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Resuneetendu en Frarcais

Introduction grerale

C'est un double big bangd, I'un technologique, I'autre treorique, qui a ouvert ce que I'on appelle
commurement aujourd’'hui lere de la communication. C'est en e eta quelques mois d'intervalle
et dans le mémeetablissement que John Bardeen et ses colegues inventent le transistortejue
Claude Elwood Shannonetablit la theorie de l'informatio n et des communications nuneriques.
On mesure bien aujourd’hui toute l'importance de ces deux @couvertes exceptionnelles qui ont
permis le formidable essor de l'informatique et des ekommunications, entre autres. Depuis
1948, les fulgurants proges de lelectronique puis de lamicroelectronique, ont appore aux
ingnieurs les moyens de concetiser les inventions deshercheurs an de epondre aux c&e's
lan@s par Shannon. Un exemple typique en est l'invention,plutét tardive, des turbocodes
et des traitements ieratifs dans les ecepteurs, qui ne purent &tre imagires que parce que les
dizaines ou centaines de milliers de transistors requisetient disponibles’.

Aujourd'hui, les exigences en terme de communications sontle plus en plus grandes et
diverses. Avec lemergence de la ekphonie portable etde I'Internet, les nmethodes de communi-
cations ont ddenormement s'adapter puisqu'il faut ces ormais pouvoir communiquer\n'importe
guand, de n'importe a1 et de plus en plus vite". De plus, les ®rvices demancks ne se limitent
plusa de la voix ou de simples messagesecrits mais la tramsission d'images et de viceos en
temps eel. Ainsi les cebits de communications doivent &re de plus en pluselewes tout en gar-
dant une tes bonne qualie de transmission et ce méme quad le canal de propagation est tes
hostile. En e et, la plupart des transmissions radiomobiles s'e ectuent sur des canaux d'autant
plus lectifs en fequence que le cebit de transmissioncroX.

Pour palliera ces probemes, I'utilisation des techniques multi-antennes et leurs couplages

plus ecents avec des modulationsa sous porteuses orthagales (de type OFDM) ont permisa

1Cette image est directement emprunee a l'avant-propos d e l'ouvrage \Codes et turbocodes"ecrit sous la

direction de Claude Berrou.
2L aboratoires Bell.
3Ce premier paragraphe est inspie de l'avant-propos de I'o uvrage \Codes et turbocodes".
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la fois d'augmenter les cebits tout en supprimant les intererences entre symboles dues au canal.
Durant la dernere decennie, plusieurs sclemas originaux ont permis d'areliorer consicerable-
ment I'exploitation de la diversie spatiale apporee pa r les sysemes multi-antennes. En 1998,
ce sont les codes espace-temps orthogonaux proposes parafiouti pour 2 antennes demission,
puis gereralies par Tarokha des sysemesa plus de 2 antennes demission qui ont permis
d'aneliorer sensiblement la abilie de la transmission . Par ailleurs, le multiplexage spatial
(connu aussi sous le nom de V-BLAST) assoce aux dierentes techniques de detection cevelop-
pees par Foschini en 1996 permettent d'augmenter les celis lireairement avec le minimum du
nombre d'antennes demission et de eception.

Outre les sysemes multi-antennes, les techniquesiltra large bande(UWB), utilisees depuis
le milieu des anrees 60 dans des applications de type radagont connu un spectaculaire regain
d'inerét ces derneres anrees. L'UWB qui consiste a u tiliser des sysemes de transmissions
dans des bandes de fequences allant de 500 MHz a plusieur&Hz, se pesente comme une
technologie attractive pour les sysemes de communicatias radioa tes hauts cebits sur des
distances relativement courtes.

Il estevident que pour la conception et le developpement de toute technique de trans-
mission radio, la connaissance du canal de propagation esteponcerante. Dans ce contexte,
la quasi-totalie des etudes sur les sysemes pratiquesde transmission radio sont bases sur
une parfaite connaissance des paramnetres du canala lemission eta & eception. De plus, la
plupart des limites treoriques des communications nurreriques (par exemple la capacie de Shan-
non), ontet obtenues en consicerant des conditions ideales de parfaite connaissance du canal.
Cette hypothese n'est pourtant pas valable pour les systmes de communications pratiques ai
I'estimation du canal est la plupart du temps base sur I'envoi des symboles d'apprentissage
(aussi appeeks pilotes). 1l est clair que, du fait du nombrelimie de pilotes et la pesence du
bruit additif du canal, lemetteur et le ecepteur n'obti ennent qu'un estine imparfait, et parfois
méme tes bruie, du vrai canal. Facea cette situation, ['utilisation des modulations dieren-
tielles permet deviter I'estimation du canal. Cependant, ces modulations engendrent une perte
d'environ 3 dB sur les performances du ecepteur. Le se&ndo decrit ci-dessus ouvre donc un
grand chantier de recherche pour le ceveloppement des linkés treoriques ainsi que la concep-
tion des sysemes de transmission pratiques prenant en copte une connaissance imparfaite du
canal. En e et, il est recessaire de reck nir le concept fondamental de la capacie en consid-
erant une connaissance imparfaite du canal:i) \Quel est le taux maximal avec lequel on peut
transmettre sur un canal imparfaitement connu ?". Ensuite on peut se poser la questionii)
\Comment concevoir un syseme de transmission qui prenne B compte une estimation impar-

faite du canal et qui se rapproche au mieux de cette limite?".D'un point de vue pratique, il
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y a un grand ineréta concevoir de nouveaux sctemas de detection pouvant fournir des taux
d'erreurs proches de la limite theorique en pesence d'ure estimation imparfaite du canal. Cette

exigence constitue notre feuille de route tout au long de cé¢ trese.

Principales contributions

Ce rapport de tlese pesente de nouvelles nethodes de eeption ieratives pour les sysemes
mono- et multi-antennes assocees a la modulation OFDM travaillant sur des canaux UWB.
Nous nous placons dans un contexte ealiste ai le ecepteur ne posede que d'un estirme bruie
du canal, obtenua partir d'un nombre limie de symboles d'apprentissage. De plus, on suppose
gue cet estime n'est pas disponiblea lemetteur. L'obje ctif principal de cette these est déetablir
une connexion entre la methode couramment utiliee d'esimation de canal par pilotes, et la
conception de ecepteurs ieratifs qui prennent en compte dans leurs crieres de cetection, la
pesence d'erreurs sur les estimes du canal. De plus, unetention particulere est apporee au
cteveloppement d'algorithmes qui gardent une complexie de calcul raisonnable.

Les principales contributions de cette trese sont brevement esunees ci-dessous:

Nous commercons par donner unetat de l'art des diverses tehniques de transmission et
de cetection proposes pour les sysemes UWB en mettant laccent sur la solution multi-
bandes OFDM (MB-OFDM) qui constitue notre senario d'appl ication tout au long de

cette these.

Le premier objectif de cette trese consistea aneliorer la qualie de I'estimation du canal

sans modi er la structure du ecepteur qui pour sa part est corcu en supposant une
parfaite connaissance du canal. Nous donnons d'abord unet de I'art sur les techniques
d'estimation de canal des sysemes OFDM. Ensuite, on propse une nethode d'estimation
de canal semi-aveugle base sur l'algorithmdexpectation-Maximization (EM). Dans cette

approche, les symboles pilotes fournissent un premier est du canal souvent tes bruie

qui est ensuite anelioe de manere ierative en ineg rant I'estimation du canal dans le
processus itratif de cetection des donrees. Bien que cHe approche soit connue pour
arreliorer sensiblement les performances des ecepteungratifs, elle pesente une grande
complexie. Par congequent, nous pesentons un algorithme capable de eduire le nombre
de parametresa estimer en exploitant la parcimonie de la repesentation des canaux UWB

dans le domaine des ondelettes.

Nous cherchons ensuitea aneliorer les performances desaepteurs ieratifs qui utilisent

des estines imparfaits du canal obtenuea partir d'un nombre limie de symboles pilotes.
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Les deux con gurations mono- et multi-antennes assoceesau MB-OFDM sontetudees.
Nous exploitons une proprek ineressante de I'estimation par pilotes,a savoir la disponi-
bilie des statistiques de l'erreur d'estimation. Ces statistiques permettent déetablir un
cadre Bayesien pour la conception de cetecteurs robustesaux erreurs sur les estines du
canal. En consicerant une detection au sens du maximum vrasemblance (ML), nous for-
mulons une nouvelle netrique de detection qu'on appelle metrique anelioee , en moyen-
nant la netrique classique (base sur la connaissance péaite du canal) sur toutes les
erreurs d'estimation du canal. Nous consicerons aussi unalecteur ML base sur une
netrique desadapee @ la connaissance imparfaite du canal) qui est obtenue en em-
plecant le vrai canal par son estine dans la netrique de detection. Dans un premier
temps, un ecepteur maximum a posteriori ieratif (turbo-MAP) base sur la netrique
ML anelioee, est propos pour eduire les e ets de I'in certitude sur le canal au niveau du
cecodeur. Ensuite, en utilisant des outils de la treorie d'information, on calcule les limites
des taux de coupure atteignables (achievable outage ratesjssocees aux metriques ML
anelioee et cesadapee. Ceci nous permet de ceterminer les debits qu'on peut atteindre
en pratique avec une qualie de service & nie par la probabilie de coupure (outage prob-
ability) et ce méme lorsque le ecepteur ne posede que dstimre du canal. Nos esultats
nuneriques montrent que la netriqgue anelioee o re des gains signi catifs en termes de
taux d'information atteignables et de taux d'erreurs binaires, sans pour autant augmenter
la complexie du ecepteur. De plus, nos esultats peuvent servira xer les paranetres
d'un syseme de transmission (par exemple le nombre et la pissance des symboles pilotes,
la probabilie de coupure, etc.) visant une qualie de service en terme de taux d'erreurs

binaires et taux de coupure atteignables, en pesence d'ua estimation imparfaite du canal.

Finalement, nous pesentons un cetecteur ieratif sous optimal eta complexie eduite
pour les modulationsa hautes e cacie spectrale transmi ses sur des canauxa antennes
multiples. Ce cetecteur est base sur l'association d'uneannulation paralele d'intererences

a entees souples (soft-PIC) et d'un Itrage MMSE. Notre o bjectif sera une fois de plus
d'apporter des modi cations au cetecteur a n de le rendre r obuste aux incertitudes sur

les estines du canal.
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Chapitre 2 :

Les dierentes techniques de modulation et de dtection U wB

Introduction et motivations

L'Ultra Large Bande ou Ultra Wideband (UWB), est une technique de transmission radicelec-
trique qui consistea utiliser des signaux sktalant sur une large bande de fequences, typique-
ment de l'ordre de 500 MHza plusieurs GHz. Une ¢& nition au jourd'hui commurement admise
est que les signaux UWB ont un rapport largeur de bande sur gquence centrale, odractional
bandwidth au moinsegala 0,25 ou bien une largeur de bande superietea 500 MHz. Historique-
ment, la premere forme de modulation propose pour 'UWB aet la radio impulsionnelle, ou
Impulse Radia Elle se caracerise par des impulsions tes beves qui @cupent instantarement
toute la bande de fequences disponible. C'est pourquoi cemodulations sont aussi connues sous
le nom de modulations mono-bande. Cependant, cette approehpermet peu de exibilie dans
l'utilisation du spectre radio, et recessite des solutiors de composants RF tes performantes.
Une autre solution consiste a diviser le spectre allowe a I'UWB en plusieurs sous-bandes de
largeur minimale de I'ordre de 500 MHz: c'est I'approche muii-bandes. Cette solution pesente
une tes grande exibilie pour la gestion du spectre radi o et permet d'utiliser des technolo-
gies de circuits ineges moins orereuses. En 2002, laFederal Communications Commission
(FCC) aux Etats-Unis, aelargi la notion dUWBa d'autres s ctemas de modulations que les
transmissions par impulsions. Au niveau de la normalisatio, l'institut arericain IEEE a tra-
vaile durant ces derneres anreesa la ce nition d'un syseme de communication haut debit
utilisant le spectre radio UWB sans pouvoir arrivera un consensus sur le type de modulation.
Le cebat pour une solution unique s'articulait autour de deux propositions qui ont divie les
participants du groupe : letalement de spectre UWB (DS-UWB) et la modulation OFDM a
bandes multiples (MB-OFDM). Aujourd'hui, faute d'un accor d gereral sur une solution unique,
d'importants groupes industriels, comme UWB Forum et Wimedia Alliance se sont engages
dans la conception dequipements bases sur la technologi UWB en adoptant respectivement la
soltution DS-UWB et MB-OFDM.

Les approches mono-bande

Techniques de modulations et d'aces multiples

Le principe des modulations mono-bande repose sur lemissn d'impulsions de tes courtes
duee wyg (t). lls se distinguent selon le type de codage utilise pour cder l'information bi-

nairea transmettre. Ainsi, pour coder l'informationa tr ansmettre, la modulation par position
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d'impulsion (PPM) utilise la position de l'impulsion par ra pporta une position nominale; la
modulation par amplitude d'impulsion (PAM) utilise des imp ulsions identiques avec une dif-
Erence d'amplitude et la modulation par forme d'impulsion (PSM) utilise des sighaux avec
des formes dierentes. A n d'assurer l'aces multiple da ns un contexte multi-utilisateurs, les
modulations mono-bandes utilisent des codesa sauts tempels ou time-hopping (TH) ou une
nmethode base sur letalement de spectrea quence drecte (DS-UWB).

L'approche TH consiste a epeter la méme impulsion dans plusieurs trames successives.
L'expression du signal transmis pour ['utilisateur j skcrit [1,2] :

pour la modulation PPM :

(i) * (i) (i)
k=1 1=0
pour la modulation PAM :
. N 1 . .
sty = we t kTs ITe T dI); @)
k=1 1=0
et pour la modulation PSM :
: N1 g ,
d
sit) = we< t kTs 1Ty T ®)
k=1 1=0

Dans cette approche, la dueeTs de transmission d'un symbole est diviee erNs trames de duee
Tt qui elles mémes sont diviees en chips de dued.. Chaque trame contient une impulsion
avec la position cetermiree par la squence de codef cl(”g pseudo akatoires et unique pour
['utilisateur j.

Comme la modulation PPM, la modulation DS-UWB utilise une tr ame diviee en chips.
Cependant, une impulsion UWB peut étreemise dans chaqueltip de la trame. En consequence,
le signal est transmis de fecon continue. Les symboles trasmis sont repesenes par des codes
detalement ternaires (i.e., composes de 1, 0 et -1) de ladngueur de la trame. L'expression du

signal DS-UWB transmis pour l'utilisateur j est donree par

_ A Ng 1 o
sty = we t kTs Ty Dl 4)

Techniques de cetection

En radio impulsionnelle, la eception des signaux se fait @r corelation. Les deux techniques
utiliees sont bases sur les ecepteurs corelateurs(correlation receiver) et les ecepteurs Rake.
Le principe de base repose sur la corelation du signal raz avec un signal mocele outemplate.

Une cecision binairea partir du signe de la corelation p ermet ensuite de cemoduler les donrees
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transmises. Par exemple, le criere de decision pour cedder entre les hypotteseH (bit\0") et

H1 (bit\1") dans le cas d'une modulation PPM s&crit

N¢ 12 4141 T "
(cecide d® =\0") |, rvt 1 1Ty ¢ T dt>0 (5)
I:O 1+|Tf

al r(t) est le signal recu et v(t) et le signal moctle utili pour la corelation.

Dans un canala trajets multiples, les techniques mono-baxes utilisent un ecepteur Rake
a n de combiner de facon constructive les signaux issus dedierents trajets. Le signal recua
I'entee du ecepteur Rake est corek avec des versions cecakes d'un signal mocele, echantil-
lonre, ponceees par des poids es par les paranetres du canal et en n combirees de facon
lireaire. Le nombre de corelateurs (aussi appek doigts) est >e par le nombre de trajets qui
caracerisent le canal de propagation. Cependant, la comfexie d'un ecepteur Rake augmente

lireairement avec le nombre de ses doigts.

Les approches multi-bandes

La solution multi-bandes impulsionnelle

L'approche multi-bandes impulsionnelle consistea diviger la bande de fequence UWB en sous-
bandes de largeurs proches de 500 MHz eta utilisera l'inerieur de chaque sous-bande, l'une
des modulations mono-bande cecrite ci-dessus. A nevite les intererences inter-symboles, cette
technique adopte une periode de eetition des impulsions, sur chaque sous-bande, sugerieurea
letalement des retards du canal. Pour atteindre des cebits importants, la solution repose sur une
utilisation squentielle des sous bandes par l'intermedaire d'un saut de fequence. L'avantage
de cette approche est qu'un ecepteur Rake avec moins de dgis est recessaire pour cemoduler

le signal transmis sur chaque sous-bande.

La solution multi-bandes OFDM

La solution Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) est une ap-
proche a bandes multiples, ai le spectre e ni par la FCC est divie en 14 sous-bandes de
largeur 528 MHz chacune. Ces 14 sous-bandes sont subdivisa 5 groupes de bandes partielles
comportant chacun 2 ou 3 sous-bandes. Dans un premier tempseul le groupe | (3,1 GHz
- 4,9 GHz) sera exploit, les autres groupesetant utilisesa mesure du developpement des so-
lutions pour les composants RF. Dans chaque sous-bande, umsodulation OFDM assocee a
une modulation cocke a bits entrelaes (BICM) est appliq wee, le signal etant eparti sur 128
porteusesa bandeetroite. La modulation en bande de base pur chaque porteuse est de type

Quaternary Phase Shift Keying (QPSK). Cette con guration permet une gestion tes souple
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du spectre radio. En e et, poureviter de brouiller une bande de fequences particulere, il
sut d'interdire une srie de porteuses, voire la totalit e d'une bande partielle. La gestion des
utilisateurs multiples d'un méme groupe de bandes partides est opeee par une technique de
codes temps-fequence (TFC). Dans un groupe de bandes padsdlles, le signal d'un utilisateur
passe egulerement d'une sous-bandea une autre selon o ordre qui est determire par le TFC.
Les ckbits o erts par cette technique sétendent de 53,3 Mbpsa 480 Mbps. Les ekrences [3,4]
fournissent tous les cetails recessairesa l'impementation d'un syseme MB-OFDM.

Les avantages de la solution MB-OFDM eesident principalement dans sa faible complexie tech-
nique, la modulation OFDM pesentant un grand dege de maturie etetant ceja adopte
par plusieurs standards (e.g., ADSL, DVB, 802.11a, 802.16aetc.). La restriction de la bande
de fequences utili:ee au premier groupe de bandes partiles permetegalement de pro ter de

sysemes et composants RF existants.
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Chapitre 3 :
Estimation semi-aveugle de canal bage sur une repesent ation

en ondelettes pour les sysemes multi-bandes OFDM

Introduction et motivations

Le sctema de eception propos pour les sysemes MB-OFDM dans [3, 4] peconise une es-
timation de canal base uniquement sur I'envoi de quelques symboles pilotes au cebut de la
trame d'information. Il est bien connu qu'une cetection a ble des donrees recessite une esti-
mation pecise des paranetres du canal au niveau du ecepeur. Cependant, I'obtention d'un
tel estime pecis, uniqguement par l'intermediaire des p ilotes, exigerait I'envoi de multiples sym-
boles d'apprentissage, ce qui aurait pour conequence uneduction signi cative de I'e cacie
spectrale.

Des travaux ecents ont monte des esultats prometteur s sur la combinaison de I'estimation
de canal et le cecodage de donrees. En particulier, un traiement ieratif @ la  turbo) qui inclut
I'estimation du canal dans le processus de cktection et deetodage conjoint des donrees, est
e ectle dans [5, 6] an d'atteindre I'objectif d'excellen tes performances avec un nombre tes
faible de symboles pilotes. Dans le m&me contexte, plusies travaux ont utilie I'algorithme
EM [7] pour estimer le canal et dcetecter les donrees de maeire conjointe [8{10]. Bien que
ces nmethodes soient capables d'atteindre des performansdes proches de celles obtenues avec
une connaissance parfaite du canal, elles pesentent toefois une complexie croissante avec le
nombre de paranetres qu'il faut estimer pour mettrea jour le canala chaque ieration.

L'augmentation de la largeur de bande en communication UWB acomme consquence une
meilleure esolution temporelle du canal. Cela impligue we repesentation parcimonieuse du
canal (i.e., avec peu de coe cients signi catifs) dans le danaine des ondelettes. Cette propree
est exploiee dans ce travail pour proposer un algorithme ecace estimant conjointement le canal
et les symboles transmis. Plus peciement, ce chapitre popose une technique semi-aveugle
base sur l'algorithme EM pour estimer le canal dans le domae des ondelettes. D'abord, une
distribution a priori qui mocklise bien la parcimonie du canal est impose sur le coe cients
d'ondelettes de la eponse impulsionnelle (RI) du canal. (&la rend I'estimation du canal au sens
du MAPequivalentea un seuillage \dur"qui est exploie p our eduire ierativement le nombre de
paranetresa estimer au sein de l'algorithme EM. Par ailleurs, puisque la probabilie des donrees
cocees est impliquee dans le calcul des paranetres du caal, nous combinons naturellement le
processus ieratif de I'estimation de canal avec l'ogeration de decodage des donrees codees. Nos
esultats montrent que I'algorithme propo eduit con sicerablement le nombre de paranetresa

estimer tout en anreliorant les performances du ecepteur, compake aux techniques semi-aveugles
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classiques et aux nethodes bases uniquement sur les ptles.

Formulation du probéme

On consicere une transmission MB-OFDM employant uniquement les trois premeres sous-
bandes. Chaque symbole OFDM contientN sous porteuses. A la eception, en supposant un
pe xe cyclique plus long que letalement des retards du canal, la transmission OFDM convertit
le canal multi trajet en N sous canaux paralkles avec unevanouissement plat. Ainsla eception

du n-eme symbole OFDMemis sur la i-eme sous bande skcrit
Yin = Dsy,, Hin + Zin  1211,2,3g; n=1;:::;Nsym (6)

al Dy, , diag(sin), les vecteurs de taille (1 N) yin, Sin and Hj;, sont respectivement les
symboles recus et transmis, et la eponse fequentielledu canal; le vecteurz;, est un bruit
blanc Gaussien distribte suivant la loi CN(0; ?Iy).

Bien gua lemission le canal soit utilie sur des sous bandes de 528 MHz, a la eception on
concatne trois symboles OFDM recus pour estimer le canalsur une bande de 1.584 GHz
(correspondanta trois sous bandes). Cette approche est moee par le fait qu'une largeur de
bande plus importante implique des canaux plusepars dansd domaine des ondelettes. Cette

operation nous anenea utiliser le mocele suivant
Ym=Dg, Hmn+Zm m=1;:1:;Msym )

@ Dy, diag(Sm), Ym =[Yuniy2n:Yanl', Sm = [StniS2niSan]’, Hm = [HiniHani Hanl"
et Zm =[Z1n;Z2n;23n]" sont des vecteurs de taille 1 1), avecM = 3N et Msym = Nsym=3.
Dans ce qui suit on omet l'index temporelm.
Soit h = [hy;::;h ]" la eponse impulsionnelle (RI) du canal sur les trois sousbandes etg =
[g1;::;0]" le vecteur de la transformee en ondelettes (TO) deh. On e nit Fy.. comme la
matrice tronqee de FFT et W comme la matrice de la transforrmee en ondelettes orthonorrales.
Le mockle (7) skcrit

Y=D,Tg+Z (8)

al T = Fy.. WY. Notre objectif est d'estimer le vecteur des coe cients d'ondelettes ga partir
du moctle (8).

Estimation de canal par l'algorithme EM dans le domaine des o ndelettes

Choix de la loi a priori : La parcimonie des coe cients d'ondelettes est moctlise par la

supposition a priori suivante ;. chaque coe cient d'ondelette est suppos etreegala Zro avec
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une probabilie  ou etre une variable atatoire gaussienneCNg (0; 2) avec une probabilie

1 . Cela corresponda une loi i.i.d. Bernoulli-Gaussien qui &crit

()= (g)*+@ )CNg(0; » j=1;::5L ©)
a et sontdes hyper-paranetres qui seront estires par les obgeations.
Un moaleequivalent et le principe de l'algorithme EM : Dans l'objectif d'avoir un

mockle ai les coe cients d'ondelettes sont directement bruies par un bruit additif, on propose

de cecomposer le bruitZ de la manere suivante

Z = Dszl+ Zy (10)
@ Z1 CN (0; 2ly)etZ, CN (0;( 2  2ly). Oncenit , 2= 2comme la proportion
de bruit attribtea Z,. Ainsi nous pouvons ecrire le moctle (8) de manereequivalente comme
suit 8
</ =Tg+2,

(11)
Y =D, 18+ 2Zy

Ce nouveau mockle attribue implicitement une partie du bruit aux coe cients d'ondelettes et

le reste aux observations.

Apes avoir initialie le vecteur des paranetres g par quelgues symboles d'apprentissages,
l'algorithme EM alterne (jusqua ce qu'un criere de conv ergence soit atteint) entre lesetapes

E et M et fournit la :quence des estimesfg®; t =0;1;:::; tmax0.

Etape d'esgrance
h i
Q g;9" = Egq logp(Y;S;1 g) Y;gW (12)

Etape de maximisation

n (0]
g(t*h = arg max Q g;9™ +log (g) : (13)

En appliquant lesetapes E et M ci-dessus au moctle (11), kstime au sens du MAP des coe -

cients d'ondelettes du canal est donre par une simple egt de seuillage dur :

Q

2 X i .(t+1) =
g-(”l) _ 0; , if J 0
! > (t+1) . (t+1) _

; 772 9 ; if j =1

(14)

_ — P
ag® =1 )Hg+ (DTVY,Ds = ocDp(SjY;gW) et j(m) est une variable
indicatrice (cf Appendice A).
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Reduction du nombre des paranetres estines

L'expression de l'estimateur (14)etantequivalentea u n seuillage dur, on peut facilement eduire
le nombre de coe cientsa estimer. Cela se faita chaque iteration, en ne gardant dans le cycle
ieratif d'estimation, que les coe cients qui n'ont pas pr eedemmentet remplaes par zro.
Ainsi le nombre de paranetres a estimer se eduit au | des ierations. Cet ogeration est
mockliee par

gy = gt Ty= T (15)

t

al l'operateur ( :) rassemble dansgt(rﬂ) les composants dey(**1) qui restent dans le processus

d'estimation et l'operateur ( :) construit la matrice tronquee T a partir de la matrice T.

Cetection et cdecodage conjoint

Au ecepteur, la cetection et le decodage se fait conjointement et de manere ierative. Le
ecepteur est compoge d'un cetecteur qui fournit les probabilies sur les symbolesemis et d'un
ecodeura entees et sorties souples (SISO). Chaque pdre tire avantage de la probabilie a
posteriori fournie par l'autre partie comme une information suppkmentaire. Ici le decodeur
employe est le cecodeur BCJR [11]. |l est clair d'apes I'expression (14) que la probabilie des
symbolesemisP SyjYy; Ibigt) est recessaire pour mettrea jour le canala chaque ieration. Par
ailleurs, le cecodeur SISO a besoin d'un estinme du canal an de calculer la probabilie des bits
cocks. Par conequent, l'algorithme propose se combinenaturellement avec le processus ieratif
de cecodage des donrees. La probabilieP SgjYy; rby) est calcuke par le cecodeur comme
suit

B
P SkjYk; #?S) = Pgec(Ck;) (16)

i=1
j6i
@l Pgec(Cy;j) est la probabilie a priori des bits coces et entrelaescy; qui est fournie par le
cecodeur SISO.

Conclusion

Dans ce chapitre, nous avons propos un algorithme semi awgle d'estimation de canal bas
sur une repesentation en ondelettes de la Rl du canal. En chisissant une distribution a priori
qui mocklise bien la parcimonie du canal dans le domaine desndelettes, nous avons pu rendre
I'estimateur au sens du MAP equivalenta un seuillage dur des coe cients d'ondelettes. Ceci a
et utiliee pour eduire ierativement le nombre de pa ranetresa estimer. Nous avons obsene que
guand le canal a une repesentation parcimonieuse, le mode priori choisi est capable d'apporter

cette information suppementairea I'estimateur du canal. De plus, nous avons monte que dans
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ce cas, l'algorithme propos eduit consicerablement le nombre de parametres a estimer et
pesente de meilleurs performances que les nethodes semaveugles classiques et les nethodes

uniguement basees sur les pilotes.
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Chapitre 4 :
Multi-bandes MIMO-OFDM: aktection anelioee et taux de trans-
mission atteignables avec une estimation imparfaite du can al

Introduction et motivations

Ce chapitre vise a etudier un sctema ieratif de detect ion et de cecodage conjoint dans un
syseme de transmission radio pratique, ai le ecepteur ne dispose que de l'estimreimparfait
(et parfois méme de qualie tes nediocre) du vrai canal. Pour obtenir les paranetres du
canal, on adopte une estimationuniquement base sur I'envoi de quelques symboles pilotes.
Dans ce contexte, I'obtention d'un estime pecis du canal, uniqguement par l'intermediaire des
pilotes, exigerait I'envoi de multiples symboles d'appretissage, ce qui aura pour congquence une
diminution des taux d'information atteignables. Pour pall iera ce probeme, plutét que d'adopter
une technique ierative d'estimation de canal comme au chaitre peedant, on propose dans ce
chapitre de modi er la structure du ecepteur a n de prendr e en compte la pesence d'erreurs
sur les estines du canal. Nous utilisons pour cela les statiques de l'erreur d'estimation du
canal. En e et, ces statistiques sont disponible dans le caal on estime le canal par des symboles
pilotes. Nous cerivons unenetrique anelioee pour la cetection ML en moyennant la netrique
classique (base sur une connaissance parfaite du canalirsles erreurs d'estimation de canal.
Cette approche est une alternativea une cetection dite desadapee qui remplace le vrai canal
par son estime dans la netrique de cetection classique.

Le s@nario decrit ci-dessus suscite deux questions impbantes: i) \Quel ecepteur pratique
peut aneliorer les performances du syseme avec une estiation imparfaite du canal ?", ii)
\Quelles sont les limites des taux de transmission ables asoces aux cetecteurs ML en pesence
d'erreurs sur les estimes du canal ?" L'objectif de ce chagre est detudier ces deux questions
pour les sysemes MB-OFDM mono- et multi-antennes. Dans unpremier temps, et an de
prendre en compte l'incertitude sur le canal, on propose unecepteur ieratif base sur une
nmetrique ML adaptea I'estire du canal. Nous cherchons ensuitea calculer les taux atteignables
assoces aux netriques amelioee et cesadapee en terme de taux de coupure atteignables. Nous
verrons que la netrique desadapke est largement sous opmale quand un nombre limie de
pilotes est cede a I'estimation du canal et que des gains consicerables sont appores par la

nmetrique arrelioee sans augmentation de la complexie du ecepteur.

Mockle de transmission et estimation de canal

MB-OFDM avec multiplexage spatial : On consicere un syseme MB-OFDM avec Mt

antennes demission, Mg antennes de eception, M sous porteuses dans chaque sous bande,
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et employant une modulation 16-QAM. Le moctle a temps discret et en bande de base de la
transmission sécrit
Yk = Hysk + zk; k=0;:;M 1 a7

al Yk est le vecteur des symboles recussi est le vecteur des symboles transmis avec une
puissanceEg = ﬁE[tr(sks{)]. Le canal Hy est une matrice dont chaque enteeHjj est

donree par
i 1
Hj (k) = ij (1) expf j2k ¢ 19
1=0
a i (j) et | repesentent respectivement le gain et le retard dul-eme composant multi trajet
de la Rl du canal, et ; est la bande fequentielle occupee par une sous porteusele vecteur
zy est un bruit AWGN avec une matrice de covariance ;i = E[zkzﬁ’] = Zlu,, k repesente

l'index de la sous porteuse.

Estimation de canal : On consacreNp utilisations de canal pour transmettre la quence
d'apprentissageSpx avec une puissance moyenngp = Wtr Sp;ks}’,;k . On estime ensuite
le canal H au sens du maximum vraisemblance a partir des observations Cela conduita
Ihl’;"L = Hy + E au E est la matrice d'erreur d'estimation. La matrice de covariance de chaque
colonne deE estegalea g = EIMR. A pesent, en choisissant une distribution a priori pour
la matrice Hy suivant la loi CN 0; 1y, H, €ten utilisant le mockle lireaire ci-dessus pour
l'estime 1 {;"L , 0N peut ceriver la distribution a posteriori du vrai canal sachant son estine (voir
I'Appendice B) :

p(HjRMy=cN A 1y, E (18)

Betection anelioee avec estimation imparfaite du cana I

Soit f (yk; Sk; Hk) le criere de decision dans un cetecteur donre. Suivant le criere de decision,
la fonction f (y;sk;Hk) peut etre la loi a posteriori p(skjyk;Hk), le logarithme de la fonction
de vraisemblanceW (ykjHk; Sk), ou encore l'erreur quadratique moyenne. Comme le canal
inconnu H est impligee dans la detection, on propose une cetection base sur la fonction de

coQt suivante:
Z

f (yk;sk; Hk) p(H kjR k) dH
H

Ey i, T (VkiskiHi) P (19)

By k; sk; M)

al p(H kjltl k) est la distribution donree par (18).
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Le abtecteur ML cbsadape Cette approche sous optimalerepose sur une fonction de
vraisemblance dans laquelle on remplace le vrai canal par s@stine. Cela conduita la distance

Euclidienne suivante comme criere de detection:

Duv (S Yk B = logW (yijsi; i) 7k vy Rysik?: (20)
Le cetecteur ML anelioe : En utilisant I'expression gererale (19), on peutevaluer la
netrique de cetection anelioee au sens ML comme suit
Z
W (yxiBisi) = W (ykiH ;) p(HKiR) dH
szcMﬁe M1 i
= By b, WOKiH K sK) By (21)

La distance Euclidienne assoceea la netrique anelioree est donree par (voir Appendice B)

D,, (sk;yik:®i) = logW (yjB;sk)

kyk  Bysek?,

= Mg lo 24+ Zkspk® + :
9 =7 E 2+ Zks k2

(22)

Betection et cbcodage ieratif conjoint

A la eception, on adopte un sctema de cktection et de cecodage ieratif conjoint compos d'un
cetecteur souple et d'un decodeur SISO. A n de prendre en compte I'erreur d'estimation du
canal, on propose d'utiliser la netrique ML anelioee ci -dessus dans le cetecteur. Soiid{im le
m-eme (m = 1;:::;;BM ) bit coce et entrelace du vecteur sy, transmisa partir de I'antenne
demission j et sur la sous porteuse d'indicek. Soit S I'ensemble de tous les symboles transmis
possiblessi. On partitionne S en deux sous ensembleSy' et S, pour lesquels lem-eme
bit de sk vaut respectivement\0" ou \1". On cenote par L(d{(;m) le logarithme du rapport de
vraisemblance (LRV) du bit dL;m en sortie du detecteur.

Le LRV du cetecteur propos est donre par

P eD w (sk; vk ) @ Pdlec dJkn

s 28m n=1
k ! ném

(™) =log —5 o — (23)
eD w (si:yw: M) po ghn
5 2D o dec “k
ném

a PL(d") et P (d") sont les probabilies a priori fournies par le cecodeur SISO.
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Taux de transmission atteignables assocesa la netriqu e ML anelioee

Taux atteignables instantares : En utilisant des outils de la treorie d'information, les ta ux

atteignables C,, assocesa la nmetrique D,, (22) sont donres par

Q
O

I <¢©

1% 1 < P 0 Vo
Cy (HiR)= - logydet. Iy + H (24)
k=0 ’ K _y K

@ Hy = Uy diag(_)VY; nous & nissons BY = VYRYU et le vecteur Ry = diag(18}) resultant
de sa diagonale.
La solution optimale est:

— ; t

avec E_Opfk = = kk? k o k2 + Zet
8 |
p . H
3 Byw .. .
' a Bq sib,., O
opt KRk |l i sthu (25)
—M Kk B

0 sinon

a a, eth, , sontdes constantes & nies dans le chapitre 4.

Taux de coupure moyennes : La notion de taux de coupure ououtage ratesest plus
appropree dans les s@narios ai le canal reste invariam sur toute la duee de la transmission,
ce qui est le cas en MB-OFDM. Pour un taux de coupureR et une ealisation du canal H, nous

utilisons la distribution (18) pour ¢ nir la probabilit e de coupure ¢utage probability comme
z

POU(R; ) = p(HjR)dH; (26)
fH2 w (RiM)g

avec I'ensemble , (R;R)= H 2 CMMr MMt : cy(H;M) <R a la matrice bloc diago-
nale H est donree par
H = dlag Ho H1 Huv 1

Les taux de coupure pour une probabilie de coupure sont donres par
Cou(; Ih):s%p R 0:P%(R;M) : (27)
Comme les taux de coupure donres par (27) cependent de I'dgre R, on moyenne les taux de
coupure sur les estimes du canal:
C, ()= By CU(; Ay (28)

En suivant une cemarche similairea ce qui aet pesente ci-dessus, nous pouvons calculer les

taux de coupures moyennes assoces au cetecteur ML cesaape (20).
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Conclusion

En utilisant les statistiques de I'erreur d'estimation de canal, nous avons propog une nouvelle
approche pour concevoir des cetecteurs prenant en comptesk impecisions d'estimation. Dans
le cas d'une cetection au sens du maximum de vraisemblancepotre approche conduita une
nmetrique anelioee que nous avons utilie dans la formulation d'un detecteur MAP ieratif. De
plus, nous avons calcuk les taux de coupure atteignablessaoces aux netriques ML anelioees
et cesadapees. Nos esultats de simulation ont monte s que I'approche cesadapte est largement
sous optimale en terme de taux d'erreurs binaires et de taux € coupure atteignables surtout
guand la quence d'apprentissage du canal est courte. llsent aussi con rne le fait que le
cetecteur anelioe est plus adapta la pesence d'er reurs d'estimation de canal. Notons que
le gain de performance du cetecteur propos aek obtenu sans recessiter I'augmentation de la

complexie du ecepteur.
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Chapitre 5 :
Detection ierativea complexie eduite prenant en c ompte les

erreurs d'estimation de canal

Introduction et motivations

Au chapitre peedent, nous avons propos un ecepteur ieratif base sur une cetection anelioee
au sens du MAP. Bien que la detection MAP soit connue pour &te la meilleure straegie
pour minimiser le taux d'erreur binaire, elle pesente toutefois une complexie calculatoire qui
s'accrot avec le nombre de bits transmisa chaque utiliséion du canal (i.e., avec le nombre
d'antennes en eception et la taille de la constellation). Par conequent, il est d'un grand in-
erét pratique de consicerer des detecteursa faible c omplexie pouvant fournir des performances
proche de la solution optimale.

Les solutionsa complexies eduites proposes dans laliterature se divisent en deux cae-
gories. La premere caegorie regroupe les solutions qureposent sur une marginalisation par-
tielle (i.e., sur un ensemble eduit) plutdt que sur une marginalisation compete sur I'ensemble
de tous les vecteurs possibles. Dans cette cakgorie on peaoommer le cecodage par spleres et
les techniques de relaxation semi e nies [12{14] ou enc@ le decodage par liste [15,16]. Les
solutions de la deuxeme catgorie sont bases sur des thniques de lItrages lireaires.

Dans ce travail, on consicere une approche base sur un lItage lireaire MMSE et une
annulation paralele d'intererencea entees souple s (soft-PIC). Cette approche aet propose
pour la premere fois par Wang et Poor [17] pour les syseme CDMA multi utilisateurs et a
par la suiteee appligqiee etetendue par Tuchler [18], D ejonghe et Vandendorpe [19,20] dans le
contexte de legalisation ierative. En consicerant le multiplexage spatial, Sellathurai et Haykin
ont propoe une eception ierative base sur le Itrag e MMSE et soft-PIC [21]. Cependant,
la majeure partie des travaux ont consicee une parfaite connaissance du canal au ecepteur.
L'objectif de notre travail est de proposer un cetecteur MM SE pour les sysemes MIMO, qui soit
robuste aux incertitudes sur le canal, duesa une estimatio base uniquement sur les pilotes.
Pour cela, on adopte le méme cadre probabiliste introduit a chapitre peedant pour calculer la
nmetrique ML anelioee. Nous cerivons un ecepteura ¢ omplexie eduite qui prend en compte
les erreurs d'estimation de canal dans la formulation du ltre MMSE mais aussi au niveau de
l'annulation des intererences. Une nethode simpliee pour calculer les coe cients du ltre
MMSE est aussi pesenee. Nous montrons nalement plusieurs s@narios de simulation dans
le cas du multiplexage spatial et les codes espace-temps. oobservons que dans le cas des

codes espace-temps, le ecepteur est tes sensible aux perfections sur les estines du canal.
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Moctle de transmission et estimation de canal

Canal MIMO : On consicere une transmission a antennes multiples avecMt antennes
demission et M antennes de eceptiona travers un canal non lectif en equence. La £quence
binaire est cocee par un code convolutif avant d'étre entrelace de manere pseudo-akatoire.
Ensuite, la £quence cocke est transfornee en symboles BSK ou 16-QAM qui sont envoyes vers
un encodeur espace-temps. Dans ce qui suit, on consicere iBultiplexage spatial. La gererali-

sation au cas des codes espace-temps est pesente dansdpendice D. On suppose une trame
de symboles correspondantal utilisations de canal, transmisa travers un canal repesenge par

la matrice H de taille (Mg M+). Le vecteur de symboles recusyy est donre par la relation
Yk =Hsk+ 2z k=1;:u5L; (29)

al Sk repesente le vecteur de taille Mt 1) des symboles transmis avec une puissanég; =
ﬁE[tr(sks{)]. On suppose que le canal est distribte selon la loH CN (0;lwu, H) avec

H = f21IMR' Le vecteur zy est un bruit AWGN avec une matrice de covariance , = § IMg -
De plus, on consicere un canal avec desevanouissements phloc, aia chague trame correspond

N¢ blocs devanouissement incependants.

Estimation de canal : Pour estimer le canal correspondanta chaque bloc devanaissement,
on envoieNp symboles pilotes en plus des donrees. Dans ce cas, en supaasdes squences
d'apprentissage orthogonales, l'estine au sens du maximuon vraisemblance du canal conduita
Ry, = H + E. Cette estimation peut &tre caraceriee par la loi a posteriori suivante (voir
Appendice B):

p(Hif ML) = CN Bye; v, Zlv, (30)

Formulation gererale du cktecteur soft-PIC

Dans cette approche, an de cetecter le symbole correspondnta une antenne donree, on
utilise les informations souples fournies par un cecodeuiSISO pour annuler (en ealie eduire)
l'intererence cause par les sighaux des autres antenre Ensuite, un Itre MMSE est appliqie
a nd'annuler les interérences esiduelles. Notons quecette approche diere d'un Itrage MMSE
classique dans la mesure a le Itre MMSE estevalte en moyennanta la fois sur la distribution
du bruit et sur celle des symboles d'information.

Soit sk = [si; :::;sl'l"T]T le vecteur des symboles transmisa l'instantk. Ineressons nousa la

cetection du i-eme symbole s|. Pour ce faire, on commence parevaluer la moyenne et la
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variance des symboIeSL pour tout j 6 ia partir du decodeur :

B
Esl = s P[st]
=1

8%

B

E jsii® = isl®PIsi (31)
=1

N
1

j
Sk

al P[SL] est la probabilie que sL soit transmis qui est fournie par le decodeur.
On introduit les ¢k nitions suivantes. H; et R, sont des matrices g Mt 1) forneesa
partir de H et R en supprimant leurs i-eme colonne, a savoir h; et R, respectivement. On

e nit aussi les vecteurs s| et 4! de tailles (Mt 1) 1) comme suit :

i D1 T
sk, sostuns, LsttinsT

et

i 1.42..c.a l.oai+l.....aM7 T.
_k y s ,s ,...,sk 7§k ’“'7§k .

A pesent, I'annulation d'intererence pour cetecter sL secrit

yi = vk B8

his, + H;si M, 8 +z; pouri=1;:;Mr: (32)

Comme en pratique <} est dierent de s, il existe une interrence esiduelle danst. Pour

eduire cette interkrence, un Itre MMSE WL est applique sur Xik:
M= Wiy, (33)

al le vecteur de taille (1 MRg) W|i( est donre par

h [
i — ; i iyl 2.
Wi = argmin Es 7z, Sk Wiy,
wj2ct Mr

(34)

Avant de passera travers le cecodeur, la sortie du ltre MM SE (33) doit &tre convertit en LRV.

Cela sera pesent un peu plus loin dans le cas du cetecteu soft-PIC anelioe.

Betection soft-PIC anelioee avec estimation imparfai te du canal

Il est claira partir des equations (32) et (34) que la connaissance du canalH est recessaire
pour les parties annulation d'intererence et Itrage MMS E. Une approche sous optimale et
tesadaptee (au canal) consistea utiliser I'estime R au lieu du vrai canal H. Dans ce travail, en

utilisant la loi a posteriori (30), on apporte deux modi cations au detecteur pesent e ci-dessus.
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La premere modi cation concerne le calcul du ltre WL dans (34). On propose un ltre modie

w! calcuk selon le criere suivant

el = argmin  Ensz () wiyl 2R
wi2Cl MR
h 2|
= argmin Enjn Esiize Sk wky'k ; (35)
w2Cl MR

En utilisant le principe d'orthogonalie, on obtient (voi r Appendice D)

W= Ry Ry 36)
(e}
Ryy = 2R+ nmg R/ (37)
et
Ryi = ? §Lﬁiﬁiy+ 2R, BT+ 2 DRimgHY+( 2 )R mY R
+1 )R e AT+ Ze@ ) 2+@ U k) lwe (38)

La deuxeme modi cation concerne la partie annulation d'i ntererence. En e et, au lieu d'utiliser

lequation (32), on propose d'appliquer le ltre WL a un signal modie gk(i) qui est donre par

v ()= Risy+ B;si B8+ z; (39)

B = Eﬂijﬂi [Hi]= Hi et = Ehijhi [hi] = Hi:
A pesent, on applique le ltre wik au signal gk(i), ce qui nous conduita
i

g = wie =|\%H sl + wklh s &Ih 8l +sz§ (40)

al ; est lintererence plus le bruit qui a ecte la sortie du It re MMSE e{<
Lequation (40) peut étre consickee comme la sortie d'un canal AWGN ayant pour entee le

symboles}, c'esta dire
B= kiSkt ki (41)
al i et i sont calcuesa chaque instant ka partir des statistiques que le decodeur SISO

fournit sur les symboles. La ckerivation exacte de la variarce 2k_ de ., est pesenee dans

I'Appendice D.
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Calcul des LRV : En utilisant lequation (41), on peut calculer les LRV corr espondant aux
bits qui composent le symbole d'inerét s‘k. Ces LRV seront utilises par le decodeur SISO dans
un traitement ieratif de cetection et de decodage conjo int. Par exemple pour le m-eme bit

d", ona

Pdem dL;m = 1jﬂi<; ki
Pdem d:(;m =Ojd<; k;i

L(di™) = log

P e sz © .
& ki SiJ 1 i:n
) exp ‘ Zkli ‘ IDdec(dk )
SIKZS_T H n=1
ném
=log S : : ® : (42)
B ki Si? in
Coem exp : Zkfi ‘ IDdoec(dk )
i , n=1
Sk250 ném

Notons nalement qua l'inverse d'un detecteur MAP pour | equel les ensembleS]" et S{' dans
(23) ont chacun 278 lekments, la cardinalie des ensembles ST et ST' esta pesentegalea
2B 1, ce qui eduitenormement la complexie du cetecteur s oft-PIC par rapporta un cetecteur
MAP.

Conclusion

Dans ce chapitre, nous avons propos un cktecteur ieratf anelioe eta complexie eduite qui
est base sur I'association d'une annulation paralele dintererencesa entees souples (soft-PIC)
et d'un Itrage MMSE. En utilisant une fois de plus les statis tiques de I'erreur d'estimation de
canal, nous avons apporte des modi cations au dcetecteur ®ft-PIC a n pour prendre en compte
I'estimation imparfaite du canal dans la calcul du Itre MMS E et dans la partie annulation
d'intererences. Nos esultas ont monte que le cetect eur propose pesente de meilleures perfor-
mances en terme de taux d'erreur binaire qu'un detecteur sét-PIC qui remplace le vrai canal
par son estime. Dans le cas des codes espace-temps, nousravobsene que ecepteur est plus

sensible au erreurs d'estimation et que le detecteur propee o re des gains plus importants.
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Abstract

The aim of this thesis is to study the problem of iterative data detection in a realistic wireless
communication system, where the receiver disposes only ofmaimperfect (and possibly poor)
estimate of the unknown channel parameters. The applicatia scenarios on which we focus are
single- and multi-antenna OFDM systems working over ultra wideband (UWB) channels. First ,
we propose an e cient receiver jointly estimating the channel and the transmitted symbols
in an iterative manner. This receiver is based on awavelet representation of the unknown
channel and exploits the sparsness property of UWB channels the wavelet domain to reduce
the receiver's computational complexity. Second, we rely on the statistics characterizing the
quality of the channel estimation as a mean to integrate the mperfect channel knowledge into
the design of iterative receivers. In this way, we formulatean improved maximum likelihood
(ML) detection metric taking into account the presence of channel estimation errors. We propose
a modi ed iterative detector based on maximum a posteriori (MAP) which mitigates the e ect
of channel uncertainty on the detector performance, by an apropriate use of this metric. The
results are compared to those obtained by using a classicaletector based on amismatched ML
metric, which uses the channel estimate as if it was the perfg& channel. The in uence of the
constellation labeling is also experimentally studied. Futhermore, we calculate the achieved
throughputs associated to both improved and mismatched ML detectors, in terms of maximal
achievable outage rates. Our results may serve to evaluatehe trade-o between the required
quality of service (in terms of BER and achieved throughput9 and the system parameters (e.g.,
power allocated to pilot and data symbols, number of pilots per frame, number of decoding
iterations, outage probability) in the presence of channelestimation errors. Finally , we propose
an improved low-complexity iterative detector based on sof parallel interference cancellation
and linear minimum mean-square error (MMSE) ltering. This receiver takes into account the
presence of channel estimation errors in the formulation ofhe linear MMSE lIter, as well as in
the interference cancellation part. The important point is that the performance improvements
reported in this thesis are obtained while imposing practially no additional complexity to the
receiver.

Index Terms {UWB channels, OFDM, MIMO, wavelet based channel estimationchannel

estimation errors, mismatched detection, improved iteratve detection, achievable outage rates.
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Chapter 1

General Introduction

Novel wireless communication and multimedia services are ding introduced almost daily and
the demand for higher data rates and higher quality connectvity continue to grow. Cellular
telephony and wireless networking are currently the most obious signs of the success of wireless
communications. This spectacular progress is to a great exint due to continuous progress in
electronic and micro-electronic technology. Such advancehave also been fostered by major
theoretical developments. The synergy between componentand signal processing techniques
is considered to be the main cornerstone of modern communitian systems.

There are actually two theoretical discoveries that have ha a considerable impact on com-
munication systems. The rst one occurred in 1948 where Clade E. Shannon established the
fundamental limits on the transmission rates in digital communication systems and motivated
the search for coding techniques to approach the capacity it [27]. In the second landmark
development, Claude Berrouet al. invented turbo error control coding by which the gap between
the Shannon's capacity limit and practically feasible chamel utilization is almost closed [28].

The key challenge faced by the emerging fourth-generation4G) wireless systems is to
provide broadband access with high data rates at guaranteedjuality of service (QoS) for each
user, even with very hostile channel environments. For redtng this goal, the use of multiple
antennas has been shown to constitute an e cient mean ifperfectknowledge of the instantaneous
channel fading is available at both ends of the wireless link With the advent of multiple antenna
(MIMO) techniques, several original schemes have been desed over the past decade that bene t
particularly well from the added spatial dimension provided by multiple antennas: antenna
subset selection and space-time coding [29] increase theliability of a wireless link, while
spatial multiplexing [30] and its corresponding demultiplexing and detection algorithms [31]
achieve high spectral e ciencies. As higher bit rates involve wideband communications, wireless

channels become usually frequency selective. Multicarriemodulation realized by orthogonal
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frequency-division multiplexing (OFDM) is well suited for such broadband applications [32].
Recently, MIMO wireless transmission in combination with OFDM (MIMO-OFDM) has been
proposed as an attractive solution for the future generatim of wireless communication systems
[33].

It is well known that reliable coherent data detection is not possible unless an accurate
channel estimate is available at the receiver. Although pefect channel knowledge rarely happens
in practical wireless systems, a large part of research aatity on MIMO and OFDM systems
has been carried out under the assumption of perfect channeadstimate available at both the
transmitter and receiver sides. In order to obtain the chanrel state information at the receiver
(CSIR), a commonly-used approach consists in sending somenkwn training symbols (also
called pilots) from the transmitter, based on which the recaver estimates the channel before
proceeding to the detection of data symbols. Obviously, du¢o the nite number of pilot symbols
and noise, in practice, the receiver can only obtain arimperfect (and possibly very poor) estimate
of the channel. In\closed-loop" systems, this imperfect clannel estimate is usually sent to the
transmitter via a limited bandwidth feedback channel which degrades further the quality of
the channel estimate. In this situation, one may resort to dierential modulations [34{36] that
do not require channel estimation and rely on fully incoheret detection procedures. However,
performance loss of about 3 dB is paid by these incoherent stams.

In the described scenario, when we compare the well estabied results concerning the
potential capacities and the optimal decoding performance of wirelessystems with theirachieved
throughputs and decoding performance in the presence of cinael estimation errors, we notice
large gaps. This e ect arises naturally when, due to imperfet channel estimation, the receiver
performs signal detection based on maximum likelihood (ML)by using a wrong channel law,
or when the receiver is intentionally designed to perform a sboptimal decoding rule so as to
simplify its implementation. As incoherent schemes degrad the detection performance and
perfect channel estimation is an utopia for most wireless hks, recent e orts tried to exploit
partial CSIR informations for signal detection. In this regard, the impact of imperfect channel
knowledge on the receiver performance and the design of impved transceiver structures, that
take into account the e ect of channel estimation errors, are of considerable relevance to be
investigated, from both a theoretical and a practical point of view.

For a MIMO system using pilot-based channel estimation, Gag et al. showed in [37]
that for compensating the performance degradation due to inperfect channel estimation, the
number of receive antennas should be increased. Obviouslthis may not be always possible in
practice. In [38], Taricco and Biglieri investigated the e ect that imperfect channel estimation

has on space-time decoding and showed that the classical MLetector derived for the case



of perfect CSIR, becomes largely suboptimal in the presencef channel estimation errors. As
an alternative, they adopted an improved ML detection metric that mitigates the impact of
imperfect CSIR. A similar investigation was carried out in [39] for trellis-coded modulations
in scalar channels. From an information-theoretic point of view, Medard derived in [40] an
inner and outer bound of the capacity for AWGN channels by corsidering MMSE channel
estimation at the receiver and no channel information at the transmitter. In [41], Yoo and
Goldsmith extended the results of Medard to MIMO fading channels by assuming perfect a
feedback between the receiver and transmitter. Similar inestigations was carried out in [42] by
Hassibi and Hochwald for block-fading MIMO channels estimé&ed by training sequences.

In this thesis, we are particularly interested to iterative detection techniques. In fact, since
1993, the concept of turbo decoding introduced by Berrou hadeen successfully extended to
turbo detection [43], turbo equalization [19] and turbo channel estimation [6] for both single-
and multi-antenna OFDM systems. Actually, the optimal dete ction strategy when channel cod-
ing is used consists in jointly detecting the data symbols ad decoding the encoded data in the
maximum a posteriori (MAP) sense, however, this scheme su ers from a prohibitivecomputa-
tional complexity. By adopting turbo detection, the receiver is splitted into a \soft" detector
(also called demapper) and a soft-input soft-output (SISO)channel decoder. This scheme ap-
proximates joint detection by exchanging estimates of the ikelihood of each information bit in
the message between the processing elements through sevdtarations. However, in order to
provide reliable informations for the SISO decoder, the sdfdetector requires a perfect knowl-
edge (or a very accurate estimate of it) of the channel paranters. Obtaining such an accurate
estimate in wireless channels through the use of pilots, wdd require inserting too many train-
ing symbols per frame, which can result in a considerable ragttion of the system throughput
due to the pilot overhead. Hence, it is of great interest to deelop new reception schemes being
able to provide the desired performance without excessivencrease in the number of training
symbols. This requirement will constitutes our roadmap throughout this thesis.

The objective of this thesis is to propose improved iterative detection schemes for both
single- and multi-antenna OFDM systems in the presence of dinnel estimation errors. More
precisely, we study the problem of signal detection in a pratical wireless communication system,
where the receiver has only access to a noisy estimate of théannel and no information about
the channel is available at the transmitter. Particular att ention is devoted throughout this
thesis to the design of low-complexity receivers taking inb account the presence of channel
estimation errors. The application scenario on which we foas is multiband OFDM (MB-
OFDM), proposed for IEEE802.15 wireless personal area netwks (WPANSs) based on ultra

wideband (UWB) transmission. In fact, MB-OFDM is no more than a conventional OFDM
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system combined with bit interleaved coded modulation (BICM) [44] for error prevention and
a frequency hopping technique for improved diversity and mitiple access [4].

As a rst solution to mitigate the impact of channel estimati on errors on the decoding
performance, we consider a semi-blind method based on the Brctation-Maximization (EM)
algorithm. In this scheme, a coarse estimate of the channeki rst obtained based on few pilots
and then, improved channel estimates are obtained by integating the estimation of the channel
into the iterative process of data detection. Soft informaton from the iterative decoder is used
to improve channel estimates after each iteration. Though i has been shown that such iterative
joint channel estimation and data detection schemes outpdorm receivers using pilot-only based
channel estimation, they have higher complexities that maybe of a critical concern for their
practical implementation [5,9]. This complexity is signi cantly reduced in our proposed scheme
by expressing the unknown channel in terms of its discrete weelet series, which has been shown
to provide a parsimonious representation [45].

As a second solution to deal with channel uncertainty, we cosider a pilot-only based chan-
nel estimation and we rely on the statistics characterizingthe quality of the channel estimation
process to reduce the number of required pilot symbols. Actally, an interesting feature of
pilot assisted channel estimation techniques is the availility of the channel estimation error
distribution. In our work, we consider the pdf of the perfect channel conditioned on its estimate
as a measure of the channel estimation accuracy. This pdf pxades us with a statistical frame-
work which we exploit for the design of improved iterative detectors under imperfect channel
estimation. In addition to studying the error rate performa nce, the maximal information rates
that can be achieved by practical detectors under imperfecthannel estimation are also studied
and compared with the rates provided by the best possible dexder in the presence of channel
estimation errors. Actually, most of the research activity concerning imperfect CSIR is focused
on performance analysis in terms of bit error rate (BER). However, our results may serve for
selecting the parameters of a wireless communication syste (e.g., training sequence length,
training power, transmission power, outage probability, €c.) where a prescribed QoS, in terms
of achievable rate and BER, must be guaranteed even under imgrfect channel estimation.

Although the turbo detection scheme based on MAP leads to an xcellent error rate perfor-
mance, its complexity increases exponentially with the nunber of bits transmitted per channel-
use (i.e., the number of bits per symbol in the signal constéation and the number of transmit
antennas). Thus, there is a great interest in the developmenof reduced-complexity detectors for
MIMO systems, especially. Towards this end, by using the sara statistical framework described
above, we propose a low-complexity turbo detector based onaft interference cancellation able

to cope with imperfect channel estimation.



The main gquestions motivating our research can be summarizkas follows.

1. How can the wavelet domain representation of UWB channelde exploited to reduce the
complexity and to enhance the performance of a joint iteratve channel estimation and

data detection scheme ? (treated in Chapter 3)

2. How to design an improved turbo detection scheme that take into account the presence

of channel estimation errors ? (treated in Chapter 4)

3. How does the uncertainty about the channel a ect the perfeamance in terms of reliable
information rates and bit error rate in single- and multi-antenna OFDM systems ? (treated
in Chapter 4)

4. How to reduce the impact of channel uncertainty on the reca/er performance for a low-

complexity interference cancelling-based iterative receer ? (treated in Chapter 5)

In the following, we give an overview on how these questionsdve been addressed in this thesis.

Thesis Overview and Contributions

This dissertation is organized in six chapters. Notice thatalthough our application scenario
is a MB-OFDM system working over a UWB channel, the ideas and pinciples described in
this thesis are applicable to conventional OFDM systems as eil. Furthermore, our results
concerning multiband MIMO-OFDM systems are also transpos#®le to narrowband single-carrier
MIMO systems by setting the number of subcarriers to one.

In Chapter 2 , we present a state of the art of the UWB technology along withdi erent
modulation and detection techniques proposed for UWB systms. The rst part of this chapter
provides an historical overview of UWB, the key bene ts and goplications of UWB for wireless
transmission as well as some UWB regulatory issues. Next, wpresent the traditional UWB
modulation schemes (called single band modulations). Thenwe present the multiband UWB
modulation scheme followed by a detailed survey of MB-OFDM gstems. We nally perform
some simulations to show the sub-optimality of the basic reeiver proposed for MB-OFDM
systems in [4] and this motivates the contribution of the sutsequent chapters.

In Chapter 3 , we rst review the major channel estimation techniques adwcated in the
literature for OFDM systems. Next, we speci cally turn our a ttention to semi-blind methods
based on the EM algorithm. After an overview of the EM algorithm principle, we introduce an
EM based semi-blind joint channel estimation and data detetion scheme, where the channel is
represented in the wavelet domain. Aprior distribution is chosen for the wavelet coe cients of

the unknown channel impulse response in order to model the sgseness property of the wavelet
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representation. This prior yields, in the maximum a posteriori sense, a thresholding rule within

the EM algorithm. We particularly focus on reducing the number of estimated parameters by

iteratively discarding \insigni cant” wavelet coe cient s from the estimation process. Finally,

the combination of the channel estimation with the decodingoperation is discussed, as well as
some implementation issues.

In Chapter 4 , under the assumption of imperfect channel estimation proided by pilot
symbols, we propose an improved turbo-MAP detector for bothsingle- and multi-antenna MB-
OFDM systems. We start by reviewing the major contributions investigating the impact of
imperfect channel estimation on the performance of commumiation systems employing multi-
ple antennas. Then, by adopting a Bayesian approach involvig the statistics of the channel
estimation errors, we formulate animproved ML detection metric under imperfect channel esti-
mation. First, we use this metric to propose a modi ed turbo-MAP detector which reduces the
impact of channel uncertainty on the decoder performance. & comparison, we also consider a
detector based on a sub-optimamismatchedML metric, which uses the channel estimate in the
same way as if it was the perfect channel. Second, by using theols of information theory, we
derive the expression of information rates achieved by themproved and mismatched ML de-
tectors, in terms of maximal achievable outage rates. Theseutage rates are compared to those
provided by a theoretical (but not practical) decoder. Numerical results conducted over realistic
UWB channels show that the proposed approach provides sigrgéant gains in terms of bit error
rate and achievable outage rates, compared to the classidglused mismatched approach, with
practically no additional increase in the receiver complexy.

Chapter 5 is devoted to a low-complexity turbo receiver based on inteference cancellation
according to the MMSE criterion. We derive an improved soft parallel interference cancellation
(soft-PIC) detector that mitigates the impact of channel un certainty on the detection perfor-
mance. A comparison with the optimum turbo-MAP receiver is also provided. The formulation
of the improved soft-PIC detector under channel estimation errors is derived for the simple
case of V-BLAST scheme. We also provide its generalizationa the case of an arbitrary space-
time coded MIMO system. Finally, we examine the performancegain that may be achieved
with respect to suboptimal soft-PIC detectors for the case & V-BLAST as well as for full-rate
full-diversity space-time codes.

Finally in Chapter 6 , we summarize this thesis and give some concluding remarksavell

as suggestions for future research directions.



Chapter 2

Ultra Wideband Modulation and

Detection Schemes

2.1 Introduction to Ultra Wideband

2.1.1 Historical Overview

Although, often considered as a recent technology in wireless communications, ultra wideband
(UWB) has actually experienced over 40 years of technologal developments. In fact, UWB has
its origin in the spark-gap transmission design of Marconi ad Hertz in the late 1890s [46]. In
other words, the rst wireless communication system was basd on UWB. Owing to technical
limitations, narrowband communications were prefered to UNB. In the past 20 years, UWB
was used for applications such as radar, sensing, militarya@ammunication and localization. A
substantial change occurred in February 2002, when the Feadal Communication Commission
(FCC) issued a report [47] allowing the commercial and unliensed deployment of UWB with a
given spectral mask for both indoor and outdoor applicatiors in the USA. This wide frequency
allocation initiated a lot of research activities from both industry and academia. In recent years,

UWB technology has mostly focused on consumer electronicsna wireless communications.

2.1.2 UWB De nition

When UWB technology was proposed for commercial applicatias, there was no de nition for
a UWB signal. The rst de nition for a UWB signal was based on t he fractional bandwidth
Br. 3qg Of the signal. The fractional bandwidth is de ned as [48]

,fn fu

T (2.1)

Bft. 308 =
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Figure 2.1: Comparison of the spectrum allocation for di erent wireless radio systems.

wheref and fy are respectively the lower and the higher 3 dB point in a spectrum. In this
rst de nition, a signal can be classied as a UWB signal if Bt.3qg is greater than 25 %. In
2002, the FCC approved that any signal having a 10 dB fractional bandwidth larger than 20
%, or a signal bandwidth greater than 500 MHz is considered atJWB. These regulatory rules
also specify indoor and outdoor spectral masks, which resict transmission powers of UWB
devices in order to minimize the interference with other narowband technologies operating in
the same frequency band. Figure 2.1 presents a comparativélustration of the UWB spectrum

occupation and other existing narrowband systems.

2.1.3 Key Benets of UWB

UWB has a number of advantages that makes it attractive for coxsumer communication appli-

cations. In particular, UWB systems [49]
provide high data rates

have very good time domain resolution allowing for ranging @ad communication at the

same time
have immunity to multipath and interference

have potentially low complexity and low equipment cost.
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The high rates are perhaps the most compelling aspect from aser's point of view and also
from a commercial manufacturer's position. With UWB, trans mission rates of over 100 Mbps
have been demonstrated, and the potential for higher data rées over short distances is there.
The high data rate capability of UWB can be best understood by examining the Shannon's
famous capacity equation:

C=Wlog, 1+ % ; (2.2)

where C is the channel capacity in bits/second, W is the channel bandwidth in Hz, S is the

signal power andN is the noise power. This equation tells us that the capacity & a channel

grows linearly with the bandwidth W, but only logarithmically with the signal power S. Since
the UWB channel has an abundance of bandwidth, it can trade sme of the bandwidth against

reduced signal power and interference from other sources. Hls, from Shannon's equation we
can see that UWB systems have a great potential for high capaty wireless communications.

Thanks to their very large bandwidth, UWB signals have a very high temporal resolution,
typically in the order of a nanosecond (ns). Being able to mesure the delay of a transmitted
signal with a precision of 0.1 to 1 ns, UWB systems provide sominformation about the position
of the transmitter with a precision of 3 to 30 cm. Thus, it is possible to have both precise ranging
and high speed data communication in the same wireless termal providing the possibility for
new devices and applications.

The low complexity and low cost of single band UWB systems ases from the ability of
UWB systems to directly modulate a pulse onto an antenna. Unike conventional radio systems,
the UWB transmitter produces a very short duration pulse, which is able to propagate without
the need for an additional radio frequency (RF) mixing stage The very wideband nature of
the UWB signal means that it spans frequencies commonly useds carrier frequencies. Thus,
the signal will propagate well without the need for additional up-conversion and ampli cation
stages.

In single band UWB modulation (described in Section 2.2), the short duration of trans-
mitted pulses provides a ne resolution of re ected pulses & the receiver. In multiband UWB
(described in Section 2.4), the spectral exibility provid es robustness against interference by

turning-o the interfering frequency bands.

2.1.4 UWB Applications

In recent years, an increasing request appeared for high spd wireless connectivity between a
host (e.g., a PC) and associated peripherals such as wireesnodem, camcorder, video palayer
and so on. This increasing need led to the development of mangtandards for wireless commu-

nication systems over short distances. One can quote Bluetih, the family of WiFi standards
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(IEEE802.11), Zigbee (IEEE802.15.4) and the recent standal 802.15.3, which are used for
wireless local area networks (WLAN) and wireless personalraa networks (WPAN). However,
most of these technologies use the ISM and UNII bands with mamum bandwidths about 10
MHz.

An UWB link functions as a \cable replacement” with data rate requirement that ranges
from 100 Kbps for a wireless mouse to several hundreds of Mbp®r rapid le sharing or
download of video les. In summary, UWB is seen as having the ptential for applications
which to date have not been ful lled by the aforementioned wireless short range technologies.
Figure 2.2 depicts the positioning of the UWB compared to WLAN/WPAN standards in terms
of data rate and maximum range. As observed, the potential aplications of UWB technology
concern two technical areas: very high data rate transmissin over short distances (typically 200
Mbps up to 10 m), and low data rate communications with rangesof 100 m with positioning
capabilities. It is noticed that in contrast with the WiFi st andard, the high data rate mode of
UWB belongs to the family of short range WPANs. However, the potential data rate of UWB
exceeds the performance of all current WLAN and WPAN standads. In the low data rate
mode, the IEEE802.15.4a standard targets UWB systems with entimeter accuracy in ranging
as well as with low power and low cost implementation. Thesedatures allow a new range of
applications, including military applications, medical applications (e.g., monitoring of patients),

search-and-rescue applications, logistics (e.g., packagracking), and security applications (e.g.,
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localizing authorized persons in high-security areas).

2.1.5 UWB Regulations

Devices utilizing UWB spectrum are subject to more stringert requirements because the UWB
spectrum underlays other existing licensed and unlicensedpectrum allocations. In order to
optimize spectrum use and to reduce interference to existig systems, regulatory bodies in both
Europe and the United States impose very restrictive rulings to UWB devices. Figure 2.3
compares the spectral occupation and emitted power of di eent radio systems. The essence
of these rulings is that the power spectral density (PSD) of he modulated UWB signal must
satisfy prede ned spectral masks speci ed by spectrum-reglating agencies.

In the United States, the FCC requires that UWB devices occufy more than 500 MHz
of bandwidth in the 3:1 10:6 GHz band, according to the spectrum mask of Fig. 2.4. As
observed, the PSD must not exceed 43 dBm per MHz of bandwidth. This limit is low enough
not to cause any interference to other services sharing theasne bandwidth. Cellular phones,
for example, transmit up to +30 dBm per MHz, which is equivalent to 10’ higher PSD than
UWB transmitters are permitted.

In Europe, the European Telecommunications Standards Ingtute (ETSI) works since 2001
to develop a European standard for UWB systems. The studiest& carried out in close cooper-

ation with group SE24 of the European Conference of Postal ath Telecommunications Adminis-
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Figure 2.4: FCC spectral mask for indoor UWB transmission [22].

trations (CEPT), which more particularly analyzes the possible impact of UWB on the existing
systems [50]. Actually, these European authorities aim at acertain harmony between all the
states of the European Union, but the various national reguition authorities remain sovereign
in their choice of management of the radio spectrum. Consecntly, the regulatory rules for
UWB devices have not been nalized in Europe yet. However, itis expected that ETSI/CEPT
will follow the FCC's recommendations but will not necessaily adopt the regulations of the

FCC [51], due to the more emphasis on the protection of existig services.

2.1.6 Modulation Techniques

Early implementation of UWB communication systems was basd on transmission and reception
of extremely short duration pulses (typically sub nanosecad), referred to as impulse radio
[52]. Each impulse radio has a very wide spectrum, which musadhere to the very low power
levels permitted for UWB transmission. These schemes transit the information data in a
carrierless modulation, where no up/down conversion of thetransmitted signal is required at
the transceiver. A pioneering work in this area is the time h@ping pulse position modulation
(TH-PPM) introduced in 1993 by Scholtz [53] and better formalized later by Win and Scholtz
in [23].

Until February 2002, the term UWB was tied solely to impulse radio modulation. According
to the new UWB ruling of FCC from 2002, 7.5 GHz of frequency spetrum (from 3.1 to 10.6

GHz) is allocated for unlicensed applications. Furthermoe, any communication system that has



2.2 Single Band UWB Modulations 13

a bandwidth larger than 500 MHz is considered as UWB. As a corequence, a variety of well
known and more established wireless communication technogies (e.g., OFDM, DS-CDMA)
can be used for UWB transmission.

In recent years, UWB system design has experienced a shiftdm the traditional \single-
band"radio that occupies the whole allocated spectrum to a multiband" design approach [54].
\Multibanding" consists in dividing the available UWB spec trum into several subbands, each one
occupying approximately 500 MHz (minimum bandwidth for a UW B system according to the
FCC de nition). This bandwidth reduction relaxes the requi rement on sampling rates of analog-
to-digital converters (ADC), consequently enhancing digtal processing capability. One example
of multiband UWB is multiband orthogonal frequency-divisi on multiplexing (MB-OFDM) [3]
proposed by the former IEEE802.15.3a [4] working group on WRN. In this scheme, high data
rate UWB transmission inherits all the strength of OFDM that has already been proven for
wireless communications (e.g., DVB, 802.11a, 802.16.a, ®}.

In the sequel, we will begin with the signal model for traditional impulse radio UWB and

then move to the multiband UWB systems.

2.2 Single Band UWB Modulations

Single band UWB modulation (also called impulse radio moduhtion) is based on continuous
transmission of very short-time impulse radio which are tygdcally the derivative of Gaussian
pulses. Each pulse has an ultra wide spectral occupation inhie frequency domain. This type of
transmission does not require the use of additional carriemodulation as the pulse will propagate
well in the radio channel. The technique is therefore a basednd signal approach.

The most common modulation schemes in this family are depiad in Fig. 2.5. In what follows,

we present the signal model for each modulation technique.

2.2.1 Modulations Techniques
2.2.1.1 Pulse Amplitude Modulation

The classical binary pulse amplitude modulation (PAM) is implemented using two antipodal
Gaussian pulses as shown in Fig. 2.5. (a). The transmitted Iviary pulse amplitude modulated
signal sy (t) can be represented as

Sy (1) = dg Wy (1); (2.3)

where wy, (t) is the UWB pulse waveform, k represents the transmitted bit \0" or\1") and
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8
S 1 ifk=0
dk = . (2.4)
+1 if k=1
is used for the antipodal representation of the transmitted bit k. The transmitted pulse is

commonly the rst derivative of the Gaussian pulse de ned as
t 12
Wy (1) = pﬁ ez 7, (2.5)

where s related to the pulse lengthT, by = T,=2 .
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Figure 2.5: Single band (impulse radio) UWB modulation schemes.
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2.2.1.2 0On-0 Keying

The second modulation scheme is the binary on-o keying (OOK and is depicted in Fig. 2.5

(b). The waveform used for this modulation is de ned as in (2.3) with
8
<0 ifk=0
dk = . (2.6)
1 if k=1:
The di erence between OOK and PAM is that in OOK, no signal is t ransmitted in the case of
bit\0".

2.2.1.3 Pulse Position Modulation

With pulse position modulation (PPM), the information of th e data bit to be transmitted is
encoded by the position of the transmitted impulse with respect to a hominal position. More
precisely, while bit \0" is represented by a pulse originating at the time instant 0, bit\1" is

shifted in time by the amount of from 0. Let us rst assume that a single impulse carry the

information corresponding to each symbol. The PPM signal ca be represented as

sy (t) = * Wy (t kTs  dk ) (2.7
k=1
wherewy (t) denotes the transmitted impulse radio and indicates the time between two states
of the PPM modulation. The value of may be chosen according to the autocorrelation char-
acteristics of the pulse. For instance, to implement a standrd PPM with orthogonal signals,

the optimum value of  ( opt) Which results in zero auto correlation ( opt) is such as:
Z,
(opt) = Wi ()W ( opt + ) =0
1

In a more general case, the symbol is encoded by the integelk (0 d¢ M) where M is
the number of states of the modulation. The total duration of the symbol is T which is xed
and chosen greater thanM + Tg, where Tg, is a guard interval inserted for inter symbol
interference (I1SI) mitigation. The binary transmission rate is thus equal to R = log ,(M )=Ts.
Figure 2.5 (c) shows a two-state (binary) PPM where a data bit\1" is delayed by a fractional

time interval whereas a data bit\0" is sent at the nominal time.

2.2.1.4 Pulse Shape Modulation

Pulse shape modulation (PSM) is an alternative to PAM and PPM modulations. As depicted
in Fig. 2.5 (d), in PSM the information data is encoded by di e rent pulse shapes. This requires

a suitable set of pulses for higher order modulations. Modied Hermite polynomial functions
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(MHPF) [55], wavelets [56], and prolate spheroidal wave fuktions (PSWF) [57] have been
proposed in the literature as pulse sets for PSM systems. Therthogonality of signals used in
PSM is a desirable property since it permits an easier dete@n at the receiver. The application
of orthogonal signal sets also enables multiple access teuljues to be considered. This can
be attained by assigning a group of orthogonal pulses to eachiser, who uses the assigned set
for PSM. The transmission will then be mutually orthogonal and di erent user signals will not

interfere with each other.

2.2.2 Enabling Multiple Access in Single Band UWB

Up to now, we assumed that each symbol was transmitted by a sigle pulse. This continuous
pulse transmission can lead to strong lines in the spectrum fothe transmitted signal. The
regularity of these energy spikes may interfere with other ommunication systems over short
distances. In practical systems, due to the very restrictie UWB power limitations, such a
described UWB system shows a high sensitivity to interferene from existing systems. On the
other hand, the described modulations do not provide multide access capability.

In order to minimize the potential interference from UWB tra nsmissions and provide mul-
tiple access capability, a randomizing technique is applid to the transmitted signal. This makes
the spectrum of the UWB signal more noise-like. The two main eandomizing techniques used for
single band UWB systems are time-hopping (TH) and direct-sguuence (DS). The TH technique
randomizes the position of the transmitted UWB impulse in time whereas the DS approach is
based on continuous transmission of pulses composing a slaglata bit. The DS-UWB scheme
is similar to conventional DS spread-spectrum systems wher the chip waveform has a UWB

spectrum. A number of other randomizing techniques may be fand in [58].

2.2.2.1 Data Modulation with Time-Hopping UWB

As described above, the multiple access and power limit colderations motivate the use of an
improved UWB transmission scheme where each data symbol isneoded by the transmission
of multiple impulse radios shifted in time. In the TH scheme, the position of each impulse is
determined by a pseudo-random (PR) code. In this way, more eergy is allocated to a symbol
and the range of the transmission is increased. Besides, dirent users, distinguished by their
unique TH code, can transmit at the same time.
A typical TH format for the j-th user is written as follows [1, 2].
For PAM modulation:

() o () ()
sy’ (t) = wy t KTs 1Ty ¢’Te d)’; (2.8)
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Figure 2.6: lllustration of the TH-PPM binary modulation.

for PPM modulation:

1
Do XK KT 1T 1. q@) 29
Sy (1) = Wyt s G le K : (2.9)

k=1 1=0

and for PSM modulation:
1 .

D= " N Cam T 2.10
tr tr s f G le s (2.10)

k=1 1=0

where d(kj) is the k-th data bit of user j. Here, Ng is the number of impulses transmitted for
each information symbol. In this improved scheme, the total symbol transmission time Ts is
divided into Ng frames of duration T; and each frame is itself sub-divided into slots of duration
T.. Each frame contains one impulse in a position determined bythe PR TH code sequence
cl(” (unique for the j -th user) and the symbol to be encoded (see Fig. 2.6). The TH geading
can be combined with PAM, PPM, and PSM. However, OOK cannot take advantage of the TH

spreading because of the blank transmission in the case ofthd".

2.2.2.2 Data Modulation with Direct-sequence UWB

In DS-UWB, the pulse waveform takes the role of the chip in a spead spectrum system [59].
Similar in spirit to spread spectrum techniques, DS-UWB emgoys sequences of UWB pulses
(analogous to\chips'). Each user is distinguished by its sgeci ¢ pseudo random sequence which
performs pseudo random inversions of the UWB pulse train. A @ta bit is then used to modulate
these UWB pulses. The resulting signal will then be a continwus transmission of UWB pulses
whose number depends on the length of the pulse itself and theit rate de ned by the system.
The DS-UWB scheme is suitable for PAM, OOK and PSM modulations. Since PPM is

intrinsically a time-hopping technique, it is not used for DS-UWB transmission. The expression
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Figure 2.7: Time domain representation of (a) TH-UWB and (b) DS-UWB spre ading techniques.

characterizing the DS spreading approach in the case of PAMrad OOK modulations for user |
is given by [2]

1
Do XK T T ) i) 911
S (1) Wyt s c GO (2.11)

where d(kj) is the k-th data bit, cl(j) is the I-th chip of the PR code, wy (t) is the pulse waveform
of duration Tp, T¢ is the chip length (equal to Tp), Ns is the number of pulses per data bit,
and j stands for the user index. The PR sequence has values fn 1;+1g and the bit length is
Ts = NgTe.

For PSM, the signal model for thej -th user is [2]

_ » _
sty = wg< t kT ITec) (2.12)

where the bit d(k” determines the choice of the UWB pulse waveform to be transntied.
Figure 2.7 compares the temporal behavior of binary TH-UWB and DS-UWB transmission

techniques.

2.2.3 Detection Techniques

In single band UWB systems, two widely used demodulators areorrelation receivers and Rake

receivers [60]. A brief description of these receivers is psented in the sequel.



2.2 Single Band UWB Modulations 19

Figure 2.8: Correlation receiver block diagram for the reception of the rst user's TH-PPM signal [23].

2.2.3.1 Correlation Receiver

The correlation receiver is the optimum receiver for binary TH-UWB signals in additive white
Gaussian noise (AWGN) channels [61]. As the TH format is typtally based on PPM and TH-
PPM was the rst physical layer proposed for UWB communications [23, 53], we present the
correlation receiver for the case of a TH-PPM signal.

Let us consider that N, transmitters are active in the multiple access scheme of th@H-PPM

transmitter. The composite received signalr (t) at the receiver is modeled as

r(t) = X A st )+ n(b) (2.13)
j=1

in which A; stands for the attenuation over the propagation path of the dgnal sga?:(t) received
from the j -th user (the transmitted signal is given in (2.9)). The random variable ; represents
the time asynchronism between the clock of the signal rece@d from the transmitter j and the
receiver clock, andn(t) represents the additive receiver noise.
The propagation channel modi es the shape of the transmitted impulse wy (t) to wec(t) and
this justify the subscript\rec" in (2.13) for spe%(t). We consider the detection of the data from
the rst user, i.e., d. For simplicity, we consider a binary transmission.

As depicted in Fig. 2.8, the data detection process is perfoned by correlating the received
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signal with a template v(t) de ned as®

V(L) , Wrec(t)  Wrecl(t )

wherewec(t) and wiec(t ) represent a symbol with duration Ts encoding \0"and \1", respec-
tively.
According to (2.9), the received signal in a time interval of duration Ts = NgTs is given by

Ng 1

F)= A1 Weet 1 Ty cOTe d  + nge(t) (2.14)
1=0

where nyy (t) gathers the multi-user interference and noise. Moreoverijt is assumed that the
receiver knows the rst transmitter's TH sequencefq(l)g and the delay ;.
When the number of users is large, it is classical to approxirate the interference-plus noiseg; (t)
as a Gaussian random process [53]. This justi es the optimdty of the correlation receiver for
TH-PPM signals.

The decision rule at the correlator output for deciding between hypothesedd g (bit\0") and
H1 (bit\1") is given by

_ N 12 (1) T o
(decide d® =\0") |, rve 1 1Ty 7T dt> O (2.15)
=0 1+

The sum of integrations in (2.15) corresponds toNg impulses that carry the information of
each data symbol and provides a processing gain which increas linearly with the number of
impulses per symbol. Although this constitutes an interesing feature of TH-PPM, we note
that the data rate is reduced by a factor of Ns. The other disadvantage of this approach is the
severe modi cation introduced by the UWB channel on the shape of the transmitted signal.
Thus, the receiver has to construct a template by using the shpe of the received signal. The
construction of an optimal template is an important concern for practical PPM based systems.
Besides, due to extremely short duration pulses employed,iming mismatches between the
correlator template and the received signal can result in seous degradation in the performance
of TH-PPM systems. For this reason, accurate synchronizatn is of great importance for UWB

systems employing PPM modulation.

2.2.3.2 Rake Receiver

A typical Rake receiver is depicted in Fig. 2.9. It is composd of a bank of correlators followed
by a linear combiner. The signal received at the Rake receiveis correlated with the equally

delayed versions of the reference pulse, sampled, multigld by the tap weightsf! ; g and nally

This is the optimal template under the assumption of Gaussia n noise [61].
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Figure 2.9: Architecture of a Rake receiver with N parallel ngers [24].

linearly combined. The Rake receiver takes advantage of mtipath propagation by combining

a large number of di erent and independent replicas of the sane transmitted pulse, in order
to exploit the multipath diversity of the channel. In general, Rake receivers can support both
TH and DS modulated systems, applying soft or hard decision dtection. The number of Rake
correlators (also called ngers) is selected so as to matchhe total number of resolvable channel
taps. This scheme is referred to as the all-Rake (A-Rake) ramiver [51]. However, the major
consideration in the design of a UWB Rake receiver is the numér of paths to be combined,

since the complexity increases with the number of ngers.

2.3 Multiband UWB Modulations

In recent years, there has been a shift in UWB system design aay from the traditional single
band radio that uses all of the 3.1-10.6 GHz spectrum simultaeously, in favor of a transmission
over multiple frequency subbands, which is referred to agnultiband UWB [3, 25, 54, 62]. In
multiband UWB radio, pulses are successively modulated by everal analog carriers and trans-
mitted through subbands of approximately 500 MHz bandwidth (see Fig. 2.10). Compared to
impulse-based UWB modulations, it is obvious that multiband UWB can make a more e cient
use of the spectral resources, minimizes interference to mting narrowband systems by exible
band selection, and facilitates future scalability of the gectrum use. Moreover, a narrower
subband bandwidth eases the requirement on ADC sampling ras (compared to a full-band
receiver), and consequently, facilitates the digital pro@ssing. Nevertheless, the bandwidth of

each subband is wide enough to allow di erent multiple-accaes and modulation options. This
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Figure 2.10: Multiple subbands in multiband UWB [25].

scheme allows for tradeo s between simpli ed time-domain mpulse modulations and frequency-
domain modulations/spreading in order to obtain the desired performance in multipath fading
and in the presence of interference from other UWB users. Mtiband UWB modulation can
be classi ed into multiband impulse radio (MB-IR) and multi band OFDM (MB-OFDM).

In what follows, we start by describing MB-IR systems and then we devote a whole section to
MB-OFDM systems.

2.3.1 Multiband Impulse Radio

In this scheme the whole allocated UWB spectrum is divided imo smaller non-overlapping
subbands of at least 500 MHz bandwidth. The modulation used 8 one of the single band
modulations (PAM, PPM, PSM, etc.) performed over each subband. Each pulse waveform
is transmitted with a pulse repetition interval Tpg, in order to avoid the ISI. Changing Tpg

a ects the data rate of the system as well as the robustness tdSI. One of the main advantages
of MB-IR UWB is that a lower complexity Rake receiver (i.e., with fewer number of ngers)

per subband su ces for energy capture (as compared to a Rakeeceiver that spans the entire
bandwidth). The disadvantage is that one Rake receiver is rquired per subband, albeit with a

small number of ngers.

2.4 Multiband OFDM

Up to now, we presented single band UWB modulations and MB-IRsystems. Since this thesis
is mainly focused on the multiband OFDM approach, we devote his section to a more detailed

description and performance evaluation of MB-OFDM systemsat the physical layer (PHY).
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Figure 2.11: Division of the UWB spectrum from 3.1 to 10.6 GHz into band groups containing subbands
of 528 MHz in MB-OFDM systems [26].

2.4.1 Introduction

We previously saw that MB-IR UWB systems needed slower timefrequency hopping, i.e., longer
contiguous symbol transmission in each subband in order tomprove the energy capture. This
requirement led naturally to the choice of coded OFDM insteal of pure pulse modulation in each
subband owing to the former's inherent robustness to multimth. Moreover, for highly dispersive
UWB channels, an OFDM based receiver is more e cient at capturing multipath energy than
an equivalent single band Rake receiver using the same totabandwidth.? OFDM systems
possess additional desirable properties, such as high spest e ciency, inherent resilience to
narrowband RF interference and spectral exibility, which is important because the regulatory
rules for UWB devices have not been nalized through the entre world. A brief overview of
OFDM is given in the next subsection; for further details, the reader is referred to [32].

In recent years, a group of international companies includig Texas Instrument, Alereon,
Hewlett-Packard, etc., made an alliance (called MBOA and then WiMedia Alliance) [26] in
order to support an OFDM based solution for multiband UWB.

In 2004, Batra et al. from Texas Instrument proposed the MB-OFDM scheme to IEEE8(®.15.3a
[3,4]. The proposed scheme divides the available UWB speatm into several non-overlapping
subbands of 528 MHz bandwidth each. As shown in Fig. 2.11, veband groups are de ned
within the 3.1-10.6 GHz frequency band. The rst four band groups have three subbands each,
and the last group has two subbands. Data transmission overtie three lowest subbands is called
the mandatory mode or mode |. This operating mode is reserved for preliming and low-cost
implementation since the degradation due to the RF noise isiiited.

Within each subband, information is transmitted using conventional coded OFDM modulation.
The main di erence between the transmitter architecture of an MB-OFDM system with that of

a conventional OFDM system is the presence of a time-frequaay code (TFC), which provides

2For a complexity comparison between MB-OFDM and DS-UWB usin g a Rake receiver, the reader is referred
to [3].
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Figure 2.12: Example of time-frequency coding for the multiband OFDM sysem in mode I, TFC = 1,
3,2,1,3,2 .0

a di erent carrier frequency at each time-slot, correspondng to one of the center frequencies of
di erent subbands (see Fig. 2.12). The TFC is used not only toprovide frequency diversity but

also to distinguish multiple users.

2.4.2 MB-OFDM Transmitter Architecture

As depicted in Fig. 2.13, in MB-OFDM, the information is tran smitted using coded OFDM
modulation over one of the subbands in a particular time-sld. The binary sequence is encoded

by a non-recursive non-systematic convolutional (NRNSC) ode, before being interleaved. The

QAM (M . = 2B) symbols si. In the basic proposal of MB-OFDM [4], quaternary phase-shit
keying (QPSK) symbols using Gray labeling is employed. We wi later extend MB-OFDM to
the higher order 16-QAM constellation with Gray or set-partition (SP) labeling.

According to [4], MB-OFDM uses N = 128 subcarriers per subband, through a frequency
selective multipath fading channel with a bandwidth of 528 MHz. This leads to a subcarrier
separation of f = 4:125 MHz. At each time slot, the transmitter applies 128 point inverse
fast Fourier transform (IFFT) yielding an OFDM symbol of dur ation Tgpr = 1= ¢ = 242:42
ns. In order to mitigate the impact of ISI, a cyclic pre x (CP) of length Tcp = 60:6 ns is
added to the output of the IFFT signal. Besides, an additiond guard interval (Gl) of duration
Te = 9:5 ns is added to allow the transmitter and receiver to switch fom one subband to
next. After adding the CP and the GI, the OFDM symbol is passed through a digital-to-
analog converter (DAC) resulting to an analog baseband OFDM signal of symbol duration
Tsym = Teer + Tep + Ter = 312:5 ns (see Fig. 2.12). Letsy be the complex symbol to
be transmitted over the k-th OFDM subcarrier during the n-th OFDM symbol period. The
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Figure 2.13: Transmitter architecture for the MB-OFDM system.

baseband OFDM signal to be transmitted at the n-th block can be expressed as

N¢ 1
Xn(t) = spexp j2k f(t Tcp) (2.16)
k=0

wheret 2 [Tep; Teer + Tep] andj P ~ 1. Inthe time interval [0; Tcp], Xn(t) is a copy of the last
part of the OFDM symbol, and xj(t) is zero in the interval [Teer + Tcp; Tsym] corresponding
to the GI duration.

The complex baseband signalx,(t) is ltered, up-converted to an RF signal with a carrier
frequencyf [, and sent to the transmit antenna.

The transmitted MB-OFDM signal is given by

NS)(M 1
rre(t) = Re Xn(t nTsym)exp j2f [t (2.17)
n=0

whereNsyy is the total number of OFDM symbols in a transmitted frame (al so called packet).
The carrier frequencyf (' speci es the subband over which then-th OFDM symbol is transmit-
ted, according to the TFC.

In the sequel, we describe each part of the MB-OFDM transmiteer in Fig. 2.13.

2.4.2.1 Channel Encoding

In OFDM transmission over multipath channels, symbols senton di erent subcarriers may un-

dergo deep fades, which would (with a high probability) leadto erroneous decisions. Thus,
uncoded OFDM is in practice unusable on multipath fading chaanels with deep notches occur-
ring in the frequency spectrum. For this reason, MB-OFDM proposes forward error correction
coding with di erent code rates by using a convolutional code [60] (called mother code). The

mother code is a rateR = 1=3 NRNSC code of constraint lengthK = 7 de ned in octal form
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Figure 2.14: An example of bit-stealing and bit-insertion procedure forobtaining R = 3=4 fromR = 1=3

[4].

by the generator polynomials (133145 175)s. Various coding rates R = 11=32; 1=2; 5=8; 3=4)
are derived from the rate R = 1=3 mother code by employing \puncturing". Puncturing is a
procedure for omitting some of the encoded bits in the transntter (thus reducing the number
of transmitted bits and increasing the coding rate) and inseting a \dummy" bit into the con-

volutional decoder on the receive side in place of the omitte bits. An example of puncturing

pattern for deriving the rate R = 3=4 code is shown in Fig. 2.14.

2.4.2.2 Bit Interleaving

Several standard proposals such as IEEE802.15.3a that praged MB-OFDM, employ bit-
interleaving combined with convolutional channel coding. This scheme, referred in the literature
as bit-interleaved coded modulation (BICM) [44], can provide a high diversity order for trans-
mission over multipath fading channels. In the basic propoal of MB-OFDM, the bit interleaving

operation is performed in two stages [4]:

Inter-symbol interleaving, which permutes the bits across 6 consecutive OFDM symbols,

enables the PHY to exploit frequency diversity within a band group.

Intra-symbol tone interleaving, which permutes the bits across the data subcarriers within
one OFDM symbol, exploits frequency diversity across subaaiers and provides robustness

against narrow-band interferers.
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For intra-symbol interleaving, the coded bits are rst grou ped together into blocks of
6Ncgps coded bits (corresponding to six OFDM symbols), whereNcgps is the number of
coded bits per OFDM symbol. Each group of coded bits is then penuted using a block inter-
leaver of sizeNg;, =6 Ncpps. Let the sequenced U(i)g and fS(i)g, (i =0;:::;6Ncgps 1)
represent the input and output bits of the symbol interleaver, respectively.

We have [4]

S(I) = U Floor +6Mod i;Ncgps ; (218)

CBPS
where Floor(;) returns the largest integer value less than or equal to its agument and Mod(a; b)

returns the remainder after division of a by b.

The outputs of the symbol block interleaver are then groupedinto blocks of Ncgps bits and
permuted using a regular block intra-symbol tone interleawer of sizeNg;, =10 Nrjy . Let the
sequences$ S(i)gand fV(i)g, (i =0;:::;6Ncgps 1) represent the input and output bits of the

tone interleaver, respectively. The output of the interleaver is given by the following relation [4]

V(i)= S Floor

+10Mod i;Ntint (2.19)
Tint

2.4.2.3 Time and Frequency Domain Spreading

In MB-OFDM, two diversity schemes may be be used to obtain futher bandwidth expansion,
beyond that provided by the forward error correction code. The rst one is the frequency domain
spreadingwhich consists in transmitting twice the same information in a single OFDM symbol.
This is performed by introducing conjugate symmetric inputs to the IFFT. Speci cally, the data
symbols are sent on the rst half of the data subcarriers and heir conjugate symmetrics are
transmitted on the second half of the subcarriers. This introduces a spreading factor of two and
results in\intra-subband" frequency diversity.

The second scheme isime domain spreadingwhich is achieved by transmitting the same
OFDM symbol across two dierent frequency subbands. This technique results in \inter-
subband" diversity and is used to maximize the frequency-diersity and to improve the per-
formance in the presence of other non-coordinated devices.

As listed in Tab. 2.1, MB-OFDM combines di erent channel code rates with time and/or
frequency diversity to provide data rates ranging from 53.3Mbps to 480 Mbps. For data rates
lower than 80 Mbps (low data rate mode), both time and frequerty spreading are performed,
yielding an overall spreading gain of four. For data rates beveen 106.7 and 200 Mbps (medium
data rate mode) only time domain spreading is used which redts in a spreading gain of two.
The transmission with data rates higher than 200 Mbps (high data rate mode) exploits neither

frequency nor time spreading, and the overall spreading gaiis equal to one.
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Data Rate (Mbps) Modulation Code Rate Freq. Spread. Time Spread. Factor
53.3 QPSK 1/3 Yes 2
55 QPSK 11/32 Yes 2
80 QPSK 1/2 Yes 2
106.7 QPSK 1/3 No 2
110 QPSK 11/32 No 2
160 QPSK 1/2 No 2
200 QPSK 5/8 No 2
320 QPSK 1/2 No 1
400 QPSK 5/8 No 1
480 QPSK 3/4 No 1

Table 2.1: Rate-dependent Parameters in multiband OFDM systems.

2.4.2.4 Subcarrier Constellation Mapping

The constellation adopted in [4] is QPSK. The coded and inteleaved binary data is divided into

groups of two bits and converted into one of the four complex pints of the QPSK constellation.

The conversion is performed according to the Gray labelingas illustrated in Fig. 2.15.

2.4.3 MB-OFDM Receiver Architecture

2.43.1 System Model

Figure 2.15: QPSK Constellation with Gray Mapping.

The receiver proposed for MB-OFDM [3] is depicted in Fig. 2.5. As shown, the process of

channel estimation and data detection are performed indepedently. We will later propose an

enhanced receiver based on joint channel estimation and itative data detection.

Let us consider a single-user MB-OFDM transmission withN4a:a = 100 data subcarriers
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Figure 2.16: The basic receiver architecture proposed for MB-OFDM in [3]

per subband, through a frequency selective multipath fadirg channel, described in discrete-time
baseband equivalent form by the channel impulse response eaients fh|g|L:01. Furthermore,
we assume that the CP is longer than the maximum delay spreadfadhe channel. After removing
the CP and performing FFT at the receiver, the received OFDM symbol over a given subband
can be written as

y = Hgs + z; (2.20)

where (Ngata 1) vectorsy and s denote the received and transmitted symbols, respectivelythe
noise vectorz is assumed to be a zero-mean circularly symmetric complex Gesian (ZMCSCG)

random vector with distribution z CN (O; ZZINUlata ); and Hg = diag(H) is the (Ngata Ngata)

P -
whereHy = |, hje 12K ¢,
In MB-OFDM, the channel is assumed to be time invariant over the transmission of one frame

and changes to new independent values from one frame to the re

2.4.3.2 Channel Estimation

In order to estimate the channel, a MB-OFDM system sends som@®FDM pilot symbols at the
beginning of the information frame. Here, we consider the dsnation of the channel vector H
with Np training symbols s_. ; (i = 1;::;;Np). According to the observation model (2.20), the

received signal for a given channel training interval is:
Yp=HySp + Zp (2.21)

where each column of the Ngata Np) matrix Sp =[s,.,;:5 S, P] contains one OFDM pilot
symbol. The entries of the noise matrixZp has the same distribution as those ofz.

The least-square (LS) estimate ofH 4 is obtained by minimizing kYp HgSp kE with respect
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to H4. We have:
R5S = YpSL(SpSh) & (2.22)

2.4.3.3 Frequency Domain Channel Equalization

In order to estimate the transmitted signal vector s from the received signal vectory, the
e ect of the channel must be mitigated. To this end, the MB-OF DM proposal uses a frequency
domain channel equalizer, as shown in Fig. 2.16 (FEQ block)lt consists of a linear estimator
as

b= Gy: (2.23)

The two design criteria usually considered for the choice ofhe linear Iter G are:

Zero-forcing equalization (ZF): ZF equalization, uses the inverse of the channel transfer
function as the estimation lter. In other words, we have GY = Hdl. Since in OFDM
systems, under ideal conditions, the channel matrixH 4 is diagonal, the ZF estimate of

the transmitted signal is obtained independently on each sbcarrier as

1
Bk = H—kyk k=0;:;Ngaa 1 (2.24)

Minimum mean-square error equalization (MMSE): equalization according to the MMSE
criterion, minimizes the mean-squared errorE ks nyk2 , between the transmitted
signal and the output of the equalizer. Applying the orthogonality principle, it is easy to
obtain

1

Ghmse= HaHY+ Zln, “HY: (2.25)

C

Due to the diagonal structure of H 4, equalization can again be done on a subcarrier basis
as

H
ijJ‘Zl:_ Zzyk k=0;:Ngaa 1 (2.26)

Brmsek =
The main drawback of the ZF solution is that for small amplitu des ofH, the equalizer enhances
the noise level in such a way that the signal-to-noise ratio $NR) may go to zero on some
subcarriers. The computation of the MMSE equalization matrix requires an estimate of the
curent noise level. Notice that when the noise level is signiant, the MMSE solution mitigates
the noise enhancement problem even whehiy's are close to zero while for high SNR regime,

the MMSE equalizer becomes equivalent to the ZF solution.
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CM1 CM2 CM3 CM4
Tx-Rx separation (m) 0-4 0-4 4-10 -
(Non-) line of sight LOS NLOS NLOS NLOS
Mean excess delay (ns 5 9.9 15.9 30.1
RMS delay spread (ns) 5 8 15 25

Table 2.2: IEEE802.15.3a UWB channel model parameters in four di erent scenarios.

2.4.3.4 Channel Decoding

After frequency domain equalization and de-interleaving,the MB-OFDM usually uses a hard or
soft Viterbi decoder in order to estimate the transmitted data bits. For a detailed description

of the Viterbi algorithm, the reader is referred to [63, 64].

2.4.4 MB-OFDM Performance Analysis in Realistic UWB Channe | Environ-
ments

In this subsection, we present some simulation results in ater to analyze the performance of
the receiver described in subsection 2.4.3 over di erent idoor UWB channel scenarios de ned
in [65].
We simulated the mode | of the MB-OFDM which employs the rstt hree subbands of 528 MHz
(from 3.1 GHz to 4.684 GHz). Eeach realization of the channetnodel is generated independently
and assumed to be time-invariant during the transmission ofa frame. In our simulations, we
have used the UWB channel models CM1-CM4 speci ed in the IEEB02.15.3a channel modeling
sub-committee report [65]. These channel models are based ¢the Saleh-Valenzuela model [66],
where multipath components arrive in clusters. Table 2.2 slows some of the parameters of the
four models CM1-CM4. More details can be found in [65]. Punatred convolutional codes with
rate 11/32, 1/2 and 3/4 are combined with time and/or frequency domain spreading, in order
to achieve three (55, 160 and 480 Mbps) out of eight data-rate depicted in Tab. 2.1.
In our simulations, when there is no time or frequency redun@ncy (480 Mbps), a per subcar-
rier MMSE frequency-domain equalizer is used at the receive When time and/or frequency-
diversity are exploited in the system, the maximal ratio combining (MRC) technique [60] is used
to combine di erent diversity branches. In any case, a hard Mterbi decoder is used to recover
the binary data.

Figures 2.17 and 2.18 depicts the results obtained over the K1 and CM4 channels, respec-
tively. We observe a similar behavior for di erent transmission modes over these two channel

environments. As shown, the 55 Mbps mode provides the best piarmance due to the exploita-
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Figure 2.17: BER performance of the MB-OFDM system over the CM1 channel, br data rates of 55,
160 and 480 Mbps.

Figure 2.18: BER performance of the MB-OFDM system over the CM4 channel fo data rates of 55,
160 and 480 Mbps.

tion of di erent diversity combining techniques. As observed from Fig. 2.17, at a BER of 10 °,
with about 3 dB of SNR degradation compared to the 55 Mbps mode this mode provides a
data rate of almost three times higher than the 55 Mbps mode.

Interesting results are observed from Fig. 2.19 for lowestg5 Mbps) and highest (480 Mbps)
data rate modes, in various channel scenarios. As shown, th@ost robust data rate is 55 Mbps,

where channel diversity is fully exploited by employing the MRC technique. We observe that
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Figure 2.19: BER performance of the MB-OFDM system for data rates of 55 and480 Mbps over
di erent UWB channel scenarios.

MB-OFDM performs better in the CM4 channel environment than in the CM1 channel thanks
to its inherent frequency diversity as shown in Fig. 2.19. Inthe 480 Mbps mode, we observe
that the performance in CM1 is better than that in CM4. This is due to the absence of time and
frequency domain spreading and to the high coding rate of 3/4that prevents the exploitation
of channel diversity. This leads to the worst BER for 480 Mbpsmode in all channels as shown
in Fig. 2.19.

2.5 Conclusion

The 7.5 GHz spectrum allocation by the FCC in 2002, initiated an extremely productive activ-
ity related to UWB from industry and academia. Since then, wireless communication experts
considered UWB as an available spectrum to be utilized with avariety of transmission tech-
niques, and not speci cally related to the generation and déection of short duration impulse
radios. UWB systems may be primarily divided into single bard (impulse radio systems) and
multiband systems.

Single band systems have simple transceiver architectur@nd so are potentially lower cost.
In addition, they may support many modulation schemes including orthogonal and antipodal
schemes. However, this modulation must be combined with somform of spectrum randomiza-
tion techniques to enhance the detection performance and t@nable multiple access capability.

Both TH and DS spectrum spreading techniques were presentedlhe main practical limitation
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for impulse based UWB appears in the presence of highly resagtd multipath UWB channels.
In this situation, Rake receivers with a large number of ngers (ideally equal to the number of
channel taps) must be used to capture the multipath energy. Qviously, this would result in
signi cant implementation complexity for the Rake receiver. Another source of complexity in
single band UWB systems is the need of high speed ADCs and edliers working at several
GHz.

Multiband UWB systems relax the requirement for high speed ADCs and provide a much
more e cient method for capturing multipath energy. The mos t common multiband UWB mod-
ulation is the MB-OFDM which is supported by several key organizations inside the WiMedia
Alliance. OFDM already enjoys an outstanding record with other standard organizations such
as ADSL, IEEE802.11g, etc. Thus, MB-OFDM systems are potenially good technical solutions
for the diverse set of high performance, short range UWB apjptations. Our simulations showed
that in order to achieve a target BER, the basic receiver propsed in [4] for MB-OFDM has to
exploit additional time and frequency diversity schemes (h addition to channel coding) which
results in a loss of the spectral e ciency. Motivated by these observations, we will propose
in subsequent chapters, some enhanced MB-OFDM reception kemes which do no waste the

spectral e ciency.



Chapter 3

Wavelet Based Semi-blind Channel
Estimation for Multiband OFDM

3.1 Introduction and Motivations

In the previous chapter, we presented the basic MB-OFDM recption scheme that has been
proposed for the project of IEEE802.15.3a standard [3, 4]. A stated, the proposed receiver
estimates the channel by using known training symbols tranmitted at the beginning of the in-
formation frame, implicitly assuming a time invariant chan nel within each frame. Furthermore,
the information symbols are detected by a one-tap frequencyequalizer followed by a Viterbi
decoder. Our numerical results showed that, in order to acleve a low BER, the transmitter
may have to introduce time and/or frequency diversity techniques at the expense of signi cant
spectral e ciency loss. Obviously, this is not in agreement with the target of UWB technology
which aims at providing data rates of several hundreds of Mbg. Moreover, it is well known
that an accurate pilot based channel estimation requires mitiple channel-uses per frame for
pilot transmission, which can result in a considerable redation of the system throughput.
Recent works have reported promising results on the combirigon of the channel estimation
and of the data decoding process for OFDM systems. In particlar, iterative or\ turbo" process-
ing that includes the channel estimation into the iterative process of decoding turbo-like codes
is addressed in [5, 6], for instance. Similar works on this duject have investigated the use of
the Expectation-Maximization (EM) algorithm [7] for joint semi-blind channel estimation and
data detection [8, 9].
Though iterative joint channel estimation and data detection outperforms receivers using a pi-
lot assisted channel estimation approach, it has a higher aaplexity, which may be of critical

concern for practical implementations. This complexity is mainly driven by the number of



36 Chapter 3 : Wavelet Based Semi-blind Channel Estimation f or Multiband OFDM

estimated parameters for channel updating and the decodinglgorithm within each iteration.

In this chapter, as an alternative to the basic receiver of [4, we propose a reduced-
complexity receiver for MB-OFDM systems that outperforms the basic proposed scheme without
scarifying any spectral e ciency. To this end, we consider an iterative semi-blind channel esti-
mation based on the EM algorithm, with the objective of minimizing the number of estimated
parameters and enhancing the estimation accuracy. This isehieved by expressing the unknown
channel impulse response (CIR) in terms of discrete waveleseries, which has been shown to
provide a parsimonious representation [45,67]. The adopted wavelet based channetpresenta-
tion enables us to choose a particulaprior distribution for the channel wavelet coe cients, that
renders the maximuma posteriori (MAP) channel estimation equivalent to a hard thresholding
rule at each iteration of the EM algorithm. The latter is then exploited to reduce the estimator
computational load by discarding\insigni cant"wavelet ¢ oe cients from the estimation process.
We notice that this wavelet prior is not associated to a specic propagation environment since
its parameters are learnt from the observed data. Moreoversince the probability of encoded
bits are involved in the EM computation, we naturally combin e the iterative process of channel
estimation with the decoding operation of encoded data.

This chapter is organized as follows. In Section 3.2, we prage the state of the art of dif-
ferent channel estimation techniques proposed for OFDM syems. In order for this thesis to be
self-su cient, we describe in Section 3.3 the EM algorithm and its extension to MAP parameter
estimation. Section 3.4 is devoted to our proposed waveletdsed channel estimation and data
detection algorithm. We will rst describe a MAP version of t he EM algorithm for channel
estimation and then show how the number of estimated paramedrs can be reduced through
the EM iterations. The combination of the channel estimation with the decoding operation is
discussed, as well as some implementation issues. We willsal illustrate via simulations, the
performance of the proposed receiver in di erent realisticUWB channel environments. Finally,

Section 3.5 concludes the chapter.

3.2 State of the Art of Channel Estimation for OFDM Systems

It is well known that in any wireless communication system, reliable coherent data detection is
not possible unless an accurate channel estimate is availebat the receiver. However, di er-
ential modulation can be used to detect the transmitted data without any channel knowledge.
An example of this scheme is the di erential phase shift keyng (DPSK) modulation which is
adopted in the European digital audio broadcast (DAB) norm [68]. Although simple, di eren-
tial modulations entail restrictions on the choice of the camstellation and leads to a 3 dB loss

over Gaussian channels compared to coherent modulations J§ As an alternative to DPSK,
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Engelset al. have proposed in [69] the di erential amplitude and phase sift keying (DAPSK)
modulation in which the amplitude of the transmitted symbol s is also di erentially encoded. A
coherent modulations allows the use of arbitrary constellions and constitute a good and ex-
ible choice when channel time variations are relatively slav. By using high spectral e ciency
constellations, coherent modulation can achieve high dataates as in the digital video braodcast
(DVB) norm [70].

Typically, channel estimation techniques for coherent OFCM modulations can be classi ed
into two di erent families: i) techniques based on the transmission of training sequenseandii)
\blind" channel estimation methods. Blind methods are basel on the statistics of the unknown
data symbols and the statistical properties of the channel ad do not require any pilot symbol.
Between these two extremes, there exists \semi-blind" metiods (considered in this chapter)
which require a small number of pilots, usually used for the &orithm initialization.

There exists a very rich literature on channel estimation techniques for OFDM systems. In
what follows, we present some of the main contributions conerning each of the aformentioned

channel estimation techniques.

3.2.1 Pilot-only Based Channel Estimation Techniques

We describe here di erent channel estimation techniques bsed only on pilot symbols. These
techniques which are also called pilot symbol assisted modation (PSAM), were introduced for

single carrier systems by Moher and Lodge [71] and later angted by Cavers [72].

3.2.1.1 Techniques Based on the Least-squares Criterion

It is well known that in OFDM, thanks to the CP insertion, each subcarrier experiences a non
frequency selective fading channel. Let us consider a framaf Nsyy consecutive OFDM symbols
with N¢ subcarriers per symbol. The transmitted frame can be viewedas a time-frequency grid
of dimension Nsym N¢). The received symbolyy., at each position of the grid is written
as [32]

Ykin = Hin Skn + Ben (3.1)

whereHy., and sy., are respectively the channel frequency response (CFR) ande transmitted
symbol at the (k;n) position of the grid, and b, is the AWGN a ecting the transmission of
data. A simple method is to estimateH ., so as to minimizejyx., Hgn sk;njz. In the presence of
independent and identically distributed (i.i.d.) Gaussian noise, the least squares (LS) estimate

is given by

<
=
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Figure 3.1: An example of two dimensional pilot arrangment in OFDM packet transmission.

wheresy., is assumed to be known at the receiver. In PSAM, some trainingymbols are inserted
in both time and frequency in the two dimensional grid (see Fg. 3.1 ). The pilot repetition

interval depends on the channel coherence time and on the cehence bandwidth. Obviously, in
PSAM an estimate of the channel is obtained only at the pilot positions. In order to estimate
the channel at all time and frequency positions, di erent interpolation techniques are proposed

in the litterature, that we describe brie y in the following .

Polynomial Interpolation: Interpolation can be performed only in the frequency domain
by considering a single OFDM symbol [73] or in both time and fequency domains [74]. For
instance, in [73], Rinne and Renfors propose two LS channelsémators. The rst technique
estimates the channel at the pilot frequencies and assumeshat the channel is constant over
a frequency bandwidth equal to the frequency spacing betweaetwo pilot tones (centered at
the pilot tone frequency). The second technique performs aréquency domain interpolation by
considering that the channel is changing linearly betweenwo consecutive pilot tones. In [74],
Chang and Su proposed a two dimensional interpolation in thesense of LS by considering a

paraboloid model for the channel as
Hin = atk? + agkn + agn?+ ask + asn + ag (3.3)

where the coe cients ai;::;; ag are determined by minimizing

I\X lNS)(M 1
RS Hignj® (3.4)
k=0 n=0

Higher order piecewise polynomial interpolations are propsed in [75] where the bandwidth of
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an OFDM symbol is divided into di erent frequency bands. Over each frequency band, the
channel is modeled as a polynomial and the whole OFDM symboilsi recovered by considering

every elementary polynomials.

Interpolation Using FIR Filters: As an alternative to polynomial interpolation, Moon and
Choi proposed di erent two dimensional interpolations in [76]. This technique uses Gaussian
or cubic spline lters for interpolation. Moreover, the adopted interpolation Iters have a
nite impulse response (FIR) with three coe cients and use t he estimated channel coe cients
provided by three pilot symbols. However, conversely to theapproach proposed in [74], the
bi-dimensional interpolation is performed by two uni-dimensional FIR Iters, one realizing the
interpolation in the time direction and the other in the freq uency direction. In [77], channel is
estimated at the pilot frequencies and then converted to thetime domain by an IFFT. Then
the signal is interpolated by using a cubic spline Iter before being converted to the frequency
domain. Ozinawa et al. proposed in [78] a method for selecting an FIR interpolation Iter

among a prede ned set of lters.

3.2.1.2 Techniques Based on the Minimization of the Mean-sq uared Error

The minimum mean square error (MMSE) criterion has been extasively used for OFDM chan-
nel estimation. The optimal two dimensional channel estimdion in the sense of the MMSE was
addressed in [79]. Due to the high complexity of this estimabr, di erent sub-optimal estimators
with lower complexities were proposed in [80] [81]. Other wiks in this area have suggested the
use of two cascaded uni-dimensional lters performing respctively an MMSE estimation in time
and frequency domains.

In [82], van de Beeket al. proposed modi cations to the MMSE CFR estimator under the
assumption of a nite length impulse response. This work use the theory of low-rank approx-
imations, based on the truncation of the discrete Fourier transform (DFT) matrices. Inspired
by the observations in [82], Edforset al. introduced in [83] a linear MMSE (LMMSE) estimator
by using the singular value decomposition (SVD) of the chanel frequency response covariance
matrix. The complexity of this estimator is reduced by using optimal rank reduction [84]. The
rank reduction technique is adopted by Hsieh in [85] where tle channel transfer function of pilot
tones are estimated by using the low-rank MMSE estimator, ad the channel transfer function
of data tones are interpolated by a piecewise linear interplation. In [86], Li et al. extended the
estimator of [83] and derived an MMSE estimator which makes il use of of the channel fre-
guency response correlation at di erent times and frequenies. In this method, the correlation

of the channel frequency response is separated into the migication of time and frequency-
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domain correlation functions. A similar method was proposel in [87] where an MMSE ltering
is performed separately in time and frequency directions. e proposed algorithm calculates
the actual delay spread of the channel and uses this result tamprove the frequency domain
Itering which is performed by an adaptive lter. In [88], Se shadri et al. developed OFDM
channel estimation in the case of space-time coding and mdufile antennas and derived some
bounds for the mean square error (MSE).

Some of the techniques found in the litterature are based on Klman ltering. For instance,
in [89], Tufvesson and Maseng used a Kalman Iter to estimatethe time-variant channel taps

which are modeled by a rst order auto-regressive (AR) procss.

3.2.2 Decision-directed Techniques

Tha main drawback of pilot-only based channel estimation tehniques is the loss of spectral
e ciency due to the pilot overhead. The number of transmitte d training sequence can be reduced
by adopting decision directed methods which require the traasmission of a single OFDM pilot
symbol at the beginning of the frame. The simple idea of this nethod is that in the absence
of transmission errors, one can use the detected symbols a@s posteriori reference signals for
channel estimation instead of pilot symbols. A pioneering vork in this area is that initiated
by Frenger and Svensson [90] [91] where a decision directedherent detector for single carrier
and multicarrier systems based on an MMSE channel estimatio is proposed. However, the
latter technique assumes that at each instant, all the prevous decisions are correct. Obviously,
this is not a realistic assumption in practical situations. In order to mitigate the problem of
error propagation, Mignone and Morello [92] proposed a desion directed channel estimator
that exploits forward error correction (FEC) codes. In this technique, reliable decoded symbols
are used for channel estimation/updating and the problem oferror propagation is reduced.
However, the channel estimation loop of this method require long delays which can become
a limiting factor for its implementation especially in mobile channel environments. In [93],
Bulumulla et al. considered a MAP receiver based on decision feedback whereeta posteriori
probability of the symbols are calculated by using a Kalman lter.

Recenty, Akhtman et al. [94] proposed a decision directed channel estimation for OPM systems
which employs a fractionally-spaced model for the CIR. The @option of this fractionally-spaced
model is motivated by the fact that in realistic channel environments, one has no control over

the delay of CIR taps.
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3.2.3 Totally Blind Channel Estimation Techniques

The increasing need for high data rates motivated the searclior \blind" channel identi cation
and equalization methods as they save bandwidth by avoidinghe use of training sequences.
Numerous blind algorithms have been developed in the litteature [95], where several works
have focused speci cally on multicarrier systems. Existirg blind channel estimation methods
for OFDM systems usually fall in either the statistical or th e deterministic category.

Among statistical blind methods, the inherent cyclostationarity induced by the CP at the
transmitter has been exploited in [96] [97]. Speci cally, Health and Giannakis [96] proposed
a blind method based on the cyclostationarity property of the time-varying correlation of the
received data samples due to the CP insertion at the transmiter; however this approach suf-
fers from slow convergence of the estimator. Other methodsni this category are based on a
subspace decomposition [98] and take advantage of the inhemt redundancy introduced by the
CP to blindly estimate the channel. These algorithms explot the orthogonality of the noise
subspaceand signal subspaceand rely on the autocorrelation matrix of the pre-DFT received
data [99] [100] [101]. A subspace based blind channel estitian is presented by Zhouet al. [102]
for space-time coded OFDM systems employing linear precodg [103]. By using linear precod-
ing, the latter algorithm guarantees channel identi abili ty, regardless of the underlying channel
zero locations. Recently, Lin and Petropulu [104] proposeda nonredundant nonunitary linear
precoded OFDM system and used the correlation introduced bythe precoding matrix to esti-
mate the channel at the receiver based on cross-correlatiooperations. Other than CP, virtual
subcarriers have also been exploited for purposes of blinchannel estimation. In some of the
standards like IEEE802.11a, there are some so-called viral subcarriers that are left unmodu-
lated in order to ease Iter implementation at the band edge. A maximum likelihood (ML) joint
blind channel and data estimator that exploits the nite alp habet property of modulation and
the presence of virtual carriers is presented in [105]. Hower, each of the above algorithms has
its own limitation. For example, subspace based methods tyjrally require a large number of
OFDM symbols and thereby introduce a considerable latencynto the overall system. A nite
alphabet based algorithm can be applied only to a constant mdulus signal. Thus, estimators
that require few OFDM symbols are preferable, as they can als operate over nonzero Doppler
channels without introducing any appreciable delay.

Deterministic methods are usually applied on received OFDMsymbols after FFT demod-
ulation and use the nite alphabet property of the received symbols. They usually converge
much faster than statistical methods, while involving higher computational complexity at the
receiver. This category includes ML based approaches [106hd the exhaustive search approach

of [107]. The method of [106] has the advantage of producing ehannel estimate from a single
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received OFDM symbol. Its principal drawback is the huge conputational complexity needed to
execute the maximization operation embedded in the algorihm. However, the channel estimate
still has a phase ambiguity. In [108], Necker and Stuber modéed the basic ML method of [106]
for the case of PSK signals and developed a low complexity itative version of the ML based

algorithm that exploits the time domain correlation of the t ransfer function.

3.2.4 Semi-blind Channel Estimation Techniques

Blind methods can also be used in cooperation with training éta in order to better track channel
variations and to enable faster convergence. In that case,hiey are referred to as \semi-blind"
methods [109]. Usually, one or two pilot symbols are transntted at the beginning of each frame
for synchronization and initial channel estimation purposes. Most of blind algorithms described
above can be extended to a semi-blind method. For instance if99], a pilot symbol is used to
avoid the convergence period of the blind subspace algorith. Besides, pilot subcarriers are
used to overcome the inherent scalar indetermination that § common in most of blind algoritms
(see [104] for instance). In [110], the authors introduce a ero-padded OFDM (ZP-OFDM)
system in which the null samples inserted between each OFDM wdulated block are replaced
by a pseudorandom scalar sequence. The observation providéy this way is used to perform
a semi-blind channel estimation and tracking.

As stated in the introduction, an e cient and extensively us ed method for semi-blind
channel estimation is that based on the EM algorithm. The EM dgorithm is an iterative
algorithm that can be used to approximate an ML or MAP solution of the unknown channel
when the transmitted symbols are unknown at the channel estnator (blind situation). A brief
description of this algorithm is provided in the next section. For a more detailed and general
exposition of the EM algorithm, the reader is urged to read [7111].

Since the algorithm presented in this chapter is an EM type aforithm, in what follows, we

present di erent categories of channel estimation methodsbased on the EM algorithm.

3.2.4.1 EM Based Algorithms for ML Channel Estimation

Several papers have addressed ML channel estimation withdwsing any a priori information
for the unknown channel. Very recently in [112] (see also [13]), the authors proposed several
improvements to the EM algorithm for MIMO channel estimatio n which can also be applied to
OFDM systems. In particular, they proposed an unbiased EM clannel estimator that outper-
forms the classical EM estimator. In [114], the authors usedhe EM algorithm to estimate the
channel without any knowledge on the transmitted symbols. Xe et al. [115] proposed an EM

algorithm for MIMO-OFDM systems employing space-time coding which exhibits fast conver-
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gence. However, the proposed algorithm is just used as an itative way to calculate their LS
solution since the transmitted data symbols are assumed to & known for channel estimation.
Ma et al. [114] presented several EM based algorithms to estimate th€FR or the CIR of an
OFDM system that is subject to slow time-varying frequency-selective fading. Although the
proposed estimators are simple, they do not consider any eor correction code at the trans-
mitter. However, it is well known that uncoded OFDM systems are likely to perform poorly in
frequency-selective fading channels. To enhance the OFDM'performance, many architectures
utilize channel coding in conjunction with OFDM (COFDM) [11 6]. As we shall see later in this
chapter, the probability of encoded bits are involved in the EM algorithm computation. Mazet
et al. [117] were among the rst to propose an EM based channel estiation that takes into
account the probability of encoded data coming from a softshput soft-output (SISO) decoder.
They used the well known forward-backward algorithm [11] toprovide directly at the E-step of
the EM algorithm the probability of the encoded bits (see the description of the EM algorithm
in the next section). In that way, the receiver can perform a joint channel estimation and data
decoding. Following a similar idea, Touati et al. improved the approach of [117] by intro-
ducing the EM-block algorithm [118] which estimates the CFR by assuming that each channel
frequency gain is constant over a block composed of severalFDM symbols.

Recent works have reported promising results on the combin#gon of EM based channel
estimation and data decoding process (see [5] [10,119{122])n practical COFDM systems, the
use of a SISO decoder [11] is capable of supplying the probdiies of transmitted symbols,
which is exactly what the EM algorithm requires for channel estimation. The availability of
the probability information on transmitted symbols also helps to mitigate the error propaga-
tion problem in decision directed methods (as discussed pwously), for example, by using only
\reliable” symbols or using the so-called \soft" symbols. Iterative or \turbo" processing that
includes the channel estimation into the iterative processof decoding turbo like codes is ad-
dressed in [5,119,122], for instance. However, the limit&bn of the receiver proposed in [5] is that
channel encoding must be performed accross subcarriers balging only to one OFDM symbol
and not over the whole frame. A similar method is proposed in 119] where a two dimensional
channel estimation is performed by applying a concatenatia of two one-dimensional estimators
in the frequency and time domains. Maet al. addressed in [123], the combination of an EM
based channel estimation with polynomial tting. In this wo rk, the algorithm obtains rst a
near optimal channel estimate by using the observation of aiagle OFDM symbol. Then to
further improve the performance, polynomial tting is adop ted by gathering channel estimates

of several consecutive OFDM frames.
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3.2.4.2 EM Based Algorithms for MAP Channel Estimation

We refer to MAP channel estimation, every contribution that exploits an additional informa-
tion, usually called a priori information, in the channel estimation process. Clearly, in our
classi cation, this prior information concerns only the channel parameters and in thé sense
the algorithms using prior probabilies on data symbols comig from the soft decoder (e.g.,
reference [117]) are not viewed as a MAP channel estimator.

An EM based channel estimation that exploits the additional observations provided by the
CP is presented in [124]. In this algorithm, a normal prior distribution is chosen for the CIR.
However, except for theoretical Rayleigh fading where norral priors can be used, this choice
is not always justi ed for OFDM channels. Moreover, the performance improvement (reported
in terms of MSE) achieved by using observations provided by lhe CP is always limited due
to the presence of ISI. A similar algorithm is proposed by thesame authors in [125] for time-
variant channels where the frequency response of the chanhis modeled by a rst order AR
equation. Mazet et al. have also adopted in [126] a rst order AR modeling of the chamel
time-variations. In this work, to take the AR model into consideration in the EM algorithm,
the channel frequency coe cient at the previous OFDM symbol is considered as an additive
observation for the estimation of the current channel parameter. In order to further improve
the performance, the latter algorithm estimates the channé frequency coe cients once in the
forward order and then in the backward order.

Jarot and Siala [6] proposed a turbo channel estimation mehod based on a Karhunen-
Leve (KL) expansion of the unknown channel frequency coe cients. This method considers

a frequency and time selective fading channel characterizeby its spaced-frequency spaced

time correlation matrix [60]. This two-dimensional channel correlation matrix is theoretically
evaluated in advance and assumed to be known at the receiver.Using this, the unknown
channel is represented as the weighted sum of the eigen vecsoof its covariance matrix. In
order to reduce the estimation complexity, the algorithm edimates only a prede ned subset
(much smaller than the number of OFDM subcarriers) of parameers corresponding to the
largest eigen values of the channel covariance matrix. The npbability of encoded bits needed
in the EM algorithm are provided by the BCJR [11] algorithm. A Ithough the latter method
achieves BER performance near the theoretical receiver wiht perfect channel knowledge, its
implementation requires the channel second order statistis as ana priori information which
cannot be available (at least in advance) in realistic situdions. Recently in [127], the idea
presented by Jarot et al. has been extended to OFDM systems with space-frequency tramit
diversity. However, unlike the approach treated in [6], the authors have adopted a two-step

procedure where the channel estimation and data detection r@ performed separately.
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3.3 Brief Description of the EM Algorithm

3.3.1 Introduction

The EM algorithm is a broadly applicable approach to the iterative computation of ML esti-
mates, useful in a variety of incomplete-data problems, where other iterative algorithms may
turn out to be more complicated. At each iteration of the EM al gorithm, there are two process-
ing steps called theexpectation step(or the E-step) and the maximization step or (the M-step).
That is why the algorithm is called EM. This name was given by Dempster, Laird, and Rubin
(1977), referred usually as DLR, in their fundamental paper[111]. However, the EM algorithm
was discovered and employed independently by several di ent researchers until DLR brought
their ideas together, proved its convergence and coined théerm \EM algorithm". The idea
behind the EM algorithm being intuitive and natural, algori thms like EM had already been
formulated and applied to a variety of problems.

In signal processing applications, the largest area of inteest for the EM algorithm is in
ML estimation/detection problems with incomplete-data, w here there are missing data, trun-
cated distributions, censored and grouped observations wibh result in complicated likelihood
functions. However, the EM principle can be applied to a varety of situations where the incom-
pleteness of data is not so natural or evident. These includstatistical models such as random
e ects, mixtures, convolutions, log linear models, etc. A brge list of references is found in [128].

The basic idea behind the EM algorithm is to associate with tke given incomplete-data
problem, a complete-data problemfor which ML estimation is computationally more tractable.
The methodology of the EM algorithm then consists in reformuating the problem in terms of
this more easily solved complete-data problem. The E-stepansists in manufacturing data for
the complete-data problem using the incomplete observed da set and the current value of the
unknown parameters, so that a simpler M-step computation ca be applied to this \completed"
data set. More precisely, it is the log-likelihood of the conplete-data problem that is computed
in the E-step. As it is partly based on unobservable (or hidde) data, it is replaced by its
conditional expectation given the observed data, where ths E-step is a ected using the current
estimate of the unknown parameters. Starting from suitableinitial parameter values, the E-

and M-steps are repeated until convergence.
3.3.2 General Statement of the EM Algorithm

3.3.2.1 Mathematical Formulation

Let Y denote the sample space of the observations, and Igt2 R™ denote an observation fromY

of sizem. Let X denote an underlying space and lek 2 R" be an outcome fromX with m<n.
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The data vector x is referred to as thecomplete-data The complete data x is not observed
directly but only by means of y wherey = y(x), and y(x) is a many-to-one mapping fromX
to Y. As shown in Fig. 3.2, an observationy determines a subset ofX, which is denoted as

X (y). The pdf of the complete-data vector isf (xj ), where 2 R" is the set of unknown

Figure 3.2: An illustration of the complete- and incomplete-data sets d the EM algorithm.

parameters that we have to estimate. (We will refer to the density of the random variables
for convenience, even for discrete random variables for wbin probability mass functions (pmf)
would be appropriate). Moreover, the pdff is assumed to be a continuous function of and
appropriately di erentiable. The ML estimate of  is assumed to lie within the region . The

pdf of the incomplete-data is 7

ayj )= f(xj)dx (3.5)
X(y)

and denotes the incomplete-data likelihood function. LetL;i( ) = log g(yj ) and L¢( ) =

logf (xj ) denote respectively the incomplete- and complete-data lg-likelihood. The integral
operation in (3.5) may render very di cult the estimation of the parameter which maximizes
the likelihood function g(yj ), even if the function logf (xj ) is easy to maximize. This remark
justi es the idea of the EM algorithm.

As stated before, the basic idea behind the EM algorithm is ttat we would like to nd  to
maximize L¢( ) =log f (xj ), but we do not have the data x to compute the log-likelihood. So
instead, we maximize the expectation of lod (xj ) given the data y and our current estimate
of . This can be expressed in two steps.

More speci cally, let @ be some initial value for . Then at the rst iteration, the E-step
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requires the calculation of
Q(; D) =E logf(xj)y; © (3.6)

where Q(:;:) is called the auxiliary function. It is important to distinguish between the rst
and the second arguments of the auxiliary function. The seced argument is a conditioning
argument to the expectation and is regarded as xed and knownat every E-step. The rst
argument conditions the likelihood of the complete-data.

The M-step requires the maximization of Q( ; @) with respectto  over the parameter space

. That is, we choose ® such that

QU®; Oy Q(; @ 3.7)

forall 2 . The E- and M-steps are then carried out again, but this time with @ replaced
by the current estimate . On the (t + 1)-th iteration, the E- and M-steps are de ned as

follows.

E-step: Calculate Q( ; M) where
Q(; W)= E logf(xj )y; ® (3.8)

M-step: Choose (*1 to be any value of 2  that maximizes Q( ; ) as

) —argmax Q( ; M): (3.9)
We mention that the expectation in the E-step is with respect to all unobserved (or hid-
den) variables in the complete-data setX. We also note that the maximization in the M-step is
with respect to the rst argument of the Q function, i.e., the conditioner of the complete-data
likelihood.
After initialization, the E- and M-steps are alternated rep eatedly until convergence. Conver-
gence may be determined by examining when the parameters remin almost unchanges, i.e.,
stop whenk ®©  ( Dp< orL;j( ®) Li( ® Yy< | for some small value of and some

appropriate distance measurek:k.

3.3.2.2 Monotonicity of the EM Algorithm

DLR showed that the incomplete-data likelihood function g(yj ) is not decreased after an EM

iteration. This is formulated in the following theorem prov ed in [111].

Theorem 3.3.1.

Q( ™M, My QC®; My=) gryj ™V) gyj @) forall t: (3.10)
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3.3.2.3 Convergence to a Stationary Value

As shown in the last section, for a sequence of likelihood vaesfg(yj )g, g(yj ) converges
monotically to some stationary value g . The stationary point may be a local maximum or
a saddle point of the likelihood function. In general, if g(yj ) has several stationary points,
convergence of the EM sequence to either type (global or lotaaximum, saddle points) depends
on the choice of the starting point ©. Obviously, when the likelihood function is unimodal
in  (and a certain di erentiability is satis ed), any EM sequen ce converges to the unique
global maximum irrespective of its starting. In what follows, we state without proof the main

convergence theorem given by Wu in [129].

Theorem 3.3.2. Let f Mg be a sequence of parameters obtained from successive maxeai
tion of the auxiliary function Q( ; ) at the M-step. Then all the limit points of f (Vg are
stationary points of g(yj ) and g(yj ) converges monotonically tog = g(yj ) for some

stationary point

3.3.3 Extension of the EM Algorithm to MAP Parameter Estimat ion

Up to now, we addressed the EM algorithm for ML estimation. L&t us now consider a MAP
criterion for the estimation of the unknown parameter of which ML estimation is a particular
case. Considering somerior distribution ( ) for the unknown parameter, the MAP estimate
is given by

b=arg max logg(yj )+log () : (3.12)

When the likelihood function g(yj ) is hard to maximize, the EM algorithm is a mean for
obtaining MAP estimates of a parameter .

The EM algorithm for MAP estimation can be summarized as follows.
E-step: Calculate Qmap( ; ) where

Qmap( ; )= E logf (xj )+log ( )y; ®
=Q(; M+log () (3.12)

M-step: Choose P to be any value of 2  that maximizes Qmap( ; ) as

D =argmax Qmap( ; ): (3.13)
We note that the E-step of MAP estimation di ers from the E-st ep of ML estimation by
the additive term log ( ). The presence of the term log ( ) can also be exploited to render

the auxiliary function concave. The M-step is also di erent since the maximization is performed
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over a modi ed auxiliary function.
The aforementioned convergence properties of the ML basedM are also valid for MAP estima-
tion [111] [7]. Thus, each iteration of the EM algorithm is guaranteed to increase the logarithm

of the incomplete-data a posteriori probability, that is

logg yj @Y +log ™D loggyj ® +log ® : (3.14)

3.4 MB-OFDM Wavelet Domain Channel Estimation and Data

Detection

In this section, we present our semi-blind channel estimatn algorithm for MB-OFDM systems
which is based on a wavelet decomposition of the unknown CIRWe start by introducing our
system model and then provide a brief description of the UWB &annel model. This leads us to
present our motivations for a wavelet domain channel etimaton. Then we present our speci ¢

contribution.

3.4.1 System Model for MB-OFDM Transmission

As stated in chapter 2, MB-OFDM divides the spectrum between3.1 and 10.6 GHz into sev-
eral non-overlapping subbands each one occupying 528 MHz bandwidth [3]. Information is
transmitted using OFDM modulation over one of the subbands n a particular time-slot. The
MB-OFDM system uses a time-frequency code (TFC) to select tle center frequency of di erent
subbands which is used not only to provide frequency diversy but also to distinguish between
multiple users (see Fig. 2.12). As shown in Fig. 3.3 (repeatkfor convenience), after chan-
nel coding, a block of bits is interleaved and mapped to QPSK gmbols. Here, we consider
MB-OFDM in its basic mode, i.e., employing the rst three subbands with N data subcarriers
over each subband. At the receiver, assuming a CP longer thathe channel maximum delay
spread and perfect carrier synchronization, OFDM convertsa frequency-selective channel into
N parallel at fading subchannels [32]. Under these conditims, the transmission of the n-th

OFDM symbol (inside a frame of sizeNgyy ) over the i-th subband can be written as
Yin = D, Hin + Zin 121,235, n=1;:::;Nsywm (3.15)

whereDsg,, , diag(sin), (1 N) vectorsyin, sin and Hi;, denote respectively the received and
transmitted symbols, and the channel frequency responsehe noise vectorz;,, is assumed to be a
zero-mean circularly symmetric complex Gaussian (ZMCSCGYyandom vector with distribution
CN(0; 2Iy).
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Figure 3.3: TX architecture of the multiband OFDM system.

In what follows, we group the data and observations correspiding to three subbands of the MB-
OFDM system in a single vector (we call it a compound OFDM symbol). As described above,
the data are sent in each subband in sequence. This ensuresdihdata as well as observations are
available within each subband at each time-slot. The reasorbehind this operation is provided
in Section 3.4.3. This operation is depicted in Fig. 3.4 and an be written in the frequency
domain as*

Ym=Dg, Hmn+tZm m=1;:1:;Msym (3.16)

where Dy, diag(Sm), Ym = [YiniYzn+1:Y3n+e2]"s Sm = [SyniSen+1;Szn+2]", Hm =
[Hin;Hons1;Hans2]" and Zm = [Z1n; Z2n+1; Zan+2]" are (M 1) vectors, with M = 3N
and Msyy = Nsym=3. In the remainder, unless otherwise mentioned, we will notwrite the
time index m for notational convenience. Our aim is to use the data model 3.16) to estimate
the unknown channel frequency coe cients H = [Hy; :::;HM]T. Let h = [hl;:::;hL]T be the

vector of UWB CIR over the rst three subbands, that is, we have
H = FM;L h;

whereF .. is the truncated FFT matrix constructed fromthe (M M) FFT matrix by keeping
the rst L columns, whereL is the length of the CIR over a group of three subbands. Note tlat
using directy (3.16) would require the estimation ofM unknown parameters at each iteration of
the EM algorithm. The purpose of our method is to reduce the nunber of estimated parameters
and to enhance at the same time the estimation accuracy by eXpiting the sparsness property
of UWB channels in the wavelet domain.

Thus, before going into the detail of our proposed channel dsnation method, we propose to

LFor the sake of notational brevity in equation (3.16), we hav e assumed that the TFC is equal to f1,2,3,..0.
2For non quasi-static channels, the number of estimated parameters is even greater than M .
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Figure 3.4: (a) MB-OFDM packet transmission corresponding to a TFC=f1,3,2,..g; (b) Proposed
arrangment of received OFDM symbols at the receiver.

have a closer look at the UWB CIR h and its wavelet domain representation.

3.4.2 UWB Channel Model in the Wavelet Domain
3.4.2.1 UWB Channel Model

Due to the very large bandwidth of UWB waveforms, a model di erent from that of classical
narrowband channels should be considered to characterizen¢ discrete arrivals of multipath
rays. For narrowband systems, these multipath components wuld not be resolvable by the
receiver when the system bandwidth is less than the coherercbandwidth of the channel. In
contrast, the large bandwidth of UWB signals signi cantly i ncreases the number of resolvable
multipath components. In order to provide a model for system performance evaluation, the
IEEE802.15.3a channel modeling task group analyzed variai contributions describing UWB
channel characteristics from measurements and nally adoped [65], a slightly modi ed version
of the Saleh-Valenzuela model [66].

In this model, the rays are grouped into \clusters" and the discrete time CIR sampled atTs is

represented as
r >@ )4_ r r r
h, = ol (NTs T o) n=1;::L (3.17)

c=1 I=1
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Figure 3.5: Example of a discrete UWB channel impulse response realizetn with tap spacing of 631
ps, equivalent to a bandwidth of 1.584 GHz, CM3 UWB channel malel.

where (i) is the Dirac delta function, f E;lg are the multipath gain coe cients, r refering
to the impulse response realization,f T, g is the delay of the c-th cluster for the r-th channel
realization, and f g;lg is the delay of the I-th multipath component within the c-th cluster for
the r-th channel realization. Fig. 3.5 shows an example of such a adeled UWB CIR and
highlights the challenges that the multipath model poses toUWB receivers. In particular, it is
obvious that a signi cant amount of energy may exist in the multipath components. Therefore,
the channel estimation part has to estimate a large number otoe cients in order to ensure an

accurate channel acquisition.

3.4.2.2 Wavelet Representation of UWB Channels

In order to reduce the number of estimated channel coe cients at the receiver, we consider an or-

with Jnax level of decomposition as [130]

Hax Y
hy = gk jk[n] n=1;:0L (3.18)
j=1 k=1
where the set of coe cients fg.x g = hhy,; i [n]i (h;:i denotes scalar product) is the orthogonal

discrete wavelet transform (ODWT) of h and f  [n]g are the basis functions of the ODWT.
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Figure 3.6: lllustration of the parsimonious representation of UWB channels in the wavelet domain, CM3
UWB channel model with 1.584 GHz of bandwidth, \Symmetric"w avelets with 3 levels of decomposition.

As shown in Fig. 3.6, the advantage of the wavelet represent#n is that a large set of signals
have a parsimonious representation in wavelet series [67].

In the presence of AWGN, estimating the wavelet coe cients g;x can be written as
Gk =Gk + k=103 k=152 (3.19)

where jx CN (O; 2) denotes the estimation error. If the channel has a sparse welet repre-
sentation, one can assume that only a few largg;x really contain the most part of the channel
energy while \insigni cant" coe cients are attributed to t he noise. The extraction of those
\signi cant" coe cients can be naturally done by hard or sof t thresholding [131]. However, the
choice of the threshold value is crucial: an adequate choicef the threshold necessitates a large
number of observations which are not always available in wieless communication applications.
In this work, we consider a Bayesian framework which involve a prior distribution of the

unknown channel wavelet coe cients. This prior model is adopted so as to model the possibly
sparseness of UWB CIR wavelet expansion which is especiallynportant for large channel
bandwidths [45]. Section 3.4.4 provides a speci ¢ prior digibution which has the nice property
that, when used with a Bayesian estimation, it behaves as a hal \keep" or \kill* thresholding
rule without any need to de ne an explicit threshold value. In the case of a sparse channel, this

property has two interesting features: i) the precision of the estimator is improved due to the
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adequacy of the prior distribution, and ii ) \insigni cant” wavelet coe cients are discarded from
the estimation process, thus reducing the estimation comptational load.

In our choice, the parsimonious characteristic of wavelet bBses is imposed through the
following prior model: wavelet coe cients are assumed to have a probability to be zero and
a probability 1 to be Gaussian distributed asCNg, (0; 2). This corresponds to an i.i.d.

Bernoulli-Gaussian [67] prior model for the probability density of g as

(Gx)=  (gx)*+(@  )CNg, (0; ?) (3.20)

terminology) are estimated from the observed data (see Sein 3.4.4). In other words, we do
not assume the percentage of null coe cients to be known.

In what follows, we make use of a compact notation for the waviet transform, based on a
(L L) orthonormal wavelet transform matrix W , whereL is the length of the channel impulse

response.

3.4.3 Wavelet Domain Problem Formulation

In order to take advantage of the wavelet based estimation, lhe channel impulse responsé is

expressed in terms of its orthogonal discrete wavelet coe ents as
h=WwWYg;
and the channel frequency response as
H=FmLh=FuLWg;

whereg is a (L 1) vector of the CIR wavelet coe cients.

The frequency domain observation model (3.16) can be rewrien as
Y=D,Tg+2Z (3.21)

where T = Fy.L WY.

In this model, although the channel is practically used (by the transmitter) by slices of
528 MHz bandwidth (corresponding to a single subband), on tle receiver side, three received
OFDM symbols are grouped for estimating the wavelet coe cients of the CIR, taken over
all three subbands (1.584 GHz bandwidth, see Fig.3.4). Thids motivated by the fact that
estimating the channel over a wider bandwidth leads to a spaser representation in the wavelet
domain. Moreover, this approach simpli es the receiver arbitecture since there is no need to

change the central frequency for down converting di erent sibbands.
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3.4.4 The EM-MAP Algorithm for Wavelet Domain Channel Estim ation

The EM algorithm proposed in this section is able to integrate the advantages of wavelet based
estimation via the prior chosen for channel wavelet coe cients. We also emphasize that the
MAP estimator corresponds to a thresholding procedure whib is used to reduce the number of

estimated coe cients at each iteration of the EM algorithm.

3.4.4.1 An Equivalent Model and the EM Principle

Most of wavelet based estimation algorithms, rely on an obsevation model in which the unknown
wavelet coe cients are corrupted by AWGN. Since the model (3.21) does not provide such a
framework, our rst step consists in enforcing this property. In order to do so, the AWGN in

(3.21) is split into two independent Gaussian terms as
Z2=D/Z1+ Z, (3.22)

whereZ,andZ, are (M 1) independent Gaussian noise vectors such thgi(Z1) = CN(0; 2?ly)

and p(Z,) = CN(0; ?Iy 2D, DY). Since we are using power normalized QPSK symbols,
DsDY = Im and the covariance matrix , of Z, reducesto , =( 2 2)Im . We de ne the
positive design parameter , 2= 2 (0 < 1) as the proportion of noise that is assigned
to Z,. Note that setting = 0 leads to Z1; = 0 and is equivalent to working with the initial

model (3.21). However, for O< < 1, the above noise decomposition allows the introduction
of a hidden channel vector@ de ned8 as
< B =Tg+2,

(3.23)
Y =D, B8+ 2Zy

This procedure implicitly assigns part of the noise to the wavelet coe cients, and the rest to
the measurement. This introduces a hidden vector® which provides us with a direct rela-
tion 3 between the true and the estimated wavelet coe cients corrupted by an AWGN, even if
the two-stage observation model (3.23) is equivalent to (21). However, the di erence with a
standard denoising problem like (3.19) is thatS and I8 are unknown. Hence, the observation
model has missing data and hidden variables and the MAP soluibn of g has no closed form.
In such situations, the EM algorithm [7] is often used to maximize the expectation of the pos-
terior distribution over all possible missing and hidden vaiables. Obviously, the value assigned
arbitrarily to parameter  will in uence the performance of the estimate, and will have to be
tuned.

Let X = fY;S;8g be the complete-data setin the EM algorithm terminology. Note that

the observation setY determines only a subset of the spaceX of which X is an outcome.

3Up to a left-multiplication by the matrix ~ T7.
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We searchg that maximizes logp(gjX). After initialization by a short pilot sequence at the
beginning of the frame, the EM algorithm alternates betweenthe following two steps (until

some stopping criterion) to produce a sequence of estimatdgy®; t =0;1;:::; tmax 0

Expectation Step (E-step): The conditional expectation of the complete logtikelihood
given the observed vector and the current estimateg® is computed. This quantity is
called the auxiliary or Q-function

h i
Q g;9" =Egq logp(Y;S;K g)Y;g® (3.24)
Maximization Step  (M-step): The estimated parameter is updated according to

n 0
g™V =—argmax Q g;g® +log (g) (3.25)
g

where (@) is the prior distribution for the wavelet coe cients introduced in sect ion 3.4.2, which

ensures a certain percentage of coe cients to be set to zerowhen applied to (3.23), each step
can be written as follows.

E-step: Computation of the  Q-function

The complete likelihood is
p(Y;S;B g)= p(Y S;18;9)p(S B;9)p(8 g):

According to (3.23), p(Y S;8;g) is a pdf not depending ong. Furthermore, S which results
from coding and interleaving of bit sequence is independendf I8 and g. SinceZ; is a complex

white Gaussian noise, the complete log-likelihood can be mipli ed to

logp(Y;S;8 g) = log p(Y S;1) p(S) p(# g)

log p(8 g) + cst.1

2
w + cst.2

YTYVY YTY y
- 9T'Tg gTZ'q RT9 | (3 (3.26)

where cst.1, cst.2 and cst.3 are constant terms that do not deend ong.
According to (3.24) we have

h TyTg 2Re g'TY@ i
Esn +est. Y;g0

Q g;g®

¢'TYTg  2Re g'TYEgq[R]Y ;g
= > + Ccst.

(t). 2
o kM 19 K test (3.27)
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whereH8®i | E. o[B8 Y ;9] and cst. represents a constant term.

From (3.27), it is obvious that the E-step involves the compuation of hH8 (i, as follows:

ya
hg O = B p@;sY;gM)dR
s2C g2H
X Z
= | p(® Y;gW)dR p(sY;g") (3.28)
s2C B82H

where the last equation results from the independence betven S and 8 belonging respectively
to the setsC and H . Note that each entry of S takes one (unknown) discrete value inside the
QPSK constellation whereas components oR are continuous variables.

In order to evaluate 8 (Vi in (3.28), we rst have to evaluate the conditional mean of

(t)
]
1§ as 7

O = Eql8 Y:gW]= B p(ajY;g®)dR: (3.29)
H

]2
In order to evaluate the latter expectation, we write p(BjY :g®) / p(Y @) p(®8jg®). Since
both p(Y j&) and p(8jg) are Gaussian densities, it is well known that their product remains
Gaussian. We have to evaluate the mean of this Gaussian dergi To this end we use the

following known result in the form of a lemma (see, e.g., [132

Lemma 3.4.1. Let CN(mgq; 1) andCN(my; ») be two complex Gaussian densities of, then
CN(my; 1):CN(mgz; 2)= KcCN(m¢; o);
where K ¢ is a normalization factor and

1 1 .

Noting from (3.23) that Yj® CN D.B;( 2 ?Iy andBjg® CN Tg®; 2y ,

and using Lemma 3.4.1, we get
g) =Tg®W+ DY Y D Tg® : (3.30)
By introducing (3.30) in (3.28) we obtain
o Y
mMOi=a )Tg®+ DJY (3.31)

whereDy = P s2c Dg P(S)Y :g(). Here, we assume that a part of the receiver called soft-inpt
soft-output (SISO) decoder, is able to provide the probabilties p(SjY ;g) required in (3.31)
(see Subsection 3.4.5 for more details). The E-step is thenompleted by inserting & (Vi into
Q(g; gM) of equation (3.27).
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M-step: Wavelet Based MAP Estimation

In this step the estimate of the parameter g is updated as given in (3.25) whereQ( ; ®)is
given by (3.27). We have

gD = arg ;nax( khg (O] : Tg K +log (g)) : (3.32)
It is shown in Appendix A that the expression (3.32) is equivdent to
g =arg ;nax ngkz +log (g) (3.33)
where
gV ="MW= )gW+ D T)V: (3.34)

In fact, g *Y in (3.33) is no more than the MAP estimate of g from the observation
model:
g =g+ 29 (3.35)

wherez9 CN (0; 2I.).

Note that equation (3.35) is very important since it shows that the initial estimation problem
reduces to an observation model which involves a direct retdon between the unknown wavelet
coe cient g and its estimate g\, and this direct relation is corrupted by an AWGN (similar to
equation (3.19)). This is the reason of using the two level obervation model in (3.23). Starting
from equation (3.35), our channel estimation problem can beviewed as a standard wavelet
domain denoising problem. A rich litterature exists on the latter topic especially in the image
processing community. In what follows, we derive the updateformula of our wavelet domain
channel estimator.

From the Bayes theorem, the posterior distribution of g is given by

p gig / p eWig (9) (3.36)

where from (3.35), p(g¥jg) is the Gaussian likelihood, g CN (g; 2I.). In this approach,

(9) is a prior distribution, chosen for the wavelet coe cients g of the unknown CIR.

Uniform Prior Model: At rst, we consider a non-informative uniform i.i.d. prior
model for the wavelet coe cients. Obviously, in this case, the MAP estimate coincides

with the ML estimate and is given by

g™ =g" | forj=1;:55L (3.37)

where gj(“l) is calculated in (3.34). The above estimate will be used lateto study the
behavior of the MAP approach in the case where the channel &8 to satisfy sparse wavelet

domain assumptions.
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Bernoulli-Gaussian Prior Model: As previously discussed in section 3.4.2, when the

channel is sparse, we adopt the i.i.d Bernoulli-Gaussian nael described by

()= (g)+( )CNg O ? (3.38)

wavelet domain. In order to deal with that particular model, we introduce an additional
state variable (or indicator) j 2 f 0;1g such that we can express this prior conditionally

as 8
3 (gij=0 = (9) with probability ;

5 (3.39)
(gjj=1) CN g 0; 2 with probability 1

This prior model, conditionally on the state variable ;, leads to a Gaussian posterior for

g which makes the estimation explicit; from the direct obsenation model gj(t) =g+ Zf;j

(equation (3.35)), we can express these posterior probaliiies of ; as (see Appendix A)

p j=0jgj(t) = N O ? =c

(3.40)
p =1’ =@ N O 2+ 2=

where the parameterc= N 0; 2 +(1 )N 0O; 2+ 2 . From this set of equations, we
notice that the indicator variable j allows us to discriminate between the noise coe cients
(for j =0) and the e ective channel wavelet coe cients (for j = 1), eventually corrupted

by noise. The indicator variables ; are estimated, in the MAP sense by
8
30 ifp j=0jg" 05
(1) _

J (3.41)

1; elsewhere

Therefore, the MAP estimates of the channel wavelet coe cients are obtained by a simple

denoising/thresholding rule as (see Appendix A)

Q

2 o it Y=o
(t+1) _ ’ J
9 TT5 2 o g (3.42)
- 2y 2§ 0 T =4
3.4.4.2 Updating the Prior Parameters and

The prior parameters and stand respectively for the (signi cant)-wavelet coe cien ts (vari-
ance) power and insigni cant coe cients probability. The u pdate rules of these two parameters
are maximum a posteriori based rules, derived from assigning conjugate priors to thee param-

eters [133]. A Chi-square () prior with parameters ro and g is chosen for the inverse square
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value of , =
"o

(iro; o)/ “re °F (3.43)
while a Dirichlet prior with parameter ug is chosen for the probability
(jug)/ Yot ) v (3.44)

We point out that these parametric priors tend respectively to a non-informative Je rey's [134]
prior for as ¢ =0 and ro =0, and to a uniform prior for asup =1=2. From the Bayes

rule, the posterior distributions of these two parameters ae respectively given by

p(ig:re; o) /| ze =2

p(jg;u) /Y ta ) (3.45)
where
X
= ot g r=ro+L B
=1
u = up+E (3.46)
with
E=Card.fj: ;=0g¢: (3.47)

These distributions have the advantage to be tractable and he maximization steps are straight

forward. With simple manipulations, these maximization yield

A2 = }: [
A r 2’
1
A= E = (3.48)

Note also that when the channel does not satisfy the sparsnesproperty, these update
equations still hold: while the sparsity is modeled by the Benoulli-Gaussian equation (3.38), a
non sparse channel is translated by a value of that tends to 0. This is easily veri ed since the
sparser the channel, the lower the value o (which represents the number of \null" coe cients),

and in this case the value ofu may go down to ug. The value of the probability in this case

tends to
A _ Ug 1
L 1
In addition, for such a non sparse channel, 2 which represents the power of signi cant wavelet
coe cients tends to P ) P
+ =1 G . g.2
2= =19 qt o _jY

ro+L 2 L o2 L

which is nothing but the ML estimate of 2.
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3.4.4.3 Reduction of the Number of Estimated Parameters

The thresholding procedure derived in this section, proviges an automatic framework for reduc-
ing the number of estimated coe cients. This can be achievedby discarding at each iteration,
the elements ofg("*) that are replaced by zero in (3.42). The underlying assumpibn is as fol-
lows: whenever the estimator assimilates an unknown waveleoe cient to noise (replaces it by
zero), this coe cient will always be considered as noise, hace it will not be estimated in future
iterations. We veri ed by simulations that incorporating t his scheme into the EM algorithm
reduces the number of estimated parameters without any sigincant performance degradation.

This operation is shown on Fig. 3.7 and can be modeled as

(t+1) _ g(t+l)

Or ;o T = T (3.49)

where the truncation operator (:) gathers in gfrt

*1 the components ofg(*) that must be
kept and the operator ( :) constructs Ty from T by keeping the rows corresponding to the
kept indexes. During the rst iteration ( t = 0), the algorithm does not perform any truncation
and the EM algorithm estimates all the coe cients. However, after each M-step, the number
of unknown parameters to be estimated in the next iteration is reduced according to (3.49) by

using gt(rm) and T in the updating formula of the E-step (3.31).

3.4.4.4 Extension to Unknown Noise Variance

Up to now, we have assumed that the noise variances? and 2 in (3.23) are known at the
receiver. However, in practical systems, the noise level isnknown and must be estimated from
the observations. We now present an extension of the propodemethod where these variances
and the channel wavelet coe cients are estimated together.

To this end, we use the indicator variables j;, de ned in the M-step section for discriminating
between the wavelet coe cients and the noise samples, wher¢ghe index m denotes the m-th
(compound) OFDM symbol inside the current frame. Let us de ne the matrix G from (3.35)

asG = §,;::11:8y, and the set from (3.41) as
= f@gm): jm =09 (3.50)

where the iteration index has been omitted for notational brevity. It is clear that, using at

each iteration, we can derive a subseV G as

V=G()= fG(im): m =09 (3.51)
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©
of Channel Wavelet ~-— 9
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Observed & Uncoded Bits Probabilities Decoded
- .
Frame SISO Decoder @_> Bits

at the last iteration

Figure 3.7: EM-MAP channel estimation combined with the decoding process.

which contains samples of the noise vectoz% CN (0; 2I,) according to the model (3.35).

At iteration t, the variance 2 may be empirically estimated as

1 Mewm X

(/\2)(0 - -
EM sym

V(@ m)j%; (3.52)
=1 j
where E is given in (3.47).

According to the de nition of the parameter  in (3.23), the variance ? is obtained as

(~2)0 = )Y, (353)

3.4.5 Decoding Method and Implementation Issues
3.4.5.1 Iterative Demapping and Decoding

At the receiver, we perform MAP symbol detection and channeldecoding in an iterative manner.
The block diagram of the receiver is shown in Fig. 3.7. Besidethe channel estimation part,
the rest of the receiver principally consists of the combingéon of two sub-blocks that exchange
soft informations with each other. The rst sub-block, refered to as soft demapper (also called
detector), produces bit metrics (probabilities) from the input symbols and the second one is
a SISO decoder. Each sub-block can take advantage of the saftformation provided by the
other sub-block as an additional information. Here, SISO deoding is performed using the
well known forward-backward algorithm [11]. We present in the following, the formulation of
the MAP detector part, assuming that at iteration t, the receiver has an estimatel? ) of the
channel (given by B® = T g{") and of the noise variance (2)®). Moreover, we consider the

observation modelY = D ,H + Z of equation (3.16).
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We denote byL (c;i) the log-likelihood ratio (LLR) of the bit ¢ at the output of the detector.
Conditioned on the channel coe cient estimated at the t-th iteration rby), L (ck:i) is given by
Poem Gi =1 Yi B
Pgem Ck;i =0 Yk;l'b&t)

L(ci) = log (3.54)

where Pgem(Cc:i Yk; Pblit)) is the probability of transmission of ¢ at the demapper output. Let
S be the set of all possibly-transmitted symbols correspondig to Sx. We patrtition S into two
sets S} and S!, for which the i-th bit of Sy equals\0" or\1", respectively. We have

76w SR by R0

Sk 2Si
L (i) = log =p—

-y, (D t ! (3.55)
el m Skivi Ry Po Sijk;I'tPIE)
Sk 2S})

wherePy SijYi; B and Py SijYi; M denote the probability that Sy belongs toS) and Si,
respectively, andD,, Si; Y = jYi RIS j2=(r2)0,

Actually, according to (3.28), we have to use the informatian on transmitted symbols, obtained
from the SISO decoder through the probability P, SkjYk; I@&t) (m 2 f 0; 1g), to update the
channel estimate at each iteration. Furthermore, the soft cemapper requires an estimate of the
channel in order to provide the probability of encoded bits (see (3.55)). Hence, the proposed
semi-blind channel estimation algorithm is naturally combined with the process of data decod-
ing. The probability P Sijk;le) involved in (3.55), is calculated using the a posteriori
probabilities provided by the SISO decoder at the end of thet-th iteration as

i (1) ¥
Pm SiY B = PR(c) m2f0;1g; (3.56)
6
where PQ, (c;j) and Pg.(c;) are prior probabilities coming from the SISO decoder.

Note that in (3.56), the a priori probability of the bit ¢ itself has been excluded, so as to let
the exchange ofextrinsic information between the channel decoder and the soft detear [135].
Also, note that this term assumes independent coded bitgy; , which holds for large size random
interleaving. At the rst iteration, where no a priori infor mation is available on bits ¢; , the

probabilities P, .(Ck;j) and P (ck;) are set to 5.

3.4.5.2 Global Procedure for Joint Channel Estimation and D ecoding

There are several possible ways to practically implement agint channel estimation and decoding

receiver. In fact, inside each EM iteration t, the receiver should perform several decoding

“Here B = 2 since we are using QPSK.
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iterations, keeping the channel estimateR ®). For complexity issues, the considered receiver
performs only one pass through the decoder inside each EM itation. The main steps of the

iterative MAP channel parameter estimation are summarizedas follows.
Initialization  (t = 0)

{ Set all probabilities of coded bits Piac(Cki) to 0:5 and derive
Pm Sijk;IblEO) for all k according to (3.56) and then derive
P(SIY ;HO@) = p(SjY ;9@).

{ Initialize the unknown vector g by g© obtained from pilot symbols.

{ Use the previous estimate g Y and p(SjY ;g V) to calculate gt ¥ ac-
cording to  (3.34).

{ Use gt D to obtain the updated channel parameters g by using (3.42).

{ Discard the wavelet coefficients that are replaced by zero i n g® by

evaluating g§:) and Ty from (3.49).

if ft 6 tmax}
Use the current estimate gt(rt) to update the probability of encoded bits
P™ (ci) and derive Pp SijYi;M” from (3.56) and then derive p(SjY;g®).

else
Decode the information data by thresholding the uncoded bit probabili-

ties.

end

3.4.6 Simulation Results and Discussions

In this section we present a comparative performance study fothe proposed EM-MAP algo-
rithm according to the parameters described in Section 3.4.. The performance comparison is
made in terms of MSE for channel estimation and bit error rate (BER) for the combination of
channel estimation with the decoding process. The MSE is dened as the averaged square norm
of the di erence between vectorsg and g{'™=) representing the true and the estimated chan-
nel wavelet coe cients at the last iteration, respectively. Besides, we consider the number of

parameters that must be estimated at each iteration as a measge of the algorithm complexity.
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The binary information data are encoded by a non-recursive pn-systematic convolutional en-
coder with rate R = 1=2 and constraint length 3, de ned in octal form by (5; 7)s. Throughout
the simulations, each frame is composed dfisyy =9 OFDM symbols with N = 128 subcarri-
ers each. Channel coe cients are kept constant during each dding block and changed to new
independent realizations (measures) from one frame to the ext.

In order to initialize the EM algorithm, we devote Np = 3 channel-uses to the transmission
of OFDM pilot symbols (one for each subband). Data and pilot symbols belong to the QPSK
constellation with Gray labeling. Corresponding to the pilot symbols, we employ a LS estimate
to obtain the initial channel parameters.

The interleaver is pseudo-random, operating over the entie frame of sizeN;, = Nsym NB bits
(excluding pilots, obviously). Among di erent wavelet fam ilies, \symmetric" wavelet basis func-
tions [130] providing a sparser representation [45] have lem considered. Unless otherwise men-
tioned, the BER and MSE curves correspond to the fourth iterdion of the algorithm. Moreover,
the signal-to-noise ratio (SNR) is considered in the form ofE,=No.

Di erent propagation environments are considered for perbrmance evaluation. The char-
acteristics of these channels are listed in Tab. 3.1. For alenvironments, the bandwidth of the
CFR over three subbands is 1584 MHz with 384 coe cients and the CIR has a total number
of 96 taps. The rst channel considered is calledtheoretical sparsechannel. This channel is
manufactured from a random model that generates a vector ofige (96 1) in which only 20
wavelet coe cients out of total 96 have non zero values. A redization of this channel is depicted
in Fig. 3.8. Note that although not realistic, this theoreti cal model provides the best adequacy
between the prior assumption of sparseness and the actual ppagation environment and allows
to see the asymptotic behavior of our algorithm in the extreme case of a very sparse channel
representation. The second channel is the non-line of sighfNLOS) channel model CM2 spec-
i ed by the IEEE802.15.3a channel modeling subcommittee [6] for UWB sytem performance
analysis.

We have also considered two sets of channel meausures issdsam realistic UWB indoor chan-
nel measurements performed in our laboratory [136], in the antext of the European Ultrawaves
project. These channels are calledCorridor and Multi oor , respectively. In the Corridor en-
vironment, the transmit and receive antennas are located ina corridor within the line of sight
(LOS) of each other, whereas in the Multi oor scenario, the antennas are located in two di erent

oors and separated by 3.7 meters (see Figs. 3.9 and 3.10).
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Channel name Theoretical sparse CMm2 Corridor Multi oor
Issued from Model Model (IEEE) | Measures| Measures
BW per subband (MHz) 528 528 528 528
Tx-Rx separation (m) - 0-4 17.5 3.7
(Non-) line of sight - NLOS LOS NLOS

Table 3.1: Characteristics of di erent channel scenarios used for pebormance evaluation.
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Figure 3.8: Real and imaginary part corresponding to a random vector redization of the Theoretical

sparsechannel wavelet coe cients g.

3.4.6.1 A Proper Choice of Parameter

In Section 3.4.4, we have de ned the parameter , 2= 2. Of course, the choice of an appro-
priate value for is important since it a ects the variance of the noise vectorZ{ in (3.35) which
is involved in the EM-MAP channel update formula of (3.49). One simple way is to choose
according to a speci c performance criterion. Here, we corider the minimization of the MSE
between the perfect and the estimated channel.

Figure 3.11 shows the MSE between the perfect and the estimatl channel from the EM-

MAP algorithm, as a function of , obtained in the case of CM2 channel for di erent values of
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Figure 3.9: Measurement setup of theCorridor channel in third oor of ENSTA.

Figure 3.10: Measurement setup of theMulti oor channels in third and fourth oor of ENSTA.

Ep=Ng. It can be observed that the MSE is minimized at = 0:4 for low SNR and at =0:3
for high SNR values. Further simulations over di erent prop agation environments issued from
both IEEE channel models and measurements tend to show thathe the interval 0:3 0:5
contain the minimum value of the MSE. In the following simulation results, is set to 04 for

all propagation environments.

3.4.6.2 Performance Evaluation of the EM-MAP Algorithm

For the sake of performance comparison, we consider two pile@nly based approaches using

ML and MMSE channel estimation, referred to as pilot-ML and pilot-MMSE. We compare our
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Figure 3.11: Mean square error between the true and the estimated coe ci@ts as a function of .

proposed algorithm with two semi-blind channel estimation methods based on the EM algorithm.
The rst approach called EM-Freq, estimates all the 384 frequency coe cients corresponding to
the channel over the rst three subbands using the model (3.2), and is similar to the method
proposed in [8]. The second semi-blind approach, called EMVav, is a wavelet domain EM
based channel estimation where the prior distribution is unform. This estimate is given by
equation (3.37).

Let us rst study the case of the Theoretical sparse channel.Figure 3.12 depicts the MSE
as a function of E,=Np. It can be noticed that, although the pilot-MMSE approach im proves the
estimation accuracy for low SNR values as compared to piloiviL, the performance of both pilot-
only based channel estimation methods is very far from thosef semi-blind methods. Comparing
the wavelet domain semi-blind approach (EM-Wav) and the frequency domain approach (EM-
freq), we see that a signi cant gain is achieved by the former This is due to the inherent
averaging present in the estimation formula (via matrix T ), since a weighted sum of all elements
of the observation vectorY is combined to estimate a given wavelet coe cient (see equabns
(3.31) and (3.35)). As shown, the best performance is achied by the EM-MAP method. We
see that by using EM-MAP, a gain of almost 4 dB in SNR is achievd at a MSE of 2 10 3,
compared to the EM-Wav method. This clearly shows the adequay of the EM-MAP method

for the case where the unknown channel has few non-zero waetkoe cients, which is in perfect
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agreement with the prior model.

Figure 3.13 shows the BER results along with the BER for the cae of perfect channel
state information (CSI). It can be seen that at a BER of 10 3, the pilot-ML and the EM-Freq
approaches are respectively:® and 2 dB away from the BER obtained with the perfect channel.
Furthermore, the performance of the Pilot-MMSE approach is not displayed since it was very
close to that of Pilot-ML. Also, we observe that wavelet bas& semi-blind methods perform
closely to the perfect CSI case. For example, at a BER of 10%, the EM-MAP and EM-Wav
method have respectively about 0.2 dB and 0.5 dB of SNR degration from the performance
obtained with perfect CSI.

—o6— Pilot-ML
=V — Pilot-MMSE
—&— EM-Freq
—¥— EM-Wav
—— EM-MAP

10 i i i i i i
0 2 4 6 8 10 12 14

EB/NO (dB)

Figure 3.12: Mean square error between the true and estimated coe cientsfor the sparse channel
model.

We now evaluate the performance of the EM-MAP algorithm for the case where the channel
does not necessarily have a very sparse representation byrgdering the Corridor and CM2
channels. Figures 3.14, 3.15 and 3.16 show that wavelet basenethods again outperform pilot
based and EM-Freq methods in terms of MSE and BER. Furthermoe, we observe that the
performance of the EM-MAP method is now comparable to that of the EM-Wav method. To
understand and explain this result, we analyze the estimatn of the prior model parameter
Remember from Section 3.4.2 that is the probability for a channel wavelet coe cient to be
zero, and hence indicates the probability for a channel to hae a parsimonious representation

in the wavelet domain. This parameter is estimated in the M-dep from the estimated wavelet
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Figure 3.13: BER performance of di erent channel estimation methods ove the sparse channel model.
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Figure 3.14: Mean square error between the true and estimated coe cientsover the Corridor channel.

coe cients, as explained before.

In order to have a measure of channel's sparsness in the waetldomain, we consider a bank of
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Figure 3.15: BER performance of di erent channel estimation methods ove the Corridor channel.
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Figure 3.16: BER performance of di erent channel estimation methods ove the CM2 channel.

channels and de ne the sparsness factor as the ratio of zero channel wavelet coe cients to the

total number of coe cients. To see the impact of channel's sparsness on the EM-MAP method
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Figure 3.17: Estimation of the a priori model parameter versus the sparsness factor.

performance, we have shown in Fig. 3.17 the estimated probality " of the Bernoulli-Gaussian
prior model (3.38) as a function of . It can be observed that " increases when the channel
tends to become sparser (for large values). High values of”" lead to a Bernoulli-Gaussian
prior model with an attenuated Gaussian component. In this ase, the EM-MAP algorithm
makes use of an adequate prior information and outperformshe EM-Wav approach that does
not have access to any prior information (see Figs. 3.12 and.B3). Also, we observe that when
the channel is not very sparse (for low values), the algorithm assigns small values to . This
leads to a Gaussian prior model with a large variance comparkto the noise variance, which
can be approximated to a uniform prior. As a result, the prior becomes \less informative" and
the EM-MAP performs close to EM-Wav, as shown in Figs. 3.14 ad 3.15. Thus, the EM-MAP
algorithm proposed here is globally able to adapt its prior nodel parameters to any propagation
environment.

Figures 3.18 and 3.19 depict the performance obtained ovethe Multi oor channel. Obvi-
ously, due to the presence of a large number of deep fades indlCFR of this scenario, the overall
BER performance is degraded as compared to other scenarioslowever, we observe that even
in this severe environment, wavelet based channel estimain methods outperform the classical
EM-Freq method.

Although we observed that the performance of EM-MAP and EM-Wav methods are close
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over non very sparse channels, it is important to notice thatthe EM-MAP method takes yet
the advantage over the EM-Wav method due to its lower computaional complexity. This is
explained in the following.
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3.4.6.3 Average Number of Estimated Parameters

We now present an important result. We compare the above serdblind algorithms with respect
to the average number of estimated parameters at each iteraon of the EM algorithm. This is

shown in Fig. 3.20 for di erent channel scenarios. First, recall that the EM-Freq and EM-Wav

methods have to continuously estimate 384 and 96 coe cientsat each iteration, respectively.
As explained in Subsection 3.4.4.3, by discarding the coe ¢ents that are replaced by zero, the
EM-MAP method tends to reduce signi cantly the number of estimated parameters, specially
for sparse channels. This can be seen for the sparse channeheve the number of estimated
parameters is reduced from 96 down to 20 parameters after theecond iteration. Furthermore,
for the non-sparse Corridor and CM2 channels, we observe thhiahe EM-MAP method is to

be preferred to the EM-Wav, due to its lower computational load, since it estimates about
40 coe cients after the second iteration. Although we obsewed that in this case these two
methods exhibit close performance, the EM-MAP algorithm brings a reduction of about 60%

on the number of estimated parameters when compared to the EMNav approach.

3.4.6.4 Convergence of the EM-MAP Algorithm

Finally, we analyze the number of iterations that the EM-MAP algorithm requires for conver-

gence. On Fig. 3.21, the MSE performance of the EM-MAP algothm is presented as a function
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of the number of iterations. It is obvious from these curves hat the MSE performance of the
proposed algorithm converges within 2 to 4 iterations, depading on the average SNR. This

justi es our choice of 4 iterations in the results presentedabove.
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In order to support the theoretical analysis of Section 3.32.2 concerning the monotonicity and
convergence of the EM algorithm, we have shown in Fig. 3.22 th incomplete-data likelihood
as a function of the number of iterations. It is observed that the incomplete-data likelihood

increases through iterations and becomes stable within ogl 3-4 iterations.

3.5 Conclusion

This chapter was devoted to our proposed channel estimationomethod for MB-OFDM systems.
We started by a review of di erent channel estimation techniques for OFDM systems. First,
we presented pilot-only based methods. Although simple, weshowed that these techniques
require multiple training symbols to provide a reliable channel estimate which can result in
a signi cant loss of the spectral e ciency. Then, we presented di erent totally-blind channel
estimation techniques that estimate the channel without ary need for training sequences. As
discussed, most of totally-blind algorithms are based on te knowledge of data symbol statistics
that must be acquired empirically after receiving a large nunber of observations. We saw that
blind algorithms can be extended to semi-blind methods in wlch a few number of pilot symbols
are required for the algorithm initialization. Among the fa mily of semi-blind methods, we were
especially interested by iterative EM based algorithms. Weexplained two approaches for ML-
or MAP-based channel estimation using the EM algorithm.

We presented an EM based semi-blind algorithm, able to integate the advantages of wavelet
based estimation. By expressing the unknown UWB channel in érms of its discrete wavelet
coe cients, we choose a prior distribution that captures th e possibly sparsness property of
UWB channels in the wavelet domain. This led to a MAP estimator equivalent to a hard
thresholding procedure at each iteration of the EM algorithm, which we used to reduce the
number of estimated coe cients at each iteration. For performance evaluation, we considered
di erent UWB channel environments issued from the IEEE channel models and from realistic
indoor measurements. It was observed that when the channelds a sparse wavelet expansion,
the prior model parameters which are estimated from the obseved data, carry this sparsness
information to the EM-MAP algorithm. Moreover, we showed th at in this case, the EM-MAP
method provides a signi cant reduction in the number of estimated parameters and outperforms
all considered pilot based and semi-blind methods. For norsparse channels, although both the
EM-MAP and EM-Wav methods perform closely, the EM-MAP takes the advantage over the
EM-Freq and EM-Wav schemes due to its lower computational conplexity.

Finally, we note that for MB-OFDM systems working over a wider channel bandwidth
(more than the rst three subbands), the EM-MAP method will b e even more interesting in

terms of complexity reduction and channel estimation accuacy. This is due to the fact that
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with the increase of bandwidth, the channel tends to have a moe sparse wavelet representation,

and consequently, the prior information becomes \more infemative”.
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Chapter 4

Multiband MIMO-OFDM:
Improved Detection and Achieved
Throughputs Under Channel

Estimation Errors

4.1 Introduction and Motivations

In the previous chapter, we proposed an enhanced receiver fdMB-OFDM systems in which
the channel is estimated during the iterative process of dad detection by using a semi-blind
algorithm. Our simulation results showed that the performance of the pilot-only based channel
estimation method is far from that provided by our iterative algorithm. However, one must
recognize that due to its simplicity, pilot-only based chamel estimation is often preferred to
iterative methods for obtaining channel state information at the receiver (CSIR). Furthermore,
there is a growing demand to increase the data rates of MB-OFM further beyond 480 Mbps
(initially provided by the scheme proposed in [3]), up to 1 Ghps and even higher. The main
objective of this chapter is to propose a new transceiver sticture being able to increase the
data rate and to improve the detection performance of MB-OFDM systems under imperfect
channel estimates obtained by a pilot-only technique.

One way to increase the data rate of the current MB-OFDM systen is to use higher order
modulations. To further enhance the data rates and the coveage ranges, the employment of
multiple-input multiple-output (MIMO) scheme to UWB has ga ined interest recently. Both of
these issues are exploited in this chapter. In fact, most UWBsystems operate in rich scattering

indoor environments, which provide an ideal transmission senario for MIMO implementation.
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In addition, the GHz center frequency of UWB radio relaxes the requirements on the spacing
between antenna array elements. Consequently, the combiri@n of UWB and MIMO technol-
ogy is a good candidate to become a viable and cost-e cient miod for very high data rate
requirement of future short range wireless applications. lwever, in UWB communications,
the underlying MIMO channel exhibits strong frequency seletivity. By using OFDM and ap-
plying a proper cyclic pre x (CP), the frequency selective channel is transformed into a set of
frequency- at subchannels [32]. These considerations matate the combination of MIMO and
OFDM, referred to as MIMO-OFDM.

To this date, multi-antenna UWB technology has been well doaimented for the traditional
single band UWB system [137,138]. On the other hand, resednabout multi-antenna multiband
UWB systems is still largely unexplored. Recently in [139],the authors have proposed the com-
bination of space-time-frequency coding and multiband OFIM and quanti ed the performance
merit of this scheme by considering perfect channel knowlege at the receiver.

In this chapter, we consider a multi-antenna transceiver fo@ MB-OFDM systems and refer
to it as MB-MIMO-OFDM. Furthermore, we assume that the chann el time-variations are slow
enough so that we can consider a constant channel during theransmission of a frame. To
obtain the CSIR in the above scenario, we transmit a limited rumber of known training (pilot)
symbols before proceeding to the detection of data symbolsObviously, due to both the nite
number of pilot symbols and to noise, the receiver can only ofain an imperfect (and possibly
poor) estimate of the channel. It is important to understand the origin of the performance
degradation that we have observed in Chapter 3 for MB-OFDM iterative detection using a
pilot-only based channel estimation. This can be intuitively explained by the following fact. As
the detector decision formula that we have used intrinsicaly assumes perfect CSIR, the unknown
channel is replaced by its imperfect estimate in the detecttn metric. Regarding this scenario,
two important questions will be investigated throughout th is chapter. i) What type of practical
detector can improve the overall system performance undemiperfect CSIR ?,ii) What are the
maximal achievable information rates of practical detectas and how close do they perform with
respect to the rates provided by the best possible detectomi the presence of channel estimation

errors ?

Previous Works: A rich literature exists on the impact of imperfect channel estimation on
the performance of communication systems employing multife antennas. For a MIMO system
using pilots for channel estimation, Garg et al. showed in [37] that for compensating the
performance degradation due to imperfect channel estimatin, the number of receive antennas
should be increased. Obviously, this may not be always podslie in practice. In [140], the

authors quanti ed the performance loss of the V-BLAST schene [31] due to the presence of
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channel estimation errors and derived a tight error oor, whereas in [141] it is shown that
a signi cant performance gain can be achieved by incorporahg the imperfect channel into

the design of space-time codes. Reference [38] investigdtéhe e ect that imperfect channel

estimation has on space-time decoding and showed that the @$sical maximum likelihood (ML)

detector, derived for the case of perfect CSIR, becomes lagty suboptimal in the presence of
channel estimation errors. A similar investigation was caried out in [142, 143] in the case of
single-antenna multi-carrier systems based on OFDM.

In order to deal with imperfect channel estimation, one sub@timal approach, known as
mismatcheddetection, consists in using the channel estimate for detéon, in the same way as if
it was a perfect estimate. It is shown, for instance, in [144}hat this scheme greatly degrades the
detection performance in the presence of channel estimatioerrors. Furthermore, in [145], the
authors showed that under imperfect channel estimation, the rates achieved by the mismatched
detector are signi cantly lower than the limit of the channe | capacity.

As an alternative to the aforementioned mismatched approah, Tarokh et al. in [144] and
recently Taricco and Biglieri in [38], proposed animproved ML detection metric under imperfect
CSIR and used it with the standard Viterbi algorithm.

Contributions: Recently in [146], we showed that, compared to the mismatch& ML metric,
the improved ML metric can increase the achievable outage r@s of MIMO-OFDM systems,
especially when few training symbols are devoted for chanhesstimation. We have reported
similar observations in [147] for the case of single-antermmOFDM systems.

Our aim in this work is to propose an improved iterative detedor, that takes into account
the imperfect channel estimation obtained via training seqiences. To this end, we propose a
Bayesian framework based on thea posteriori probability density function (pdf) of the perfect
channel, conditioned on its estimate. This general framewk enables us to formulate any
detector by considering the average, over the channel unctinty, of the detector's cost function
that would be applied in the case of perfect channel knowledg. As we shall see, the improved
ML metric of [38] becomes a special case of the general framexk considered in this work.

At rst, we use the improved ML metric for the derivation of an improved turbo-MAP
detector. By modifying properly the soft-values at the output of the MAP detector, we reduce
the impact of channel uncertainty on the SISO decoder perfamance. In a second step, in order
to answer the questionii), we compute the achievable rates associated to the improeeand
mismatched ML metrics using Gaussian input symbols. This dbws us to evaluate the limits of
reliable information rates in terms of outage rates, which § an appropriate performance measure
for the quasi-static channels [148] considered in this workActually, most of the research activ-

ity concerning imperfect CSIR is focused on performance eVaation of mismatched detectors
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in terms of bit error rate (BER). Our results may serve to evaluate the trade-o between the
required quality of service (in terms of BER and achieved thioughputs) and the system param-
eters (e.g., training power, transmission power, period ofraining, outage probability, etc.) in

the presence of channel estimation errors.

Organization of the Chapter: Here, we consider iterative (turbo) detection at the receiwer
which is an e cient technique when channel coding is used. Ths scheme has been employed,
for instance, in [43, 149] for coded MIMO systems. It is esseially composed of a detector
(also called demapper) and of a soft-input soft-output (SISD) channel decoder, exchanging soft
information with each other through several iterations. Furthermore, we consider the simple
spatial multiplexing [150] (also known under the name of theV-BLAST scheme [30]), which
has the potential to drastically increase the capacity of wreless radio links with no additional
power or bandwidth consumption [151]. We will also present eme simulation results for the
case of single-antenna MB-OFDM systems.

The rest of this chapter is organized as follows. In Section 2, we describe our MB-MIMO-
OFDM channel model and our main assumptions concerning dataransmission and channel
estimation. In Section 4.3, we introduce a general Bayesiaframework for improved detection
under imperfect channel estimation and then formulate the mproved ML detection metric. In
Section 4.4, we provide the formulation of the MAP detector in the case of imperfect CSIR. In
Section 4.5, we review the mutual information and capacity 8 OFDM-based spatial multiplexing
systems. Using this and further tools from information theay in Section 4.6, we calculate the
achieved throughputs in the sense of outage rates, assocét to a receiver using the improved
and mismatched ML metric. Section 4.7 illustrates via simuhtions over realistic UWB channels,
the performance of the proposed receiver in terms of BER andcahievable outage rates for both

single- and multi-antenna MB-OFDM systems. Finally, Section 4.8 concludes the chapter.

4.2 Transmission Model and Channel Estimation

4.2.1 MB-OFDM-Based Spatial Multiplexing

We consider a single-user peer-to-peer MB-OFDM system wititM + transmit and Mg receive
antennas Mr Mr). Figure 4.1 shows the block diagram of the transmitter that employs the
bit interleaved coded modulation (BICM) scheme which is knavn to be a simple and e cient

method for exploiting channel time-selectivity [44]. The binary data sequenceb is encoded
by a non-recursive non-systematic convolutional (NRNSC) ode before being interleaved by a

guasi-random interleaver. The output bits d are multiplexed to Mt sub-streams. Each sub-



















































































































































































































































