H. W. Dam, McClure's Magazine 6, (1896), 403. The new marvel in photography

G. F. Knoll, Ch. 8; In Radiation detection and measurement, 2000.

R. Hofstadter, Alkali Halide Scintillation Counters, Physical Review, vol.74, issue.1, 1948.
DOI : 10.1103/PhysRev.74.100

R. Hofstadter, The detection of gamma-rays with thallium-activated sodium iodide crystals, Phys. Rev, vol.75, issue.796, 1949.

C. L. Melcher, Nuclear Instruments and Methods in Physics Research A 537, 6. Perspectives on the future development of new scintillators, 2004.

R. Novotny, Nuclear Instruments and Methods in Physics Research A 537 Inorganic scintillators -a basic material for instrumentation in physics, 2004.

C. W. Van-eijk, Inorganic scintillators in medical imaging [10] Moses, W. W. Nuclear Instruments and Methods in Physics Research A 471 Trens in PET imaging Advances in positron tomography for oncology, R85, pp.659-1325, 1996.

W. W. Moses, S. E. Derenzo, and T. Budinger, Nuclear Instruments and Methods in Physics Research A 353, 1994.

B. Grabmaier, Luminescent materials for medical application, Journal of Luminescence, vol.60, issue.61, 1994.
DOI : 10.1016/0022-2313(94)90322-0

G. F. Knoll, Ch. 2 & 10; In Radiation detection and measurement, 2000.

C. Pédrini, C. Dujardin, J. C. Gacon, A. N. Belsky, A. N. Vasil-'ev et al., Cerium-doped fluorescent and scintillating ionic crystals, Cerium doped fluorescent and scintillating ionic crystals, p.277, 2001.
DOI : 10.1016/S0022-2313(96)00107-X

A. N. Vasil-'ev, Nuclear Instruments and Methods in Polarization approximation for electron cascade in insulators after highenergy excitation, Physics Research B, vol.107, issue.165, 1996.

L. D. Landau, The motion of electrons in a crystal lattice Chapitre 1 -Les scintillateurs rapides en imagerie médicale -38, Physikalische Zeitschrift der Sowjetunion, vol.3, issue.664, 1933.

A. M. Stoneham and . Ch, 16 & 17; In Theory of defects in solids, 2001.

K. S. Song and R. T. Williams, Ch. 2; In Self-trapped excitons
URL : https://hal.archives-ouvertes.fr/hal-00105719

A. M. Stoneham and . Ch, 18 & 19 In Theory of defects in solids, 2001.

K. S. Song and R. T. Williams, Ch. 5; In Self-trapped excitons
URL : https://hal.archives-ouvertes.fr/hal-00105719

G. Blasse and B. C. Grabmaier, 3; In Luminescent materials, Ch, 1994.
DOI : 10.1007/978-3-642-79017-1

B. Viana, Actualité chimique 3 Matériaux scintillateurs pour X et gamma, 2002.
DOI : 10.1051/uvx/2011021

P. A. Rodnyi and . Sov, 1053. Core-valence band transitions in wide-gap ionic crystals [29] Van Eijk, C. W. E. Radiation Effects and Defects in Solids 119-121, 9. Fast scintillators and their applications 545. Charge transfer luminescence in Yb 3+ containing compounds [31] Nakazawa 1710. Cooperative luminescence in YbPO 4, p.25, 1970.

G. Blasse, The 5d level positions of the trivalent lanthanides in inorganic compounds, 1465. Scintillator materials [33] Dorenbos, P. Journal of Luminescence 91 595. Wide band gap scintillation materials: progress in the technology and material understanding, 1994.

H. Zaidi, P. Dorenbos, J. T. De-haas, and C. W. Van-eijk, 3. The new challenges of brain PET imaging technology R37. Scintillation detectors for x-rays [37] Dorenbos, P. Nuclear Instruments and Methods in Physics Research A 486 Light output and energy resolution of Ce 3+ -doped scintillators Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals, Current Medical Imaging Reviews 2 The contribution of the NaI(Tl) crystal to the total line width of NaI(Tl) scintillation counters, p.15, 1968.
URL : https://hal.archives-ouvertes.fr/hal-00171845

B. Pirard, C. Uston, S. Maurice, and O. Gasnault, Lunar and Planetary Science XXXVI 2187. Performance limits of new generation scintillators for planetary gamma-ray spectroscopy [42] Dorenbos, C. W. E. In Int. Conf. on Inorganic Scintillators and Their Applications, pp.95-148, 1995.

B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids, pp.459-460, 1989.

A. Lempicki and A. Wojtowicz, Fundamental limitations of scintillators, 45. Analyse par échantillonnage sur photons individuels des liquides fluorescents dans le domaine de la sub-nanoseconde, 1964.
DOI : 10.1016/0022-2313(94)90317-4

L. Hyman, Time resolution of photomultiplier tube systems, G. Rev. Sci. Instr, vol.36, issue.193, 1965.
DOI : 10.1063/1.1719516

M. Moszynski, T. Ludziejewski, D. Wolski, W. Klamra, and V. V. Avdejchikov, Nuclear Instruments and Methods in Physics Research A 372 Timing properties of GSO, LSO and other Ce doped scintillators [50] Van Eijk Inorganic scintillators in medical imaging detectors, C. W. E. Nuclear Instruments and Methods in Physics Research A, vol.51, issue.509, p.17, 1996.

. Hamamatsu, Characteristic and use of Si APD (Avalanche Photodiode)," brochure technique, 2004.

G. Bizarri, J. T. De-haas, P. Dorenbos, and C. W. Van-eijk, Scintillation properties of O 1/spl times/1 Inch/sup 3/ LaBr/sub 3/: 5%Ce/sup 3+/ crystal, IEEE Transactions on Nuclear Science, vol.53, issue.2, p.615, 2006.
DOI : 10.1109/TNS.2006.870090

P. Menge, Saint Gobain Crystals, 2006.

R. E. Muenchausen, Crystal growth and optical characterization of cerium-doped, Journal of Applied Physics, vol.88, issue.7360, 2000.

A. Lempicki, A. J. Wojtowicz, and C. Brecher, Inorganic scintillators; In Wide-gap materials: Theory and applications, 1997.

W. W. Moses and K. S. Shah, Nuclear Instruments and Methods in Physics Research A 537, 317. Potential for RbGd 2 Br 7 :Ce, LaCl 3 :Ce, LaBr 3 :Ce and LuI 3 :Ce in nuclear medical imaging Chapitre 1 -Les scintillateurs rapides en imagerie médicale, 2005.

C. L. Melcher and J. S. Schweitzer, Nuclear Instruments and Methods in Physics Research A 314 A promising new scintillator: cerium-doped lutetium oxyorthosilicate, 1992.

W. W. Moses and S. E. Derenzo, Nuclear Instruments and Methods in Physics Research A 299 The scintillation properties of cerium-doped lanthanum fluoride, 1990.

S. E. Derenzo and W. W. Moses, In Heavy Scintillators for Scientific and Industrial Applications, Editions Frontières, p.125, 1993.

O. Guillot-noël, J. T. De-haas, P. Dorenbos, C. W. Van-eijk, K. Krämer et al., Optical and scintillation properties of cerium-doped LaCl3, LuBr3 and LuCl3, Journal of Luminescence, vol.85, issue.1-3, pp.21-35, 1999.
DOI : 10.1016/S0022-2313(99)00063-0

. Phys and . Lett, High-energy-resolution scintillator: Ce 3+, p.79, 2001.

M. Balcerzyk, M. Moszynski, and M. Kapusta, Nuclear Instruments and Methods in Physics Research A 537, 50. Comparison of LaCl 3 :Ce and NaI(Tl) scintillators in ?ray spectrometry, 2005.

D. Wolski, G. Pausch, and J. Stein, Nuclear Instruments and Methods in Physics Research A sous presse, Temperature dependences of LaBr3(Ce), LaCl3(Ce) and NaI(Tl) scintillators, 2006.

D. E. Cox and F. Fong, Growth of single crystals of anhydrous lanthanide halides, Journal of Crystal Growth, vol.20, issue.3, 1973.
DOI : 10.1016/0022-0248(73)90010-9

W. W. Wendlandt, The thermal decomposition of yttrium, scandium, and some rare-earth chloride hydrates, Journal of Inorganic and Nuclear Chemistry, vol.5, issue.2, 1957.
DOI : 10.1016/0022-1902(57)80052-9

I. Mayer, S. Zolotov, V. V. Bunda, M. V. Shtilika, and V. M. Golovei, The thermal decomposition of rare earth and yttrium bromide hydrates The thermal stability of lanthanide oxide chloride, Journal of Inorganic and Nuclear Chemistry Russian Journal of Inorganic Chemistry, vol.2720, issue.29, p.1741, 1905.

D. J. Hurle, Crystal pulling from the melt, 1993.
DOI : 10.1007/978-3-642-78208-4

G. Meyer, 141. The synthesis and structures of complex rare-earth halides, Prog. Solid State Chem, vol.14, 1982.

G. F. Knoll, Ch. 4&18; In Radiation detection and measurement

G. F. Knoll, Ch. 9; In Radiation detection and measurement, 2000.

M. Moszynski, M. Kapusta, M. Mayhugh, D. Wolski, and S. O. Flyckt, Absolute light output of scintillators, IEEE Transactions on Nuclear Science, vol.44, issue.3, p.1052, 1997.
DOI : 10.1109/23.603803

L. Garlaschelli and G. Vidari, Anhydrous lanthanum trichloride, a mild and convenient reagent for thioacetalization, Tetrahedron Letters, vol.31, issue.40, 1990.
DOI : 10.1016/S0040-4039(00)97967-X

C. O. Tiller, A. C. Lilly, and B. C. Laroy, Thin Films, Ionic conduction in LaF 3 thin films, p.4787, 1973.
DOI : 10.1103/PhysRevB.8.4787

H. A. Eick, Lanthanide and actinide halides; In Handbook on the physics and chemistry of rare earths, 1994.

J. M. Haschke, Halides; In Handbook on the Physics and Chemistry of the Rare Earths, 1979.

W. H. Zachariasen, The UCl 3 type of crystal structure, J. Chem. Phys, vol.16, 1948.

T. Kojima, T. Inoue, and T. J. Ishiyama, Metallurgical research on cerium metal (part 5) studies on cerium compounds by X-ray analysis of crystal structure, Electrochemical Society of Japan, vol.19, issue.383 2, 1951.

W. Zachariasen, Crystal chemical studies of the 5f-series of elements. I. New structure types, Ségrégation axiale dans les cristaux LaCl 3 :Ce, 1948.
DOI : 10.1107/S0365110X48000703

O. Sellès, Etude par DRX de la variation des paramètres de maille de LaX 3 :Ce en fonction du taux de Cérium, 2004.

D. C. Creagh and J. H. Hubbel, X-ray Absorption (or Attenuation) Coefficients, Sec. 4.2.4; In International Tables for Crystallography, pp.189-206, 1992.

J. Garandet, Croissance cristalline en phase liquide: éléments théoriques; In Cristaux massifs et en couches minces pour l'optique -Elaboration et caractérisation
DOI : 10.1051/bib-sfo:2002809

M. Balcerzyk, M. Moszynski, and M. Kapusta, Nuclear Instruments and Methods in Physics Research A 537, 50. Comparison of LaCl 3 :Ce and NaI(Tl) scintillators in ?ray spectrometry, 2005.

M. T. Hutchings, R. J. Birgeneau, and W. P. Wolf, 1026. Magnetic interactions between rare-earth ions in insulators. I. Accurate electron paramagnetic resonance determination of Gd 3+ pair interaction constants in LaCl 3, Phys. Rev, vol.168, 1968.

J. M. Baker, R. J. Birgeneau, M. T. Hutchings, and J. D. Riley, High-Degree Exchange Interaction Between Rare-Earth Ions, Physical Review Letters, vol.21, issue.9, pp.620-623, 1968.
DOI : 10.1103/PhysRevLett.21.620

H. Machida, K. Hoshikawa, and T. Fukuda, Spiral growth of rutile single crystal boules in the edge-defined, film-fed growth process, Journal of Crystal Growth, vol.137, issue.1-2, 1994.
DOI : 10.1016/0022-0248(94)91251-3

R. Siegel, Thermal radiation of heat transfer, 1992.

H. Poulet and J. P. Mathieu, Spectres de vibration et symétries des cristaux, 1970.
DOI : 10.1016/s0371-1951(59)80391-x

D. W. Berreman and F. C. Unterwald, Adjusting poles and zeros of dielectric dispersion to fit reststrahlen of PrCl 3 and LaCl 3, Phys. Rev, vol.174, issue.791, 1968.

E. Centurioni, Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers, Applied Optics, vol.44, issue.35, 2005.
DOI : 10.1364/AO.44.007532

G. H. Dieke and H. M. Crosswhite, The spectra of the doubly and triply ionized rare earths [33] Chivian Index of refraction of some rare-earth halides at 6328 A, Applied Optics IP J. S.; King, B. R.; Trimmier, J. R. J. Opt. Soc. Am, vol.2, issue.65, p.357, 1963.

O. Guillot-noël, J. T. De-haas, P. Dorenbos, C. W. Van-eijk, K. Krämer et al., Optical and scintillation properties of cerium-doped LaCl3, LuBr3 and LuCl3, Journal of Luminescence, vol.85, issue.1-3, pp.21-35, 1999.
DOI : 10.1016/S0022-2313(99)00063-0

G. H. Dieke and H. M. Crosswhite, The spectra of the doubly and triply ionized rare earths, Applied Optics IP, vol.2, issue.675, 1963.

A. Iltis, M. Mayhugh, P. Menge, C. Rozsa, O. Sellès et al., Nuclear Instruments and Methods in Physics Research A 563, 359. Lanthanum halide scintillators: properties and applications, 2006.

H. U. Güdel and A. Ellens, Nuclear Instruments and Methods in, 728. Scintillation properties of RbGd 2 Br 7 :Ce 3+ crystals; fast, efficient, and high density scintillators, 1997.

E. V. Van-loef, P. Dorenbos, C. W. Van-eijk, K. Krämer, and H. Güdel, Nuclear Instruments and Methods in Physics Research A 486 Scintillation properties of LaBr 3 :Ce 3+ crystals: fast, efficient and high-energy-resolution scintillators, 2002.

W. E. Krämer, K. Güdel, and H. , Magnetic resonance investigation of LaCl3, Radiation Effects and Defects in Solids, vol.157, pp.951-955, 2002.

J. Ramamurti and K. Teegarden, Intrinsic Luminescence of RbI and KI at 10??K, Physical Review, vol.145, issue.2, 1966.
DOI : 10.1103/PhysRev.145.698

K. S. Song and R. T. Williams, Ch. 5; In Self-trapped excitons, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00105719

M. N. Kabler and D. A. Patterson, Evidence for a Triplet State of the Self-Trapped Exciton in Alkali-Halide Crystals, Physical Review Letters, vol.19, issue.11, 1967.
DOI : 10.1103/PhysRevLett.19.652

P. Dorenbos, 15640-15649. 5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds, Physical Review B, vol.62, 2000.

J. Andriessen, O. T. Antonyak, P. Dorenbos, P. A. Rodnyi, G. B. Stryganyuk et al., Experimental and theoretical study of the spectroscopic properties of Ce3+ doped LaCl3 single crystals, Experimental and theoretical study of the spectroscopic properties of Ce3+ doped LaCl3 single crystals, pp.355-363, 2000.
DOI : 10.1016/S0030-4018(00)00665-9

K. Kan-'no, K. Tanaka, T. Hayashi, and . Rev, Solid State Science 4 New aspects of intrinsic luminescence in alkali halides, 1988.

Y. Kanayuma and . Rev, Solid State Science 4, 403 Adiabatic potentials for self-trapped excitons in alkali halides

A. Shluger and N. Itoh, 1499. Two types of self-trapped excitons in alkali halide crystals, Phys. Rev. B, vol.44, 1991.

E. A. Radzhabov, A. I. Nepomnyashchikh, S. Russian-phys-hirota, K. Edamatsu, and M. Hirai, Selftrapped excitons in low-symmetry fluoride crystals Transient absorption due to the self-trapped exciton localized at an iodine dimer in KCl:I, J. Phys. Rev. Lett, vol.3927, issue.3283, 1041.

C. Pédrini, . Phys, K. S. Stat-shah, J. Glodo, W. Higgins et al., Electronic processes in rare earth activated wide gap materials [29] Dorenbos, P Systematic behaviour in trivalent lanthanide charge transfer energies, Sol (A) Journal of Physics condensed matter E. V. D, vol.202, issue.15, pp.8417-8434, 2003.

M. J. Weber, CeBr3 scintillators for gamma-ray spectroscopy, IEEE Transactions on Nuclear Science, vol.52, p.3157, 2005.

P. Dorenbos, The 5d level positions of the trivalent lanthanides in inorganic compounds, Journal of Luminescence, vol.91, issue.3-4, 2000.
DOI : 10.1016/S0022-2313(00)00229-5

A. Bessière, P. Dorenbos, C. W. Van-eijk, K. Krämer, H. U. Güdel et al., Nuclear Instruments and Methods in Physics Research A 537, 22. Luminescence and scintillation properties of the small band gap compound LaI 3 :Ce 3+, 2005.

A. R. Lempicki, B. Dorenbos, P. Van-eijk, C. W. Bos, A. J. Melcher et al., 13. Effect of shallow traps on scintillation Scintillation and thermoluminescence properties of Lu 2 SiO 5 :Ce fast scintillation crystals, 4167. Afterglow and thermoluminescence properties of Lu2SiO5:Ce scintillation crystals [37] Chen, R.; McKeever, S. W. S. Theory of Thermoluminescence and Related Phenomena, 1994.

J. T. Randall and M. H. Wilkins, Phosphorescence and Electron Traps, Proc. Roy. Soc. Lond. 184, p.366, 1945.

G. F. Garlick and A. F. Gibson, The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors, Proc. Phys. Soc. 60, 1948.
DOI : 10.1088/0959-5309/60/6/308

R. J. Chen and S. W. Mckeever, On the Calculation of Activation Energies and Frequency Factors from Glow Curves [41] Hoogenstraaten, W. Philips Res. Rep. 13 Electron traps in ZnS phosphors On the analysis of complex thermoluminescence. Glow-curves: Resolution into individual peaks, Applied Physics Phys. Stat. Sol (A) J. J. Nuclear Instruments and Methods in Physics Research B, vol.404243, issue.184, pp.3-28, 1958.

P. D. Townsend, Analysis of TL emission spectra, Radiation Measurements, vol.23, issue.2-3, 1994.
DOI : 10.1016/1350-4487(94)90062-0

J. Glodo, K. S. Shah, M. Klugerman, P. Wong, and B. Higgins, Nuclear Instruments and Methods in Physics Research A 537, Thermoluminescence of LaBr3:Ce and LaCl3:Ce crystals, pp.93-96, 2005.

J. L. Alvarez-rivaz, R. H. Templer, and . Radiat, Thermoluminescence and lattice defects in alkali halides The localised transition model of anomalous fading [48] Visocekas, 163. Comparison between tunneling afterglows following alpha or beta irradiations, pp.6-353, 1980.

S. W. Mckeever, Ch. 3; In Thermoluminescence of solids, 1985.

A. Halperin, A. A. Braner, and A. Ev, Evaluation of Thermal Activation Energies from Glow Curves, Physical Review, vol.117, issue.2, 1960.
DOI : 10.1103/PhysRev.117.408

R. Chen and S. A. Winer, Effects of Various Heating Rates on Glow Curves, Journal of Applied Physics, vol.41, issue.13, 1960.
DOI : 10.1063/1.1658652

M. Nikl and ]. Phys, Tunneling process in thermally stimulated luminescence of mixed LuxY1-xAlO3:Ce crystals Chapitre 4 ? Mécanismes de scintillation Tables internationales de cristallographie de la structure P6 3 /m[1] Scintillation Material Properties ? Density, p.6179, 2000.

. Brillance®350, Ce)] is a transparent scintillator material that offers superior energy resolution, fast emission and excellent linearity. It has light output similar to NaI(Tl) but much better energy resolution