L. Ratke and P. Voorhees, Growth and coarsening, Ripening in materials processing, 2001.

M. P. Pileni, The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals, Nature Materials, vol.2, issue.3, pp.145-150, 2003.
DOI : 10.1038/nmat817

M. A. Lopez-quintela, Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control, Current Opinion in Colloid & Interface Science, vol.8, issue.2, pp.137-144, 2003.
DOI : 10.1016/S1359-0294(03)00019-0

M. Daniel and D. Astruc, Gold Nanoparticles:?? Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chemical Reviews, vol.104, issue.1, pp.293-346, 2004.
DOI : 10.1021/cr030698+

N. Jana and X. Peng, Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocrystals, Journal of the American Chemical Society, vol.125, issue.47, pp.14280-14281, 2003.
DOI : 10.1021/ja038219b

T. Zemb, M. Dubois, B. Deme, and T. Gulik-krzywicki, Self-Assembly of Flat Nanodiscs in Salt-Free Catanionic Surfactant Solutions, Science, vol.283, issue.5403, pp.816-819, 1999.
DOI : 10.1126/science.283.5403.816

M. Dubois, Self-assembly of regular hollow icosahedra in salt-free catanionic solutions, Nature, vol.411, issue.6838, pp.672-675, 2001.
DOI : 10.1038/35079541

M. Dubois, Shape control through molecular segregation in giant surfactant aggregates, Proc. Natl. Acad. Sci. USA. 101, pp.15082-15087, 2004.
DOI : 10.1073/pnas.0400837101

Y. Yin and P. Alivisatos, Colloidal nanocrystal synthesis and the organic???inorganic interface, Nature, vol.2, issue.7059, pp.664-670, 2005.
DOI : 10.1021/nl048060g

H. T. Shi, L. M. Qi, J. M. Ma, and H. M. Cheng, Synthesis of single crystal BaWO4 nanowires in catanionic reverse micelles, Chemical Communications, issue.16, pp.1704-1705, 2002.
DOI : 10.1039/b204995c

H. T. Shi, L. M. Qi, J. M. Ma, H. M. Cheng, and B. Zhu, Synthesis of Hierarchical Superstructures Consisting of BaCrO4 Nanobelts in Catanionic Reverse Micelles, Advanced Materials, vol.15, issue.19, p.1647, 2003.
DOI : 10.1002/adma.200305625

H. T. Shi, L. M. Qi, J. M. Ma, and N. Wu, Architectural Control of Hierarchical Nanobelt Superstructures in Catanionic Reverse Micelles, Advanced Functional Materials, vol.42, issue.3, pp.442-450, 2005.
DOI : 10.1002/adfm.200400242

H. T. Shi, X. H. Wang, N. N. Zhao, L. M. Qi, and J. M. Ma, Nanostructures in Catanionic Reverse Micelles Involving Polymers, The Journal of Physical Chemistry B, vol.110, issue.2, pp.748-753, 2006.
DOI : 10.1021/jp0545694

B. L. Cushing, V. L. Kolesnichenko, and C. J. O-'connor, Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chemical Reviews, vol.104, issue.9, pp.3893-3946, 2004.
DOI : 10.1021/cr030027b

C. Burda, X. B. Chen, R. Narayanan, and M. A. El-sayed, Chemistry and Properties of Nanocrystals of Different Shapes, Chemical Reviews, vol.105, issue.4, pp.1025-1102, 2005.
DOI : 10.1021/cr030063a

M. Faraday, The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light, Philosophical Transactions of the Royal Society of London, vol.147, issue.0, pp.145-181, 1847.
DOI : 10.1098/rstl.1857.0011

J. Turkevich, P. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discussions of the Faraday Society, vol.11, pp.55-75, 1951.
DOI : 10.1039/df9511100055

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, Synthesis of thiolderivatized gold nanoparticles in a 2-phase liquid-liquid system, Chem. Commun, vol.7, pp.801-802, 1994.

J. Wilcoxon, R. Williamson, and R. Baughan, Optical properties of gold colloids formed in inverse micelles, The Journal of Chemical Physics, vol.98, issue.12, p.9933, 1993.
DOI : 10.1063/1.464320

X. Lin, C. Sorensen, and K. Klabunde, Ligand-Induced Gold Nanocrystal Superlattice Formation in Colloidal Solution, Chemistry of Materials, vol.11, issue.2, pp.198-202, 1999.
DOI : 10.1021/cm980665o

N. R. Jana, L. Gearheart, and C. J. Murphy, Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods, The Journal of Physical Chemistry B, vol.105, issue.19, pp.4065-4067, 2001.
DOI : 10.1021/jp0107964

C. Feldmann, Polyol-Mediated Synthesis of Nanoscale Functional Materials, Advanced Functional Materials, vol.223, issue.200, pp.101-107, 2003.
DOI : 10.1002/adfm.200390014

S. H. Im, Y. T. Lee, B. Wiley, and Y. N. Xia, Large-Scale Synthesis of Silver Nanocubes: The Role of HCl in Promoting Cube Perfection and Monodispersity, Angewandte Chemie International Edition, vol.108, issue.14, pp.2154-2157, 2005.
DOI : 10.1002/anie.200462208

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, Polyol Synthesis of Uniform Silver Nanowires:?? A Plausible Growth Mechanism and the Supporting Evidence, Nano Letters, vol.3, issue.7, pp.955-960, 2003.
DOI : 10.1021/nl034312m

Y. G. Sun and Y. N. Xia, Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process, Advanced Materials, vol.14, issue.11, pp.833-837, 2002.
DOI : 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K

Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone), Chemistry of Materials, vol.14, issue.11, pp.4736-4745, 2002.
DOI : 10.1021/cm020587b

B. Wiley, T. Herricks, Y. G. Sun, and Y. N. Xia, Polyol Synthesis of Silver Nanoparticles:?? Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons, Nano Letters, vol.4, issue.9, pp.1733-1739, 2004.
DOI : 10.1021/nl048912c

Y. J. Xiong, J. Y. Chen, B. Wiley, and Y. Xia, Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size, Journal of the American Chemical Society, vol.127, issue.20, pp.7332-7333, 2005.
DOI : 10.1021/ja0513741

C. Petit, P. Lixon, and M. Pileni, In situ synthesis of silver nanocluster in AOT reverse micelles, The Journal of Physical Chemistry, vol.97, issue.49, pp.12974-12983, 1993.
DOI : 10.1021/j100151a054

M. Pileni, Nanosized Particles Made in Colloidal Assemblies, Langmuir, vol.13, issue.13, pp.3266-3276, 1997.
DOI : 10.1021/la960319q

M. P. Pileni, Mesostructured Fluids in Oil-Rich Regions:?? Structural and Templating Approaches, Langmuir, vol.17, issue.24, pp.7476-7486, 2001.
DOI : 10.1021/la010538y

M. Li and S. Mann, Fibers Synthesized in AOT Microemulsions, Langmuir, vol.16, issue.17, pp.7088-7094, 2000.
DOI : 10.1021/la0000668

B. Simmons, V. Agarwal, G. Mcpherson, V. John, and A. Bose, Small Angle Neutron Scattering Study of Mixed AOT + Lecithin Reverse Micelles, Langmuir, vol.18, issue.22, pp.8345-8349, 2002.
DOI : 10.1021/la026005m

C. Murray, D. Norris, and M. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, vol.115, issue.19, pp.8706-8715, 1993.
DOI : 10.1021/ja00072a025

L. Qu, Z. Peng, and X. Peng, Alternative Routes toward High Quality CdSe Nanocrystals, Nano Letters, vol.1, issue.6, pp.333-337, 2001.
DOI : 10.1021/nl0155532

Z. Peng and X. Peng, Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes:?? Nucleation and Growth, Journal of the American Chemical Society, vol.124, issue.13, pp.3343-3353, 2002.
DOI : 10.1021/ja0173167

M. Hines and P. Guyot-sionnest, Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals, The Journal of Physical Chemistry B, vol.102, issue.19, pp.3655-3657, 1998.
DOI : 10.1021/jp9810217

M. Shim and P. Guyot-sionnest, Organic-Capped ZnO Nanocrystals:?? Synthesis and n-Type Character, Journal of the American Chemical Society, vol.123, issue.47, pp.11651-11654, 2001.
DOI : 10.1021/ja0163321

D. Battaglia and X. Peng, Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent, Nano Letters, vol.2, issue.9, pp.1027-1030, 2002.
DOI : 10.1021/nl025687v

X. G. Peng, J. Wickham, and A. P. Alivisatos, Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth:?? ???Focusing??? of Size Distributions, Journal of the American Chemical Society, vol.120, issue.21, pp.5343-5344, 1998.
DOI : 10.1021/ja9805425

J. Steckel, S. Coe-sullivan, V. Bulovic, and M. Bawendi, 1.3??m to 1.55??m Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Device, Advanced Materials, vol.15, issue.21, pp.1862-1866, 2003.
DOI : 10.1002/adma.200305449

C. Donega, P. Liljeroth, and D. Vanmaekelbergh, Physicochemical Evaluation of the Hot-Injection Method, a Synthesis Route for Monodisperse Nanocrystals, Small, vol.85, issue.12, pp.1152-1162, 2005.
DOI : 10.1002/smll.200500239

J. Park, One-Nanometer-Scale Size-Controlled Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles, Angewandte Chemie International Edition, vol.16, issue.19, pp.2872-2877, 2005.
DOI : 10.1002/anie.200461665

X. G. Peng, Shape control of cdse nanocrystals, Nature, vol.404, pp.59-61, 2000.

V. F. Puntes, K. M. Krishnan, and A. P. Alivisatos, Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt, Science, vol.291, issue.5511, pp.2115-2117, 2001.
DOI : 10.1126/science.1057553

L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals, Nature Materials, vol.2, issue.6, pp.382-385, 2003.
DOI : 10.1038/nmat902

N. R. Jana, Y. F. Chen, and X. G. Peng, Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach, Chemistry of Materials, vol.16, issue.20, pp.3931-3935, 2004.
DOI : 10.1021/cm049221k

T. Y. Yu, J. Joo, Y. I. Park, and T. Hyeon, Large-Scale Nonhydrolytic Sol-Gel Synthesis of Uniform-Sized Ceria Nanocrystals with Spherical, Wire, and Tadpole Shapes, Angewandte Chemie International Edition, vol.126, issue.45, pp.7411-7414, 2005.
DOI : 10.1002/anie.200500992

M. &. Yin and S. O-'brien, Synthesis of Monodisperse Nanocrystals of Manganese Oxides, Journal of the American Chemical Society, vol.125, issue.34, pp.10180-10181, 2003.
DOI : 10.1021/ja0362656

K. S. Cho, D. V. Talapin, W. Gaschler, and C. B. Murray, Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles, Journal of the American Chemical Society, vol.127, issue.19, pp.7140-7147, 2005.
DOI : 10.1021/ja050107s

Z. H. Zhang, X. H. Zhong, S. H. Liu, D. F. Li, and M. Y. Han, Aminolysis Route to Monodisperse Titania Nanorods with Tunable Aspect Ratio, Angewandte Chemie International Edition, vol.15, issue.22, pp.3466-3470, 2005.
DOI : 10.1002/anie.200500410

J. Joo, Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals, Journal of the American Chemical Society, vol.125, issue.21, pp.6553-6557, 2003.
DOI : 10.1021/ja034258b

J. Park, Ultra-large-scale syntheses of monodisperse nanocrystals, Nature Materials, vol.126, issue.12, pp.891-895, 2004.
DOI : 10.1002/1521-3765(20020118)8:2<334::AID-CHEM334>3.3.CO;2-K

Y. W. Zhang, X. Sun, R. Si, L. P. You, and C. H. Yan, Triangular Nanoplates from a Single-Source Precursor, Journal of the American Chemical Society, vol.127, issue.10, pp.3260-3261, 2005.
DOI : 10.1021/ja042801y

H. X. Mai, High-Quality Sodium Rare-Earth Fluoride Nanocrystals:?? Controlled Synthesis and Optical Properties, Journal of the American Chemical Society, vol.128, issue.19, pp.6426-6436, 2006.
DOI : 10.1021/ja060212h

J. Park, Generalized Synthesis of Metal Phosphide Nanorods via Thermal Decomposition of Continuously Delivered Metal???Phosphine Complexes Using a Syringe Pump, Journal of the American Chemical Society, vol.127, issue.23, pp.8433-8440, 2005.
DOI : 10.1021/ja0427496

E. V. Shevchenko, Nanocrystals, Journal of the American Chemical Society, vol.124, issue.38, pp.11480-11485, 2002.
DOI : 10.1021/ja025976l

E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O-'brien, and C. Murray, Structural diversity in binary nanoparticle superlattices, Nature, vol.127, issue.7072, pp.55-59, 2006.
DOI : 10.1038/nature04414

URL : http://deepblue.lib.umich.edu/bitstream/2027.42/62551/1/nature04414.pdf

Q. S. Liu, Nanocrystals:?? Synthesis and Optical Determination, Journal of the American Chemical Society, vol.127, issue.15, pp.5276-5277, 2005.
DOI : 10.1021/ja042550t

F. Dumestre, B. Chaudret, C. Amiens, P. Renaud, and P. Fejes, Superlattices of Iron Nanocubes Synthesized from Fe[N(SiMe3)2]2, Science, vol.303, issue.5659, pp.821-823, 2004.
DOI : 10.1126/science.1092641

C. Amiens, B. Chaudret, M. Respaud, and P. Lecante, Organometallic Synthesis of Magnetic Nano-Objects with Controlled Physical Properties, ChemInform, vol.283, issue.23, pp.19-27, 2005.
DOI : 10.1002/chin.200623268

Y. Xia, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Advanced Materials, vol.15, issue.5, pp.353-389, 2003.
DOI : 10.1002/adma.200390087

D. W. Oxtoby, Homogeneous nucleation: theory and experiment, Journal of Physics: Condensed Matter, vol.4, issue.38, pp.7627-7650, 1992.
DOI : 10.1088/0953-8984/4/38/001

T. Palberg, Crystallization kinetics of repulsive colloidal spheres, Journal of Physics: Condensed Matter, vol.11, issue.28, pp.323-360, 1999.
DOI : 10.1088/0953-8984/11/28/201

P. N. Pusey and W. Vanmegen, Phase behaviour of concentrated suspensions of nearly hard colloidal spheres, Nature, vol.76, issue.6060, pp.340-342, 1986.
DOI : 10.1038/320340a0

U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization, Science, vol.292, issue.5515, pp.258-262, 2001.
DOI : 10.1126/science.1058457

K. Q. Zhang and X. Liu, In situ observation of colloidal monolayer nucleation driven by an alternating electric field, Nature, vol.272, issue.6993, pp.739-743, 2004.
DOI : 10.1063/1.1288802

J. L. Harland and W. Vanmegen, Crystallization kinetics of suspensions of hard colloidal spheres, Physical Review E, vol.55, issue.3, pp.3054-3067, 1997.
DOI : 10.1103/PhysRevE.55.3054

H. J. Schope, G. Bryant, and W. Van-megen, Two-Step Crystallization Kinetics in Colloidal Hard-Sphere Systems, Physical Review Letters, vol.96, issue.17, p.175701, 2006.
DOI : 10.1103/PhysRevLett.96.175701

S. Auer and D. Frenkel, Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy, Nature, vol.413, issue.6857, pp.711-713, 2001.
DOI : 10.1038/35099513

S. Auer and D. Frenkel, Prediction of absolute crystal-nucleation rate in hard-sphere colloids, Nature, vol.409, issue.6823, pp.1020-1023, 2001.
DOI : 10.1038/35059035

H. Reiss, The Growth of Uniform Colloidal Dispersions, The Journal of Chemical Physics, vol.19, issue.4, pp.482-487, 1951.
DOI : 10.1063/1.1748251

I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, Journal of Physics and Chemistry of Solids, vol.19, issue.1-2, pp.35-50, 1961.
DOI : 10.1016/0022-3697(61)90054-3

C. Wagner, Theorie der alterung von niederschlagen durch umlosen (ostwald-reifung), Z. Elektrochem, vol.65, pp.581-591, 1961.

V. K. Lamer and R. H. Dinegar, Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, Journal of the American Chemical Society, vol.72, issue.11, pp.4847-4854, 1950.
DOI : 10.1021/ja01167a001

G. Frens, Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions, Nature Physical Science, vol.241, issue.105, pp.20-22, 1973.
DOI : 10.1038/physci241020a0

E. V. Shevchenko, Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Nanocrystals: The Role of Nucleation Rate in Size Control of CoPt3 Nanocrystals., ChemInform, vol.125, issue.42, pp.9090-9101, 2003.
DOI : 10.1002/chin.200342237

L. H. Qu, W. W. Yu, and X. P. Peng, In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals, Nano Letters, vol.4, issue.3, pp.465-469, 2004.
DOI : 10.1021/nl035211r

C. R. Bullen and P. Mulvaney, Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene, Nano Letters, vol.4, issue.12, pp.2303-2307, 2004.
DOI : 10.1021/nl0496724

M. A. Watzky and R. G. Finke, Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism When Hydrogen Is the Reductant:?? Slow, Continuous Nucleation and Fast Autocatalytic Surface Growth, Journal of the American Chemical Society, vol.119, issue.43, pp.10382-10400, 1997.
DOI : 10.1021/ja9705102

K. S. Weddle, J. D. Aiken, and R. G. Finke, Stabilized Rh(0) Nanoclusters, Journal of the American Chemical Society, vol.120, issue.23, pp.5653-5666, 1998.
DOI : 10.1021/ja973045h

J. A. Widegren, J. D. Aiken, S. Ozkar, and R. G. Finke, Additional Investigations of a New Kinetic Method To Follow Transition-Metal Nanocluster Formation, Including the Discovery of Heterolytic Hydrogen Activation in Nanocluster Nucleation Reactions, Chemistry of Materials, vol.13, issue.2, pp.312-324, 2001.
DOI : 10.1021/cm0006852

S. Ozkar and R. G. Finke, Nanocluster Formation and Stabilization Fundamental Studies:?? Ranking Commonly Employed Anionic Stabilizers via the Development, Then Application, of Five Comparative Criteria, Journal of the American Chemical Society, vol.124, issue.20, pp.5796-5810, 2002.
DOI : 10.1021/ja012749v

B. J. Hornstein and R. G. Finke, Transition-Metal Nanocluster Kinetic and Mechanistic Studies Emphasizing Nanocluster Agglomeration:?? Demonstration of a Kinetic Method That Allows Monitoring of All Three Phases of Nanocluster Formation and Aging, Chemistry of Materials, vol.16, issue.20, pp.3972-3972, 2004.
DOI : 10.1021/cm0400637

B. J. Hornstein and R. G. Finke, Transition-Metal Nanocluster Kinetic and Mechanistic Studies Emphasizing Nanocluster Agglomeration:?? Demonstration of a Kinetic Method That Allows Monitoring of All Three Phases of Nanocluster Formation and Aging, Chemistry of Materials, vol.16, issue.1, pp.139-150, 2004.
DOI : 10.1021/cm034585i

C. Besson, E. E. Finney, and R. G. Finke, Nanocluster Nucleation, Growth, and Then Agglomeration Kinetic and Mechanistic Studies:?? A More General, Four-Step Mechanism Involving Double Autocatalysis, Chemistry of Materials, vol.17, issue.20, pp.4925-4938, 2005.
DOI : 10.1021/cm050207x

C. Besson, E. E. Finney, and R. G. Finke, A Mechanism for Transition-Metal Nanoparticle Self-Assembly, Journal of the American Chemical Society, vol.127, issue.22, pp.8179-8184, 2005.
DOI : 10.1021/ja0504439

S. Puvvada and D. Blankschtein, Molecular???thermodynamic approach to predict micellization, phase behavior and phase separation of micellar solutions. I. Application to nonionic surfactants, The Journal of Chemical Physics, vol.92, issue.6, pp.3710-3724, 1990.
DOI : 10.1063/1.457829

J. Israelachvili, D. J. Mitchell, and B. W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, Journal of the Chemical Society, Faraday Transactions 2, vol.72, pp.1525-1568, 1976.
DOI : 10.1039/f29767201525

G. C. Maitland, Oil and gas production, Current Opinion in Colloid & Interface Science, vol.5, issue.5-6, pp.301-311, 2000.
DOI : 10.1016/S1359-0294(00)00069-8

D. Gennes and P. , Reptation of a Polymer Chain in the Presence of Fixed Obstacles, The Journal of Chemical Physics, vol.55, issue.2, p.572, 1971.
DOI : 10.1063/1.1675789

M. Cates and S. Candau, Statics and dynamics of worm-like surfactant micelles, Journal of Physics: Condensed Matter, vol.2, issue.33, pp.6869-6892, 1990.
DOI : 10.1088/0953-8984/2/33/001

L. J. Magid, The Surfactant???Polyelectrolyte Analogy, The Journal of Physical Chemistry B, vol.102, issue.21, pp.4064-4074, 1998.
DOI : 10.1021/jp9730961

G. C. Kalur, B. D. Frounfelker, B. H. Cipriano, A. I. Norman, and S. R. Raghavan, Viscosity Increase with Temperature in Cationic Surfactant Solutions Due to the Growth of Wormlike Micelles, Langmuir, vol.21, issue.24, pp.10998-11004, 2005.
DOI : 10.1021/la052069w

M. Duval, G. Waton, and F. Schosseler, Temperature-Induced Growth of Wormlike Copolymer Micelles, Langmuir, vol.21, issue.11, pp.4904-4911, 2005.
DOI : 10.1021/la050177c

A. Stradner, O. Glatter, and P. Schurtenberger, A Hexanol-Induced Sphere-to-Flexible Cylinder Transition in Aqueous Alkyl Polyglucoside Solutions, Langmuir, vol.16, issue.12, pp.5354-5364, 2000.
DOI : 10.1021/la991679r

D. P. Acharya and H. Kunieda, Formation of Viscoelastic Wormlike Micellar Solutions in Mixed Nonionic Surfactant Systems, The Journal of Physical Chemistry B, vol.107, issue.37, pp.10168-10175, 2003.
DOI : 10.1021/jp0353237

Y. A. Shchipunov and H. Hoffmann, Growth, Branching, and Local Ordering of Lecithin Polymer-Like Micelles, Langmuir, vol.14, issue.22, pp.6350-6360, 1998.
DOI : 10.1021/la980469w

R. Angelico, Phase Behavior of the Lecithin/Water/Isooctane and Lecithin/Water/Decane Systems, Langmuir, vol.20, issue.3, pp.619-631, 2004.
DOI : 10.1021/la035603d

A. Khatory, Entangled versus multiconnected network of wormlike micelles, Langmuir, vol.9, issue.4, 1993.
DOI : 10.1021/la00028a010

T. Drye and M. Cates, Living networks: The role of cross???links in entangled surfactant solutions, The Journal of Chemical Physics, vol.96, issue.2, pp.1367-1375, 1992.
DOI : 10.1063/1.462172

Z. Lin, Branched Worm-like Micelles and Their Networks, Langmuir, vol.12, issue.7, pp.1729-1737, 1996.
DOI : 10.1021/la950570q

A. Bernheim-groswasser, T. Tlusty, S. Safran, and Y. Talmon, Direct Observation of Phase Separation in Microemulsion Networks, Langmuir, vol.15, issue.17, pp.5448-5453, 1999.
DOI : 10.1021/la990301q

W. Helfrich, Abstract, Zeitschrift f??r Naturforschung C, vol.28, issue.11-12, pp.693-703, 1973.
DOI : 10.1515/znc-1973-11-1209

I. Szleifer, D. Kramer, A. Ben-shaul, W. Gelbart, and S. Safran, Molecular theory of curvature elasticity in surfactant films, The Journal of Chemical Physics, vol.92, issue.11, pp.6800-6817, 1990.
DOI : 10.1063/1.458267

P. De-gennes and C. Taupin, Microemulsions and the flexibility of oil/water interfaces, The Journal of Physical Chemistry, vol.86, issue.13, pp.2294-2304, 1982.
DOI : 10.1021/j100210a011

L. Peliti and S. Leibler, Effects of Thermal Fluctuations on Systems with Small Surface Tension, Physical Review Letters, vol.54, issue.15, pp.1690-1693, 1985.
DOI : 10.1103/PhysRevLett.54.1690

M. Kahlweit and R. Strey, Phase Behavior of Ternary Systems of the Type H2O?Oil?Nonionic Amphiphile (Microemulsions), Angewandte Chemie International Edition in English, vol.57, issue.8, pp.654-668, 1985.
DOI : 10.1002/anie.198506541

S. Safran and L. Turkevich, Phase Diagrams for Microemulsions, Physical Review Letters, vol.50, issue.24, pp.1930-1933, 1983.
DOI : 10.1103/PhysRevLett.50.1930

M. J. Hou and D. Shah, Effects of the molecular structure of the interface and continuous phase on solubilization of water in water/oil microemulsions, Langmuir, vol.3, issue.6, pp.1086-1096, 1987.
DOI : 10.1021/la00078a036

A. Zilman, S. Safran, T. Sottman, and R. Strey, Temperature Dependence of the Thermodynamics and Kinetics of Micellar Solutions, Langmuir, vol.20, issue.6, pp.2199-2207, 2004.
DOI : 10.1021/la0359732

B. Ninham, I. Barne, S. Hyde, P. T. Derian, and Z. , Random Connected Cylinders: a New Structure in Three-Component Microemulsions, Europhysics Letters (EPL), vol.4, issue.5, pp.561-568, 1987.
DOI : 10.1209/0295-5075/4/5/009

S. T. Hyde, B. W. Ninham, and T. Zemb, Phase boundaries for ternary microemulsions: predictions of a geometric model, The Journal of Physical Chemistry, vol.93, issue.4, pp.1464-1471, 1989.
DOI : 10.1021/j100341a056

I. Barnes, Small-angle x-ray scattering from ternary microemulsions determines microstructure, The Journal of Physical Chemistry, vol.92, issue.8, pp.2286-2293, 1988.
DOI : 10.1021/j100319a038

T. Zemb, The DOC model of microemulsions: microstructure, scattering, conductivity and phase limits imposed by sterical constraints, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.129, issue.130, pp.129-130, 1997.
DOI : 10.1016/S0927-7757(97)00061-7

T. Tlusty, S. Safran, R. Menes, and R. Strey, Scaling Laws for Microemulsions Governed by Spontaneous Curvature, Physical Review Letters, vol.78, issue.13, pp.2616-2619, 1997.
DOI : 10.1103/PhysRevLett.78.2616

T. Tlusty, S. R. Safran, and S. , Topology, Phase Instabilities, and Wetting of Microemulsion Networks, Physical Review Letters, vol.84, issue.6, pp.1244-1247, 2000.
DOI : 10.1103/PhysRevLett.84.1244

T. Tlusty and S. Safran, Microemulsion networks: the onset of bicontinuity, Journal of Physics: Condensed Matter, vol.12, issue.8A, pp.253-262, 2000.
DOI : 10.1088/0953-8984/12/8A/332

A. Zilman and S. Safran, Thermodynamics and structure of self-assembled networks, Physical Review E, vol.66, issue.5, pp.51107-51134, 2002.
DOI : 10.1103/PhysRevE.66.051107

A. Zilman, T. Tlusty, and S. Safran, Entropic networks in colloidal, polymeric and amphiphilic systems, Journal of Physics: Condensed Matter, vol.15, issue.1, pp.57-64, 2003.
DOI : 10.1088/0953-8984/15/1/306

A. Zilman, S. A. Safran, T. Sottmann, and R. Strey, Temperature Dependence of the Thermodynamics and Kinetics of Micellar Solutions, Langmuir, vol.20, issue.6, pp.2199-2207, 2004.
DOI : 10.1021/la0359732

O. Spalla, Neutrons, X-rays and Light : Scattering Methods Applied to Soft Condensed Matter, pp.49-72, 2002.

J. Ppedersen, Neutrons, X-rays and Light : Scattering Methods Applied to Soft Condensed Matter, pp.391-420, 2002.

L. Belloni, Colloidal interactions, Journal of Physics: Condensed Matter, vol.12, issue.46, pp.549-587, 2000.
DOI : 10.1088/0953-8984/12/46/201

O. Glatter, A new method for the evaluation of small-angle scattering data, Journal of Applied Crystallography, vol.10, issue.5, pp.415-421, 1977.
DOI : 10.1107/S0021889877013879

S. Hansen, Bayesian estimation of hyperparameters for indirect Fourier transformation in small-angle scattering, Journal of Applied Crystallography, vol.33, issue.6, pp.1415-1421, 2000.
DOI : 10.1107/S0021889800012930

T. Narayanan, O. Diat, and P. Bosecke, SAXS and USAXS on the high brilliance beamline at the ESRF, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.467, issue.468, pp.1005-1009, 2001.
DOI : 10.1016/S0168-9002(01)00553-8

D. Pontoni, T. Narayanan, and A. Rennie, High-dynamic range SAXS data acquisition with an X-ray image intensifier, Journal of Applied Crystallography, vol.35, issue.2, pp.207-211, 2002.
DOI : 10.1107/S0021889802000493

U. Kreibig and M. Vollmer, Optical properties of metal clusters, 1995.
DOI : 10.1007/978-3-662-09109-8

A. P. Alivisatos, Organization of 'nanocrystal molecules' using DNA, Nature, vol.382, issue.6592, pp.609-611, 1996.
DOI : 10.1038/382609a0

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, vol.382, issue.6592, pp.607-609, 1996.
DOI : 10.1038/382607a0

J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger, One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes, Journal of the American Chemical Society, vol.120, issue.9, pp.1959-1964, 1998.
DOI : 10.1021/ja972332i

M. Haruta, Size- and support-dependency in the catalysis of gold, Catalysis Today, vol.36, issue.1, pp.153-166, 1997.
DOI : 10.1016/S0920-5861(96)00208-8

M. Haruta and M. Date, Advances in the catalysis of Au nanoparticles, Applied Catalysis A: General, vol.222, issue.1-2, pp.427-437, 2001.
DOI : 10.1016/S0926-860X(01)00847-X

G. C. Bond and D. T. Thompson, Catalysis by gold Catalysis reviews-science and engineering 41, pp.319-388, 1999.

A. W. Olsen and Z. H. Kafafi, Gold cluster-laden polydiacetylenes: novel materials for nonlinear optics, Journal of the American Chemical Society, vol.113, issue.20, pp.7758-7760, 1991.
DOI : 10.1021/ja00020a046

J. H. Park, Y. T. Lim, O. O. Park, and Y. C. Kim, Enhancement of Photostability in Blue-Light-Emitting Polymers Doped with Gold Nanoparticles, Macromolecular Rapid Communications, vol.32, issue.4, pp.331-334, 2003.
DOI : 10.1002/marc.200390051

B. Chance, Rapid and Sensitive Spectrophotometry. I. The Accelerated and Stopped???Flow Methods for the Measurement of the Reaction Kinetics and Spectra of Unstable Compounds in the Visible Region of the Spectrum, Review of Scientific Instruments, vol.22, issue.8, pp.619-627, 1951.
DOI : 10.1063/1.1746019

P. A. Jennings and P. Wright, Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin, Science, vol.262, issue.5135, pp.892-896, 1993.
DOI : 10.1126/science.8235610

J. S. Weissman, H. S. Rye, W. A. Fenton, J. M. Beechem, and A. L. Horwich, Characterization of the Active Intermediate of a GroEL???GroES-Mediated Protein Folding Reaction, Cell, vol.84, issue.3, pp.481-490, 1996.
DOI : 10.1016/S0092-8674(00)81293-3

F. Ne, F. Testard, T. Zemb, and I. Grillo, /Surfactant Mesophase Nucleate? Formation Mechanism, Langmuir, vol.19, issue.20, pp.8503-8510, 2003.
DOI : 10.1021/la034824g

J. Bolze, Precursor Particles as Detected by Time-Resolved SAXS, Langmuir, vol.18, issue.22, pp.8364-8369, 2002.
DOI : 10.1021/la025918d

D. Pontoni, T. Narayanan, and A. Rennie, Time-Resolved SAXS Study of Nucleation and Growth of Silica Colloids, Langmuir, vol.18, issue.1, pp.56-59, 2002.
DOI : 10.1021/la015503c

I. Grillo, E. I. Kats, and A. Muratov, Formation and Growth of Anionic Vesicles Followed by Small-Angle Neutron Scattering, Langmuir, vol.19, issue.11, pp.4573-4581, 2003.
DOI : 10.1021/la0208732

S. Schmolzer, D. Grabner, M. Gradzielski, and T. Narayanan, Millisecond-Range Time-Resolved Small-Angle X-Ray Scattering Studies of Micellar Transformations, Physical Review Letters, vol.88, issue.25, p.258301, 2002.
DOI : 10.1103/PhysRevLett.88.258301

T. M. Weiss, Dynamics of the Self-Assembly of Unilamellar Vesicles, Physical Review Letters, vol.94, issue.3, p.38303, 2005.
DOI : 10.1103/PhysRevLett.94.038303

D. Andreescu, T. K. Sau, and D. Goia, Stabilizer-free nanosized gold sols, Journal of Colloid and Interface Science, vol.298, issue.2, pp.742-751, 2006.
DOI : 10.1016/j.jcis.2006.01.011

J. Kimling, Turkevich Method for Gold Nanoparticle Synthesis Revisited, The Journal of Physical Chemistry B, vol.110, issue.32, pp.15700-15707, 2006.
DOI : 10.1021/jp061667w

O. Galkin and P. G. Vekilov, Control of protein crystal nucleation around the metastable liquid-liquid phase boundary, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.6277-6281, 2000.
DOI : 10.1073/pnas.110000497

S. T. Yau and P. G. Vekilov, Quasi-planar nucleus structure in apoferritin crystallization, Nature, vol.406, pp.494-497, 2000.
DOI : 10.1021/ja003039c

T. Sugimoto, The theory of the nucleation of monodisperse particles in open systems and its application to agbr systems, Journal of Colloid and Interface Science, vol.150, issue.1, pp.208-225, 1992.
DOI : 10.1016/0021-9797(92)90282-Q

H. Sellers, A. Ulman, Y. Shnidman, and J. Eilers, Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers, Journal of the American Chemical Society, vol.115, issue.21, pp.9389-9401, 1993.
DOI : 10.1021/ja00074a004

D. V. Leff, P. C. Ohara, J. R. Heath, and W. M. Gelbart, Thermodynamic Control of Gold Nanocrystal Size: Experiment and Theory, The Journal of Physical Chemistry, vol.99, issue.18, pp.7036-7041, 1995.
DOI : 10.1021/j100018a041

T. K. Sau and C. J. Murphy, Self-Assembly Patterns Formed upon Solvent Evaporation of Aqueous Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles of Various Shapes, Langmuir, vol.21, issue.7, pp.2923-2929, 2005.
DOI : 10.1021/la047488s

W. W. Yu and X. G. Peng, Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers, Angewandte Chemie International Edition, vol.98, issue.13, pp.2368-2371, 2002.
DOI : 10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G

P. Marchini, Sodium borohydride-carboxylic acid systems. Useful reagents for the alkylation of amines, The Journal of Organic Chemistry, vol.40, issue.23, pp.3453-3456, 1975.
DOI : 10.1021/jo00911a038

G. W. Gribble and C. Nutaitis, SODIUM BOROHYDRIDE IN CARBOXYLIC ACID MEDIA. A REVIEW OF THE SYNTHETIC UTILITY OF ACYLOXYBOROHYDRIDES, Organic Preparations and Procedures International, vol.5, issue.4-5, pp.317-384, 1985.
DOI : 10.1021/jo00202a025

G. W. Gribble, Sodium borohydride in carboxylic acid media: a phenomenal reduction system, Chemical Society Reviews, vol.51, issue.6, pp.395-404, 1998.
DOI : 10.1039/a827395z

C. Desvaux, Multimillimetre-large superlattices of air-stable iron???cobalt nanoparticles, Nature Materials, vol.58, issue.10, pp.750-753, 2005.
DOI : 10.1021/ic00283a022

C. B. Murray, C. R. Kagan, and M. G. Bawendi, Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annual Review of Materials Science, vol.30, issue.1, pp.545-610, 2000.
DOI : 10.1146/annurev.matsci.30.1.545

H. Lyklema, Fundamentals of colloid and interface Science, 1991.

P. C. Ohara, D. V. Leff, J. R. Heath, and W. M. Gelbart, Crystallization of Opals from Polydisperse Nanoparticles, Physical Review Letters, vol.75, issue.19, pp.3466-3469, 1995.
DOI : 10.1103/PhysRevLett.75.3466

T. A. Witten and . M. Sander, Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon, Physical Review Letters, vol.47, issue.19, pp.1400-1403, 1981.
DOI : 10.1103/PhysRevLett.47.1400

D. A. Weitz and M. Oliveria, Fractal Structures Formed by Kinetic Aggregation of Aqueous Gold Colloids, Physical Review Letters, vol.52, issue.16, pp.1433-1436, 1984.
DOI : 10.1103/PhysRevLett.52.1433

X. M. Lin, G. M. Wang, C. M. Sorensen, and K. J. Klabunde, Formation and Dissolution of Gold Nanocrystal Superlattices in a Colloidal Solution, The Journal of Physical Chemistry B, vol.103, issue.26, pp.5488-5492, 1999.
DOI : 10.1021/jp990729y

T. P. Bigioni, Kinetically driven self assembly of highly ordered nanoparticle monolayers, Nature Materials, vol.62, issue.4, pp.265-270, 2006.
DOI : 10.1038/nmat1611

E. V. Shevchenko, D. V. Talapin, C. B. Murray, and S. O-'brien, Structural Characterization of Self-Assembled Multifunctional Binary Nanoparticle Superlattices, Journal of the American Chemical Society, vol.128, issue.11, pp.3620-3637, 2006.
DOI : 10.1021/ja0564261

A. M. Kalsin, Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice, Science, vol.312, issue.5772, pp.420-424, 2006.
DOI : 10.1126/science.1125124

A. Ghezelbash, B. Koo, and B. A. Korgel, Self-Assembled Stripe Patterns of CdS Nanorods, Nano Letters, vol.6, issue.8, pp.1832-1836, 2006.
DOI : 10.1021/nl061035l

P. Jokela, B. Jonsson, and A. Khan, Phase equilibria of catanionic surfactant-water systems, The Journal of Physical Chemistry, vol.91, issue.12, pp.3291-3298, 1987.
DOI : 10.1021/j100296a037

E. Kaler, A. Murthy, B. Rodriguez, and J. Zasadzinski, Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants, Science, vol.245, issue.4924, p.1371, 1989.
DOI : 10.1126/science.2781283

B. A. Schubert, E. W. Kaler, and N. J. Wagner, The Microstructure and Rheology of Mixed Cationic/Anionic Wormlike Micelles, Langmuir, vol.19, issue.10, pp.4079-4089, 2003.
DOI : 10.1021/la020821c

T. Zemb and M. Dubois, Catanionic Microcrystals: Organic Platelets, Gigadalton ???Molecules???, or Ionic Solids?, Australian Journal of Chemistry, vol.56, issue.10, pp.971-979, 2003.
DOI : 10.1071/CH03117

B. Jonsson, P. Jokela, B. Lindman, and A. Sadaghiani, Catanionic surfactants: phase behavior and microemulsions, Langmuir, vol.7, issue.5, pp.889-895, 1991.
DOI : 10.1021/la00053a013

R. Friman, S. Backlund, E. Hognesen, and T. Austad, Microemulsions Formed by a Catanionic Surfactant or by an Ionic Surfactant with an Organic Counterion, Tenside Surfactants Detergents, vol.41, issue.4, pp.190-194, 2004.
DOI : 10.3139/113.100224

B. Zhu, H. Shi, J. Huang, and X. He, Study on reversed microemulsion and reversed micelle in catanionic surfactant system, Acta Chimica Sinica, vol.59, pp.913-917, 2001.

M. Schmidt and W. Burchard, Translational diffusion and hydrodynamic radius of unperturbed flexible chains, Macromolecules, vol.14, issue.1, pp.210-211, 1981.
DOI : 10.1021/ma50002a045

S. Safran, L. Turkevich, and P. Pincus, Cylindrical microemulsions: a polymer-like phase ?, Journal de Physique Lettres, vol.45, issue.2, p.19, 1984.
DOI : 10.1051/jphyslet:0198400450206900

URL : https://hal.archives-ouvertes.fr/jpa-00232310

T. Tlusty and S. Safran, Defect-Induced Phase Separation in Dipolar Fluids, Science, vol.290, issue.5495, pp.1328-1331, 2000.
DOI : 10.1126/science.290.5495.1328

R. Strey, Microemulsion microstructure and interfacial curvature, Colloid & Polymer Science, vol.119, issue.8, pp.1005-1019, 1994.
DOI : 10.1007/BF00658900

S. Tung, Y. Huang, and S. Raghavan, A New Reverse Wormlike Micellar System:?? Mixtures of Bile Salt and Lecithin in Organic Liquids, Journal of the American Chemical Society, vol.128, issue.17, pp.5751-5765, 2006.
DOI : 10.1021/ja0583766

P. Cirkel and G. Koper, Characterization of Lecithin Cylindrical Micelles in Dilute Solution, Langmuir, vol.14, issue.25, pp.7095-7103, 1998.
DOI : 10.1021/la971326x

A. G. Zilman and S. A. Safran, Role of cross-links in bundle formation, phase separation and gelation of long filaments, Europhys. Lett, vol.63, issue.71, pp.515-516, 2003.

D. Rushforth, Structural study of one-phase microemulsions, The Journal of Physical Chemistry, vol.90, issue.25, pp.6668-6673, 1986.
DOI : 10.1021/j100283a015

R. Menes, S. Safran, and R. Strey, Reentrant Phase Separation in Microemulsions, Physical Review Letters, vol.74, issue.17, pp.3399-3402, 1995.
DOI : 10.1103/PhysRevLett.74.3399

E. M. Chan, R. A. Mathies, and A. P. Alivisatos, Size-Controlled Growth of CdSe Nanocrystals in Microfluidic Reactors, Nano Letters, vol.3, issue.2, pp.199-201, 2003.
DOI : 10.1021/nl0259481

E. M. Chan, A. P. Alivisatos, and R. A. Mathies, High-Temperature Microfluidic Synthesis of CdSe Nanocrystals in Nanoliter Droplets, Journal of the American Chemical Society, vol.127, issue.40, pp.13854-13861, 2005.
DOI : 10.1021/ja051381p

F. Baletto and R. Ferrando, Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects, Reviews of Modern Physics, vol.77, issue.1, pp.371-423, 2005.
DOI : 10.1103/RevModPhys.77.371

C. Mottet, J. Goniakowski, F. Baletto, R. Ferrando, and G. Treglia, Modeling free and supported metallic nanoclusters: structure and dynamics, Phase Transitions, vol.482, issue.1-2, pp.101-113, 2004.
DOI : 10.1016/0001-6160(67)90206-4

URL : https://hal.archives-ouvertes.fr/hal-00005840

J. Pedersen and P. Schurtenberger, Monte Carlo study of excluded volume effects in wormlike micelles and semiflexible polymers, Physical Review E, vol.54, issue.6, pp.5917-5920, 1996.
DOI : 10.1103/PhysRevE.54.R5917

T. Yoshizaki and H. Yamakawa, Scattering functions of wormilke and helical wormlike chains, Macromolecules, pp.1518-1525, 1980.

J. Pedersen and P. Schurtenberger, Static properties of polystyrene in semidilute solutions: A comparison of Monte Carlo simulation and small-angle neutron scattering results, Europhysics Letters (EPL), vol.45, issue.6, pp.666-672, 1999.
DOI : 10.1209/epl/i1999-00219-7

L. Arleth, M. Bergstrom, and J. S. Pedersen, Small-Angle Neutron Scattering Study of the Growth Behavior, Flexibility, and Intermicellar Interactions of Wormlike SDS Micelles in NaBr Aqueous Solutions, Langmuir, vol.18, issue.14, pp.5343-5353, 2002.
DOI : 10.1021/la015693r

L. Arleth, Growth Behavior of Mixed Wormlike Micelles:?? a Small-Angle Scattering Study of the Lecithin???Bile Salt System, Langmuir, vol.19, issue.10, pp.4096-4104, 2003.
DOI : 10.1021/la026808+