R. K. Agrawal, Kinetics of reactions involved in pyrolysis of cellulose I. The three reaction model, The Canadian Journal of Chemical Engineering, vol.23, issue.3, pp.403-411, 1988.
DOI : 10.1002/cjce.5450660309

R. K. Agrawal, Kinetics of reactions involved in pyrolysis of cellulose I. The three reaction model, The Canadian Journal of Chemical Engineering, vol.23, issue.3, pp.413-418, 1988.
DOI : 10.1002/cjce.5450660309

K. Akita, Bull. Fire Prevention Soc, Japan, vol.5, p.43, 1956.

K. Akita and M. Kase, Determination of kinetic parameters for pyrolysis of cellulose and cellulose treated with ammonium phosphate by differential thermal analysis and thermal gravimetric analysis, Journal of Polymer Science Part A-1: Polymer Chemistry, vol.5, issue.4, pp.833-848, 1967.
DOI : 10.1002/pol.1967.150050411

R. Alen and E. Kuoppala, Formation of the main degradation compound groups from wood and its components during pyrolysis, Journal of Analytical and Applied Pyrolysis, vol.36, issue.2, pp.137-148, 1996.
DOI : 10.1016/0165-2370(96)00932-1

S. S. Alves and J. L. Figueiredo, Pyrolysis kinetics of lignocellulosic materials by multistage isothermal thermogravimetry, Journal of Analytical and Applied Pyrolysis, vol.13, issue.1-2, pp.123-134, 1988.
DOI : 10.1016/0165-2370(88)80052-4

S. S. Alves and J. L. Figueiredo, A model for pyrolysis of wet wood, Chemical Engineering Science, vol.44, issue.12, pp.2861-2869, 1989.
DOI : 10.1016/0009-2509(89)85096-1

S. S. Alves and J. L. Figueirido, Kinetics of cellulose pyrolysis modelled by three consecutive first-order reactions, Journal of Analytical and Applied Pyrolysis, vol.17, issue.1, pp.37-46, 1989.
DOI : 10.1016/0165-2370(89)85004-1

M. J. Antal, Biomass pyrolysis: a review of the literature, part 1: Carbohydrate pyrolysis Advances in solar energy, pp.61-111, 1983.

M. J. Antal and H. L. Friedman, Kinetics of Cellulose Pyrolysis in Nitrogen and Steam, Combustion Science and Technology, vol.1, issue.3-4, pp.141-152, 1980.
DOI : 10.1080/00102208008946927

M. J. Antal and G. Varhegyi, Cellulose Pyrolysis Kinetics: The Current State of Knowledge, Industrial & Engineering Chemistry Research, vol.34, issue.3, pp.703-717, 1995.
DOI : 10.1021/ie00042a001

M. J. Antal and G. Varhegyi, Cellulose Pyrolysis Kinetics:?? Revisited, Industrial & Engineering Chemistry Research, vol.37, issue.4, pp.1267-1275, 1998.
DOI : 10.1021/ie970144v

M. J. Antal, Biomass pyrolysis: a review of the literature, part 2: lignocellulose pyrolisis Advances in solar energy, pp.175-255, 1983.

J. Arcate, Marchés et technologies pour le bois torréfié en 2002, Bois Energie, vol.6, 2002.

D. F. Arseneau, THE DIFFERENTIAL THERMAL ANALYSIS OF WOOD, Canadian Journal of Chemistry, vol.39, issue.10, pp.1915-1919, 1961.
DOI : 10.1139/v61-257

D. F. Arseneau, Competitive Reactions in the Thermal Decomposition of Cellulose, Canadian Journal of Chemistry, vol.49, issue.4, pp.632-638, 1971.
DOI : 10.1139/v71-101

F. Avat, Contribution a l'etude des traitements thermiques du bois (20-300 C): transformations chimiques et caracterisations physico-chimiques, p.237, 1993.

H. Baillères and F. Davrieux, Near infrared analysis as a tool for rapid screening of some major wood characteristics in a eucalyptus breeding program, Annals of Forest Science, vol.59, issue.5-6, pp.479-490, 2002.
DOI : 10.1051/forest:2002032

C. H. Bamford and J. Crank, The combustion of wood, 1946.

S. Baumberger and P. Dole, Using Transgenic Poplars to Elucidate the Relationship between the Structure and the Thermal Properties of Lignins, Journal of Agricultural and Food Chemistry, vol.50, issue.8, pp.2450-2453, 2002.
DOI : 10.1021/jf0113530

S. Baumberger and I. Mila, Lignines etenvironnement : de la préservation du bois à l'élaboration de plastiques biodégradables, p.pp, 2002.

F. C. Beall, Differential calometric analysis of wood and wood components, Wood Science and Technology, vol.6, issue.3, pp.159-175, 1971.
DOI : 10.1007/BF00353679

F. C. Beall and H. W. Eickner, Thermal degradation of wood components : a review of the literature, FPL Research Paper n o 130, p.pp, 1970.

O. Beaumont and Y. Schwob, Influence of physical and chemical parameters on wood pyrolysis, Process Design and Development, pp.637-641, 1984.
DOI : 10.1021/i200027a002

D. Bertrand and E. Dufour, La spectroscopie infrarouge et ses applications analytiques. Collection sciences et techniques agroalimentaires, 2000.

M. Bhuiyan and N. Hirai, Effect of intermittent heat treatment on crystallinity in wood cellulose, Journal of Wood Science, vol.16, issue.5, pp.336-341, 2001.
DOI : 10.1007/BF00766782

R. Bilbao and J. F. Mastral, The influence of the percentage of oxygen in the atmosphere on the thermal decomposition of lignocellulosic materials, Journal of Analytical and Applied Pyrolysis, vol.42, issue.2, pp.189-202, 1997.
DOI : 10.1016/S0165-2370(97)00050-8

R. Bilbao and J. F. Mastrala, Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere, Journal of Analytical and Applied Pyrolysis, vol.39, issue.1, pp.53-64, 1997.
DOI : 10.1016/S0165-2370(96)00957-6

R. Bilbao and A. Millera, Kinetics of weight loss by thermal decomposition of xylan and lignin. Influence of experimental conditions, Thermochimica Acta, vol.143, pp.137-148, 1989.
DOI : 10.1016/0040-6031(89)85051-8

J. Blazek and P. Buryan, Study of the thermical degradation of lignin in the inert atmosphere, Entropie, vol.235236, pp.6-11, 2001.

I. Bonhke, Etude éxperimentale et théorique des traitements thermiques du bois. Caracterisation physico-mécanique des bois traités, p.205, 1993.

M. Boonstra and . Tjeerdsma, Thermal modification of non-durable wood species. 1. The PLATO technology : thermal modification of wood. International Resaerch Group on Wood Preservation, Document no, pp.98-40123, 1998.

J. Bourgois and M. C. Bartholin, Thermal treatment of wood: analysis of the obtained product, Wood Science and Technology, vol.155, issue.291, pp.303-310, 1989.
DOI : 10.1007/BF00353246

URL : https://hal.archives-ouvertes.fr/emse-00447276

J. Bourgois and R. Guyonnet, Characterization and analysis of torrefied wood, Wood Science and Technology, vol.29, issue.291, pp.143-155, 1988.
DOI : 10.1007/BF00355850

URL : https://hal.archives-ouvertes.fr/emse-00447463

A. G. Bradbury and Y. Sakai, A kinetic model for pyrolysis of cellulose, Journal of Applied Polymer Science, vol.23, issue.11, pp.3271-3280, 1979.
DOI : 10.1002/app.1979.070231112

A. Broido and M. Weinstein, Thermogravimetric Analysis of Ammonia-Swelled Cellulose, Combustion Science and Technology, vol.1, issue.4, pp.243-251, 1970.
DOI : 10.1177/004051755902901003

A. Broido and M. Weinstein, Low Temperature Isothermal Pyrolysis of Cellulose, Combustion Science and Technology, vol.3, pp.285-296, 1971.
DOI : 10.1007/978-3-0348-5775-8_25

D. J. Brown, The questionable use of the Arrhenius equation to describe cellulose and wood pyrolysis, Thermochimica Acta, vol.54, issue.3, pp.377-379, 1982.
DOI : 10.1016/0040-6031(82)80032-4

K. M. Bryden, Computational modeling of wood combustion. mechanical engineering, p.185, 1998.

K. M. Bryden and K. W. Ragland, Modeling thermally thick pyrolysis of wood, Biomass and Bioenergy, vol.22, issue.1, pp.41-53, 2002.
DOI : 10.1016/S0961-9534(01)00060-5

F. Carrasco, The evaluation of kinetic parameters from thermogravimetric data: comparison between established methods and the general analytical equation, Thermochimica Acta, vol.213, pp.115-134, 1993.
DOI : 10.1016/0040-6031(93)80010-8

W. R. Chan and M. Kelbon, Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle, Fuel, vol.64, issue.11, pp.1505-1513, 1985.
DOI : 10.1016/0016-2361(85)90364-3

P. Chanrion and J. Schreiber, Bois traité par haute température, 2002.

E. Chornet and C. Roy, Compensation effect in the thermal decomposition of cellulosic materials, Thermochimica Acta, vol.35, issue.3, pp.389-393, 1980.
DOI : 10.1016/0040-6031(80)87140-1

. Cirad, Etude du marché europeén du bois torréfié à usage bois d'oeuvre, p.38, 1998.

G. L. Comstock and W. E. Côté, Factors affecting permeability and pit aspiration in coniferous sapwood, Wood Science and Technology, vol.16, issue.No. 3, pp.279-291, 1968.
DOI : 10.1007/BF00350274

V. Cozzani and A. Lucchesi, A new method to determine the composition of biomass by thermogravimetric analysis, The Canadian Journal of Chemical Engineering, vol.65, issue.1, pp.127-133, 1997.
DOI : 10.1002/cjce.5450750120

D. Blasi and C. , Numerical simulation of cellulose pyrolysis, Biomass and Bioenergy, vol.7, issue.1-6, pp.87-98, 1994.
DOI : 10.1016/0961-9534(94)00040-Z

D. Blasi and C. , Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels, Journal of Analytical and Applied Pyrolysis, vol.47, issue.1, pp.43-64, 1998.
DOI : 10.1016/S0165-2370(98)00079-5

D. Blasi, C. , and M. Lanzetta, Intrinsic kinetics of isothermal xylan degradation in inert atmosphere, Journal of Analytical and Applied Pyrolysis, vol.40, issue.41, pp.40-41, 1997.
DOI : 10.1016/S0165-2370(97)00028-4

D. Blasi, C. , and G. Russo, Modelling of transport phenomena and kinetics of biomass pyrolysis Advances in thermochemical biomass conversion, Blackie Academic and Professional. 2, pp.906-921, 1994.

D. Dirol and R. Guyonnet, The improvment of wood durability by retification process, 24th Annual meeting from the International Research Group on Wood Preservation, 1993.
URL : https://hal.archives-ouvertes.fr/emse-00493851

A. M. Emsley and G. C. Stevens, Review : Kinetics ans mechanisms of the lowtemperature degradation of cellulose, Cellulose, issue.1, pp.26-56, 1994.

C. Fairbridge and R. A. Ross, A kinetic and surface study of the thermal decomposition of cellulose powder in inert and oxidizing atmospheres, Journal of Applied Polymer Science, vol.22, issue.2, pp.497-510, 1978.
DOI : 10.1002/app.1978.070220217

O. Faix, Fourier transform infrared spectroscopy Methods in lignin chemistry, pp.83-109, 1992.

D. Fengel and D. Grosser, Holz, Morphologie und Eigenschaften. Ullmanns Encyklop~die der Technischen Chemie, pp.669-679, 1976.

T. Fischer and M. Hajaligol, Pyrolysis behavior and kinetics of biomass derived materials, Journal of Analytical and Applied Pyrolysis, vol.62, issue.2, pp.331-339, 2002.
DOI : 10.1016/S0165-2370(01)00129-2

T. Fisher and M. Hajaligol, Pyrolysis behavior and kinetics of biomass derived materials, Journal of Analytical and Applied Pyrolysis, vol.62, issue.2, pp.331-349, 2002.
DOI : 10.1016/S0165-2370(01)00129-2

G. H. Florentin, Research priorities for construction timber and wood from now until 2005. -Quelles priorites pour la recherche sur le bois dans la construction d'ici, CTBA Info, issue.99, pp.17-20, 2003.

B. Fredlund, A model for heat and mass transfert in timber structures during fire, 1988.

E. S. Freeman and B. Carroll, Journal de Chime-Physique 62, p.394, 1958.

D. J. Gardner and T. P. Schulz, The Pyrolytic Behavior of Selected Lignin Preparations, Journal of Wood Chemistry and Technology, vol.62, issue.2, pp.85-110, 1985.
DOI : 10.1080/02773818508085182

P. Ghetti and L. Riccaa, Thermal analysis of biomass and corresponding pyrolysis products, Fuel, vol.75, issue.5, pp.565-573, 1996.
DOI : 10.1016/0016-2361(95)00296-0

N. Gierlinger and M. Schwanninger, Rapid determination of heartwood extractives in Larix sp. by means of Fourier transform near infrared spectroscopy, Journal of Near Infrared Spectroscopy, vol.10, issue.1, pp.203-214, 2002.
DOI : 10.1255/jnirs.336

W. Gindl and A. Teischinger, The potential of VIS-and NIR-Spectroscopy for the nondestructive evaluation of grain-angle in wood, Wood and Fiber Science, vol.34, issue.4, pp.651-656, 2002.

D. S. Glaister, The prediction of chemical kinetic, heat and mass transfer processes during the one-and two dimensionel pyrolysis of a large wood pellet, 1987.

M. Gronli and M. J. Antal, A Round-Robin Study of Cellulose Pyrolysis Kinetics by Thermogravimetry, Industrial & Engineering Chemistry Research, vol.38, issue.6, pp.2238-2244, 1999.
DOI : 10.1021/ie980601n

M. Gronli and G. Varhegyi, Thermogravimetric Analysis and Devolatilization Kinetics of Wood, Industrial & Engineering Chemistry Research, vol.41, issue.17, pp.4201-4208, 2002.
DOI : 10.1021/ie0201157

M. G. Gronli, A theorical and experimental study of the thermal degradation of biomass pyrolysis, wood, tar, char. Trondheim, p.342, 1996.

M. G. Gronli, Mathematical Model for Wood PyrolysisComparison of Experimental Measurements with Model Predictions, Energy & Fuels, vol.14, issue.4, pp.791-800, 2000.
DOI : 10.1021/ef990176q

M. G. Gronli and L. H. Sorensen, Thermogravimetric analysis of four scandinavian wood species under non isothermal conditions, Nordic Seminar on biomass combustion, 1992.

J. Harrington, J. A. Havens, and H. T. Hashemi, softwood structureA mathematical model of the thermal decomposition of wood, Combustion Science and Technology, vol.5, pp.91-98, 1972.

L. Helsen, E. Van-den, and . Bulck, Kinetics of the low-temperature pyrolysis of chromated copper arsenate-treated wood, Journal of Analytical and Applied Pyrolysis, vol.53, issue.1, pp.51-79, 2000.
DOI : 10.1016/S0165-2370(99)00050-9

B. Hinterstoisser and M. Schwanninger, Surface analyses of chemically and thermally modified wood by FT-NIR. The first European conference on wood modification, European thematic network for wood modification, 2003.

P. Hoffmeyer and J. G. Pedersen, Evaluation of density and strength of Norway spruce by NIRS, Holz als Roh und Werkstoff 53, pp.165-170, 1995.

E. Jakab and O. Faix, Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry, Journal of Analytical and Applied Pyrolysis, vol.40, issue.41, pp.40-41, 1997.
DOI : 10.1016/S0165-2370(97)00046-6

E. Jakab and O. Faix, Thermogravimetry/mass spectrometry study of six lignins within the scope of an international round robin test, Journal of Analytical and Applied Pyrolysis, vol.35, issue.2, pp.167-179, 1995.
DOI : 10.1016/0165-2370(95)00907-7

F. Kacik and D. Kacikova, Changes of maple wood lignin (Acer pseudoplatanus L.) due to hydrothermal treatment, Drevarsky Vyskum/Wood Research, vol.44, issue.1, pp.31-40, 1999.

D. Kamdem and A. Pizzi, Durability of heat-treated wood, Holz als Roh- und Werkstoff, vol.60, issue.1, pp.1-6, 2002.
DOI : 10.1007/s00107-001-0261-1

P. Kamdem and A. Pizzi, Heat-treated timber: potentially toxic byproducts presence and extent of wood cell wall degradation, Holz als Roh- und Werkstoff, vol.58, issue.4, pp.253-257, 2000.
DOI : 10.1007/s001070050420

E. J. Kansa and H. E. Perlee, Mathematical model of wood pyrolysis including internal forced convection, Combustion and Flame, vol.29, pp.311-324, 1977.
DOI : 10.1016/0010-2180(77)90121-3

R. Kotilainen and R. Alen, Changes in the chemical composition of Norway spruce (Picea abies) at 160-260 °C under nitrogen and air atmospheres, Paperi ja Puu/Paper and Timber, vol.81, issue.5, pp.384-388, 1999.

R. A. Kotilainen and T. J. Toivanen, FTIR Monitoring of Chemical Changes in Softwood During Heating, Journal of Wood Chemistry and Technology, vol.41, issue.3, pp.307-320, 2000.
DOI : 10.1515/hfsg.1992.46.6.523

R. Kotilanen, Chemical changes in wood during heating at 150-260°C, p.51, 2000.

C. A. Koufopanos and G. Mashio, Kinetic modelling of the pyrolysis of biomass and biomass components, The Canadian Journal of Chemical Engineering, vol.61, issue.1, pp.75-84, 1989.
DOI : 10.1002/cjce.5450670111

C. A. Koufopanos and N. Papayannakos, Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects, The Canadian Journal of Chemical Engineering, vol.6, issue.4, p.907, 1991.
DOI : 10.1002/cjce.5450690413

H. C. Kung, A mathematical model of wood pyrolysis, Combustion and Flame, vol.18, issue.2, pp.185-195, 1972.
DOI : 10.1016/S0010-2180(72)80134-2

H. C. Kung and A. S. Kalelkar, On the heat of reaction in wood pyrolysis, Combustion and Flame, vol.20, issue.1, pp.91-103, 1973.
DOI : 10.1016/S0010-2180(73)81260-X

J. Labat and P. Castera, Etude de caractérisation du pin maritime rétifié. Direction Régionale de l'Agriculture et de la Forêt, Journées Techniques de la Chambre de Commerce et d'Industrie des Landes, DRIRE Aquitaine, p.25, 2000.

B. Ladevie, Mise au point de dispositifs de caractérisation thermophysique de matériaux isolants solides ou pateux. Extention aux fluides cisaillés, Mécanique. Bordeaux, ENSAM, p.165, 1998.

C. Lee and R. F. Chaiken, Charring pyrolysis of wood in fires by laser simulation, Symposium (International) on Combustion, vol.16, issue.1, 1976.
DOI : 10.1016/S0082-0784(77)80428-1

H. Leithoff and R. Peek, Hitzebehandlung -eine Alternative zum chemischen Holzschutz, pp.97-108, 1998.

A. E. Lipska and W. J. Parker, Kinetics of the pyrolysis of cellulose in the temperature range 250-300C, Journal of Applied Polymer Science, vol.10, pp.139-153, 1965.

P. S. Maa and R. C. Bailie, Influence of Particle Sizes and Environmental Conditions on High Temperature Pyrolysis of Cellulosic Material???I (Theoretical), Combustion Science and Technology, vol.16, issue.6, pp.257-269, 1973.
DOI : 10.1021/ie50705a007

H. Martens and T. Naes, Multivariate calibration by data compression. Near-infrared technology in the agricultural and food industries, pp.57-84, 1987.

R. Meder and S. Gallagher, Prediction of wood chip and pulp and paper properties via multivariate analysis of spectral data, Appita.J, vol.48, pp.479-484, 1994.

M. C. Melaaen, M. Gronli, and D. B. Boocock, Modelling and simulation of moist wood drying and pyrolysis. Developments in thermochemical biomass conversion, A. V. Bridgewater, pp.132-146, 1997.

A. J. Michell, Pulpwood quality estimation by near-infrared spectroscopic measurements on eucalyptus wood, Appita.J, vol.48, pp.425-428, 1995.

R. S. Miller and J. Bellan, A Generalized Biomass Pyrolysis Model Based on Superimposed Cellulose, Hemicelluloseand Liqnin Kinetics, Combustion Science and Technology, vol.2, issue.1-6, pp.97-137, 1997.
DOI : 10.1016/0010-2180(85)90107-5

I. Milosavljevic and E. M. Suuberg, Cellulose Thermal Decomposition Kinetics: Global Mass Loss Kinetics, Industrial & Engineering Chemistry Research, vol.34, issue.4, pp.653-662, 1995.
DOI : 10.1021/ie00043a009

W. S. Mok and M. J. , Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulose pyrolysis, Thermochimica Acta, vol.68, issue.2-3, pp.165-186, 1983.
DOI : 10.1016/0040-6031(83)80222-6

S. Mouras and P. Girard, Propri???t???s physiques de bois peu durables soumis ??? un traitement de pyrolyse m???nag???e, Annals of Forest Science, vol.59, issue.3, pp.317-326, 2002.
DOI : 10.1051/forest:2002027

A. Napoli and P. Perré, Caractérisation des propriétés de transfert dans le bois : méthodes rapides pour la détermination en routine de la diffusivité massique et de la conductivité thermique, p.39, 2003.

T. P. Nevell and S. H. Zeronian, Cellulose Chemistry and its Applications, 1985.

T. R. Nunn and M. R. Howard, Product compositions and kinetics in the rapid pyrolysis of sweet gum hardwood, Process Design and Development 24, pp.836-844, 1985.
DOI : 10.1021/i200030a053

M. Nuopponen, Chemical modification in heat-treated wood studied by FTIR, FTVIS and UV resonance Raman (UVPR) spectroscopies. HUT, Finland, p.4, 2004.

W. Olek and J. Weres, Effects of Thermal Conductivity Data on Accuracy of Modeling Heat Transfer in Wood, Holzforschung, vol.57, issue.3, pp.317-325, 2003.
DOI : 10.1515/HF.2003.047

J. J. Orfão and F. J. Antunes, Pyrolysis kinetics of lignocellulosic materials???three independent reactions model, Fuel, vol.78, issue.3, pp.78-349, 1999.
DOI : 10.1016/S0016-2361(98)00156-2

J. J. Orfão and J. L. Figueiredo, A simplified method for determination of lignocellulosic materials pyrolysis kinetics from isothermal thermogravimetric experiments, Thermochimica Acta, vol.380, issue.1, pp.67-78, 2001.
DOI : 10.1016/S0040-6031(01)00634-7

B. G. Osborne and T. Fearn, Practical NIR spectroscopy with application in food and beverage analysis, 1993.

W. Pan and G. N. Richards, Influence of metal ions on volatile products of pyrolysis of wood, Journal of Analytical and Applied Pyrolysis, vol.16, issue.2, pp.117-126, 1989.
DOI : 10.1016/0165-2370(89)85011-9

S. V. Patankar, numerical heat transfert and fluid flow, 1980.

A. E. Pavlath and K. S. Gregorski, Thermoanalytical studies of carbohydrate pyrolysis. Fundementals of thermochemical Biomass Conversion, p.pp, 1985.

P. Permadi, Optimisation du traitement thermique appliqué au bois d'oeuvre pour l'amélioration des propriétés des espèces non durables, p.pp, 2000.

P. Perré, Le séchage convectif de bois de résineux : choix, validation et utilisation d'un modèle, p.245, 1987.

P. Perré, Transfert couples en milieux poreux non-satures, possibilites et limitations de la formulation macroscopique, 1992.

P. Perré, Drying with Internal Vaporisation : Introducing the Concept of Identity Drying Card (IDC), Drying Technology, vol.16, issue.2, pp.5-7, 1995.
DOI : 10.1080/07373939508917010

P. Perré and A. Degiovanni, Simulation par volumes finis des transferts coupl??s en milieux poreux anisotropes: s??chage du bois ?? basse et ?? haute temp??rature, International Journal of Heat and Mass Transfer, vol.33, issue.11, pp.2463-2478, 1990.
DOI : 10.1016/0017-9310(90)90004-E

P. Perré and M. Moser, Advances in transport phenomena during convective drying with superheated steam and moist air, International Journal of Heat and Mass Transfer, vol.36, issue.11, pp.2725-2746, 1993.
DOI : 10.1016/0017-9310(93)90093-L

P. Perré and I. W. Turner, The use of macroscopic equations to simulate heat and mass transfer in porous media Mathematical modeling and numerical techniques in drying technology, pp.83-156, 1996.

P. Perré and I. W. Turner, A 3-D version of TransPore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media, International Journal of Heat and Mass Transfer, vol.42, issue.24, pp.4501-4521, 1999.
DOI : 10.1016/S0017-9310(99)00098-8

P. Perré and I. W. Turner, TRANSPORE : A GENERIC HEAT AND MASS TRANSFER COMPUTATIONAL MODEL FOR UNDERSTANDING AND VISUALISING THE DRYING OF POROUS MEDIA, Drying Technology, vol.13, issue.3, pp.1273-1289, 1999.
DOI : 10.1016/0021-9991(74)90019-9

P. Perré and I. W. Turner, Determination of the Material Property Variations Across the Growth Ring of Softwood for Use in a Heterogeneous Drying Model Part 1. Capillary Pressure,Tracheid Model and Absolute Permeability, Holzforschung, vol.55, issue.3, pp.318-323, 2001.
DOI : 10.1515/HF.2001.052

P. Perré and I. W. Turner, Determination of the material property variations across the growth ring ofsoftwood for use in a heterogeneous drying model. Part 2. Use of homogenisation to predict bound liquid diffusivity and thermal conductivity, Holzforschung, vol.55, issue.4, pp.417-425, 2001.

P. Perré and I. W. Turner, 2-D Solution for drying with internal vaporization of anisotropic media, AIChE Journal, vol.9, issue.1, pp.13-26, 1999.
DOI : 10.1002/aic.690450103

B. Pollet and I. Mila, Pine wood retification: Relationships between lignin structural alterations and wood performances. Sixth European workshop on lignocellulosics and pulp : advances in lignocellulosics chemistry towards high quality processes and products : Bordeaux. European workshop on lignocellulosis and pulp, pp.2000-2009, 2000.
URL : https://hal.archives-ouvertes.fr/emse-00493761

J. R. Rahjohnson and R. Guyonnet, Experimental study and modelling of the wood retification process Automatic Control of Food and Biological Process, J. J. Bimbenet, E. Dumoulin and G. Trystam, pp.227-235, 1994.

M. V. Ramiah, Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin, Journal of Applied Polymer Science, vol.14, issue.5, pp.1323-1337, 1970.
DOI : 10.1002/app.1970.070140518

A. O. Rapp, Review on heat treatments of wood. COST Action E22 -Environmental of wood protection, 2001.

J. Rath and M. Wolfinger, Heat of wood pyrolysis, Fuel, vol.82, issue.1, pp.81-91, 2003.
DOI : 10.1016/S0016-2361(02)00138-2

K. Raveendran and A. Ganesh, Pyrolysis characteristics of biomass and biomass components, Fuel, vol.75, issue.8, pp.987-998, 1996.
DOI : 10.1016/0016-2361(96)00030-0

J. Reina and E. Velo, Thermogravimetric study of the pyrolysis of waste wood, Thermochimica Acta, vol.320, issue.1-2, pp.161-167, 1998.
DOI : 10.1016/S0040-6031(98)00427-4

A. F. Roberts, The kinetic behavior of intermediate compounds during the pyrolysis of cellulose, Journal of Applied Polymer Science, vol.14, issue.1, pp.244-247, 1970.
DOI : 10.1002/app.1970.070140123

A. F. Roberts, A review of kinetics data for the pyrolysis of wood and related substances, Combustion and Flame, vol.14, issue.2, pp.261-272, 1970.
DOI : 10.1016/S0010-2180(70)80037-2

A. F. Roberts, The heat of reaction during the pyrolysis of wood, Combustion and Flame, vol.17, issue.1, pp.79-86, 1971.
DOI : 10.1016/S0010-2180(71)80141-4

A. F. Roberts and G. Clough, Thermal decomposition of wood in an inert atmosphere, Ninth Intern. Symp. on combustion, 1963.

F. E. Rogers and T. J. Ohlemiller, Cellulosic Insulation Material I. Overall Degradation Kinetics and Reaction Heats, Combustion Science and Technology, vol.6, issue.3-4, pp.129-137, 1980.
DOI : 10.1080/00102208008952431

D. Rotharmel, Modelisation de la pyrolyse du bois a 300 o C, p.32, 2001.

P. Rousset and P. Perré, Modification of mass transfer properties in poplar wood (P.robusta) by a thermal treatment at high temperature (soumise), Holz als Roh und Werkstoff, pp.113-119, 2004.

C. Roy and H. Pakdel, The role of extractives during vacuum pyrolysis of wood, Journal of Applied Polymer Science, vol.41, issue.12, pp.337-348, 1990.
DOI : 10.1002/app.1990.070410126

M. Sailer and A. O. Rapp, Improved resistance of Scots pine and spruce by application of an oil-heat treatment, pp.0-40172, 2000.

S. Antonio and J. , Mechanical behavior of eucalyptus wood modified by heat, Wood Science & technology, vol.34, pp.39-43, 2000.

L. R. Schimleck and A. J. Michell, Estimation of basic density of Eucalyptus globulus using near-infrared spectroscopy, Can.J. For. Res, vol.29, p.pp, 1999.

L. R. Schimleck and P. J. Wright, Near-infrared spectra and chemical compositions of eucalyptus globulus and E. nitens plantation woods, Appita.J, vol.50, pp.40-46, 1997.

M. Z. Sefain and S. F. El-kalyoubi, Thermal behavior of holo- and hemicellulose obtained from rice straw and bagasse, Journal of Polymer Science: Polymer Chemistry Edition, vol.23, issue.5, pp.1569-1577, 1985.
DOI : 10.1002/pol.1985.170230527

F. Shafizadeh and . Ed, Pyrolis and combustion of cellulosic material. advances in carbohydrate chemistry, 1968.

F. L. Shafizadeh, D. A. Anderson, and . Tillman, Fuels from wood waste. Fuel from waste, p.pp, 1977.

F. Shafizadeh and A. G. Bradbury, Thermal degradation of cellulose in air and nitrogen at low temperatures, Journal of Applied Polymer Science, vol.23, issue.5, pp.1431-1441, 1979.
DOI : 10.1002/app.1979.070230513

F. Shafizadeh and P. S. Chin, Thermal deterioration of wood. Wood Technology, 1977.

F. Shafizadeh and . Mcginnis, Chemical composition and thermal analysis of cottonwood, Carbohydrate Research, vol.16, issue.2, pp.273-277, 1971.
DOI : 10.1016/S0008-6215(00)81161-1

K. Shimizu and F. Teratani, Effect of the thermal treament on wood hemicelluloses. The change of xylan by heating, Mokuzai Gakkaishi/Journal of the Japan Wood Research Society, vol.11, pp.376-381, 1968.

J. F. Siau, Transport Processes in Wood, 1984.
DOI : 10.1007/978-3-642-69213-0

I. Simkovic and K. Balog, Thermal Degradation and Thermooxidation of O-Acetyl-(4-O-methyl-D-glucurono)-D-xylan and Related Derivatives, Holzforschung, vol.49, issue.6, pp.512-516, 1995.
DOI : 10.1515/hfsg.1995.49.6.512

G. M. Simmons and M. Gentry, Particle size limitations due to heat transfer in determining pyrolysis kinetics of biomass, Journal of Analytical and Applied Pyrolysis, vol.10, issue.2, pp.117-127, 1986.
DOI : 10.1016/0165-2370(86)85011-2

H. Sivonen and S. Maunu, Magnetic Resonance Studies of Thermally Modified Wood, Holzforschung, vol.56, issue.6, pp.648-654, 2002.
DOI : 10.1515/HF.2002.098

E. Sjostrom, Wood Chemistry : Fundamentals and Applications, 1993.

L. Sørum and M. G. Grønli, Pyrolysis characteristics and kinetics of municipal solid wastes, Fuel, vol.80, issue.9, pp.1217-1227, 2001.
DOI : 10.1016/S0016-2361(00)00218-0

A. J. Stamm, Staybwood???Heat-Stabilized Wood, Industrial & Engineering Chemistry, vol.38, issue.6, pp.630-634, 1946.
DOI : 10.1021/ie50438a027

A. J. Stamm, Wood and cellulose science, Industrial and Engineering Chemistry, vol.48, 1956.

A. J. Stamm, Wood and cellulose science, 1964.

M. Statheropoulosa and S. Liodakisa, Thermal degradation of Pinus halepensis pine-needles using various analytical methods, Journal of Analytical and Applied Pyrolysis, vol.43, issue.2, pp.115-123, 1997.
DOI : 10.1016/S0165-2370(97)00064-8

W. K. Tang, Effect of Inorganic Salts on Pyrolisis of Wood, Alpha-Cellulose and Lignine, FPL Research Paper, vol.71, p.pp, 1967.

W. K. Tang and W. K. Neill, Effect of flame retardants on pyrolysis and combustion of alpha-cellulose, Journal of Polymer Science, vol.6, pp.65-81, 1964.

P. H. Thomas and P. C. Bowes, Some aspects of the self-heating and ignition of solid cellulosic materials, British Journal of Applied Physics, vol.12, issue.5, p.222, 1961.
DOI : 10.1088/0508-3443/12/5/305

F. Thurner and U. Mann, Kinetic investigation of wood pyrolysis, Industrial & Engineering Chemistry Process Design and Development, vol.20, issue.3, pp.482-488, 1981.
DOI : 10.1021/i200014a015

E. R. Tinney, The combustion of wooden dowels in heated air. Tenth Intern, 1965.

B. Tjeerdsma and M. Boonstra, Charakterisieren von thermisch behandeltem Holz: Molekulare Ursachen f??r die Verbesserung der Holzstabilit??t, Holz als Roh-und Werkstoff 56, pp.149-153, 1998.
DOI : 10.1007/s001070050287

S. I. Tsujiyama and A. Miyamori, Assignment of DSC thermograms of wood and its components, Thermochimica Acta, vol.351, issue.1-2, pp.177-181, 2000.
DOI : 10.1016/S0040-6031(00)00429-9

I. W. Turner, A two-dimensional orthotropic model for simulating wood drying processes, Applied Mathematical Modelling, vol.20, issue.1, pp.61-81, 1996.
DOI : 10.1016/0307-904X(95)00106-T

I. W. Turner, Briding the gap between drying theory and practice using computational modeling, European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS Computational Fluid Dynamics Conference, 2001.

I. W. Turner and P. Perré, A synopsis of the strategies and efficient resolution techniques used for modelling and numerîcally simulating the drying process. Numerical methods and mathematical modelling of the drying process, pp.1-82, 1996.

E. R. Van-der-hage and M. M. Mulder, Structural characterization of lignin polymers by temperature-resolved in-source pyrolysis???mass spectrometry and Curie-point pyrolysis???gas chromatography/mass spectrometry, Journal of Analytical and Applied Pyrolysis, vol.25, pp.149-183, 1993.
DOI : 10.1016/0165-2370(93)80038-2

H. Van-oost, Opération collective sur le bois traité thermiquement : Etude de marché, p.47, 2001.

G. Varhegyi and M. J. Antal, Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugarcane bagasse, Energy & Fuels, vol.3, issue.3, pp.329-335, 1989.
DOI : 10.1021/ef00015a012

G. Varhegyi and E. Jakab, Is the Broido-Shafizadeh Model for Cellulose Pyrolysis True?, Energy & Fuels, vol.8, issue.6, pp.1335-1352, 1994.
DOI : 10.1021/ef00048a025

P. Viitaniemi, Decay-resistant wood created in a heating process. Espoo, VTT's communications, pp.22-23, 1997.

C. Vovelle and H. Mellottee, comparative study of the calculation techniques used for the determination of kinetics parameters of wood and cellulose degrtadation from TGA, Journal de Chime-Physique, vol.83, issue.3, pp.191-196, 1986.

S. M. Ward and J. Braslaw, Experimental weight loss kinetics of wood pyrolysis under vacuum, Combustion and Flame, vol.61, issue.3, pp.261-269, 1986.
DOI : 10.1016/0010-2180(85)90107-5

J. J. Weiland and R. Guyonnet, Analyse de la pyrolyse menagee du bois par un couplage TG-DSC-IRTF, Journal of Thermal Analysis and Calorimetry, vol.7, issue.1, pp.265-274, 1998.
DOI : 10.1007/BF02719028

URL : https://hal.archives-ouvertes.fr/emse-00447977

S. Whitaker, Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying, International Journal of Heat and Mass Transfer, vol.13, pp.119-203, 1977.
DOI : 10.1016/S0065-2717(08)70223-5

P. Williams and K. Norris, Near infrared technology in the agricultural and food industries American association of cereal chemists, 1990.

P. T. Williams and S. Besler, The pyrolysis of rice husks in a thermogravimetric analyser and static batch reactor, Fuel, vol.72, issue.2, pp.151-159, 1993.
DOI : 10.1016/0016-2361(93)90391-E

P. T. Williams and S. Besler, Thermogravimetric analysis of the component of biomass Advances in thermochimical biomass conversion, A. V. Bridgewater, 1994.

Y. Xie and Y. Liu, Heat-treated wood and its development in Europe, Journal of Forestry Research, vol.13, issue.3, pp.224-230, 2002.

R. K. Yuen, Pyrolisis and combustion of wood in a cone calorimeter, 1998.

A. Zaman and R. Alen, Thermal behavior of scots pine (pinus sylvestris) and silver birch (Betulapendule) at 200-230C, Wood and fiber science, vol.32, issue.2, pp.138-143, 2000.

C. A. Zaror and D. L. Pyle, Competitive reactions model for the pyrolysis of lignocellulose: A critical study, Journal of Analytical and Applied Pyrolysis, vol.10, issue.1, pp.1-12, 1986.
DOI : 10.1016/0165-2370(86)85015-X

A. Zeriouh and L. Belkbir, Etude dilatom??trique de la pyrolyse du xylane en r??gime non isotherme, Thermochimica Acta, vol.351, issue.1-2, pp.171-175, 2000.
DOI : 10.1016/S0040-6031(00)00375-0

J. Zsako, The kinetic compensation effect, Journal of Thermal Analysis, vol.52, issue.1, pp.101-108, 1976.
DOI : 10.1007/BF01909271

J. Zsako, Compensation effect in heterogeneous non-isothermal kinetics, Journal of Thermal Analysis, vol.39, issue.6, pp.1679-1690, 1996.
DOI : 10.1007/BF01980913