Skip to Main content Skip to Navigation
Theses

Instabilite spectrale semiclassique d'operateurs non-autoadjoints

Abstract : In this work, we investigate the spectral behaviour of non-selfadjoint operators under very small perturbations. First, we show a bidimensional Weyl-type law for the number of eigenvalues (inside some domain) of a model operator perturbed by a sum of oscillatory kernels. We show that this result is also true with a very high probability for multiplicative random perturbations of the non-selfadjoint Schroedinger operator. Finally, we complement these results by a bound on the number of eigenvalues in a region where the previous ones cannot be applied.
Document type :
Theses
Complete list of metadatas

Cited literature [38 references]  Display  Hide  Download

https://pastel.archives-ouvertes.fr/tel-00010848
Contributor : Mildred Hager <>
Submitted on : Wednesday, November 2, 2005 - 5:32:55 PM
Last modification on : Wednesday, March 27, 2019 - 4:10:22 PM
Long-term archiving on: : Friday, April 2, 2010 - 10:08:54 PM

Identifiers

  • HAL Id : tel-00010848, version 1

Collections

Citation

Mildred Hager. Instabilite spectrale semiclassique d'operateurs non-autoadjoints. Mathématiques [math]. Ecole Polytechnique X, 2005. Français. ⟨tel-00010848⟩

Share

Metrics

Record views

348

Files downloads

305