. Le-modèle-d-'hathout and . Hathouthathout, traite le problème de l'acquisition automatique de liens morphologiques, présenté comme une étape préalable à la constitution de ressources de langue générale pour le français Le modèle proposé permet de structurer le lexique, en identifiant : (i) des paires de termes liés morphologiquement, ii) des relations sémantiques entre ces paires, 2001.

>. <output-n_triples=, 166" > <solution val="@kjumj@l1S7n" weight="2.5" /> <solution val="@kjumj@l1S@n" weight="1.625" /> <solution val="@kjumj@l1SH" weight="43.0625" /> <solution val="@kjumj@l1SHR" weight="2.875" /> <solution val="@kjumj@l1SHr" weight="0.03125" /> <solution val="@kjumj@l1SIn" weight="0.25" /> <solution val="@kjumj@l1Sj@n" weight="2.5" /> <solution val="@kjumj@l1s7n" weight="1" /> <solution val="@kjumj@l1sj@n" weight="1" /> <solution val="@kjumjUl1S7n" weight="2.5" /> <solution val="@kjumjUl1S@n" weight="1.625" /> <solution val="@kjumjUl1SH" weight="43.0625" /> <solution val="@kjumjUl1SHR" weight="2.875" /> <solution val="@kjumjUl1SHr" weight="0, Des informations morpho-syntaxiques additionnelles sont également prises en considération, p.83

A. A. Plaza-e, Case-based reasoning: Foundational issues, methodological variations, and system approaches, Artificial Intelligence Communications, vol.7, issue.1, pp.39-59, 1994.

A. D. and K. D. Albert-m, Instance-based learning algorithms, Machine Learning, vol.6, issue.54, pp.37-66, 1991.

A. E. Plaza-e, Lazy induction of descriptions for relational case-based learning, Proceedings of the 12 th European Conference on Machine Learning, pp.13-24, 2001.

B. Y. Frasconi-p, Input/Output HMMs for sequence processing, IEEE Transactions on Neural Networks, vol.7, issue.5, pp.1231-1249, 1996.

B. N. Duret-lutz-a, L. D. Geraud-t, and . Poss-r, A static C++ object-oriented programming (SCOOP) paradigm mixing benefits of traditional OOP and generic programming, Proceedings of the Workshop on Multiple Paradigm with OO Languages (MPOOL '03), p.120, 2003.

C. X. Màrquez-b and . J. Castro-c, Filtering-ranking perceptron learning for partial parsing, Machine Learning, pp.41-71, 2005.

C. D. and F. R. Hofstadter-d, High-level perception , representation, and analogy: A critique of artificial intelligence methodology, D.R. Hofstadter & the Fluid Analogies Research Group Fluid Concepts and Creative Analogies, pp.169-193, 1995.

C. E. Johnson-m, Coarse-to-fine n-best parsing and maxent discriminative reranking, Proceedings of the 43 rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pp.173-180, 2005.

C. M. Duffy-n, Convolution kernels for natural language, Advances in Neural Information Processing Systems, p.51, 2001.

C. M. Koo, Discriminative reranking for natural language parsing, Computational Linguistics, vol.31, issue.48, pp.25-69, 2005.

C. A. Miclet-l, Apprentissage Artificiel: Concepts et Algorithmes, Eyrolles, vol.24, issue.63, p.121, 2002.

C. T. Hart-p, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol.13, issue.1, pp.21-27, 1967.

D. W. Gillis-s and . Durieux-g, Skousen's analogical modeling algorithm: A comparison with lazy learning, New Methods in Language Processing, pp.3-15, 1997.

D. W. Van-den and . A. Bosch, Treetalk: Memory-based word phonemisation, Data-Driven Techniques in Speech Synthesis, 2001.

D. W. Van-den and . A. Bosch, Memory-Based Language Processing, Studies in Natural Language Processing, p.46, 2005.

D. W. Van-den, . A. Bosch, and . Weijters-t, IGTree: Using trees for compression and classification in lazy learning algorithms, Artificial Intelligence Review, special issue on Lazy Learning, vol.11, pp.407-423, 1997.

D. W. , Z. J. Berck-p, and . Gillis-s, MBT: A memory-based part of speech tagger-generator, Proceedings of the 4 th Workshop on Very Large Corpora, pp.14-27, 1996.

. Timbl, Tilburg memory based learner, version 5.1, reference guide. Rapport technique 04-02, pp.47-130

D. B. and S. J. Townsend-s, Nearest neighbour editing and condensing tools -synergy exploitation, Pattern Analysis and Applications, vol.3, issue.58, pp.19-30, 2000.

D. Saussure and F. , Cours de linguistique générale. Payot, Lausanne et Paris, 2 e édition, pp.68-74, 1916.

D. A. Miclet-l, Analogie entre séquences. définition, calcul et utilisation en apprentissage supervisé. Revue d, Intelligence Artificielle, vol.19, issue.155, pp.683-712, 2005.

D. A. and L. N. Rubin-d, Maximum likelihood from incomplete data via the EM algorithm (with discussion), Journal of the Royal Statistical Society Series B (Statistical Methodology), vol.39, issue.1, pp.1-38, 1977.

D. P. Kittler-j, On the edited nearest neighbor rule, Proceedings of the 5 th International Conference on Pattern Recognition, pp.72-80, 1980.

D. T. Lathrop-r and . T. Lozano-pérez, Solving the multiple instance problem with axis-parallel rectangles, Artificial Intelligence, vol.89, issue.1 2, pp.31-71, 1997.

D. R. and H. P. Stork-d, Pattern Classification, pp.2-24, 2000.

D. P. Miclet-l, Inférence grammaticale régulière : fondements théoriques et principaux algorithmes, p.63, 1998.

E. C. Thagard-p, Integrating structure and meaning: a distributed model of analogical mapping, Cognitive Science, vol.25, issue.2, pp.245-286, 2001.

E. W. Wettschereck-d, Relational instance based learning, Proceedings of the 13 th International Conference on Machine Learning, pp.122-130, 1996.

F. B. Forbus-k and . Gentner-d, The structure-mapping engine: Algorithm and examples, Artificial Intelligence, vol.41, issue.19, pp.1-63, 1989.

F. E. Hodges-j, Discriminatory analysis, non-parametric discrimination: consistency properties. Rapport technique 21-49-004, p.24, 1951.

F. K. and F. R. Gentner-d, Incremental structuremapping, Proceedings of the 16 th Annual Conference of the Cognitive Science Society, pp.313-318, 1994.

F. K. and G. D. Law-k, MAC/FAC: A model of similaritybased retrieval, Cognitive Science, vol.19, issue.2, pp.141-205, 1995.

G. E. Helm-r and J. R. Vlissides-j, Design patterns : Catalogue de modèles de conception réutilisables, p.157, 1999.

G. T. and L. J. Flach-p, Kernels and distances for structured data, Machine Learning, special issue on Inductive Logic Programming, pp.205-232, 2004.

G. G. Mellish-c, Natural Language Processing in Prolog: An Introduction to Computational Linguistics, 1989.

G. D. Brem-s, F. R. Markman-a, . Levidow-b, . Wolff-p, and . Forbus-k, Analogical reasoning and conceptual change: A case study of Johannes Kepler, The Journal of the Learning Sciences, vol.6, issue.1 10, pp.3-40, 1997.

G. D. Forbus-k, MAC/FAC: A model of similarity-based access and mapping, Proceedings of the 13 th Annual Conference of the Cognitive Science Society, pp.504-509, 1991.

G. D. Holyoak-k and . Kokinov-b, The analogical mind., American Psychologist, vol.52, issue.1, p.16, 2001.
DOI : 10.1037/0003-066X.52.1.35

G. D. Jacobs-c, Parsing Techniques: A Practical Guide, 1990.

H. T. and T. R. Friedman-j, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, p.24, 2001.

H. N. and N. F. Dal-g, An experimental constructional database: The mortal project, Many Morphologies, p.153, 2002.

H. S. and B. C. Merz-c, UCI repository of machine learning databases, 1998.

H. D. Mitchell-m, The copycat project: A model of mental fluidity and analogy-making, Fluid Concepts and Creative Analogies, pp.205-267, 1995.

H. K. Thagard-p, Analogical mapping by constraint satisfaction, Cognitive Science, vol.13, pp.295-355, 1989.

H. K. Thagard-p, Mental leaps: Analogy in creative thought, 1995.

H. T. Wrobel-s and . Bohnebeck-u, Relational instance-based learning with lists and terms, Machine Learning, pp.53-80, 2001.

H. J. Holyoak-k, Distributed representations of structure: A theory of analogical access and mapping, Psychological Review, vol.104, issue.3, pp.427-466, 1997.

I. E. Haukioja-j, A rehabilitation of analogy in syntax (and elsewhere ), Metalinguistik im Wandel: die kognitive Wende in Wissenschaftstheorie und Linguistik, pp.131-177, 1997.

K. H. Koyanagi-t, Kernels for semi-structured data, Proceedings of the 19 th International Conference on Machine Learning, pp.291-298, 2002.

K. B. French-r, Computational models of analogy-making, 2003.

L. J. Mccallum-a and . C. Pereira-f, Conditional random fields: Probabilistic models for segmenting and labeling sequence data, Proceedings of the 18 th International Conference on Machine Learning, pp.282-289, 2001.

L. N. D?eroski-s, Inductive Logic Programming: Techniques and Applications, 1994.
DOI : 10.1007/3-540-48751-4

L. Y. Denoual-e, The purest EBMT system ever built: no variables , no templates, no training, examples, just examples, only examples, Proceedings of the 2 nd Workshop on Example-Based Machine Translation, p.151, 2005.

L. M. Vitányi-p, An Introduction to Kolmogorov Complexity and its Applications, pp.2-109, 1997.

L. S. Régis-gianas-y and . Sakarovitch-j, Introducing vaucanson, Theoretical Computer Science, vol.328, issue.120, pp.77-96, 2004.

M. C. Schütze-h, Foundations of Statistical Natural Language Processing, p.35, 1999.

M. Y. Damper-r, A multi-strategy approach to improving pronunciation by analogy, Computational Linguistics, vol.26, issue.2, pp.195-219, 2000.

M. A. and F. D. Pereira-f, Maximum entropy markov models for information extraction and segmentation, Proceedings of the 17 th International Conference on Machine Learning, pp.591-598, 2000.

M. L. and B. S. Delhay-a, Définitions et premières expériences en apprentissage par analogie dans les séquences, Conférence d'Apprentissage (CAp '05, p.80, 2005.

M. M. and O. J. Vidal-e, A new version of the nearest-neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing time and memory requirements, Pattern Recognition Letters, vol.15, issue.1, pp.9-17, 1994.

N. A. Simon-h, Computer science as empirical inquiry: symbols and search, Communications of the ACM, vol.19, issue.17, pp.113-126, 1976.

P. V. Yvon-f, The hidden dimension: paradigmatic approaches to data-driven natural language processing, Journal of Experimental and Theoretical Artificial Intelligence, Special Issue on Memory-Based Language Processing, vol.11, issue.53, pp.391-408, 1999.

R. L. Juang-b, An introduction to hidden markov models, IEEE ASSP Magazine, vol.3, issue.1, pp.4-16, 1986.

R. J. Raedt-l, Instance based function learning, Proceedings of the 9 th International Workshop on Inductive Logic Programming, pp.268-278, 1999.

R. Poss-r, On orthogonal specialization in C++: Dealing with efficiency and algebraic abstraction in Vaucanson, Proceedings of the Parallel/High-performance Object-Oriented Scientific Computing, p.158, 2003.

R. Yvon-f, Dimi, Actes des 15 e Journées d'Études sur la Parole, pp.421-425, 2004.

S. S. Nagao-m, Toward memory-based translation, Proceedings of COLING-90, pp.247-252, 1990.

S. U. , G. H. Kühnberger-k, and . Burghardt-j, An algebraic framework for solving proportional and predictive analogies, Proceedings of the European Conference on Cognitive Science, pp.295-300, 2003.

S. B. Smola-a, Learning with Kernels, p.51, 2002.

S. L. Joshi-a, Ranking and reranking with perceptron, Machine Learning, pp.73-96, 2005.

S. N. Yvon-f, An analogical learner for morphological analysis, Proceedings of the 9 th Conference on Computational Natural Language Learning, p.151, 2005.

S. E. and I. H. Kohyama-h, Translating with examples: A new approach to machine translation, Proceedings of the 3 rd International Conference on Theoretical and Methodological Issues in Machine Translation of Natural Language, pp.203-212, 1990.

S. J. Sasaki-y and . Maeda-e, Kernels for structured natural language data, Proceedings of the 18 th Annual Conference on Neural Information Processing Systems, p.51, 2003.

T. B. and G. C. Koller-d, Max-margin markov networks, Advances in Neural Information Processing Systems, p.51, 2004.

T. P. Holyoak-k and N. G. Gochfeld-d, Analog retrieval by constraint satisfaction, Artificial Intelligence, vol.46, issue.3, pp.259-310, 1990.

T. I. Hofmann-t and J. T. Altun-y, Support vector machine learning for interdependent and structured output spaces, Proceedings of the 21 st International Conference on Machine Learning, pp.823-830, 2004.

T. P. Littman-m, Corpus-based learning of analogies and semantic relations, Machine Learning, pp.251-278, 2005.

T. P. Littman-m and B. J. Shnayder-v, Combining independent modules to solve multiple-choice synonym and analogy problems, Proceedings of the International Conference on Recent Advances in Natural Language Processing, pp.482-489, 2003.

V. Den and B. A. Daelemans-w, Memory-based morphological analysis, Proceedings of the 37 th Annual Meeting of the Association for Computational Linguistics (ACL '99), pp.285-292, 1999.

V. J. Van-den, . A. Bosch, D. W. Buchholz-s, and . Zavrel-j, Memory-based word sense disambiguation, Sense Disambiguation, pp.171-177, 2000.

V. S. and N. H. Tillmann-c, Hmm-based word alignment in statistical translation, Proceedings of the 16 th Conference on Computational linguistics, pp.836-841, 1996.

W. R. Fischer-m, The string-to-string correction problem, Journal of the ACM, vol.21, issue.143, pp.168-173, 1974.

W. J. Zucker-j, Solving the multiple-instance problem: A lazy learning approach, Proceedings of the 17 th International Conference on Machine Learning, p.30, 2000.

W. J. , C. O. , E. A. , and S. B. Vapnik-v, Kernel dependency estimation, Advances in Neural Information Processing Systems, pp.873-880, 2003.

W. D. Martinez-t, Reduction techniques for instance-based learning algorithms, Machine Learning, pp.257-286, 2000.

W. D. Macread-w, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, vol.1, issue.1, pp.67-82, 1997.

Y. F. Stroppa-n and D. A. Miclet-l, Solving analogies on words, Rapport technique D005, École Nationale Supérieure des Télécommunications, pp.78-104, 2004.

Z. J. and D. W. Veenstra-j, Resolving PP attachment ambiguities with memory-based learning, Proceedings of the Conference on Computational Natural Language Learning (CoNLL '97, p.46, 1997.