Contribution à l'analyse d'équations aux dérivées partielles <br />décrivant le mouvement de fronts avec applications<br />à la dynamique des dislocations. - Archive ouverte HAL Access content directly
Theses Year : 2007

Contribution à l'analyse d'équations aux dérivées partielles
décrivant le mouvement de fronts avec applications
à la dynamique des dislocations.

(1)
1

Abstract

This work deals with the modeling, the analysis and the numerical analysis of the dislocation dynamics and with the very strong links which exists with mean curvature type motion. Dislocations are linear defects which move in crystals when those are subjected to exterior stress. More precisely, the dynamics of a dislocation line is described by an eikonal equation where the speed depends in a nonlocal way on the whole line. In the modeling, it is also possible to add a mean curvature term.

The first part of this work is devoted to the study of the qualitative properties of dynamics of a dislocation line (existence, uniqueness, asymptotic behaviour...). This study relies essentially on the theory of viscosity solutions. We also propose several numerical scheme for this dynamics and we show their convergence as well as error estimates.

In a second part, we establish the link between the dynamics of a finite number of dislocations and the dynamics of dislocation density by showing homogenization results. We also study, in a theoretical and numerical way, a model for the dynamics of dislocation density.
Ce travail porte sur la modélisation, l'analyse et l'analyse numérique de la dynamique des dislocations ainsi que sur les liens très forts qui existent avec les mouvements de type mouvement par courbure moyenne. Les dislocations sont des défauts linéaires qui se déplacent dans les cristaux lorsque ceux-ci sont soumis à des contraintes extérieures. D'une manière générale, la dynamique d'une ligne de dislocation est décrite par une équation eikonale où la vitesse dépend de manière non locale de l'ensemble de la ligne. Il est également possible d'ajouter un terme de courbure moyenne dans la modélisation.

La première partie de ce mémoire est consacrée aux propriétés qualitatives de la dynamique d'une ligne de dislocation (existence, unicité, comportement asymptotique...). Cette étude repose en grande partie sur la théorie des solutions de viscosité. On propose également plusieurs schémas numériques pour cette dynamique et on montre leur convergence ainsi que des estimations d'erreurs entre la solution et son approximation numérique.

Dans une seconde partie nous faisons le lien entre la dynamique d'un nombre fini de dislocations et la dynamique de densité de dislocations en montrant des résultats d'homogénéisation. Nous étudions également, de manière théorique et numérique, un modèle pour la dynamique de densité de dislocations.
Fichier principal
Vignette du fichier
these-forcadel.pdf (4.11 Mo) Télécharger le fichier

Dates and versions

tel-00170767 , version 1 (10-09-2007)

Identifiers

  • HAL Id : tel-00170767 , version 1

Cite

Nicolas Forcadel. Contribution à l'analyse d'équations aux dérivées partielles
décrivant le mouvement de fronts avec applications
à la dynamique des dislocations.. Mathématiques [math]. Ecole des Ponts ParisTech, 2007. Français. ⟨NNT : ⟩. ⟨tel-00170767⟩
158 View
184 Download

Share

Gmail Facebook Twitter LinkedIn More