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ABsTtrACT. The aim of this thesis is the study of statistical properties of
learning algorithm in the case of regression and density estimation. It is divided
into three parts.

In the first part, the idea is to generalize Olivier Catoni’s PAC-Bayesian
theorems ([10]) about classification to the case of regression estimation with a
general loss function.

In the second part, we focus more particularly on the least square regression
and propose a new iterative algorithm for feature selection. This method can
be applied to the case of orthonormal function basis, leading to optimal rates
of convergences, as well as to kernel type functions, leading to some variants
of the well-known SVM method.

In the third part, we generalize the method proposed in the second part to
the density estimation setting with quadratic loss.

Key-words and phrases: statistical learning theory, model selection,
least square regression estimation, confidence regions, concentration inequali-
ties, pac-bayesian bounds, non-parametric estimation, adaptative estimation,
empirical complexity measure, compression schemes, support vector machines,
oracle inequalities, randomized estimator, Gibbs distribution, density estima-
tion, wavelets, bound on the risk.

Résumé en Frangais: Cette thése a pour objet I’étude des propriétés
statistiques d’algorithmes d’apprentissage dans le cas de l’estimation de la
régression et de la densité. Elle est divisée en trois parties.

La premiére partie consiste en une généralisation des théorémes PAC-
Bayésiens, sur la classification, d’Olivier Catoni ([10]), au cas de la régression
avec une fonction de perte générale.

Dans la seconde partie, on étudie plus particuliérement le cas de la régres-
sion aux moindres carrés et on propose un nouvel algorithme de sélection de
variables. Cette méthode peut étre appliquée notamment au cas d’une base
de fonctions orthonormales, et conduit alors a des vitesses de convergence op-
timales, mais aussi au cas de fonctions de type noyau, elle conduit alors a une
variante des méthodes dites "machines & vecteurs supports" (SVM).

La troisiéme partie étend les résultats de la seconde au cas de I’estimation
de densité avec perte quadratique.
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Introduction

Most statistical problems can be formulated in the following way: given a set of
observations (Z1,...,Zn) € ZV drawn from an unknown probability distribution
P, estimate this distribution (or, some function linked with this distribution, like
in the regression estimation problem). Actually, it is a well-known fact that the
problem cannot be solved without additional assumptions. There is no estimation
method that allows to obtain convergence to P with a given rate.

In order to solve this problem, two points of view emerged in statistical inference.
The first one consists in making particular assumptions about P, namely that P
belongs to P where P is a sufficiently small subset of the set of all probability
distributions on Z, P ¢ M4 (Z); when Z is the set of real numbers, Z = R,
P can be the set of all Gaussian distributions with mean and standard deviation
(m,0) € R x Ry, or the set of all probability distributions P that are absolutely
continuous with respect to a given measure p and such that the density function, %,
has some given regularity. The second point of view is to make no such assumptions
on P but to restrict our estimator to belong to a given set Q. In this case, the
objective of our estimator is no longer to converge to P at a given rate but to the
probability in Q that is the best approximation of P, say argmingeg d(P, Q) for
some discrepancy measure d. This is the point of view of statistical learning theory,
initiated by Vapnik and Cervonenkis in [13].

Statistical learning theory knew a very important development in the last twenty
years (see the books of Vapnik [41, 42], Devroye, Gyorfi and Lugosi [17], Hastie,
Tibshirani and Friedman [22] for example, or more recently the paper by Boucheron,
Bousquet and Lugosi [8]), and the Structural Risk Minimization strategy proposed
by Vapnik and Cervonenkis was successfully implemented through algorithms like
Support Vector Machines (SVM, that were introduced by Boser, Guyon and Vapnik
[7]). Support Vector Machines are able to perform classification (or regression) of
very high-dimensional data, having thus successfull applications in image processing
(pattern recognition), speech recognition, bioinformatics...

0.1. General overview. In this thesis, we focus on regression estimation algo-
rithm motivated by the learning theory point of view, in both the inductive and
the transductive setting (the terminology is due to Vapnik). Let us first shortly
define what we mean by transuctive and inductive regression estimation.

In the inductive setting, that is actually the most standard setting, we observe a
sample (X;,Y:)i=1.. N = (Z;)i=1..~ drawn from an unknown probability distribu-
tion Py = P®YN on the space:

(X x V)N, (Bx ® By)®N) = (2V,B2N) ,

where P is an (unknown) probability measure on (X x ), By ® By), and (X, Bx)
is some measurable space, as (Y, By). The aim is to build a function f able to
predict a value Yny1 by f(Xny1) where (Xn41,Yny1) is drawn from P, with a
small error in expectation.

In the transductive case, we assume that k € IN* and that P41y = PE*+DON
is some probability measure on the space:

((X x V) HHDN (B & By)®(k+1)N) _ (Z(k-{-l)N,B?(k-H)N)

We observe (X;,Y;)i=1..~ (the learning sample) and (X;);=n+1...(k+1)n (the test
sample), and we only focus on the estimation of the values (V;);=n41...(k+1)n- The
notion of transductive inference was actually introduced by Vapnik, mainly as a
tool to study the inductive case. The idea is to introduce the test sample (called
in this context shadow sample) in the inductive case, leading to a context where
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Hoeffding or Bernstein type inequalities can be applied, and then to get rid of the
shadow sample by an integration with respect it (for Hoeffding’s inequality, see [23],
for Bernstein’s inequality, a complete presentation can be found in [30]).

However, we insist on the fact that the transductive inference setting does not
seem unrealistic and have an interest on its own. We propose some examples. In
a sample survey, one wants to get informations (say Y;) about a whole population
(represented by X;,i € {1, ..., (k+1)N}) but the size of the population prevents the
statistician to observe more than a certain fraction (1/(k + 1)) of the population,
i € {1,...,N}. In this case, transductive inference seems adapted to the problem.
Another example is the following. One is given a large set of pictures (represented
by X;,i € {1,...,(k+1)N}). One wants to label every picture according to the fact
that they represent (Y; = 1) or not (Y; = 0) a given object of interest. If k is too
large for the whole set to be labeled by a single person, this person can label the N
first images at hand, and then use transductive inference to label the other pictures
with a small risk of error.

Note that we gave the definitions of both cases in the i. i. d. setting for the sake
of simplicity, however in the core of the thesis we will deal with more general cases.

As mentioned previously, in the statistical learning theory approach, we assume
that we are given a set of regression functions:

R={fs: X >V;0 €0}

where © is a set of parameters. This does not mean that we are considering a
parametric model, we do not assume that ® C R? for any d € IN, we will be
typically interested in situations where © is a disjoint union of subsets of various
dimensions, such as in the case where:

0= || 6m

for a finite or countable index set M, and where ©,, C R, the dimension d,,
depending on the model.
We put, for any measurable nonnegative function ) : J?> — R for any 6 € O,

¥i(0) = ¥ (fo(Xi),Y:) and:
1 N
ri(,60) = 5 > %il0),

(k+1)N

PO = > %)

i=N+1
R(.0) = P{u[500),7]}.
So in the inductive setting, our objective is:
0 = arg min R(y,0)
while in the transductive case it is:
0, = argrgleiél r2(1,0).

However, these two quantities are not observable, and so our objective is to build
an estimator (a function of the observations) € such that:

R(4,8) — R(4,9)
or:

r2(1h,8) — 12(1), 62)
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can be upper bounded with high probability or in expectation. The choice of the
empirical risk minimizer argmingr(1,6) does not lead to a good estimator in
general (for example in the typical situation we described previously, where some
dimensions d,,, are large).

This thesis is divided into three parts. In the first one, we propose a method valid
in a very general setting, with no particular assumptions on ¢ and 6 — fy. The idea
is to extend the PAC-Bayesian approach presented by Catoni in [10] for classification
to the regression problem. This approach gives new estimation algorithms as well
as theoretical guarantees on the performances of these algorithms. We examine
several examples, and among them the case where ) is the set of real numbers
R, ¢ is the quadratic loss: ¥ (y,y') = (v — y')?, and 0 — fy is linear, namely the
least square regression, and we will focus more particularly on the problems due
to the large dimension of the parameter space. In a second part, we focus more
particularly on the least square regression problem. Some particular properties of
R(v,.) (or r2(1),.)) allow us to propose a new estimation method that selects a few
dimensions in © that are relevant for regression estimation. The last part is devoted
to the extension of this method to the problem of density estimation with quadratic
loss. For the sake of simplicity, the main results are presented, in this introduction,
in the inductive setting, but in the core of the thesis a particular attention is also
given to the transductive setting (that requires generally less hypothesis than the
inductive setting).

0.2. PAC-Bayesian regression estimation. Note that in learning theory, one
needs a structure over the parameter space ©. A classical structure is a family of
disjoints submodels (©,,, m € M) with:

0= || on

such that the capacity, or complexity, of every submodel can controlled. A classical
example of complexity control is the VC-dimension, introduced by Vapnik and
Cervonenkis [13].

In the PAC-Bayesian approach, the role of structure over © is played by a prob-
ability distribution on ©. We consider a o-algebra 7 on O, and a distribution
m e ML(O).

The PAC-Bayesian approach is a point of view in statistical learning theory that
was initiated by McAllester [28], and its name is due to the fact that in its first
form its objective was to combine the major advantages of the learning theory point
of view and of the Bayesian statistics!. However, note that this approach is not
Bayesian, and in particular # does not reflect any prior belief on the localization
of the "true" value of the parameter nor a stochastic modelization of § € O, 7 just
plays the role of defining a structure over O; 7 is also called the prior distribution
in the PAC-Bayesian point of view but does not have any Bayesian interpretation.

The technique used in this thesis are closer to the one developed more recently
by Catoni [9, 10, 11]. The idea is to control:

| Fw.0)0(a) = p [RC.)

for any p € M’ (©), with high probability or in expectation (with respect to the
sample (X1,Y7), ..., (Xn, YN)). R

In learning theory, the control the risk of an estimator é in a submodel ®; C 0,
here R(1),8), is based on the empirical risk R(¢),8) and on the complexity of 0;. So

1PAC means "Probably Approximately Correct", the expression was introduced by Valiant [40]
in reference to the deviation bounds used in learning theory, that are true with high probability.
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the PAC-Bayesian point of view consists in controlling p[R(¢,.)] by its empirical
counterpart p[r(4,.)], and the complexity term is replaced by a measure of the
distance between p and the w. Here, this is done with the Kullback divergence:

K(p,m) =p [log (Z—i)]

if p < 7 and K(p, ) = +00 otherwise.

A natural question is the practical interest of the control of p [R(¢,.)]. Several
interpretations are discussed in the thesis. First of all, p [R(4, .)] is exactly the mean
risk of the procedure that consists, for any given Xn1, in drawning a parameter
6 from the distribution p and then predicting Yy 1 by fo(Xn41)-

Let us see a first example of the kind of results presented in the first part of the
thesis.

Theorem 0.1 (Theorem 2.3 in the thesis). Let us assume that 1) takes values in
[0,C] for a constant C > 1. For any € > 0, for any A € (0,N/C), with Pn-
probability at least 1 — e, for any p € ML (O):

PR (®,.)] S‘I’_%l{p{r [Q% ozp,,]}—}-w}’

1
P, : (—oo,—) - R
a

—log (1 —
o og ( ar)
a

Note that a precise study of ®,,y shows that, for any p € [0,C] and A < (N/C)
we have:

where for any o € R :

A o
P<®y(p) <p+oop,

and so one can get the simpler bound, for any A < N/(2C):

_ K(p,m) +1og £
o7 {olr [my o0 ]} s K8
AC? | Kp,m) + log

<plr ()] + 5 ;

(of course, in practical situations one should keep the left-hand side that is more
accurate as an upper bound for p[R (¢, .)], this inequality is given here only for the
sake of comprehension).

The choice of the parameter A is discussed in details in the thesis (note that the
minimization of the right-hand side is not possible, because the optimal value for A
would depend on p, and p is allowed to be data-dependent as X is not). A practical
idea, once A is chosen, is the following. First, choose:

_ K(p,m) +log L
5 — ; d71 P . AT T o e
P argpeﬂlg_n(@) ~ {p{r [ yo9 ]} + A

- argpeﬁ%—n(@){p{r [(I)% oY, ]} + @}

and then, for any given Xy, draw a parameter § from the distribution p and
predict Y41 by fo(Xn+1). We will see in the thesis that p can be given in explicit
form.
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Also note that if one wants for some reason to control the risk of a given estimator
0, it is sensible to take p restricted to a small neighborhood of 8, because we expect

plR(, )]~ R (¢, é) This approach is detailed in the thesis.

Another case of interest for the comprehension of Theorem 2.3 is the case where
O is finite. Let us take, in this case:

1
W—@Zég
(4SS

and restrict p to the set: {dy,0 € ©}. The theorem becomes, for any € > 0, for any
A€ (0,N/(2C)), with Py-probability at least 1 — ¢, for any 6 € O:

log |©] + log £
A

\C? N log |©| + log L
2N A '
Note that here, the choice of X is easy as the right-hand side is minimal for the

value:
2N log Ei‘
o=\ =@

that is not data-dependent. So we take:

R(1,0) < @_%1{7' [cp% o¢,o] +

<r(y,0)+

N
A=XA PYok
and we obtain, at least N is large enough:
210g &
R(1,6) <7 (0,6) + C|| —2—=

First, this is an incitation to choose the estimator:

0 = arg min 7 [¢,0]

the empirical risk minimizer. Moreover, note that we obtain the complexity term
log|®|. Tt is a known fact in learning theory (see Vapnik [41]) that the complexity
of a finite set © should be measured by log |©|.

Note that, however, in the general case, it is known in learning theory that if one
wants to have estimators that achieve optimal rates of convergence in expectation,
theorems like 2.3 are not sufficient. It is generally necessary to study "relative
bounds", namely bounds on:

R(¢,9) - R(¢a 00)
for some given value 6y € ©. A detailed explanation of this phenomenon is given
for example in the introduction of the PhD thesis of Audibert [2].
In the PAC-Bayesian setting, we have for example the following result (given
here, for the sake of simplicity, in the case where 9 is bounded, however more
general versions are given with their proof in the core of the thesis).

Theorem 0.2 (Theorem 2.11 in the thesis). Let (m,7') € (ML (0))%. Let us
assume that 1 takes values in [0,C] for some C > 1. For any & > 0, for any
A € (0,N/C), with P®N -probability at least 1 — ¢, for any (p,p') € (ML (0))2:

(01) @5 [PRW,.) - P RE,.)]
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N 1

1 K(p,m) + K(p',7') +log ¢
< pas) ® Plagr) {N @ [i(0) - zPz’(é")]} + X :
=1

Let us choose p' = 7' = &5 (and so K(p',7') = 0), the bound becomes:

02) pRGS)— R (5,7)
N 1 Y - K(p,) +logt
< ‘I’%l {P{N;‘I’; [i(.) = i (9)]} +f}-

We prove in the thesis that in the linear case, with quadratic loss ¢ (y,y') = (y—y')%,

in the case where:

O=x={0eR%|t] <c}
for some constant ¢, under a particular choice for the prior w, we can build an
observable posterior g that is close to minimize the right-hand side of inequality
0.2, such that:
R ~ C'd
PR, )] < R ($,8) + =
where C' is some constant related only to the level of the noise and to ¢ (and d is
the dimension of © in this particular case).

This approach is satisfying where d is small. However, in a lot of practical
applications, the dimension d of © is large and can even be greater than N. In
this case, the idea is to try to select some "relevant dimensions" in ©, namely a
submodel ®' C © with dimension d’ < d such that R(1,8) is close to R(1,9),
where:

_ )
0 =arg Inin R(%,0).

The main problem is to define a data-based procedure for the choice of ©'.

We propose the following approach: let us assume that we have some (T-
mesurables) submodels of ©: ©; C © for i € Z. Then, taking p and 7 in M1 (0;)
and p' and 7' in M (0;) in inequality 0.1 gives a procedure for model selection
between ©; and ©;.

This motivates an iterative algorithm given in the first part of the thesis. Note
that the setting used in the thesis is general enough to include model selection in
least square regression estimation, selection of support vectors in SVM or selection
of a compression set in the context of compression schemes.

0.3. Iterative feature selection for the least square case. The second part
of the thesis is devoted to relative bounds in the least square regression setting,
namely when J = R, 9(z,2') = (z — 2')%, © is a vector space, and 0 — fp is
linear. Such bounds can be seen as a particular case of the ones obtained in the
first part of the thesis (they are obtained by a different approach but we could
of course obtain similar ones using the PAC-Bayesian point of view), the main
point is that we can give a slightly different interpretation of relative bounds in the
linear case, that leads to a new iterative estimation procedure. If one is to compare
this procedure to the general model selection method given in the first part, the
first thing to note is that the quadratic loss, ¥(x,z') = (z — 2')? is crucial in the
second part. From this point of view, the general PAC-Bayesian method of the first
part is less restrictive. Moreover, in the inductive setting, the method proposed
in the second part requires the knowledge of the distribution of X under P. This
hypothesis is made quite often in non-parametric statistics, but is unrealistic in
many applications. Note that this major inconvenient does not affect the iterative
method of the second part in the transductive setting, where the knowledge of X;
fori € {N+1,...,(k+ 1)N} is sufficient. Now, the method given in part 2 has the
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following advantage that, at least in its simpler form, it requires only bounds in
submodels of © of dimension 1. Moreover, the algorithm proposed is very simple
to implement, and to interpret, as we will see, as a generalization of thresholding
procedures to the case of non necessarily orthogonal features.

Here again, we give the main results in this introduction in the inductive case,
although the method proposed here requires clearly more hypothesis than in the
transductive setting. So, let us assume that we know the distribution of the design,
that means that we know the distribution Px of X under P.

The idea is to define the following scalar product on O:

6,6y p = P[fo(X) fo(X)],

16llp = 1/(6,6) p-

Then note that, for any § € © we have:

by Pythagore’s theorem, and, actually, for any closed subspace ©' C © with 0 =
arg mingece R (1, 6) we have:

wWeo, R0 -R(vd) =08

and the associated norm:

Finally let us remark that @ is the orthogonal projection of  on ©':
9 = in || — ]| .
arg min || — 8[|

We will use the notation 8 = Al'[@@.
For a particular estimator 8’ restricted to ®' we obtain a bound on the relative

risk:
R (¢,0') _R (zp,a’) .
What follows was motivated by the fact that this bound appears to be numerically
very good when dim(®’) = 1. We choose a family (64, ...,6,,) € ©™ and define the
submodels:
M; ={ab;,a € R}

and:

@; = argmin R (¢, a6;).

We have for this quantity our estimator that takes here the particular form &;6;,

where: N
D2 0% 6.))7
' P [fo:(X)?]
Then our upper bound is given by the following theorem (we give here a weak
version with additional hypothesis for the sake of simplicity).

Theorem 0.3 (Theorem 13.1 in the thesis). Let us assume that the true regression
function, that is a measurable version of x — P(Y|X = z), is such that || f]lec < C
for some known constant C. Let us assume that for any x € X,

P{[Y—f(X)ﬂX:a:} <o

for some known constant . We have, for any € > 0, with P®N -probability at least
1—e¢, for any k € {1,...,m}:

4[1+1log2m] [ LN X;)?Y2 + B2 + o2
R, a6y) — R, 0y) < L+ 10872 lNZzzlfek( Y2+ B +o

N P[fo.(X)?]
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Let us put, for short:

4[1+log22] [ £ f5,(X:)?Y? + B2 + 0

A P o, ()7

(note that this bound isn’t tight and that a great part of the work in the second
part of the thesis is to improve this bound). Actually, these bounds on models of
dimension 1 give us some information of the localization of 8, as we know that with
high-probability:
Vk e {1,..,m}, 6 €CRy.
where:
CRk,s = {0 € ®7 ||HMk0 - dkek“P < B(E,k‘)} .

It appears that CRy . is closed, is a convex set, and contains 6§ with high probability
and so we obtain the following corollary.

Corollary 0.4. Under the same hypothesis, for any € > 0, with P®N -probability
at least 1 — g, for any 6 € O, for any k € {1,...,m}:

[Tew, .6 8l <116 —8]lp,
or more explicitly:
R ("pa HCRk,ea) - R (11075) S R (¢7 0) -R (¢7g) -

We can interpret it in the following way: when we have an estimator 6, for any
k, Tl¢R, .0 is a better estimator than 6. So we propose the following algorithm (in
general form):
e start with 6(0) = 0;
e at step m, we have 6(n), choose a direction k(n) (the choice of k(n) is
discussed in the thesis, several examples are proposed) and take:

O(n +1) =Ilcr,,, . 0(n);

e stop when a given criterion is satisfied (here again, several cases are dis-
cussed in the core of the thesis).

We study two particular cases, that we introduced previously. The first case is
SVM. In this particular case we can show that the search for the exact projection
of 0 on the confidence region:

m
CRe = () CRi.c

k=1
leads to a minimization problem very close to the one that is usually taken to
compute SVM estimators. However, successive projections on the CRy . are less
computationally intensive. Moreover, the algorithm being given in a very general
form, we can note that it gives a theoretical background to almost any reasonable
heuristic for the choice of support vectors in SVM.

The second case is the case where (61, ...,0,,) is the beginning of (6;)1%, an
orthogonal basis of £2, with the trivial indexation fs(z) = (). In both examples,
we obtain very good results on simulations with our algorithm. Moreover, in the
L£? case, we remark that the order of projection does not have an influence of the
obtained estimator, so we can take:

f = T¢r,, .- Icr, 0.

The previous corollary implies the following result that can be interpreted as an
oracle inequality.
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Corollary 0.5. Under the same hypothesis, for any € > 0, with P®N -probability
at least 1 — ¢, for any m' € {1,...,m}:

R (1ﬁ,é) =R (¢;H6Rm,€---HCR1,EO) <R (¢’H0Rm1,5"'HCR1,sO) .

Namely, if m is too large, the algorithm adapts itself to the problem and does
not overfit the data. Actually, it is well known that if the true regression function
f has a regularity g, then the optimal choice in estimation by projections is:

leading to estimation at the minimax rate of convergence:
1
N
Here, if we assume that we do not know (3, we can take for example m = N and

the previous corollary leads to the following theorem.

Theorem 0.6 (Theorem 13.2 in the thesis). Let us assume that © = ILy(P(x)),
X =[0,1] and (6k)ren+ is an orthonormal basis of ©. Let us assume that we are
in the idealized regression model:

Y = f(X)+n,

where Pn = 0, P(n?) < 02 < oo and 1 and X are independent, and o is known.
Let us assume that f € O is such that there is an unknown > 1 and an unknown
B > 0 such that:

| 5, = 11l < B,

and that we have a constant C < oo such that:

sup |f(z)| < C
TEX

with CA known to the statistician. Then we can build a slight modification of é,
8 = g(0), such that (withe = N=2 and m = N ), for any N > 2,
28
2 log N\ 2P+1
ror - 1] < ocme (U5Y)

So the estimator achieves the minimax rate of convergence up to a log factor.

Similar results when f is assumed to belong to a Besov space, and when the 6;
are wavelets. Note that in this case, the estimator fj is exactly a soft-thresholded
wavelet estimator. So, the iterative feature selection method proposed in part 2
and briefly described previously can be seen as a generalization of thresholding
procedures to cases where the features are not orthogonal, for example in the case
of SVM.

0.4. The density estimation case. The end (part 3) of the thesis is devoted to
the generalization of this method to the density estimation case (with quadratic
loss). The construction is the same, but we have to adapt the scalar product. If
we assume that Zi,..., Zx are generated by a probability distribution P that is
assumed to have a density

dP
£ =G0
with respect to a measure p, given a model {fp,0 € ©} where 6 — fy is linear, we
take the following scalar product:

@%=An@mmmm
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and the associated norm:

161l = v/(6,6).
The method has the same theoretical guarantees as in the regression case, we build
an iterative algorithm such that at each step, we build an estimator 8(n + 1) from
an estimator (n), such that:

16(n +1) — 8]l < [1(n) - 8]
with high probability, where here:

€ argmin [ [fo(o) = F(@)] o).

In order to obtain this, we have to give an upper bound on the risk of estimators
in unidimensional models. Actually, the density estimation case provides a slightly
different context that allows us to use a change of variable technique in the deviation
inequality (a technique developed by Catoni in recent papers [11]), leading to tighter
bounds (at least for small values of N).

Note that it would be possible to use others loss functions to perform density
estimation. For example, logarithmic loss function could be used. The algorithm
proposed in the third part of the thesis is dedicated to the quadratic loss, however,
the PAC-Bayesian techniques given in the first part allow to deal with the density
estimation case with more general loss functions.
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Part 1. PAC-Bayesian Regression Estimation

The aim of this part is to generalize the PAC-Bayesian theorems proved by
Catoni [10, 11] in the classification setting to the regression estimation case. We
focus on two cases: the "usual" inductive setting, and the transductive setting
where we try to estimate the regression function only on a finite given set of points.
First, we give control of the deviations of the risk of randomized estimators. This
allows to bound the risk of very general estimation procedures, and gives a criterion
to make a choice between different procedures. We then focus on some particular
cases: compression schemes, and least square linear regression estimation. One
of the consequence of the results obtained is to justify the use of a wide range of
algorithms for the selection of the set of support vectors in SVM methods.

1. INTRODUCTION: THE SETTING OF THE PROBLEM

In this part we propose methods to perform regression estimation in large di-
mension. Namely, inputs X; (represented by a large set of features) and outputs
Y, are given, and one wants to be able to predict ¥ when given a new input X.
The learning theory point of view introduced by Vapnik and Cervonenkis ([13], see
Vapnik [41] for a presentation of the main results in English) gives a setting that
proved to be adapted to deal with estimation problems in large dimension, allowing
to select dimensions of X that may be relevant to predict Y (model selection). This
point of view received an important interest over the past few years, see for example
Boucheron, Bousquet and Lugosi that present some recent advances [8]. All these
works have in common the use of a "structure" on the parameter space.

The PAC-Bayesian point of view on learning theory, introduced by McAllester
[28, 29] in the context of classification (the case where Y € {—1,+1}), uses as
a structure a probability distribution over the parameter space. It can deal with
very general problems and gives results about model selection and aggregation.
McAllester’s bound were improved by Catoni [9, 10, 12, 11], and Audibert [2].

The aim of this part is to extend Catoni’s results (in [11]) to the more general
context of regression estimation (Y not restricted to {—1,+1}). In [9] some results
were given on the particular case of linear least square regression estimation. In
[1] Audibert gives a method is proposed for aggregation of estimators using the
PAC-Bayesian point of view, still with the least square loss. Here, we extend the
PAC-Bayesian setting a more general context (not necessarily linear, and generic
loss). Sections 2 and 3 are devoted to the general results for the inductive and the
transductive inference (definitions are given later in the introduction). In sections
4 and 5 we apply these results in two particular cases, an extension of Littlestone
and Warmuth’s compression schemes [27] and least square linear regression estima-
tion. In both cases we insist on the model selection aspect, in order to obtain a
"short" representation of the regression function, in the spirit of Rissanen’s mini-
mum description length [45]. Both cases include variants of support vector machines
(SVM), allowing to use very general heuristics for the choice of support vectors, as
well as for the choice of the kernel.

The end of this introduction is devoted to introduce notations used in the whole
part, to emphasize the difference between inductive and transductive inference and
to present the particularity of the PAC-Bayesian point of view.

1.1. Transductive and inductive inference. The transductive inference (as op-
posed to the inductive inference, which is the "usual" point of view in statistics)
was introduced in statistical learning theory by Vapnik [41]. We can think of it in
the following way: in the inductive setting, we try to estimate a whole function (in
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this thesis, the regression function) while in the transducive case, we try to estimate
only the values of this function at some given points of interest.

More precisely, in the inductive setting, we will assume that we observe a sample
(Xi,Y3)iz1..N = (Z;)i=1...~ drawn from a probability distribution:

N
Py = ®Pi
=1

on the space:
((X X y)N7 (BX b2 By)®N) = (ZN7B?N) )

where every p; is a probability measure on (X x Y, By ® By), and (X, Bx) is some
measurable space, as (), By).

Note that it is usual to consider that for every i, p; = P where P is a probability
measure on (X x Y, Bx ® By), and so to consider that we are in the i. i. d.
case, where Py = P®N. The aim is to be able to predict a value Yx,; from the
knowledge of the value Xyy1 where (Xni1,Yn11) is drawn from P, with a small
error in expectation. However, in practice it can be the case that some experiments
cannot be repeated under the same conditions, so X; and X5 do not have the same
distribution. We can think of the deterministic design regression, where the values
(Xi)i=1,..,~ form a deterministic grid of X and only the Y; are random. This is
why, unless we mention it explicitly, we will not assume that we are in the particular
case Py = P®N,

In the transductive case, we assume that k¥ € IN* and that P(z41)y is some
partially exchangeable probability measure on the space:

<(X X y)(k+1)N’ (Bx ® By)@(k+1)N) _ (Z(k+1)N,B§(k+1)N)

(the definition of a partially exchangeable probability measure will be given in the
section devoted to the transductive setting, just remark that Py 1)y = PE*FDN
satisfies this condition).

In the transductive case, we assume that we observe (X;,Y;);=1..n (the learning
sample) and (X;);=ny1...(k+1)n, and we only focus on the estimation of the values
(Ya)i=N41...(k+1)N-

Actually, most statistical problems are usually formulated in the inductive set-
ting, and one may wonder about the pertinence of the transductive setting. Let us
think of the following examples: in quality control, or in a sample survey, we try to
infer informations about a whole population from observations on a small sample.
In this cases, transductive inference seems actually more adapted than inductive
inference, with N the size of the sample and (k¥ + 1) N the size of the population.
One can see that the use of inductive results in this context is only motivated by the
large values of k (the inductive case is the limit case of the transductive case where
k = 400). In the problems connected with regression estimation or classification,
we can imagine a case where a lot of images are collected for example on the inter-
net. The time to label every picture according to the fact that it represents, or not,
a given object being too long, one can think of labeling only 1 over k + 1 images,
and to use then the transductive inference to label the other data. We hope that
these examples can convince the reader that the use of the transductive setting is
not unrealistic. However, the reader that is not convinced should remember that
the transductive inference was first introduced by Vapnik mainly as a tool to study
the inductive case: one can get rid of the second part of the sample by taking an
expectation with respect to it and obtain results valid in the inductive setting. This
fact is discussed in more details in what follows.
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1.2. The model. We assume that we are given a set of regression functions:
R={fo: X = );0 € O},

where (0, F) is a measurable set of parameters. The function (z,0) — fy(x) is
assumed to be measurable:

(X x0,Bx®F) = (V,By).

Note that this does not mean that we are considering a single parametric model,
we do not necessarily assume that © C R? for any d € IN. We will actually be more
interested in situations where O is a disjoint union of subsets of various dimensions:

0= || On

for a finite (or countable) set M, and where ©,, C R%, the dimension d,,, depend-
ing on the model.

1.3. Risk and loss functions.

Definition 1.1. We put, for any measurable nonnegative function ¢ : > — R for
any 6 € ©, 1(0) = ¢ (fo(Xi),Y:) and:

1 N
ri(y,0) = N Z¢i(0)a

(k+1)N

R0 = 1o Y i)

i=N+1

N
1
R(.0) =+ ;pi{w[fe(X),Y] b
We will moreover use the notation r(v,6) = r1(¢,0) in the inductive setting.

If 4 is a loss function, namely 1);(#) measures a distance between Y; and fy(X;),
then the risk ro(,0) is the quantity that we want to minimize (with respect to )
in the transductive setting. In the inductive setting, R(1),0) is to be minimized.
In both cases however, these quantities are not observable to the statistician (only
ry is, we will use the notation r; in the transductive setting and r in the inductive
setting.). Note that in the inductive setting, i. i. d. case, where Py = P®N we
have simply:

R(.0) = P{w[100,v]}.

Example 1.1. In the classification setting, Y = {y1, ..., yp} with p > 2 and we use
the loss function:

P(y,y') = 6y(y").-
In the particular case where p = 2 we choose Y = {—1,+1} and we have:
P(y,y') = Iny (yy')-

However, in many practital situations, algorithmic considerations lead to use a
convex upper bound of this loss, like:

¥(y,y') = (1 —yy')y = max(1 —yy',0) the "hinge loss",
¥(y,y') = exp(—yy') the exponential loss,
Y(y,y') = (1 —yy')?  the least square loss.
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For example, Cortes and Vapnik [14] generalized the SVM technique to non-separable
data using the hinge loss, while Schapire, Freund, Bartlett and Lee [34] gave a sta-

tistical interpretation of boosting algorithm thanks to the exponential loss. See

Zhang [46] for a complete study of the performance of classification methods using

these loss functions.

Example 1.2. In the case where Y = R, it is usual to take: 9(y,y') as a distance
between y and y'. For example, a widely used loss function is:

Y, y') =ly—y'|P

where p € [1,400). For p = 2 we obtain the standard least square regression
setting.

Definition 1.2. We put, in the case where ) = R and where By is the Borel
o-algebra on R, for any p € [1, +00):

P IR,2 — IR+

W, 9") = ly —y'IP
Definition 1.3. For any 1, let us put:

0 € arg min R(v,0)

(the dependence with respect to 1 is not made explicit by the notation but there
will we no ambiguity in the thesis, as ¢ will we fixed once and for all).

1.4. PAC-Bayesian approach and the Legendre transform of the Kullback
divergence function. Note that in statistical learning, the bounds on the risk
R4, é) of an estimator 6 often depends on the empirical risk of 6, (1, é), and on
a measure of the complexity of the submodel of © used to build 6.

In the PAC-Bayesian approach, initiated by McAllester [28, 29] (note however
that the techniques used in this part are closer to the ones initiated by Catoni
[11]), we do not consider any longer complexity measures of subspaces of ©. This
structure is replaced by the use of a "prior" probability measure over the parameter
set ©: m € M) (0). Note that this measure is called prior in reference to Bayesian
analysis, however its interpretation is different here. We do not think of it as
a stochastic modelization of 8 € ©. Its only role is to replace the structure of
submodels of ©. The aim of the PAC-Bayesian approach is to obtain PAC bounds
on the integrated risk:

/ ra(1,0)p(d8) = plra(i5,)] o / R(,0)p(d6) = p[R(, )],
© ©

(according to the fact that we are in the transductive, or inductive setting) where
pE M#(@) is whatever posterior distribution, depending on 7 and on the observed
data. The bounds here will depend on the empirical counterpart of p[R(%,.)]:
p[r(¢,.)], and on a measure of the distance between p and 7, that replaces the
complexity term in the approach using submodels.

This measure of the distance between p and 7 will be made by the use of the
Kullback divergence.

Definition 1.4. We let K(p, 7) denote the Kullback divergence between p and T,
given by:
plog [j—ﬁ(.)] if pLm,
K(p,m) =

oo otherwise .
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Note that the fact to upper bound p[R(¢),.)] rather than R(1),8) for some esti-
mator seems to be unnatural. However, note the following facts:

e the quantity p[R(%,.)] is the mean risk, under P, of the procedure that
consists, for every X, to drawn 6eo according to p and to predict Y by
f3(X);

e if © is countable, 7 is under the form m =}, o ppdy with every pg > 0
and ) . = 1, and the choice of p = J; for some estimator 6 leads to
pIR(Y,.)] = R(¢,0), and K(p,7) = logpy";

e if O is not countable, and if we want to upper bound the risk of a given
estimator @ using a PAC-Bayesian technique, we can take p as the uniform
measure over a small neighborhood of 8, this approach is detailed later;

e finally, in some cases of interest (for example, linear least square regression,
as we will see later in this part), 8§ — R(¢,0) is convex, and so by Jensen’s

inequality:
. [ ootan)|.
e

which means that we are able to upper bound R(w,é) for every estimator
of this form.

pIR(¢,.)] 2 R

The following definitions and lemma will be used in this whole part.

Definition 1.5. For any measurable function h : @ — R, for any measure p €
M2 (O) we put:

o) = sup [ (1) 7 Bl (),

Lemma 1.1 (Legendre transform of the Kullback divergence function). For any
measurable function h: © — R such that 7exp[h(f)] < +o00 we have:

(11) togmexp(t) = sup(p(h) = K(p.m)).
pEML (©)
with convention 0o — 00 = —oo. Moreover, as soon as h is upper-bounded on the

support of w, the supremum with respect to p in the right-hand side is reached for
the Gibbs distribution, Texp(n) given by:

dTexp(h) 6) = exp[h(0)]
dr wlexp(h)]’

Proof. We give the proof given in Catoni [10]. Let us assume that h is upper-
bounded on the support of w. Let us remark that p is absolutely continuous with
respect to 7 if and only if it is absolutely continuous with respect t0 mexp(n)- Let
us assume that this is the case, then we have:

Vo € O,

K(p, Texp(n)) = P {log (@) - h} + log 7 exp(h)
dm
= K(p,m) — p(h) + log 7 exp(h).

The left-hand side of this equation is nonnegative and cancels only for p = Texp(p)-
Note that this equation is still valid if p is not absolutely continuous with respect
to 7 (it just says that +00 = +o0 in this case). So we obtain:
0= inf [K(p,m)— p(h)]+ logmexp(h).
pEM}'_(@)[ (p;m) — p(h)] + log m exp(h)
This proves the second part of lemma 1.1. For the first part, we do not assume any
longer that h is upper bounded on the support of 7. Then we have:
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log 7 exp(h) = sup logmexp(hAB)=sup sup [p(hAB)—K(p,n)]
BeER BER pe ML (O)

= sup sup [p(hAB)—K(p,m)]
pe/\/gr(e) BeR

= sup {sup [p(hAB)]—K(pm}: sup [p(h) — K(p,m)].
pemi (o) | BeR peMl (©)

2. PAC-BAYESIAN REGRESSION IN THE INDUCTIVE SETTING

We use in this whole section the notations devoted to the inductive setting
defined in the introduction. We also assume that v is chosen in such a way that
for any 6 € ©, R(1,0) exists and belongs to R. Finally, we fix a prior distribution
™ e ML(O).

2.1. Main lemma. We need the following definition, that is used in what follows.

Definition 2.1. We put, for any a € R} :

1
P, : (—oo, —) - R
a

! 1—at
oy log(l—at)
(0%

Note that @, is invertible, that for any u € R:

_ 1 —exp (—au)
3, () = — T,
and that % —— 1. Also note that for a > 0, ®, is convex and that

z—0
®,(z) > z. For a <0, &, is concave and ®,(z) < z.

We can now state the lemma.

Lemma 2.1. We have, for any A € R}, for any 6 € ©:

reon oy [m(sn50)] - 3300y (s Y) -1

The proof being almost trivial, let us give it now and make the remarks about
the lemma after the proof.

Proof. For any A € R, for any 6 € O:
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Let us now make the following remarks about this result. First of all, we can
deduce from it the following deviation inequality, by upper bounding the function
]lmjr(.) by exp(.): for any € > 0, for any A € R, for any 0 € ©:

1
PN{R (zp/\%,a) <oy {r [@%o (w%) ,0] +1°§5}} >1-e.

So we have a control of the quantity R (4 A &, ) based only on empirical quantities.
Note the interest of this point: in most deviation inequalities, we can have a control
of R (¢,0) that depends on empirical quantities and on a theoretical variance of
Y[fo(X),Y] under every p;. This distribution being unknown to the statistician,
however, the use of these inequalities does not allow a direct control of R (1,6)
by empirical quantities only. Here, we control R (¢ A &,6) by empirical quantities
only.

The problem is that we control a thresholded version of the risk: R (¢ A %,0)
and not R (¢,6). Actually, let us remark that this point is natural. If we observe
N values ¢[fg(X;),Y:] quite small (of order 1, say), it is possible that ¥[fs(X),Y]
takes a large value (say of order N/\) with probability smaller than 1/N: this event
is too rare to be observed with our sample. However, it leads to a change of order
1/ of the risk: that is precisely the order of the bound. In order to see this, let us
present the following toy example.

Example 2.1. We assume that Py = P®N and that X = {z} and Y takes two
values: Y = 0, with probability 1—1/N, or Y = ¢N/\, with small probability 1/N.
Finally, we consider a 6 such that fy(x) =0, and ¢ = I'. Note that:

1 1eN ¢

R(,0) = (“N)‘”sz‘X'

Now, with probability at least (1 — 1/N)¥ we have every Y; equal to 0 and so:
r (‘I))‘/N ow,G) =0.
So we cannot hope to upper bound R (,6) by a bound in r (1,6) + log(e~1) /),
because we can choose ¢ as large as we want. However, note that:
N 1Ac
R{yn—,0)= .
(vndoe) =35
So, we cannot guess the probability to have ¢[fp(X), Y] greater than N/ with-
out any assumptions: that would mean that we are able to estimate accurately the
probability of events that we have not observed. This can be done, if we formulate

some assumptions about Py or v. In order to explain this, let us introduce the
following definition.

Definition 2.2. For any ¢t € R, a € R, with the notation (t); =tV 0, and for
any ¢ : Y2 - Rand 0 € ©:
1
(¢ - _> ,0] .
X/ +

As(y,6) =R (zp/\ %0) —R(1,0).

So the deviation inequality becomes: for any € > 0, for any A € R, for any 6 € ©:

Aa(,0) =R

Note that:

1

PN{Rw,o) <o{rloyo(vnd).o]+ log?}w%(zp,e)} >1-c

A
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Now, we can see some examples of hypotheses about P or 1 which allow to
upper bound the term Ay n(1,0). Basically, note that, if ¢ is upper-bounded by
a constant ¢ > 0, then we have, as soon as A < N/c:

We have also the following result.

Lemma 2.2. Let us assume that we are in the case where Y = R and where By is
the Borel o-algebra on R, and that ¢ = I? for a p € [1,400). Let us assume that
we are in the 1. i. d. case, the distribution p; of every pair Z; = (X;,Y;) is actually
P and so Py = P®N. Let us assume that we know that the true regression function
f (defined as a measurable version of x — P[Y|X = z]) is such that || f]lcc < C/2
for some C' > 0. Then it makes sense to consider only parameters 8 € © in such a
way that || fo]lcc < C/2. Let us moreover assume that there are two constants b > 0
and B < +00 such that for any x € X:

{exp[b|Y F(X ”X_x}<B

Then we have, for any 8 € © such that || fo|lcc < C/2:

14 (N » +oe 14,1
A, (IP,0) < Bexpqb|C—2r 5y / exp [—b2p tp] dt.
0

Proof. We have:
(0=5%) | = | (o) -y - %)J

[ e fien- Y|p_g>t] t

=/0+°°p

s/;mp{v( ) v]> 2

d
[fo(X) — Y|> ]dt

é (%)] _c}dt

oo ,_1 1 N %
< Pexpq |f(X)-Y| - tr + by +C ,dt
0
1
N\7 +oo
5Bexp{b C -2t (—) }/ exp [—b2%—1t%] dt.
A 0
This is exactly the result claimed in the lemma. |

Example 2.2. The conditions of lemma 2.2, with p = 2, are satisfied when Y —
f(X) is independent of X and is Gaussian w1th mean 0 and variance ¢2. In this
case we wan check that for any b > 0 we can take:

b2o2
B = .
exp< : )

However in this particular case we have the specific bound:
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leading to the following result, valid for any § € © such that || fs||cc < C/2 and for
any X such that A < N/(2C?):

A

oo [l lC )

2.2. A basic PAC-Bayesian theorem.

Theorem 2.3. For any e > 0, for any A € R}, with Py-probability at least 1 — ¢,
for any p € ML (O):

ool fs(or L) solloas (103). ] Eog s

Proof. We apply lemma 2.1 and integrate it with respect to 7 to obtain that:

e a0 [r(on Y} -4 Doy (w0n ) b -1

Using Fubini’s theorem and multiplying both members by ¢ we have:

PNwexp{A% [R(«p/\%,.)] Z%(ipz ) 10g1} .

Now, we apply lemma 1.1 and we obtain:

Pnexp sup Ap{(In [R(w/‘\ﬁ,.)]}
peML (©) N A

This implies that:

o pe(os (a5}

Zp[;(% %)]—}C( ™) — log1}>0]§e.

As @ 2 is convex we have:

{0 %)
(

Py

So we obtain:

E
—N
=
| — |
KA
2>
o
e <
<
>
v
_l
H/—/
35
>
>4 S—r
+
)
o’
——
\Y
—
|
o

that is the stated result. O

We are now going to see how to apply this theorem to perform regression estima-
tion. Let us assume just for a while that on the support of w, P[¢(Y, fo(X)) < 1] =
1. This is for example the case if we take 9 = 12, Y = [0,1] and 0 < fp(z) < 1
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for any (z,0) € X x ©. Then we have, for any £ > 0, for any A € [1,N), with
Pn-probability at least 1 — ¢, for any p € M (0):

oy pIR@, N <pr(y0u,.)] + M

or:
R <oy {olr (4 00,.)] + KEDEELY gy,

Example 2.3 (Finite or countable parameter set). Let us first consider the case
where O is finite, and where we take:

1
™= — Z dg.
19l 38

The restriction p € {dg,80 € O} leads to the following result: for any ¢ > 0, for any
A € [1,N), with Py-probability at least 1 — ¢, for any 6 € ©:

log |©| + log L
A

Note that the fact that the complexity of a finite model © should be measured by
log |©| is a well known fact of learning theory, see Vapnik [41] for example. However,
note that here it is possible to give more importance to some values § € ©, and
to deal with the case where © is countable, by changing . Let us choose, for any
6 € ©, pg > 0 such that ) ;g pg = 1. Let us take:

T = ZPG(SG

€O

R(1,0) <@, [r (% o¢,a) +

and still p € {dy,0 € O}, we obtain this time: for any ¢ > 0, for any A € [1,N),
with Py-probability at least 1 — ¢, for any 6 € ©:

log L +log L

R(¢,0) < &3 [r (<1>A o¢,a) poope T TPE
~ N A

Note that this upper bound is valid even if the "prior" distribution (pg)gco does

not represent a belief on the "true" value of the parameter as in the Bayesian case.

The interpretation of 7 is not Bayesian. So, for a given A, we propose to choose

the estimator:

6= argmin‘i%l [r (Q% o¢,0) +

log - + log ¢
9co '

A

We will discuss the choice of A in a more general setting.
Now, we come back to a general parameter set ©. By an application of lemma
1.1 we know that, for a given X, B(p, e, A) reaches its minimum for

p= ’/Texp[—)\r(dn‘/Nozp,.)]

and that this minimum is equal to:

B (WGXP{—)\T(@A/NOQP,.)],E, )\) - (I,%l

{log% —logmexp [—Ar (®y/n 01, .)] }
S )
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The choice of A\ is more problematic here because A is not allowed to be data
dependent. However, there is a simple way to solve this problem, given by Catoni
[10]. Let us choose a € (1,N/2) and put:

log &
A:{al, ogzg{ong}.
loga

By a union bound on A we obtain, for any ¢ > 0, with P®V-probability at least
1 —e¢, for any p € M’ (©) and X € A:

pIR . <5 (p 510

Now, let us remark that for any A € [1, N/2] there is a X’ € A such that A <
A < aX. We can state the following corollary.

Corollary 2.4. Let us assume that v takes values in [0,1]. For any € > 0, and
a € (1,N/2), with Py-probability at least 1 — e, for any p € ML (O):

log &
log a

N
K(p,n) + log y
A

pLR (bl < ,\e[if,lzfv/z] (}_%1 P [T ((I)% 1, )] +

So we can now propose the following estimation method:

e choose ¢ and a;
e compute

log &
Tog a

1+{
K(p,m) +log ——

£

by ;

Ao = arg)\er[rll,iﬁﬂ] é_%l P [r (CI)% ° Y, )] +

* choose P = Mol Aor(@arg/wow..))’
e for any new value X predict Y by Y obtained by drawing 6 from the
distribution p and taking Y = fo(X).

We know that the mean risk of this procedure is p [R (¢, 0)] and so according to
the corollary it cannot exceed:

log &
1+\‘ log a J
g

log —logmexp [—Aor (¥, /v 09, -)]

Ao

0]

4L

Remark 2.1. As we already mentioned in the introduction, note that if § — R(1), 6)
is convex (this is the case for example if ¢y = I? and if 8 — fy is linear) then we
have:

p[R(¥,0)] =2 R[y, p(6)],

in this notation # is the canonical process on (0,7, p), that means that we can
write:

p@zéwwy

This avoids us the randomization step: we can choose the function f,4) as an
estimation of the regression function. The procedure becomes, for any new value
X, predict Y by Y = f;5)(X).
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Let us now give a look at what can be done in the case of an unbounded function
1. For the sake of simplicity we state the following corollary of Theorem 2.3 with
a single value A, but the union bound on A can still be done.

Corollary 2.5. For any € > 0, for any A € R, with Py-probability at least 1 —¢,
for any p € M (0):

PR, ) 5@;1{,){7« [% o (W%) ]}+M}

+p[A (¢,.)]_

So, in the general case, we are going to use the same method than in the case
where v is bounded, with an additional hypothesis to obtain an explicit upper

bound for the term:
N
Y — —) ,9] .
( X,

2.3. Deviation under the posterior. The aim of this subsection is to prove that
it makes sense to draw once and for all a value 8 from a well-chosen posterior
distribution p instead of drawing a new value for every new prevision.

.S
N

A%(waa) =R

Theorem 2.6. For any € > 0, for any X € R}, with Py-probability at least 1 — ¢,
for any p € ML(®), for any n > 0, with p-probability at least 1 — 1 over 6:

R(,0) < ® 1{r [Q% o <¢/\¥) ,e]

+§ —logmexp {—Ar [®5/n o (¥ A (N/X)),.]}

+ log (d dp (0)) + log 1
Trexp{—Ar['@A/No(z[J/\(N/A)),.]} ne

In particular, for the particular choice of the optimal Gibbs posterior, with Py-
probability at least 1 — ¢, for any n > 0, with Texp{—Ar[@x/xo(BA(N/A)) .]}—probabilz'ty

}+A%(¢,0).

at least 1 — 1 over :
1 N
R(¢,0) <d,qr ®,y 0 ¢AX ,0

1
)

—logmexp {=Ar [®x/n o (¥ A (N/X),.]} + IOgnis } + A%(qp,ﬁ).

Proof. For the sake of shorteness, let us put:

P = Toap{ Ar[®a/no(wAN/A), ]}
Let follow the proof of Theorem 2.3. At a certain point we have, for any € > 0, for
any A € R%, with Py-probability at least 1 — e:

sup {p{@x [R <¢A ﬁ,)] }
pEML(O) N A

oo (a2) )2t o
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and this inequality implies:

N 1
logpexp{)\éﬁr [R ('gb A R )] - logg

+logmexp {—Ar [®y/n 0 (¥ A (N/N)),.]} +log (Z_i) }

= logﬁexp{)\ég [R (7,11 A %, >] - logé
+10g7rexp{—)\r [<I>,\/N o (¢ A (N/)\)),]}}

N 1
= sup )\p{q)A [R(?,b/\—,.)]}—log—
peEML(O) N A €

+logmexp {=Ar [®x/n 0 (Y A (N/N),.]} = Klp, ﬁ)}

- ele r(en 3]}

2

ol [oyo (0 %) ]} -wet -xton) <o

This implies, for any n:

ﬁ{ﬁ €0 : AP, [R (v,[}/\ %,)] > —logmexp {—=Ar [®y/n o (¥ A (N/N),.]}

dp 1 . N 1
+ log (dﬁ(0)> + log TIE} < pexp{)\@% [R (¢/\ Y )] log po

+ log (Z—Z) +logmexp {—Ar [By/n o (¥ A (N/X)), ]}} < -

This ends the proof.
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O

2.4. Introduction of moment hypothesis. We have seen that Theorem 2.3 (or
corollary 2.5) leads to an observable bound as soon as some assumption (exponential
moments, boundedness) is satisfied. Here, we propose another change of variable
that leads to an observable bound under the hypothesis that for a given s > 1, for

any 0 € O:
R(|¥|%,60) < +00.

Theorem 2.7. Let us assume that for a given s > 1, for any 8 € ©, R(|¢|*,0)

<

+00. For any a € (0,1), for any ¢ > 0, for any X € R, with Px-probability at

least 1 — ¢, for any p € ML (0):

(o=t (52 e )]}

s—1 l
<I>}V0<a¢—%<(88—]\;))\) |¢|s>"|}+w
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Proof. This is just an application of Theorem 2.3 where we replace 9 by:

o l¢ Sl |¢|S] ,

and note that, for any A € R} :

¥ V‘% ((;Tm) |¢|S] =a [%_§<;1)

8

A

<a<l

O

A few lines may help to interpret Theorem 2.7. Note that this implies the
following bound for p[R ()], with probability at least 1 — &:
L Klom) + log £ }

1 {pr [<I> . <a¢ G W) g ;

1/(s—DA\*!
— | — R (9%, )]
1 (E22) omaur,)

So this theorem is almost the same as Theorem 2.3 page 29, but the thresholding
is replaced by the moment term:

(2.) () emeera

p[R(¥)]
1

<

L

2>
2>

a

allowing to replace the boundedness assumption by the existence of a moment.
Remark that a new problem emerges as the term R (|¢|°,.) in the right-hand side
is not observable to the statistician. Additional hypothesis are required to control
this term. For example we can use the following lemma.

Lemma 2.8. Let us assume that we are in the i. 3. d. case, Py = P®N. Let us
assume that Y = R, ¢ = 1P, and that for any (z,0) € X x O, |fo(z)| < C. Let us
assume that P is such that:

P(Y*P) < Mgp
for some (known) constant My,. Then we have:
R(1¢]°,8) < 27" (M + C°F).

Remark 2.2. Note the role of the various parameters in Theorem 2.7. The parameter
s > 1 is the order of the moment of 1) we assume to exist. When s becomes larger,
the hypothesis R(|¢|°,0) < +oo for any 6 becomes more restrictive. However,
we should take the largest possible s: we will see in the next subsection that we
expect A < N and so a large s will help to make the moment term (Equation 2.1)
the smaller possible. The parameter A plays the same role than in Theorem 2.3
page 29; a union bound and an optimization with respect to A is recommended in
general. Finally, the parameter o appears in the change of variable used to obtain
the moment bound. A union bound and an optimization with respect to « can also
be performed. However, note that in some parts of this work we will see that we
can arbitrarily choose oo = 1/2 with no loss on the order of magnitude of the bound.
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2.5. Bounds on the integrated risk. In this subsection we are going to show
that it is possible to upper bound the mean risk of our method:

PEN{p[R (4,0)]}.

Theorem 2.9. For any A\ € R, for any data-dependent posterior distribution

o3 <o e )

confploar(2) ]} 247}

Proof. We follow the proof of Theorem 2.3 until we obtain:

N
Pynexp sup )\p{@A [R (zb/\—,.)]}
pEML(®) N A

Zp{ ;\\,<¢z ) A )] K(p,ﬂ)—logé}za

At this time, let us take ¢ = 1 and note that, by Jensen’s inequality, we have:

exp Py | sup )\p{@A [R <¢A ﬁ,)]}
peML () ~ A
N
A N
- = (A=) - <1.
v2r(e (wony)] K(p,w)H <1
This implies the theorem. O

Now, let us examine some consequences of Theorem 2.9 on a toy example.

Example 2.4 (Bounded linear least square regression). Let us assume that we are
in the i. i. d. case, Py = P®N_ Let us assume that Y = R, and that P is such
that P[Y € (—1/2,1/2)] = 1. Let ||.|| denote the euclidian norm on R¢ and {.,.)
the associated scalar product. We put, for any d € IN \ {0}, z € R% and § > 0:

By(z,0) = {2’ €e R, ||z — 2'|| < 6} .

Let Ag denote the Lebesgue measure on R?. Now, we assume that X = @ =
B4(0,1/4/2), and that fs(x) = (6,z). Note that this implies that, for any (z,6) €
X x © we have:

m_— folz) < %
Finally, we assume that 1 = {2, so we have, for any 8 € O:
Pl (fo(X),Y) <1]=1.
Note that we have, for any A < N/2 and p € [0,1]:

A
PS‘I’%( )<p+ﬁp

so we have almost surely, for any 6 € O:

s N A
r [@ o (lz/\y> ,0] <r(1*0) +oNT (1,9).

2>
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Moreover, let us assume that Hgn < 1/2. Let us finally choose the prior distribution
7 absolutely continuous with respect to Ay and such that:

d_w(e) _1e()  1e(®T (£+1)
Al a®) g (L)d :
V2

In this case, the theorem becomes, for any A € [1,N/2], for any data-dependent
posterior distribution p : Z¥ — M () we have:

P (o R ()]} < PN (o [r (2.0) + e (049)] + 22

§P®N{<l+%)p[r (2,6)] +@}

The optimal choice for p is the following Gibbs posterior:

Texp[—Ar(i2,.)]-

However, in order to provide explicit computations, let use another posterior dis-
tribution. We put:

6= in (12,6
ar%;g};w( ,0),
and:
_ 1 . 2
9=argm1nﬁz<0—0,Xi> .

ASS)

=
Remark that the Gibbs posterior tends to concentrate, for large values of A, around
0, at least when it belongs to ©, otherwise it concentrates around 6. The posterior

we propose to use is build in order to mimic this point. Let us put, for any § €

(0,1/v2):
~ L5\ .
6° = (1 A ﬁ—) 6.
lell
Now, let us put define the posterior p° such that:
7 Lp,(55,5) (6)

LG
5O (o)
Note that 8° is chosen such that By (55,5) C B4(0,1/+/2) for any 6 € (0,1/v/2).

So p? is absolutely continuous with respect to 6 and we have:

1
K(p,m) = dlog ——.
(p, ™) %575

Moreover, note that:

plr(,6)] =

=1
N R N 2
S DN LRI oA
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%i::[ - (b,x z>]2+%§:<§—é,){i>2+52 —r (12,9) + 6.

=1

So we obtain, for any A € [1, N/2], for any function ¢ : ZN — (0,1/v/2) (we will
write §(Zy, ..., Zy) = 6 for short):

PEN {7 [R(1,)]} < (1 ¥ %) (PN 1 (20)] + %) + Jlog

A . o d
— + —1 .
(1+ 2N> R (2,8) + 5] + ogd\/_
Note that the optimal value for § is:
__ 4
22 (1+ )

However, as we are going to take A of order vV N, let us take:

«_ | d
We have, for any A € [1, N/2]:
. A — d d A
QN } ~6 2 2 _ — _
PN [R(l,.)]}§<1+2N)[R(l,0)+2)\] Tlog (/5
2, 4 AR(6) 4|1 \ﬁ
_R(l,6)+—4N+ ov T |3 Tlosy 5|

If R (1?,6) = 0 we obtain:

. d d
®N [ =5 2 4 ¢
PN (R} < g5+ 5
and the choice A = N/2 leads to the bound:
. d |9 N
®N [ =5 2 @ |9 vV
PN {5 [R(2,0]) < o |5+ 10wy -

However, in most practical cases we expect to have R (l27g) > 0. We then propose
in order to explicit the computations to take the optimal value of A when the
logarithmic term is neglected:

Ao [N
VR0 2

For N large enough we obtain the bound:

PN {50 [R(12,)] } < R(1%.8) + ¥ +3 ogm] +%.

dR (12,9) [1 1
For a given d we obtain the rate of convergence N T log N except if there is no
noise, in this case the rate is N~'log N. Actually, it is a well-known fact in learning
theory that if one wants to achieve a better rate of convergence, one has to use
relative bounds (bounds that compare the risk of an estimator to a given value of
the risk). A detailed explanation is given by Audibert [2]. We are going to give
relative bounds later in this work. However, let us insist on the fact that deviations
bounds like corollary 2.5 are interesting even if they lead to sub-optimal rate of
convergence as they can give better bounds for "small" values of N.
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For the general case, we give the following corollary of Theorem 2.9.

Corollary 2.10. For any A € R}, for any data-dependent posterior distribution
p: ZN = ML (©) we have:

Py {p [R <¢ A %, )] } < %PN [’C (p, ”exp{_m[@wo(wMN/A))w]})]
- ilogﬂ'exp {—AR [cb% o <¢A %) ] } :

p= Trexp{—)n‘[<I>>‘/N°(¢/\(N/)\))a-]}

In particular, if we take:

then we have:

Pefo [ (60 2)]} <~ igrems {-an iy = (60 2).]).

Proof. From Theorem 2.9 we have, for any A € R, for any data-dependent poste-
rior distribution p : ZN¥ — M? (©):

bl )
e (43) 42}

= PN{XK (p’ exp{ Ar[q)A/NO(l/’A(N/)‘)) ]})

e o nye (o0 2) ]}

[y

Finally, note that:

= Py 1nf

2.6. Relative bounds. The idea of relative bounds is to choose a particular pa-
rameter 6y € O and to upper bound the relative risk R(v,8) — R(1),6o) instead of
R(v,0). Usually, 6, is chosen as:

6o =06= argmin R(¢,0)

and in this case the relative risk is refered as the excess risk, but in this work we
are going to adopt a more general point of view.
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The idea is to use a prior u and a posterior v on the measurable space (02, T®?)
and to upper bound:

[ IR0 = RO )

Definition 2.3. Let u be a probability measure on the measurable space (02, T ®2).
Let also (,6') denote the canonical process on (02, 7®2). This notation allows us
to write, for any v € M1 (©?):

vIRW.0) = R6.00] = [ | [R.1) = RO, 0] oldt, 1)

Theorem 2.11. For any € > 0, for any A € R, with Py-probability at least 1 —¢,
for any v € MY (0?):

N {u% gPN [COREDeS }

< u{%g% [<¢i(0) — 44(8)) A %] } 4 %ﬂogl

For the "moment case”, let us choose s > 1. Then, for any a € (0,1), for any
€ >0, for any X € R, with Pnx-probability at least 1 — ¢, for any v € M}‘_(@Q):

N
v[R(,0) — R(,0)] < é@]@l{y% Z o, [aqpi(e) — as(6)
s—1 } l
_g ((3_1))\> |¢z(a)_¢z(01)|s +w}

s sN A
1/(s—DA\*" s
() up{w o) - s a0, 7).
Proof. The first assertion is proved in the same way than Theorem 2.3, replacing
the measurable parameter space (©,7) by (02, 7®2) and the loss ¥[fs(X),Y] by
Y[fo(X),Y] — ¢[for(X),Y]. For the second part, follow the proof of Theorem 2.7.

O

Definition 2.4. For the sake of simplicity, we introduce the following notation for
the variance term:

Vs (0,0 = 2 {—[r(zp,o) (6] + - Z‘P la@bz — ati(®)

aX
-2 (& ;N?)*)s i) - wiw')fl }

Note that for any 8 € R} and any ¢t we have @El(t) < t and so the moment
bound becomes:

VIR(.0) = R0 < vlr (6,0) = (6, 6)] + ot [V g s (6.6

1 (<S - m)“ vP{[ (fo(X), V) = 0 (2 (X), 7))’}

S sN
K(v, u) +log £
+
aA
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Now, we may wonder how to deal with the V term if we want to explicit the
bound. Note that we have:

avi(0) - ot (6) - < ((8 ;;”) 0) — @) < a

s
and so, if we take a < 1/2, as we have, for any x <1/2 and A < N:

72
r<® (m)ﬁx—k;

2l

we obtain the following result.

Lemma 2.12. We have, for any a < 1/2 and X € (0, N]:

2

N s—1
Vi das08) <+ 3 lzm(o) —ue) -5 (C2) e - wi(o')lsl

‘ S sN
=1

Let us also remark that it is easy to deduce from Theorem 2.11 the bounds
on the excess risk that we mentioned previously. Actually, let us choose 6y € O,
€ MY (0) and p = 7 ® dg,. We restrict the theorem to posteriors v = p ® dg, for
any p € M1 (0). Note that:

K(v,p) = K(p ® 85, ™ ® 09,) = K(p,m) + K(36,,0,) = K(p, ).
We obtain the following result.

Corollary 2.13. Let y € ©. For any € > 0, for any A € R, with P -probability
at least 1 — ¢, for any p € M*(0):

P {P% iPN [(¢i(-) - ¢i(‘90)) A %] }

< P{%iqﬂg [(i/h‘(-) —¢i(90)) A %] } + w-

Moreover, let us choose s > 1. Then, for any € > 0, for any A\ € R}, with Px-
probability at least 1 — €, for any p € Mﬁ_(@):

IR, = R (6. 00) < T (0] = (0160) + 5 [ 530V 300

Xl (25 —2)°! .
s (B2 o .00, 7) - 0 (a0
K log L
L Klp,m) +1og
al
Now, the same problem is raised than in the case of direct (non-relative) bounds:

there are non-observable terms in the right-hand side. We can give here analogous
of lemma 2.2 and 2.8. First, let us give the following definition.

Definition 2.5. Let us put, for any (8,0') € ©2, for any a € R:
N
Baluh,0,6) = [R($,6) ~ R(,0)] ~ = > P [ (1:(6) ~4:(6)) A
i=1

Let us remark that in the case where 1) takes values in [0, 1] we have, for any
A < N, for any (6,6") € ©2:
Ay (®,6,8) =0.

For the moment hypothesis, we propose the following.
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Definition 2.6. Let us put:
M,(/,’s : @2 - R

(0,0')!—)%23\;[ ]

Note that My 4(6,6') should be seen as the theoretical counterpart of the empirical
quantity Vi x/n,qa,s(0,0") (Definition 2.4 page 39). Remark that in thei. i. d. case,

My,s(8,8) = P{1 (fo(X),Y) = 6 (fo(X), V)] }.

Let us assume (until the end of this subsection) that © is a normed space, with
norm ||.||e.- In some cases, we can assume that w-almost surely:
My,5(0,6") < C(s)ll6 — 0'l|5,

where C(s) is known to the statistician.

¥i(0) — i (0")

Example 2.5 (Non-linear regression estimation). Let us assume that we are in the
i. i. d. case. In this example we take 1) = [?. We assume O is actually an Hilbert
space with scalar product (.,.)g, that P(|Y|*) < ms, that fo(.) = F((6,¥(.)e)
with ¥ : X - © and F : R — [0, 1], that F is derivable, that F' is continuous and
[|F'|co < D, and finally that ¥ is such that for any z € X, ||¥(z)||le < K. Then
we have:

My,5(8,6") < 2%~ (1 +ms) K°D?|10 — 6/,

Example 2.6 (Linear regression estimation). Here, we still assume that we are in
the i. i. d. case, that ¢ = [?, that © is an Hilbert space with scalar product (., Do
that P(|Y|*) < m, and we take fy(.) = (6,¥(.))g with ¥ : X — O and for any
z € X, ||¥(z)||le < K. We also assume that 7({ € ©,[|0||le < k}) = 1. Then we
have:

My,(6,68') < 227 K* (m, + w*K*) |6 0[5

Moreover, in the case where 8y = 8, the upper-bound is not observable because
of the presence of 8y. We propose the following trivial inequality:

N
p {% izzlé% [(%(9) —i(60)) A %] }

N
<supp {% >ay [wio - veny] } .
i=1

fe®

Using Jensen’s inequality, we obtain the following result in the bounded case.

Corollary 2.14. Let us assume that ¢ takes values in [0,C] for any C > 1. Let
us put:

~

0= argmin r(¢,0).

Let 6y € ©. For any e > 0, for any X\ € [0,N/(2C)], with Px-probability at least
1—e¢, for any p € ML (©):

24 (IR, .)) - R(,60))

|

1
+sup{ ——
9co { 2N

®

[2 (v:0) = v:i0)] }

[2 (¢z’(9) - ¢z’(6))] } i w-

<

I

-
2>

[\
5=
-

0]

-

2>

i=1
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Note that here the right-hand side is fully observable.

Example 2.7 (Bounded linear least square regression, Example 2.4 continued).
We use the notations and context of Example 2.4, remember that in this case:

i) = (Y; — (X:,6))” € (0,1).

Also remember that we used the notation 6 instead of 8. Then we have, for any
A< N/2:

N

QNZ s [2 (00 - 6:0)] <r,0) = 10,0+ 25 Y [0 - 0:0)]

N
6, 8) —r(,0) + xS (Xi G- 6)

0, 8) —r(,60) + 32 [r06,0) —r(,5)]

So, as soon as A < N/4 we have:
1 & _
sup {W ;‘P% [2 (vi0) - vi0))] }
A -
< sup (1 - W) [T(lb,@) - T(iﬁﬁ)]

- (1 - %) [r(zp,é) - Girelgr(w,é?)] =0.

So the corollary becomes in this case, for any 8y € ©, for any £ > 0, for any
A € [0, N/4], with Pn-probability at least 1 — ¢, for any p € M1 (0):

@3 {p[R(®, )] - R(¥,60)}
oo 303 [ (o0 -0)] | + T

2.7. Relative bounds on the integrated risk. In this subsection, we give the
integrated version of the relative bounds (corollary 2.13), and try to examine its
consequences in terms of rate of convergence.

Theorem 2.15. For any A € R, for any data-dependent posterior distribution
p: ZN = ML (©) we have:

Py {p% gPN (0 - @) AT }
SPN{p{ 2%[ ) A f]}+@}

Let us examine some consequences of Theorem 2.15 on the toy example we
already studied.

Example 2.8 (Bounded linear least square regression, Example 2.4 continued).
We take the notations and the context of Example 2.4. Let us remember that in
particular, we are in the i. i. d. case, with Py = P®N. The theorem becomes, for
any A € [1,N/2], for function ¢ : Z¥ — [0,1/+/2] we have:
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and so, for A < N/2:
N
5° lr (12,) = (12,8) —’\22 ] §2ﬁ5%2<.—é,X,~>2

<252+2_Z< X> <252+2%§:<§—é,x,->2,

and note that usual computations on the linear model lead to:

N
1 - A 2 o2d
Py (i-0.x) ] <N
where:
o? = sup P [ (Vi — (B, X:))’| Xy = a.
zeX
So, we put A = and we obtain:

_ ,  20%d  2d 1
®N [ 6 2 . 2 2
PONIRR(1%,.)] -R(1%,0)} <&+ v+ logéﬁ.

We choose § = 1/% and we obtain:

P®N{55[R(l2,_)]—R(ﬂ,@)}g% d(1+0%) + —logdivﬂ.

Note that we obtain a bound in N~'log N (for a given d). This is not completely
satisfying as in this case, we would like to achieve a bound in N—!. Actually, the
same problem would arise if we choose the optimal Gibbs posterior for p. The
technique to remove the log term was suggested by Catoni [9, 10, 11] (it is called
"localization" in [10] and [11]). The idea is to replace 7 by:

Texp[—BR(12,.)]

for some 8 > 0. The reason for the choice of this particular prior distribution is
discussed later (in the next subsection). The theorem becomes, for any g € R},
A € [1,N/2] and é:

PEN{P [R(2%,)] - R (2 _)}<P®N{ [r (%) =7 (1%,9)

43
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N 2
+7° {ﬁ > (%= ¢, X)) = (Vi - (8, %))’ }

1 ...
+3K (A, Texpi—pRa2,)1) }
Now, note that:

K (p Texp[—BR(12, )]) = d]Og \/_ + ,B [ ( )] + logrexp [—ﬂR(lZ, )]

<dlog 1 + 5_2 +log Ad {exp [—ﬂR(F, )+ ,BR(ZZ,E)]}

6V2 X [Ba (0,1/V2)]
+B8{p° [R(?,.)] — R(1*,6)}

and so:
K (5, Texpl—pR(2.01) — B {f"’ [R(%,.)] - R(*,6)}

552 T (4+1)2578

<dl tlog—2 212 —

%52 5f o ripi /et M

1 2 (4 +1)
=dlog —= + —— +1 2
g(S\/B 2 det

where M is the variance-covariance matrix of X under P. This leads to:

(1 _ g) PON (P [R(i2,)] - R (12,8)} < 62 (1 + 2’%) 4 20%d

N
L1 T+
A

d 1

T 85B 5B X Vaerar

or equivalentely:
B — 1 B8 202d
®N [ =5 2 _ 2 el
PON {5 [R (12, )] R(l,e)}gl_g{é (1+2A)+ o

L d L F (4 + 1)

log— + 1 log —/———

VB X & Vdet M

Now, we take the (suboptimal) values A = N/2, § = \/2d/N and 8 = d/(26%) =
N/4, and we use the following bound (see [43] for example):

d 1 d d, d d 1
— < —— — — - — — -
logT’ <2> < 210g2—}— 2log2 5 + - 10g27r+6d

and so:
d 1 d d d d 1 1
— < — — — — — — _
logF(2+1)_210g2+210g2 2+ log27r+6d
and we obtain:

PN (5 [R(1%,)] = R(%0)} < 5 (5+40%) + 1 |55 —d+1og

dtM

So, from now, we will try, as soon as possible, to give localized bounds. However, in
deviation inequalities, the idea to replace m by the Gibbs distribution mexp—gr(2,.)]
leads to non-observable bounds, whereas the estimation methods we propose often
require an explicit computation of the bound. We will see that some techniques
allow to obtain observable localized bounds.
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2.8. Relative bounds with respect to a Gibbs distribution. The computa-
tions in the preceding example (Example 2.8) showed that a way to improve the
bounds is clearly to work on the divergence term K(p, 7), especially to try to make
a good choice for the prior 7. Remember that, once 7 is chosen, we know that the
optimal p is a Gibbs distribution: 7exp[—gr(y,.) for some g € RY.

Let us remark that, for any (p,7) € ML (©) we have:

(2.2) P[K(p,m)| = P[K(p, P(p)] + K(P(p), ).

This implies that, for a given data-dependent p, the optimal deterministic measure
7 is P(p) in the sense that it minimizes the expectation of K(p, ) (left-hand side of
Equation 2.2), making it equal to the expectation of K(p, P(p)). This last quantity
is the mutual information between the estimator and the sample.

So, for p = Texp[—pr(v,)), this is an incitation to replace the prior 7 with
P (ﬂexp[, /3r(¢,.)]) . It is then natural to approximate this distribution by mexp—gr(v,.)-

Note that this choice is exactly the one we made in Example 2.8, and that in this
particular case it led to an improvement of the rate of convergence, by a log NV term.
So we can do what we proposed in this example (to try to localize systematically
our bounds) by replacing m with Texp[—gR(y,.)) for some 3 in every bound.

But then the following problem emerges: a term K(p, Texp[—gR(y,.)]) apPpears in
the bounds, and this term is not observable, so our willing to obtain empirical
bounds can be fulfilled only if we are able to upper bound K(p, Texp[—gR(v,.)]) DY
an empirical term. Actually, we have the following, for any (p,7) € M (0):

K (p: Texp(-pR(w..))
= K(p: 7T) -K (ﬂ'exp[—ﬁR(d),.)]aTr) + /8 [PR(l/fa ) - 7"-exp[—ﬁR(1,/),.)]R(’(ﬂa )] .
So, the problem of obtaining an empirical bound on K(p, Texp[—gr(w,.)]) is linked
with the of getting an empirical bound for:
PR(Y,.) = Texpl-pRw, ) B, .)-
In this subsection and in the next one, we focus on such bounds. More particu-
larly, the next result (Theorem 2.16) is an empirical bound on:
PR(Y,.) — Mexp-pR(y, )1 R(Y; )
for any B € RY. The function 8 = Texp[—gR(y,)1R(¥,.) being nonincreasing, a
bound under the form:
PR(1,.) < Texpl—pR(w, ) R(1,.) + empirical terms

gives a kind of scale to choose a posterior distribution p. An algorithm based on this
idea is given after this main result. Finally the next subsection includes empirical
bounds on K(p, Texp[—gR(x,.)])-

We will need the following notation.

Definition 2.7. For the sake of shortness, let us put, for any (6,6') € ©2:
2N
0y, 0.0) = 2 L0 4 [1(6,0) = r(0,6)] ~ [r(65.6) — (0]}

Note that the variance term vy x/n(6,6') is the analogous of Vi y/n,a,s(0,6")
introduced in Definition 2.4 page 39 in the bounded case.

Theorem 2.16. Let us assume that for any 0 € O, P{Y[fo(X),Y] < 1} = L.
Then we have, for any ¢ > 0, for any ()\,3,7) € (0,N)3 such that B < v < X, with
P -probability at least 1 — g, for any p € Mﬁ_(@):

(A& — BI4) [pR(, ) = Texplsr(5, 1 R, )]
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< ()‘ - 7) [pr(q,[}, ) Texp[ qr(w,.)]r(wa )]
B(A — a2
+ H 108 exp[—yr(s,a0)] €XP | s Texpl—yr(y,d0)|Vy, 3 (6,6)
A2 , 1
+ 108 Texp(—yr(y,d01)] €XP | 577P(a0)Vy, 3 (8,6') | + K (0, Texpl—yr(w,) +108 -

This result can be interpreted in the same terms as the simplest PAC-Bayesian
theorems given in the beginning of this work. The mean error of any estimator
p when compared to the "almost optimal" Gibbs distribution is controlled by its
empirical counterpart together with a variance terms (expressed in terms of vy, »/n)
and a complexity term (the Kullbak divergence). The parameter A plays exactly
the same role as in the basic relative PAC-Bayesian theorem (Theorem 2.11 page
39). The parameter + is the localization parameter. We have seen in the previous
subsection how an appropriate choice for -y can help to remove extra log NV terms in
the rate of convergence of our estimators. Finally the parameter j is the parameter
of the Gibbs distribution p is to be compared with. Note that the function g —
Texp|—AR(w,) (1, .) is nonincreasing, and converges in general to R(1,6) as 8 —
+00.

Before we give the proof of this theorem, we propose a simple way to use it to
build an estimator. In a first time, in order to optimize the values of A, 8 and
we have to use a union bound argument (as in the first section). Let A be a grid of
values, we already proposed of a > 1:

A:{al, 0<1< vogNJ},
loga

and let us put, for any posterior p:

- A_Barg (A,{Sig/@ {(x\—’Y) [pr(¥,.) — Texpl—rr(w, )T (¥; )]

By <A
ﬂ()\ —7) A2
1 /
)\(7 — 6) O Texp[—vr(v,do")] €XP 2N7rexp[ yr(y, d9)]v¢ (9 6 )

% AP
+108 Texp[—yr(w,ds)) €XP [2 NP0y Uy, (6,6 )] + K (p; Texplyr(s,)]) +108 L}

Now, let us choose for p a Gibbs distribution:

P = Texp[—(r(y,.)]
and let us put for any ¢ € R} :
B(C, 8) = B (Texpl—¢r(v,)]: B) -
So we have, with probability at least 1 — ¢, for any ¢ € R} and 8 € A:
WGXP[*CT(IP,-)]R(lp: )< 7TeXp[fﬁR(z/;,.)]R(@ba )+ B(¢, B)-

Note that for any ((, ), B(¢, 8) is observable, but we still have to choose the pair
(¢,B). Let us put:

B(Q) =sup{fe€A: B((B) <0}
that leads to the following, with probability at least 1 — ¢, for any (:

Texpl—¢r(w, )| B(Y, ) < Wexp[_g(g)R(d,,,)]R(d’a )
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In other words, 3 (¢) is the largest 8 such that Texp[—cr(yp,.)) is "better" (with large
probability) than Texp[~B(C)R(,)]" So we propose to choose:

Ce argrgg{ﬂ(()-

We are now going to give the proof of Theorem 2.16. We will need the following
lemma (which proof is taken from Catoni [11]).

Lemma 2.17. For any m € M. (0) and any measurable functions h,H : © —» R
we have:

Texp(—h) (h) — Tlexp(—H) (h) < Texp(—h) (H) — Texp(—H) (H)
Proof. We have:

K (”exp(—h)’”exp(—H)) = Texp(—h) (H) + logmexp(—H) + K (”exp(—h)aﬂ)
= Texp(=h) (H) = Texp(— i) (H) = K (Texp(= 1), ™) + K (Texp(—n)> )
= Texp(—h) (H) = Texp(— ) (H) = K (Texp(—m), )
— Texp(—h) (h) — log mexp(—H)
< Texp(—h) (H) = Texp(— i) (H) = K (Texp(—r)> )
= Texp(—h) (") + Texp(—m) (R) + K (Wexp(*H)’ﬂ-) ’
and so:
Texp(—h) (H) = Texp(—t) (H) = Texp(—n) (1) + Texp(—r) ()
+ K (Texp(—h)> Texp(—H)) = Texp(—h) () + Texp(—m) (h),
that is the conclusion. a

We are now ready to give the proof of the theorem.

Proof of Theorem 2.16. Let us apply Theorem 2.11 with:

P = Texp[—BR(3,.)] © Texp[-FR(¢,.)]
and:
V=M Texp[-BR(Y,.)]>
where m € MY (©). We obtain, with Py-probability at least 1 — ¢, for any m €
M},_(@):

(2.3) A[mR(Y,.) — Texp[—gR(w, ) RW, )] < X[mr(,.) — Texpl—gRr(p, )7 (¥, )]
2
1
+ 5P © Texpl-pR(w, )1V () + K (P Texp-pr(p,]) +108 -

In a first time, we apply inequality 2.3 with m = p and we remark that:

K (ps Texpl-pR(p,1)
= K(p,m) — K (Texp[—pR(5,))> ) + B [PR(W,.) — Texp|—pgR(w, ) R, .)] -
This leads to:

(2.4) (/\‘I’% - ﬂfd) [PR(®;-) = Texpl—pR(w, ) R, )]

)\2
<A [Pr(i/% .) = Texp[—BR(v, )] (Vs -)] + o Pdo) ® Texp|—BR(v,d8")]|Vy (6,0")

1
+K(p,m) = K (Mexpi—gr(w,)1, ™) +10g 2
)\2
=7 [PT(VJJ, D)= Wexp[fﬁR(zp,.)]T(Kba -)] + Wﬂ(da) ® ﬂexp[fﬂR(w,dO’)]Uw(eaal)
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1
+ K(p,7) — K (Texpl—aR(w,))>T) + log —
+ (/\ - ’7) [pr(lb, ) Texp[ ﬂR(w,.)]T(¢7 )] .
First of all, let us remark that:
2

A
(2.5) v [pr(¥,.) — Texpl—gr(w, )T, )] + o Puae) © Texpl— BR(1,d8")] U (6, 6")

— K (Texpl-pR(w,1>T)
)\2
< sup {y[er(¥,.) —mr(y,.)] + o Pas) @ My vy 6,6') = K (m, )
mEM}F(@)
)\2
= log m(40) €xp [—’Yr(i/% D+ Wp(da)w(ea@')] +vpr(,.)
AQ
= log m(qp') €xp [—W(?ﬁ, D+ Np(do)vw(e ¢ )] + K (p, Texp[—yr(s,.)])
— K(p,m) — log mexp[—yr (¥, .)]
)\2
= log Texp[—r(y,do')] €XP [Wp(de)v¢(67al):| +K (pa 7Texp[—’yr(w,.)]) - }C(pa 71').

For the other term of Inequation 2.4 let us remark that:

(26) (A—7) [PT(% D)= Wexp[fﬁR(z/),.)]r(wa -)]
= A =9) [pr(@,-) = Texpl—yrw, " ®;-)]
+ (A=) [Texp=yr(w. )17 (¥> ) = Texpl-pR(w. 7 (¥, -)] -
By lemma 2.17 we have:

(’\ - ’7) [ﬂ—exp[—'yr(w,.)]r("p7 ) - Wexp[—ﬂR(z/),.)]r(wa )]

BA=7) [
Y

and, if we apply inequality 2.3 with m = meyp—gr(y,.)] We oObtain:

< Texpl—yr(w, )1 R, -) = Texpl—pR(w, 1R, )]

A [Texpl—yr(w, ) B(W; ) — Texpl— R, 1 R, )]

<A [Texplyr(w, 17 (®5 -) = Texpl— R, )T #; )]
2

1
+ S Texpl=Br (6, )] @ Texpl—8R(w,)]0 (- ) + K (Texplpr(s, )] Texpl-gR(w,)]) T108

and so, using exactly the same method that we used into inequalities 2.4 and 2.5
we obtain:

()‘ - /8) [ﬂ-exp[—’yr(w,.)]R(zp: ) - 7Texp[—ﬂR(w,.)]R(¢7 )]

< (A=) [explorr(w, )17 (W5 ) = Texp[— RO, )T (¥; )]
A2 1
+1037FeXp[Jyr(¢,d9')] exp [ﬁﬂ'exp[—wr(zp,dﬂ)]vlﬁ(ea01):| + log P

Plugging this result into inequality 2.6 leads to:

()‘ - 7) [pT(’l/), ) — Texp[—BR(2, )]7’(¢ )]
S ()‘ - 7) [pr(¢, ) Trexp[ Wr(w,.)]T(¢7 )]

Y A2 1
T XT=B) {logﬂexp[ww,de'n exp [ﬁﬂexp[w(w,d9>]vw(9,0’)] +log g}-
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Plugging this last result with inequality 2.5 into inequality 2.4 leads to the an-
nounced result. d

2.9. Comparison of two posterior distributions and model selection. The
idea of this subsection is to give a bound on:

le(¢a ) - p2R(¢a ');

where both p! and p? are observable, allowing a choice between two posteriors
distribution (and so between two randomized estimators). Note that if we have
submodels of @, ©; C © and ©2 C © and p'(0;) = p?(02) = 1 then the result also
allows to perform model selection, we give a detailed procedure later (the reason
why we prefer to consider two priors on two different models instead of a unique
prior on the union of both models is detailed by Catoni [11]: the localization of a
prior on a reunion of models usually doesn’t lead to optimal rates of convergence).
The result given here (and its proof) is an adaptation of results previously obtained
by Audibert [2] and Catoni [11] in the context of classification.

Here again, we are going to give localized bounds. As we have seen in the

previous subsection, replacing 7! by wéxp[_ BiR($,.)] raises the problem of upper
bounding the divergence K(p?, ﬂéxp[_ 3; R(¢,~)])’ 1 = 1,2, where we have chosen two
prior distributions 7" € M1 (0), i =1,2. Let us start with some empirical bounds
for these terms.

Theorem 2.18. Let us choose a prior distribution m € M’ (0©). Let us assume that
for any 6 € ©, P{Y[fo(X),Y] <1} = 1. For any e > 0, for any (v,3) € (O, N)?
such that § < vy, with Px-probability at least 1 — ¢, for any p € ML (0),

B\
K (ps Texpl-gR(w.)]) < (1 =5 ) e mestgrw)

B By
- ;loge%—log Texp[—Br(y,do')] €XP ﬁpua)w(@,@’) .
Note that the "theoretical" entropy term is controlled by its empirical counter-

part together with a variance term.

Proof. Note that:

K (p, Texpl—pR(s,31) = B (PR, .) = Texpl—pR(w, | B(¥; "))
+ K (p, ) = K (Texpl-pR(v,)]>T) -
Let us apply Theorem 2.11 with:
K = Texp[~BR(%,.)] ® Texp[—BR(%,.)]

and v = p ® Texp[—BR(y,.)) tO Obtain with probability at least 1 — ¢, for any p €
ML (O):

K (p7 71—exp[—ﬁR(zlJ,.)]) S ﬂ PT(% ) - Wexp[—ﬁR(¢,.)]T(¢7 )

logl‘i_lc P Texp[—3R .
+ 3P D Texpl- R, 100 () + = (p: Texp(-1(0..1)

2N 5

+ K (p, ) = K (Texp|- pR(w,))> ) -
Replacing in the right-hand side of this inequality mexp(—gR(y,.)] With a supremum
over all possible distributions leads to the announced result. |

We will need also a variant of this theorem using a moment bound.
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Theorem 2.19. Let us choose s > 1, a € (0,1) and a prior distribution ™ €
ML (). Let us assume that for some known constant Dy and for some measurable
function of the observations D = D(Zy, ..., Zn independent of the parameter 6,

sup Mw,s(gael) < Dsa
0,0'€©

sup Vi 3 q4(0, 0" <
0,6'c®

For any e > 0, (v,8) € (0, N)? such that B < ary,

/B -1
K (p, Texpl—pR(w,)1) < (1 - a) {’C (Ps Texpl—pr(,)])
5

-— loge + log [Wexp[ Br(%,d0")] exp( aby P(do)V¢,N,a 5(6,6")

() et}

Proof. Let us apply the moment bound in Theorem 2.11 with:

P = Texp[—BR(¢,.)] @ Texp[—BR(v,.)]
and v = p ® Texp[—aR(y,.)] tO Obtain:

B _
K (pawexp[—ﬁR('(/J,.)]) S a(I)%l pr(’lvba ) 7rexp ﬂR(w,-)]T(¢J‘)

ay
+ 57 © Texpl—pR(, )1 Vis, Foa (1)

/B s—1 s—1
s (STM P(d8) ® Texp[—pR(,)) My,s(8,0')

7y

n log % +K (p, Wexp[—ﬁR(w,.)]) }

+
+ K (p, ) = K (Texp[-R(s,.)] T)
< ﬂ [pr(wa ) — Texp[ ﬂR(w,.)]T(¢a )

. log% + K (ps Texp—gR(v,)])
ary

ay
+ o P @ Texpl—oR,N Vi, 70,5 )

B ((s—1y\"" e (og
TSN P(d8) @ Texp—aR(w,.) My,s(0,6')
+K(p,m) =K (Wexp[fﬁR(qp,_)],ﬂ') .

Replacing in the right-hand side of this inequality the local prior Texpi—gR(v,.)]
with a supremum over all possible posterior distributions proves the announced
result. a

Let us procede now to the comparison of two posteriors p! and p?.

Theorem 2.20. Let us choose two prior distributions m' and 7% in Mﬁ_(@) Let
us assume that for any 6 € ©, P{yY[fe(X),Y] < 1} = 1. Then we have, for any
e > 0, for any (A, 71,72, 581,B82) € (0,N)® such that B1 < y1 and B2 < 72, with
Py -probability at least 1 — ¢, for any (p*, p?) € [./\/lﬁ_((a)]2

By [0 RS, ) — PR, )] < 9'r(,) = pr(,) + 5y @ ()
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2

(mv2 — B1B2)log 2 o
i At = Bi)(r2 — B2) Z (p ’WeXP[*BiT(%)])

=1

i Bivi
+ log ﬂ-exp[—ﬂ,-r(d),dg’)] eXp [Wﬂda)wﬂ (67 0’) .

Remark 2.3. Before the proof, let us just give a comment on the role of the param-
eters (; and +; (here again the parameter A plays the same role than in Theorem
2.11 page 39). The parameter 3; is the localization parameter for the prior distri-
bution compared with p. We have seen in the previous subsections how a good
choice for such parameters may help to get rid of extra log N terms in the bound.
Note as a limit case that 8; = 0 leads to no localization at all, and in this case, the
theorem is exactly the same than Theorem 2.11. The parameters +; are involved in
the control of the theoretical entropy term by its empirical counterpart (we will see
in the proof that it is a reference to the use of Theorem 2.18 page 49). The choice
v1 = 72 = A will be made in some parts of this thesis with no incidence on the rate
of convergence, but of course there is no reason for this choice to be optimal.

Proof We just apply Theorem 2.11 with p = 7rexp[ giR(p,)] © 7Texp[ BaB(w,)] and
v = p' ® p?. We obtain:

2y [ RS, ) — PPR(6,)] < 0'r(,) — pr () + 5y @ ()

1 1 11 2 2
BN [log =T K (P =7Texp[fﬂ1R(w,.)1) +K (P ’Wexp[fﬂzR(w,-)]) :
Combining this inequality with Theorem 2.18 (page 49) ends the proof. O

Let us propose here a way to use this bound to perform model selection. Let
us assume that we are given submodels of O, namely a family of F-measurable
sets (©;)i;cr where I is at most countable and ©; C © for any 4. Let us choose
coefficients (p;)icr € [0,1]! such that:

o=
i€l
and prior distribution 7¢ over each ©;: n* € M) (0;); the idea being that we have
a prior distribution

iel
over ©. Let us also choose some atomic prior probability measure on the positive
real line m € M% (R4), which will serve to make the inequality uniform in X, ~;,
and ;. Let us put, for any p', p* € MY (0), any (i1,i2) € I*:

a1 _ A
b(plap137'137/2a,81362a71572a)‘):q)ﬁl{plr(wa')_ (¢ )+ﬁp ®pU¢(.,.)

N (7172 — B1B2) log (3pi1pi2m(/\) [Tiy m (Br) m (%))

Ay = B1) (72 — B2) £

+Z en —Bk { (pk Texpl-Bur(v, )])

; Br Yk
108 e p gy (ap,a07)] EXP [ o Planyow(®.6)| ¢ 0.
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and:
B(plapz) :inf{b(plap17i15i27/81;/827715’y2a/\);
ir €1, Bk <k e]R+,k=1,2,AeR+}.

We propose the following idea for model selection (generalizing the selection
scheme described in [11], section 1.5.7). Let us consider without great loss of
generality some finite subset P of posterior distributions. We may for instance set:

P = {ﬂ-ixp[fﬂir(z/},.)pi € I7 /B’L € SUPp(m)}

(assuming to get a finite set P that I is finite and m finitely supported). It should
in particular be understood that P is allowed, as in this example, to be a random
set of distributions on ©.

Let us consider for any p € P some complexity function C(p), which we may for
example take to be, for some fixed real constant ¢ > 1,

C(p) — 1nf{ (Lﬂ + CL + 1) log [3571pzm(/8)m(7)]

+Lﬂ{ ( Mexpl—Br(v, >1)

. 3 .
+ log /n—éxp[—ﬁr('zp,.)] €xp [%p(da)vw (07 HI) NS I: /87 v € R+7 Cﬂ S Y-

With this choice of complexity we see that
B(ph,p) < inf 831 p'r(0,.) = £1(h, ) + saep! ® pPug(s )
’ T ARy W ’ ’ 2N

(+1 e1, CleH)+C(?)
+ NC—TD) log [m()\)g] + \ }

As a consequence, using the fact that ®' is concave, we see also that
N

(27) B(p',p*) + B(p*,p") <2 inf &

A€R 4

/\p®p +p*®pt )
2N 2 Yol

€
3

¢(+1
+ ———1log [ N)=
AM¢C-1)
This shows that the symmetric part of B has an upper bound which contains only
variance and complexity factors.
We can then apply to B and C the selection scheme described in [11]. We have
first to chain the bound B on P, defining for any p,p’ € P

pyp mf{ZB > 1,(p% .. p") € P, 00 = p, p" =p’}-

|+

C@U+C@%}
S

Let us also put by convention B(p,p) = 0 for any p € P. Let us notice that
B(p,p")+B(p',p) < B(p,p')+B(p, p), and therefore still can be bounded in terms
of variance and complexity factors only.

Let us then consider an indexation of P according to increasing complexities: let

P = {p17"'7pM}7
where C(pF*t1) > C(p*), 1 <k < M.
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Now, let us put for every k € {1,...,M}:
t(k) = max{j € {1,... M},  Ve€{1L,...j}, B(p",p") <0}.

Thus t(k) is the largest starting interval of P which can be proved to perform worse
than p*. Let us choose now as our best estimator, p;, defined as
k = min(arg maxt).

This means that we choose between the posterior distributions indexed by arg max¢
a distribution with minimal complexity.

It is easy to prove that the following result, proved in [11], still holds in our
context:

Theorem 2.21. Let us put = t(k). For any e > 0, with Py-probability at least
1—¢,

0, 1<j<it,
min{B(pt, p/);1 < <1}, i<j<bk,

B(p*, p"1) + B(p**1, p7), j € (argmaxt)

B(p*, p7), otherwise.

PR(Y,.) < PR(,.) +

Moreover for any k € (arg maxt),
B(p, p™*1) > 0
B(p", p¥) >0
B, o) >0 j¢ (argmaxt),
and for any j such that t < j < k, since j ¢ (argmaxt), there is £ < t such that
B(p?, p*) > 0. Thus
0, 1<j <,
[B(p*, ) + B(p, p°)]
ﬂ[manSfB(pjapl) >0]7 E<] <k7
B(p?,p"*) + B(p™, p7)
+B(pk, pt1) + B(pt*!, pb)  j € (argmaxt),
(B(p?, %) + B(p*, p7), otherwise,

PR, ) < PR, )+

showing that, according to (2.7) page 52, (p? —p*)R(+,.) can be bounded by variance
and complexity terms relative to posterior distributions with a complexity not greater
than C(p?), and an empirical loss in any case not much larger than the one of p?,
as it is further developed in [11].

Finally, we give the moment version of Theorem 2.20 (page 50).

Theorem 2.22. Let us choose s > 1 and a € (0,1). Let us choose two prior
distributions 7' and 72 in ML (©). We assume that for some constant Dy,

sup My s(0,60") < Ds.

6,0'€¢©
We also assume that for some measurable function D = D(\ Z1,...,ZN) of the
observation and of A we have:

sup V. 0,0') < D,

A
9,6'cO frenal

Then we have, for any e > 0, for any (X, B, B2,71,72) € R} such that B1 < am
and By < arys, with Px-probability at least 1 — ¢, for any (p',p?) € [Mi(@)]zs
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le(’(ﬁ, ) - pQR('Qba )
< é@;{a[plrw,) —Pr(®,.) + —Jf,p ®p2V¢,;v,a,s<0,0’)]
oy;

2

> 5 Wi | ,
-t 1 ,

+ (OZ’YZ ﬂz) logﬁexp[ Bir(,do")] exp( oN danw a, 3(0 0)

Bi ((s=Dm\* ™",
+ S\ SN PasMy,s(6,6')
+ IC (P aﬂéxp[—,@ﬂ(¢’v~)])‘|

1 51 3
+ -1+ -
)‘( ayr — B 04’72—52 ga}
1

1/(s=1A\""
+;( N ) P ® p* My,s(6,6").

Before we give the proof, note that the additional hypothesis (existence of D;)
is implied by the existence of the bound discussed at the end of subsection 2.6
(My,s(8,6") < C(s)||6 — 0'||le) together with the assumption that m;({6 € ©,|0]| <
k}) =1 for i € {1,2}. Note that this hypotheses, together with a < 1/2, ensures
in classical cases that there is a constant D such that for any A < N,

Vzp,%,a,s(a: 01) S D7

we will see it in detail in the last section about the linear case.
The proof of this theorem uses the same guideline as the one of Theorem 2.20.

Proof. We just apply the second part (moment bound) of Theorem 2.11 with:

B = Mexpl— R(p,)] © Texpl—paR(w,)
and:
V= p1 & p2
and we obtain:

p'R(Y,.) —

@;vl{a P75, = 00 + 500 9 PV, )]

1og£ +K (0 Thotpmwn) +K (0% ”ZXP[—@R(””')])] }

1 ((s=1)A =t 1 2 /
- — M, )
+s ( N ) p ®p My (6,6")

Combining this inequality with Theorem 2.19 (page 50) ends the proof. O

3. PAC-BAYESIAN REGRESSION IN THE TRANSDUCTIVE SETTING

3.1. Additional definitions and notations. In this section, we focus on the
transductive setting, as described in the introduction.

Let us choose k € IN* and P(;41)n is some probability measure on the space:

(2 3 DN, (By © By)B+DN) = (ZU+DN, pEETIN)



TRANSDUCTIVE AND INDUCTIVE ADAPTATIVE INFERENCE 55

Let (Xi,Y:)i=1...(k+1)N = (Zi)i=1...(k+1)~n We the canonical process on this space.

Definition 3.1. We will call (Z;);—1.. v the learning sample (we assume that the
statistician observes it) and (Z;)i=n41...(k+1)n the test sample (we assume that the
statistician knows only (X;)i=n+1...(k+1)~ and wants to predict (Yi)i—ni1...(k+1)N)-

Definition 3.2. For i € {1,...,N} let 7; : Z*k+ON 5 Z(:+1DN he defined for any
2= (2i)i=1...(k+1)N € ZEHDN by

7i(2)iiN = Ziyj—1)N,  J € {1, k},
73(2)i = ZigkN,

Ti(z)m_;,_jN, m#£i, mEe {1,...,N}, j € {0,...,k}.
Definition 3.3. We say that P,y is partially exchangeable if for any i €
{1,...,N},
Piynyn o7y - = PN
In the same way, any function g from Z(*+DN to any space will be said to be
partially exchangeable if for any i € {1,..., N}, go1; = g.

Let us remark that this implies that the distribution of (X;,Y;);—1...(k41)n is
unchanged by circular permutations of (X;4;n, Yit;nN)j=o...x for any ¢ € {1,...,N}.
From now we assume that Py satisfies Definition 3.3. Note that this implies
that for any ¢ and j, Z; and Z;; jn have the same marginal distribution. For the

sake of coherence with the inductive case, we will let p; denote this distribution.
So note that of course we can have:

Y

N ] ®(k+1)

Piyyn = l@ i

i=1
but we will not assume that we are in this particular case, unless in some cases

where we explicitly mention it. Moreover, another particular case of interest is the
i. i. d. case with every p; equal to P and PN = PRk+1N

Definition 3.4. For any bounded measurable function A : (Z (k+1)N BE(HI)N) -

(R, Br), where Bg is the Borel g-algebra on R we put:

k
1 .
x - J
T;(h) = 1 E hor.
Jj=0
LetT:TNo...oTl.

Note that under our assumption that P 1) is partially exchangeable, we have,
for any h:
Piry1yn (h) = Prynyn[Ti(h)] = Py~ [T (h)]
for any i € {1,...,N}.
Remember that we took, for any measurable nonnegative function ¢ : Y2 — R
for any 6 € ©, ¢;(0) = ¢ (fo(X;),Y;) and:

LN
r1(¢,0) = Nz¢i(0)7

1 (k+1)N

T2(¢,9)=k—N > (o).

i=N+1
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We will also use the notation:

(k+1)N
_ _ 1 . _n (’9[)50) + krz(¢,0)

3.2. Main lemma and deviation inequality. We proceed now exactly as in the
inductive case: we give a deviation inequality as a lemma, then introduce a prior
measure 7 and combine both to obtain the theorem.

Lemma 3.1. For any partially exchangeable measurable functions X : Z=+DN
R* and n: ZEDN 5 R, for any 6 € © we have:

Texp{—/\rl [é% o (zb/\ %) ,6] + A [F (zb/\ %9)] —n} < exp(—n)

where 1 =1(Z1, ..., Z(p1)n) and X = X(Z1, .., Z(p41)N) for short.
Proof. We have:

O

Definition 3.5. We choose a prior distribution 7 as a partially exchangeable func-
tion: Z*+DN 5 AL (©). For the sake of simplicity, we will write 7 instead of

W(Zl, ceey Z(k+1)N)-
This means that the prior is allowed to be data-dependent, but in a partially

exchangeable way only. Of course we have in particular the possibility to choose 7
that does not actually depend of the data, as we did in the inductive setting.

Theorem 3.2. For any partially exchangeable measurable function X : ZK*+DN
R, for any € > 0 we have, with P, 1)n-probability at least 1 —¢, for any posterior
p € ML(O):

of(on )] o3 P [oae (o0 5) )-8

and equivalently:

P[Tz (w%)]
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Proof. Let us put:

1 N
“wl (5]
H= H(Zla "'5Z(k+1)N)

ooy (0 ) ] eaey [r (0 X0)] -

for short. We apply Lemma, 1.1 to obtain:

Pt1yn exp { sup [p(H) — K(p, W)]} = Pgy1ynmexp(H)
pPEM] (O)

= Py1)nT [mexp(H)| = PyynmT [exp(H)] < exp(—n).
by Lemma 3.1. Now, let us choose 17 = —loge to end the proof. O

We now give the moment version of Theorem 3.2.

Theorem 3.3. For any (a,s) € (0,1) x (1,400), for any partially exchangeable
measurable function \ : Z*TDN R%, for any € > 0 we have, with Py y1)n-
probability at least 1 — e, for any posterior p € M%(0):

P, < é«bg{m [«b}v g (w -2 (55 W,.)]

T 1 - s_l
. M} . (%) Pl (117, )]

Here again we have a non-observable term, p[7 (|¢|°,.)], in the right-hand side.
We have to make some hypothesis in order to upper-bound it by an observable
quantity. We give an example with the following lemma.

Lemma 3.4. Let us assume that we are in the case where Y = R and where By
is the Borel o-algebra on R, and that ¢ = I? for a p € [1,+00). Let us assume
that we know that the true regression function f is such that || f|lcc < C/2 for some
C > 0, and that 7 is chosen in such o way that ({6 € 0, ||follcc < C/2}) = 1,

Pp41)n-almost surely. Let us moreover assume that there are two constants b > 0
and B < +00 such that for any x € X:

P{exp [y = (0] ‘X = x} <B.

Then we have, with P 1)n-probability at least 1 — ¢, w-almost surely:

1 k 1 kBN1°%°
(Y%, )] £ —— SN+ Zlog 22|
I (01, 0] < ol ()] + g [0+ 1o ™2
Proof. For any 0 € © and § € R}:
Perow [ € {N +1,., (k+ DN}, 7, > ]
(k+1)N
< > P(k+1>N(|f0(Xz')—Yi|3”Zﬂ)

i=N+1

= kNP (|fo(X0) = Yi| > 57)

< NPy (1£00) - Vil > % = C)
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< KNPy exp (bf(X1) = Yi| = b5% +5C)
<kNBexp [b(C - %)].
Now, remark that:
kNBexp [b(C - % )] <e
if: )
1 BEN\*®
> Toe ZFV Y
B> (C + 5 og - )
This ends the proof. |

We can combine Theorem 3.3 and Lemma 3.4 by a union bound argument to
obtain the following corollary.

Corollary 3.5. Let us assume that the conditions given in Lemma 3.4 are satisfied.
For any s > 1, for any partially exchangeable measurable function X\ : Z*E+DN
R, for any € > 0 we have, with P, 1)n-probability at least 1 —¢, for any posterior
p e ML(0):

k+1__, a ((s—DA\" ! s
plra (¥,.)] < W(I)% {Ph l‘I’% o <Oé¢ - (sT) 9] ,ﬂ

K 1 2 _ s—1 sp
L Klpm) + 0g5}+1<(s 1)/\> [c+110g 2kBN]

A s sN b

o (3 () o))

3.3. Inductive bounds obtained by integration with respect to the test
sample. It is possible to use deduce bounds for the inductive setting by using
Lemma 3.1, we just need to integrate with respect to the test sample Zy41, ...,
Z(k+1)n- We will assume in this whole subsection that:

N ] ®(k+1)

P(k+1)N = [@Pz

i=1

L1
2

Definition 3.6. We put:
Puiyn = Pogyyn [121, -, ZN] -

Theorem 3.6. In the case where:

N ®(k+1)

Py = l@ Di

=1

Y

for any X € RY, for any € > 0 we have, with P 1)n-probability at least 1 — ¢, for
any posterior p € ML (O):

PR (%,.)]
1

<o el
_WWMmﬂ+pp%WJ}

Remark 3.1. Note that this is exactly Theorem 3.2 where the risk on the test
sample, ry, is replaced by the mean risk R.

o <¢ A 5) 7_] } + Pt [IC();\;, )] +log L }

2>
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Proof. We follow the proof of Theorem 3.2. We still take: Let us put:

= [y (05 ] 130y Jr (60 20)] -

Plry1)n exp { sup  [p(PuynH) — Prynyn[K(p, m)]] }
pPEM] (O)

We have:

< Pryynexp PN { sup [p(H) — K(p, W)]}
pEML (O)

< Pty nPry1)n €xp { sup [p(H) — K(p, 71')]}
pEML (O)

= Ppy1)N €Xp { sup [p(H) — K(p, W)]}
pEML (©)

by Jensen’s inequality. Using Lemma 1.1 and Lemma 3.1 exactly as we did in the
proof of Theorem 3.2 we upper bound this last quantity by exp(—7), and we choose
= —loge to end the proof. a

Note that the bound is not as good as the one given in the inductive setting
(Theorem 2.5). However, the bound becomes exactly the same as k — +00. More-
over, we will see later that is is more convenient to use this result as we are allowed
to choose a data dependent prior 7, but in this case we can wonder what k to
choose? The idea to make a union bound over all possibles values for k¥ € IN* (using
prior 1/(k + k?) on k) and to choose the k that gives the best upper bound is due
to Catoni [11]. Here, it leads to the following result.

Corollary 3.7. For any A € R, for any € > 0 we have, with Px-probability at
least 1 — €, for any posterior p € ML (©):

o g e (523

N P 1yn [K(p,m)] + log MEEL) } _! [ A (¥, )] }

) &’
3.4. Relative bounds in the transductive setting. We now give relative bounds

in the transducive setting (Theorem 3.8) as well as their integrated version for the
inductive setting (3.9).

Definition 3.7. We choose a prior distribution p as a partially exchangeable func-
tion: Z-+HUN — M1 (©?) (as previously, for the sake of simplicity, we will write p
instead of pu(Z1, ..., Z(g41)N))-

Theorem 3.8. For any € > 0, for any partially exchangeable measurable function
A taking values R, with Py 1)n-probability at least 1 — ¢, for any v € Mi(@2):

1 (k+1)N

Paqv FFON Z (¢i(9)—¢i(9'))/\§

1 N
{NZ N[O

>*2

”+Kmm+m;
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For the "moment case", let us choose s > 1. Then, for any a € (0,1) and € > 0,
for any X € R%., with P®N -probability at least 1 — ¢, for any v € M} (©?):

K(v,pn) +log
N (Vu)/\ ogE}

vre (1,8) — s (4,0")] < [’“Zl] 1{ %

(5 me-wer

_ %,, [r (9,8) — 71 (1,6")]
o (k+1)N
+ % ((S S—A}))\) v ﬁ Z |4i(0) — ¢i(el)|S] :

Theorem 3.9. In the case where:

®Pz’

i=1
for any e > 0, for any X € R}, with Py1)n-probability at least 1 — ¢, for any
v e ML(0%):

s[’le]@ 1{ {%i N[(w 6) = 4:(8") A Jz]}Jr%ﬂogl}
_y[sz(wz 0i(6)) A ﬂ

Let us choose s > 1. Then, for any o € (0,1) and € > 0, for any X € R, with
Py -probability at least 1 — ¢, for any v € ML (0?):

N
VIR0 - R0 < [F1] Lo { O3 [ ( - @)

1/(s=DA\"" +log
_g< sN ) |¢z ) }
——'/[7”(1# 0) —r(1,0")]
1 ((s—DA\"" N y
+§(( sN)) lkM¢596 Nzwz wlﬁll

In order to make the formulas more explicit, let us compare this last inequality
with the one in Theorem 2.11 page 39 (the analogous of this result obtained without
using transductive bounds). The variance term (last line) is not the same but plays
exactly the same role. The generic term:

~ A{V—an ( — (60"

. s—1 . v 1
2 (52) o - wer )] MLUTDRR. H }

P(k+1)N =

Y

N ] ®(k+1)
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is the same but is here multiplied by (k + 1)/k, but this is "almost" compensated
by the presence of the term:

vl (,0) 1 (6,0

Of course, it is easy to see that the bound is better when k is large, and as a limit
case, the ancient bound (Theorem 2.11, obtained without using the transductive
bounds as an intermediary step) is better. However, we insist on the fact that
Theorem 3.9 allows to use a data-dependant prior, while Theorem 2.11 does not.
For the role of the various parameters, we refer the reader to previous discussions
(as Remark 2.2 page 34).

Finally, we give a localized version of this bound: the analogous of Theorem 2.22
(page 53) obtained by integration of transductive bounds.

Theorem 3.10. In the case where:

)

N ] ®(k+1)

Plrtnyn = l@lh
i=1

let us choose s > 1 and a € (0,1). Let us choose two prior distributions ©* and

7 in MLY(O). Then we have, for any € > 0, for any (A, B1,B2,m,7%) € RE
such that f1 < ay1 and B2 < avya, with Pn-probaebility at least 1 — e, for any

(o', 0%) € [ML(O)]:
le(¢7 ) - pQR(¢7 )
e, ) — pPr(, ) + [

I S
() ([ M0 (0,0) + lez — 0’>I)]

E+1] aX
L]a 1®pV¢—as(001)

k| 2N’

)‘ﬂj Vi

2N dGV

6,6")

(18(

logw 7 €XP
a% ﬂg) exp[—B;r(¢,do")]

G- B o R
" XNy —B) < (p ’”exp[—ﬂjr(w,.)])}

k+1 log 2
i [ + ] (1+ b1 " B2 ) gz
k ayr—Pf1  aye—pf2) al
LT s 0.0) + L e AL S 6) — w0
s sN ¥osi k N & ¢ ! '
Proof. The proof this theorem is similar to the one of its analogous obtained in

the inductive case, Theorem 2.22 page 53, using Theorem 3.9 (page 60) instead of
Theorem 2.11 (page 39). O

In order to help the reader to interpret the formulas let us give some comments
about this theorem. We invite the reader to compare this theorem with Theorem
2.22. Note that it is almost the same with some additional variance terms, and a
factor (k+1)/k. Note that here again, k is chosen by the statistician and that large
values leads to better bounds. However, the choice of the limit case (k = +00)
leads to the inductive bound (Theorem 2.22) in which we are not allowed to choose
a data-dependant prior. A discussion about the other parameters can be found in
Remark 2.3 page 51. Remember that 3; indicates "how much we localize" the prior
wt. The limit case 8; = 0 leads to no localization at all and in this case the theorem
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is similar to the previous one (Theorem 3.9 page 60). In the applications of this
theorem, we will see that we can take v; = A and a = 1/2 with no loss on the order
of magnitude of the bound. Finally, s is the order of the largest moment we assume
to exist for .

4. A FIRST APPLICATION: COMPRESSION SCHEMES, AND EXTENSIONS

4.1. Presentation of compression schemes. Compression schemes were intro-
duced by Littlestone and Warmuth [27] as a way to implement Rissanen’s minimum
description length (MDL, [45, 4]) principle in the context of classification, which
principle can be seen as a control of the complexity of a model by an exigence on
its ability to compress the data.

The idea is to use a small subset Z; = (Z;,4 € I) of the sample (Z;,i € {1, ..., (k+
1)N}), called the compression set, and to build an estimator only on the basis of
Z1. We can then control the difference between the performance of this estimator
on the training sample and on the test sample by a bound with a complexity term
depending on h = |I|.

Definition 4.1. Let us assume that we have a function (the compression scheme):
+oo .
t:|J(@x))' -0
i=0
Rz = ((mla y1)7 ey ('Z.'nyz)) = t(Z)
such that, for any ¢ € INx, for any permutation o of {1,...,i} we have:
t((@1,y1)5 - (25, 4i) = t((To(1), Yo(1))s - (T (i) Yo(i)))-
Let us put, for any I C {1,...,(k+ 1)N}:
Zr = (Zi)ier-

Note that this notations are due to Catoni [10], and Audibert [2], who adapted

the work of Littlestone and Warmuth to the PAC-Bayesian setting.

4.2. An extension of compression schemes: indexed compression schemes.
The motivation for this extention of compression schemes is the following classical
example.

Example 4.1 (Support Vector Machines as compression schemes). Let us assume
that we are given a measurable function:

K:X*=Y
(z,2") — K(z,z').

Then we can propose the following compression scheme:

ZI) zaz

iel
where & = (&;,4 € I) is given by:

ae arg m1n Z¢

J» Z al Xl7 X ]
i€l

When Y C R and K(.,.) is a Mercer s kernel, we obtain an estimator that looks like
support vector machine (defined by Boser, Guyon and Vapnik [7] in the classification
case |Y| = 2, and extended by Vapnik [41] to the case where ) = R; note that in
most of the generalization bounds given for SVM, the complexity is controlled
through the margin of the classifier, however, the compression scheme point of view
has already been studied, see for example Fung, Mangasarian and Smola [20]).
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Actually, one of the problems with SVM estimators is the choice of the function K
(note that here, K is not restricted to a Mercer’s kernel). In the case where (X, d)
is a metric space we can use the Gaussian kernel:

d2 !
K(z,z') = exp <—%>
but the choice of 42 remains a problem. A possibility is to use several kernels

(indexed by a finite set D) and to let the bound determinate which kernel is the
most appropriate for each point.

Definition 4.2. Let us assume that we have a finite set of index D and a function
(indexed compression scheme):

+o0o
t: | J@XxyxD)' -0
=0
= ((-Z'l;yl;dl), ey (wz,y,,d,)) = t(Z)

such that, for any ¢ € INx, for any permutation o of {1,...,i} we have:
t((@1,y1,d1)s e (@05 Y3, di)) = t((Z0(1)> Yo (1)s Bo(1))s o (To(i) > Yo (i) Bo(s)))-
Let us put, for any h € {1,...,N}, I = (I1,...,Ix) € {1,..., N}* and any d € D!l
Znra=(Xr,Yr,,d1),....(X1,,Y7,,dp)) .

Remark 4.1. Note that in the case where |D| = 1, we obtain a compression scheme
in the meaning of Definition 4.2.

Example 4.2 (SVM, continued). In our example, we choose a family of functions
Ki,...,K; : X* - Y and we put, for h € {1,...,N}, I = (i1,...,in) € {1,...,N}*
and d € {1,...,1}"
h
ft(Zh,I,d) ()= Zdini Xr,.),
i=1
where & = (&;,4 =1, ..., h) is given by:

h
Y;, > arKa, (X,-k,X,-j)] :
k=1

h
& € arg min E P
a€eR! s

Another possibility of extension is to allow a choice of the coefficients a; on the
basis of the whole sample. In order to do this, we propose an interval for the values
of a;: [-C, C] with a given C' > 0 (note that in many SVM algorithms, constraints
impose the coefficients to lie in a compact interval, see Cristianini and Shawe-Taylor
[16]). Then let us choose D as a discretization of this interval of size 2M + 1 (with

a given M > 1):
D= {C (1 -~ ﬁ) , i€ {0,...,2M}} ,

and define, for h € {1,..., N}, I = (i1,...,ip) € {1,..., N}* and d € D":

h .
ft(Zh,I,d) () = Z C (1 - %) K (Xliﬂ‘) .
i=1

Of course, we will see in the next subsection that we have to pay for the precision of
the grid D in this case (the upper bound on the risk of ¢(Zj 1 4) will be increasing
with M. Note that this is related with margin-based bounds for SVM in the context
of classification: if the data can be separated with a large margin, we can choose a
small value for M, and we obtain an upper bound smaller than in the case where the
data cannot be separated with a large margin, in which we have to choose a large
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value for M. The link between PAC-Bayesian inference and margin is examined in
detail by Langford and Shawe-Taylor in [25].

In what follows, we give upper bound on the risk of (indexed) compression
schemes: direct bounds in subsection 4.3 and relative bounds in subsection 4.5.
Most of the results are given in the transductive setting, note that the general-
ization to the inductive setting is easy by subsection 3.3. Note also that we give
bounds on the truncated risk r2[t) A (N/)),.]; to derive the moment version from
Theorem 3.3 is straightforward.

4.3. Direct bounds.

Theorem 4.1. Let us choose o € (0,1). For any partially exchangeable measurable
functions X : ZE+HON R, for any e > 0, with P11)n-probability at least 1 —¢,
for any h € {0,...,N}, I € {1,...,(k+ 1)N}* and d € D" we have:

1) [¢ A %,t(zh,f,d)] <Ftler { [q)% o <¢ A %) ,t(zh,,,d)]

. [h(1+logW) +logﬁ]}

N
— 77" [¢A X:

t(Zh,I,d)] .
Proof. Let us put, for any h € {0,...,N}:
Fa={(Zh1a), 1€ {1, (k+ )N} de DY,
for h 75 0, Eh = fh \ fh—l and 50 = fo, and:
Ch = ||

Remark that, by definition of the function ¢ we have:
k+1)N|D
oy < ((FH DN

Let us choose a parameter a € (0,1). We just apply Theorem 3.2 with the following
choice of prior:

N
J
= E a"(1-a) E é + oHHDN g,
= 0eln

for an arbitrary 6y € © (the last term being here only to ensure that 7 is a prob-
ability measure). Note that this choice is admissible because 7 is an exchangeable
function of (Z1, ..., Z(x4+1)n). Now, we use every posterior under the form:

p=0g
for 8 € &, and h € {0, ..., N}. We can compute:

K(p,7) = —log(l — a) — hloga + logCp

k+ )N|D
g—log(l—a)—hloga-l-log(( +i3 | |>
1)N|D
g—log(1—a)—|f|1oga+|1|(1+1 k+|1| | |).

Finally, note that for any h € {0,...,N}, T € {1,...,(k+1)N}"* and d € {1, ..., 1}/
there is (by definition) a 6 € &£, such that:

9 = t(Zh’I7d) .
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s {rsfon ]} = on Yoz

This ends the proof. O

So:

We can of course give the version of this theorem in the inductive case. The idea
is just to point out the difference with the transductive case, as we can only use
data in the learning sample, so I is restricted to belong to {1, ..., N}*. However, in
the prior distribution, we shall give the same weight to every I € {1,...,(k+1)N}*
in order to ensure the exchangeability of .

Theorem 4.2. We assume that we are in the case where:
N ] ®(k+1)

Py = l@ Di

i=1
Let us choose o € (0,1). For any XA > 0, for any € > 0, with P 1)n-probability at
least 1 — ¢, for any h € {0,....,N}, I € {1,...,N}" and d € D" we have:

Ry, t(Zn,1,a)] < %‘I’g{ﬁ [ a0 (¢A ) ;t(Zh,I,d)]

+§ [h(1+logw> +logﬁ]}
1

k

4.4. Basics algorithms for compression schemes. Let B(Zy, 14) denote the
right-hand side of Equation 4.1. Let us remark that for reasonable values of N
and even in the case of compression schemes (|D| = 1) the search for the exact
minimum:

- - [¢ A %;t(zh,I,d)] + A, [, 4(Zh,1,4)] -

(h*,I*,d*) = arg (}Izr,lli,%) B(Zh,1,4)

may be not feasible.

However, note that the bound given by Theorem 4.1 has the advantage to be
valid for every compression set of size h € {0,...,N}. This means that we are
allowed to use every heuristic we want in order to select our compression set. We
propose an example of heuristic based on thresholding in the case of SVM, and
then propose a more general algorithm.

Example 4.3 (SVM, continued). Remember that we proposed, for SVM (with one

single kernel K):
feczp (- Za K (X, -
i€l

where & = (&;,1 € I) is given by:

S arg mm Z@b

],ZaKX,,X)]

i€l
We propose the following algorlthm. First of all, choose I = {1,..., N} and so:

J:Zaz XzaX ]

& € arg min Z¢

a€RN

Then, choose a K > 0 and replace I by:
I.={ie{l,...,N}, & >k}.
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We can of course choose the value of « in order to obtain a given value for |I;| (and
so0 a given compression rate), or try to minimize with respect to x the upper bound
on the risk of the estimator ¢ (Z5,) given by inequality 4.1.

Example 4.4 (Iterative selection in the general case). We propose here a general
iterative algorithm for (indexed) compression schemes:

e at step 0 start with Iy = § and do = ();
e at step h, we have |I| = h and dp, we define:

(7%,0%) =arg  min - B(Zhi1,(1).dn )
and Int1 = (In, j*), dat1 = (dp,6");
e stop when h 4+ 1 = N and then choose:
h*, I, d*) = i B(Z, .
(h*,I",d*) = arg pein (Zh,1,1)
At the end the guarantee is that the risk of the estimator defined by (h*, I*,d*)
does not exceed B(Zy,1,,,q4,) With probability at least 1 —e.

4.5. Relative bounds and adaptation of the algorithm of Example 4.4.

Theorem 4.3. Let us choose o € (0,1). For any e > 0, for any partially exchange-
able measurable function X taking values R, with Py 1)n-probability at least 1—e¢,

for any (h,h') € {1,..,N}2, I € {1,...,N}*, Je{1,..,N}* de D" andd' € D" :

(k+1)N

T L Wl — vl ) A S

S ey A

A
N

{ - Z & |t~ il sa) A |

+

(k+1)N|D| ' (k+1)N\D| 1
h (1 + IOg 7) +h (1 + IOg ) + log (1—a)e }
X .

Proof. This is an application of Theorem 3.8 with prior:

N 5 ®2
_ h 0 k+1)N
/L—Lz_oa (1—a)za+a( ) 690]

€&
for a given 6y € © and:
v= 6t(Zh,I,d) ® 6t(Zh’,J,d’)'

The computations of the entropy term is exactly the same than in the proof of
Theorem 4.1. O

We now propose an algorithm for compression schemes using this new bound.
For the sake of simplicity, let us assume that ¢ takes values in [0,1]. In this case,
the bound in the theorem becomes:

(4.3) 12, t(Zn,1,a)] — ra[t0, t(Zhr g,ar)]

< %@ { [qu’;’ (Yi[t(Zn,1,0)] _¢i[t(Zh’,J,d’)])]

+

h (1 +1log w) +H (1 +log wﬂ)NlDl‘) +log (=5 }
)
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0t Zn )] ~ 1 Wi )]}

Let B(h,I,d,h',J,d") denote the right-hand side of inequality 4.3. We can use B
in the way described after Theorem 2.20 (page 50), using as complexity function
C(h,I,d) = h, to get the result stated in Theorem 2.21 (page 53).

5. A SECOND APPLICATION: LINEAR REGRESSION ESTIMATION WITH QUADRATIC
LOSS

In this section we deal with the linear case in a more general setting than in
Example 2.4 (but with similar techniques). The idea is to allow the comparison
and selection of linear models by an application of Theorem 2.22.

5.1. Notations and assumptions in the linear case. We assume that we are
in the i. i. d. case, with the distribution of every pair Z; = (X;,Y;), pi, being equal
to P, and so Py = P®N. We assume that ) = R and Y = 12. We take © as an
Hilbert space with scalar product (.,.)g and associated norm ||.||e. Let us put, for
any § >0 and t € O:

We assume that P(|Y]*) < m, and we take:
fo= <9511J()>@

with ¥ : X — O and for any ¢ € X, ||¥(z)|lo < K. Note that we have proved that
in this case, if § and €' are such that ||0|| < k and ||¢’|| < k we have:

My 5(0,0") <227 K*® (ms + 6°K®) |0 — 0|15

So the hypothesis discussed in subsection 2.6 (My s(8,6") < C(s)||§ — 0'||& for any
0 and €’) is satisfied with:

C(s) = 2% 'K?® (ms + k*K?).
This also implies that, if § and ' are such that ||f|| < k and ||6'|| < k we have:
My 5(6,8") < 2°°C(s).

So the first hypothesis of Theorem 2.22 is satisfied with Dy = C(s)2°«*
From now, we consider only the case s = 3. Note that, using Lemma 2.5, as
soon as a < %, for any A and s € N\ {0}:

Vo 20s0.0) NZ[@ )+ 2 (B0 o - W')P]
6
%Z{w,() DO + 2500 i(0) — @)

6 N\ 2
+ (%) [¢i(0)—¢i(01)]6}-

For short, note that 64/2187 < 1/30. Now, note that:

i (0) — ¥i(0")] = |Y; — fo(X3))* — (Yi — for (X3))?|
= |2Y; — fo(Xi) — for (X3)| | fo(Xi) — for (X3)]
=[2Y; — (0 +6',0(X,))| [{8 — 0", ¥ (X3))|
<2(JYi| + s [[(X5)]le) 1T(Xi)lg 116 — 6'llo
Let us put:
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1
C= C(Zl,...,ZN) = N

=1

4
2 (Yl + Rl le) 1E(X) e

{4<m| + 612X lle)? 1T (X)) 15

+

16
+ 509" Vil + . 1T (X)llg)" II‘I’(Xz')IIg}-

and so we have the upper bound, as soon as A < N:
2
Vi g as(®68) <ClIO— 02
Note that this also proves that:
wa%’aﬁ(é?,ﬁ') < 2k%C
so that the second condition of Theorem 2.22 is satisfied with constant:
D = 2x2C.
Let us choose a finite family (61, ...,6,,) € ©™ and define the submodels, for any
Ic{i,..m}
©r = span{b;,i € I}.
Let us choose a set of parameters (p;);cqi,...,m} such that p; > 0 and:
> met
Ic{1,...,m}

Definition 5.1. We take k¥ € R’}. From now, we are going to work with the
parameter space Bg(0, k). We put, for any I C {1,...,m}:

6, = argorrelgll ri(%,6).

69 = inf <1, '“—_6) fr.
lor]le

Note that if § is small enough and f; lies in the interior of B (0, k) then 5? = 0.
However, we are sure that

For any é < k we put:

B(91,0)  B(0, k),
and this is not the case for 8; (we will need this later).

Definition 5.2. Let us put:

M = [fo,-(Xi)] . ,

i€ {1,...,N}
jel
1 !
M[ - NMIM[,
and:
Yi
y=1:
Yn

Moreover for any d € IN let 75 denote the identity matrix of size d.

It is well known that 6; can be expressed with the help of M and Y.
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Theorem 5.1. We have: .
0r =Y a6,
i€l
with:
(@i)ies = (MEMD) T My,

Definition 5.3. Let A the image of the Lebesgue measure on R’ by the applica-
tion:

Tr: IRI — O
(@i)ier = Y ibh.
iel
Moreover, we define, for any I C {1,...,m} and & € (0, s], 5 such that:
dp} Upqs.s)ne, (0)
)= ; :
A [B@ @,6) N @,]
5.2. Application of Theorem 2.22.

Theorem 5.2. For any a € (0,1/2], for any € > 0, for any & > 0, for any
(X, B1,B2) € (RA)? such that By < aX and B2 < aX, with P®N -probability at least

1—¢, forany I C {1,...,m}, J C {1,...,m} and (61,02) € (0, ]? such that 6y = 5?1
and 05 = 67‘32 and that the matrices:

2
My — (a)\C _ 16kA 0(3)) I,

N 9N?2
and X 16rA2C(3)
(6] K
M- ( N 9N2 )IJ

are definite positive we have:

ﬁilR(F’ ) - ﬁ(sJZR(l2ﬂ ) S b(aﬂIﬂ Ja 517625)‘7ﬂ1a/3255)

ool i () 2 -

(}Vﬁjnw ||@) (14 o5 ) 8+ (14 ) 8)

1 m 1 a)\ﬁ’lC 16/‘2,81)\20(3) 2
a,\—51<21°g53,31+( N T own o

r(3)
]

9J

+ log

9N?2

1 J 1 arBxC  16k61X2C(3)
+ <|2—| log + ( N2 + . 5
J

a\ — 62 63,32 9N?2

2300

\/det [MJ - (% - %j’ﬁ(”) I|J|]

log 3RLPJ 4020(3
+(1+ h P >Og = }+ ()<6l+62+H01—0J

.

a)\—,Bl Oé)\—ﬂz A N2
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The proof is given at the end of this subsection. This theorem can be used in
the same way as Theorem 2.20 (page 50).

A few lines may be helpful to interpret the theorem. The role of o, A, f1 and
B2 was discussed in detail previously. The values C, C(3) and & are constants. The
parameter §; represents the concentration of the posterior distribution in model ¢
around the estimator. When §; is too small, the posterior distribution is too much
concentrated around the estimator and can miss the optimal value of 8 € ©;. This
is a typical situation of overlearning and the bound explodes. On the contrary, when
d; is too large, the posterior distribution tends to become the uniform distribution
on the model ©;. An optimization with respect to d; is necessary, and allowed as
the theorem is valid uniformly for any 4;.

Note the order of the bound given by the theorem. The comparison of two
submodels O and O is interesting when the order of

2
0,
e

is 1/N. In this case the optimal order for A is N, as for 8; and S5 but with aA —
and aX — B2 of order N too (for example A = ¢N and 81 = B2 = a)\/2, but there
is no reason for these particular values to be optimal). Note also that an explicit
optimization with respect to §; is possible if we take into account only the first
order terms. We obtain:

o = \/a)\—ﬁl-i-l N |‘2’| aAC . 16KB1N2C(3) "
L im [ (X) [l + 25 + oNzT
Note however it is possible that this value does not lead to
0% =6,
this forcing us to choose a smaller value. However asymptotically, the optimal order

for 01 is \/|I|/N. Let us see what is the order of the bound when we linearize it
(we upper bound @A/N by the identity) and take A = ¢N, 1 = f2 = a)/2 and

81 = 6 = 1//N, with ¢ small enough to have the matrices:

2
My — (a)\C _ 16kA 0(3)) 1,

N 9N2

and:

alC  166X2C(3)
MJ—( N 9N2 )IJ

definite positive.

b (a,I,J, \/%,\/%,CN,@,@,E) <r (l2,é1) —-r (lz,é_])

3C ac

He, - eJH +420(3 He, - eJH

|I|+|JI{lNZ||x1: ||®< C2N>

8kc*C(3 1 1
+acC+ﬁcT()—§logac—§}
+ El 731% ?’m% + llog; ] + L
N ac 2 7 et [MI _ (% _ 16HC;C(3)) IIII] 6|1
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| J| 1
det [MJ — (% - %) Im] 6]

Note that an arbitrarily choice like oo = 1/2 leads to the following order of magni-
tude:

|I|2+|J|
N

+llo
2 g

Njw

}+42C()

DimI’J

r (12, 0}) —-r (12, é.]) + Csty.Variancer,y + Csta. N

where:

~ 112
a
©

and
Dimy ;= |[I[ + [ J],
and Cst; and Cste are random variables of the order of magnitude of a constant.
Let us now give the proof of the theorem.

Proof. Let us choose I and J as subsets of {1,...,m}. Let us choose 7! absolutely
continuous with respect to AT, 72 absolutely continuous with respect to A’ with:
d_7T1(0) — 113@(0,&)091 (9)
A\ M [Be(0,k) N O]

and:

d_71'2(0) ILB@(O Kk)NO y (0)

d\’ A [B@ (0 HJ) N (")J]
We apply Theorem 2.22 with s = 3, 71 = 72 = A and a given a < 1/2. We obtain
that for any & > 0, for any (), 31,82) € (0, N)? such that 3; < aX and By < @),
with P-probability at least 1 —¢, for any I C {1,...,m} and J C {1,...,m}, for any
(', p?) € My (O1) x ML (0,):

le(lza ) - p2R(l2a )

<lop
a

= A
N

{ [p P2, = Fr(,) + et @ Vi 50,0

+

1 1 a)\,é’l 1
or— D 108 Texp(— gy r(12,67)] eXp(WpdGWZ,%,aﬁ(e:el)

468122
+ IN? — Py M 3(979')>

1 alfs
oA =B, %8 Mexpl—ar(i2,do)] €XP (Wp i0Vie, 3 3 (6:0)

422
+ 9;2 PdoM123(979')>

1 1 1 o2,
+ aA—51K< Txplosir@,)]) + t T a 52”( ol a2, )])

B1 B log 2 4 2 '
1 = M= ;(0,6").
+< Yor B Tar—B) A [ Tonz’ ©F 12,5(0,6")
Now, we know that the optimal posteriors are Gibbs distributions, but we make the
following choice in order to be obtain explicit computations. We choose (d1,d2) €
(R%)?, and p' = = p%, p? = p%. Note that we have:
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1 2 1 1 il no 2
r(.0) = 0" 5 2 [ (Vi = i (X)) + (8 -0, 0x) ]
i=1
eSO

Moreover, for the variance term we have, using the bound we proved in the begin-
ning of the section:

<r(26)+8

Plas) © Plasr) [1/12,%@,3(979')] < Cplagy ® Plaory 16 — 9'”2@

< 3Cplup) © P [He S L e P

.

<3C [6‘{’ + 63+ | o - 6%

.

+63+62].

and in the same way:

Fhan © Fhaoy Mina(0.0)] < 0G) 0= 013 < 903 [ | - %

For the entropy term we have:

1]
1,1 = -
}C (P awexp[*ﬁlT(P")]) a log [<g>

+log A {exp [=B1r(1%,)] 1B(0,r)(-) } + log

+ Blplr(ﬂa )

r(51)

7Rl
and we already noted that:

Bip'r(i%,.) < {r (.05) + o3

%5}

Finally, we have to compute:

alBy
log ﬂéxp[—ﬂﬂ‘(lZ,dﬁl)] xp lwpéa WZ,%,aﬁ CA 01)

4PN
+ 9N2 pd9M12 (0701)

<log A exp [—Bﬂ(lz, o)

Oé)\,Bl 4ﬂ1
+ IN deVEQ 2o, 3(0701) 9N2 de‘Z\ll2 (0701)‘|
—log )‘59' {exp [—517‘(12;9')] ]]-B(O,n)(')} .

Note that this last term vanishes with the analogous term in the expansion of the
entropy term, while we have:

al
log My exp | ~Bir(1%,0') + S gl Vi 3 0 5(6.6)

46122
+ oN? —pie M2 3(6,6")

< log Al exp [—511«(12, 6"

Oé)\ﬂlc
2N

8kB1A2C
+ O o — o1 + 2P o - e'n@]
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1 _ 2 gt arpiC Ao1 _ |
Slog)\dglexp[ Bir(1%,6") + N HGI 0 o

16/’&,31)\20 51 ' 04/\,316 16/"»',31)\20(3) )
N2 H0 -6 A N2 %
And we have:
I _ 2 gt arpyC no1 _ pt 2
log Ager expl Bar(1,0') + N HQI 0 o
16&181)\20(3) No1 ! 2 _ 2 o1
e AT =~ (12.67)
N 1 1l
— Og 3
207 B det [ My — (3¢ - 2050 7

as soon as we have ; = éfl and the symmetric matrix in the det is definite positive.
We end the proof by a union bound over all possibles values for I and J with weights
pr and py. O

5.3. Extension to data-dependent models. It is of course possible to allow the
family (61, ..., 0,,) to depend of the data, using transductive bounds and integrating
over the test sample. So from now we use the transductive point of view, and so
we assume that (Z1,..., Z(yy1)n) is drawn from P 1)n. We keep the notations
introduced for the linear regression case, but we allow every #; to be an exchangeable
function of the data:

Vie{l,...,m}, 6;=F{Z1,..,Z441)N})-

By analogous computations we obtain the following result.

Theorem 5.3. For any k € IN \ {0,1}, for any a € (0,1/2], for any e > 0, for
any k > 0, for any (X, B, B2) € (R%)? such that B1 < aX and B2 < a, with P®N_
probability at least 1—¢, for any I C {1,...,m}, J C {1,...,m} and (61,62) € (0, k)?
such that 01 = 0?1 and 0,1 = 0‘;2 and that the matrices:

aXC  166kXN2C(3)  8KEN?
N " 9k+1)N?  27(k+1)NZ)

Mat(1) = My — (

and

alC  16kkX2C(3) 8KkEN2
Mat(2) _MJ_( N  9(k+1)N? 27(k+1)N2) i

are definite positive we have:
Py R(,) = PP R(,.) < bla,I,J,81,85, ), B, B, )

() (P SR g

(N 3w (x ||@) (147l ) i+ (14 s ) )

Kax—B)\ 2 C82p;

+ a)\ﬂlC n 16&kﬂ1/\20(3) 8&5,81)\2 62
N 9(k+1)N2 " 27(k+1)N2) !
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1 |I |
~ 3 log det[Mat(1)] + logT +1

LIS |J|10 1
k(aX — B2) & 535,

a)\BQC 16I€ﬂ1/\20( ) 8/’115,82 2 9
+( N T Tagrone)?

- %logdet[Mat@)] +logT (l | ))

B Bs klog 22122 4X2C(3) (5 & |4 4 |3
1 ) 1) 0r—0
+(+a)\—ﬂ1+a)\—ﬂ2 (k+1)oz)\+ N2 1+2+HI JH@

+ % (G;Tl))‘)s_l [6? +85+ He} —0}”2] .

== an IS [4v2 + 326 R (X)13]

where:

Proof. We apply Theorem 3.10 in the same context. O

Example 5.1 (Support Vector Machines). We choose m = (k + 1) N and want to
obtain:

{¥(X1), 0, O (X (k1y)N)} = {01, -, Or1)N }-
In order to do this, let us choose a complete order on H, say <4, and define

(01, 0k41)n) as (¥(X1), ..., ¥(X(p41)n)) reordered under <y;,. For a given I we
are working with functions of the form:

>0 (B(X0), ¥()).
iel
Let us put K(z,z') = (¥(x), ¥(z')), we can see that the functions we work with
are under the form of SVM:
> aiK(X

il
Here, we can choose a maximal size H for I and take, for any I such that |I| < H:

1 1

PI = = e
H (®7)

and 0 for any other I. Note that of course, the posterior ﬁ?l is observable only for
the models containing ¥(X;) with ¢ < N.

5.4. A bound for a single model. Here, we give another bound in the linear
case that will we usefull in the second part of the thesis.

Definition 5.4. Let us put:

0 = arg mm R(6).
€0;
We follow the proof of Theorem 5.2 but restrict the second model to {8}, that
means that instead of 72 and p? we simply take dg, (and B2 = 0). We obtain the
following result.
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For any a € (0,1/2], for any € > 0, for any x > 0, for any (A, 81) € (R%)? such
that 81 < a), with P®N_probability at least 1 — ¢, for any I C {1,.. m}, and
81 € (0,k)? such that 6; = 6?1 and

aXC  166X2C(3)
My~ ( N ON2 >II

is definite positive we have:
R(1%,6r) — R(I%,6;)

< (12, 00) — (@2, 07) + 502

o,

(NZII‘I' ||@> (1+ o) %

2
1 <ﬂ1 1 (mmc . 16561) 0(3)) »

ar—pfi\ 2 Ba2p N NE
1
+ log g ( i 1) )
et [b1r = (53¢ - e 7,
3pr 2
(1) T e (e o).
Now, note that:
_ 3 _ 2
Ol <2 -]
and that: ,
He} - aIHe < Cr [R(IQ,él) - R(l2,§1)]
where:

1

In the second part of the thesis, at some point we assume that we know the
marginal distribution of X and so C is known to the statistician. This implies the
following theorem.

Theorem 5.4. For any a € (0,1/2], for any € > 0, for any & > 0, for any
(A, B1) € (RY)? such that B1 < aX, with PN -probability at least 1 — ¢, for any
Ic{1,..,m}, and & € (0,K)* such that §; = 63",

~3CaXCr 8kA2C(3)Cr

N 0
and X 168A2C(3)
a 16x
My — ( N 9N2 )II

is definite positive we have:

R(1%,81) - R(I*,8))

1 1 2
< 1— 3(,’%}01 _ 814)\2]?;3)01 { <N Z (X “9> ( a\ — ﬂ1> o

1 11| 1 aBiC  16kB1A2C (3)) 5
—1
aA—&( i (o)
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+ log
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F(|2i|+1) )

\/det [MI - (% - 716”5\;?3)) I|1|]

4X2C (3
, cE

B1 ) log 3%

+<1+a/\—ﬂ1 ah

N2

)

3
1

}.
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Part 2. Iterative feature selection in least square regression estimation

In this part, we focus on regression estimation in both the inductive and the
transductive case. We assume that we are given a set of features (which can be a
base of functions, but not necessarily). We begin by giving a deviation inequality
on the risk of an estimator in every model defined by using a single feature. These
models are too simple to be useful by themselves, but we then show how this result
motivates an iterative algorithm that performs feature selection in order to build
a suitable estimator. We prove that every selected feature actually improves the
performance of the estimator. We give all the estimators and results at first in the
inductive case, which requires the knowledge of the distribution of the design, and
then in the transductive case, in which we do not need to know this distribution.

6. THE SETTING OF THE PROBLEM
We give here notations and introduce the inductive and transductive settings.

6.1. Transductive and inductive settings. Let (X, B) be a measure space and
let Br denote the Borel o-algebra on R.

6.1.1. The inductive setting. In the inductive setting, we assume that P is a dis-
tribution on pairs Z = (X,Y) taking values in (X x R, B ® Bg), that P is such
that:

P|Y| < oo,
and that we observe N independent pairs Z; = (X;,Y;) for ¢ € {1,...,N}. Our
objective is then to estimate the regression function on the basis of the observations.

Definition 6.1 (The regression function). We denote:
f:X—=R
z+— PY|X =2).

6.1.2. The transductive setting. In the transductive case, we assume that Py is
some exchangeable probability measure on the space ((X x R)?V, (B ® Bg)®2V).
We will write (X;,Y;)i=1..on = (Z;)i=1..2n a random vector distributed according
to PQN.

Definition 6.2 (Exchangeable probability distribution). Let &, denote the set
of all permutations of {1,...,k}. We say that P,y is exchangeable if for any
o € Gyn we have: (Xa(i),Y,(i)),-:L__gN has the same distribution under Pn that
(Xi,Yi)i=1..2N-

We assume that we observe (X;,Y;)i=1..n and (X;)i=n+1..2n8; (Xi,Yi)i=1..v is
usually called the training sample and (X;,Y;)i=n+1..2n the test sample. In this
case, we only focus on the estimation of the values (Y;)i=ny1..on. This is why
Vapnik [41] called this kind of inference "transductive inference".

Note that in this setting, the pairs (X;,Y;) are not necessarily independent, but
are indentically distributed. We will let P denote their marginal distribution, and
we can here again define the regression function f.

6.2. The model. In both settings, we are going to use the same model to estimate
the regression function. Let © be a vector space, and:
F:0xX >R
(0,z) = F(6,2) = fo(x)
be such that, for any zy € X, the application § — fy(z¢) is linear. We define the

model:

F={fo(.),0 € O}.
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Remark that we do not assume that f belongs to F.

6.3. Presentation of the results. In both settings, we give a concentration in-
equality on the risk of estimators in unidimensional models of the form:

{af,a € R}

for a given 6.

This result motivates an algorithm that performs iterative feature selection in
order to perform regression estimation. We will then remark that the selection
procedure gives the guarantee that every selected feature actually improves the
current estimator. X

In the inductive setting, it means that we estimate f(.) by a function f € F, but
the selection procedure can only be performed if the statistician knows the marginal
distribution P x) of X under P.

In the transductive case, the estimation of Yn,1,...,Yan can be performed by
the procedure without any prior knowledge about the marginal distribution of X
under P. We also give in this case some generalizations (like the case where the
test sample has a different size).

We then briefly show that the technique used to obtain bounds in models of
dimension 1 can also be used in more general models.

In a last section, we come back to the assertion that in our method, "every
selected feature actually improves the current estimator" and show how this can be
interpreted as an oracle inequality.

7. MAIN THEOREM IN THE INDUCTIVE CASE, AND APPLICATION TO ESTIMATION
Hypothesis. In all this section, we assume that F and P are such that:
V8 € ©,Pexp[fo(X)Y] < +00.
7.1. Notations. For any random variable T' we put:
V(T) = P[(T - PT)2]
M3(T) = P[(T - PT)3] ,

and we define for any v > 0:
Plexp (vT') dw]
Prldw) = —f/——————
) = P lexp ()]

For any random variables T, 7’ and any v > 0 we put:
Vor(T') = Pyr [(T' - PvTT')Z]
M'::T(TI) =Pyr [(TI - P'YTTI)g]-
We give now notations that are specific to the inductive setting.
Definition 7.1. We put:

R(6) = P[(vV - fo(X))’]

1 N

r@) == > (¥ - fo(X:)?,
N

i=1

and in this setting, our objective is f; where:

0 = arg min R(0).
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Now, we suppose that we are given a finite family of m vectors:
Qo ={61,...,0m} C O.

We are going to use the family ©g to estimate the function f, the estimator will be
under the form:

fla) = > aife, (),
k=1

where every «y, will depend on the observations Z1, ..., Z. We can think of ©q as
a basis of ©, but actually there is no other assumption about ®¢ than finiteness.
Every 6; defines a unidimensional submodel of F:

{faak(')7a € ]R} = {afﬂk (.),O[ € IR‘} .
In a first step, we are going to work on each of these submodels individually. So let
us put, for any k € {1,...,m}:
P [fo, (X)?]
& Xiny Jou (X0)Yi
% Zfil fou (Xi)2

ap = arg flIlel]I}%R(Otak) =

A = 1 0 =
& = argminr(aby)

N
% Ez’:l fgk (Xi)2

P[fo,(X)?]
7.2. Main result. The following theorem gives a control of the excess risk of an

estimator in the model {f,0,(.),@ € R} for each k. This estimator is not the usual
least square estimator &y but Cydy.

C =

Theorem 7.1. Let us put:
W = fo(X)Y — P(fo(X)Y).
Then we have, for any € > 0, with P®N -probability at least 1 — e, for any k €
{1,...,m}:
2log 2™ vV (W,,)  log®2m
Cn(P,m,e,0;),
N Pl xy] T N1 OvBmet

R(Ck@kek) — R(aké?k) <

where we have:

2log 277” V2
NV (Wa) | v (W, )% P[fs, (X)?]

1
2log 22 log® 2m

NV (Ws,) | VNV (We,)® P[fo,(X)2]

CN(P,m,E,Ok) = ng

with:
1
I (7) = / (1= B)* M3, , (W) dB.

The proof of the theorem is given at the end of this section, let us first show how
we can use it in order to build an estimator under the form:

fo) = > arfa, ()
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Actually, the method we will use requires to be able to compute explicitly the
upper bound in this theorem. Remark that, with € and m fixed:

2
\/i [MS (ng )]

Nor4o 9V (W, )? P [fo, (X))

and so we can choose to consider only the first order term. Another possible choice

is to make stronger assumptions on P and 0O that allow to upper bound explicitly

Cn(P,m,e,0}). For example, if we assume that Y is bounded by Cy and that fy,
is bounded by Cj}, then Wy, is bounded by C} = 2CyC), and we have (basically):

2 4 41 3 2m
Cr (P, e, 0) < 64;/§Ck N 096C; 5 ‘
9V (We, )2 Plfs, (X)2] 8IVNV (Wy,)" P|fs,(X)?]

The main problem is actually that the first order term contains the quantity
V (Wp, ) that is not observable, and we would like to be able to replace this quantity
by its natural estimator:

CN(Pama‘Eaak)

1 & 1 &
Vi = N Z Yifo, (XZ) N zY]«fgk (X])
i=1 j=1
The following theorem justifies this method.
Theorem 7.2. If we assume that there is a constant ¢ such that:
VEk € {1, ...,m},P[eXp (chk)] < 00,
we have, for any € > 0, with P®N -probability at least 1 — ¢, for any k € {1,...,m}:

2log 4m Vi N log 4
N P[fs(X)?] Nt

R(Crb0r) — R(ab) < Cn(P,ym,e,6y),

where we have:

N
N 1
Vi = Ni:ZI Yifo. (X ZYfek ;
and:
CN(P,m,e,0;) = Cn ( Hk) log2 am
2log som log 2log 2m
75 2V W2 —=t ] —
Pif 007 [VE )+ TRy vy (v NV(W;’,G)N
21ogz im [ log? 2m 21og 4m
+ ==~ 2V (Wy,) + ——=—=1, —
Pl o0 |V ) TR e o\ NV )
2 & \/2V (W, ) log 4 log? 2m 2log im
= Y; X; k £ 4 € T _~ 5 e
N ,L:Zl fak( ) N NV (W‘gk)g O NV (Wak)
and:

1
To) = [ =870y (73) db.

7.3. Application to regression estimation.
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7.3.1. Interpretation of Theorems 7.1 and 7.2 in terms of confidence intervals.

Definition 7.2. Let us put, for any (0,0') € ©%:

dp(0,0') = \/P(X) [(fo(X) — for(X))?].

Let also ||.||p denote the norm associated with this distance, ||0||p = dp(d,0), and
(.,.) p the associated scalar product:

(0,0 p = P[fo(X) for (X)].
Because ay = argmin,cr R(afy) we have:
R(Crby) — R(@r) = dp(Craxy, rby).

So the theorem can be written:
P®N{Vk € {17 "'Jm}J d%’(ck&kek;akak) < ﬂ(E,k)} >1- g,

where 3(e, k) is the bound given by Theorem 7.1 or more likely by Theorem 7.2.
Now, note that a0y is the orthogonal projection of:

0 = arg min R(6)
onto the space {afy,a € R}, with respect to the inner product (.,.) p:
qp = arggleiﬁdp (aby,0) .
Definition 7.3. We define, for any &k and e:

0
CR(k,e) = {9 €O: ‘<o — Crbubs, w>
P/ P

< VBER ).

Then the theorem is equivalent to the following corollary.
Corollary 7.3. We have:
PPN Vk € {1,...,m},0 € CR(k,e)] > 1 —e.

In other words: (Vyeqq, . 3 CR(K, €) is a confidence region at level e for 0.

Definition 7.4. We write H?f the orthogonal projection into CR(k, ) with respect
to the distance dp.

7.3.2. The algorithm. The previous formulation of Theorem 7.1 motivates the fol-
lowing iterative algorithm:
e choose 0(0) € O, for example, 6(0) = 0;
e at step n € IN*, we have: 6(0),...,0(n — 1). Choose k(n) € {1,...,m} (this
choice can of course be data dependent), and take:

6(n) = TI5™0(n — 1);

e we can use the following stopping rule: ||f(n —1) —6(n)||% < k where
0< k< %-

Definition 7.5. Let ng denote the stopping step, and:

~

() = fonoy ()

the corresponding function.
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FIGURE 1. Detailed version of the feature selection algorithm.
We have ¢ > 0, k > 0, N observations (X1,Y1),...,(Xn,Yn), m fea-
tures fo,(.),-.., fo.,(-) and 8(0) = (81(0),...,0m(0)) = (0,...,0) € R™.
Compute at first every & and ((g, k) for k € {1,...,m}. Set n + 0.

Repeat:

e setn—n+1;
e set best_improvement < 0 and 6(n) < 0(n — 1);
e for k € {1,...,m}, compute:

Vg = P [fgk(X)2:| )

T = o 3 6P [, (X) f ()]

o wi (el = BB
and if §; > best _improvement, set:
best _improvement + dy,
k(n) < k;
o if best_improvement > 0:

B (1) = B () + sgm(e) (Il = B, )
until best _improvement < k (where sgn(z) = —1 if z < 0 and 1 other-
wise).

Return the estimator: .

£ =3 0um) o ().

k=1

7.3.3. Results and comments on the algorithm.
Theorem 7.4. We have:
PN [vn € {1,...,n0}, R0 ()] < RIO (n = 1)] = db (0(n),0(n — 1))] > 1.
Proof. This is just a consequence of the preceding corollary. Let us assume that:
Vk € {1,...,m}, R(Crarbr) — R(arb;) < B(e, k)
Let us choose n € {1,...,n0}. We have, for a k € {1,...,m}:
6(n) = 5°0(n — 1),
where H?f is the projection into a convex set that contains . This implies that:
(0(n) —0(n—1),0 — 0(n)>P >0,

or:

dp(B(n —1),8) > dp(8(n),0) + dp(6(n — 1),6(n)),
that can be written:

R[6(n —1)] - R(8) > R[6(n)] - R(9) + dp(8(n — 1),0(n)).
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Actually, the main point in the motivation of the algorithm is that, with prob-
ability at least 1 — &, whatever the current value 6(n) € ©, whatever the feature
k € {1,...,m} (even chosen on the basis of the data), [T%;°6(n) is a better estimator
than 6(n).

So we can choose k(n) as we want in the algorithm. For example, Theorem 7.4
motivates the choice:

k(n) = argmgxdf; (@(n —1),CR(k,¢)).

This version of the algorithm is detailed in Figure 1. If looking for the exact
maximum of

dP(a(n - 1)7 CR(k7 E))

with respect to k is too computationnaly intensive we can use any heuristic to
choose k(n), or even skip this maximization and take:

k(1) =1,...k(m)=m,k(m+1) =1,....k(2m) =m, ...

Such a procedure could look similar to the famous Widrow-Hoff algorithm [44]
(also known as ADALINE), which estimates the function f(.) by an estimator under

the form:
Z akfak ()7
k=1

and updates the aj sequentially by a gradient descent strategy. Actually, there
are two major differences: first, the gradient descent requires the calibration of a
parameter ) > 0, that is avoided here, then, ADALINE is only a way to compute the
usual least square estimator, and has absolutely no guarantees against overlearning
if the family {fo,,-.., fo,, } is too large.

Example 7.1. Let us assume that X = [0,1] and let us put © = Ly(P(x)). Let
(0 ) ke be an orthonormal basis of © and we simply take, for any = and 6:

fo(z) = 0(z).

The choice of m should not be a problem, the algorithm avoiding itself overlearning
we can take a large value of m like m = N (see later for more details). In this
setting, the algorithm is a procedure for (soft) thresholding of coefficients. In the
particular case of a wavelets basis, see Kerkyacharian and Picard [24] or Donoho
and Johnstone [18] for a presentation of wavelets coefficient thresholding. Here, the
threshold is not necessarily the same for every coefficient. We can remark that the
sequential projection on every k is sufficient here:

k(1) =1,....k(m) = m,

after that 6(m + n) = 6(m) for every n € IN (because all the directions of the
different projections are orthogonals).

Actually, in the case given in the example, it is possible to prove that the estima-
tor is able to adapt itself to the regularity of the function to achieve a good mean
rate of convergence. More precisely, if we assume that the true regression function
has an (unknown) regularity (3, then it is possible to choose m and ¢ in such a way
that the rate of convergence is:

N% log N.

We prove this point in the last section of this part.
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7.4. An extension to the case of Support Vector Machines. Thanks to a
method due to Seeger [37], it is possible to extend this method to the case where
the set O is data dependent in the following way:

N
Oo(Z1, -, Zn,N) = | ] ©0(Zi, N),

i=1
where for any z € X x R, the cardinal of the set ©¢(z, N) depends only on N, not
on z. We will write m/(IN) this cardinal. So we have:

|®0(Z1, aeey Z]\/'7 N)| S N |®0(Zz; N)| = N’ITLI(N)
We put:
®O(Zi, N) = {ei,l, ceey Gz,m/(N)} .
In this case, we need some adaptations of our previous notations. We put, for

ie{l,..,N}

n) =g S (- hOG)
je{l,..,N}
J#

For any (i,k) € {1,...,N} x {1,...,m'(N)}, we write:
o =gt = T
P [fo:,(X)Y]
P [fo. 1 (X)?]
Cin = ﬁ Zj;éi foi,k(Xj)z

’ P [fs.,,(X)?]

Theorem 7.5. We have, for any € > 0, with P®N -probability at least 1 — €, for
any k € {1,....,m'(N)} andi € {1,..,N}:

@; ) = argmin R(ab; 1) =
a€R

2log 2V Ny (W)
N-1 P [fgi,k(X)Z]

R(Ci ki 1bik) — R(@i,x0: 1) <

10g3 2Nm/(N)
+ WC}V_l (P, Nm’(N),a,Gi,k).

We can use this theorem to build an estimator using the algorithm described in
the previous subsection, with obvious changes in the notations.

Example 7.2. Let us consider the case where © is a Hilbert space with scalar
product (.,.), and:

fo(z) = (0, ¥ (2))
for any § € © and x € X, where ¥ is an application X — ©. Let us put
O¢[(z,y), N] = {¥(x)}. In this case we have m/(N) =1 and:

N
FO = @i ((X3), () -
i=1
Let us define,
K(z,2") = (¥(z), ¥(z")),
the function K is called the kernel, and:

I={1<i<N:a, #0},
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that is called the set of support vectors. Then the estimate has the form of a
support vector machine (SVM):

O =Y anK (X0,
iel
SVM where first introduced by Boser, Guyon and Vapnik [7] in the context of
classification, and then generalized by Vapnik [41] to the context of regression

estimation. For a general introduction to SVM, see also Cristianini and Shawe-
Taylor [16] and Catoni [10].

Example 7.3. A widely used kernel is the Gaussian kernel:
d2 !
ot o (72

where d(.,.) is some distance over the space X and v > 0. But in practice, the
choice of the parameter « is difficult. A way to solve this problem is to introduce
multiscale SVM. We simply take © as the set of all bounded functions X — R, and
for any z and 6:

Now, let us put:
(_)0[(3"7 y)7 N] = {K2('7"7 ')7 K22 (X7 ')7 ey K2m'(N)(w7 )} .
In this case, we obtain an estimator of the form:

m'(N)

FO=Y Y ainka(Xi,.),

k=1 i€l
that could be called multiscale SVM. Remark that we can use this technique to
define SVM using simultaneously different kernels (not necessarily the same kernel
at different scales). For example, in order to imitate the oscillation of wavelets, we
can introduce a more sophisticated SVM estimator, based on the kernel family:

Ky (2,2") = exp (=227 (z — 2")?) cos (27”'_1(35 - x'))
for y € {1,....,m1}, v € {1,...,mz2} (note that m'(N) = mims).

7.5. Proof of the theorems. In a first time, we prove a lemma that is the basis
of proofs of Theorems 7.1 and 7.5.

Lemma 7.6. We have, for any8 € ©, v >0 and n > 0:

2 3 rl
Pexp(1Wo 1) =exp { GV (W) + 5. [ (1= 5P M3, (W) a5 -}

and

Pep (=W =n) =exp { TV ) = 2 [ (1= 92003, (W) a5 -0}
Proof. For the first equality, we write:
log Pexp (YWy — ) = log Pexp (YWy) — 1
= [ P W) a5 =0 = [~ 9)Vaw, (Wods

2 Yo RY2
= Tvaw+ [0S agy, v ds -

2 3 1
= V(W) + %/0 (1= B)* Mgw, (Wo) df — 1.
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For the reverse equality, the proof is exactly the same, replacing v by —+. O
We can now give the proof of both theorems.

Proof of Theorem 7.1. Let us choose k € {1,...,m}, for any A > 0 and n; > 0 we
have:

P®N exp {/\Wk Z [Yifo. (Xi) — P (Y fo,(X))] — Tik}

A2 A3 1
—oxp [V (W) + 535 [ (- 820y, (W) d5 =]

by the first equality of Lemma 7.6. By the same way, using the reverse inequality
we obtain:

peN exp{ Z [P (Y fo,, (X)) = Yifo,(X3)] — Uk}
o[-, (Wa)as-u.

So we obtain, for any k € {1,...,m}, for any Ay > 0 and n; > 0:

A
— exp [ﬁv (Wa,) —

N
peN exp{ ZYfek P(Yfﬂk(X))‘_nk}

3
<2exp [;—;{,V(Wak) ~ ] eosn [ " party,,, 09 a5]

6

A2 A ?
pev ) -+ s ([ - prart,,, o7 a9) ] ,

since, for any = € R, we have:

< 2exp

22
cosh(z) < exp (7) .

Now, let us choose € > 0 and put:

AQ 6 1 2 c

We obtain:
m
peN Z exp { A
k=1

)‘ AR ' 2773 ’ €
SV )+ gk ([ =020y, W) d8) +loggt <

%Z o (X P(Yfak(X))‘

and so:

P®N

N
Vk € {1,....m}, ‘% S Yifo (Xi) = P(Y fy, (X))‘

log Zm

A 23 1 2
SﬁV(Wak)"'sﬁ(/o( ,8) MEAkW (Wok)dﬂ) +A—;] >1—¢.
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2N log 2m
Ak =4 —=—%.
Vv (Wok)

We obtain, with P®N-probability at least 1 — ¢, for any k € {1,...,m}:

Now, we put:

N
S Vida (%)~ PV, <X))‘

2V (Wy, ) log 2 log% 2m 1 -
< £ £ _ N
: \/ T Ty U, O M, (V)49

For short, we take the notation of the theorem:

I 0) = [ (1= 8)2M3,, (W),

Now, dividing both sides by:

P [fo,(X)?]
we obtain:

. 5 om
1 \/QV (We,,) log 22 N 17 (3)log? 2
(6. (X)?] N NV (We,)’
In order to conclude, just remark that:

R(&xCibr) — R(@xbr) = |axCr, — ax|” P [fo,(X)*] .

A Cr — aig| <
|G Cr akI_P

Proof of Theorem 7.2. Remark that, for any 6 € ©:
V (Wy) = P (W5) - P(Wp)”,

we will deal with each term separately. For the first term, let us remark that we
obtain the following result that is obtained exactly as Lemma 7.6. For any 6 € O:

Pexp {7 [P (Waz) - Waz] - n}
7 2 7 ! 2773 2
:exp{?V(Wg) + ?/0 (1—,8) M’YﬁWg (Wg)dlg—’f}} .
Let us apply this result to every 6 for k € {1,...,m}:

P®N exp {)\k

N
P(W5,) - %Zyz?fek (Xi)zl - nk}

A2 A2 A
= exp{ﬁV (ng) + ﬁjk (Nk) - le} ;

where: .
To) = [ =870y (73) db.
Taking:
A2 oy A Ak 2m
= eV (V5) + gy () + 106”7
and:

\ 2N log 2
k=4 7o
V v (w5,)
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we obtain that the following inequality is satisfied with P®"-probability at least
1— 5, for any k:

N 2m
1 2V (W2 ) log 2
(7.1) Wa,c < N ; \/kT
log QTm 2log QT’"
AN ( NV (173)
1 X
= 5 2 Yo (X0) + Ay

for short. Now, we try to upper bound the second term, —
for any 6:

1 & ’
(NZYz'fO(Xi)> — P (W)

N
=<%2Y;fa<xi)— )( ZYfa +P(W9))
=1 1 N
NZ P (Ws)

N 1 N
ZYfG + NZYifO(Xi)—P(Wa) }

Remember that in the proof of Theorem 7.1 we got the upper bound, with proba-
bility at least 1 — £, for any k:

P (W;)®. Remark that,

N
S Vi (X0~ P (Vo (X))‘

2
5
S\/2V(I/ng)1og%m+ 1ogz4?m319k( 210g4?m> |
N )

NV (Wy,) NV (W,
that gives:

2
(7.2) —P(Ws,)" < - <N2Yf9k )
2
\/ZV(VI/'g,c)log‘iTm+ log® 42 I 2log 42
N NV (Wy,)* "\ V NV (W)
| X

. 2
2V (W, ) log 42 N log2 4 I 2log 4
N 370 )

Njo

NV (ng) NV (W,
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1 ’
=—|= Yz’f(Xi)> + Bk
(N; 9 k

for short. Let us combine inequalities 7.1 and 7.2. We obtain that, with probability
at least 1 — ¢, for every k we have:

|4 (Wak) =P (ng) - P(Wek)z

N N 2
1 1
i=1 =1

ZVk-i-Ak + B;.
O

Proof of Theorem 7.5. This proof is a variant of the proof of Theorem 7.1, the
method it uses is due to Seeger [37]. Let us define, for any i € {1,...,N}:
P() =P®N (|Z;).

Let us choose (i,k) € {1,..., N} x {1,...,m/(N)}, for any X\; x = A\ix(Z;) > 0 and
ik = Ni,k(Z;) > 0 we have:

P;exp ]\?";’91 Z [)/}foi,k (XJ) -P (Yfal,k(X))] — Ni,k

J#i

ik
< exp [mv (We,..)

(Wﬁi,k) ag — ik

b Nk /1(1 — B)* M3,
2(N — 1)2 0 [jvlf W, ,,

by the first equality of Lemma, 7.6. In the same way, we obtain the reverse inequality
and, combining both results, for any (i,k) € {1,...,N} x {1,...,m'(N)}, for any
)\i,k > 0 and ik > 0:

1
Piexp Ak |7 D Yifoiu (X5) = P (Y f5., (X)) | = i

J#i
<2 N vV (W, h N I
< Z2exp m ( 9i,k)_ni,k CoS mzk
2 6

)‘i,k )‘i,k 2
S 2exp mv (Wai,k) — N,k + m‘[’i,k ’

where:

1
I, = /0 (1-8)2M3s,, (We...) dB

TWGi,k

for short. Now, let us choose € > 0 and put:
Ak Ak
Nik = mv (Woi,k) +

We obtain:

2
4Ii,k

3
G LI ¢ S P —
8(N —1) & SNm! (V)

N m'(N)
P®Nz Z eXp{)‘i,k ﬁzyj‘fﬁ,k(x’j)_P(Yf9i,k(X))

i=1 k'=1 i
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2 6

i,k 2 £
_ "Wk log ——
8N — Dk T B o) }

N m/(N)
1
=PNY Y Pz'eXp{)‘z',k 7 2 Yidooun(X5) = P (Y fo,. (X))

i=1 k'=1 i
ALk A2k £
- ) = =2 T2, +log —— » <&
AN —1)" (Wo..) BN — D)t ok T BNy [ =€
Now, we put:
2N log 2Nm'(N)
ik

and achieve the proof exactly as for Theorem 7.1. O

8. SIMULATIONS IN THE INDUCTIVE CASE

8.1. Description of the example. Here, we assume that we have:
Y= f(Xi) +&

fori € {1,..., N} with N = 210 = 1024, where the variables X; € [0,1] C R arei.i.d.
from a uniform distribution #/(0, 1) (and we assume that the statistician knows this
point), the n; are i.i.d. from a Gaussian distribution N(0, ) and independent from
the X;. The statistician observes (X1, Y1), ..., (Xn,Yn) and wants to estimate the
regression function f.

We will use three estimations methods. The first one will be an SVM obtained by
the algorithm described previously, the second one a thresholded wavelets estimate
also obtained by this algorithm, and we will compare both estimators to a "classical"
thresholded wavelet estimate, as given by Kerkyacharian and Picard [24].

8.2. The estimators.

8.2.1. Thresholded wavelets estimators. Let us describe briefly the thresholded wavelet
estimator. Let (p, 1) be the father wavelet and the mother wavelet, and:

Vin(@) = 2502z + )
for k € {0, ...,27 — 1} = S;. For the sake of simplicity, let us write:
Y-1,k(2) = o(z)

for k€ {0} = S_;.
Here, we will use the Haar basis, with:

p(z) = ]1[0,1] (z)
V(@) = 1pp 37(@) = L1y 41(2)-

In the general case, we should use warped wavelets (for more details, see Kerky-
acharian and Picard [24]): we put F(z) = P(X < z), and:

. 1 &
Bik = 5 D Yithjr(F(Xy).
=1

Just remark that the use of this method implies some assumptions about F' that
are not required by our algorithm (here again, see Kerkyacharian and Picard [24]).
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In the case of the example, we will have:
1N
Bjk = N E Yithj n (Xs).
Jj=1
For a given k > 0 and J € IN, we take:

J
F10) =Y D7 Bisl(IBskl = wtn) ()

j=—1keS;

o = log N
N—V—N-

Actually, we must choose J in such a way that:

27 ~ 3t

where:

When k = 0 we obtain a classical wavelet estimator, and when k > 0 we obtain a
thresholded wavelet estimator, this is what we are going to do.
Here, we choose Kk = 0.5 and J = 7.

8.2.2. Wawvelet estimators with our algorithm. Here, we use the same family of func-
tions, and we apply the algorithm given in subsection 7.3. So we take:

m =27 =128.
We change only one thing in the method in order to obtain faster computations:
here, applying the central limit theorem, we replace the theoretical confidence in-

terval by its asymptotic Gaussian approximation.
More precisely:

. LSV, fo.(X0)Yi — Plfs, (X)Y]

=~ N(0,1).
7 S, (fa (XY = £ 50 £, (X5)5)

We put:
2
Vs S (o 0¥ = & S g (5)77)

Vg, N = \/N

We obtain: P )2
(Cray, — ) Plfo (X)) ~ N(0,1),
Vk,N

or:

P [fak(X)2] 2

(R(Crarbyr) — R(arby)) ~ X1

kN
and so we use the confidence interval for @y:

Uk, N .
P[fo (X7 "5

where ¢, is the a-quantile of A/(0,1).

Remark that the numerical results are not very different if we use the confidence
interval given by Theorem 7.1.

Moreover, let us remark that the union bound are always "pessimistic", and that
we use a union bound argument over all the m models despite only a few of them
are effectively used in the estimator. So, we propose to actually use the individual
confidence interval for each model:

Cray £

N Ug,N
Cray £ .
KOk = 5

[fa, ()7 5
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TABLE 1. Values of ¢; and ¢; in the fonction Blocks(.).

i 1 2 3 4 5 6 7 8 9 10 |11
Ci 4 -5 |3 —4 |5 4.2 | =211 43 | -3.1{ 2.1 | —4.2
t; 0.10] 0.13| 0.15| 0.23| 0.25| 0.40| 0.44| 0.65| 0.76| 0.78 | 0.81

TABLE 2. Results of the experiments. For each experiment, we
give the mean risk (R) and the mean excess risk (R — o) for each

estimator.
Function s.d. | standard thresh. wav. | multiscale
70 o thresholded with our | SVM

wavelets method
Doppler 0.3 |0.158 /0.068 | 0.151 /0.061 | 0.149 / 0.059
HeaviSine | 0.3 | 0.154 / 0.064 | 0.138 / 0.048 | 0.129 / 0.039
Blocks 0.3 |0.150 / 0.060 | 0.146 / 0.056 | 0.159 / 0.069
Doppler |1 | 1.142 /0.142 | 1.114 / 0.114 | 1.091 / 0.091
HeaviSine | 1 1.156 / 0.156 | 1.084 / 0.084 | 1.055 / 0.055
Blocks 1 1.155 / 0.155 | 1.105 / 0.105 | 1.104 / 0.104

instead of the theoretical union bound interval.

8.2.3. SVM estimator. Here, we use the multiscale SVM estimator described in
Example 7.3 of subsection 7.4, with kernel:

K, (z,2') = exp (—(27z — 272")?) = exp (—2%"(z — 2')?)

and vy € {1,...,m'(N)} where m'(N) = 6.
We use the same Gaussian approximation than in the previous example, and the
individuals confidence intervals.

8.3. Experiments and results. The simulations were realized with the R soft-
ware [32].

For the experiments, we use the following functions f that are some of the
functions used by Donoho and Johnstone for experiments on wavelets, for example
in [18], and by a lot of authors since then:

27(1
Doppler(t) = uy/t(1 —t) sin % where u = 2 and v = 0.05

1
HeaviSine(t) = i [4 sin4mt — sgn(t — 0.3) — sgn(0.72 — t)]

11
1
Blocks(t) = 1 E il (4; 400) ()
i=1

where sgn(t) is the sign of ¢ (say —1 if ¢ <0 and +1 otherwise). The values of the
¢; and t; are given in Table 1.

We consider 6 experiments (for the three regression functions and two different
values for o, 0.3 and 1). We choose e=10%. We repeat each experiment 20 times.
We give the results in Table 2.

The result of thresholding wavelets following [24] or using our algorithm is com-
parable. However, our thresholding method gives best results, especially when the
noise level is significant. The main advantage of our method is that is is self-
contained: in the "standard" thresholding, we have to choose the parameter k.
Here, the choice k = 0.5 seemed to give the better results, but this choice was



TRANSDUCTIVE AND INDUCTIVE ADAPTATIVE INFERENCE 93

possible only because we knew the regression function in these simulations. In real
life problems, the choice of k could be more problematic.

SVM gave best results, except in the case where f = Blocks (with low noise).
But the main advantage of SVM is that it is much easier to generalize in the case
where X is not R or an interval of R, but for example in the case where X = R"
with n > 2. More generally, let us assume that & is a metric space for some distance
d. We can use SVM with the Gaussian kernel ((z,z') € X?):

& (z,a")
K., (z,2') = exp (—2277) .

1.0

10 05 0.0 0s
L L L

15 10 05 00 05 10
1 1 1 1 1
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® %

FI1GURE 2. Experiment 1, f = Doppler and o = 0.3. Up-left: true
regression function. Down-left: SVM. Up-right: wavelet estimate with
our algorithm. Down-right: "classical" wavelet estimate.

9. THE TRANSDUCTIVE CASE

Remark that in this section, we make no longer assumptions about the existence
of an exponential moment for fp(X)Y.

9.1. Notations. Let us recall that we assume that P,y is some exchangeable prob-
ability measure on the space ((X x R)?N, (B x Bgr)®*). Let (X;,Yi)iz1..on =
(Zi)i=1...2n denote a random vector distributed according to Pay .

Let us remark that under this condition, the marginal distribution of every Z;
is the same, we will call P this distribution. In the particular case where the
observations are i.i.d., we will have P,y = P®2N, but what follows still holds for
general exchangeable distributions Psy .

We assume that we observe (X;,Y;)i=1..n and (X;)i=n+1..2n. In this case, we
only focus on the estimation of the values (Y;)i=ny1..2n-

Definition 9.1. We put, for any 0 € ©:

LN
r(f) = D (Vi — fo(Xi))
i=1
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FIGURE 4. Experiment 3, f = Blocks and o = 0.3.

1 2N
r0) =% D (Yi—fo(X)".
i=N+1

Our objective is:

05 = arg min 7y (9),

if the minimum of 75 is not unique then we take for  any element of © reaching
the minimum value of rs.
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Let ©¢ be a finite family of vectors belonging to ©, so that |@¢| = m. Actually,
Oy is allowed to be data-dependent:

@0 = @0(X1, ...,XQN)

but we assume that the function (X3, ..., Xan) = O¢(X1, ..., Xan) is exchangeable
with respect to its 2N arguments, and is such that m = m(N) depends only on N,
not on (Xl, ...,XQN).

The problem of the indexation of the elements of ©g is not straightforward and
we must be very careful about it. Let <g be a complete order on O, and write:

O¢ = {01, ..-,0m}
where
0 <o ... <0 O,,.
Remark that, in this case, every 6}, is an exchangeable function of (X3, ..., Xon).

In some cases, we will use other indexations. For example, in the case of SVM, we
will take m = 2N and:

®0 = {lIJ(Xl)a ey lI}(XZN)} .

Clearly, there is no reason for having #; = ¥(X;). In such a case, if necessary we
can use another notation, for example define 8 = ¥(X;). Then we will have:

O = {07, -, 0}

where 0 is not an exchangeable function of (X, ..., Xon).
Now, let us write, for any k € {1,...,m}:

N
; X))Y;
Oz’f = argminry(afy) = %L’c(’);
e S fo,(Xi)
2N
i X)Y;
ok = argmi]rllir2(a0k) — ZZQ—J{{V-H Jo, (Xi) ;
o >ieng1 Jon (X3)

ok N St fou (X0)?
% Z§5N+1 fou (Xi)2

9.2. Basics Results.

Theorem 9.1. We have, for any & > 0, with Pon-probability at least 1 — ¢, for any
ke{l,..,m}:
1 2N xX)2v2] loe 2
NZi:l Jo, (X4)?Y; 0og =2
2N :
% Ei:N-H ka (Xz')2 N

Remark 9.1. Here again, it is possible to make some hypothesis in order to make
the right-hand side of the theorem observable. In particular, if we assume that:

IBeRy, P(Y|<B)=1,

T [(C’“a’f)ﬁk] — 7'2(0[’26.0]9) S 4

then we can get a looser observable upper bound:
PQN{Vk €{1,...,m}, r2[(C*a}).0k] —ra(ad.b1)

N

% Zi:l fék (Xi)zyi2
2N

N imn1 fo. (Xi)?

If we don not want to make this assumption, we can use the following variant, that

gives a first-order approximation for the bound.

<4|B?+
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Theorem 9.2. For any € > 0, with Pyn-probability at least 1 — e, for any k €

{1,...,m}:
ro [(Ckaf)ﬂk] — rz(ag.ek)
_slog®m [ L3 fo, (X017 \/ Ly Lo (513l 22
N NZz N+1 fo (X

Remark 9.2. Let us assume that Y is such that we know two constants by and By
such that:

Pexp (byY) < By < 0.
Then we have, with probability at least 1 — e:

1
sup Y;<-—1Io
iefl.oNt |~ by &

So the bound of the theorem leads to a looser observable bound:
T2 [(Cka’f)ﬂk] —T9 (a’jﬁk)

N
. 8log 8m N Lyy ) [0, (X:)?Y? \/ L5 foo(Xi)tlog A log* ANBy
=~ 4

N LN (X 2NbY,

A proof of this assertion is given in the next section.

The proofs of both theorems are given in the next section: however, we are going
to see at first how to apply this result.

Let us compare the first order term of this theorem to the analogous term in the
inductive case (Theorems 7.1 and 7.2). The factor of the variance term is 8 instead
of 2 in the inductive case. A factor 2 is to be lost because we have here the variance
of a sample of size 2N instead of N in the inductive case. But another factor 2
is lost here. Moreover, in the inductive case, we had the real variance of Y f(X)
instead of the moment of order 2 here.

In the next subsection, we give several improvements of these bounds, that allows
to recover a real variance, and to recover the factor 2. We also give a version that
allows to deal with a test sample of different size, this being a generalization of
theorem 9.1 more than of its improved variants.

9.3. Improvements and generalization of the bound. The proof of all the
theorems of this subsection is given in the next section.

9.3.1. Relative bounds. We introduce some new notations.
Definition 9.2. We write:
VO € ©,r15(0) = r1(0) + r2(6)
and, in the case of a model k£ € {1,...,m}:
a’f,Q = arg znelnr% r1,2(abk).
The we have the following theorem.

Theorem 9.3. We have, for any € > 0, with Pon-probability at least 1 — ¢, for any
ke{l,..,m}:

~ Z l[f"k( DYi = afafo,(X)7] | 1og 22

r2(C*akfy) — ra(ad6r)) < 4 ~ Z — N1 fo. (X3)? N
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It is moreover possible to modify the upper bound to make it observable. We
obtain that with Psy-probability at least 1 — ¢, for any k € {1,...,m}:

r2 [(C*at)0k] — r2(ab6k)
log H

16 log 2
< —%= NZ fou (Xi)Yi — of fo, (X2)?)
So we can see that this theorem is an improvement on theorem 9.1 when some
features fy, (.) are well correlated with Y. But we loose another factor 2 by making
the first-order term of the bound observable.

9.3.2. Improvement of the variance term.

Theorem 9.4. We have, for any e > 0, with Pon-probability at least 1 — ¢, for any
ke{l,..,m}:

1 2log 2 V4 (6) + Va(6
ra(CRafOr) — ra(a56k)) < l ion 2% ng 1{0k) + Vo(0) 5
1——13\,5— NZZ N+1f0k( i)
where:
2

1 N

Vi(6k) = N; Yifo (X ZYfak :
2

1 2N

) =5 > |Yifa(X Z Y; fo (X
1=N+1 _7 =N+1

It is moreover possible to give an observable upper bound: we obtain that with Pop -
probability at least 1 — e, for any k € {1,...,m}:

1 4log 42 Vi(6k)
79 [(Ckalf)ek] - T2(a§0k) < [ ] N N Zz_Nl_i_ll}ak( X;)?

2% T fo (X))
1—2}(’%%]2(2+\/§)( )\/N — '

NZ’L N+1 fak( )2

Here again, we can make the bound fully observable under an exponential mo-
ment assumption about Y.

+

9.3.3. Test sample of different size. In the context of classification, Catoni [12] gave
a method in order to be able to deal with the case where the test sample is of size
kN where k is an integer greater than 0. More precisely, we assume that P 1)n
is an exchangeable probability distribution on (X x R)*+DN and that we observe:
(X1,Y1), ..., (XN, YNn)  and  Xny1,. X(pgn)n-
In the case where k > 1, the variance term will be better than in the case where
k = 1. This method can be used in the setting of regression too.

Definition 9.3. From now, we will use the notation, when k # 1:

| N
r1(0) = N Z (Y; — fo(X3))”

1 (k+1)N

n@) =5 > - (X))

i=N+1
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We still consider a family:
(")O(X]_, “eey X(k+1)N) = {01, “eey Hm}

that is data-dependent in an exchangeable way, with the same indexation convention
than in the case where k = 1. Now, let us write, for any h € {1,...,m}:

vy fou (Xo)Yi
SN fon(Xi)?
E(kN-H fﬂh( )
ST fan(X0)2

h — i 0),) =
af argglel]%rl(a k)

h= 0
Qy = argmelnr%rz(a L) =

oh & Tic f0(X0)

e Y fo (X)?

Let us finally put:
1 (k+1)N

P=—— 0z,
(k+1)N ; Zer

and, for any 6 € O:

Vo = P{ [(fg(X)Y) —P(fg(X)Y)r}.

Then we have the following theorem.

Theorem 9.5. Let us assume that we have constants By, and By such that, for any
he{l,..,m}:

Pexp (Br | fo,(Xi)Yil) < Bp.
For any e > 0, with Py1yn probability at least 1—e we have, for any h € {1,...,m}:

T9 (Chath) —7T9 (agé?h) <

(1+ 1)2 l2V9h log‘%”
o SV fou (X3)2 N

3 6
6 (log 42)* (log M)  640g 12)? (jog A1) N D) ]

38INYV] 9PNV,

Here again, it is possible to replace the variance term by its natural estimator:

2
Voh—NZ fo(X Y——Zfe

9.4. Application to regression estimation. We give here the interpretation of
the preceding theorems in terms of confidence; this motivates an algorithm similar
to the one described in the inductive case.

Definition 9.4. We take, for any (6,60') € ©2:

1 (k+1)N \ 1 (k+1)N \
@0,0) =7y 2 WoX)— fo(X) =\ |15 D (-0, 2(X))"

i=N+1

Let also ||6]|2 = d=2(6,0) and:

(0,0"), = FFDN - D falXa) for (X0).
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We define, for any h € {1,...,m} and e:
CR(h,e) = {9 €0 : (6 —Chakh,04),| < \/B(e,h)} ,

where (e, h) is the upper bound in theorem 9.1 (or in the other theorems given
previously).

For the same reasons as in the inductive case, these theorems implies the follow-
ing result.

Corollary 9.6. We have:
Py [Vh € {]., ...,m},gQ € CR(h,E)] >1-—c.

Definition 9.5. We call II* the orthogonal projection into CR(h, ¢) with respect
to the distance ds.

We propose the following algorithm:
e choose 0(0) € O (for example 0);
e at step n € IN*, we have: 6(0),...,6(n — 1). Choose h(n), for example:

hin) =arg max  dy(6(n —1),CR(h;e)),

and take:
6(n) = T, 9 (n — 1);
e we can use the following stopping rule: ||f(n — 1) — 0(n)||§ < k where 0 <
K< %

Definition 9.6. We write ng the stopping step, and:

A

fC) = fone) ()
the corresponding function.
Here again we give a detailed version of the algorithm, see Figure 5. Remark

that as in the inductive case, we are allowed to use whatever heuristic to choose
k(n) if we want to avoid the maximization.

Theorem 9.7. We have:
Py [Vn €{l,..,n0},m2[0(n)] <2 [0 (n—1)]—d5[0(n),8(n—1)]| >1—¢

The proof of this theorem is exactly the same as the proof of Theorem 7.4.

Example 9.1 (Estimation of wavelet coefficients). Let us consider the case where
O does not depend on the observations. We can, for example, choose a basis of ©,
or a basis of a subspace of ®. We obtain an estimator of the form:

f@) =" a"fo, (@)
h=1

In the case when (fs,)r is a wavelet basis, then we obtain here again a procedure
for thresholding wavelets coefficients.

Example 9.2 (SVM and multiscale SVM). Let us choose © as the set of all
functions X — R, fs(x) = 0(x), a family of kernels K, ..., K,y (ny for am/(N) > 1
and:
0 = {Kn(Xi, ), h € {1, m!(N)},i € {1,., (5 + 1)N}}.
In this case we have m = (k + 1) Nm/(N). We obtain an estimator of the form:
m'(N) 2N

@)=Y > o"Kn(X;,z).

h=1 j=1
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FIGURE 5. Detailed version of the feature selection algorithm in
the transductive case.
We have ¢ > 0, k > 0, N observations (X1,Y1),....(Xn,Yn)
and also Xny1,..., X(g41)n, m features fp,(.),..., fo,.(.) and 6(0) =
(6,(0), ...,0,,(0)) = (0,...,0) € R™. In a first time, compute every ol
and B(e, h) for h € {1,...,m}. Set n < 0.

Repeat:

e setnn+1;
o set best_improvement < 0 and 6(n) = 0(n — 1);
e for h € {1,...,m}, compute:

(k+1)N

h_kiz.fﬁh a

i=N+1
m (k+1)N

WhFa?_%Zaj( > fo,(Xi) fa, (X3),

7j=1 i=N+1

2

(Sh < Up (|’Yh| - ﬂ(57h)) ’
+

and if §, > best _improvement, set:
best _improvement < 6y,
h(n) < h;
o if best_improvement > 0:
Ono) (1) ¢ Onuy (n) + sgn () (| = Be, )
until best _improvement < k.

Return the estimation:

[?N+1,...,)7(k+1)N] = [f(XN+1);---;f(X(k+1)N)]

where:
Zah f0h
Let us put:
I ={j€{1,..,2N},a?" £ 0}.
We have:
m'(N)
f(.'E) = Z Z a]’hKh(X‘iam)a
h=1 jel,

that is a Support Vector Machine with different kernels estimate; like in Example
7.3, the kernels K can be the same kernel taken at different scales.

Example 9.3 (Kernel PCA Kernel Projection Machine). Let us take © as a Hilbert

space, with scalar product (.,.), let us take a function ¥ : X — © and consider the
kernel:

K(z,2') = (¥(z), ¥(z")) .
Let us consider a principal component analysis (PCA) of the family:

{lI;(Xl)a e lIJ(-X(19+1)N)}
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by performing a diagonalization of the matrix:

(K (Xz'7 Xj))lsi,js(k+l)N )

This method is known as Kernel PCA, see for example Scholkopf, Smola and Miiller
[36]. We obtain eigenvalues:

AL > > AEHDN

and associated eigenvectors e!, ..., e*tDN associated to elements of O:

(k+1)N (k+1)N
U= Y (X, Tppn = Y e TN E(X)
=1 =1

that are exchangeable functions of the observations. Using the family:
O ={¥1,.., ¥y)n}

we obtain an algorithm that selects which eigenvectors are going to be used in the
regression estimation. This is very close to the Kernel Projection Machine (KPM)
described by Blanchard, Massart, Vert and Zwald [6] in the context of classification.

10. PROOF OF THE THEOREMS IN THE TRANSDUCTIVE CASE

10.1. Proof of Theorems 9.1 and 9.2. Here again, the first thing to do is to
prove a general deviation inequality. This one is a variant of the one given by
Catoni [10]. We go back to the notations oh theorem 9.1 and 9.2, with test sample
of size N.

Definition 10.1. Let G denote the set of all functions:
g: (X xR)*™ xR 5 R
(Z1y ey Zan,uyst') = g (21, ey Zan, u, ') = g(u, u')

for the sake of simplicity, such that g is exchangeable with respect to its 2N first
arguments.

Lemma 10.1. For any exchangeable probability distribution P on (Zi, ..., Zan),
for any measurable function 1 : (X x R)*N — R that is exchangeable with respect
to its 2 x 2N arguments, for any measurable function X : (X x R)2N — R’ that is
exchangeable with respect to its 2 x 2N arguments, for any 8 € © and any g € G:

Pexp (% i{g[fG(Xi+N)aYi+N] - g[f"(X")’Y"] }

=1

and the reverse inequality:
Pexp (% i{g [fa (X4), Yz] -9 [fG(Xi-i-N)’ Yz’+N] }
i=1

%g[fG(Xi);Y;']2 - T}) <Pexp(—n),

i=1

)\2
2
cgN
where we write:

n=n(X1,1),..,(Xon,Yan))
A=A ((X1,11),...,(Xon,Yan))
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for short, and:
2 if g is nonnegative,
cg =
1 otherwise.

Proof. In order to prove the first inequality, we write:

pon( 5y Sfoletens in] o[ ]}

A2 2N

- g[fa(Xi),Yi]z - n)

i=1

=Pexp (Z log cosh {%g[fo(Xj_i_N),Y;'_i_N:I - %g[fg(X,-),Yi] }

=1
\2 2N 9
- Nz g[fG(Xi)aYi] -n].
i=1
This last step is true because P is exchangeable. We conclude by using the inequal-
ity:

2

Vz € R,logcoshz < 7

We obtain:
logcosh{ [fa( z+N)aYz'+N]_%g[f0(X")’Yi]}

< g ol o] a0 ]Y < Kol

The proof for the reverse inequality is exactly the same. |

We can now give the proof of the theorems.

Proof of Theorem 9.1. From now we assume that the hypothesis of Theorem 9.1
are satisfied. Let us choose ¢’ > 0 and apply Lemma 10.1 with n = —loge’, and g
such that g(u,u’) = uu'. We obtain: for any exchangeable distribution P, for any
measurable function X : (X x R)2Y — R that is exchangeable with respect to its
2 x 2N arguments, for any 6 € ©O:

N \2 2N
Pexp( Z[fo( XiyN)Yien — fo(X i] szf Y2+10g5> 4

i=1

and the reverse inequality:

PeXP( Z[fe( i)Yi — fo(Xiyn) z+N] - N2 Zfa )?Y? +1loge' | <¢.
=1
Let us denote:

[fo( )Yin — fo( XY - N2Zf RE

i=1

f0,e',)) = +loge'.

The previous inequalities imply that: for any exchangeable P, for any measurable
function X : (X x R)?2V — R? that is exchangeable with respect to its 2 x 2V
arguments, for any 6 € ©:

(10.1) Pexp f((Z1y..., Zan),0,€",\) < 2€’.
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Now, let us introduce a new conditional probability measure:

1

P= Gy D S e oy
: c€EGan

Remark that P,y being exchangeable, we have, for any bounded function h :
X xR)* 5 R,
The measure P is exchangeable, so we can apply Equation 10.1. For any values of
Z1, ..., ZoN we have:

V0 € ©, Pexpf(Z1,..., Zon),0,€",\) < 2¢'.

In particular, we can choose 8 = 0(Z1, ..., Zy) as an exchangeable function of
(Z1, ..., Zan), because we will have:

1
(2N)' Z expf(ZJ(l)a"'5ZJ(2N))50(Z0(1)7"'7ZJ(2N)))7617)‘)
c€Gan
1
N (ZN)' Z expf(za'(l)a"'aZa(QN))Ja(Zla"'JZQN))JEIJ)‘) < g

oc€Ban

Here, we choose as functions 6 the members of ©q¢: 6, ..., 0, (remember that we
choose this indexation in such a way that for any k, 6 is an exchangeable function
of (Z1,..., Zan)). We have, for any Ay, ..., A, that are m exchangeable functions of

(Zl, ceey ZQN):

Py |3k € {1,...,m},f((Z1, ...,ZQN),ok,EI,)\k) > 0:|

= PN U {f((Zla ---;ZQN)JGIWEIJ)"E) > 0}]
k=1

<Py | D 1(f((Z1, -, Zan), Oks€', M) > 0)
k=1

=PnP | 1(f((Z1; - Zon), 08,6, Ak) > 0)
k=1

= P2N Zﬁ[ﬂ (f((Z17 "'7Z2N)70k7517)‘k) > 0)]
k=1

m
S P2N Zﬁexp f((Zl, ceey ZQN),G];;, EI, Ak)
k=1
Now let us apply inequality 10.1, we obtain:

PN |:E|k € {1,..,m}, f((Zi, ...,ZQN),Gk,e’,/\k) > 0] < Py 2261 =2'm=¢
k=1

if we choose:

From now, we assume that the event:

{Vk e{1,..,m}, f ((zl,...,zzN),ok, %,)\k) < o}
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is satisfied. It can be written, for any k € {1,...,m}:

log 2m
NZ[«f@k XiynN)Yiprn — f&k( ] Zfak Y; O%\—;-

Let us divide both inequalities by:

2N
Z fak(X 2

i=N+1

We obtain, for any k € {1,...,m}:

2N 1
R T o (607 + G

N Ez N+1 f9k( )2

It is now time to choose the functions ;. We try to optimize the right-hand
side with respect to Ag, and obtain a minimal value for:

las — CFaf| <

Nlog 22
& T fo (X0)2Y7

This choice is admissible because it is exchangeable with respect to (Z1, ..., Zan)-
So we have, for any k € {1,...,m}:

V2 T2 o, (X0)?2] log 22
sz_N-H fﬁk( )2 .

Ak =

|Ck k k:|<2

Finally, remark that:

|Ckallc —ok| = [(Cka’f)gk] — r2(af6y)

N E =N+1 fak( )2
that leads to the conclusion that for any k& € {1,...,m}:
N
¥ Zf 1 o, (X0)°¥2] log 22

N Zz N+1 fﬂk( )2
This ends the proof. |

Ty [(C*af)0)] — ra(ak6y) < 2

Proof of Theorem 9.2. We write:

2N
T3 fa(XiY? = szak el S oy
i=1

i=N+1

and try to upper bound the second term. We apply Lemma 10.1, but this time
with g such that g(u) = (uu')? that is nonnegative, and obtain, for any ¢, for any
(exchangeable) 6 and A:

<l 1 & loge
2 4
Y. fo(X)Y, N; DRGES 2NNZfak )+ =

i=N+1
_ 2N loge
LY fo (XY

we apply this result to every 6 € 0, and combine it with Theorem 9.1 by a union
bound argument to obtain the result. O

We choose:

>
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10.2. Proof of Theorem 9.3. First of all, we give the following obvious variant
of Lemma 10.1:

Lemma 10.2. For any exchangeable probability distribution P on (Zi, ..., Zan),
for any measurable function n : (X x R)*2N — R that is exchangeable with respect
to its 2 x 2N arguments, for any measurable function X : (X x R)2N — R’ that is
exchangeable with respect to its 2 x 2N arguments, for any 6 € ©:

A N
Pexp (N So{ [foXaamWis = 2@ (Kea?] - [V - al0)fo(x7] |
i=1

N Z[fa a(e)fa(Xi)2]2 - n) < Pexp(-n)

and the reverse inequality, where:

a(f) = arg min r1,2(ab).
Proof. This is actually just an application of Lemma 10.1, we just need to remark
that a(6) is an exchangeable function of (Z1, ..., Zan), and so we can take in Lemma
10.1:

g(u, ul) =uu' — UZCK(Q),
that means that:

9[fo(Xi), Yi] = fo(Xi)Yi — a(8) fo(Xi)?.
O

Proof of Theorem 9.3. Proceeding exactly in the same way as in the proof of the-

orem 9.1, we obtain the following inequality with probability at least 1 — e:
(10.2)

& T Ao (X0 = o oS, (607] | 1og 20
sz N+1f‘9k( i)? N -

This proves the theorem. |

ra(CFafr) — ra(a56r)) < 4

Before giving the proof of the next theorem, let us see how we can make the first
order term observable in this theorem. For example, we can write:

[fak( i)Y — af 5 fo, (X )2]2
[fak( i)Y alfok( )2]2+[a1—a12] fo, (X i)

+2[ o, (X0)Y; — ok fo, (X2)?] [k — ok o] fo (X)?.
Remark that it is obvious that:
lof — af | < |af — b,

and so:
[fak( )i — af 5 fo, (X )2]2
< [£0. XY — ok fo, (X7 + [of — o] fo, (X"

+2f9k:(X’L)Y _alfak( )2

‘allc_a2‘f9k )2'
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Now, just write:
of —ak = (1-CF)al - (Ckaf — ab)

and so we get:

[0, (XY = ok o, (X0°]
< [f (XY — ot fo,(X:)?] + [cFak o] fo, (x0)*
+2k%ﬁ—aﬂyv«%mﬂﬁﬁxn“+u—Cﬂ2m®2ﬁ4&f
+2‘fok — af fo (X Hckalf —Oélz“‘fak (X:)?

+2‘fak( af fo, (X H €k —1) Otl‘fak

So finally, Equation 10.2 left us with a second degree inequality with respect to
|C’“o¢1 - oz2| or 72 (C*ak8;) — r2(ak6})) that we can solve to obtain the following
result: with probability at least 1 — £, as soon as we have:

1 X N ’ 12N 4 4]log Zm
hfoM&W>¢ﬁ§ﬁwm] N

which is always true for large enough N, the quantity |C’“o¢1 - oz2| belongs to the
interval:

2
2log 2 \/b2+a (logN [le ZfNNH fo,, (X:)? ] - %Zfivl f@k(Xi)4>
N [ 52 0 fo(02] — M2 L2 gy, (1]

with the following notations:

Nz[mk ~ af fo. (X0?| + a1~ €9 fo,(X2)"]

ZQfak [|a (1= CM)| fo, (X3)* + | for (X3)Y; — o fo, (X )2|]-

Remark that only one of the bounds of the interval is positive. So we obtain the
following result: with P»n-probability at least 1 — &, as soon as:

oN 2 oN 9
41 Zm
l%E:nwm2>{%;ﬁwmﬂ4%L

i=N+1
we have:
4log? 2m [ 1 2N
VEk € {1,...,m}, r2[(CFal)bi] — ra(ab6y) < TE lﬁizzlfgk(Xi)Q

b+ \/b2 +a <logN2Em [% EfNN-H fo (X )2]2 - % Efivl o (Xi)4)
[% EfiVN—‘rl fo (X )2]2 MOL [ 222N1 for (X3)* ]

We can notice that this bound may be written:
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8alog 2™ log ™13
r2 [(€*af)ou] = ra(ab) < 0=+ 0 ([gT] )

_810g [NZ (fo. (X0)Yi — o f5, (X)2)” +0<[$]2>.

The next step would be now to replace the bound by an observable quantity, by
getting a bound like:

3 O U (XY= abfo (X))

2 N

(fo. (X2)Yi — af £, (X:)%) +O<IO§V)

1—1
with high probability. This can be done very simply, using Lemma 10.1 with this
time:

g(u,u’) = (uu' — uza(0))2.
We obtain the bound:

ra [(C*af)6k] — 7‘2(04'50,9)

161 N
S Og Z fek alf@k( ) )2

(1)

10.3. Proof of Theorem 9.4. The proof is exactly similar, we just use a new
variant of Lemma 10.1, that is based on an idea introduced by Catoni [12] in the
context of classification.

Definition 10.2. Let us write:
To(Z:) = fo(X:)Yi
for short. We also introduce a conditional probability measure:
1
2) _
P( )= Nt Z 6(21,---,ZN,ZN+0(1),---,ZN+¢7(N))‘
oceBn

Remark that, because P is exchangeable, we have, for any function h:
Ph="P [73<2>h] .

Lemma 10.3. For any exchangeable probability distribution P on (Z1,..., Zan),
for any measurable function 1 : (X x R)*N — R that is exchangeable with respect
to its 2 x 2N arguments, for any measurable function X : (X x R)?N — R which
is such that, for any i € {1,...,2N}:

)\(Zla sy ZZN) = )\(Zla seey Zi—l: Zi—i—Na Zi+17 sy Zz'-i—N—l; Zz'a Zi+N+1; sy ZZN)J
for any 0 € ©:

@) X
’Pexp{ PN A Z [Ty(Z:) — To(Zisn)]

9 N
-P@ l#% Z [To(Z:) - To(Zi+N)]2] - n} < Pexp (1)

and the reverse inequality.
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Proof. Let Lhs denote the left-hand side of Lemma 10.3. For short, let us put:

=N Z [fo Xitn)Yign — fo(X ] N Z [To(Z (Zirn).
Then we have.
N 32
Lhs = Pyy exp P? ( Z[ H—N)] - Ws(g) - 77>
) P A2
< Py P! )eXp<N i_ZI[Ta(Zi) - TG(ZH-N)] - ﬁs(ﬁ) 77);

by Jensen’s conditional inequality. Now, we can conclude as in Lemma 10.1:

N 2
Lhs = Pon exp (Z log cosh {% [T.g(Zi) — Tg(ZiJrN)] } — ;—Ns(é?) 77)

i=1
2
)\2
~ o5 - n)

2 O
< Py exp (W Z [Tg(Z,-) —Ty(ZiyN)
i—1

= Pyyexp (—77) .

Proof of Theorem 9.4. We apply both inequalities of Lemma 10.3 to every 0y, k €

{1, ...,m}, and we take:
2N log 2m
A=y e
s(6)

We obtain, for any k € {1,...,m}:

@) 2m
PGXP{ N > IT(Z:) - Ta(Zi+N)]—10g?—77}S€

i=1

Or, with probability at least 1 — g, for any k:

NZ Ty(Z. (Zirn)] < \/@[P(g) (3(0)—%)]_1,

S0:
N 2N 2
1 1 2log
el AN ) (2)
[NZTg(Z,) ~ .Z Ty(Z)| <—==Ps()
=1 i=N+1
We end the first part of the proof by noting that:
1 2N 2
PP s(0) = Vi (6) + Va(6 ZTa Z Ty(Z:)
z N+1
Now, let us see how we can obtain the second part of the theorem. Note that:
1 2N L 2
p— . 2 — —_— :
Vz(e) - N . Z TG(Zz) (N Z TG(Z1)> .
i=N+1 i=N+1

We upper bound the first term by using Lemma 10.1 with g(fp(X;),Y:) = fo(X;)?Y? =
Ts(Z;)?, so with probability at least 1 — ¢, for any k:

2N N N
> Tz < %ZTH(Zi)z +\/21°g Z 1 T5(Z0)"

i=N+1 i=1
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For the second order term, we use both inequalities of Lemma 10.1 with g(fo(X;),Y;) =
fo(X,)Y; = Tp(Z;), so with probability at least 1 — ¢, for any k::

2

1 N 1 2N
(ﬁ ZTG(Zi)> - (N > TG(Zi)>
i=1 i=N-+1

2

1 X L 12N
<IFLT@) -5 X Tz NZTQ(ZZ)
=1 i=N+1 =1
Z;:)?1
< 2\/ x X 087 Z |Ty(Z
Putting all pieces together (and replacing € by £/3) ends the proof. O

10.4. Proof of Theorem 9.5.

Proof of Theorem 9.5. We introduce the following conditional probability measures,
for any i € {1,...,N}:

1
P; = 1 6(Zl,---,Zi—hZN(cr(l)—l)-HaZi+1v---v
(k+1)! 2
0€6k+1
ZN+i=1,ZN(0(2)=1)+i 1 ZN+it1r--s--ZkN4i— 1, ZN (o (k+1)—1)4i 1 ZkN4id+1r2L(k+1)N ) *
and:
N
P=QP;
i=1
and, finally, remember that:
(k+1)N

1
P=Groy & =

Note that, by exchangeability, for any nonnegative function
h:(X xR)FHDN 4R
we have, for any i € {1,..., N}:
Piy1)nPih(Z1, ..., Zan) = Ppyryn(Z1, ..., Zon).
Lemma 10.4. Let x be a function R — R. For any exchangeable functions A,
n: (X xR)YFHON 3R, and 6 : (X x R)*F+DN 5 © we have:

(k+1)N

penda g 3 xleon] - 3o xicnon] | <o

i=N+1
< exp (-n) exp{%P {x(foxir) - Px(oor)] '}

A1 +k)3

6N2k3 sup X (fo(X3)Y3) — inf x (fo(X,)Y;)

3
ie{l,...,(k+1)N} ie{1,...,(k+1)N} }’
where we put A = XN Z1, ..., Zp41)n), 0 = 0(Z1, ..., Zipy1yn) andn = n(Z1, ., Z(p41)N)
for short. We have the reverse inequality as well.

Before giving the proof, let us introduce the following useful notations.
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Definition 10.3. We put, for any 6 € O, for any function x:

X! = x (Yifo(X3)),
and:

X" = x (Y f5(X))

1 (k+1)N

*k+1)N Z X

that means that:
PXH

We also put:
S,(0) = sup o _ inf 0.
x(®) ie{l,...,(kﬂmx’ et (k) N}
Proof of the lemma. Remark that, for any exchangeable functions A, n : (X x
R)FHDN 5 R, and 6 : (X x R)*N — © we have:

1 (k+1)N 1N
Pexp{A = X g[fxvi] - 5 X e[ fe(x0vi] —n}
i=N+1 i=1

- A A
= exp (-n) H IP; exp BN ZX?+]'N - WX?
=1 j=1

N k N
A M1+ Ek
=eXp(—77)HeXP{k—N E X?+jN}HIPieXp{_%Xf}
=0 i1

i=1

where we put A= )\(Zl;---;ZkN); 6 = 0(Z1,...,ZkN) and n = U(Zly---;ZkN) for
short.
Now, we have:

N
1 1
logHIPiexp{ )\( +k ‘9} Zlog]P exp{ )\(k;k)Xf};

i=1
and, for any ¢ € {1,...,N}:
AL +k) o
log P; B
WPEIELN
ML+ E) L, AN +k)? p o2
== P+ e B (0 - Pad)']
A(1+

b

1<A(1+k)_ﬂ>2 1
2 Nk P; exp [—Bx?]

P, [(x? - Bibder [‘5"?”)3@@ (—ﬂx?)] .

P;exp [—8x!]

Note that, for any 8 > 0:

1 P, [(X? B P, {Xf exp [—/B;C?] }> exp (—/BXf)]

P;exp [—ﬂxi] P; exp [—5)(1']

3
S[ SUD. X{4 (N Xit (- 1>N] ;

f
je{l,....k} 6{1 ,k}

and so:
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N N
M1+ k& 1 A1+Ek
log | [ i exp {‘(Tk)xg} SN e

i=1
1 )\2 1 + k I’} I’} 2
TN TaNE P: [ (! - Pax?)’]
3
/\3(1 + k)3 < f
—_— u Xi — n Xi| -
6IN2k3 ie{1,...,(k+1)N} ¢ ie{l,...,(k+1)N} ¢
Note that:
1 k
P;x! = Pt ZX?Jer
j=0
and so:

1 (k+1)N
NZ zXz_ k+1)N Z X; PX:

remark also that:

1 N 2
NZIP,- [(xf —-Pix!) ]
=1

(k+1)N 1 (k+1)N \
0 0 6 0
) _ ) =P -
k+1N Z Xi "\ e+ )N ; X [(X PX)]’
we obtain:
(k+1)N
P exp kN Y flx Y'——Zfa -7
i=N+1
)\2(1 + k)2 0 9\ 2
= exp (—n) eXP{WP [(X - Px ) ]
N1+ k)° , Ak
—_— su ;- inf : .
6N2k3 ie{l,...,(k+1)N} Xi ie{l,...,(k+1)N} Xi
The proof of the reverse inequality is exactly the same. |

Let us choose here again x such that x(u) = u, namely: x = id. By the use
of a union bound argument on elements of ©y we obtain, for any € > 0, for any
exchangeable function A : (X x R)*+DN 5 R | with probability at least 1 — ¢, for
any h € {1,...,m}:

(k+1)N
KRS S RCITRES SR
i=N+1
A(1+1) \ a2, M+ D’ log =
< Tkp [(Xo - Py’ ) ] + Tf&d(eh)s"‘ N

Let us choose, for any h € {1,...,m}:

2N log %

A= :
(L+1)"P [ —Px)’]

the bound becomes:
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1 (k+1)N 1 X
=~ 2 Je(X)Yi— 5D fo.(Xi)Yi
i=N+1 i=1

2
< (1 N 1) 2\] P I:(Xah — Pxfr) ] log N S;a(01)* log m
- k 2N 3NP [(Xa,, _ PXGh)Z]
We use the reverse inequality exactly in the same way, we then combine both

inequality by a union bound argument and obtain the following result. For any
€ >0, with P(; 1)~ probability at least 1 — & we have, for any h € {1,...,m}:

(10.3) 7o (cha’;oh) — 7 (agﬂh) <

(1 + %)2 l?Vgh log sz
k N
e S o (02 N
3
L2 (log 2) 2 S;4(65)? . (log 2)? 8;4(0r)°
3N3VE NG, ]

remember that: ,
vo = P{[(fo07) - P(fo007)] '}

We now give a new lemma.
Lemma 10.5. Let us assume that P is such that, for any h € {1,...,m}:
3B > 0,3Bp > 0, Pexp (B | fo,(X)Y]) < Bh.
This if for example the case if fg, (X;)Y; is subgaussian, with any Br > 0 and

By = 2exp {%P (o, COYY’] } .

Then we have, for any e > 0:

1
Py~ { sup  fe, (Xp)Y; < n log >1-e.

(k+1)NBy,
1<i<(k+1)N €

Proof of the lemma. We have:

PN < sup  fo,(Xi)Yi > 8)
1<i<(k+1)N

= Pyiyn (Fi € {1, ..., (K + 1)N}, f5,(X3)Yi > 5)
(k+1)N
= 2 Pl xovizs
i=1
< (k+1)NPexp (Bn|fo, (X:)Yi — s]) < (k+ 1)NBjp exp (—fns) -
Now, let use choose:
1 (k+1)NBy,
s=—log———,
Bh £

and we obtain the lemma. O

As a consequence, using a union bound argument, we have, for any € > 0, with
probability at least 1 — e, for any h € {1,...,m}:

Sia(6n) = X,)Y; — inf X,)Y;
ia(6n) ie{l,..s.,lgllg)-i-l)N}th( Y z‘e{l,...l,?kH)N}fah( )Y
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< 2 log 2(k + 1)mNBy_
h

By plugging the lemma into Equation 10.3 we obtain the theorem. |

11. SIMULATIONS IN THE TRANSDUCTIVE CASE

11.1. Description of the example. Here, we assume that we have:

Yi=f(Xi) +&

for i € {1,...,2N} with N = 2'0 = 1024, where the variables X; € [0,1] C R
are i.i.d. from a uniform distribution #(0,1) (here we DO NOT assume that the
statistician knows this point), the n; are i.i.d. from a Gaussian distribution N (0,c)
and independent from the X;. The statistician observes (X1, Y1), ..., (Xn,Yn) and
XNi1, .-, Xon and wants to estimate Yy i1, ..., Yan.

We will here again use three estimations methods: an inductive method, that
does not take advantage of the knowledge of Xn1, ..., Xan, and two transductive
methods. For the inductive method, we take the thresholded wavelet estimator that
we used in the experiments in the inductive case. For the transductive method, we
use here again a wavelet estimator and a (multiscale) SVM.

11.2. The estimators.

11.2.1. Thresholded wavelets estimators. In this case, as we assume that we don’t
know the distribution P x), we have to estimate it and use a warped wavelet esti-
mator. We take:
1 X
Fn(z) = N ; 1(X; < =),

and:

. 1
ﬂj,kZNz it e (Fiv (X5)),

J
=Y > Bisl(1Bikl = st )in(Fn ()

j=—1keS;

Here again, we choose k = 0.5 and J = 7.

11.2.2. Wawvelet estimators with our algorithm. Here, we use the same family of
functions, and we apply the transductive method described previously. Here again,
we use Gaussian approximations for the confidence intervals (but we double their
length in order to take into account the variance of both samples).

11.2.3. SVM estimator. The transductive SVM estimator is taken with kernel:
K, (z,2") = exp (—2*7(z — 2')?)

and vy € {1,...,m'(N)} where m'(N) = 6. We use the same Gaussian approximation
than in the previous example.

11.3. Experiments and results. We consider the same functions than in the
inductive case. We choose e=10%. We repeat each experiment 20 times. We give
the results in Table 3.
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TABLE 3. Results of the experiments. For each experiment, we
give the mean risk ro.

Function s.d. | "inductive" transductive transductive
7 o thresholded thresh. wav. | multiscale
wavelets with our | SVM
method
Doppler 0.3 | 0.234 0.174 0.165
HeaviSine | 0.3 | 0.134 0.156 0.134
Blocks 0.3 | 0.187 0.171 0.177
Doppler 1 1.179 1.152 1.120
HeaviSine | 1 1.092 1.110 1.065
Blocks 1 1.153 1.144 1.129

12. BOUND ON A MULTIDIMENSIONNAL MODEL

12.1. Theorem and algorithm. In this subsection, we try to generalize the algo-
rithm described in section 9 to the case where there are multidimensional models.
The idea is that, for example, if ©g = {61,62,65}, we could try not only to make
projections on:

{ab;,a € R} for i€ {1,2,3}
but also on a bidimensional space like:

{0(01 -+ 502, (a,ﬂ) € ]R,2} .

More precisely, let us give the following definitions. First of all, we assume that we
are in the case where k = 1, so the test sample and the learning sample have size
N. We always assume that:

©0(Z1, .., Zon) = {61, ..., 0m}
is such that every 6} is an exchangeable function of (Zy, ..., Zon).

Definition 12.1. Foreveryd > 0,0 < j; < ... < jg <m+land S = (0;,,...,6;,) €
0¢ we put:

fs(@) = (fay, (), e fo,, (@) -

For convenience, let us put, for any a = (a!,...,a?) € R%:

d
r_ kg,
aS —E a”0;,
k=1

Remark that we have:
Oéfs(.)’ = fagl(.) X = R;
let us put:

1 2N
CPa =~ D fs(Xa) fs(Xa)
i=1

1 N
Cf = N > fs(Xi)' fs(Xi)
i=1

1

1 _
MS = 5052 (),
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and finally:
S ’ -1
= (aS") Y; C
af, = arg Helﬁl r12 (@ E ifs(X 1 2)
S = (aS") § :Y
af = arg Helgl r (a fs(X )

For any matrix M we will let p(M) denote the biggest eigenvalue of M.
Here, o , is our objective but we can only observe o, and the matrix MS.

Remark 12.1. Note the change in the objective. In this subsection, we try to
minimize r; » and not ry.

Theorem 12.1. Letd > 0, let S € ©O%. Let us put:
12N . L
By =5 D Y03 fs(X)' fs(Xi)Cr3
i=1

For any € > 0, we have, with Py -probability ot least 1 — €:

4p (BiS

12 (MBafS') =115 (af ,8') < T’Q) (dlog(2) + 2log é) )

Note that sz is not observable, except in the case of classification where we
have Y; € {—1,+1} and so ¥ = 1, which implies that Bf, = I and so:

P (B1 2) =1
In the general case we have the following corollary.

Corollary 12.2. Let d > 0, let S € ©%. Let us put:
1 & L
Bf = D Y205 fs(X)' fs(Xi)Cy 5,
i=1

that is observable, and:
2N

2
o W (MO £ (X0 s (XD CT M)
z—l
where:
p(Bip2) = ”51”11) ABppX = A1 2Bi 2] 5.
=1
For any € > 0, we have with Pyn-probability at least 1 —e:

8p (BS 9
i (M0aFS) — i (o8,) < L ((10g(2) 1 2105 2)
4 [D‘fz + log ]
+ PR ek e i
N2
We can now give a new algorithm to perform regression estimation, that is a
variant of the one given in section 9. Before all, we have to choose k dimensions
dy,...,dr and k models
S €0, ..., 8, € 0%,

We apply Theorem 12.1 to all the models simultaneously by a union bound argu-
ment and we obtain k£ confidence regions:

CR1,....,CRy
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and the corresponding projections:
I, ..., 0.
We then use the following algorithm:
e choose 6(0) = 0;
e at step n € IN*, define:
k'(n) = arg max di2(0(n—1),II0(n— 1))

and
6(n) = Iy (n)0(n — 1);
o stop when dy 2 (8(n),0(n — 1)) <.

Example 12.1. By taking k = m, d; = ... = d,,, = 1 and S; = 0; for all i, we
obtain exactly the projection algorithm described in section 9.

Example 12.2. Let us take k = m, d; = i for any ¢ and S; = (4, ...,6;): we are in
the case of nested submodels, and we obtain a procedure similar to Lepski’s method
[26], at least in its form proposed by Birgé [5].

12.2. Proofs. For convenience, we assume that S is chosen once and for all, and
so we will let By, stand for Bf,, C1» for C{,, and D; , for DY,. We keep the
notation fs(.) to avoid confusion with the true regression function f(.).

Proof of Theorem 12.1. Let us state the following variant of Lemma 10.1, obtained
exactly in the same way. For any measurable function 5 : (X x R)?Y — R that
is exchangeable with respect to its 2 x 2V arguments, for any measurable function
v : (X x R)?2N — R, that is exchangeable with respect to its 2 x 2N arguments,
for any A € R%:

i &
Py exp <7< ]1V2 Z{fs( i)Yi — fS(Xz'+N)Yi+N}7)‘> — [IAII* - 77)
- o 2

that can be written:

2

Pow exp <7AA’ N — n) < Py exp (% AB1aoX — AIN — n)

where:

N
2 {0V - ¥(Xig) Vi ).
So we have:
2
/ Pon exp (714)\' — AN — n) dx < Py exp (7—)\31,2)\’ — AN — n) dX.
R4 R N
Using Fubini’s theorem we obtain:

2
P2N/ exp(yAA'—AIA'—n)d)\ngN/ exp()\ (7—31,2—1) A'—n)d)\.
R4 R4 N

Now, let us assume that + is small enough for the matrix

2
0
I-LB
N2
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to be definite positive. Actually this means that:

N
o > p(Bi,2)

or:
< N
v p(Bi2)
Then we get:
2 4 _
P2N 7{,% eXp(’YZAAI _n> S P2N w2 eXp( "7) ,
\/det (I - %Bl’z)
or:
v 1 7
Py |exp| —AA" —n || < Py |exp | —p — = logdet (I — —=B; » .
4 2 N
Let us put:
1 2 1
n= —ilogdet (I— ’YFBm) + log =
we get:

PQN <e.

2 1 2 1
exp(%AA' + 3 log det (I — %Bl’g> —log g)

This implies that:

4 1
Py |AA" < — log >1—e.

€4/ det (I— YJVQB)

Finally, note that:
AAI =T1,2 (MsafS') —T1,2 (anS') .

We obtain the following result. For any £ > 0, for any measurable function 7 :
(X x R)2V — R, that is exchangeable with respect to its 2 x 2N arguments:

4
Py |11 (M®afS") — 112 (afzé") < po log >1—c¢.
E\/det (I — ’YWZBLQ)
In particular if we choose:
_ N
T\ 2 (B12)
then we obtain the theorem. O

Proof of corollary 12.2. In a first time, let us introduce the following obvious nota-
tion:

2N
1
B§=By= S V2C} fs(X0) fs(Xi)Cr s
i=N+1

Now, we state a new variant of Lemma 10.1: For any measurable function 7 :
(X x R)2N — R that is exchangeable with respect to its 2 x 2N arguments, for any
measurable function X : (X x R)?2Y — R? that is exchangeable with respect to its
2 x 2N arguments:
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PQN exp ()\Bz)\l - )\Bl)\l - 7’))

2N
1 _1 _1 2
< Py exp (N— SVt (AT fs(Xa) fs(X)CT3N) - n) :
i=1

Now, taking:
1
A=N2A
and:
=lo 1
n =log R
we obtain:
D1,2 —+ log 1
PN A1,2B2)\11’2 < )\1,2B1A11’2 =+ T‘E > 1—e.
So, with probability at least 1 — &:
p(Bi2) = M 2B12M 5 = M2BiA 5 + A2 B2 5
D1 2 + IOg 1
< 2A 9B\, + ———2¢
S 2A1,281A1 5 N
Dy 5 +1logl Dy5 +1logl
<2 sup ABIN + 22T % _9,(By) 4 12T 8
IAlI=1 VN VN
The last step is to combine this inequality with Theorem 12.1 by a union bound
argument. O

12.3. PAC-Bayesian bound for a multidimensionnal model in the induc-
tive case. A similar result can be derived in the inductive case. However, note
that as soon as we can obtain a bound under the form:

dlog%

A ) <
R(0) — arg min R(6) < Cst

for some constant Cst, d = |S| and some estimator 6, we can apply our method.
Note that this is exactly the purpose of the bound obtained in the first part by
a PAC-Bayesian technique, bound 5.4.

13. INTERPRETATION OF THEOREM 7.4 AS AN ORACLE INEQUALITY

We conclude this second part by going back to the inductive case. We first give
a weak variant of Theorem 7.1, in order to obtain an easily observable bound. We
then use Theorem 7.4 as an oracle inequality to show that the obtained estimator
is adaptative, which means that if we assume that the true regression function f
has an unknown regularity /3, then the estimator is able to reach the right speed of

—23
convergence N 27+1T up to a log N factor.

13.1. A weak version of Theorem 7.1. Let us assume that X = [0,1] and let
us put © = Ly(Px)). Let (fx)ren- be an orthonormal basis of ©, and we simply
take, for any z and 6:

that m is chosen and we still have:
O0 = (01,---,0).

Moreover, let us assume that P is such that Y; = f(X;)+n; where 7; is independent
of X; and has an unknown distribution, with of course Py = 0 and P(n?) =< 0? <
oo with a known . We do not assume stronger hypothesis about 7.
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Theorem 13.1. We have, for any € > 0, with P®N -probability at least 1 — ¢, for
any k € {1,....,m}:
. _ A[1+log22] [1 & 21,2 2, 2
R(Crtubi) — R(@kbk) < ——F— | ;fak (X)Y+B +o
The proof is given at the end of the section. Note that this theorem is more
general than Theorem 7.1 in the following way: we do not require the existence of
exponential moments for the noise 7;. But, at least for large values of IV, the bound
is less tight.

13.2. Rate of convergence of the estimator: the Sobolev space case. Now,
let us put:
0, = ar min  R(f
" gGESpan(@o) ( )
(that depends effectively on m by ©¢ = {b1,...,0im}), and let us assume that f
satisfies the two following conditions: it is regular, namely there is an unknown

B >1and a C > 0 such that:
2 _
|45, = £llp < Cm™7,
and that we have a constant B < oo such that:

sup f(z) < B
zeX

with B known to the statistician. It follows that:
2
7l < B>
If follows that every set, for k € {1,...,m}:

fk: iaﬂj:aigBQ ﬂ(“)
j=1

is a convex set that contains f and so that the orthogonal projection: Hlf’m =

%~ .. 115! (where TI5* denotes the orthogonal projection on Fy) can only improve
an estimator:

va,|

Actually, note that this projection just consists in thresholding very large coeffi-
cients to a limited value. This modification is necessary in what follows, but this
is just a technical remark: most of the time, our estimator won’t be modified by
Hf;—’m for any m.

Remember also that in this context, the estimator given in definition 7.5 is just:

2
npmo - £, <o - 71

f(2) = f3(=),
with:
§ = p*.. p°0.

Theorem 13.2. Let us assume that © = ILa(Px)), X = [0,1] and (O)ren- is
an orthonormal basis of ©. Let us assume that we are in the idealized regression
model:

Y = f(X)+n,
where Pn = 0, P(n?) < 0? < 0o and 1 and X are independent, and o is known.
Let us assume that f € © is such that there is an unknown § > 1 and an unknown
C > 0 such that:

155, = FI; < cm™,
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and that we have a constant B < 0o such that:

sup f(z) < B
reX

with B known to the statistician. Then our estimator f (given in definition 7.5 with
no = m here, build using the bound B(e, k) given in Theorem 13.1), with e = N2
and m = N, is such that, for any N > 2,

P®N

28
. 2 log N\ 23+1
7=, )

gd@&@(

Here again, the proof are given at the end of the section. Let us just remark
that, in the case where X = [0, 1], P is the Lebesgue measure, and (fi)ken~ is the
trigonometric basis, the condition:

155, = £l < Cm=2

is satisfied for C = C(8, L) as soon as f € W (3, L) where W (3, L) is the Sobolev
class:

1
{f € £?: f%=Y is absolutely continuous and / IO (@) \(dx) < L2} .
0

25
The minimax rate of convergence in W (8, L) is N~ 28+, so we can see that our
estimator reaches the best rate of convergence up to a log N factor with an unknown

B.

13.3. Rate of convergence in Besov spaces. We here extend the previous result
to the case of a Besov space B;,, in the case of a wavelet basis (see Hérdle,
Kerkyacharian, Picard and Tsybakov [21], or Donoho, Johnstone, Kerkyacharian
and Picard [19]).

Theorem 13.3. Let us assume that X = [—A, A], that P x) is uniform on X
and that (Yj1)j=o,....+o0,kef1,....27} 15 0 wavelet basis, together with a function ¢,
satisfying the conditions given in [19], with ¢ and Yo supported by [—A, A]. Let
us assume that f € B, , , with s > %, 1<p,q <o, with:

co 27
Bs,p,q = {g : [_A;A] - R, g() = a¢() + Z Zﬂj,k¢jak(')a
7=0 k=1
00 ' L bY) %
Zzgq(s_r;) SIBkl”| =gl < +00}
j=0 k=1

(with obious changes for p = +00 or ¢ = +00) with unknown constants s, p and q
and that for any z, |f(z)| < B for a known constant B. Let us choose:

{f917 "'Jfam} = {¢} ) {wj,k:.i = 17 "'72L%J7k = 17 72]}
(so % <m < N) and e = N2 in the definition of f. Then we have:

- o1, =0 ((455) ™ pos - ).

Let us remark that we obtain nearly the same rate of convergence than in [19],
namely the minimax rate of convergence up to a log N factor.

peN
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13.4. Proof of the theorems: Theorem 7.4 used as an oracle inequality.

Proof of Theorem 13.1. Actually, the proof is quite straightforward: instead of us-
ing the techniques given in the section devoted to the inductive case, we use a result
valid in the transductive case and integrate it with respect to the test sample. There
are several ways to perform this integration (see for example Catoni [10]), here we
choose to apply a result obtained by Panchenko [31] that gives a particularly simple
result here.

Lemma 13.4 (Panchenko [31], corollary 1). Let us assume that we have i.i.d.
variables Ty, ...,Tn (with distribution P and values in R) and an independent copy
T =(1T9,...Ty) of T = (T1,....,Tn). Let &(T,T") for j € {1,2,3} be three mea-
surable functions taking values in R, and & > 0. Let us assume that we know two
constants A > 1 and a > 0 such that, for any u > 0:

peN [51 (T,T") > &(T, T") + /& (T, T')u] < Aexp(—au).

Then, for any u > 0:

P®2N{P®2N [6(T, T)IT

> PN [6,(T, T)|T] + / PE2N [64(T, T")|T] u} < Aexp(1 - au).

The proof of this lemma can is given in the annex.
Now, a simple application of the first inequality of Lemma 10.1 (given in the
transductive section) with £ > 0, any k € {1,...,m}, g =id, n = 1 +log 22 and:

Ak = 1 2N all 2
N iz J0. (X3)?Y;

leads us to the following bound, for any &:

PN oxp | /N X LS [fou (Xi)Yi = foo (Xitn)Yign]
VET fo (X2

—2n| <exp(-n),

or:

N
. 1
pN WZ [fo, (X:)Yi — fo, (Xipn)Yirn] > Nszak X;)2V7?

13

< exp(—n) = 2kexp(1)

We now apply Panchenko lemma, with:
Ti = fou (X')Yé, T} = fo, (Xi+N)Yz'+N

&(T,T") ZT“ &(T, T) NZ

&(TT) = 7 Z fo, (X:)2Y2 > 0,
and A = a = 1. We obtain:

pN NZ[fak i)Yi = P[f5, (X)Y]]
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JWZ [fo (Xi)2Y? + P [fo, (X)?Y2]] Sexp(l—n):;_k‘

Remark finally that:
P [f5.(X)?Y?] < P [f5,(X)?] (B* + o),
and by the orthonormality property of the basis (6)r>1:
P [fp,(X)’] =1.

We proceed exactly in the same way with the reverse inequalities for any &k and
combine the obtained 2m inequalities to obtain the result:

N

1
QN E

i=1

Jou(Xo)Y; - P [fek(X)Y]‘

2m N
4+410g Z[f" zy2+32+02]}

—_ p®2N
=P {er{l,..., NZ

4+ 4log2m X
Z\l + og Z[fa 2yz+32+02]}§5

fo, (X3)Y: — P[fo,(X) ]‘

that ends the proof. O

Proof of Theorem 13.2. Let us begin the proof with a general m and e, the reason
of the choice m = N and ¢ = N ~2 will become clear. Let us also call £(¢) the event
satisfied with probability at least 1 — ¢ in theorem 13.1. We have:

PoN — p®N

2
Fom }
| - 1

Lg

i)

+ p®N

Fm 7 2
(1= te0) [z 7= 1] |
First of all, it is obvious that:

pEN

1= e) 7 - )

(1-1g) (HH?mei + ||f||§a>]

< 2 (B®m+ B?) = 2¢(m + 1)B.

< 2P®N

For the other term, just remark that, for any m' < m:
. 2 2 2
] = s ] < e

’ 2
< e o - pr

™ [1+ log 22 _ 2
527 + 8 = £l

NZf Y2 + B + 52
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This is where Theorem 7.4 has been used as an oracle inequality: the estimator
that we have, with m > m/, is better than the one with the "good choice" m'. We
have too:

QN F,m ¢ 2
P s -

< p®N = 4[1+1log?2] | 1 ad X)2Y2 4+ B? 4 o2 nN=268(

< k}_jliN N;fak( )Y+ B+ 0% ||+ (m)

8 [1 4 log 2
Sml [ +Z\;.)g€][B2+U2]
So finally, we obtain, for any m' < m:
N 2 81 + log 2m
o gl <t
P

+ (m')?PC + 2¢(m + 1) B2,

N e
"= (logN>

leads to a first term of order N 25+ log ™ (log N )% and a second term of order
Nz (log N)i’g%. The choice of m = N and e = N~2 gives a first and a second

term of the desired order N 74T (log N )25% while keeping the third term at order
N~!. This proves the theorem. O

The choice of:

Proof of Theorem 13.3. Here again let us write £(g) the event satisfied with prob-
ability at least 1 — ¢ in theorem 13.1. We have:

P®N

-]

= p®N + p®N

N 2
oo - o,

F,m 2
(1—1g) HHP’ f- fHP .
For the first term we still have:
R 2
[ f = 1| < 2m+ 1B

For the second term, let us write the development of f into our wavelet basis:

co 27

F=ap+> Y Bistik

=0 k=1

and:

jo}}

J 27
f@)=a¢+ Z Z Bi ki
=0 k=1

the estimator f . Let us put:

mgNJ

J = 2lies2

s = ol < - 1], = =m0 1],
P P P P P P
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J 27 oo
- o)l + 3 ) (Biw = Bin)” + D Z
§=0

=0 k=1 j=J+1 k=1
J J 9
P+ Z Bik = Bik) L(IBjkl > &) + DD B741(1Bjk] < k)
j=0 k=1 7=0 k=1

00 27
2 D B
j=J+1 k=1
for any x > 0, as soon as £(e) is satisfied (here again we used theorem 7.4 as an
oracle inequality). Now, we follow the technique used in [19] and [21] (see also the
end of the third chapter in [9]). As soon as &(g) is satisfied we have:

8(B? + )logzm I 2

J 27
DO (Bik — Biw)1(|Bikl = k) < Do 1(1Bikl = k)

j=0 k=1 J=0 k=1

j 2

8(B> +0%)log 28 L 2 /8[| %+
< N 22 (=

7=0 k=1
2 2 2m
8(B +<]7V)log oo IB =
7=0 k=1

In the same way, we have:

J 2 2 L 2
SN BBk < ) < KPTTE DTN (BT

=0 k=1 =0 k=1

So we have to upper bound:

_2
PrES

J 2
D 1Bk
=0 k=1

By Holder’s inequality we have, as soon as p >

2s+1

J 1+23

J 27
. _ 2
S Bl <3 |20 me < |IF115% O,

=0 k=1 j=0

_2
let us put C' = ||fl|s4% . Finally, note that we have, for p > 2:

2
[e's) [e9) 27 P
P j(1-2
Z Z Jak - Z Zﬂjvk 2( P)'
j=J+1 k=1 j=J+1 \k=1

As f € Bs 4 C Bs p oo We have:

by
Y| <ozl
k=1

for some C" and so:

i Z/B]zk 01112—2Js

j=J+1 k=1
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for some C"". In the case where p < 2 we use (see [21], for s > % - 1)

Bsp,q C Bs—%—i—%,z,q

to obtain: .
[} 27
Z 2612,19 < 011112—2.](5—}-%—%) < oMo~
j=J+1 k=1
So we have:

PENG(f, ) < 2(m + 1)e(B® + 0°)
8(B? + 0?)log ZTm
N

(1 + C'/gflfﬁj(l_ (1+22s)q)+> + C'KQ*H% J(l_ﬁh
+ C/// (2—J)23 + 011112—J.
Let us remember that:

ggm:ng

_ [logN
"EVTN

to obtain the desired rate of convergence. |

and that € = N2, and take:

ANNEX: PROOF OF PANCHENKO’S LEMMA

For the sake of completeness we give the proof of Panchenko’s symmetrization
result (Lemma 13.4) used in the last section.
The proof of this lemma uses another result.

Definition 13.1. Let us put, for any a € R:

¢, :R—= R

z— (z—a), =(r—a)VO0.

+
Note that for any a € R, ®, is nondecreasing and convex.

Lemma 13.5 (Panchenko, lemma 1). Let (2, A) be a measurable space and P a
probability measure on Q. Let X, X' : Q — R be real-valued random variables such
that, for any a € R:

Pl¢a (X")] < P[e (X)].
Let us assume moreover that there is some T < 1 andy > 0 such that for anyt > 0:

P(X >t) <Texp(-71).
Then we have, for any t > 0:
P(X'>t)<Texp(l—nt).

Proof of Lemma 13.5. Note that there is nothing to prove for ¢ < 1/ (the bound
one the probability is then bigger than 1). For any ¢ > 1/, for any a € R such
that ®,(t) > 0 we have:

P8, (X)] _ P[B, (X)]

PX2O<=30" < a0
1 > ,
:@N)%@+A %@Pm>@m]
1
<
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Let us take: )
a=t——,
Y
note that this choice is valid since:
1
P, (t)=—>0
Y

1 oo
P20 < gl 220 +T [ 8l 0) exp (—0) ]
(I)a(t) 0
= fyI‘/ exp (—yz)dz =Texp (1 —~t).
This ends the proof. O

Proof of Lemma 13.4. Let us remark that:

la@) > @) + ViG@T,T)}

(@(T.T) ~&(T.T)" t}

_ {é (T,T') > &(T,T"), &(T.T')

= {sup 10[&(T,T") - &(T,T') - 66(T,T')| > t} .

6>0
In the same way we obtain:

{Pla@,m)IT] > Ple(T,T)T] + VAP [&(T,T)T]}

= {sw [Pl @711 - Pl )T - 5P (T T T]] > ¢}

Now, we put:
X = sup4d[&1(T,T) — &(T,T") - 0 (T, T")|

>0
and:
X' = sup 43 P 611, 7")[T) = P& (T, T')[T] = 6P [65(7, T)T]].
We have:
X' = sup P48 (6 (T, T") — & (T, ") — 86(7, 7'} ]

6>0

< P[?ig 4561 (T, T") — &(T, T') — 6&5(T, T")] ‘T] = P(X|T).
So we have (remember that ®, is nondecreasing and convex):
P@.(X")] = P{&,[P(X|T)|} < P{P[8, (X)IT]} = P[@a(X)]

for any a € R. So we can apply Lemma 13.5, we obtain that, under our hypothesis
that:

Pl&a(T,T) > &(TI.T") + ViG(T, 1]
= P(X > ) < Texp(-7t)

we have:
P(X'>t)<Texp(l—nt).
This ends the proof. O
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Part 3. Density estimation with quadratic loss: a confidence intervals
method

We propose a feature selection method for density estimation with quadratic
loss. This method relies on the study of unidimensional approximation models
and on the definition of confidence regions for the density thanks to these models.
It is quite general and includes cases of interest like detection of relevant wavelets
coeflicients or selection of support vectors in SVM. In the case of wavelets, we prove
that this method is equivalent to a soft thresholding estimator, that is adaptative
in the sense that it reaches the minimax rate of convergence (up to a log factor)
under the assumption that the density has a given (but unknown to the statistician)
regularity. In the case of SVM, we focus more particularly on the algorithmic aspect,
as our method provides a theoretical justification to any reasonable heuristic for the
choice of the set of support vectors, as well as the possibility to use several kernels
simultaneously.

14. INTRODUCTION: THE DENSITY ESTIMATION SETTING

14.1. Notations. Let us assume that we are given a measure space (X, B, A) where
A is positive and o-finite, and a probability measure P on (X, B) such that P has
a density with respect to A:

P(dz) = f(z)\(dz).

We assume that we observe a realization of the canonical process (Xi, ..., Xn) on
(XN B®N PeN). Our objective here is to estimate f on the basis of the observa-
tions Xj, ..., Xn.

More precisely, let £2(X', \) denote the Hilbert space of all measurable functions
from (X,B) to (R,Bgr) where Bg is the Borel o-algebra on R. We will write

L2(X, ) = L2 for short. Remark that f € £2. Let us put, for any (g,h) € (£2)2:

Pa.)= [ (s60) = h(o)) Ao,

and let ||.|| and (.,.) denote the corresponding norm and scalar product. We are
here looking for an estimator f that tries to minimize our objective:
&(f, f)-

Let us choose an integer m € IN and a family of functions (fi, ..., fm) € (£2)m.
There is no particular assumptions about this family: it is not necessarily linearly
independent for example. In a first time, we assume that these functions are not
data dependent, but we will see later in this last part how to include the case where
fr(.) = K(Xg,.) for some kernel K for example.

14.2. Objective. Density estimation under quadratic loss is a classical problem in
statistics and a lot of work has been done, we refer the reader to the general intro-
duction by Tsybakov [39] and the references within for example. There is a wide
range of applications, among them let us mention multiclass pattern recognition
(by the estimation of the density of every class and then classification of a pattern
by likelihood maximization) and image segmentation, see Zhang and al. [47] for
example.

The objective here is to provide a practical algorithm to select and aggregate
the functions fj that are relevant to perform density estimation.

In the case of a wavelet basis, such algorithms are known and are based on coef-
ficient thresholding, see Hardle, Kerkyacharian, Picard and Tsybakov [21] and the
references within for an introduction. Under suitable hypotheses, these estimators
are able to reach the minimax rate of convergence on spaces of function with a given
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regularity 8: N~20/(0+1) up to a log N term if B is unknown to the statistician
in Donoho, Johnstone, Kerkyacharian and Picard [19]. We show that in this case
our algorithm produces a soft-thresholded estimator that reaches the same rate of
convergence.

We focus also particularly on the case of kernel methods and support vector
machines (SVM). SVM are a class of learning algorithm introduced by Boser, Guyon
and Vapnik in the case of classification, [7]. They were later generalized by Vapnik
[41] to regression, and density estimation of a real-valued random variables with
the Kolmogorov-Smirnov distance as a loss function:

/Oo g(t)dt — /m h(t)dt‘ .

Note that a lot of variants of SVM were introduced in order to modify the set of
support vectors (of basis kernel functions used in the estimation of the function).
For example Tipping [38] introduced Relevance Vector Machine: in this variant
of SVM, the support vectors are meant to be close to the center of clusters of
data. Blanchard, Bousquet, Massart and Zwald [6] proposed to perform a principal
component analysis on the space induced by the kernel. Here, we generalize the
definition of SVM for density estimation to the quadratic loss and propose a method
that justifies the use of a wide range of heuristics to select the set of support
vectors. The choice of a kernel is also of interest for practitioners. For example,
the Gaussian kernel is very often used, but the choice of its parameter remains a
problem. Algorithms using several kernels (for example the Gaussian kernel with
different values for the parameter) were proposed, see for example Ratsch, Schafer,
Scholkopf and Sorensen [33], often without theoretical justifications. Our method
allows the use of multiple kernels.

The guarantee obtained here is that every selected feature actually improves the
performance of the estimator: the quadratic distance to f decreases. Moreover the
estimator is sparse, that means that often only a few of the functions f; are actually
selected. From this point of view the method can be seen as an implementation of
Rissanen’s MDL [4].

d%(S(ga h‘) = sup
TEX

14.3. Organization of the part. The method is an adaptation to the case of
density estimation of the method we proposed in part 2 for regression estimation.
In a first time, we are going to study estimators of f in every unidimensional
approximation model {afx(.),@ € R}. Note that these models are too small and
the obtained estimators do not have good properties in general. But they are used
to obtained, by a PAC bound, confidence regions on f that have a very simple
geometry. We then propose an iterative method that selects and aggregate such
estimators in order to build a suitable estimator of f (section 15). For the sake
of simplicity, we describe the method in this section for a family (f;) that is not
allowed to be data-dependent.

In section 16 we focus more particularly on the statistical point of view: we study
the rate of convergence of the obtained estimator in the case of a basis of wavelets.

Section 17 is devoted to technical improvements and generalizations of the method.
Improvements consists in more accurate PAC bounds leading to tighter confidence
regions. Generalizations consists in including the case where the basis functions
(fx) are allowed to be data-dependent.

In section 18 we provide some simulations in order to compare the practical
performances of our estimator with the density estimators described in [19].

Finally, section 19 is dedicated to the proofs of the theorem.
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15. ESTIMATION METHOD

15.1. Main hypothesis. Until the end of the thesis we will refer to the following
hypothesis about f and/or the basis functions fi,k € {1,...,m}.

Definition 15.1. We will say that f and (f1, ..., f,) satisfies the conditions H(p)
for 1 < p < o0 if, for:

+
p g

there exists some (¢, ¢1,...,Cm) € (]Rjr)m—|r1 (known to the statistician) such that:

Vk € {1,..,m}, ( /X |fk|2”A<das))’1’3ck /X |£xl” Mdz)
and (/X IfIqA(dw)>%§c i) (=o.

For p = 1 the condition (1) is: f is bounded by a (known) constant ¢ and we
put ¢; = ... = ¢ = 1. For p = 400 the condition H(+00) is just that every |f| is

bounded by
\/ck | fuayxas)

where ¢ is known, and we put ¢ = 1. In any case, we put, for any k:

Ck = CgC.

Note that this condition is not very restrictive, actually #(+o0c) does not require
any information about f and just imposes condition on the family (fg)g=1...m to
be chosen by the statistician.

Definition 15.2. We put, for any k € {1,...,m}:
_ 2 _ 2 _ 2
Dy = /X el M) = &(fi,0) = [|fill®

15.2. Unidimensional models. Let us choose k € {1, ...,m} and consider the uni-
dimensional model My, = {afi(.),@ € R}. Remark that the orthogonal projection
(denoted by II g, ) of f on My, is known, it is namely:

M f() =k fr(.)
where:

Ja Fr(@)f @)Ndz) _ [y fu(@)] ()N (dz)
Sy fr(z 2’\d$) B Dk

A natural estimator of this coefficient is:

N
N 2 J1(Xd)
/ 2 Jr(2)2X( (dz)’

because we expect to have, by the law of large numbers:

— . 2 _
ay = argglelﬂd (afe, f) =

Q=

ka —>P[fk / fr(z dz).

Actually, we can formulate a more precise result.
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Theorem 15.1. Let us assume that condition H(p) holds for some p € [1,+0c0].
Then for any € > 0 we have:

P®N{Vk € {1,...,m},d*(& fr, o fr)

< {4 [1+log 2] } I%Ef\il fe(X3)? 0y

N Dy,

}21—5.

The proof is given in section 19, more precisely in subsection 19.1 page 143.

15.3. The selection algorithm. Until the end of this section we assume that
H(p) is satisfied for some 1 < p < +o00.
Let B(e, k) denote the upper bound for the model ¥ in Theorem 15.1:

4[1+log22] | [ £ 2N, fi(X)?
N Dy

+ Ch

Ve > 0,Vk € {1,...m}: B(g,k) = {

Let us put:
CRk,E = {g € '627 dz(dkfka Hng) S ﬂ(€7 k)}
Then Theorem 15.1 implies the following result.

Corollary 15.2. For any € > 0 we have:
P®N{Vk €{l,...m}, fe€ CRk,E} >1—e.

So for any k, CRy.¢ is a confidence region at level k for f. Moreover, CRy, being
convex we have the following corollary.

Corollary 15.3. For any € > 0 we have:
P®N{Vk €{1,..,m},Vg € £?,d*(Tler,.. 9, f) < d2(g,f)} >1-—e.

It just means that for any g, Ilcr, . g is a better estimator than g. Note that
g and k being given, it is easy to compute explicitly Ilcz, . g, this is done in the
remark concluding this subsection, remark 15.1 page 131.

So we propose the following algorithm (generic form):

e we choose € and start with gg = 0;
e at each step n, we choose an indice k(n) using any heuristic we want, it is
of course allowed to be data-dependent, then we take:
gn+1 = HCRk("),EgTL;

¢ we choose a stopping time n, in any convenient way and take:

A~

[ =9n,-
So corollary 15.3 implies that:

P®N{d2(f,f) = Plgn, ) < o < Plgo, f) = d2(0,f)} >1—c.

Actually, a more accurate version of corollary 15.3 can give an idea of the way
to choose k(n) in the algorithm. Let us use corollary 15.2 and remember the fact
that each CRy,¢ is convex.
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Corollary 15.4. For any € > 0 we have:

P®N{Vk € {17 7m}7vg € ‘Cz’dz(HC'Rk,zg;f) S d2(gaf) - dz(HCRk,sgag)}

>1—c.

This suggests to choose as k(n) the direction k such that d*(Ilcr, . gn,9n) is
maximal. This is very close to the greedy algorithms already used in the context
of regression estimation, see Barron, Cohen, Wahmen and DeVore [3] for example.
Note however that this is not necessarily the optimal choice.

This leads us to the following version of our previous algorithm:

e we choose € and 0 < k < 1/N and start with go = 0;
e at each step n, we take:

k(n) =arg _max  d*(lcRr,,.9n; gn)

ke{l,...,m}
and:
In+1 = ery () . 9ns
o we take:
ns=inf{n € N: d*(gn,gn-1) < K}
and:

f = Yn,-
Corollary 15.4 implies that:

ns—1
PN SO0~ 3 damguen) 21

Remark 15.1. Given g and k, the computation of Ilc, . g, is quite easy. First, note
that ll¢w, .9 = g+ bfy so we just have to compute the coefficient b. Moreover, the
conditions I¢w, .9 € CRy,c gives:

5o

2

< Ble, k)

or:

<g,fr> N )2 ﬂ(&,k’)
—= " 4+ bh— .
( TR AN TATE

There are two possibilities. If this condition is satisfied for b = 0, this means that
g9 € CRg, and so llgr, .9 = g. Otherwise, Il¢cr, g will lie on the boundary of
CRy,e, this means that b will satisfy:

[1£11? Il

Finally, note that |b| should be minimal. This leads to the following formula:

< g, fr > _sgn (dk <9 fx >) Ble, k)
Il fell? Il ell? Il fxll

oA <g)fk> ~ <g)fk> IB(E’k)
—ak—Tk—sgn ay — Dy Dy

<g,fk>+b_dk€{i ﬂ(s,k)}‘

b=a, —

where sgn is the sign function given by sgn(z) = 1r, (z) — Ir_(z).
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15.4. An example: the histogram. Here, we just make things more explicit in
a classical example in statistics, the histogram, so the reader more interested in
kernel methods can skip this subsection. Let us assume that ) is a finite measure
and let A4, ..., A, be a partition of X. We put, for any k € {1,...,m}:

fe() =14,()-
Remark that:
Di= [ Au@Ade) = X (40,
and that condition H(+00) is satisfied with constants:
1
A (Ag)

and (as we have the convention ¢ = 1 in this case) Cy = cxc = ¢
In this context we have:

Cp =

G = P(X € Ak)
PN

& = B Zim L (X))
A (Ar)

2m N
B(e, k) = {%} l%;fk(xi)z +1

Finally, note that all the confidence regions CRy . are orthogonal in this case.
So the order of projection does not affect the obtained estimator here, and we can
take:

f = Hcp_m’e ---HCRl,EO-

7 S ~ 18(67 k)

HOEDY (ak - fi(z)

= AMAw) ),

where, for any y € R we have: (y)+ = max(y,0) =y V0.
In this case corollary 15.4 (page 131) becomes:

We have:

u Beh))

. €

P (g s @00 -3 (a- 750 ) Ao f -

= A (Ar)
= +

15.5. Remarks on the intersection of the confidence regions. Actually,

corollary 15.2 (page 130) could motivate another method. Note that:

Vk€{1,..,m}, f €CRie & f €[ CRE
k=1

Definition 15.3. Let us put, for any I C {1,...,m}:
CR1c=[)CRuie,
kel
and: A
f[ = HC’RI,EO-

The estimator f{1,...,m} can be reached by solving the following optimization
problem:

. 2
min
min g,
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st. Vke{l,..,m}:
{ (9 — & fr, fr) — VDrB(e, k) <0,
— {9 — & fr, fr) — V/DrB(e, k) <0.

The problem can be solved in dual form:

max [_22727k fz;fk +2Z’ykak||fk||2 —2Z|’yk| \/Dkﬂ 5 k

€R™
" i=1 k=1

with solution v* = (77, ..., 7,) and:

fo,m = Z%’ka-
k=1

Note the similarity with usual SVM algorithms (at least in the case where we
consider data-dependent kernel functions, as we will do in section 17), but with
one major difference: we replaced the kernel induced scalar product by the scalar
product associated to the distance d(.,.) that we try to minimize.

From a statistical point of view, as:

_szzryk flafk _||f ||

i=1 k=1

and:

m N
23" ranlfell? = 227*%%”2 = 23 px)
k=1 =1

we can see this as a penalized maximization of the likelihood.

16. SOME CLASSICAL EXAMPLES IN STATISTICS WITH RATES OF CONVERGENCE

16.1. General remarks when (f;); is an orthonormal family and condi-
tion #(1) is satisfied. In subsections 16.1, 16.2 and 16.3, we study the rate of
convergence of our estimator in the special case where (fi)ren+ is an orthonormal
basis of £2, so we have:

Dy = / fr(z =1

/X Fo(@) o (@A) = 0

and:

ifk#k.
We also assume that condition H(1) is satisfied: Vo € X, f(z) < ¢, remember
that in this case we have taken ¢, = 1 and so Cy = ¢, so:

ﬂ(a,k)={w} lNka +ec|.

Note that in this case all the order of application of the projections Il¢g, . does
not matter because these projections works on orthogonal directions. So we can
define, once m is chosen:

f= Her,, . --Her, 0 =1eryy oy 0-

Note that:

= ngn(dk) (|5ék| — /3(5:]9))_‘_1019('”)7
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and so f is a soft-thresholded estimator. Let us also make the following remark.
As for any z, f(z) < ¢, we have:

d*(f,0) <ec.

So the region:
— £2 . *
B {g €L:VkeN ,/Xg(m)fk(w)/\(dw) < \/E}

is convex, and contains f. So the projection on B, IIz can only improve f . We put:

(16.1) f=Tgf.

Note that this transformation is needed to obtain the following theorem, but does
not have practical incidence in general. Actually:

fla) = 3 som(an) { (lax] = VBER) A x/E} fi(@),
k=1

where we let a A b denote min(a, b) for any (a,b) € R2.

16.2. Rate of convergence in Sobolev spaces. It is well known that if f has
regularity 8 (known by the statistician) then we have the choice

m = N7
and a standard estimation of coefficients leads to the optimal rate of convergence:
N,
Here, we assume that we don’t know 3, and we show that taking m = N leads
to the rate of convergence:
N log N
namely the optimal rate of convergence up to a log N factor.

Theorem 16.1. Let us assume that (fi)ren+ 48 an orthonormal basis of £2. Let
us put:

=ar min d*(g, f),
T © geSpan(fiyesfm) (@)
and let us assume that f € L? satisfies condition H(1) and is such that there are
unknown constants D > 0 and § > 1 such that:
&*(f > f) < Dm 25,

Let us choose m = N and € = N~2 in the definition of f Then we have, for any
N >2:

7

28
log N\ 27+1
)
where f is the estimator defined by Equation 16.1.

PN, ) < D)

The proof is given in subsection 19.2 page 148. Let us just remark that, in the
case where X' = [0, 1], A is the Lebesgue measure, and (fi)ren+ is the trigonometric
basis, the condition:

& (o, f) < D™
is satisfied for D = D(B,L) = L2728 as soon as f € W(B,L) where W (3, L) is
the Sobolev class:

1
{f € £2: f-1 ig absolutely continuous and / P () \(dx) < L2} ,
0
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see Tsybakov [39] for example. The minimax rate of convergence in W (3, L) is

N~ 2ﬂ+1 so we can see that our estimator reaches the best rate of convergence up
to a logN factor with an unknown f.

16.3. Rate of convergence in Besov spaces. We here extend the previous result
to the case of a Besov space B; p 4. Note that we have, for any L > 0 and g > 0:

W(B,L) C Bg2,2

so this result is really an extension of the previous one (see Hérdle, Kerkyacharian,
Picard and Tsybakov [21], or Donoho, Johnstone, Kerkyacharian and Picard [19)]).
We define the Besov space:

o0 27
Bsypaq = {g : [07 ]'] _> ]R‘7 g(') = 05(25(.) + Zzﬂjaklpj’k( )
j=0 k=1
3 oiale=i=y) Z Bkl | =lglle,, < +oo},
j=0

with obvious changes for p = 400 or ¢ = +o0o. We also define the weak Besov
space:

oo 27
Wy = { :0,1] =R, g()=as(.)+ Z Zﬁj,kd}j,k( )
=0 k=1
2.7
sup)\”22j )Zﬂ{\ﬂj,kb/\} <+oo}
A>0 Pt
co 29
= {g 0,11 - R, g() =ag()+ D> Birtik()
3=0 k=1

by
7r

sup A"~ pZQJ 037184 Ly, <01 < +°°}=

A>0 j=0 k=1

see Cohen [15] for the equivalence of both definitions. Let us remark that By, 4 is
a set of functions with regularity s while W,  is a set of functions with regularity:

1 /(7w
!
=-(=-1].
? 2<p )

Theorem 16.2. Let us assume that X = [0, 1], and that (Y k) j=o,...,+00,ke{1,...,29}
is a wavelet basis, together with o function ¢, satisfying the conditions given in
[19] and having regularity R (for example Daubechies’ families), with ¢ and o1
supported by [—A, A]. Let us assume that f € B, p , with R+1> s > l 1<q< oo,

2 <p< +o0, orthathBquﬂW 2 2wzthR+1>s>— 1<p<—|—oo with

unknown constants s, p and q and that I satisfies condition H(1) with a known
constant c. Let us choose:

{Fiyons fm} = {0} U {jp, 5 = 1,2 02 ) k=1, .., 27}
(so % <m < N) and e = N~2 in the definition of f. Then we have:

PENE(f, ) = O ((“"’TN> _> ,

where f is the estimator defined by Equation 16.1 (page 134).
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The proof of this theorem is also given in subsection 19.2 page 148. Let us
remark that we obtain nearly the same rate of convergence as in [19], namely the
minimax rate of convergence up to a log N factor.

16.4. Kernel estimators. Here, we assume that X = R and that f is compactly
supported, say by [0,1]. We put, for any m € N and k € {1, ...,m}:

fie(@) = K (%730)

where K is some function R x R — R and we obtain some estimator that has the
form of a kernel estimator:

. LR k
f{l,...,m}(x) - kglakK (E;x> .

Moreover, is is possible to use a multiple kernel estimator. Let us choose n € N,
h € N, h kernels Kj, ..., K and put, for any k =i +n*j € {1,....,m = hn}:

fi(@) = K; (%ﬂ’?) :

We obtain a multiple kernel estimator:
. n h i
Fmy@) =D i K (Eam) .
i=1 j=1
However, note that the use of kernel functions is more justified in large dimension
where we will take as basis functions: K;(X;,.), namely data-dependent functions.
We show in the next section that our algorithm can be extended to this case.

17. IMPROVEMENTS AND GENERALIZATION OF THEOREM 15.1

It appears in simulations that the bound on d2(éy fx., @ fx), as given by Theorem
15.1, has to be very sharp if we want to obtain a good estimator. Actually, as
pointed out by Catoni [10], the symmetrization technique used in the proof of
Theorem 15.1 causes the loss of a factor 2 in the bound because we upper bound
the variance of two samples instead of 1. So it is possible to obtain sharper bounds.
In this section, we try to use this remark to improve our bound, using techniques
already used by Catoni [9].

We then remark that a technique due to Seeger [37] allows to include the case
of data-dependent basis functions (f) and to deal with SVM in particular.

First, remark that the estimation technique described in section 15 does not nec-
essarily require a bound on d?(é&y fx, @k fx). Actually, a simple confidence interval
on oy, is sufficient.

17.1. An improvement of Theorem 15.1 under condition H(+00). Let us
remember that #(400) just means that every fj is bounded by +/CyDy.

Theorem 17.1. Under condition H(+00), for any € > 0, for any Br1,Br2 such
that:

N
0<ﬂk,j<7 j€{1,2},

VCi.Dy’

with P®N -probability at least 1 — ¢, for any k € {1,...,m} we have:

o™ (e, Br1) < < oy (e, Br.2)

with:

N — Nexp [% Efil log (1 — ﬂ;ﬁ fk(Xz)) - %T_]

azup(67 ﬂk,2) = Dk,Bk 5
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and:
N exp [% Zf;l log (1 + ﬁl’“\,—lfk(X,)) — IOLNT—] - N
D1 ’

The proof is given in subsection 19.3 page 150.
First, let us see why this theorem really improves Theorem 15.1. Let us define:

Vi = P {[/u(X) = P (fe(X))]'}

aiknf(ea Bk,l) =

and let us choose:
N log sz
Bri = Pr2 = o

Then we obtain:

in . 1 [2Vjlog 22 log 2
ap (e, Br,1) = by — ZEE . +(9p( LA )

Dy N N
and:
1 [2Vilog2m log Zm
sup oA - € e
ay P (g, Br2) = ap + N TN +Op i .
So, the first order term for d2(éy fx, ax fr) is:
2
2Vi log =*
D.,N °

there is an improvement by a factor 4 when we compare this bound to Theorem
15.1.
Remark that this particular choice for 81 and B2 is valid as soon as:

Nlog 277” < N
Vi VCy Dy,
or equivalently as soon as N is greater than
Cy Dy log 22
—

In practice, however, this particular 1 and S 2 are unknown. We can use the
following procedure (see Catoni [10]). We choose a value a > 1 and:

log N __
B:{al,0<l< {gi VCkaJ —1}.
- loga

By taking a union bound over all possibles values of B, with:

we obtain the following corollary.

Corollary 17.2. Under condition H(+o0), for any a > 1, for any € > 0, with
P®N _probability at least 1 — & we have:

inf eloga _ . su eloga
s n ,B) <@y < inf P B,
ﬂlelgak <logN — 11log Ci Dy, ﬂ) =k = geB K (logN — 1 log Cy Dy, ﬂ)
with:

log - __
B:{a’,0<l< {gi ‘/C’“D’“J—l}.
- loga
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Note that the price to pay for the optimization with respect to Bx,1 and B2 was
just a loglog N factor.

17.2. A generalization to data-dependent basis functions. We now extend
the previous method to the case where the family (f1, ..., f,) is allowed to be data-
dependent, in a particular sense. This subsection requires some modifications of
the notations of section 15.

Definition 17.1. For any m' € IN* we define a function O, : X — (EQ)m . For
any i € {1,..., N} we put:
O (Xi) = (fits - fism') -

Finally, consider the family of functions:

(f17 7fm) = (f1,17 ---7f1,m’7 ---7fN,17 -'-7fN,m/) -

So we have m = m'N (of course, m’' is allowed to depend on N). Let us take, for
any i € {1,...,N}:

Pi(.) = PON(|X3).
We put, for any (i,k) € {1,..., N} x {1,...,m'}:

D; =/Xfi,k($)2)\(d$)=

and we still assume that condition #H(oco) is satisfied, that means here that we have
known constants Cj = ¢; r such that:

Ve e X, |fir(@)| < /CirDig.

Finally, we put:

= . d2 . )
i, = argmind”(afix, f)
Theorem 17.3. For any e > 0, for any Bi,1,0Bik,2 such that:

0< ﬂi,k,j < j € {1,2},

N-1
VCirDiy’
with P®N -probability at least 1 — ¢, for any i € {1,...,N} and k € {1,...,m} we
have:

& (e, Bik) <@ < &P (e, Bik,2)
with:

ay P (e, Bik,2)

X 1 sz’N
N—1—(N—-1)exp [ﬁ > i l0g (1 — ‘jvffflk(XJ)) _ log ¥ ]
D; 1B k2

and:
apt(e, Bika)
. log 2m/N
(N — 1) exp |:ﬁ Ej#i log (1 + []7\1[511 fz"k(Xj)) — OgN_El ] —-N+1
D; v Bi k1

The proof of this theorem is also given in section 19 (subsection 19.3 page 150).
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Example 17.1 (Multiple kernel SVM). We propose the following choice:
O (Xi) = { K1(Xi, )y ooy Ko (X, ) |

for some family of functions X? — R: (K1, ..., K;). Note that we have m = m/N.
In this case, the estimator is under the form:

m' N
Vz € Xa f(m) = Zzai,jKj(Xiam)a

j=1 i=1
and the number of &; ; # 0 is expected to be small. This estimator has the form of
aSVM (if h = 1 and K is a Mercer’s kernel). However, if we take the general form
of the algorithm, we can see that it is possible to use whatever heuristic to choose
the next pair (4, 7), and so we can use a wide range of methods to choose the set of
support vectors.

For example, if IV is large, we can use only the following method:

e use a clustering algorithms on the data to obtain ¢ clusters;
e at each step, try to use only one vector from each cluster, for example the
one that is the closest to the mean point of the cluster.

In this case have only to try ¢ projection instead of V. This proposition is suggested
by Tipping’s Relevance Vector Machine [38].

One of the most used kernels is the Gaussian kernel. If X is a metric space, with
a distance 4(.,.), we choose v € R} and we put:

K(z,2') = exp [-76*(z,2)] .
In practice, the choice of < is problematic. Here, we can choose a grid of values
(71, - 7n) € (R%)" and take:
Kj(z,2') = exp [—7;6%(z,2")]
and let the algorithm selects the relevant values of ;.
Note that in this case, hypothesis H(oco) is obviously satisfied. If X = R,
d(z,z") = |z — 2’| and A is the Lebesgue measure we have:

oL
Cij=cij=\—"=5

with obvious adaptations of the notations.

17.3. The histogram example continued. We apply here the improved bounds
in the case of the histogram introduced in subsection 15.4 page 132.
In the case of the histogram, fr(.) = 14,(.) can take only two values: 0 and 1.

Remember that Dy = A(4y). So:
{i:X: €A} ~
(1 + @) i] -1
N 2m

-1
(1+x)721+7m+%m2

. N
Ot}cnf(ewgk’l) - m

Remember that, for any x > 0:

and so:

2

joN

o™ (e, Br1) >

¢ (3m)

Bk (1 — & Dy) N E\W
[1_ 2N ]_Dkﬁk,l [l_(%> ]
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Now, we take the grid:

log X
32{21,0315{ gVD’“J—l}.
log 2

Remark that, for any 3 in:

55
"2/Dy,
there is some b € B such that 8 < b < 24, and so:

ol (e,b) > Gy (%) v [1 - 5k,1(12—N&ka)] 3 ij2vﬂk,1 [1 _ (i)%] ‘

This allows us to choose whatever value for 81 in

o)

Let us choose:

N
s N? [(m) Y- 1]
MU\ 4Dy (1 — a4 Dy)

that is allowed for N large enough. So we have:

™ (e, Br1) > G (i) v \/akaa — 4Dy) [(%) v _ 1].

2m

With the union bound term (over the grid B) we obtain:

: elog?2
ainf 8 Bin

lo _N

g /Dy

1 -1
log 2 Y log 2 Y
S 4 (%) — | aDe(1 - a0y (L%) _,

mlog -

2mlog —X—
. GrDy(1 — éxDy)log T@ <10g mlogN)
= Qp — ~ O g — ,

remark that we have this time the "real" variance term of 1 4, (X):

A A i X; €A it X; €A
6k De(1 — ayDy) = L & 31 (1_|{ : k}|>_

17.4. Another simple example: the Haar basis. Let us assume that X = [0, 1].
Let (p, 1) be a father wavelet and the associated mother wavelet, and:

Yin(e) =92z + k)

for k € {0,...,27 — 1} = S; (note that the wavelet basis is non-normalized here).
Here, we use the Haar wavelets, with:

p(z) = Lpo,11()
b(@) = 1o 3)(@) = 113 4)()-
For the sake of simplicity, let us write:

Y-1,k(2) = p(2)
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for k € {0} = S_;. By an obvious adaptation of our notations, let us put @;,; the
coefficient associated to t; x:

@jk = = Pipji(X)
J f ¢‘]2"k J
remark that condition H(oco) is satisfied with D;; = 277 and Cjj = 1. In this
particular setting, note that @_; o = 1 is known, so the associated confidence

interval is just {1}. Moreover, here 1); ;(X) can take only three values: —1, 0 and
1. Let us put:

_ 1 X

Remark that in this case we have:

NZIOg( %k( ))

2 B
P[5 (X)? log (1= 2} + TP wy(X)]log ().
1+N

So we have:
oY (e, ) = ! N — Nexp| =P [¢;1(X)*] 1o 1—B—2)
DiBra P ok & N2
1— 1+2\ log2m
—§P[¢,-,k<X)]log<1f%> — H
and:

inf 1 /32
ainf (e, ) = Dkﬂkl{wexp{ P [0y g (1~ 22)

1 1+ £ log 2
(123 -] )

18. SIMULATIONS

18.1. Description of the example. We assume that we observe X; for i €
{1,..,N} with N = 210 = 1024, where the variables X; € [0,1] C R are i.i.d.
from a distribution with an unknown density f with respect to the Lebesgue mea-
sure. The goal is to estimate f.

Here, we will use three methods. The first estimation method will be a multiple
kernel estimator obtained by our method, the second one a thresholded wavelets
estimate also obtained by this algorithm, and we will compare both estimators to
a thresholded wavelet estimate as given by Donoho, Johnstone, Kerkyacharian and
Picard [18].

18.2. The estimators.
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18.2.1. Hard-thresholded wavelet estimator. We first use a classical hard-thresholded
wavelet estimator.
In the case of the Haar basis (see subsection 17.4), we take:

N

) 1

Qjn =2+ D ik (X0).
i=1

For a given k > 0 and J € IN, we take:

J
fa() = Z Z &k 1(|Gjk| > Kt N)P58(:)
j=—1k€eS;
where:
tin = %

Actually, we must choose J in such a way that:
27 ~ 1y
Here, we choose Kk = 0.7 and J = 7.
18.2.2. Wawvelet estimators with our algorithm. We also use the same family of

functions, and we apply our thresholding method, with bounds given in subsection
17.4 page 140. So we take:

m =27 =128.

We use an asymptotic version of our confidence intervals inspired by our theo-
retical confidence intervals:

Qjp € OAéj’k +

where Vj ; is the estimated variance of v x(X):

2

1 1 &
Vike =+ ; bin(Xi) = & f;%,k(Xh)

Let us remark that the union bound are always "pessimistic", and that we use
a union bound argument over all the m models despite only a few of them are
effectively used in the estimator. So, we propose to actually use the individual
confidence interval for each model, replacing: the log 22 by log 2.

18.2.3. Multiple kernel estimator. Finally, we use the kernel estimator described in
section 16 page 133, with function K:
Kj(u,v) = exp [-2% (u — v)?]

with n = N and j € {1,...,h = 6}. We add the constant function 1 to the family.
Here again we use the individuals confidence intervals, and the asymptotic ver-
sion of this intervals.
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TABLE 4. Values of ¢; and ¢; in the fonction Blocks(.).

i 1 2 3 4 5 6 7 8 9 10 |11
Ci 4 -5 |3 —4 |5 4.2 | =211 43 | -3.1{ 2.1 | —4.2
t; 0.10] 0.13| 0.15| 0.23| 0.25| 0.40| 0.44| 0.65| 0.76| 0.78 | 0.81

TABLE 5. Results of the experiments. For each experiment, we
give the mean of the distance of the estimator the density (d?(., f))

on the experiences (and the standard deviations).

143

Function standard  thresh- | thresh. wav. with | multiple kernel
f) olded wavelets our method

Doppler 0.101  (0.0172) 0.125 (0.0085) 0.081 (0.0079)
HeaviSine | 0.065 (0.0115) 0.061 (0.0071) 0.039 (0.0106)
Blocks 0.110 (0.0216) | 0.142 (0.0097) | 0.121 (0.0206)

18.3. Experiments and results. The simulations were realized with the R soft-
ware [32].

For the experiments, we use the following functions f that are some variations
of the functions used by Donoho and Johnstone for experiments on wavelets, for
example in [18] (actually, these functions were used as regression functions, so the
modification was to add them a constant in order to ensure they take nonnegative
values):

2m(1
Doppler(t) =1+ 24/t(1 — t) sin % where v = 0.05
1
HeaviSine(t) = 1.5+ 1 [4 sin 4wt — sgn(t — 0.3) — sgn(0.72 — t)

11
1
Blocks(t) = 1.05+ 7 ; cill(; 4oo)(t)

where the values of the ¢; and ¢; are given in Table 4.
We consider 3 experiments (for the three density functions), we choose e=10%,
repeat each experiment 20 times.

18.4. Results and comments. The results are reported in Table 5. We also give
some illustrations (Figures 6, 7 and 8). The experiments are very simple, note
however the following facts.

First, the wavelet estimator obtained by our method give results that are com-
parable to the thresholded wavelets estimator. Moreover, note that the choice the
threshold & in the tresholded wavelets estimator done in this experiment cannot be
done in practice as we choose the value that gave the better results in the experi-
ments. In practice, « is arbitrary and this leads to lower performances.

Then, multiple kernels SVM performs far better than the other estimators, except
on the last function (Blocks) but note how the Haar basis seems particularly well
adapted for the approximation of this function.

Finally, looking at the standard deviation values, we note the interesting fact that
estimators obtained with our method are more "stable". This can be explained by
the fact that we did not try to minimize the expectation of the distance of our
estimator to f, but rather to control this quantity with high probability.

19. PROOFS
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FIGURE 6. Experiment 1, f = Doppler. Up-left: true regression
function (true). Down-left: SVM (f). Up-right: wavelet estimate with
our algorithm (ondelrel). Down-right: "classical" wavelet estimate
(ondelseu).
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FiGure 7. Experiment 2, f = HeaviSine.

19.1. Proof of Theorem 15.1 of section 15. Before we give the proof, let us
state two lemmas. The first one is a variant of a lemma by Catoni [10], the second
one is due to Panchenko [31].

Lemma 19.1. Let (T4, ..., Ton) be a random vector taking values in R2N distributed
according to a distribution P®*N. For any n € R, for any measurable function
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FIGURE 8. Experiment 3, f = Blocks.

A:R2N R that is exchangeable with respect to its 2 x 2N arguments:

& 2 2N
PEN exp (N Z{Tz’+N - Ti} - Nz Z T? - 77) <exp(-n)
=1 =1

and the reverse inequality:

N
A A
PN eXP<N E {Tz’ - Ti+N} -2 E T? - T)) <exp(-n),
i=1 i=1
where we write:

n=n (Tl, ...,TQN)
A=A(T,....,ToN)
for short.

Proof of Lemma 19.1. In order to prove the first inequality, we write:

o & UL
P exp NZ{THN—Ti}—mZTi =1
=1 i=1

N A\ \2 2N
— pR2N o Ty - 2 _
=PV exp (; log cosh { N (Tixn T,)} 2 ; T; n) .

We now use the inequality:

72
Vz € R,logcoshz < Ch
We obtain:
A 2 s A2, N
log cosh N (Tiyn —T3) ¢ < N2 (Tiyn —T0)" < Nz (TN +T7)-

The proof for the reverse inequality is exactly the same. O
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Lemma 19.2 (Panchenko [31], corollary 1). Let us assume that we have i.i.d.
variables Ty, ...,Tn (with distribution P and values in R) and an independent copy
T = (INt1,-Ton) of T = (Th,...,Tn). Let §(T,T") for j € {1,2,3} be three
measurable functions taking values in R, and & > 0. Let us assume that we know
two constants A > 1 and a > 0 such that, for any u > 0:

PO [6(1,T") > &(T,T') + V& (T, T')u| < Aexp(-au).

Then, for any u > 0:

peN {P®2N [6(T, T")|T]

> PN (6T, T)T] + /P22 [6(T, T)|T] u} < Aexp(l — au).

The proof of this lemma can be found in Panchenko’s paper, [31]. We can now
give the proof of Theorem 15.1.

Proof of Theorem 15.1. Let (Xn41, ..., Xon) be an independent copy of our sample
(X1,...,Xn). Let us choose k € {1,...,m}. Let us apply Lemma 19.1 with P = P
and, for any i € {1,...,2N }:

T; = fu(X3).
We obtain, for any measurable function 7 € R, for any measurable function Ay :
R2N — R’ that is exchangeable with respect to its 2 X 2N arguments:

P®2Nexp()\ Z{fk( i+N) — fr(X } X S ka —Uk> < exp (—nk)

i=1

and the reverse inequality:

P®2Nexp<)\ Z{fk( i) — fr(X z+N} Ay ka _77k> < exp (—nk)

i=1

as well. This implies that:

N
peRy %Z{fk(Xi) — fe(Xiyn) } N2 ka < exp (=)
i=1
and:
N
peN %Z{fk(XHN) fe(X } Zf —k < exp (=) -
i=1

Let us choose:
N2m,
SN fr(Xi)?

in both inequalities, we obtain for the first one:

N 2N N2
%Z{fk(Xi) - fk(Xz'+N)} > 2\/%] < exp (=) -

We now apply Lemma 19.2 with the same T; = fi(X;), i = u, A=1,a =1,
€2 = 07

Ak =

P®2N

N

6= 2 S {(X) ~ fe(Xiiw)} and

i=1
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€ = A5 fr(X)?
3=~
We obtain:
N M { & iy fu(X0)? + Pfi(X)?]
pev %;fk(xi)—mmxnm\l aLexE] — }]
w1l & AN Lit Fe(Xi)? + P[f(X)?]
= peN ﬁizzlfk(Xi)—P[fk(X)]ZQ\l {N N }]
<exp (1 —m)-
Remark that:
X = [ fu@f f@\da
X
So, using condition H(p) and Hélder’s inequality we have:
(/ | fe(z 2p/\dw) (/ f(z q/\d:v)
< (Ck/ fr( ) ( / [z )
(cre / fr(z = CyDy,.

Now, let us combine this inequality with the reverse one by a union bound argument,
we have:

pEN

S DR - P[fk(X)]‘

J uls {% SN (X2 + Cka}
> 2 N

<2exp(l—m)-

We now make a union bound on k € {1, ...,m} and put:
2m

We obtain:
A~ PIf (X)]‘

i=1

\l (1 +1022) { A TN, (X0 + cka}]
<2 N >1-e.

PON Yk € {1,...,m},

We end the proof by noting that:

(£ 28, fx0) - PLx)])
fxfk 2)\ d:L')

d* (G fr, Qrfr) =
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19.2. Proof of the theorems of section 16.

Proof of Theorem 16.1. Let us begin the proof with a general m and ¢, the reason
of the choice m = N and ¢ = N2 will become clear. Let us also write £(¢) the
event:

(19.1) 5(5) = {Vk € {]., ...,m},dQ(dkfk,akfk)

< {4[1+log27"‘]}
- N

satisfied with probability at least 1 — ¢ according to Theorem 15.1. We have:

SN fe(X)?

D, + Cy

}

PENG(f, ) = PN |1 d(F, )| + PPN

(1-1ge)) d(f, f)] .
For the first term we have:

a2(f, f) <2/f A(dz) +2/f z) < 2c+ 2me = 2(m + 1)c

and so:

pPoN

(1 - Lg) (f. )| <2e(m+1)e.

For the other term, just remark that under £(e):

d*(f, f) = & (pler,, . ...1ex, .0, f)
< d*(ew,, . --Ter, 0, f) < &*(Ter,,, ,--Ter, 0, f)

for any m' < m, because of Theorem 15.1, more precisely of corollary 15.3 page
130. And we have:

d2 (HMm/ -'-HM107 f)

m' 2m N —
3 {%} Hsz(x,.)z | 4+ @ f).

k=1 i=1
So we have:
P®N 15(6)d2(f7f) SP®N dQ(fJf)]
n + log 22 1 & _
< p®N 1 N2 n—28
< 2‘1{7}“;&(&) +e| +(m)7D
2m
o Smie[l+log 2] +(m')*"D.

- N
So finally, we obtain, for any m' < m:
8m'c 1 + log 2
[L+log®2]
N

PONG(F, 1) < m')2PD + 2¢(m + 1)c.

The choice of:
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leads to a first term of order N 741 log  (log N )_wlﬁ and a second term of order

N %(log N )%. The choice of m = N and ¢ = N2 gives a first and second
term at order:

while keeping the third term at order N~!. This proves the theorem. a

Proof of Theorem 16.2. Let C be a generic constant in the whole proof. We keep
the notation £(g) of the preceding proof (Equation 19.1 page 148). We have:

PENG(f, ) = PPN |1 d(f, )| + PPN

(1—]15(5))d2(f,f)]-

For the first term we still have:
&(f, f) <2(m+1)e.
For the second term, let us write the development of f into our wavelet basis:

co 27

F=ad+> Y Birtik

=0 k=1

and:

jo)}

J 27
f@)=ap+Y > Bistix
3=0 k=1

J= {logNJ _
log 2

d*(f, f) = @plex,, . .-Mcr, .0, f) < d(Ter,, ... der, .0, f)

J 2 oo 29
=@—a)+>. > Bik—Bir)+ D D B

the estimator f . Let us put:

For any J' < J we have:

=0 k=1 j=J+1 k=1
J 27 B J 29
<@-a)’+ > Bik — Bik)L(UBjkl = &) + D> Br41(IBjk] < k)
=0 k=1 §=0 k=1
e’} 27
+ 2 D B
j=J'+1 k=1

for any k > 0, as soon as £(¢) is satisfied (here again we applied Theorem 15.1). In
the case where p > 2 we can take:

g = log N5
log 2
and k = 0 to obtain:

o0 oo

27 27
POIDILTEED DI DI BEA

j=J'+1 k=1 j=J'+1 \k=1
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As f € Bs 4 C Bg p oo We have:

P

2

NARL
7 —

k=1

and so:
[e%s} 27 2
S S, <c2 e <oni,
j=J+1 k=1
and:
J 2d
8¢ +10g
D> Big = Bik) LBkl > w) < ——7——== 221
Jj=0 k=1 J=0 k=1
2 2
< 8¢ |1 +10ng] QI+ < CSc [1+log 2] N

- N N
So we obtain the desired rate of convergence. In the case where p < 2 welet J' = J
and proceed as follows.

2.7

J 8c +log
SN Bk = Bia)*L(|Bjk] > k) < ————=—= ZZWMM

7=0 k=1 §=0 k=1
8c [1 + log 2—'"] 2
< ——==Ck™ =1
- N
because f is also assumed to be in the weak Besov space. We also have:
J 27
2
DD 87118kl < k) < Ok T,
§=0 k=1

For the remainder term we use (see [21, 19]):
Bspq C Bs—%-ﬁ-%,?,q

to obtain:
[e’e] 27

Z Zﬂik < C272J(S+%7%) < 027.]

j=J+1 k=1

as s > 11—). Let us remember that:

N
Egm:WSN
and that € = N2, and take:
_ [logN
"EVTN
to obtain the desired rate of convergence. |

19.3. Proof of the theorems of section 17.

Proof of Theorem 17.1. The technique used in the proof is due to Catoni [11]. Let
us choose k € {1,...,m}, and:

N
pe (0’ \/Cka> '
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We have, for any n € R:

N
o) ot )
i=1
Let us choose: 9 8
n = log ?’" + Nlog(l - NP[fk(X)])-
We obtain:

QN al B 2m B €
P®Nexpq ) log (1 - ka(Xi)) —log — ~ Nlog(l - Np[fk(X)]) < g
i=1

and so:

that becomes:

N
peN {;log (1— %fk(Xl)) >log—+Nlog(1— —P[fr(X } im
POV P > X |1 = ex lilo (1—ﬁf( - <=
k =3 Y Ni:1 g Nk Som”
We apply the same technique to:

N ﬂl ﬂl
P®N exp {Zlog (1 + ka(X,-)) — n} < exp{Nlog(l + NP [fk(X)]) — n}

to obtain the upper bound. We combine both result by a union bound argument.

O
Proof of Theorem 17.3. Let us choose (i, k) € {1,..., N}x{1,...,m'}. Using Seeger’s
idea, we follow the preceding proof, replacing P®" by P;, and using the N — 1 ran-

dom variables:
(£ir (X))

WN+w—m%1——ﬂfmAm0

with

2
n = log
and we obtain:

2m'N
Piexp{Zlog (1 - %fi,k(XjO —log E

J#i

— (V= 1)log(1 - %P[fi’k(x)])} < ol

Note that for any random variable H that is a function of the X;:
PNp,H = PN .

So we conclude exactly in the same way as in the proof of the previous theorem
and we obtain the claimed result. |
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