S. Agmon, lectures on elliptic boundary value problems, Van Nostrand mathematical studies, 1965.

L. Boulton, Non-self-adjoint harmonic oscillator, compact semigroups and pseudospectra, J. Operator Theory, vol.47, issue.2, pp.413-429, 2002.

N. Burq and M. Zworski, Resonance Expansions in Semi-Classical Propagation, Communications in Mathematical Physics, vol.223, issue.1, pp.1-12, 2001.
DOI : 10.1007/s002200100473

E. B. Davies, Semi-Classical States for Non-Self-Adjoint Schr??dinger Operators, Communications in Mathematical Physics, vol.200, issue.1, pp.35-41, 1999.
DOI : 10.1007/s002200050521

E. B. Davies, Pseudospectra of differential operators, J. Operator theory, vol.43, pp.243-262, 2000.

]. E. Davies, Semigroup growth bounds, preprint

E. B. Davies, Eigenvalues of an elliptic system, Mathematische Zeitschrift, vol.243, issue.4, pp.719-743, 2003.
DOI : 10.1007/s00209-002-0464-0

E. B. Davies, One-parameter semigroups, 1980.
DOI : 10.1017/CBO9780511618864.007

E. B. Davies, Spectral theory and differential operators, 1995.
DOI : 10.1017/CBO9780511623721

N. Dencker, J. Sjöstrand, and M. Zworski, Pseudospectra of semiclassical (pseudo-) differential operators, Communications on Pure and Applied Mathematics, vol.229, issue.2, pp.384-415, 2004.
DOI : 10.1002/cpa.20004

M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, LMS LN 268, 1999.

I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translation of mathematical monographs 18, AMS, 1969.

A. Grigis and J. Sjöstrand, Microlocal Analysis for Differential Operators , LMS LN 196, 1994.

M. Hager, Instabilité spectrale semiclassique d'opérateurs nonautoadjoints I : un exemple, Annales de la faculté des sciences de Toulouse

M. Hager, Instabilité spectrale semiclassique d'opérateurs nonautoadjoints II
DOI : 10.1007/s00023-006-0275-7

URL : http://hal.archives-ouvertes.fr/docs/00/03/00/78/PDF/general.pdf

B. Helffer and D. Robert, Calcul fonctionnel par la transformation de Mellin et op??rateurs admissibles, Journal of Functional Analysis, vol.53, issue.3, pp.246-68, 1983.
DOI : 10.1016/0022-1236(83)90034-4

URL : http://doi.org/10.1016/0022-1236(83)90034-4

B. Helffer and J. Sjöstrand, Résonances en limite semiclassique, Bulletin de la SMF, 1986.
DOI : 10.24033/msmf.327

URL : http://archive.numdam.org/article/MSMF_1986_2_24-25__1_0.pdf

F. Hérau, J. Sjöstrand, and C. Stolk, Semiclassical analysis for the Kramers-Fokker-Planck equation, preprint : http ://arxiv.org/abs/math, p.406275

L. Hörmander, The analysis of Linear Partial Differential Operators vols. 1-3, Grundlehren der mathematischen Wissenschaften 256, 1983.

L. Hörmander, An introduction to complex analysis in several variables, 1973.

T. Kato, Perturbation theory for linear operators, 1995.

N. Lerner, Solving Pseudo-Differential Equations, Proceedings of the International Congress of Mathematicians, pp.711-720, 2002.

B. Ja and . Levin, Distribution of Zeros of entire functions, Translations of mathematical Monographs, AMS, 1964.

A. Martinez, An introduction to semiclassical and microlocal analysis, 2002.
DOI : 10.1007/978-1-4757-4495-8

S. Reddy, P. Schmid, and D. Henningson, Pseudospectra of the Orr???Sommerfeld Operator, SIAM Journal on Applied Mathematics, vol.53, issue.1, pp.15-45, 1993.
DOI : 10.1137/0153002

J. Sjöstrand, Operators of principal type with interior boundary conditions, Acta Mathematica, vol.130, issue.0, pp.130-131, 1973.
DOI : 10.1007/BF02392261

J. Sjöstrand, Function spaces associated to global I-Lagrangian manifolds , (in : « Structure of solutions of differential equations, River Edge , NJ, pp.369-423, 1995.

J. Sjöstrand, Singularités analytiques microlocales, Astérisque, vol.95, 1982.

J. Sjöstrand, Resonances for Bottles and Trace Formulae, Mathematische Nachrichten, vol.2, issue.1, pp.95-149, 2001.
DOI : 10.1002/1522-2616(200101)221:1<95::AID-MANA95>3.0.CO;2-P

J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, pp.60-61, 1990.

J. Sjöstrand and M. Zworski, Complex Scaling and the Distribution of Scattering Poles, Journal of the American Mathematical Society, vol.4, issue.4, pp.729-769, 1991.
DOI : 10.2307/2939287

]. J. Sjöstrand and M. Zworski, Elementary linear al- gebra for advanced spectral problems, preprint

S. H. Tang and M. Zworski, Resonance expansions of scattered waves, Communications on Pure and Applied Mathematics, vol.46, issue.10, pp.1305-1334, 2000.
DOI : 10.1002/1097-0312(200010)53:10<1305::AID-CPA4>3.0.CO;2-#

E. C. Titchmarsh, The theory of functions, 1939.

L. N. Trefethen, Pseudospectra of linear operators, SIAM rev, pp.383-406, 1997.

L. N. Trefethen, Wave packet Pseudomodes of variable coefficient differential operators, preprint, 2004.

L. N. Trefethen, Spectra and pseudospectra, to appear, 2005.
DOI : 10.1007/978-3-662-03972-4_6

M. Zworski, Numerical linear algebra and solvability of partial differential equations, Communications in Mathematical Physics, vol.229, issue.2, pp.293-307, 2002.
DOI : 10.1007/s00220-002-0683-6