim
n

∫
g(x)νn(dx) =

∫
g(x)ν(dx), and by

Proposition (1.7), Pn ⇒ P .

Theorem 3.2. Let P, {Pn}n≥1 ⊂ LNA ∩ L+
B such that Pn ⇒ P , let α > 0, let CM be a data

set of option prices and for each n let Qn be a solution of the calibration problem (2.27) with

prior Pn, regularization parameter α and data CM . Then the sequence {Qn}n≥1 has a weakly

convergent subsequence and the limit of every weakly convergent subsequence of {Qn}n≥1 is a

solution of the calibration problem (2.27) with prior P .

Proof. By Lemma 2.12, there exists C <∞ such that for every n, one can find Q̃n ∈ M∩L with

I(Q̃n|Pn) ≤ C. Since, by Lemma 2.2, ‖CQ̃n − CM‖2
w ≤ S2

0 for every n and Qn is the solution

of the calibration problem, I(Qn|Pn) ≤ S2
0/α + C < ∞ for every n. Therefore, by Lemma

2.10, {Qn} is tight and, by Prohorov’s theorem and Lemma 2.4, weakly relatively compact in

M ∩ L+
B. Choose a subsequence of {Qn}, converging weakly to Q ∈ M ∩ L+

B. To simplify

notation, this subsequence is also denoted by {Qn}n≥1. It remains to show that Q is indeed a

solution of the calibration problem with prior P .
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Lemma 2.11 entails that

I(Q,P ) ≤ lim inf
n
I(Qn, Pn), (3.4)

and since, by Lemma 2.2, the pricing error is weakly continuous, we also have

‖CQ − CM‖2
w + αI(Q,P ) ≤ lim inf

n
{‖CQn − CM‖2

w + αI(Qn, Pn)}. (3.5)

Let φ ∈ Cb(Ω) with φ ≥ 0 and EP [φ] = 1. Without loss of generality we can suppose that for

every n, EPn [φ] > 0 and therefore Q′
n, defined by Q′

n(B) := EPn [φ1B ]
EPn [φ]

, is a probability measure

on Ω. Clearly, Q′
n converges weakly to Q′ defined by Q′(B) := EP [φ1B]. Therefore, by Lemma

2.2,

lim
n

‖CQ′
n − CM‖2

w = ‖CQ′ − CM‖2
w. (3.6)

Moreover,

lim
n
I(Q′

n|Pn) = lim
n

∫

Ω

φ

EPn [φ]
log

φ

EPn [φ]
dPn

= lim
n

1

EPn [φ]

∫

Ω
φ log φdPn − lim

n
log

∫

Ω
φdPn =

∫

Ω
φ logφdP. (3.7)

For the rest of this proof, for every φ ∈ L1(P ) with φ ≥ 0 and EP [φ] = 1 let Qφ denote the

probability measure on Ω, defined by Qφ(B) := EP [φ1B] for every B ∈ F . Using (3.5–3.7) and

the optimality of Qn, we obtain that for every φ ∈ Cb(Ω) with φ ≥ 0 and EP [φ] = 1,

‖CQ − CM‖2
w + I(Q,P ) ≤ ‖CQφ − CM‖2

w + I(Qφ|P ) (3.8)

To complete the proof of the theorem, we must generalize this inequality to all φ ∈ L1(P ) with

φ ≥ 0 and EP [φ] = 1.

First, let φ ∈ L1(P ) ∩ L∞(P ) with φ ≥ 0 and EP [φ] = 1. Then there exists a sequence

{φn} ⊂ Cb(Ω) such that φn → φ in L1(P ), φn ≥ 0 for all n and φn are bounded in L∞ norm

uniformly on n. Moreover, φ′n := φn/E
P [φn] also belongs to L1(P ), is positive and φ′n

L1(P )−−−−→ φ

because by the triangle inequality,

‖φ′n − φ‖L1 ≤ 1

EP [φn]

(
‖φn − φ‖L1 + ‖φ− φEP [φn]‖L1

)
−−−→
n→∞

0.

In addition, it is easy to see that Qφ′n ⇒ Qφ. Therefore,

lim
n

‖CQφ′
n − CM‖2

w = ‖CQφ − CM‖2
w
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Since φ′n are bounded in L∞ norm uniformly on n, φ′n log φ′n is also bounded and the dominated

convergence theorem implies that limn I(Qφ′n |P ) = I(Qφ|P ). Passing to the limit in (3.8), we

obtain that this inequality holds for every φ ∈ L1(P ) ∩ L∞(P ) with φ ≥ 0 and EP [φ] = 1.

Let us now choose a nonnegative φ ∈ L1(P ) with EP [φ] = 1. If I(Qφ|P ) = ∞ then surely

(3.8) holds, therefore we can suppose I(Qφ|P ) < ∞. Let φn = φ ∧ n. Then φn → φ in L1(P )

because

‖φn − φ‖L1 ≤
∫

φ≥n
φdP =

∫

φ≥n

φ log φ

log φ
dP ≤ I(Qφ|P )

logn
→ 0.

Denoting φ′n := φn/E
P [φn] as above, we obtain that

lim
n

‖CQφ′
n − CM‖2

w = ‖CQφ − CM‖2
w

Since, for a sufficiently large n, |φn(x) log φn(x)| ≤ |φ(x) log φ(x)|, we can once again apply the

dominated convergence theorem:

lim
n

∫

φ′n logφ′ndP =
1

limnEP [φn]
lim
n

∫

φn log φndP − lim
n

logEP [φn] =

∫

φ log φdP

Therefore, by passage to the limit, (3.8) holds for all φ ∈ L1(P ) with φ ≥ 0 and EP [φ] = 1,

which completes the proof of the theorem.

To approximate numerically the solution of the calibration problem (2.27) with a given prior

P , we need to construct, using Lemma 3.1, an approximating sequence {Pn} of Lévy processes

with atomic measures such that Pn ⇒ P . The sequence {Qn} of solutions corresponding to this

sequence of priors will converge (in the sense of Theorem 3.2) to a solution of the calibration

problem with prior P .

3.2 Choice of the prior Lévy process

The prior Lévy process must, generally speaking, reflect the user’s view of the model. It is

one of the most important ingredients of the calibration method and cannot be determined

completely automatically because the choice of the prior has a strong influence on the outcome

of the calibration. The user should therefore specify a characteristic triplet (AP , νP , γP ) of

the prior P . A natural solution, justified by the economic considerations of Section 2.3 is

to take the historical probability, resulting from statistical estimation of an exponential Lévy
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model from the time series of asset returns. Since, under the conditions of Theorem 2.14,

the calibration procedure yields a martingale probability equivalent to the prior, the choice

of historical probability as prior ensures the absence of arbitrage opportunity involving stock

and options in the calibrated model. Estimation of exponential Lévy models is not discussed

here and interested reader is referred to [27, Chapter 7]. Specific exponential Lévy models

are discussed in [57] (Merton model), [79] (generalized hyperbolic model) and [21] (CGMY or

tempered stable model). [9] and [12] treat more general jump-diffusion type models.

To ensure the stability of calibrated Lévy measures over time, one can systematically choose

the calibrated exponential Lévy model of the previous day as today’s prior. This choice guar-

antees that the current calibrated Lévy measure will be altered in the least possible way, to

accommodate the arrival of new option pricing information.

Alternatively, the prior can simply correspond to a model that seems “reasonable” to the

user (e.g. an analyst). In this case our calibration method may be seen as a way to make the

smallest possible change in this model to take into account the observed option prices.

When the user does not have such detailed views, it should be possible to generate a reference

measure P automatically from options data. To do this we choose an auxiliary model Q(θ) (e.g.

Merton model) described by a finite-dimensional parameter vector θ and calibrate it to data

using the least squares procedure:

θ∗ = arg min
θ

‖CQ(θ) − CM‖2
w (3.9)

It is generally not a good idea to recalibrate this parametric model every day, because in this

case the prior will completely lose its stabilizing role. On the contrary, one should try to find

typical parameter values for a particular market (e.g. averages over a long period) and fix

them once and for all. Since the objective function in (3.9) is usually not convex, a simple

gradient descent procedure may not give the global minimum. However, the solution Q(θ∗) will

be corrected at later stages and should only be viewed as a way to regularize the optimization

problem (2.4) so the minimization procedure at this stage need not be precise.

Theorem 3.2 shows that the calibrated solutions are continuous with respect to the prior,

that is, small changes in the prior process induce small changes in the solutions. To assess

empirically the influence of finite changes in the prior on the result of calibration, we have

carried out two series of numerical tests. In the first series of tests, Lévy measure was calibrated
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twice to the same set of option prices using prior models that were different but close to each

other (see Section 3.5.3 for the description of the calibration algorithm). Namely, in the test A

we used Merton model with diffusion volatility σ = 0.2, zero mean jump size, jump standard

deviation of 0.1 and intensity λ = 3, whereas in the test B all the parameters except intensity

had the same values and the intensity was equal to 2. The result of the test is shown in

Figure 3.1. The solid curves correspond to calibrated measures and the dotted ones depict

the prior measures. Notice that there is very little difference between the calibrated measures,

which means that, in harmony with Theorem 3.2, the result of calibration is robust to minor

variations of the parameters of prior measure, as long as its qualitative shape remains the same.

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
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Figure 3.1: Lévy measures calibrated to the same data set using two prior measures similar to

each other. Solid curves correspond to calibrated measures and dotted ones depict the priors.

In the second series of tests we have again calibrated the Lévy measure twice to the same

set of option prices, this time taking two radically different priors. Namely, in test A we used

Merton model with diffusion volatility σ = 0.2, zero mean jump size, jump standard deviation

of 0.1 and intensity λ = 2, whereas in test B we took a uniform Lévy measure on the interval

[−1, 0.5] with intensity λ = 2. The calibrated measures (solid lines in Figure 3.2) are still similar

but exhibit much more differences than in the first series of tests. Not only they are different
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in the middle, but also the behavior of tails of the calibrated Lévy measure with uniform prior

is more erratic than in the case where Merton model was used as prior (see Figure 3.2, right

graph).

Comparison of Figures 3.1 and 3.2 shows that the exact values of parameters of the prior

model are not very important, but it is crucial to find the right shape of the prior.
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Figure 3.2: Lévy measures calibrated to the same data set using two qualitatively different

priors. Solid curves correspond to calibrated measures and dotted ones depict the priors. Right

graph: zoom of the left tail of Lévy densities on log scale.

3.3 Choice of the regularization parameter

Theorem 2.17 of the preceding chapter suggests that for the regularization method to converge,

the parameter choice strategy α(δ) must satisfy the following limiting relations, when the data

error δ goes to zero:

• α(δ) → 0,

• If the exact data CM is attainable by the model, one must have δ2

α(δ) → 0 and if not,

δ
α(δ) → 0.
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A typical example of a parameter choice rule that works in both attainable and unattainable

cases would be

α(δ) = Cδµ (3.10)

with any C > 0 and any µ ∈ (0, 1).

However, in real calibration problems the error level δ is fixed and finite and rules of type

(3.10) do not tell us how we should choose α in this case. Good performance and error control

for finite values of δ is achieved by using the so called a posteriori parameter choice rules

(α depends not only on δ but also on the data Cδ
M ), the most widely used of which is the

discrepancy principle, originally developed by Morozov for Tikhonov regularization in Banach

spaces [74, 75], see also [40]. In the rest of this section we apply this principle and its variants

that is better suited for nonlinear problems to our entropic regularization method.

3.3.1 A posteriori parameter choice rules for attainable calibration problems

In this subsection we make the following standing assumptions:

1. The prior Lévy process corresponds to an arbitrage-free model with jumps bounded from

above by B: P ∈ LNA ∩ L+
B (this implies the existence of a minimal entropy martingale

measure Q∗).

2. There exists a solution Q+ of problem (2.11) with data CM (minimum entropy least

squares solution) such that

I(Q+|P ) <∞ and

‖CQ+ − CM‖w = 0 (the data is attainable by an exp-Lévy model).

3. There exists δ0 such that

εmax := inf
δ≤δ0

‖CQ∗ − CδM‖2
w > δ20. (3.11)

Remark 3.1. In the condition (3.11), δ0 can be seen as the highest possible noise level of all data

sets that we consider. If, for some δ, ‖CQ∗ − CδM‖w < δ0 then either Q∗ is already sufficiently

close to the solution or the noise level is so high that all the useful information in the data is
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completely blurred and the data does not allow to construct a better approximation of the true

solution than Q∗.

Let Qδα denote a solution of the regularized problem (2.27) with data Cδ
M and regularization

parameter α. The function

εδ(α) := ‖CQδ
α − CδM‖2

w

is called the discrepancy function of the calibration problem (2.27). Note that since this problem

can have many solutions, εδ(α) is a priori a multivalued function. Given two constants c1 and

c2 satisfying

1 < c1 ≤ c2 <
εmax

δ20
, (3.12)

the discrepancy principle can be stated as follows:

Discrepancy principle For a given noise level δ, choose α > 0 that satisfies

δ2 < c1δ
2 ≤ εδ(α) ≤ c2δ

2, (3.13)

If, for a given α, the discrepancy function has several possible values, the above inequalities

must be satisfied by each one of them.

The intuition behind this principle is as follows. We would like to find a solution Q of

the equation CQ = CM . Since the error level in the data is of order δ, it is the best possible

precision that we can ask for in this context, so it does not make sense to calibrate the noisy

data CδM with a precision higher than δ. Therefore, we try to solve ‖CQδ
α − CδM‖2

w ≤ δ2. In

order to gain stability we must sacrifice some precision compared to δ, therefore, we choose a

constant c with 1 . c, for example, c = 1.1 and look for Qδ
α in the level set

‖CQδ
α − CδM‖2

w ≤ cδ2. (3.14)

Since, on the other hand, by increasing precision, we decrease the stability, the highest stability

is obtained when the inequality in (3.14) is replaced by equality and we obtain

εδ(α) ≡ ‖CQδ
α − CδM‖2

w = cδ2.

To make the numerical solution of the equation easier, we do not impose a strict value of the

discrepancy function but allow it to lie between two bounds, obtaining (3.13).
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Supposing that an α solving (3.13) exists, it is easy to prove the convergence of the regular-

ized solutions to the minimal entropy least squares solution, when the regularization parameter

is chosen using the discrepancy principle.

Proposition 3.3. Suppose that the hypotheses 1–3 of page 103 are satisfied and let c1 and c2 be

as in (3.12). Let {CδkM}k≥1 be a sequence of data sets such that ‖CM −CδkM‖w < δk and δk → 0.

Then the sequence {Qδk
αk
}k≥1 where Qδkαk

is a solution of problem (2.27) with data Cδk
M , prior

P and regularization parameter αk chosen according to the discrepancy principle, has a weakly

convergent subsequence. The limit of every such subsequence of {Qδk
αk
}k≥1 is a MELSS with

data CM and prior P .

Proof. Using the optimality of Qδk

αk
, we can write:

εδk(αk) + αkI(Q
δk

αk
|P ) ≤ ‖CQ+ − CδkM‖2

w + αkI(Q
+|P ) ≤ δ2k + αkI(Q

+|P ).

The discrepancy principle (3.13) then implies that

I(Qδ
k

αk
|P ) ≤ I(Q+|P ), (3.15)

By Lemma 2.10, the sequence {Qδk
αk
}k≥1 is tight and therefore, by Prohorov’s theorem and

Lemma 2.4, relatively weakly compact in M∩L+
B.

Choose a subsequence of {Qδk
αk
}k≥1, converging weakly to a limit Q and denoted, to simplify

notation, again by {Qδk
αk
}k≥1. Inequality (3.13) and the triangle inequality yield:

‖CQ
δk
αk − CM‖w ≤ ‖CQ

δk
αk − CδkM‖w + δk ≤ δk(1 +

√
c2) −−−→

k→∞
0.

By Lemma 2.2 this means that ‖CQ −CM‖w = 0 and therefore Q is a solution. By weak lower

semicontinuity of I (cf. Corollary 2.1) and using (3.15),

I(Q|P ) ≤ lim inf
k

I(Qδkαk
|P ) ≤ lim sup

k
I(Qδkαk

|P ) ≤ I(Q+|P ),

which means that Q is a MELSS.

The discrepancy principle performs well for regularizing linear operators but may fail in

nonlinear problems like (2.27), because Equation (3.13) may have no solution due to disconti-

nuity of the discrepancy function εδ(α). Examples of nonlinear ill-posed problems to which the
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discrepancy principle cannot be applied are given in [95] and [50]. However, in our numerical

tests (see Section 3.6) we have always been able to find a solution to (3.13)

We will now give a simple sufficient condition, adapted from [94], under which (3.13) admits

a solution.

Proposition 3.4. Suppose that the hypotheses 1–3 of page 103 are satisfied and let c1 and c2

satisfy (3.12). If εδ(α) is a single-valued function then there exists an α satisfying (3.13).

This proposition is a direct consequence of the following lemma.

Lemma 3.5. The function εδ(α) is non-decreasing and satisfies the following limit relations:

lim
α↓0

εδ(α) ≤ δ2, lim
α→∞

εδ(α) = ‖CQ∗ − CδM‖2
w.

If, at some point α > 0, εδ(α) is single-valued, then it is continuous at this point.

The function

Jδ(α) := ‖CQδ
α − CδM‖2

w + αI(Qδα|P ).

is non-decreasing, continuous, and satisfies the following limit relations:

lim
α↓0

Jδ(α) ≤ δ2, lim
α→∞

Jδ(α) ≥ ‖CQ∗ − CδM‖2
w.

Proof. Let γδ(α) := I(Qδα|P ) and let 0 < α1 < α2. By the optimality of Qδ
α1

and Qδα2
we have:

εδ(α1) + α1γδ(α1) ≤ εδ(α2) + α1γδ(α2),

εδ(α2) + α2γδ(α2) ≤ εδ(α1) + α2γδ(α1)

and therefore

εδ(α2) − εδ(α1) ≥ α1(γδ(α1) − γδ(α2))

εδ(α2) − εδ(α1) ≤ α2(γδ(α1) − γδ(α2)),

which implies that εδ(α2) ≥ εδ(α1) and γδ(α1) ≥ γδ(α2). To prove the first limit relation for

εδ(α), observe that for all α > 0,

εδ(α) ≤ ‖CQ+ − CδM‖2
w + αI(Q+|P ) ≤ δ2 + αI(Q+|P ) −−−→

α→0
δ2.

To prove the second limit relation for εδ(α), one can write, using the optimality of Qδ
α:

εδ(α) + αγδ(α) ≤ ‖CQ∗ − CδM‖2
w + αI(Q∗|P ).
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From [30, Theorem 2.2],

γδ(α) ≥ I(Qδα|Q∗) + I(Q∗|P ). (3.16)

Therefore

I(Qδα|Q∗) ≤ ‖CQ∗ − CδM‖2
w

α
−−−→
α→∞

0.

Using the inequality

|P −Q| ≤
√

2I(P |Q), (3.17)

where |P −Q| denotes the total variation distance (see [30, Equation (2.3)]), this implies that

Qδα converges to Q∗ in total variation distance (and therefore also weakly) as α goes to infinity.

The limit relation now follows from Lemma 2.2.

To prove the continuity of εδ(α), let {αn} be a sequence of positive numbers, converging to

α > 0. By the optimality of Qδ
αn

, I(Qδαn
|P ) is bounded and one can choose a subsequence of

{Qδαn
}, converging weakly toward some measure Q′, and denoted, to simplify notation, again

by {Qδαn
}n≥1. We now need to prove that Q′ is the solution of the calibration problem with

regularization parameter α. By weak continuity of the pricing error (Lemma 2.2) and weak

lower semicontinuity of the relative entropy (Lemma 2.11), we have for any other measure Q:

‖CQ′ − CδM‖2
w + αI(Q′|P ) ≤ lim inf

n
{‖CQδ

αn − CδM‖2
w + αI(Qδαn

|P )}

= lim inf
n
{‖CQδ

αn − CδM‖2
w + αnI(Q

δ
αn

|P ) + (α− αn)I(Q
δ
αn

|P )}

≤ lim inf
n
{‖CQ − CδM‖2

w + αnI(Q|P ) + (α− αn)I(Q
δ
αn

|P )}

= ‖CQ − CδM‖2
w + αI(Q|P ).

Therefore, the sequence {εδ(αn)} converges to one of the possible values of εδ(α). If this function

is single-valued in α, this means that every subsequence of the original sequence {εδ(αn)} has

a further subsequence that converges toward εδ(α), and therefore, the original sequence also

converges toward εδ(α).

The fact that Jδ(α) is nondecreasing as a function of α is trivial. To show the continuity,

observe that for 0 < α1 < α2,

Jδ(α2) − Jδ(α1) ≤ εδ(α1) + α2γδ(α1) − εδ(α1) − α1γδ(α1)

= (α2 − α1)γδ(α1) ≤ (α2 − α1)I(Q
+|P ).
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The limit relations for Jδ(α) follow from the relations for εδ(α).

We will now present an alternative a posteriori parameter choice rule, which reduces to the

discrepancy principle when inequality (3.13) has a solution but also works when this is not

the case. However, if the parameter is chosen according to the alternative rule, the sequence

of regularized solutions does not necessarily converge to a minimum entropy solution as in

Proposition 3.3 but to a solution with bounded entropy (see Proposition 3.7). Our treatment

partly follows [50] where this parameter choice rule is applied to Tikhonov regularization.

Alternative principle For a given noise level δ, if there exists α > 0 that satisfies

c1δ
2 ≤ εδ(α) ≤ c2δ

2, (3.18)

choose one such α; otherwise, choose an α > 0 that satisfies

εδ(α) ≤ c1δ
2, Jδ(α) ≥ c2δ

2. (3.19)

Proposition 3.6. Suppose that the hypotheses 1–3 of page 103 are satisfied and let c1 and c2

be as in (3.12). Then there exists α > 0 satisfying either (3.18) or (3.19).

Proof. Suppose that (3.18) does not admit a solution. We need to prove that there exists α > 0

satisfying (3.19). Let

B := {α > 0 : εδ(α) ≤ c1δ
2} and U := {α > 0 : εδ(α) > c2δ

2}.

The limit relations of Lemma 3.5 imply that both sets are nonempty. Moreover, since we have

assumed that (3.18) does not admit a solution, necessarily supB = inf U . Let α∗ := supB ≡
inf U . Now we need to show that

Jδ(α
∗) > c2δ

2. (3.20)

By continuity of Jδ(α),

Jδ(α
∗) ≥ c2δ

2 + lim
α↓α∗

γδ(α).

If limα↓α∗ γδ(α) > 0 then (3.20) holds. Otherwise from (3.16), P is the minimal entropy martin-

gale measure and (3.17) implies that Qδ
α ⇒ P as α ↓ α∗. Therefore, Jδ(α

∗) = limα↓α∗ εδ(α) =

‖CQ∗ − CδM‖2
w > c2δ

2 and (3.20) is also satisfied.
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By continuity of Jδ(α), there exists ∆ > 0 such that Jδ(α
∗ − ∆) > c2δ

2. However, since

α∗ = supB and εδ(α) is nondecreasing, necessarily εδ(α
∗ − ∆) ≤ c1δ

2. Therefore, α − ∆ is a

solution of (3.19).

Remark 3.2. If c1 < c2, one can show, along the lines of the above proof, that there exists not

a single α that satisfies either (3.18) or (3.19) but an interval of nonzero length (α1, α2), such

that each point inside this interval satisfies one of the two conditions. From the computational

viewpoint this means that a feasible α can be found by bisection with a finite number of

iterations.

Proposition 3.7. Suppose that the hypotheses 1–3 of page 103 are satisfied and that c1 and c2

are chosen according to (3.12). Let {Cδk
M}k≥1 be a sequence of data sets such that ‖CM−CδkM‖w <

δk and δk → 0.

Then the sequence {Qδk
αk
}k≥1 where Qδkαk

is a solution of problem (2.27) with data Cδk
M , prior

P and regularization parameter αk chosen according to the alternative principle, has a weakly

convergent subsequence. The limit Q′ of every such subsequence of {Qδk
αk
}k≥1 satisfies

‖CQ′ − CM‖w = 0

I(Q′|P ) ≤ c2
c2 − 1

I(Q+|P ).

Proof. Using the optimality of Qδk

αk
, we can write:

εδk(αk) + αkI(Q
δk

αk
|P ) ≤ ‖CQ+ − CδkM‖2

w + αkI(Q
+|P ) ≤ δ2 + αkI(Q

+|P ). (3.21)

If αk satisfies (3.18), the above implies that

I(Qδ
k

αk
|P ) ≤ I(Q+|P ),

otherwise (3.19) entails that

εδk(αk) + αkI(Q
δk

αk
|P ) ≥ c2δ

2,

and together with (3.21) this gives

I(Qδ
k

αk
|P ) ≤ c2

c2 − 1
I(Q+|P ).

In both cases I(Qδk

αk
|P ) is uniformly bounded, which means, by Lemma 2.10, that the sequence

{Qδkαk
}k≥1 is tight and therefore, by Prohorov’s theorem, relatively weakly compact. The rest

of the proof follows the lines of the proof of Proposition 3.3.
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3.3.2 A posteriori parameter choice rule for non-attainable calibration prob-

lems

In this subsection we suppose that hypothesis 1 of page 103 is satisfied and that hypotheses 2

and 3 are replaced with the following ones:

2a. There exists a solution Q+ of problem (2.11) with data CM such that

I(Q+|P ) <∞ and

‖CQ+ − CM‖w > 0 (the data is not attainable by an exp-Lévy model).

3a. There exists δ0 such that

εmax := inf
δ≤δ0

{‖CQ∗ − CδM‖2
w − ‖CQ+ − CδM‖2

w} > 0.

Given two constants c1 and c2 satisfying

0 < c1 ≤ c2 <
εmax

δ20
, (3.22)

the discrepancy principle can be stated as follows:

Discrepancy principle for non-attainable data For a given noise level δ, choose α > 0

that satisfies

c1δ
2 ≤ εδ(α) − εδ(0) ≤ c2δ

2, (3.23)

Proofs of the following two results are similar to the proofs of Propositions 3.4 and 3.3 of

the preceding subsection and are therefore omitted.

Proposition 3.8. Suppose that hypothesis 1 of page 103 and hypotheses 2a and 3a of page 110

are satisfied and let c1 and c2 satisfy (3.22). If εδ(α) is a single-valued function then there exists

an α satisfying (3.23).

Proposition 3.9. Suppose that hypothesis 1 of page 103 and hypotheses 2a and 3a of page 110

are satisfied and let c1 and c2 satisfy (3.22) for all δ. Let {Cδk
M}k≥1 be a sequence of data sets

such that ‖CM − CδkM‖w ≤ δk and δk → 0.
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Then the sequence {Qδk
αk
}k≥1 where Qδkαk

is a solution of problem (2.27) with data Cδk
M , prior

P and regularization parameter αk chosen according to the discrepancy principle, has a weakly

convergent subsequence. The limit of every such subsequence of {Qδk
αk
}k≥1 is a MELSS with

data CM and prior P .

The alternative principle of the preceding section does not carry over to non-attainable

problems as easily and is not discussed here.

3.3.3 Computing the noise level

If the bid and ask prices are known, the noise level δ and an estimate of option prices C δ
M can

be computed directly using

CδM (T,K) :=
CbidM (T,K) + Cask(T,K)

2
, ∀T,K,

δ :=
‖CbidM − CaskM ‖w

2
.

Since for all i, the true option prices satisfy CM (Ti,Ki) ∈ (CbidM , CaskM ), we clearly have ‖CδM −
CM‖w ≤ δ.

If the bid and ask prices are unavailable, one can assess the order of magnitude of δ directly

from CδM , using the following heuristic argument. Suppose that the exact data CM is attainable

and that the errors in different option prices are independent. Then it is reasonable to assume

that the main part of error, present in Cδ
M will lead to violations of arbitrage constraints on

option prices (e.g. convexity). Since the least squares solution Q+ is an arbitrage-free model,

these violations of no-arbitrage constraints will contribute to the discrepancy ‖CQ+ −CδM‖2
w ≡

εδ(0), as shown in Figure 3.3. Therefore, εδ(0) will have the same order of magnitude as δ2

and one can approximately take δ ∼
√

εδ(0). Since the noise level δ is only used to choose

the regularization parameter α, we do not need to know it with high precision and this rough

estimate is sufficient.

3.4 Choice of the weights of option prices

The relative weights wi of option prices in the pricing error term (2.3) should reflect our con-

fidence in individual data points, which is determined by the liquidity of a given option. This
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Least squares calibration
Noisy market data

Figure 3.3: Estimating the noise level in the data.

can be assessed from the bid-ask spreads by choosing

wi :=
w

(CbidM (Ti,Ki) − CaskM (Ti,Ki))2
,

where w is the normalization constant, determined from
∑

iwi = 1. However, the bid and

ask quotes are not always available from option price data bases. On the other hand, it is

known that at least for the options that are not too far from the money, the bid-ask spread

in implied volatility units is of order of 1%. This means that to have errors proportional to

bid-ask spreads, one must minimize the differences of implied volatilities and not those of the

option prices. However, this would prohibitively increase the computational burden since one

would have to invert numerically the Black-Scholes formula once for each data point at each

minimization step. each A feasible solution is to minimize the squared differences of option

prices weighted by the Black Scholes “vegas” evaluated at the points corresponding to market

option prices. Denoting the implied volatility computed in the model Q for strike K and

maturity T by ΣQ(T,K) and the corresponding market implied volatility by ΣM (T,K), we
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have the following approximation:

N∑

i=1

(ΣQ(Ti,Ki) − ΣM (Ti,Ki))
2

≈
N∑

i=1

(
∂Σ

∂C
(CM (Ti,Ki))|CQ(Ti,Ki) − CM (Ti,Ki)|

)2

=

N∑

i=1

(CQ(Ti,Ki) − CM (Ti,Ki))
2

Vega2(ΣM (Ti,Ki))
, (3.24)

where Vega denotes the derivative of the Black-Scholes option price with respect to volatility:

Vega(σ) = S
√
Tn

(
1

σ
√
T

log

(
S

Ke−rT

)

+
1

2
σ
√
T

)

,

with n denoting the CDF of the standard normal distribution. Therefore, by using wi = w

Vega2

i

one can achieve the correct weighting of option prices without increasing the computational

burden1 (because wi can be computed in advance.)

3.5 Numerical solution of calibration problem

Once the (discrete) prior P = P (A, νP , γP ), the regularization parameter α and the weights wi

have been fixed, it remains to find the numerical solution of the calibration problem (2.27).

We construct an approximate solution of the calibration problem (2.27) by minimizing an

approximation of the calibration functional Jα(Q), denoted by

Ĵα(Q) := ‖CM − ĈQ‖2
w + αI(Q|P ), (3.25)

where ĈQ is the approximate option price defined by Equation (3.31) below. The minimization

is done over all Lévy processes Q ∈ M ∩ L+
B with Lévy measures of the form (3.2). The

calibration functional therefore becomes a function of a finite number of arguments:

Ĵα(Q) = Ĵα(q0, . . . , qM−1), (3.26)

To minimize (3.26) we use a variant of the popular Broyden-Fletcher-Goldfarb-Shanno (BFGS)

variable metric algorithm. For a description of the algorithm see [80]. This algorithm requires

1Since vegas can be very small for out of the money options, to avoid giving them too much weight one should

impose a lower bound on the vegas used for weighting, i.e., use weights of the form wi = w

(Vega
i
∧C)2

with some

constant C ∼ 10−2
÷ 10−1.
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the user to supply the function value and its gradient and tries, iteratively, to build up a good

approximation of the inverse Hessian matrix of the functional being optimized. In our numerical

examples we used the LBFGS implementation by Jorge Nocedal et al. [20]. The algorithm is

typically initialized with the prior Lévy measure.

Since gradient-based methods only allow to find one local minimum of the objective function

and the calibration functional (3.26) is not convex, there is no guarantee that the BFGS algo-

rithm will converge to its true global minimum. However, starting the optimization procedure

from different initializers, we have empirically observed (see Section 3.6.1) that in presence of

even a small regularization, the minimizers do not depend on the starting point of the minimiza-

tion algorithm and that using a gradient-based optimization procedure produces an acceptable

calibration quality.

In the rest of this section we show how to compute numerically the functional (3.26) and

its gradient. For simplicity, from now on we will suppose that the prior Lévy process has a

non-zero diffusion part (A > 0).

3.5.1 Computing the calibration functional

Substituting the discrete expressions (3.1) and (3.2) into formula (3.25), we obtain:

Ĵα(Q) =
N∑

i=1

wi(Ĉ
Q(Ti,Ki) − CM (Ti,Ki))

2

+
α

2A




A

2
+ bP +

M−1∑

j=0

(exj − 1)qj





2

+ α
M−1∑

j=0

(qj log(qj/pj) + 1 − qj) , (3.27)

where bP = γP −
∫

|x|≤1 xν
P (dx) is the drift of the prior process. The last two terms of the

above equation can be evaluated directly using a finite number of computer operations, we will

therefore concentrate on the first term.

The approximate option prices ĈQ(Ti,Ki) are computed using the Fourier transform algo-

rithm of Section 1.4 as follows: for each maturity date, present in the data, prices are first

computed on a fixed grid of strikes and then interpolated to obtain prices at strikes Ki corre-

sponding to this maturity date. The number of Fourier transforms is thus determined by the

number of maturity dates present in the data, which is typically smaller than 10.

To use the Fourier transform method, the first step is to compute the characteristic exponent
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of Xt under Q at the points u− i for real u:

ψQ(u− i) = −A
2
u(u− i) − (1 + iu)

M−1∑

j=0

(exj − 1)qj −
M−1∑

j=0

qj +
M−1∑

j=0

eiuxjexjqj .

Introducing uniform grids

xj = x0 + jd and uk = u0 − k∆,

the last term becomes:

M−1∑

j=0

eiukxjexjqj = e−ik∆x0

M−1∑

j=0

e−ikjd∆e(iu0+1)xjqj

and comparing this to Equation (1.27), we see that if d∆ = 2π
M , the last term of {ψQ(uk−i)}M−1

k=0

becomes a discrete Fourier transform (cf. Equation (1.27)):

ψk := ψQ(uk − i) = −A
2
uk(uk − i) − (1 + iuk)

M−1∑

j=0

(exj − 1)qj −
M−1∑

j=0

qj

+ e−ik∆x0DFTk[e
(iu0+1)xjqj ]. (3.28)

This expression can therefore be computed using the fast Fourier transform algorithm. Note

that at this stage all computations are exact: there are no truncation or discretization errors.

For a given maturity date T we now need to compute the Fourier transform ζ̃T of the

modified time value of options (see Equation (1.25)) at the points {uk}M−1
k=0 :

ζ̃T (uk) = eiukrT
eTψk − e−

AT
2

(uk(uk−i))

iuk(1 + iuk)
. (3.29)

Option time values are then approximated using Equation (1.28) on the same grid of log-strikes

{xj}M−1
j=0 that was used to discretize the Lévy measure.2 In the following equation and below

we denote approximated quantities by putting a hat over the corresponding variables.

ˆ̃zT (xj) =
∆

2π
e−ixjuM−1

M−1∑

k=0

wkζ̃T (uM−1−k)e
−ix0∆ke−2πijk/M

=
∆

2π
e−ixjuM−1DFTj [wkζ̃T (uM−1−k)e

−ix0∆k], (3.30)

2Actually, the grid of log-strikes may be shifted but we do not do this here to simplify the formulas.
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where wk are the weights corresponding to the chosen integration rule. For a given strike K

such that x0 ≤ logK ≤ xM−1, the option price can now be computed by linear interpolation

(other interpolation methods can also be used):

ĈQ(T,K) = C
√
A

BS (T,K) +
logK − xnK

xnK+1 − xnK

ˆ̃zT (xnK+1) +
xnK+1 − logK

xnK+1 − xnK

ˆ̃zT (xnK
), (3.31)

where nK := sup{n : xn ≤ logK} and C
√
A

BS (T,K) denotes the Black Scholes price of a call

option with time to maturity T , strike K and volatility
√
A.

Error control The above method of evaluating option prices contains three types of numerical

errors: truncation and discretization errors appear when the integral is replaced by a finite sum

using Equation (1.28), and interpolation error appears in Equation (3.31). Supposing that the

grid in Fourier space is centered, that is, u0 = L/2 and ∆ = L/(M − 1) for some constant L,

Section 1.4 allows to obtain the following bounds for the first two types of error.

Since we have supposed that A > 0, Equation (1.30) provides a uniform (with respect to Q)

bound for the truncation error:

|εT | ≤
16e−TAL

2

πTAL3
.

Proposition 1.13 does not give uniform bounds for the discretization (sampling) error, how-

ever, since the calibrated Lévy measures are usually similar to the Lévy measures of the prior

process (see Section 3.6), the order of magnitude of the discretization error can be estimated

by computing the bounds of Proposition 1.13 for the prior process. The exact form of the error

depends on the integration rule used; for example for Simpson’s rule one has

|εD| = O

(
L4 logL

M4

)

.

A uniform bound for the interpolation error depends on the interpolation method that one

is using. For linear interpolation using Equation (3.31) one easily obtains

|εI | ≤
d2

8
max z̃′′T ,

and the second derivative of the time value is uniformly bounded under the hypothesis A > 0
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since

∣
∣z̃′′T (k)

∣
∣ =

1

2π

∣
∣
∣
∣

∫ ∞

−∞
v2e−ivk ζ̃T (v)dv

∣
∣
∣
∣

≤ 1

2π

∫ ∞

−∞
|ΦT (v − i)|dv +

1

2π

∫ ∞

−∞
|Φ

√
A

T (v − i)|dv ≤
√

2

πAT
,

where we have used Equation (1.25) and Lemma 1.10. Combining the above two expressions,

one obtains:

|εI | ≤
1

L2

√

π3

2AT
.

Taking L and M sufficiently large so that L/M becomes small, one can make the total error

ε = εT + εD + εI arbitrarily small. In practice, the parameters M and L of the discretization

scheme should be chosen such that the total numerical error is of the same order as the noise

level in the data. The continuity result (Theorem 2.16) then guarantees that the numerical

approximation of the calibrated measure will be close to the true solution.

3.5.2 Computing the gradient of the calibration functional

We emphasize that for the optimization algorithm to work correctly, we must compute the exact

gradient of the approximate functional (3.26), rather than an approximation of the gradient of

the exact functional. The gradient of the approximate calibration functional is computed as

follows:

∂Ĵα(q0, . . . , qM−1)

∂qk
=

N∑

i=1

wi(Ĉ
Q(Ti,Ki) − CM (Ti,Ki))

∂ĈQ(Ti,Ki)

∂qk

+
α(exk − 1)

2A




A

2
+ bP +

M−1∑

j=0

(exj − 1)qj



+ α log(qk/pk).

The nontrivial part is therefore to compute the gradient of the approximate option price

ĈQ(Ti,Ki) and for this, due to the linear structure of the interpolating formula (3.31) it suffices

to know the gradient of ˆ̃zT at the points {xi}M−1
i=0 . From Equation (3.30),

∂ ˆ̃zT (xj)

∂qm
=

∆

2π
e−ixjuM−1DFTj

[

wk
∂ζ̃T (uM−1−k)

∂qm
e−ix0∆k

]

,
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and formulas (3.28–3.29) yield:

∂ζ̃T (uk)

∂qm
=
TeiukrT+Tψk

iuk(1 + iuk)

{
exm+iukxm − 1 − (1 + iuk)(e

xm − 1)
}

= T (exm − 1)
eiukrT+Tψk

1 + iuk
+ Texm

eiukrT (eTψk − eTψ
A
k )

iuk(1 + iuk)
eiukxm

− Texm
eiukrT (eTψk − eTψ

A
k )

iuk(1 + iuk)
+ Texm

eiukrT+TψA
k (eiukxm − 1)

iuk(1 + iuk)
,

where ψAk = −A
2 uk(uk − i). Suppose that the grid in strike space is such that x0 = m0d for

some m0 ∈ Z. Then for every j ∈ {0, . . . ,M − 1},

DFTj [fke
iuM−1−kxm ] = eiuM−1xm

M−1∑

k=0

e−2πik(j−m−m0)/Mfk

= eiuM−1xmDFT(j−m0−m) modM [fk].

Introducing additional notation:

Hk =
eiukrT+ψkT

1 + iuk
Gk =

eiukrT+ψA
k
T

iuk(1 + iuk)
,

we obtain the final formula for computing the gradient:

∂ ˆ̃zT (xj)

∂qm
=

∆

2π
e−ixjuM−1T (exm − 1)DFTj

[

wke
−ix0∆kHM−1−k

]

+ Texm(eiuM−1xm ˆ̃zT (x(j−m0−m) modM ) − ˆ̃zT (xj))

+
∆

2π
ei(xm−xj)uM−1TexmDFT(j−m0−m)modM

[

wke
−ix0∆kGM−1−k

]

− ∆

2π
e−ixjuM−1TexmDFTj

[

wke
−ix0∆kGM−1−k

]

. (3.32)

The time values ˆ̃zT have already been computed in all points of the grid when evaluating option

prices, and the Fourier transforms of Gk do not need to be reevaluated at each step of the

algorithm because Gk do not depend on qi. Therefore, compared to evaluating the functional

alone, to compute the gradient of Ĵα one only needs one additional fast Fourier transform per

maturity date. The complexity of evaluating the gradient using the above formula is thus only

about 1.5 times higher than that of evaluating the functional itself (because evaluating option

prices requires two Fourier transforms per maturity date). If the gradient was to be evaluated

numerically, the complexity would typically be M times higher. The analytic formula (3.32)

therefore allows to reduce the overall running time of the calibration algorithm from several

hours to less than a minute on a standard PC.
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3.5.3 Overview of the algorithm

Here is the final numerical algorithm, as implemented in the computer program levycalibration,

used to run the tests of Section 3.6.

• Fix the prior using one of the methods described in Section 3.2. In the tests below, a

user-specified prior was taken.

• Compute the weights of market option prices (Section 3.4) and estimate the noise level

(Section 3.3.3).

• Use one of the a posteriori methods of Section 3.3.1 to compute an optimal regularization

parameter α∗ achieving trade-off between precision and stability. The optimal α∗ is com-

puted by bisection, minimizing J̃α several times for different values of α with low precision.

In the tests below we have always been able to choose α∗ using the discrepancy principle

(3.13) with c1 = 1.1 and c2 = 1.3, so there was no need to resort to the alternative scheme

(3.19).

• Minimize J̃α∗ with high precision to find the regularized solution Q∗.

3.6 Numerical and empirical tests

Our numerical tests, performed using the levycalibration program, fall into two categories.

First, to assess the accuracy and numerical stability of our method, we tested it on option prices

produced by a known exponential-Lévy model (Section 3.6.1). We then applied our algorithm

to real options data, using the prices of European options on different European stock market

indices, provided by Thomson Financialr and studied the properties of Lévy measures, implied

by market data.

3.6.1 Tests on simulated data

A compound Poisson example: Kou’s model In the first series of tests, option prices

were generated using Kou’s jump diffusion model [62] with a diffusion part with volatility

σ0 = 10% and a Lévy density given by Equation (1.17).
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Figure 3.4: Calibration quality (implied volatilities as a function of strike prices) for Kou’s jump

diffusion model. Left: no perturbations. Right: 1% perturbations were added to the data

The Lévy density used in the tests was asymmetric with the left tail heavier than the

right one (α1 = 1/0.07 and α2 = 1/0.13). The jump intensity λ was equal to 1 and the last

parameter p was chosen such that the Lévy density is continuous at x = 0. The option prices

were computed using the Fourier transform method of Section 1.4. The maturity of the options

was 5 weeks and we used 21 equidistant strikes ranging from 6 to 14 (the spot being at 10). To

capture tail behavior it is important to have strikes quite far in and out of the money. Merton’s

jump diffusion model [71] was used as prior.

After generating sets of call option prices from Kou’s model, in the first test, the algorithm

described in Section 3.5.3 was applied to these prices directly, and in the second test, to model

the presence of data errors, random perturbations of order of 1% of implied volatility were

added to the simulated prices. As can be observed from Figure 3.4, in both cases the accuracy

of calibration at the level of implied volatilities is satisfying with only 21 options.

Figure 3.5 compares the non-parametric reconstruction of the Lévy density to the true Lévy

density which, in this case, is known to be of the form (1.17). It can be observed that even in

presence of data errors we retrieve successfully the main features of the true density with our

non-parametric approach. The only region in which we observe a detectable error is near zero:

very small jumps have a small impact on option prices. The gradient of option’s time value

given by Equation (3.32) vanishes at zero (i.e. for m = m0) which means that the Lévy density
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Figure 3.5: Lévy measure calibrated to option prices simulated from Kou’s jump diffusion model

with σ0 = 10%, on linear and logarithmic scale. Top: No perturbations were added. Bottom:

1% perturbations were added to the data.

at or near zero is determined exclusively by the prior: the intensity of small jumps cannot be

retrieved accurately.

Figure 3.6 illustrates the redundancy of small jumps and diffusion: the two graphs were

calibrated to the same prices and only differ in the diffusion coefficients. Comparing the two

graphs shows that the algorithm compensates the error in the diffusion coefficient by adding

jumps to the Lévy density so that, overall, the accuracy of calibration is maintained (the

standard deviation in both graphs is 0.2%). The redundancy of small jumps and diffusion

component has been pointed out by other authors in the context of statistical estimation on time

series [15, 69]. Here we retrieve another version of this redundancy in a context of calibration

to a cross sectional data set of options.
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Figure 3.6: Lévy measure calibrated to option prices simulated from Kou’s jump diffusion model

with σ0 = 10%. Left: σ = 10.5% > σ0. Right: σ = 9.5% < σ0.

The stability of the algorithm with respect to initial conditions can be tested by altering

the starting point of the optimization routine and examining the effect on the output. As

illustrated in Figure 3.7, the entropy penalty removes the sensitivity observed in the non-linear

least squares algorithm (see Figure 2.2 and Section 2.1). The only minor difference between

the two calibrated measures is observed in the neighborhood of zero i.e. the region which, as

remarked above, has little influence on option prices.

Variance gamma model In a second series of tests we examine how our method performs

when applied to option prices generated by an infinite intensity process such as the variance

gamma model. We assume that the user, ignoring that the data generating process has infinite

jump intensity, chooses a (misspecified) prior which has a finite jump intensity (e.g. the Merton

model).

We generated option prices for 21 equidistant strikes between 0.6 and 1.4 (the spot being at

1) using the variance gamma model [67] with no diffusion component and applied the calibration

algorithm using a Merton jump diffusion model as prior to these prices. The parameters of the

variance gamma process (cf Equation (1.18)) were σ = 0.3, θ = −0.2 and k = 0.04. All the

options were maturing in five weeks. The left graph in Figure 3.8 shows that even though the

prior is misspecified, the calibrated model reproduced the simulated implied volatilities with



3.6. NUMERICAL AND EMPIRICAL TESTS 123

−0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
true
calibrated with λ

0
=2

calibrated with λ
0
=1

Figure 3.7: Levy densities calibrated to option prices generated from Kou model, using two

different initial measures with intensities λ = 1 and λ = 2.

good precision (for both values of σ0 that we took, the standard deviation is less than 0.5% in

implied volatility units).

The calibrated Lévy densities for two different values of prior diffusion volatility σ0 are

shown in the right graph of Figure 3.8: a smaller value of the volatility parameter leads to a

greater intensity of small jumps.

Here we observe once again the redundancy of volatility and small jumps, this time in an

infinite intensity context. More precisely this example shows that call option prices generated

from an infinite intensity exponential Lévy model can be reproduced with arbitrary precision

using a jump-diffusion with finite jump intensity. This leads us to conclude that given a finite

(but realistic) number of option prices, the shape of implied volatility skews/smiles does not

allow to distinguish infinite activity models like variance gamma from jump diffusions.

3.6.2 Empirical properties of implied Lévy measures

To illustrate our calibration method we have applied it to a data set spanning the period from

1999 to 2001 and containing daily prices of options on the DAX (German stock market index)

for a range of strikes and maturities.

Figure 3.10 shows the calibration quality for three different maturities. Note that here

each maturity has been calibrated separately (three different exponential Lévy models). These
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Figure 3.8: Calibration of options simulated from a variance gamma model using a finite in-

tensity prior with different values of diffusion volatility σ0. Left: calibration quality (implied

volatilities as a function of strike prices). Right: Calibrated Lévy measures. Increasing the

diffusion coefficient decreases the intensity of small jumps in the calibrated measure.

graphs show that using an exponential Lévy model one can calibrate with high precision the

prices of a set of options with common maturity. This conclusion contradicts the findings of

Medvedev and Scaillet [70] who observe that “jumps in returns do not help explaining the slope

of implied volatilities at the money”. It is important to note, however, that Medvedev and

Scaillet used short term options on S&P 500 index whereas our analysis is based on DAX index

options.

Figure 3.9, left graph, illustrates the typical shape of risk neutral Lévy densities obtained

from our data set. It is readily seen that the Lévy measures obtained are far from being

symmetric: the distribution of jump sizes is highly skewed toward negative values. Figure 3.11

shows the same result across calendar time, showing that this asymmetry persists across time.

This effect also depends on the maturity of options in question: for longer maturities (see Figure

3.11, right graph) the support of the Lévy measure extends further to the left. Most of the

densities we obtained are bimodal with one mode corresponding to small jumps that are hard

to separate from a diffusion component and another clearly distinguishable mode corresponding

to a large negative jump that can reflect the market participants’ “fear of crash” [11].

The logarithmic scale in the right graph of Figure 3.9 allows the tails to be seen more clearly.
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Figure 3.9: Lévy measures calibrated to DAX options on the same calendar date for three

different maturities, linear and logarithmic scale.
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Figure 3.10: Calibration quality for different maturities: market implied volatilities for DAX

options against model implied volatilities. Each maturity has been calibrated separately.
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Figure 3.11: Results of calibration at different dates for shortest (left) and second shortest

(right) maturity. DAX index options.

Recall that the prior density is Gaussian, which shows up as a symmetric parabola on log scales.

The area under the curves shown here is to be interpreted as the (risk neutral) jump inten-

sity. While the shape of the curve does vary slightly across calendar time, the intensity stays

surprisingly stable: its numerical value is empirically found to be λ ≃ 1, which means around

one jump a year. Of course note that this is the risk neutral intensity: jump intensities are not

invariant under equivalent change of measures. Moreover this illustrates that a small intensity

of jumps λ can be sufficient for explaining the shape of the implied volatility skew for small

maturities. Therefore the motivation of infinite activity processes from the point of view of

option pricing does not seem clear to us. On the other hand, from the modelling perspective

infinite intensity processes do present a particular interest since they do not have a diffusion

component and therefore do not suffer from the problem of redundancy of small jumps and

diffusion, described above, leading to more parsimonious and identifiable models.

3.6.3 Testing time homogeneity

While the literature on jump processes in finance has focused on time homogeneous (Lévy)

models, practitioners have tended to use time dependent jump or volatility parameters. Despite

the fact that, as our non-parametric analysis and several empirical studies by other authors

[21, 67] have shown, Lévy processes reproduce the implied volatility smile for a single maturity
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Figure 3.12: Top: Market implied volatility surface. Bottom left: implied volatility surface in

an exponential Lévy model, calibrated to market prices of the first maturity. Bottom right:

implied volatility surface in an exponential Lévy model, calibrated to market prices of the last

maturity.
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quite well, when it comes to calibrating several maturities at the same time, the calibration by

Lévy processes becomes much less precise. This is clearly seen from the three graphs of Figure

3.12. The top graph shows the market implied volatilities for four maturities and different

strikes. The bottom left graphs depicts implied volatilities, computed in an exponential Lévy

model calibrated using our nonparametric algorithm to the first maturity present in the market

data. One can see that while the calibration quality is acceptable for the first maturity, it

quickly deteriorates as the time to maturity increases: the smile in an exponential Lévy model

flattens too fast. The same effect can be observed in the bottom right graph: here, the model

was calibrated to the last maturity, present in the data. As a result, the calibration quality is

poor for the first maturity: the smile in an exponential Lévy model is more pronounced and its

shape does not resemble that of the market.

It is difficult to calibrate an exponential Lévy model to options of several maturities because

due to independence and stationarity of their increments, Lévy processes have a very rigid term

structure of cumulants. In particular, the skewness of a Lévy process is proportional to the

inverse square root of time and the excess kurtosis is inversely proportional to time [68]. A

number of empirical studies have compared the term structure of skewness and kurtosis implied

in market option prices to the skewness and kurtosis of Lévy processes. Bates [13], after an

empirical study of implicit kurtosis in $/DM exchange rate options concludes that “while

implicit excess kurtosis does tend to increase as option maturity shrinks, . . . , the magnitude

of maturity effects is not as large as predicted [by a Lévy model]”. For stock index options,

Madan and Konikov [68] report even more surprising results: both implied skewness and kurtosis

actually decrease as the length of the holding period becomes smaller. It should be mentioned,

however, that implied skewness/kurtosis cannot be computed from a finite number of option

prices with high precision.

Our non-parametric approach allows to investigate time homogeneity by calibrating the Lévy

measure separately to various option maturities. Figure 3.9 shows Lévy measures obtained by

running the algorithm for options of different maturity. The hypothesis of time homogeneity

would imply that all the curves are the same, which is apparently not the case here. However,

computing the areas under the curves yields similar jump intensities across maturities: this

result can be interpreted by saying that the risk neutral jump intensity is relatively stable

through time while the shape of the (normalized) jump size density can actually change. The
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Figure 3.13: Implied volatility of at the money European options on CAC40 index.

type of time dependence is therefore more complicated than simply a time dependent intensity.

A second major difficulty arising while trying to calibrate an exponential Lévy model is the

time evolution of the smile. Exponential Lévy models belong to the class of so called “sticky

moneyness” models, meaning that in an exponential Lévy model, the implied volatility of an

option with given moneyness (strike price to spot ratio) does not depend on time. This can

be seen from the following simple argument. In an exponential Lévy model Q, the implied

volatility σ of a call option with moneyness m, expiring in τ years, satisfies:

e−rτEQ[(Ste
rτ+Xτ −mSt)

+|Ft] = e−rτE[(Ste
rτ+σWτ−σ2

2
τ −mSt)

+|Ft]

Due to the independent increments property, St cancels out and we obtain an equation for

the implied volatility σ which does not contain t or St. Therefore, in an exp-Lévy model this

implied volatility does not depend on date t or stock price St. This means that once the smile

has been calibrated for a given date t, its shape is fixed for all future dates. Whether or not this

is true in real markets can be tested in a model-free way by looking at the implied volatility

of at the money options with the same maturity for different dates. Figure 3.13 depicts the

behavior of implied volatility of two at the money options on the CAC40 index, expiring in

30 and 450 days. Since the maturities of available options are different for different dates, to

obtain the implied volatility of an option with fixed maturity T for each date, we have taken

two maturities, present in the data, closest to T from above and below: T1 ≤ T and T2 > T .
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The implied volatility Σ(T ) of the hypothetical option with maturity T was then interpolated

using the following formula:

Σ2(T ) = Σ2(T1)
T2 − T

T1 − T
+ Σ2(T2)

T − T1

T2 − T1
.

As we have seen, in an exponential Lévy model the implied volatility of an option which is at

the money and has fixed maturity must not depend on time or stock price. Figure 3.13 shows

that in reality this is not so: both graphs are rapidly varying random functions.

This simple test shows that real markets do not have the “sticky moneyness” property:

arrival of new information can alter the form of the smile. The exponential Lévy models are

therefore “not random enough” to account for the time evolution of the smile. Moreover,

models based on additive processes, that is, time-inhomogeneous processes with independent

increments, although they perform well in calibrating the term structure of implied volatilities

for a given date [27], are not likely to describe the time evolution of the smile correctly since in

these models the future form of the smile is still a deterministic function of its present shape

[27]. To describe the time evolution of the smile in a consistent manner, one may need to

introduce additional stochastic factors (e.g. stochastic volatility) [9, 10, 22].

One of the important conclusions of this chapter is that at least in the domain of stock index

options, to which we have applied our tests, exponential Lévy models, although they provide a

considerable improvement compared to Black-Scholes model, do not allow to calibrate the term

structure of implied volatilities with sufficient precision. Our calibration algorithm therefore

should not be seen as a method to find an exponential Lévy model consistent with all available

market data but rather as a way to construct a Lévy measure, implied by option prices of a

particular maturity. It can therefore be extended to other models where jumps are represented,

in a nonparametric way, by a Lévy measure. Its many possible applications include, among

others,

• Interpolation of option prices for a single maturity;

• Calibration, using short-maturity data, of the jump part of hybrid models, including both

jumps and stochastic volatility;

• Separate calibration of Lévy densities for different maturities in order to determine the

correct pattern of time dependence of Lévy measure for additive processes.
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Chapter 4

Characterization of dependence of

multidimensional Lévy processes

4.1 Introduction to dependence modelling

Many financial applications require a multidimensional model with jumps, taking into account

the dependence between components. However, such models are more difficult to construct than

one-dimensional ones and the applications continue to be dominated by (geometric) Brownian

motion.

A simple method to introduce jumps into a multidimensional model is to take a multi-

variate Brownian motion and time change it with a one-dimensional increasing Lévy process.

This approach, advocated in [36, 79], allows to construct multidimensional versions of many

popular one-dimensional models, including variance gamma, normal inverse Gaussian and gen-

eralized hyperbolic process. The principal advantage of this method is its simplicity and analytic

tractability; in particular, processes of this type are easy to simulate. However, the range of

dependence patterns that one can obtain using this approach is quite limited (for instance, in-

dependence is not included), and all components must follow the same parametric model (e.g.,

either all of the components are variance gamma or all of the components are normal inverse

Gaussian etc.)

To be more specific, suppose that two stock price processes {S1
t }t≥0 and {S2

t }t≥0 are mod-

133
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elled as follows:

S1
t = exp(X1

t ), X1
t = B1(Zt) + µ1Zt,

S2
t = exp(X2

t ), X2
t = B2(Zt) + µ2Zt,

where B1 and B2 are two components of a planar Brownian motion, with variances σ2
1 and

σ2
2 and correlation coefficient ρ, and {Zt}t≥0 is the stochastic time change (an increasing Lévy

process). The correlation of returns, ρ(X1
t , X

2
t ), can be computed by conditioning with respect

to Zt:

ρ(X1
t , X

2
t ) =

σ1σ2ρE[Zt] + µ1µ2 VarZt

(σ2
1E[Zt] + µ2

1 VarZt)1/2(σ2
2E[Zt] + µ2

2 VarZt)1/2
.

In the completely symmetric case (µ1 = µ2 = 0) and in this case only ρ(X1
t , X

2
t ) = ρ: the

correlation of returns equals the correlation of Brownian motions that are being subordinated.

However, the distributions of real stocks are skewed and in the skewed case the correlation of

returns will be different from the correlation of Brownian motions that we put into the model.

Even if the Brownian motions are independent, the covariance of returns is equal to µ1µ2 VarZt

and if the distributions of stocks are not symmetric, they are correlated.

In the symmetric case, if Brownian motions are independent, the two stocks are decorrelated

but not independent. Since the components of the Brownian motion are time changed with

the same subordinator, large jumps in the two stocks (that correspond to large jumps of the

subordinator) will tend to arrive together, which means that absolute values of returns will be

correlated. If µ1 = µ2 = 0 and ρ = 0 then the covariance of squares of returns is

Cov((X1
t )

2, (X2
t )

2) = σ1σ2 Cov((B1(Zt))
2, (B2(Zt))

2) = σ1σ2 VarZt,

which means that squares of returns are correlated unless the subordinator Zt is deterministic.

This phenomenon can lead to mispricing and errors in evaluation of risk measures.

In finite activity models, a more accurate modelling of dependence may be achieved by

specifying directly the dependence of individual jumps in one-dimensional compound Poisson

processes (see [65]). This approach is useful in presence of few sources of jump risk (e.g., when all

components jump at the same time) because in this case it allows to achieve a precise description

of dependence within a simple model. Suppose that we want to improve a d-dimensional Black-

Scholes model by allowing for “market crashes.” The dates of market crashes can be modelled



4.1. INTRODUCTION 135

as jump times of a standard Poisson process {Nt}t≥0. This leads us to the following model for

the log-price processes of d assets:

Xi
t = µit+Bi

t +

Nt∑

j=1

Y i
j , i = 1 . . . d,

where (Bt) is a d-dimensional Brownian motion with covariance matrix Σ, and {Yj}∞j=1 are

i.i.d. d-dimensional random vectors which determine the sizes of jumps in individual assets

during a market crash. This model contains only one driving Poisson shock because we only

account for jump risk of one type (global market crash affecting all assets). To construct a

parametric model, we need to specify the distribution of jumps in individual assets during a

crash (distribution of Y i
∗ for all i) and the dependence between jumps in assets. If we make

a simplifying assumption that {Y i
j }di=1 are Gaussian random vectors, then we need to specify

their covariance matrix Σ′ and the mean vector m, thus obtaining a multivariate version of

Merton’s model [71].

If the jumps are not Gaussian, we must specify the distribution of jumps in each component

and the copula1 describing their dependence. The model is thus completely specified by a

covariance matrix Σ, d jump size distributions, a d-dimensional copula C and a jump intensity

parameter λ. However, sometimes it is necessary to have several independent shocks to account

for events that affect individual companies or individual sectors rather than the entire market.

In this case we need to introduce several driving Poisson processes into the model, which now

takes the following form:

Xi
t = µit+Bi

t +
M∑

k=1

Nk
t∑

j=1

Y i
j,k, i = 1 . . . d,

where N1
t , . . . , N

M
t are Poisson processes driving M independent shocks and Y i

j,k is the size of

jump in i-th component after j-th shock of type k. The vectors {Y i
j,k}di=1 for different j and/or k

are independent. To define a parametric model completely, one must specify a one-dimensional

distribution for each component for each shock type — because different shocks influence the

same stock in different ways — and one d-dimensional copula for each shock type. This adds up

to M × d one-dimensional distributions and M one-dimensional copulas. How many different

1For an introduction to copulas see [76] — this monograph treats mostly the bivariate case — and [56] for

the multivariate case.



136 CHAPTER 4. DEPENDENCE OF LEVY PROCESSES

shocks do we need to describe sufficiently rich dependence structures? The answer depends

on the particular problem, but to describe all possible dependence structures, such that the

d-dimensional process remains a Lévy process of compound Poisson type, one needs a total of

2M − 1 shocks (M shocks that affect only one stock, M(M−1)
2 shocks that affect two stocks etc.,

adding up to 2M − 1). It is clear that as the dimension of the problem grows, this kind of

modelling quickly becomes infeasible. Not only the number of parameters grows exponentially,

but also, when the number of shocks is greater than one, one cannot specify directly the laws

of components because the laws of jumps must be given separately for each shock.

Comparison of advantages and drawbacks of these two methods leads to an understanding

of the required properties of a multidimensional modelling approach for Lévy processes. In

general, such an approach must satisfy the following conditions:

• One should be able to choose any one-dimensional Lévy process for each of the compo-

nents. In particular, it should be possible to couple a compound Poisson process with

a process which has infinite jump intensity. This is particularly important for financial

applications because information about margins and about dependence may come from

different sources. For instance, for pricing basket options the market practice is to esti-

mate the correlations (dependence) from historical data while using implied volatilities,

computed from the prices of traded options.

• The range of possible dependence structures should include complete dependence and

complete independence with a “smooth” transition between these two extremes.

• It should be possible to model dependence in a parametric fashion (e.g., not through

the entire multidimensional Lévy measure). A parsimonious description of dependence

is especially important because one typically does not have enough information about

the dependence structure to estimate many parameters or proceed with a nonparametric

approach.

To implement this program, we suggest to model separately the dependence structure of

a Lévy process and the behavior of its components (margins). It has long been known that

the dependence structure of a random vector on Rd can be disentangled from its margins

via the notion of copula. Since the law of a Lévy process is completely determined by its



4.1. INTRODUCTION 137

distribution at time t for any fixed t > 0, the dependence structure of a multidimensional

Lévy process X ≡ {X i
t}i=1...d
t≥0 can be parametrized by the copula Ct of the random vector

{X i
t}i=1...d for some t > 0. However, this approach has a number of drawbacks. First, for given

infinitely divisible one-dimensional laws µ1
t , . . . , µ

d
t , it is unclear, which copulas Ct will yield a

d-dimensional infinitely divisible law. Second, the copula Ct may depend on t and Cs for some

s 6= t cannot in general be computed from Ct alone; to compute it one also needs to know the

marginal distributions at time t and at time s. We will now construct an explicit example of a

Lévy process with nonconstant copula.

Example 4.1. Let Z := {Zt}t≥0 be a 2-dimensional Cauchy process, that is, a Lévy process with

characteristic triplet (0, νZ , 0), where νZ has a density, also denoted by νZ , given by

νZ(x, y) =
1

(x2 + y2)3/2
.

The probability distribution of Zt for every t > 0 has a density

pZt (x, y) =
1

2π

t

{(x2 + y2)2 + t2}3/2
.

The copula of Zt does not depend on time and can be computed explicitly:

CZ(u, v) = −1

4
+
u

2
+
v

2
+

1

2π
arctan







tanπ(u− 1
2) tanπ(v − 1

2)
√

1 + tan2 π(u− 1
2) + tan2 π(v − 1

2)






,

which is clearly different from the independence copula C⊥(u, v) = uv.

Let W := {Wt}t≥0 be a standard planar Brownian motion, independent from Z. Since the

components of W are independent, the copula of Wt for each t > 0 is the independence copula

C⊥(u, v) = uv. For every t, let Xt = Zt + Wt. {Xt}t≥0 is a Lévy process with characteristic

triplet (Id2, ν
Z , 0). Since Z is a 1-stable process and W is 1

2 -stable, Xt

t
d
= Z1 + W1/t and

Xt√
t

d
= Z√

t + W1. Therefore, the random variable Xt

t is infinitely divisible with characteristic

triplet (1
t Id2, 0, ν

Z) and the random variable Xt√
t

is infinitely divisible with characteristic triplet

(Id2, 0,
√
tνZ). From Proposition 1.7 it follows that Xt

t
d−−−→

t→∞
Z1 and Xt√

t

d−−→
t→0

W1. Since the

copula is invariant with respect to transformations of margins by strictly increasing functions,

Xt,
Xt√
t

and Xt

t have the same copula. Therefore, Theorem 2.1 in [64] implies that the copula

Ct of Xt has the following properties

∀u, v, Ct(u, v) → CZ(u, v) as t→ ∞,

∀u, v, Ct(u, v) → C⊥(u, v) as t→ 0.
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Since CZ(u, v) is different from C⊥(u, v), we conclude that Ct is not constant over time.

Every Lévy process X := {Xt}t≥0 is described in a time-dependent fashion by its character-

istic triplet (A, ν, γ). It seems therefore natural to describe the dependence between components

of X also in terms of its characteristic triplet. Since the continuous martingale component of

X is completely described by the covariance matrix A and is independent from the jump part,

we will focus on the dependence of the jump part of X, that is, we only consider Lévy pro-

cesses with A = 0. For such a process, separate modelling of margins and dependence will be

achieved by introducing Lévy copulas, which play the same role for Lévy measures as copulas

for probability measures. After showing how basic dependence patterns for Lévy processes are

expressed in terms of their characteristic triplets in Section 4.2 and introducing the necessary

notation and definitions in Section 4.3, first, in Section 4.4 we treat the conceptually simpler

case of Lévy processes, admitting only positive jumps in every component or, equivalently, hav-

ing Lévy measures supported by [0,∞)d. Lévy copulas for general Lévy processes, introduced

in a joint work of the present author with Jan Kallsen [59], are discussed in Sections 4.5 and

4.6 of this chapter.

4.2 Dependence concepts for multidimensional Lévy processes

In this section, X := {X i
t}i=1,...,d
t≥0 denotes a Lévy process on Rd with characteristic triplet

(A, ν, γ). For I ⊂ {1, . . . , d} we define Ic := {1, . . . , d} \ I and |I| denotes the number of

elements in I. We start by defining the margins of a Lévy process.

Definition 4.1. Let I ⊂ {1, . . . , d} nonempty. The I-margin of X is the Lévy process X I :=

{X i
t}i∈It≥0.

The following lemma explains that the Lévy measure of XI only depends on the Lévy

measure of X and shows how it can be computed.

Lemma 4.1 (Marginal Lévy measures). Let I ⊂ {1, . . . , d} nonempty. Then the Lévy

process XI has Lévy measure νI given by

νI(B) = ν({x ∈ Rd : (xi)i∈I ∈ B}), ∀B ∈ B(R|I| \ {0}). (4.1)

Proof. This lemma is a direct consequence of Proposition 11.10 in [87].
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In view of the above lemma, for a given Lévy measure ν we will refer to the Lévy measure

νI defined by Equation (4.5) as the I-margin of ν. To simplify notation, when I = {k} for some

k, the I-margin of ν will be denoted by νk and called simply k-th margin of ν.

Next we would like to characterize the independence of Lévy processes in terms of their

characteristic triplets.

Lemma 4.2. The components X1, . . . , Xd of an Rd-valued Lévy process X are independent

if and only if their continuous martingale parts are independent and the Lévy measure ν is

supported by the coordinate axes. ν is then given by

ν(B) =
d∑

i=1

νi(Bi) ∀B ∈ B(Rd \ {0}), (4.2)

where for every i, νi denotes the i-th margin of ν and

Bi = {x ∈ R : ( 0, . . . , 0
︸ ︷︷ ︸

i− 1 times

, x, 0, . . . , 0) ∈ B}.

Proof. Since the continuous martingale part and the jump part of X are independent, we

can assume without loss of generality that X has no continuous martingale part, that is, its

characteristic triplet is given by (0, ν, γ).

The “if” part. Suppose ν is supported by the coordinate axes. Then necessarily for every

B ∈ B(Rd \ {0}), ν(B) =
∑d

i=1 ν̃i(Bi) with some measures ν̃i, and Lemma 4.1 show that these

measures coincide with the margins of ν: ν̃i = νi ∀i. Using the Lévy-Khintchine formula for

the process X, we obtain:

E[ei〈u,Xt〉] = exp t{i〈γ, u〉 +

∫

Rd\{0}
(ei〈u,x〉 − 1 − i〈u, x〉1|x|≤1)ν(dx)}

= exp t
d∑

k=1

{iγkuk +

∫

R\{0}
(eiukxk − 1 − iukxk1|xk|≤1)νk(dxk)} =

d∏

k=1

E[eiukX
k
t ],

which shows that the components of X are independent Lévy processes.

The “only if” part. Define a measure ν̃ on Rd \ {0} by ν̃(B) =
∑d

i=1 νi(Bi), where νi is the

i-th marginal Lévy measure of X and Bi is as above. It is straightforward to check that ν̃ is

a Lévy measure. Since the components of X are independent, applying the Lévy-Khintchine

formula to each component of X, we find:

E[ei〈u,Xt〉] = exp t{i〈γ, u〉 +

∫

Rd\{0}
(ei〈u,x〉 − 1 − i〈u, x〉1|x|≤1)ν̃(dx)}.
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Now from the uniqueness of Lévy-Khintchine representation we conclude that ν̃ is the Lévy

measure of X.

The complete dependence of Lévy processes is a new notion that is worth being discussed

in detail. First, the following definition is in order.

Definition 4.2. A subset S of Rd is called ordered if, for any two vectors v, u ∈ S, either

vk ≤ uk, k = 1, . . . , d or vk ≥ uk, k = 1, . . . , d. S is called strictly ordered if, for any two

different vectors v, u ∈ S, either vk < uk, k = 1, . . . , d or vk > uk, k = 1, . . . , d.

We recall that random variables Y1, . . . , Yd are said to be completely dependent or comono-

tonic if there exists a strictly ordered set S ⊂ Rd such that (Y1, . . . , Yd) ∈ S with probability 1.

However, saying that the components of a Lévy process are completely dependent only if they

are completely dependent for every fixed time is too restrictive; the components of a Lévy pro-

cess can be completely dependent as processes without being completely dependent as random

variables for every fixed time. The following example clarifies this point.

Example 4.2 (Dynamic complete dependence for Lévy processes). Let {Xt}t≥0 be a Lévy process

with characteristic triplet (A, ν, γ) such that A = 0 and γ = 0 and let {Yt}t≥0 be a Lévy process,

constructed from the jumps of X: Yt =
∑

s≤t ∆X
3
s . From the dynamic point of view X and Y

are completely dependent, because the trajectory of any one of them can be reconstructed from

the trajectory of the other. However, the copula of Xt and Yt is not that of complete dependence

because Yt is not a deterministic function of Xt. Indeed, if X is a compound Poisson process

having jumps of size 1 and 2 and Xt = 3 for some t, this may either mean that X has three

jumps of size 1 in the interval [0, t], and then Yt = 3, or that X has one jump of size 1 and one

jump of size 2, and then Yt = 9.

This example motivates the following definition. In this definition and below,

K := {x ∈ Rd : sgnx1 = · · · = sgnxd}. (4.3)

Definition 4.3. Let X be a Rd-valued Lévy process. Its jumps are said to be completely

dependent or comonotonic if there exists a strictly ordered subset S ⊂ K such that ∆Xt :=

Xt −Xt− ∈ S, t ≥ 0 (except for a set of paths having zero probability).
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Clearly, an element of a strictly ordered set is completely determined by one coordinate

only. Therefore, if the jumps of a Lévy process are completely dependent, the jumps of all

components can be determined from the jumps of any single component. If the Lévy process

has no continuous martingale part, then the trajectories of all components can be determined

from the trajectory of any one component, which indicates that Definition 4.3 is a reasonable

dynamic notion of complete dependence for Lévy processes. The condition ∆Xt ∈ K means that

if the components of a Lévy process are comonotonic, they always jump in the same direction.

For any Rd-valued Lévy process X with Lévy measure ν and for any B ∈ B(Rd \ {0}) the

number of jumps in the time interval [0, t] with sizes in B is a Poisson random variable with

parameter tν(B). Therefore, Definition 4.3 can be equivalently restated in terms of the Lévy

measure ν of X as follows:

Definition 4.4. Let X be a Rd-valued Lévy process with Lévy measure ν. Its jumps are said

to be completely dependent or comonotonic if there exists a strictly ordered subset S of K such

that ν(Rd \ S) = 0.

4.3 Increasing functions

In this section we sum up some aspects of the theory of increasing functions of several variables.

Most definitions are well known (see, e.g. [88]) but some are introduced either here for the first

time or in [59].

Let R̄ := R ∪ {−∞} ∪ {∞} denote the extended real line. In the sequel, for a, b ∈ R̄d such

that a ≤ b (inequalities like this one are to be interpreted componentwise), let [a, b) denote a

right-open left-closed interval of R̄d (d-box):

[a, b) := [a1, b1) × · · · × [ad, bd),

In the same way we define other types of intervals: (a, b], [a, b] and (a, b). To simplify notation it

is convenient to introduce a “general” type of interval: when we want to consider a d-dimensional

interval as a set of its vertices, without specifying whether the boundary is included or not, we

will write |a, b|.
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Definition 4.5 (F-volume). Let F : S ⊂ R̄d → R̄. For a, b ∈ S, with a ≤ b, the F -volume of

|a, b| is defined by

VF (|a, b|) :=
∑

(−1)N(c)F (c), (4.4)

where the sum is taken over all vertices c of |a, b|, and N(c) := #{k : ck = ak}.

The notion of F-volume should only be seen as a convenient notation for the sum in the

right-hand side of (4.4). It does not in general correspond to any measure because the measure

of |a, b| will depend on whether the boundary is included or not.

In particular, in two dimensions (d = 2) the F -volume of a rectangle B = |x1, x2| × |y1, y2|
satisfies

VF (B) = F (x2, y2) − F (x2, y1) − F (x1, y2) + F (x1, y1).

If F (u) =
∏d
i=1 ui, the F -volume of any interval is equal to its Lebesgue measure.

Definition 4.6 (d-increasing function). A function F : S ⊂ R̄d → R̄ is called d-increasing

if for all a, b ∈ S with a ≤ b, VF (|a, b|) ≥ 0.

Definition 4.7 (Grounded function). For each k, let Sk ⊂ R̄ be such that inf Sk ∈ Sk. A

function F : S1 × · · · × Sd → R̄ is grounded if F (x1, . . . , xd) = 0 whenever xk = inf Sk for at

least one k.

Definition 4.8 (margins of a d-increasing grounded function). For each k, let Sk ⊂ R̄

be such that inf Sk ∈ Sk and supSk ∈ Sk and let F : S1 × · · · × Sd → R̄ be d-increasing and

grounded. Then for I ⊂ {1, . . . , d} nonempty, the I-margin of F is a function F I :
∏

i∈I Si → R̄

defined by

F I((xi)i∈I) := F (x1, . . . , xd)|xi=supSi, i∈Ic . (4.5)

When I = {k}, to simplify notation, the (one-dimensional) I-margin of F is denoted by Fk.

Example 4.3. The distribution function F of a random vector X ∈ Rd is usually defined by

F (x1, . . . , xd) := P [X1 ≤ x1, . . . , Xd ≤ xd]
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for x1, . . . , xd ∈ R̄. F is then clearly increasing because for every a, b ∈ R̄d with a ≤ b,

VF (|a, b|) = P [X ∈ (a, b]] (4.6)

It is grounded because F (x1, . . . , xd) = 0 if xk = −∞ for some k, and the margins of F are the

distribution functions of the margins of X: for example, F1(x) = F (x,∞, . . . ,∞) = P [X1 ≤ x].

The following technical lemma will be useful in the sequel.

Lemma 4.3. For each k, let Sk ⊂ R̄ be such that inf Sk ∈ Sk and let F,H : S1 × · · · × Sd → R̄

be d-increasing and grounded. Then their product FH is d-increasing and grounded.

Proof. We will prove this lemma by induction on d. The product of two increasing grounded

functions on R̄ is clearly increasing and grounded. Suppose d ≥ 2, and for each k let ak, bk ∈ Sk

with ak ≤ bk. Consider the function

F̃ (u2, . . . , ud) := F (b1, u2, . . . , ud)H(b1, u2, . . . , ud) − F (a1, u2, . . . , ud)H(a1, u2, . . . , ud)

= H(a1, u2, . . . , ud)[F (b1, u2, . . . , ud) − F (a1, u2, . . . , ud)]

+ F (b1, u2, . . . , ud)[H(b1, u2, . . . , ud) −H(a1, u2, . . . , ud)]

Since H is grounded,

VH(a1,∗)(|a2, b2| × · · · × |ad, bd|) = VH(|0, a1| × |a2, b2| × · · · × |ad, bd|) ≥ 0,

VH(b1,∗)−H(a1,∗)(|a2, b2| × · · · × |ad, bd|) = VH(|a1, b1| × |a2, b2| × · · · × |ad, bd|) ≥ 0,

and the same is true for F . Therefore F̃ is increasing by the induction hypothesis. Since

VFH(|a1, b1| × · · · × |ad, bd|) = VF̃ (|a2, b2| × · · · × |ad, bd|),

this finishes the proof of the lemma.

To develop the theory of Lévy copulas for general Lévy processes, we will need to define the

notion of margins for a function that is not grounded. The following example gives an intuition

of how this can be done.

Example 4.4. Consider the following “alternative” definition of a distribution function of a

random vector X:

F̃ (x1, . . . , xd) := P [X1 ∈ (x1 ∧ 0, x1 ∨ 0]; . . . ;Xd ∈ (xd ∧ 0, xd ∨ 0]]
d∏

i=1

sgnxi (4.7)
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for x1, . . . xd ∈ R̄. This function satisfies Equation (4.6) and can therefore play the role of a

distribution function. However, the margins of F̃ (e.g. the distribution functions computed

using Equation (4.7) for the components of X) are no longer given by (4.5). It can be shown

that

F̃ I((xi)i∈I) := P [Xi ∈ (xi ∧ 0, xi ∨ 0], i ∈ I]
∏

i∈I
sgnxi

=
∑

(xi)i∈Ic∈{−∞,∞}|Ic|

F̃ (x1, . . . , xd)
∏

i∈Ic

sgnxi.

The above example motivates the following definitions. First, we need to generalize the

notion of “increasing and grounded” function.

Definition 4.9 (Volume function). Let Sk ⊂ R̄ for k = 1, . . . , d. A function F : S1×· · ·×Sd
is called volume function if it is d-increasing and there exists x∗ ∈ S1 × · · · × Sd such that

F (x1, . . . , xd) = 0 whenever xk = x∗k for some k.

The term “volume function” is due to the fact that an increasing function is a volume

function if and only if there exists x∗ ∈ S1 × · · · × Sd such that

F (x1, . . . , xd) = VF (|x1 ∧ x∗1, x1 ∨ x∗1| × · · · × |xd ∧ x∗d, xd ∨ x∗d|)
d∏

i=1

sgn(xi − x∗i )

for all x ∈ S1×· · ·×Sd. Every increasing grounded function is a volume function. The function

F̃ , defined in Example 4.4 is a volume function but is not grounded.

Definition 4.10 (Margins of a volume function). Let Sk ⊂ R̄ for k = 1, . . . , d and let

F : S1 × · · · × Sd → R̄ be a volume function. Then for I ⊂ {1, . . . , d} nonempty, the I-margin

of F is a function F I :
∏

i∈I Si → R̄ defined by

F I((xi)i∈I) :=

(
∏

i∈I
sgn(xi − x∗i )

)

× sup
ai,bi∈Si:i∈Ic

∑

(xi)i∈Ic∈ ∏

j∈Ic
{aj ,bj}

(−1)N((xi)i∈Ic )F (x1, . . . , xd), (4.8)

where N((xi)i∈Ic) = #{i ∈ Ic : xi = ai}.

In particular, for d = 2 we have F1(x) = sgn(x − x∗) supy1,y2∈S2
{F (x, y2) − F (x, y1)}.

Equation (4.8) looks so complicated because it applies without modification to all cases that
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are of interest to us: distribution functions, copulas, Lévy copulas with closed or open domains.

In particular cases we will obtain simplifications that are easier to work with. Using the F-

volume notation, Equation (4.8) can be rewritten as follows:

F I((xi)i∈I) =

(
∏

i∈I
sgn(xi − x∗i )

)

sup
ai,bi∈Si:ai≤bi,i∈Ic

VF






d∏

i=1







|xi ∧ x∗i , xi ∨ x∗i |, i ∈ I

|ai, bi|, i ∈ Ic




 .

(4.9)

When F satisfies the conditions of Definition 4.8, since F is d-increasing, the sup is achieved

when for every i ∈ Ic, ai = inf Si and bi = supSi. Therefore, in this case the above formula

yields F I((xi)i∈I) = F (x1, . . . , xd)|xi=supSi, i∈Ic and the two definitions coincide.

The following important property of increasing functions will be useful in the sequel.

Lemma 4.4. Let Sk ⊂ R̄ for k = 1, . . . , d and let F : S1 × · · · × Sd → R̄ be a volume function.

Let (x1, . . . , xd) and (y1, . . . , yd) be any points in DomF . Then

|F (x1, . . . , xd) − F (y1, . . . , yd)| ≤
d∑

k=1

|Fk(xk) − Fk(yk)|. (4.10)

Proof. From the triangle inequality,

|F (x1, . . . , xd) − F (y1, . . . , yd)| ≤ |F (x1, . . . , xd) − F (y1, x2 . . . , xd)| + . . .

+ |F (y1, . . . , yd−1, xd) − F (y1, . . . , yd)|,

hence it suffices to prove that

|F (x1, . . . , xd) − F (y1, x2 . . . , xd)| ≤ |F1(x1) − F1(y1)|. (4.11)

Without loss of generality suppose that x1 ≥ y1 ≥ x∗1 and that xk ≥ x∗k for k = 2, . . . , d and let

B := |x∗2, x2| × · · · × |x∗d, xd|. Then

F (x1, . . . , xd) − F (y1, x2 . . . , xd) = VF (|y1, x1| ×B). (4.12)

Moreover, for all x ≥ x∗1,

F1(x) = sup
ai,bi∈Si:ai≤bi,i=2,...,d

VF (|x∗1, x| × |a2, b2| × · · · × |ad, bd|).
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Fix ε > 0 and choose ai, bi ∈ Si : ai ≤ bi, i = 2, . . . , d such that

F1(y1) ≤ ε+ VF (|x∗1, y1| × |a2, b2| × · · · × |ad, bd|).

For i = 2, . . . , d let ãi := ai ∧ x∗i and b̃i := bi ∨ xi and denote B̃ := |ã2, b̃2| × · · · × |ãd, b̃d|. Then,

since F is d-increasing, VF (|y1, x1| × B) ≤ VF (|y1, x1| × B̃) and VF (|x∗1, y1| × |a2, b2| × · · · ×
|ad, bd|) ≤ VF (|x∗1, y1| × B̃). Therefore

VF (|y1, x1| ×B) ≤ VF (|x∗1, x1| × B̃) − F1(y1) + ε ≤ F1(x1) − F1(y1) + ε.

Since the above is true for all ε > 0, in view of (4.12), the proof of (4.11) is complete.

We close this section with the definition of (ordinary) copula and the Sklar’s theorem, which

relates copulas to distribution functions. The proof of Sklar’s theorem can be found in [90].

Definition 4.11 (Copula). A d-dimensional copula (a d-copula) is a function C : [0, 1]d →
[0, 1] such that

1. C is grounded and d-increasing.

2. C has margins Ck, k = 1, 2, . . . , d, which satisfy Ck(u) = u for all u in [0, 1].

Theorem 4.5 (Sklar). Let F be a d-dimensional distribution function with margins F1, . . . , Fd.

Then there exists a d-dimensional copula C such that for all x ∈ R̄d,

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)). (4.13)

If F1, . . . , Fd are continuous then C is unique; otherwise, C is uniquely determined on RanF1×
· · · ×RanFd. Conversely, if C is a d-copula and F1, . . . , Fd are distribution functions, then the

function F defined by (4.13) is a d-dimensional distribution function with margins F1, . . . , Fd.

4.4 Lévy copulas for spectrally positive Lévy processes

This section discusses the notion of Lévy copula for Lévy processes with only positive jumps in

each component. This notion was introduced by the present author in [92]. Examples of Lévy

copulas for spectrally positive Lévy processes and methods to construct them will be given in

Sections 4.6 and 5.1 together with the examples of general Lévy copulas. Further properties of
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Lévy copulas in the spectrally positive case, including a characterization of the convergence of

Lévy measures in terms of Lévy copulas can be found in a recent paper by Barndorff-Nielsen

and Lindner [8].

As the laws of random variables are represented by their distribution functions, Lévy mea-

sures can be represented by their tail integrals.

Definition 4.12. Let ν be a Lévy measure on Rd
+ := [0,∞)d \ {0}. The tail integral U of ν is

a function [0,∞)d → [0,∞] such that

1. U(0, . . . , 0) = ∞.

2. For (x1, . . . , xd) ∈ Rd
+,

U(x1, . . . , xd) = ν([x1,∞) × · · · × [xd,∞)).

The Lévy measure is uniquely determined by its tail integral, because the above definition

implies that for every x, y ∈ Rd
+ with x ≤ y,

VU (|x, y|) = (−1)dν([x1, y1) × · · · × [xd, yd)). (4.14)

Definition 4.13. Let X be a Rd-valued Lévy process and let I ⊂ {1, . . . , d} non-empty. The

I-marginal tail integral U I of X is the tail integral of the process XI := (X i)i∈I . The one-

dimensional margins are, as usual, denoted by Ui := U{i}.

Lemma 4.1 entails that for I ⊂ {1, . . . , d} nonempty, the I-marginal tail integral of a Lévy

measure ν on Rd
+ can be computed from the tail integral U of ν by substituting 0 instead of

arguments with indices not in I:

U I((xi)i∈I) = U(x1, . . . , xd)|(xi)i∈Ic=0. (4.15)

A Lévy copula is defined similarly to ordinary copula but on a different domain.

Definition 4.14. A function F : [0,∞]d → [0,∞] is a Lévy copula if

1. F (u1, . . . , ud) <∞ for (u1, . . . , ud) 6= (∞, . . . ,∞),

2. F is grounded: F (u1, . . . , ud) = 0 whenever ui = 0 for at least one i ∈ {1, . . . , d},
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3. F is d-increasing,

4. Fi(u) = u for any i ∈ {1, . . . , d}, u ∈ [0,∞].

The following theorem is an analog of the well-known Sklar’s theorem for copulas. The

proof is done using multilinear interpolation and is inspired by Sklar’s proof of his theorem in

[90].

Theorem 4.6. Let ν be a Lévy measure on Rd
+ with tail integral U and marginal Lévy measures

ν1, . . . , νd. There exists a Lévy copula F on [0,∞]d such that

U(x1, . . . , xd) = F (U1(x1), . . . , Ud(xd)), (x1, . . . , xd) ∈ [0,∞)d, (4.16)

where U1, . . . , Ud are tail integrals of ν1, . . . , νd. This Lévy copula is unique on
∏d
i=1 RanUi.

Conversely, if F is a Lévy copula on [0,∞]d and ν1, . . . , νd are Lévy measures on (0,∞)

with tail integrals U1, . . . , Ud then Equation (4.16) defines a tail integral of a Lévy measure on

Rd
+ with marginal Lévy measures ν1, . . . , νd.

Remark 4.1. In particular, the Lévy copula F is unique if the marginal Lévy measures ν1, . . . , νd

are infinite and have no atoms, because in this case RanUk = [0,∞] for every k.

The first part of this theorem states that all types of dependence of Lévy processes (with

only positive jumps), including complete dependence and independence, can be represented

with Lévy copulas. The second part shows that one can construct multivariate Lévy process

models by specifying separately jump dependence structure and one-dimensional laws for the

components. The laws of components can have very different structure, in particular, it is pos-

sible to construct examples of Lévy processes with some components being compound Poisson

and others having an infinite jump intensity.

Proof of theorem 4.6. For the purposes of this proof, we introduce some auxiliary functions and

measures. First, for every k = 1, . . . , d and every x ∈ [0,∞] we define

Ũk(x) :=







Uk(x), x 6= ∞

0, x = ∞.

Ũ
(−1)
k (t) := sup{x ≥ 0 : Ũk(x) ≥ t}.
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The following properties of Ũ
(−1)
k follow directly from its definition:

Ũ
(−1)
k (t) is nonincreasing in t,

Ũ
(−1)
k (∞) = 0, (4.17)

Ũk(Ũ
(−1)
k (t)) = t ∀t ∈ Ran Ũk. (4.18)

For every (x1, . . . , xd) ∈ [0,∞]d, we define

Ũ(x1, . . . , xd) =







0, xk = ∞ for some k

U(x1, . . . , xd), otherwise.

Finally, introduce a measure ν̃ on [0,∞]d\{0} by ν̃(B) := ν(B∩Rd
+) for all B ∈ B([0,∞]d\{0}).

Clearly, Equation (4.14) still holds for all x, y ∈ [0,∞]d \{0} with x ≤ y, if U and ν are replaced

by Ũ and ν̃.

First part. To prove the existence of a Lévy copula, we construct the required Lévy copula

in two stages.

1. First consider the function F̃ : D := Ran Ũ1 × · · · × Ran Ũd → [0,∞] defined by

F̃ (x1, . . . , xd) = Ũ(Ũ
(−1)
1 (x1), . . . , Ũ

(−1)
d (xd)).

Suppose that xk = 0 for some k. Without loss of generality we can take k = 1. Then

F̃ (0, x2, . . . , xd) = Ũ(z, Ũ
(−1)
2 (x2), . . . , Ũ

(−1)
d (xd)),

where z is such that Ũ1(z) = 0. Since Ũ is nonnegative and nonincreasing in each argument,

0 ≤ Ũ(z, Ũ
(−1)
2 (x2), . . . , Ũ

(−1)
d (xd)) ≤ Ũ(z, 0, . . . , 0) = Ũ1(z) = 0.

Therefore, F̃ is grounded. Let a, b ∈ D with ak ≤ bk, k = 1, . . . , d and denote

B := (a1, b1] × · · · × (ad, bd] and

B̃ := [Ũ
(−1)
1 (b1), Ũ

(−1)
1 (a1)) × · · · × [Ũ

(−1)
d (bd), Ũ

(−1)
d (ad)).

Since Ũ
(−1)
k (bk) ≤ Ũ

(−1)
k (ak) for every k, formula (4.14) entails that

VF (B) = (−1)dVŨ (B̃) = ν̃(B̃) ≥ 0,
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which means that F̃ is a d-increasing. Equations (4.17) and (4.18) show that for every k,

F̃ (∞, . . . ,∞, xk,∞, . . . ,∞) = xk, ∀xk ∈ Ran Ũk. Therefore, F̃ has uniform margins.

2. The second stage is to extend F̃ to the function F defined on [0,∞]d. The extension can

be carried out step by step, constructing a sequence of d + 1 grounded d-increasing functions

F 0, . . . , F d with uniform margins such that F 0 ≡ F̃ , F d ≡ F ,

DomF k = [0,∞]k × Ran Ũk+1 × · · · × Ran Ũd,

and for each k = 1, . . . , d− 1, F k ≡ F k+1 on DomF k. In other words, at each step, we extend

F̃ along one coordinate only. Since all d steps are performed in the same way, we need only to

describe one of them. To simplify the notation and without loss of generality, we describe the

first one, that is, we show how to extend F̃ to a function defined on [0,∞]×Ran Ũ2×· · ·×Ran Ũd.

First, let us extend F̃ by continuity to a function defined on Ran Ũ1×Ran Ũ2×· · ·×Ran Ũd.

Given a sequence of real numbers {ξi}∞i=1 such that ξi ∈ Ran Ũ1 for all i and limi ξi /∈ Ran Ũ1,

we define

F (lim
i
ξi, x2, . . . , xd) := lim

i
F (ξi, x2, . . . , xd).

Since ∞ ∈ Ran Ũ1, limi ξi is finite. Therefore, by Lemma 4.4, the limit in the right-hand side of

the above expression exists and is uniform in other coordinates so F is well-defined. It is also

clear that F is d-increasing, grounded and has uniform margins.

Now we can suppose that Ran Ũ1 is closed and extend F̃ using linear interpolation to a

function defined on ([0, λ1] ∪ {∞}) × Ran Ũ2 × · · · × Ran Ũd where λ1 = limx↓0 Ũ1(x). For

any x ≤ λ1 such that x /∈ Ran Ũ1, we introduce x := sup{ξ ∈ Ran Ũ1, ξ ≤ x}, x̄ := inf{ξ ∈
Ran Ũ1, ξ ≥ x}. Since Ran Ũ1 is closed, it contains both x and x̄. Define

F (x, x2, . . . , xd) := F̃ (x, x2, . . . , xd)
x̄− x

x̄− x
+ F̃ (x̄, x2, . . . , xd)

x− x

x̄− x
. (4.19)

The function F is clearly grounded and has uniform margins; we only need to prove that it

is d-increasing. Fix a d-box B = |x1, y1| × · · · × |xd, yd| with vertices in the domain of F and

denote B̃ = |x2, y2| × · · · × |xd, yd|.

If both x1 and y1 belong to Ran Ũ1 then all vertices of B are in Dom F̃ and VF (B) =

VF̃ (B) ≥ 0.

If x1 /∈ Ran Ũ1, y1 /∈ Ran Ũ1 and between x1 and y1 there are no points that belong to
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Ran Ũ1, then a straightforward computation using Equation (4.19) shows that

VF (B) =
y1 − x1

x̄1 − x1

VF̃ (|x1, x̄1| × B̃) ≥ 0.

Suppose that x1 /∈ Ran Ũ1 but y1 ∈ Ran Ũ1. Let z = inf{ζ ≥ x1, ζ ∈ Ran Ũ1}. Because

Ran Ũ1 is closed, z ∈ Ran Ũ1. The F -volume of B can be decomposed as follows:

VF (B) = VF (|x1, z| × B̃) + VF (|z, y1| × B̃).

The second term is positive because all vertices of the corresponding d-box are in the domain

of F̃ . The first term can again be computed using formula (4.19):

VF (|x1, z| × B̃) =
z − x1

z − x1

VF̃ (|x1, z| × B̃) ≥ 0.

The case where x1 ∈ Ran Ũ1 and y1 /∈ Ran Ũ1 can be treated in this same way and if x1 /∈ Ran Ũ1,

y1 /∈ Ran Ũ1 and between x1 and y1 there are points that belong to Ran Ũ1, the interval |x1, y1|
can be split onto two intervals of types that we have already discussed.

We have thus extended F̃ to a function defined on ([0, λ1]∪{∞})×Ran Ũ2×· · ·×Ran Ũd. If

λ1 = ∞ then we are done; otherwise we extend F̃ to [0,∞]×Ran Ũ2 × · · · ×Ran Ũd by defining

F (x1, . . . , xd) := F̃ (gλ1(x1), x2, . . . , xd) + (x1 − λ1)
+1x2=∞ . . . 1xd=∞, (4.20)

where

gλ1(x) :=







x, x ≤ λ1

λ1, λ1 < x <∞

∞, x = ∞.

The function F , defined by (4.20) is an increasing function because it is a sum of two increasing

functions. The groundedness and marginal properties can be verified by direct substitution.

This completes the construction of the Lévy copula.

To prove the uniqueness, assume that there exist two functions with required properties,

i.e., we have

F 1(U1(x1), . . . , Ud(xd)) = F 2(U1(x1), . . . , Ud(xd)),∀x1, . . . , xd.

For each vector (t1, . . . , td) ∈ RanU1 × · · · × RanUd there exists a vector (x1, . . . , xd) ∈ [0,∞]d

such that U1(x1) = t1, . . . , Ud(xd) = td. This means that for every (t1, . . . , td) ∈ RanU1 × · · · ×
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RanUd we have F 1(t1, . . . , td) = F 2(t1, . . . , td). The uniqueness statement now follows from

Lemma 4.4.

The converse statement. Since U1, . . . , Ud are left-continuous (as tail integrals of Lévy

measures), Lemma 4.4 entails that U is left-continuous in each variable. Therefore, there exists

a unique positive measure ν on B(Rd
+) such that for every right-open left-closed interval I of

Rd
+, ν(I) = (−1)dVU (I) (see Section 4.5 in [60]).

It remains to prove that
∫

|x|≤1 |x|2ν(dx) < ∞. Let us fix k ∈ {1 . . . d} and consider the

measure ν ′k defined by

ν ′k(A) :=

∫

{x∈R
d
+:xk∈A}

ν(dx) for A ∈ B((0,∞)).

By the uniqueness of the extension this measure coincides with νk because it is straightforward

to check that the two measures coincide on right-open left-closed intervals of (0,∞). Therefore

∫

[0,1]d
|x|2ν(dx) =

d∑

k=1

∫

[0,1]d
x2
kν(dx) ≤

d∑

k=1

∫

[0,1]
x2
kν

′
k(dxk) =

d∑

k=1

∫

[0,1]
x2
kνk(dxk).

Since νk for every k is by the theorem’s statement a Lévy measure, the right-hand side of the

above expression is finite, which shows that ν is indeed a Lévy measure.

4.5 Lévy copulas for general Lévy processes

This section discusses the notion of Lévy copula for general Lévy processes, introduced in a

joint work of the present author with Jan Kallsen [59]. In the sequel, we will need a special

interval associated with any x ∈ R:

I(x) :=







[x,∞), x ≥ 0,

(−∞, x), x < 0.
(4.21)

Similarly to Lévy processes with positive jumps, the Lévy measure of a general Lévy process

will be represented by its tail integral.

Definition 4.15. Let X be a Rd-valued Lévy process with Lévy measure ν. The tail integral

of ν is the function U : (R \ {0})d → R defined by

U(x1, . . . , xd) := ν





d∏

j=1

I(xj)





d∏

i=1

sgn(xi) (4.22)
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Note that the tail integral is defined so that (−1)dU is d-increasing and left-continuous in

each orthant as was the case for the tail integral of Lévy measure on Rd
+.

Since the tail integral is only defined on (R \ {0})d, it does not determine the Lévy measure

uniquely (unless we know that the latter does not charge the coordinate axes). However, we

will see from the following lemma that the Lévy measure is completely determined by its tail

integral and all its marginal tail integrals (cf. Definition 4.13).

Lemma 4.7. Let X be a Rd-valued Lévy process. Its marginal tail integrals {U I : I ⊂
{1, . . . , d} non-empty} are uniquely determined by its Lévy measure ν. Conversely, its Lévy

measure is uniquely determined by the set of its marginal tail integrals.

An important difference between the spectrally positive case and the general case is that in

the spectrally positive case the Lévy measure is determined by a single tail integral U , defined

on [0,∞)d, whereas in the general case the Lévy measure is determined jointly by all marginal

tail integrals, each one being defined on (R \ {0})I . In the spectrally positive case Equation

4.15 shows that specifying the values of U when some of the arguments equal 0 is equivalent

to specifying the marginal tail integrals. In principle, we could do the same in the general case

and define the tail integral on Rd by Equation (4.22). However, due to a more complicated

structure of margins of a Lévy copula in the general case, with this definition of the tail integral

the representation formula (4.16) does not hold on Rd. Therefore, we keep the Definition 4.15

and describe the Lévy measure using its tail integral, defined on (R \ {0})d and all its marginal

tail integrals.

Proof of Lemma 4.7. The fact that marginal tail integrals are uniquely determined by the Lévy

measure ν follows from Lemma 4.1.

The converse statement. It is sufficient to prove that ν([a, b)) is completely determined

by the tail intergals for any a, b ∈ Rd with a ≤ b and 0 /∈ [a, b). We prove by induction on

k = 0, . . . , d that νI(
∏

i∈I [ai, bi)) is determined by the tail integrals for any a, b ∈ Rd such that

a ≤ b and aibi ≤ 0 for at most k indices and any non-empty I ⊂ {1, . . . , d} with 0 /∈ ∏i∈I [ai, bi).

If k = 0, Definitions 4.15 and 4.13 entail that

νI

(
∏

i∈I
[ai, bi)

)

= (−1)|I|VUI

(
∏

i∈I
[ai, bi)

)

.
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Let a, b ∈ Rd such that aibi ≤ 0 for at most k indices. For ease of notation we suppose that

aibi ≤ 0 for i = 1, . . . , k. Let I ⊂ {1, . . . , d} non-empty with 0 /∈ ∏i∈I [ai, bi). By induction

hypothesis, νI(
∏

i∈I [ai, bi)) is uniquely determined if k 6∈ I. Suppose that k ∈ I. If bk = 0, then

νI

(
∏

i∈I
[ai, bi)

)

= lim
α↑0

νI




∏

i∈I,i<k
[ai, bi) × [ak, α) ×

∏

i∈I,i>k
[ai, bi)





and the right-hand side is uniquely determined by the induction hypothesis. If bk 6= 0, then

νI

(
∏

i∈I
[ai, bi)

)

= νI\{k}




∏

i∈I\{k}
[ai, bi)





− lim
c↑∞

νI




∏

i∈I,i<k
[ai, bi) × [bk, c) ×

∏

i∈I,i>k
[ai, bi)





− lim
α↑ak;c↓−∞

νI




∏

i∈I,i<k
[ai, bi) × [c, ak) ×

∏

i∈I,i>k
[ai, bi)



 ,

which is uniquely determined as well.

Lévy copulas in the general case are defined similarly to the spectrally positive case.

Definition 4.16. A function F : (−∞,∞]d → (−∞,∞] is a Lévy copula if

1. F (u1, . . . , ud) <∞ for (u1, . . . , ud) 6= (∞, . . . ,∞),

2. F (u1, . . . , ud) = 0 if ui = 0 for at least one i ∈ {1, . . . , d},

3. F is d-increasing,

4. Fi(u) = u for any i ∈ {1, . . . , d}, u ∈ (−∞,∞].

Remark 4.2. Since F is d-increasing, the sup in Equation (4.8) for the margins of F may be

computed by taking bi = ∞ and ai → −∞ for every i ∈ Ic. Therefore, Equation (4.8) reduces

to

F I((xi)i∈I) := lim
c→∞

∑

(xj)j∈Ic∈{−c,∞}|Ic|

F (x1, . . . , xd)
∏

j∈Ic

sgnxj . (4.23)

When F is a Lévy copula on [0,∞]d (Definition 4.14), it can be extended to a Lévy copula Fext

on (−∞,∞]d by taking

Fext(x1, . . . , xd) :=







F (x1, . . . , xd), (x1, . . . , xd) ∈ [0,∞]d

0 otherwise.
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In the following, the term Lévy copula without specifying the domain refers to a Lévy copula

on (−∞,∞]d.

Example 4.5. It is easy to check that the function

F (u, v) :=
1

2

uv

1 + |u| + |v|

defines a Lévy copula on (−∞,∞]2.

In view of Lemma 4.7, the following theorem is analogous to Theorem 4.6 for Lévy measures

on Rd
+ and to Sklar’s theorem for probability measures.

Theorem 4.8. Let ν be a Lévy measure on Rd \ {0}. Then there exists a Lévy copula F such

that the tail integrals of ν satisfy:

U I((xi)i∈I) = F I((Ui(xi))i∈I) (4.24)

for any non-empty I ⊂ {1, . . . , d} and any (xi)i∈I ∈ (R \ {0})I . The Lévy copula F is unique

on
∏d
i=1 RanUi.

Conversely, if F is a d-dimensional Lévy copula and ν1, . . . , νd are Lévy measures on R\{0}
with tail integrals Ui, i = 1, . . . , d then there exists a unique Lévy measure on Rd \ {0} with one-

dimensional marginal tail integrals U1, . . . , Ud and whose marginal tail integrals satisfy Equation

(4.24) for any non-empty I ⊂ {1, . . . , d} and any (xi)i∈I ∈ (R \ {0})I .

Remark 4.3. In particular, the Lévy copula F is unique if for each k, the marginal Lévy measure

νk has no atoms and both νk((−∞, 0)) = ∞ and νk((0,∞)) = ∞, because in this case RanUk =

[−∞,∞] for each k.

Definition 4.17. For a Lévy process X on Rd with characteristic triplet (A, ν, γ), any Lévy

copula as in statement of Theorem 4.8 is called the Lévy copula of X.

Proof of Theorem 4.8. First part. Denote the marginal Lévy measures of ν by ν1, . . . , νd. For

the purposes of this proof we set for x ∈ (−∞,∞], i = 1, . . . , d,

Ũi(x) :=







Ui(x) for x 6= 0 and x 6= ∞,

0 for x = ∞,

∞ for x = 0
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and

∆Ui(x) :=







limξ↓x Ui(ξ) − Ui(x) for x 6= 0 and x 6= ∞,

0 for x = ∞ or x = 0.

Let m be the measure on ((−∞,∞]d \ {0}) × [0, 1]d × R defined by

m := ν̃ ⊗ λ|(0,1)d ⊗ δ0 +
d∑

i=1

δ(0,...,0
︸︷︷︸

i−1

,∞,0,...,0) ⊗ δ(0,...,0
︸︷︷︸

d

) ⊗ λ|(νi((0,∞)),∞)∪(−∞,−νi((−∞,0))),

where ν̃ is the extension of ν to (−∞,∞]d \ {0}, i.e. ν̃(B) := ν(B ∩ Rd). Let

gi : (−∞,∞] × [0, 1] × R → (−∞,∞], (x, y, z) 7→ Ũi(x) + y∆Ui(x) + z

and define a measure m̃ on (−∞,∞]d \ {∞, . . . ,∞} via

m̃(B) := m(g̃−1(B))

with

g̃(x1, . . . , xd, y1, . . . , yd, z) := (g1(x1, y1, z), . . . , gd(xd, yd, z)).

Finally, let F be given by

F (u1, . . . , ud) :=







m̃

(
d∏

i=1

(ui ∧ 0, ui ∨ 0]

)
d∏

i=1

sgnui, (u1, . . . , ud) ∈ (−∞,∞]d \ (∞, . . . ,∞)

∞, (u1, . . . , ud) = (∞, . . . ,∞).

Properties 1 and 2 in Definition 4.16 are obvious. From the fact that m̃ is a positive measure

it follows immediately that F is d-increasing. Let I ⊂ {1, . . . , d} nonempty and (ui)i∈I ∈
(−∞,∞]I . For ease of notation, we consider only the case of non-negative ui. The general case

follows analogously. By definition of F we have

F I((ui)i∈I) = lim
c→∞

∑

(uj)j∈Ic∈{−c,∞}Ic

F (u1, . . . , ud)
∏

j∈Ic

sgnuj

= m̃

(
∏

i∈I
(0, ui] × (−∞,∞]I

c

)

= m

(
{

(x1, . . . , xd, y1, . . . , yd, z) ∈ ((−∞,∞]d \ {0}) × [0, 1]d × R :

Ũi(xi) + yi∆Ui(xi) + z ∈ (0, ui] for i ∈ I
}
)

.
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If I = {i}, then the definition of m implies that this equals

(
νi ⊗ λ|(0,1)

) (
{(x, y) ∈ R × [0, 1] : Ũi(x) + y∆Ui(x) ∈ (0, ui]}

)
+ (ui − νi((0,∞)))1{ui>νi((0,∞))}.

Introducing x∗ := inf{x ≥ 0 : Ũi(x) + ∆Ui(x) ≤ ui}, this can be expressed as

νi((x
∗,∞)) + (ui − Ũi(x

∗) − ∆Ui(x
∗))1{x∗ 6=0} + (ui − νi((0,∞)))1{x∗=0} = ui,

i.e. property 4 in Definition 4.16 is met.

Now, let (xi)i∈I ∈ (R \ {0})I . Again, we consider only the case where all the xi are nonneg-

ative. Then

F I((Ui(xi))i∈I) = m

(
{

(x̃1, . . . , x̃d, y1, . . . , yd, z) ∈ (−∞,∞]d × [0, 1]d × R :

Ũi(x̃i) + yi∆Ui(x̃i) + z ∈ (0, Ui(xi)] for i ∈ I
}
)

= ν

(
∏

i∈I
[xi,∞) × RIc

)

= νI

(
∏

i∈I
[xi,∞)

)

= U I((xi)i∈I)

as claimed. The uniqueness statement follows from (4.24) and Lemma 4.4.

The converse statement. Since F is d-increasing and continuous (by Lemma 4.4), there

exists a unique measure µ on (−∞,∞]d \ {∞, . . . ,∞} such that VF (|a, b|) = µ((a, b]) for any

a, b ∈ (−∞,∞]d \ {∞, . . . ,∞} with a ≤ b. (see [60], Section 4.5). For a one-dimensional tail

integral U(x), we define

U (−1)(u) :=







sup{x > 0 : U(x) ≥ u} ∨ 0, u ≥ 0

sup{x < 0 : U(x) ≥ u}, u < 0.
(4.25)

Let ν̃ := f(µ) be the image of µ under

f : (u1, . . . , ud) 7→ (U
(−1)
1 (u1), . . . , U

(−1)
d (ud))

and let ν be the restriction of ν̃ to Rd \ {0}. We need to prove that ν is a Lévy measure and

that its marginal tail integrals U I
ν satisfy

U Iν ((xi)i∈I) = F I((Ui(xi))i∈I)
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for any non-empty I ⊂ {1, . . . , d} and any (xi)i∈I ∈ (R \ {0})I . Suppose for ease of notation

that xi > 0, i ∈ I. Then

U Iν ((xi)i∈I) = ν({ξ ∈ Rd : ξi ∈ [xi,∞), i ∈ I})

= µ({u ∈ (−∞,∞]d : U
(−1)
i (ui) ∈ [xi,∞), i ∈ I})

= µ({u ∈ (−∞,∞]d : 0 < ui ≤ U(xi), i ∈ I}).

= F I((Ui(xi))i∈I).

This proves in particular that the one-dimensional marginal tail integrals of ν equal U1, . . . , Ud.

Since the marginals νi of ν are Lévy measures on R, we have
∫

(x2
i ∧ 1)νi(dxi) <∞ for

i = 1, . . . , d. This implies

∫

(|x|2 ∧ 1)ν(dx) ≤
∫ d∑

i=1

(x2
i ∧ 1)ν(dx)

d∑

i=1

∫

(x2
i ∧ 1)νi(dxi) <∞

and hence ν is a Lévy measure on Rd. The uniqueness of ν follows from the fact that it is

uniquely determined by its marginal tail integrals (cf. Lemma 4.7).

4.6 Examples of Lévy copulas

In this section we derive the form of Lévy copulas corresponding to special dependence struc-

tures of Lévy processes: independence, complete dependence and the dependence of stable

processes. Examples of parametric families of Lévy copulas will be given in the next chapter.

To characterize independence of components of a multidimensional Lévy process in terms of its

Lévy copula, we need to restate Lemma 4.2 in terms of tail integrals.

Lemma 4.9. The components X1, . . . , Xd of an Rd-valued Lévy process X are independent if

and only if their continuous martingale parts are independent and the tail integrals of the Lévy

measure satisfy U I((xi)i∈I) = 0 for all I ⊂ {1, . . . , d} with card I ≥ 2 and all (xi)i∈I ∈ (R\{0})I .

Proof. The “only if” part. Let I ⊂ {1, . . . , d} with card I ≥ 2 and (xi)i∈I ∈ (R \ {0})I . Then

the components of the Lévy process (X i)i∈I are independent as well. Applying Lemma 4.2 to

this process, we conclude, using Equation (4.2), that U I((xi)i∈I) = 0.

The “if” part. Let ν be defined by Equation (4.2), where νi is the Lévy measure of X i for

i = 1, . . . , d. Then all marginal tail integrals of ν coincide with those of the Lévy measure of
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X. Therefore, ν is the Lévy measure of X (cf. Lemma 4.7), which entails by Lemma 4.2 that

X1, . . . , Xd are independent.

Theorem 4.10. The components X1, . . . , Xd of an Rd-valued Lévy process X are independent

if and only if their Brownian motion parts are independent and X has a Lévy copula of the

form

F⊥(x1, . . . , xd) :=
d∑

i=1

xi
∏

j 6=i
1{∞}(xj) (4.26)

Proof. It is straightforward to see that Equation (4.26) defines a Lévy copula.

The “if” part. Let I ⊂ {1, . . . , d} with card I ≥ 2. Equation (4.23) entails that F I
⊥((ui)i∈I) =

0 for all (ui)i∈I ∈ RI . Therefore, the tail integrals of X satisfy U I((xi)i∈I) = 0 for all (xi)i∈I ∈
(R \ {0})I by (4.24). From Lemma 4.9 we conclude that X1, . . . , Xd are independent.

The “only if” part. By Lemma 4.9, the tail integrals of X satisfy U I((xi)i∈I) = 0 for all

(xi)i∈I ∈ (R \ {0})I and all I ⊂ {1, . . . , d} with card I ≥ 2. Since also F I
⊥((ui)i∈I) = 0, we

conclude that F⊥ is a Lévy copula for X.

Observing that F⊥|[0,∞]d is a Lévy copula in the sense of Definition 4.14, we obtain the

following easy corollary.

Corollary 4.1. The components X1, . . . , Xd of an Rd-valued spectrally positive Lévy process X

are independent if and only if their Brownian motion parts are independent and X has a Lévy

copula on [0,∞]d of the form F⊥|[0,∞]d, where F⊥ is defined by (4.26).

The following theorem describes complete jump dependence in terms of Lévy copulas.

Theorem 4.11. Let X be a Rd-valued Lévy process whose Lévy measure is supported by an

ordered set S ⊂ K, where K is as in Equation (4.3). Then the complete dependence Lévy

copula given by

F‖(x1, . . . , xd) := min(|x1|, . . . , |xd|)1K(x1, . . . , xd)
d∏

i=1

sgnxi (4.27)

is a Lévy copula of X.

Conversely, if F‖ is a Lévy copula of X, then the Lévy measure of X is supported by an

ordered subset of K. If, in addition, the tail integrals Ui of X i are continuous and satisfy

limx→0 Ui(x) = ∞, i = 1, . . . , d, then the jumps of X are completely dependent.
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The proof is based on the following representation of an ordered set as a union of a strictly

ordered set and countable many segments that are perpendicular to some coordinate axis.

Lemma 4.12. Let S ⊂ Rd be an ordered set. It can be written as

S = S∗ ∪
∞⋃

n=1

Sn, (4.28)

where S∗ ⊂ Rd is strictly ordered and for every n, Sn ⊂ Rd and there exist k(n) and ξ(n) such

that xk(n) = ξ(n) for all x ∈ Sn.

Proof. For the purposes of this proof we define the length of an ordered set S ′ by |S′| :=

supa,b∈S′

∑d
i=1(ai − bi). Let

S(ξ, k) = {x ∈ Rd : xk = ξ} ∩ S. (4.29)

First, we want to prove that there is at most a countable number of such segments with non-

zero length. Consider N different segments of this type (Si := S(ξi, ki))
N
i=1 with ki = k and

|Si| ≥ ε > 0 for all i. Since Si are different, ξi must all be different and we can suppose without

loss of generality that ξi < ξi+1 for all i. Then xi ≤ xi+1 for all i, where xi and xi are the upper

and the lower bounds of Si. Since all Si are subsets of S, which is an ordered set, this implies

that |⋃N
i=1 Si| ≥ Nε. Therefore, for all A > 0 and for all ε > 0, the set [−A,A]d contains a

finite number of segments of type (4.29) with length greater or equal to ε. This means that

there is at most a countable number of segments of non-zero length, and one can enumerate

them in a sequence {Sn}∞n=1 with Sn := S(ξ(n), k(n)).

Now let S∗ = S \ ⋃∞
n=1 Sn. S∗ is ordered because it is a subset of S. Let x, y ∈ S∗. If

xk = yk for some k then either x and y are the same or they are in some segment of type (4.29)

hence not in S∗. Therefore, either xk < yk for every k or xk > yk for every k, which entails

that S∗ is strictly ordered and we have obtained the desired representation for S.

Proof of Theorem 4.11. We start by proving that F‖ is indeed a Lévy copula in the sense of

Definition 4.16. Properties 1 and 2 are obvious. To show property 3, introduce a positive

measure µ on R̄d by

µ(B) = λ({x ∈ R : (x, . . . , x
︸ ︷︷ ︸

d times

) ∈ B}), B ∈ B(R̄d),
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where λ denotes the Lebesgue measure on R. Then VF‖
((a, b]) = µ((a, b]) for any a ≤ b, and

therefore F‖ is d-increasing. The margins of F have the same form as F , namely

F I‖ ((xi)i∈I) = min
i∈I

|xi|1{(−1,...,−1),(1,...,1)}((sgnxi)i∈I)
∏

i∈I
sgnxi. (4.30)

Therefore, the one-dimensional margins satisfy F {i}(u) = u.

The first part. Let x ∈ (0,∞)d. Clearly, U(x) ≤ Uk(xk) for any k. On the other hand, since

S is an ordered set, we have

{y ∈ Rd : xk ≤ yk} ∩ S = {y ∈ Rd : x ≤ y} ∩ S

for some k. Indeed, suppose that this is not so. Then there exist points z1, . . . , zd ∈ S and

indices j1, . . . , jd such that zkk ≥ xk and zkjk < xjk for k = 1, . . . , d. Choose the greatest element

among z1, . . . , zd (this is possible because they all belong to an ordered set) and call it zk.

Then zkjk < xjk . However, by construction of z1, . . . , zd we also have zjkjk ≥ xjk , which is a

contradiction to the fact that zk is the greatest element. Therefore,

U(x) = min(U1(x1), . . . , Ud(xd)).

Similarly, it can be shown that for every x ∈ (−∞, 0)d,

U(x) = (−1)d min(|U1(x1)|, . . . , |Ud(xd)|).

Since U(x) = 0 for any x /∈ K, we have shown that

U(x) = F‖(U1(x1), . . . , Ud(xd))

for any x ∈ (R \ {0})d. Since the marginal Lévy measures of X are also supported by ordered

sets and the margins of F‖ have the same form as F‖, we have

U I((xi)i∈I) = F I‖ ((Ui(xi))i∈I) (4.31)

for any I ⊂ {1, . . . , d} and any (xi)i∈I ∈ (R \ {0})I .
The converse statement. Let S := supp ν. Let us first show that S ⊆ K. Suppose that

this is not so. Then there exists x ∈ S such that for some m and n, xm < 0 and xn > 0 and

for every neighborhood N of x, ν(N) > 0. This implies that U {m,n}(xm/2, xn/2) > 0, which

contradicts Equation (4.31).
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Suppose now that S is not an ordered set. Then there exist two points u, v ∈ S such

that um > vm and un < vn for some m and n. Moreover, either ui ≥ 0 and vi ≥ 0 for all

i or ui ≤ 0 and vi ≤ 0 for all i. Suppose that ui ≥ 0 and vi ≥ 0, the other case being

analogous. Let x = u+v
2 . Since u, v ∈ S, we have ν({z ∈ Rd : zm < xm, zn ≥ xn}) > 0 and

ν({z ∈ Rd : zm ≥ xm, zn < xn}) > 0. However

ν({z ∈ Rd : zm < xm, zn ≥ xn}) = Un(xn) − U{m,n}(xm, xn)

= Un(xn) − min(Um(xm), Un(xn))

and

ν({z ∈ Rd : zm ≥ xm, zn < xn}) = Um(xm) − min(Um(xm), Un(xn)),

which is a contradiction because these expressions cannot be simultaneously positive.

For the last assertion, we assume that the tail integrals Ui of X i are continuous and satisfy

limx→0 Ui(x) = ∞, i = 1, . . . , d. It suffices to show that ν(Sn) = 0 for any n in decomposition

(4.28). If ξ(n) 6= 0, then

ν(Sn) = lim
ε↓0

(Uk(n)(ξ(n) − ε) − Uk(n)(ξ(n))) = 0,

because Uk(n) is continuous. Suppose now that ξ(n) = 0. Since Sn does not reduce to a single

point, we must have either xm > 0 or xm < 0 for some x ∈ Sn and some m. Suppose that

xm > 0, the other case being analogous. Since S is ordered, we have

ν({x ∈ Rd : xk(n) ≥ ε} ∩ S) ≤ ν({ξ ∈ Rd : ξm ≥ xm} ∩ S) <∞

uniformly in ε > 0. This implies limx↓0 Uk(n)(x) <∞ in contradiction to limx→0 Uk(n)(x) = ∞.

Hence, ξ(n) > 0 for any n. Therefore, ν(Rd \ S∗) = 0 and the proof is completed.

A characterization of complete dependence of spectrally positive Lévy processes can be

obtained as a corollary of Theorem 4.11.

Corollary 4.2. Let X be a Rd-valued spectrally positive Lévy process whose Lévy measure is

supported by an ordered set S ⊂ Rd
+. Then

F‖(x1, . . . , xd)|[0,∞]d ≡ min(x1, . . . , xd)

is a Lévy copula of X.
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Conversely, if F‖|[0,∞]d is a Lévy copula of a spectrally positive Lévy process X, then the

Lévy measure of X is supported by an ordered subset of Rd
+. If, in addition, the tail integrals

Ui of X i are continuous and satisfy limx↓0 Ui(x) = ∞, i = 1, . . . , d, then the jumps of X are

completely dependent.

Lévy copulas provide a simple characterization of possible dependence patterns of multidi-

mensional stable processes.

Theorem 4.13. Let X := (X1, . . . , Xd) be a Lévy process on Rd and let α ∈ (0, 2). X is

α-stable if and only if its components X1, . . . , Xd are α-stable and it has a Lévy copula F that

is a homogeneous function of order 1:

∀r > 0, ∀u1, . . . , ud, F (ru1, . . . , rud) = rF (u1, . . . , ud). (4.32)

Proof. The “only if” part. Let X be α-stable. For each i = 1, . . . , d, three situations are

possible: RanUi = (−∞, 0] (only negative jumps), RanUi = [0,∞) (only positive jumps) or

RanUi = (−∞, 0) ∪ (0,∞) (jumps of both signs). We exclude the trivial case of a component

having no jumps at all. Let I1 = {i : RanUi = (−∞, 0]} and I2 = {i : RanUi = [0,∞)} and

for each i, let X̄i be a copy of X i, independent from X and from X̄k for k 6= i. Define a Lévy

process X̃ on Rd by

X̃i =







Xi, i /∈ I1 ∪ I2,

Xi − X̄i, i ∈ I1 ∪ I2.

Let ν̃ be the Lévy measure of X̃, Ũ be its tail integral and F̃ be its Lévy copula (it exists by

Theorem 4.8). The process X̃ is clearly α-stable and each component of this process has jumps

of both signs (Ran Ũi = R \ {0}). By Theorem 14.3 in [87], for every B ∈ B(Rd \ {0}) and for

every r > 0,

ν̃(B) = rαν̃(rB). (4.33)

Therefore, for every I ⊂ {1, . . . , d} nonempty and for every (xi)i∈I ∈ (R \ {0})|I|,

Ũ I((xi)i∈I) = rαŨ I((rxi)i∈I). (4.34)

By Theorem 4.8 this implies that for all (u1, . . . , ud) ∈ (R \ {0})d,

F̃ I((ui)i∈I) = r−1F̃ I((rui)i∈I),
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and therefore (4.32) holds for F̃ . However, F̃ is also the copula of X. Indeed, let I ⊂ {1, . . . , d}
nonempty and (xi)i∈I ∈ (R \ {0})|I|. Two situations are possible:

• For every i ∈ I, Ũi(xi) = U(xi). Then it is easy to see that Equation (4.24) holds with F

replaced by F̃ .

• For some k ∈ I, Uk(xk) = 0. Then F̃ I((Ui(xi))i∈I) = 0, but on the other hand

|U I((xi)i∈I)| ≤ |Uk(xk)| = 0, and (4.24) also holds.

The “if” part. Let X have α-stable margins and a homogeneous Lévy copula. Then the

marginal tail integrals of X satisfy (4.34), and since by Lemma 4.7, the Lévy measure of every

set of the form [a, b) can be expressed as a linear combination of tail integrals, the Lévy measure

of X has the property (4.33) and we conclude by Theorem 14.3 in [87] that X is α-stable.



Chapter 5

Applications of Lévy copulas

To apply Lévy copulas to multidimensional financial problems with dependence between assets,

three kinds of tools are required:

1. Parametric families of Lévy copulas. Parsimonious models are needed because one typi-

cally does not have enough information about the dependence to estimate many parame-

ters or proceed with a non-parametric approach.

2. Algorithms allowing to compute various quantities within a Lévy copula model (e.g.,

option prices, risk measures etc.)

3. Estimation methods for Lévy copula models.

In this chapter we give an answer to the first two questions. Section 5.1 describes several

methods to construct parametric families of Lévy copulas and gives examples of such families. In

Section 5.2 we show how Lévy copulas can be used to simulate multidimensional Lévy processes

with dependence between components. This simulation algorithm enables us to compute the

quantities of interest using the Monte Carlo method. Estimation methods for Lévy copulas are

the topic of our current research and we do not discuss them here.

A fundamental advantage of the Lévy copula approach compared to ordinary copulas is the

possibility to work with several time scales at the same time. When the time scale is fixed,

the dependence structure of returns can be described with an ordinary copula. However, on a

different time scale the copula will not be the same (cf. Example 4.1). On the other hand, a

165
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Lévy copula of a Lévy process is not linked to any given time scale; it describes the dependence

structure of the entire process.

One example of a financial modelling problem where Lévy copulas naturally appear is the

pricing of multi-asset options on underlyings, described by exponential Lévy models. In this

setting the parameters of the marginal Lévy processes can be calibrated from the prices of Eu-

ropean options, quoted at the market, and the dependence structure will typically be estimated

from the historical time series of returns. Since the sampling rate of returns is different from

the maturity of traded options as well as from the maturity of the basket option that one wants

to price, ordinary copulas are not well suited for this problem. Pricing of basket options in a

Lévy copula model is discussed in more detail in Section 5.3.

Lévy copulas can also be useful outside the realm of financial modelling. Other contexts

where modelling dependence in jumps is required are portfolios of insurance claims and models

of operational risk.

Consider an insurance company with two subsidiaries, in France and in Germany. The

aggregate loss process of the French subsidiary is modelled by the subordinator {Xt}t≥0 and

the loss process of the German one is {Yt}t≥0. The nature of processes X and Y may be

different because the subsidiaries may not be working in the same sector and many risks that

cause losses are local. However, common risks like floods and pan-European windstorms will

lead to a certain degree of dependence between the claims. In this setting it is convenient

to model the dependence between X and Y using a Lévy copula on [0,∞]2. In this modelling

approach, the two-dimensional Lévy measure of (X,Y ) is known and the overall loss distribution

and ruin probability can be computed.

Another example where jump processes naturally appear is given by models of operational

risk. The 2001 Basel agreement defines the operational risk as “the risk of direct and indirect

loss resulting from inadequate or failed internal processes, people and systems or from external

events” and allows banks to use internal loss data to compute regulatory capital requirements.

Taking into account the dependence between different business lines in this computation, due to

a diversification effect, may lead to substantial reduction of regulatory capital [14]. Aggregate

loss processes from different business lines can be dynamically modelled by subordinators and

the dependence between them can be accounted for using a Lévy copula on [0,∞]2.
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The applications of Lévy copulas are not limited to constructing exponential Lévy models.

Lévy copula models can be time changed to obtain multidimensional analogs of stochastic

volatility models discussed in [22]. More generally, since a large class of Markov processes or

even semimartingales behaves locally as a Lévy process in the sense that its dynamics can be

described by a drift rate, a covariance matrix, and a Lévy measure, which may all change

randomly through time (cf. e.g. [54], II.2.9, II.4.19), Lévy copulas could be used to describe

dependence between processes of these types.

5.1 Parametric families of Lévy copulas

Our first result is a method to construct Lévy copulas on [0,∞]d from ordinary copulas.

Theorem 5.1 (Construction of Lévy copulas from ordinary copulas). Let C be a copula

on [0, 1]d and φ : [0, 1] → [0,∞] be a strictly increasing continuous function with φ(1) = ∞,

φ(0) = 0, having nonnegative derivatives of orders up to d on (0, 1). Then

F (u1, . . . , ud) := φ(C(φ−1(u1), . . . , φ
−1(ud)))

is a Lévy copula on [0,∞]d.

Proof. First, note that φ−1 is well defined and satisfies φ−1(0) = 0 and φ−1(∞) = 1. Therefore,

properties 1 and 2 of Definition 4.14 are clear, and in view of Equation (4.5), property 4 also

holds. It remains to show that F is a d-increasing function, and since φ−1 is strictly increasing,

it suffices to prove that the function φ(C(u1, . . . , ud)) is d-increasing on [0, 1]d.

To this end, let us show by induction on d that if H : [0, 1]d → [0, 1] is d-increasing and

grounded and ψ : [0, 1] → [0,∞] is a continuous increasing function with ψ(0) = 0 and positive

derivatives of orders up to d on (0, 1) then ψ(H) is also d-increasing and grounded. For d = 1,

the result is clear. Suppose d ≥ 2. For k = 1, . . . , d let ak, bk ∈ [0, 1] with ak ≤ bk. The function

H̃(u2, . . . , ud) := ψ(H(b1, u2, . . . , ud)) − ψ(H(a1, u2, . . . , ud)) satisfies

Vψ(H)(|a1, b1| × · · · × |ad, bd|) = VH̃(|a2, b2| × · · · × |ad, bd|),

hence, it remains to prove that H̃ is d − 1-increasing. It can be represented as follows (“∗”
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stands for u2, . . . , ud):

H̃(∗) =

∫ H(b1,∗)

H(a1,∗)
ψ′(t)dt

= (H(b1, ∗) −H(a1, ∗))
∫ 1

0
ψ′(H(a1, ∗) + t(H(b1, ∗) −H(a1, ∗)))dt

= (H(b1, ∗) −H(a1, ∗))ψ′
+(0)

+ (H(b1, ∗) −H(a1, ∗))
∫ 1

0
{ψ′(H(a1, ∗) + t(H(b1, ∗) −H(a1, ∗))) − ψ′

+(0)}dt.

Note that ψ′
+(0), the right derivative of ψ at 0, is well defined because we have supposed that

d ≥ 2 and therefore ψ′′ exists on (0, 1) and ψ′ is increasing. In the right-hand side of the above

equation:

• The integrand is d−1-increasing by the induction hypothesis, becauseH(a1, ∗)+t(H(b1, ∗)−
H(a1, ∗)) is d − 1-increasing and grounded for every t and ψ̃(t) := ψ′(t) − ψ′

+(0) is an

increasing continuous function with ψ̃(0) = 0 and nonnegative derivatives of orders up to

d− 1 on (0, 1).

• The second term is d− 1-increasing by Lemma 4.3,

• The first term is d− 1-increasing because H is,

hence H̃ is d− 1-increasing as sum of d− 1-increasing functions and the proof is complete.

One example of an absolutely monotonic (with positive derivatives of all orders) function

that maps [0, 1] into [0,∞] is φ(x) = x
1−x .

The following result allows to construct Lévy copulas on (−∞,∞]d, analogous to the

Archimedean copulas (cf. [76]). It can be used to build parametric families of Lévy copu-

las in arbitrary dimension, where the number of parameters does not depend on the dimension.

Theorem 5.2 (Archimedean Lévy copulas). Let φ : [−1, 1] → [−∞,∞] be a strictly in-

creasing continuous function with φ(1) = ∞, φ(0) = 0, and φ(−1) = −∞, having derivatives of

orders up to d on (−1, 0) and (0, 1), and satisfying

ddφ(ex)

dxd
≥ 0,

ddφ(−ex)
dxd

≤ 0, x ∈ (−∞, 0). (5.1)

Let

φ̃(u) := 2d−2{φ(u) − φ(−u)}
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for u ∈ [−1, 1]. Then

F (u1, . . . , ud) := φ

(
d∏

i=1

φ̃−1(ui)

)

, (u1, . . . , ud) ∈ (−∞,∞]d

defines a Lévy copula.

Proof. Firstly, note that φ̃ is a strictly increasing continuous function from [−1, 1] to [−∞,∞],

satisfying φ̃(1) = ∞ and φ̃(−1) = −∞, which means that φ̃−1 exists for all u ∈ (−∞,∞] and

F is well defined. Properties 1 and 2 of Definition 4.16 are clearly satisfied. For k = 1, . . . , d

and uk ∈ R we have

F {k}(uk) = lim
c→∞

∑

(ui)i6=k∈{−c,∞}d−1

F (u1, . . . , ud)
∏

i6=k
sgnui

=
∑

(ui)i6=k∈{−∞,∞}d−1

φ



φ̃−1(uk)
∏

i6=k
sgnui




∏

i6=k
sgnui

=
d−1∑

i=0

(
d− 1

i

)

(−1)iφ
(

φ̃−1(uk)(−1)i
)

= 2d−2{φ(φ̃−1(uk)) − φ(−φ̃−1(uk))} = uk,

which proves property 4. It remains to show that F is d-increasing. Since φ̃−1 is increasing,

we only need to show that (u1, . . . , ud) 7→ φ(
∏d
i=1 ui) is d-increasing on (−1, 1]d, and for this,

because φ(
∏d
i=1 ui) = φ(

∏d
i=1 |ui|

∏d
i=1 sgnui), it suffices to prove that both (u1, . . . , ud) 7→

φ(
∏d
i=1 ui) and (u1, . . . , ud) 7→ −φ(−∏d

i=1 ui) are d-increasing on [0, 1]d or, equivalently, on

(0, 1)d (since φ is continuous). The first condition of (5.1) implies that

∂dψ(z1, . . . , zd)

∂z1 . . . ∂zd
≥ 0

on (−∞, 0)d for ψ(z1, . . . , zd) := φ(ez1+···+zd). From Definition 4.5 it follows easily that

Vψ(B) =

∫

B

∂dψ(z1, . . . , zd)

∂z1 . . . ∂zd
dz1 . . . dzd.

Therefore, ψ is increasing on (−∞, 0)d, which implies that (u1, . . . , ud) 7→ φ(
∏d
i=1 ui) is d-

increasing on (0, 1)d. The second condition of (5.1) entails similarly that (u1, . . . , ud) 7→
−φ(−∏d

i=1 ui) is d-increasing on (0, 1)d as well.

Remark 5.1. Condition (5.1) is satisfied in particular if for any k = 1, . . . , d,

dkφ(u)

duk
≥ 0, u ∈ (0, 1) and (−1)k

dkφ(u)

duk
≤ 0, u ∈ (−1, 0).
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Corollary 5.1 (Archimedean Lévy copulas for spectrally positive processes). Let

ψ : [0,∞] → [0,∞] be a strictly decreasing continuous function with ψ(0) = ∞, ψ(∞) = 0,

having derivatives of orders up to d on (0,∞) and satisfying

(−1)d
ddψ(x)

dxd
≥ 0

for all x ∈ (0,∞). Then

F (u1, . . . , ud) := ψ(
d∑

i=1

ψ−1(ui)) (5.2)

is a Lévy copula on [0,∞]d.

Proof. Let

φ(u) =







ψ(− log u), u ≥ 0

−ψ(− log(−u)), u < 0
, u ∈ [−1, 1].

Then φ satisfies the conditions of Theorem 5.2 and therefore

F̄ (u1, . . . , ud) := φ

(
d∏

i=1

φ−1(ui/2
d−1)

)

is a Lévy copula on (−∞,∞]d. This implies that the function F̃ := F̄ |[0,∞]d has properties 1,

2 and 3 of Definition 4.14. However, it is easy to check that F̃ (u1, . . . , ud)|ui=∞,i6=k = uk/2
d−1

and therefore

2d−1F̃ (u1, . . . , ud) = 2d−1ψ(
d∑

i=1

ψ−1(ui/2
d−1))

is a Lévy copula on [0,∞]d, which means that (5.2) also defines a positive Lévy copula.

Example 5.1. Let

φ(x) := η(− log |x|)−1/θ1x≥0 − (1 − η)(− log |x|)−1/θ1x<0

with θ > 0 and η ∈ (0, 1). Then

φ̃(x) = 2d−2(− log |x|)−1/θ sgnx, and

φ̃−1(u) = e−|22−du|−θ

sgnu,

and therefore

F (u1, . . . , ud) = 22−d
(

d∑

i=1

|ui|−θ
)−1/θ

(η1u1···ud≥0 − (1 − η)1u1···ud<0) (5.3)
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Figure 5.1: Contour plots of Lévy density with 1-stable margins and Lévy copula (5.4) with

θ = 5 and different values of η. Top left: η = 0. Top right: η = 1. Bottom: η = 0.5. On each

curve the Lévy density ν(x, y) is constant and it increases from outer curves to inner curves.

defines a two-parameter family of Lévy copulas (F is in fact a Lévy copula for all θ > 0 and

η ∈ [0, 1]). The role of parameters is most easy to analyze in the case d = 2, when (5.3) becomes

F (u, v) = (|u|−θ + |v|−θ)−1/θ(η1uv≥0 − (1 − η)1uv<0). (5.4)

To explain the meaning of the parameters θ and η, we have drawn the contour plots of a Lévy

density with 1-stable margins and the dependence structure given by F above. Figure 5.1

shows that the parameter η determines the dependence of the sign of jumps: when η = 1, the

two components always jump in the same direction, and when η = 0, positive jumps in one

component are accompanied by negative jumps in the other and vice versa. For intermediate
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Figure 5.2: Contour plots of Lévy density with 1-stable margins and Lévy copula (5.4) with

η = 1. Top left: θ = 0.2. Top right: θ = 0.7. Bottom left: θ = 1. Bottom right: θ = 5. On each

curve the Lévy density ν(x, y) is constant and it increases from outer curves to inner curves.

values of η, positive jumps in one component can correspond to both positive and negative

jumps in the other component. The parameter θ is responsible for the dependence of absolute

values of jumps in different components: from Figure 5.2 it is seen that as θ grows from 0.2 to

5, the dependence structure changes from independence to almost complete dependence.

Theorem 5.2 can be used to construct parsimonious models of dependence; this is typically

useful when one has little information about the dependence structure of the problem. If a more

precise vision is necessary, a possible strategy is to model the dependence in each corner of the

Lévy measure separately. A d-dimensional Lévy copula can be constructed from 2d positive
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Lévy copulas (one for each orthant) as follows:

Theorem 5.3. For each {α1, . . . , αd} ∈ {−1, 1}d let g(α1,...,αd)(u) : [0,∞] → [0, 1] be a nonneg-

ative, increasing function satisfying

∑

α∈{−1,1}d with αk=−1

g(α1,...,αd)(u) = 1 and
∑

α∈{−1,1}d with αk=1

g(α1,...,αd)(u) = 1

for all u ∈ [0,∞] and all k ∈ {1, . . . , d}. Moreover, let F (α1,...,αd) be a positive Lévy copula

that satisfies the following continuity property at infinity: for all I ⊂ {k : αk = −1}, (ui)i∈Ic ∈
[0,∞]I

c
we have

lim
{ui}i∈I→(∞,...,∞)

F (α1,...,αd)(u1, . . . , ud) = F (α1,...,αd)(v1, . . . , vd),

where vi = ui for i ∈ Ic and vi = ∞ otherwise. Then

F (u1, . . . , ud) :=

F (sgnu1,...,sgnud)
(

|u1|g(sgnu1,...,sgnud)(|u1|), . . . , |ud|g(sgnu1,...,sgnud)(|ud|)
) d∏

i=1

sgnui

defines a Lévy copula.

Proof. Properties 1 and 2 of Definition 4.16 are obvious. Property 3 follows after observing that

u 7→ ug(α1,...,αd)(u) is increasing on [0,∞] for any {α1, . . . , αd} ∈ {−1, 1}d. To prove property

4, note that

F (α1,...,αd)
(

|u1|g(α1,...,αd)(|u1|), . . . , |ud|g(α1,...,αd)(|ud|)
)

= |uk|g(α1,...,αd)(|uk|)

for any {α1, . . . , αd} ∈ {−1, 1}d and any {u1, . . . , ud} ∈ R̄d with ui = ∞ for all i 6= k. Therefore,

F {k}(u) =







∑

α∈{−1,1}d with αk=1

ug(α1,...,αd)(u)
d∏

i=1

αi
∏

j 6=k
αj if u ≥ 0

∑

α∈{−1,1}d with αk=−1

|u|g(α1,...,αd)(|u|)
d∏

i=1

αi
∏

j 6=k
αj if u < 0

= u.
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Example 5.2. Let

g(α1,...,αd)(u) =







1 for α1 = · · · = αd

0 otherwise.

Then the Lévy copula F in Theorem 5.3 satisfies F (u1, . . . , ud) = 0 if uiuj < 0 for some i, j.

This means that the Lévy measure is supported by the positive and the negative orthant: either

all components of the process jump up or all components jump down.

5.2 Simulation of multidimensional dependent Lévy processes

Lévy copulas turn out to be a convenient tool for simulating multidimensional Lévy processes

with specified dependence. In this section we first give the necessary definitions and two aux-

iliary lemmas and then prove two theorems which show how multidimensional Lévy processes

with dependence structures given by Lévy copulas can be simulated in the finite variation case

(Theorem 5.6) and in the infinite variation case (Theorem 5.7).

To simulate a Lévy process {Xt}0≤t≤1 on Rd with Lévy measure ν, we will first simulate a

Poisson random measure on [0, 1] × Rd with intensity measure λ[0,1] ⊗ ν, where λ denotes the

Lebesgue measure. The Lévy process can then be constructed via the Lévy-Itô decomposition.

Let F be a Lévy copula on (−∞,∞]d such that for every I ∈ {1, . . . , d} nonempty,

lim
(xi)i∈I→∞

F (x1, . . . , xd) = F (x1, . . . , xd)|(xi)i∈I=∞. (5.5)

This Lévy copula defines a positive measure µ on Rd with Lebesgue margins such that for each

a, b ∈ Rd with a ≤ b,

VF (|a, b|) = µ((a, b]). (5.6)

For a one-dimensional tail integral U , the inverse tail integral U (−1) was defined in Equation

(4.25). In the sequel we will need the following technical lemma.

Lemma 5.4. Let ν be a Lévy measure on Rd with marginal tail integrals Ui, i = 1, . . . , d, and

Lévy copula F on (−∞,∞]d, satisfying (5.5), let µ be defined by (5.6) and let

f : (u1, . . . , ud) 7→ (U
(−1)
1 (u1), . . . , U

(−1)
d (ud)).

Then ν is the image measure of µ by f .
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Proof. We must prove that for each A ∈ B(Rd),

ν(A) = µ({u ∈ Rd : f(u) ∈ A}),

but in view of Lemma 4.7, it is sufficient to show that for each I ⊂ {1, . . . , d} nonempty and

for all (xi)i∈I ∈ (R \ {0})|I|,

U I((xi)i∈I) = µ({u ∈ Rd : U
(−1)
i (ui) ∈ I(xi), i ∈ I}),

where I(x) was defined in (4.21). However, since Ui is left-continuous, for every i, U
(−1)
i (u) ∈

I(x) if and only if u ∈ (Ui(x) ∧ 0, Ui(x) ∨ 0]. Therefore,

µ({u ∈ Rd : U
(−1)
i (ui) ∈ I(xi), i ∈ I})

= µ({u ∈ Rd : ui ∈ (Ui(xi) ∧ 0, Ui(xi) ∨ 0], i ∈ I}) = F I((Ui(xi))i∈I),

and an application of Theorem 4.8 completes the proof.

By Theorem 2.28 in [1], there exists a family, indexed by ξ ∈ R, of positive Radon measures

K(ξ, dx2 · · · dxd) on Rd−1, such that

ξ 7→ K(ξ, dx2 · · · dxd)

is Borel measurable and

µ(dx1 . . . dxd) = λ(dx1) ⊗K(x1, dx2 · · · dxd). (5.7)

In addition, K(ξ,Rd−1) = 1 λ-almost everywhere, that is, K(ξ, ∗) is, almost everywhere, a prob-

ability distribution. In the sequel we will call {K(ξ, ∗)}ξ∈R the family of conditional probability

distributions associated to the Lévy copula F .

Let Fξ be the distribution function of the measure K(ξ, ∗):

Fξ(x2, . . . , xd) := K(ξ, (−∞, x2] × · · · × (−∞, xd]), (x2, . . . , xd) ∈ Rd−1. (5.8)

The following lemma shows that it can be computed in a simple manner from the Lévy copula

F .
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Lemma 5.5. Let F be a Lévy copula on (−∞,∞]d, satisfying (5.5), and Fξ be the corresponding

conditional distribution function, defined by (5.8). Then, there exists N ⊂ R with λ(N) = 0

such that for every fixed ξ ∈ R \N , Fξ(∗) is a probability distribution function, satisfying

Fξ(x2, . . . , xd) = sgn(ξ)
∂

∂ξ
VF ((ξ ∧ 0, ξ ∨ 0] × (−∞, x2] × · · · × (−∞, xd]) (5.9)

in every point (x2, . . . , xd), where Fξ is continuous.

Remark 5.2. Since the law of a random variable is completely determined by the values of its

distribution function at the continuity points of the latter, being able to compute Fξ at all

points where it is continuous is sufficient for all practical purposes.

Proof. Since it has already been observed that K(ξ,Rd−1) = 1 λ-almost everywhere, we only

need to prove the second part of the lemma. Let

G(x1, . . . , xd) := sgnx1VF ((x1 ∧ 0, x1 ∨ 0] × (−∞, x2] × · · · × (−∞, xd])

By Theorem 2.28 in [1], for each f ∈ L1(Rd, µ),
∫

Rd

f(x1, . . . , xd)µ(dx1 · · · dxd) =

∫ ∞

−∞
dx1

∫

Rd

f(x1, . . . , xd)K(x1, dx2 · · · dxd), (5.10)

which implies that

G(x1, . . . , xd) = sgnx1

∫

(x1∧0,x1∨0]
dξFξ(x2, . . . , xd),

Therefore, for fixed (x2, . . . , xd), (5.9) holds ξ-almost everywhere. Since a union of countably

many sets of zero measure is again a set of zero measure, there exists a set N ⊂ R with λ(N) = 0

such that for every ξ ∈ R \N , (5.9) holds for all (x2, . . . , xd) ∈ Qd, where Q denotes the set of

rational numbers.

Fix ξ ∈ R \N and let x ∈ Rd−1 and {x+
n } and {x−n } be two sequences of d− 1-dimensional

vectors with coordinates in Q, converging to x from above and from below (componentwise).

Since Fξ is increasing in each coordinate (as a probability distribution function), the limits

limn Fξ(x
+
n ) and limn Fξ(x

−
n ) exist. Suppose that

lim
n
Fξ(x

+
n ) = lim

n
Fξ(x

−
n ) = F ∗ (5.11)

and observe that for every δ 6= 0,

G(ξ + δ, x−n ) −G(ξ, x−n )

δ
≤ G(ξ + δ, x) −G(ξ, x)

δ
≤ G(ξ + δ, x+

n ) −G(ξ, x+
n )

δ
.
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For every ε > 0, in view of (5.11), there exists N0 such that for every n ≥ N0, Fξ(x
+
n )−F ∗ ≤ ε/2

and F ∗ − Fξ(x
−
n ) ≤ ε/2. Since G is differentiable with respect to the first variable at points

(ξ, x+
n ) and (ξ, x−n ), we can choose δ small enough so that

∣
∣
∣
∣

G(ξ + δ, x−n ) −G(ξ, x−n )

δ
− Fξ(x

−
n )

∣
∣
∣
∣
≤ ε/2

and
∣
∣
∣
∣

G(ξ + δ, x+
n ) −G(ξ, x+

n )

δ
− Fξ(x

+
n )

∣
∣
∣
∣
≤ ε/2

This proves that

lim
δ→0

G(ξ + δ, x) −G(ξ, x)

δ
= F ∗.

We have thus shown that Fξ satisfies Equation (5.9) in all points where (5.11) holds, that is,

where Fξ is continuous.

In the following two theorems we show how Lévy copulas may be used to simulate multidi-

mensional Lévy processes with specified dependence. Our results can be seen as an extension

to Lévy processes, represented by Lévy copulas, of the series representation results, developed

by Rosinski and others (see [84] and references therein). The first result concerns the simpler

case when the Lévy process has finite variation on compacts.

Theorem 5.6. (Simulation of multidimensional Lévy processes, finite variation case)

Let ν be a Lévy measure on Rd, satisfying
∫

(|x| ∧ 1)ν(dx) <∞, with marginal tail integrals Ui,

i = 1, . . . , d and Lévy copula F (x1, . . . , xd), such that the condition (5.5) is satisfied, and let

K(x1, dx2 · · · dxd) be the corresponding conditional probability distributions, defined by (5.8). Let

{Vi} be a sequence of independent random variables, uniformly distributed on [0, 1]. Introduce

d random sequences {Γ1
i }, . . . , {Γdi }, independent from {Vi} such that

• N =
∑∞

i=1 δ{Γ1
i } is a Poisson random measure on R with intensity measure λ.

• Conditionally on Γ1
i , the random vector (Γ2

i , . . . ,Γ
d
i ) is independent from Γkj with j 6= i

and all k and is distributed on Rd−1 with law K(Γ1
i , dx2 · · · dxd).

Then

{Zt}0≤t≤1 where Zkt =
∞∑

i=1

U
(−1)
i (Γki )1[0,t](Vi), k = 1, . . . , d, (5.12)
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is a Lévy process on the time interval [0, 1] with characteristic function

ei〈u,Zt〉 = exp

(

t

∫

Rd

(ei〈u,z〉 − 1)ν(dz)

)

. (5.13)

Remark 5.3. The probability distribution function of (Γ2
i , . . . ,Γ

d
i ) conditionally on Γ1

i is known

from Lemma 5.9.

Remark 5.4. The sequence {Γ1
i }i≥1 can be constructed, for example, as follows. Let {Xi}i≥1 be

a sequence of jump times of a Poisson process with jump intensity equal to 2. Then it is easy

to check that one can define Γ1
i by Γ1

i = Xi(−1)i.

Proof. First note that {Γki } are well defined since by Lemma 5.5, K(x1, ∗) is a probability

distribution for almost all x1. Let

Zkτ,t =
∑

−τ≤Γ1
i≤τ

U
(−1)
k (Γki )1Vi≤t, k = 1, . . . , d.

By Proposition 3.8 in [82],

Zkτ,t =

∫

[0,t]×[−τ,τ ]×Rd−1

U
(−1)
k (xk)M(ds× dx1 · · · dxd),

where M is a Poisson random measure on [0, 1] × Rd with intensity measure λ[0,1](dt) ⊗
µ(dx1 · · · dxd), and the measure µ was defined in Equation (5.6).

By Lemma 5.4 and Proposition 3.7 in [82],

Zkτ,t =

∫

[0,t]×Rd

xkNτ (ds× dx1 · · · dxd), (5.14)

for some Poisson random measureNτ on [0, 1]×Rd with intensity measure λ[0,1](ds)⊗ντ (dx1 · · · dxd),
where

ντ := 1
(−∞,U

(−1)
1 (−τ)]∪[U

(−1)
1 (τ),∞)

(x1)ν(dx1 · · · dxd) (5.15)

The Lévy-Itô decomposition [87, Theorem 19.2] implies that Zτ,t is a Lévy process on the time

interval [0, 1] with characteristic function

ei〈u,Zτ,t〉 = exp

(

t

∫

Rd

(ei〈u,z〉 − 1)ντ (dz)

)

.

Let h be a bounded continuous truncation function such that h(x) ≡ x on a neighborhood of

0. Since limτ→∞ U
(−1)
1 (τ) = 0 and limτ→∞ U

(−1)
1 (−τ) = 0, by dominated convergence,

∫

Rd

h2(x)ντ (dx) −−−→
τ→∞

∫

Rd

h2(x)ν(dx) and

∫

Rd

h(x)ντ (dx) −−−→
τ→∞

∫

Rd

h(x)ν(dx).
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Moreover, for every f ∈ Cb(R
d) such that f(x) ≡ 0 on a neighborhood of 0,

∫

Rd

f(x)ντ (dx) =

∫

Rd

f(x)ν(dx)

starting from a sufficiently large τ . Therefore, Proposition 1.7 allows to conclude that {Zτ,t}0≤t≤1

converges in law to a Lévy process with characteristic function given by (5.13).

If the Lévy process has paths of infinite variation on compacts, it can no longer be rep-

resented as the sum of its jumps and we have to introduce a centering term into the series

(5.12).

Theorem 5.7. (Simulation of multidimensional Lévy processes, infinite variation

case)

Let ν be a Lévy measure on Rd with marginal tail integrals Ui, i = 1, . . . , d and Lévy copula

F (x1, . . . , xd), such that the condition (5.5) is satisfied. Let {Vi} and {Γ1
i }, . . . , {Γdi } be as in

Theorem 5.6. Let

Ak(τ) =

∫

|x|≤1
xkντ (dx1 · · · dxd), k = 1 . . . d,

where ντ is given by (5.15). Then the process

{Zτ,t}0≤t≤1, where Zkτ,t =
∑

−τ≤Γ1
i≤τ

U
(−1)
k (Γki )1Vi≤t − tAk(τ),

converges in law as τ → ∞ to a Lévy process {Zt}0≤t≤1 on the time interval [0, 1] with charac-

teristic function

ei〈u,Zt〉 = exp

(

t

∫

Rd

(ei〈u,z〉 − 1 − i〈u, z〉)1|z|≤1ν(dz)

)

. (5.16)

Proof. The proof is essentially the same as in Theorem 5.6. Similarly to Equation (5.14), Zkτ,s

can now be represented as

Zkτ,s =

∫

[0,s]×{x∈Rd:|x|≤1}

xk {Nτ (ds× dx1 · · · dxd) − dsντ (dx1 · · · dxd)}

+

∫

[0,s]×{x∈Rd:|x|>1}
xkNτ (ds× dx1 · · · dxd),

where Nτ is a Poisson random measure on [0, 1] × Rd with intensity measure λ[0,1](ds) ⊗ ντ ,

and ντ is defined by (5.15). This entails that Zτ,s is a Lévy process (compound Poisson) with



180 CHAPTER 5. APPLICATIONS OF LEVY COPULAS

−10 −8 −6 −4 −2 0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

Figure 5.3: Conditional distribution function Fξ, corresponding to the Lévy copula of Example

5.1 with ξ = 1, θ = 1 and η = 0.25.

characteristic function

ei〈u,Zτ,t〉 = exp

(

t

∫

Rd

(ei〈u,z〉 − 1 − i〈u, z〉1|z|≤1)ντ (dz)

)

.

Proposition 1.7 once again allows to conclude that (Zτ,s)0≤s≤1 converges in law to a Lévy process

with characteristic function (5.16).

Example 5.3. Let d = 2 and F be the Lévy copula of Example 5.1. A straightforward compu-

tation yields:

Fξ =






(1 − η) +

(

1 +

∣
∣
∣
∣

ξ

x2

∣
∣
∣
∣

θ
)−1−1/θ

(η − 1x2<0)






1ξ≥0

+






η +

(

1 +

∣
∣
∣
∣

ξ

x2

∣
∣
∣
∣

θ
)−1−1/θ

(1x2≥0 − η)






1ξ<0. (5.17)

This distribution function is plotted in Figure 5.3. This conditional distribution function can

be inverted analytically:

F−1
ξ (u) = B(ξ, u)|ξ|

{

C(ξ, u)−
θ

θ+1 − 1
}−1/θ

with B(ξ, u) = sgn(u− 1 + η)1ξ≥0 + sgn(u− η)1ξ<0

and C(ξ, u) =

{
u− 1 + η

η
1u≥1−η +

1 − η − u

1 − η
1u<1−η

}

1ξ≥0 +

{
u− η

1 − η
1u≥η +

η − u

η
1u<η

}

1ξ<0.
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Figure 5.4: Trajectories of two variance gamma processes with dependence structure given by

the Lévy copula of Example 5.1. In both graphs both variance gamma processes are driftless

and have parameters c = 10, λ− = 1 and λ+ = 1 (cf. Equation (1.19)). In the left graph, the

dependence between the two components is strong both in terms of sign and absolute value

(η = 0.9 and θ = 3): the processes jump mostly in the same direction and the sizes of jumps

are similar. In the right graph the dependence of absolute values is weak (θ = 0.5) and the

dependence of jump sign is negative (η = 0.25).

If ν is a Lévy measure on R2, satisfying
∫

(|x|∧1)ν(dx) <∞ with marginal tail integrals U1, U2

and Lévy copula F of Example 5.1, the Lévy process with characteristic function (5.13) can be

simulated as follows. Let {Vi} and {Γ1
i } be as in Theorem 5.6 and let {Wi} be an independent

sequence of independent random variables, uniformly distributed on [0, 1]. For each i, let

Γ2
i = F−1

Γ1
i

(Wi). Then the Lévy process that we want to simulate is given by Equation (5.12).

Figure 5.4 shows the simulated trajectories of variance gamma processes with dependence

structure given by the Lévy copula of Example 5.1 with different values of parameters. The

number of jumps for each trajectory was limited to 2000 and the inverse tail integral of the

variance gamma Lévy measure was computed by inverting numerically the exponential integral

function (function expint available in MATLAB). Simulating two trajectories with 2000 jumps

each takes about 1 second on a Pentium III computer running MATLAB, but this time could be

reduced by several orders of magnitude if the inverse exponential integral function is tabulated

and a lower-level programming language (e.g. C++) is used.
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5.3 A two-dimensional variance gamma model for option pric-

ing

In this section we present a case study showing how one particular model, constructed using

Lévy copulas, can be used to price multi-asset options.

The model We suppose that under the risk-neutral probability, the prices {S1
t }t≥0 and

{S2
t }t≥0 of two risky assets satisfy

S1
t = ert+X

1
t , S2

t = ert+X
2
t , (5.18)

where (X1, X2) is a Lévy process on Rd with characteristic triplet (0, ν, b) with respect to

zero truncation function. X1 and X2 are supposed to be variance gamma processes, that is,

the margins ν1 and ν2 of ν are of the form (1.19) with parameters c1, λ1
+, λ

1
− and c2, λ2

+, λ
2
−.

The Lévy copula F of ν is supposed to be of the form (5.4) with parameters θ and η. The

no-arbitrage condition imposes that for i = 1, 2, λi+ > 1 and the drift coefficients satisfy

bi = ci log

(

1 − 1

λi+
+

1

λi−
− 1

λi+λ
i
−

)

.

The problem In the rest of this section, model (5.18) will be used to price two different kinds

of multi-asset options: the option on weighted average, whose payoff at expiration date T is

given by

HT =

(
2∑

i=1

wiS
i
T −K

)+

with w1,2 ≥ 0 and w1 + w2 = 1,

and the best-of or alternative option with payoff structure

HT =

(

N max

(
S1
T

S1
0

,
S2
T

S2
0

)

−K

)+

Option pricing by Monte Carlo Basket options, described above can be priced by Monte

Carlo method using European options on individual stocks as control variates. Denote the

discounted payoffs of European options by

V i
T = e−rT (SiT −K)+ for i = 1, 2.
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Figure 5.5: Scatter plots of returns in a 2-dimensional variance gamma model with correlation

ρ = 50% and different tail dependence. Left: strong tail dependence (η = 0.75 and θ = 10).

Right: weak tail dependence (η = 0.99 and θ = 0.61).

and the discounted payoff of the basket option by VT = e−rTHT . Then the Monte Carlo

estimate of basket option price is given by

Ê[VT ] = V̄T + a1(E[V 1
T ] − V̄ 1

T ) + a2(E[V 2
T ] − V̄ 2

T ),

where a bar over a random variable denotes the sample mean over N i.i.d. realizations of this

variable, that is, V̄T = 1
N

∑N
i=1 V

(i)
T , where V

(i)
T are independent and have the same law as VT .

The coefficients a1 and a2 should be chosen in order to minimize the variance of Ê[VT ]. It is easy

to see that this variance is minimal if a = Σa0, where Σij = Cov(V i
T , V

j
T ) and a0

i = Cov(VT , V
i
T ).

In practice these covariances are replaced by their in-sample estimates; this may introduce a

bias into the estimator Ê[VT ], but for sufficiently large samples this bias is small compared to

the Monte Carlo error [45].

To illustrate the option pricing procedure, we fixed the following parameters of the marginal

distributions of the two assets: c1 = c2 = 25, λ1
+ = 28.9, λ1

− = 21.45, λ2
+ = 31.66 and

λ2
− = 25.26. In the parametrization (1.18) this corresponds to θ1 = θ2 = −0.2, κ1 = κ2 = 0.04,

σ1 = 0.3 and σ2 = 0.25. To emphasize the importance of tail dependence for pricing multi-asset

options, we used two sets of dependence parameters, which correspond both to a correlation

of 50% (the correlation is computed numerically) but lead to returns with very different tail

dependence structures:
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Figure 5.6: Prices of options on weighted average (left) and of best-of options (right) for two

different dependence patterns.

Pattern 1 Strong tail dependence: θ = 10 and η = 0.75. The scatter plot of returns is shown

in Figure 5.5, left graph. Although the signs of returns may be different, the probability

that the returns will be large in absolute value simultaneously in both components is very

high.

Pattern 2 Weak tail dependence: θ = 0.61 and η = 0.99. The scatter plot of returns in shown

in Figure 5.5, right graph. With this dependence structure the returns typically have the

same sign but their absolute values are not correlated.

In each of the two cases, a sample of 1000 realizations of the couple (X1
T , X

2
T ) with T = 0.02

(one-week options) was simulated using the procedure described in Example 5.3. The cutoff

parameter τ (see Equation (5.14)) was taken equal to 1000, which lead to limiting the average

number of jumps for each trajectory to about 40. For this value of τ , U−1
i (τ) is of order of

10−19 for both assets. Since for the variance gamma model the convergence of U−1 to zero as

τ → ∞ is exponential, the error resulting from the truncation of small jumps is of the same

order, hence, negligible.

Figure 5.6 shows the prices of basket options, computed for different strikes with dependence

patterns given above. The initial asset prices were S1
0 = S2

0 = 1, and the interest rate was taken

to be r = 0.03. For the option on weighted average, the weights wi were both equal to 0.5

and for the best-of option the coefficient was N = 1. The prices of European options, used for
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variance reduction, were computed using the Fourier transform algorithm described in Chapter

1. The standard deviation of Monte Carlo estimates of option prices was below 2 · 10−4 at the

money in all cases.

The difference between option prices computed with and without tail dependece is clearly

important for both types of options: as seen from Figure 5.6, neglecting tail dependence may

easily lead to a 10% error on the option price at the money. On the other hand, this example

shows that using Lévy copulas allows to take into account the tail dependence and discriminate

between two situations that would be undistinguishable in a log-normal framework.
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Conclusions and perspectives

In the first part of this thesis we have solved, using entropic regularization, the ill-posed problem

of calibrating an exponential Lévy model to options data and proposed a stable numerical

method for computing this solution. Applying our method to prices of index options allowed us

to estimate the risk-neutral Lévy measures, implied by market prices. This object is the analog,

for exponential Lévy models, of implied volatility, used in the Black-Scholes framework. Our

empirical results allow to make a number of important conclusions. First, using an exponential

Lévy model one can calibrate with high precision the prices of a set of options with common

maturity. Moreover, high quality of calibration is achieved already by using finite-intensity Lévy

processes. Therefore, from the point of view of option pricing the imperative for using more

complex infinite-intensity models is not clear. The third conclusion is that even in the non-

parametric setting it is impossible, using an exponential Lévy model, to calibrate accurately

the prices of stock index options of several maturities at the same time: options of different

maturities produce different implied Lévy measures. This confirms the observation already made

by several authors [13, 68] that the framework of exponential Lévy models is not sufficiently

flexible to reproduce the term structure of implied volatilities correctly.

In view of the above conclusions, we plan to continue the line of research initiated by this

thesis, by extending its results to models of stock price behavior that do allow to describe the

entire term structure of implied volatilities, e.g. models based on additive processes (processes

with independent but not stationary increments) and hybrid models including both jumps and

stochastic volatility. The second important direction of future research is to investigate the

impact of our calibration methodology on the methods of hedging in presence of jumps in stock

prices.

In the second part of this thesis we introduced the notion of Lévy copula, providing a

187
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general framework in which the dependence structures of multidimensional Lévy processes can

be described. Lévy copulas completely characterize the possible dependence patterns of Lévy

processes in the sense that for every Lévy process, there exists a Lévy copula that describes its

dependence structure and for every Lévy copula and every n one-dimensional Lévy processes,

there exists an n-dimensional Lévy process with this Lévy copula and with margins given by

these one-dimensional processes. Multidimensional Lévy process models for applications can

thus be constructed by taking any n one-dimensional processes and a Lévy copula from a

(possibly parametric) family. The simulation methods, developed in the last chapter of this

thesis, allow to compute various quantities of interest in a Lévy copula model using the Monte

Carlo method.

The scope of potential applications of Lévy copula models in finance and other domains is

large. Financial applications include basket option pricing, and portfolio management. Lévy

copula models are also useful in insurance and in risk management, to model the dependence

between loss processes of different business lines, and more generally, in all multivariate problems

where dependence between jumps needs to be taken into account.

From the point of view of applications, the next step is to develop the methods of estimating

Lévy copula models from the data, using, for example, simulation-based techniques of statistical

inference [51]. A more theoretical research direction that we currently pursue in collaboration

with Jan Kallsen is to investigate the relation between the Lévy copula of a Lévy process and

its probabilistic copula at a given time.
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