. Dans-ce-paragraphe-on, On montrè a partir des exemples, que les mesures par rayons X sont nécessairement destructives pour conna??treconna??tre les contraintesàcontraintesà l'intérieur du solide et que lenì evement dematì ere induit une redistribution des contraintes de tellemanì ere que la contrainte mesurée diffère, en général, de la contrainte initiale (paragraphe B.2.2). On généralise la méthode de reconstruction des contraintes initiales (` a partir des contraintes mesurées en surface aprèsenì evement dematì ere)

. Bibliographie, Alessandrini -On the identification of the leading coefficient of an elliptic equation, Serie VI, pp.87-111, 1985.

A. Allers and F. , Stability and resolution analysis of a linearized problem in electrical impedance tomography, Inverse Problems, vol.7, issue.4, pp.515-533, 1991.
DOI : 10.1088/0266-5611/7/4/003

S. Andrieux, B. Abda, and A. , The reciprocity gap: a general concept for flaws identification problems, Mechanics Research Communications, vol.20, issue.5, 1993.
DOI : 10.1016/0093-6413(93)90032-J

P. Ballard and A. , Constantinescu -Sur l'inversion d'un champ des contraintes résiduelles en fonction des contraintes mesurées en surface, C.R.Acad.Sci, 1994.

P. Ballard and A. , Constantinescu -On the inversion of subsurface residual stresses from surface stress measurmentsàmeasurmentsà parra??treparra??tre dans Journal of Mechanics and Physics of Solids, 1994.

P. K. Banerjee and R. , Butterfield -Boundary element methods in engineering sciences, 1981.

I. Beju, E. Soos, and P. P. , Teodorescu -Tehnici de calcul tensorial euclidian cu aplicatii, 1977.

H. Berger, L. Barthe, and R. , Ohayon -Parametric updating of a F, model from experimental modal characteristics Proc. European Forum on Aeroelasticity and Structural Dynamics, 1989.

K. Bryan and M. , Vogelius -A Uniqueness Result Concerning the Identification of a Collection of Cracks from Finetely Many Electrostatic Boundary Measurments SIAM, J.Appl.Math, vol.23, issue.4, pp.990-958, 1992.

M. Bonnet, H. D. Bui, H. Maigre, and J. , Planchard -Identification of heat conduction coefficient : application to nondestructive testing, IUTAM Symposium on Inverse problems in engineering mechanics, pp.11-15, 1992.

M. Bonnet and A. , Constantinescu -Quelques remarques sur l'identification de modulesélastiquesàdulesélastiquesdulesélastiquesà l'aide de mesures sur lafrontì ere, Actes du 11ème Congrès Français de Mécanique, Villeneuve d'Ascq, 6-10 sept, 1993.

H. D. Bui, H. Maigre, and D. Rittel, A new approach to the experimental determination of the dynamic stress intensity factor, International Journal of Solids and Structures, vol.29, issue.23, pp.2881-2895, 1992.
DOI : 10.1016/0020-7683(92)90146-K

H. D. Bui, B. Loret, and M. , Bonnet -Régularisation deséquationsdeséquations intégrales de l'´ elastodynamique et de l'´ elastostatique, C.R. Acad. Sc, vol.300, 1985.

W. Cheng and I. , Examination of the computational model for the layer-removal method for residual-stress measurement, Experimental Mechanics, vol.23, issue.4, pp.150-153, 1986.
DOI : 10.1007/BF02320007

A. Constantinescu, A Numerical Investigation of the Elastic Moduli in an Inhomogeneous Body dans Inverse Problems in Engineering : Theory and Practice, ASME -I00357, p.77, 1993.

A. Constantinescu-, On the identification of elastic moduli from displacementforce boundary measurements soumisè a, Journal of Inverse Problems in Engineering, 1994.

. C. St and M. Cowin, Mehrabadi -Eigentensors of Linear Elastic Materials Q, J.Mech.Appl.Math, vol.43, 1990.

. C. St and M. Cowin, Mehrabadi -The Structure of the linear anisotropic elastic Symmetries, J.Mech.Phys.Solids, vol.40, issue.7, pp.1459-1471, 1992.

A. Friedmann and M. , Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Archive for Rational Mechanics and Analysis, vol.34, issue.4, pp.299-326
DOI : 10.1007/BF00281494

Z. Gao, On the Inversion of Residual Stresses From Surface Displacements, Journal of Applied Mechanics, vol.56, issue.3, p.508, 1989.
DOI : 10.1115/1.3176119

M. Ikehata, Inversion Formulas for the Linearized Problem for an Inverse Boundary Value Problem in Elastic Prospection, SIAM Journal on Applied Mathematics, vol.50, issue.6, pp.1635-1644, 1990.
DOI : 10.1137/0150097

D. G. Gisser, D. Isaakson, and J. C. , Newell -Electric current computed tomography and eigenvalues SIAM, J.Appl.Math, vol.50, issue.6, pp.1623-1634, 1990.
DOI : 10.1137/0150096

D. G. Gisser, D. Isaakson, and J. C. , Current topics in impedance imaging, Clinical Physics and Physiological Measurement, vol.8, issue.4A, pp.39-46, 1987.
DOI : 10.1088/0143-0815/8/4A/005

R. V. Kohn and A. , McKenney -Numerical implementation of a variational method for electric impedance tomography Inverse problems, pp.389-414, 1878.

R. V. Kohn and B. D. , Lowe -A variational method for parameter identification M 2 AN, pp.119-158, 1988.

R. V. Kohn and M. , Vogelius -Determining Conductivity by Boundary Measurments Comm, Pure.Appl.Math, vol.XXXVII, pp.289-298, 1984.

R. V. Kohn and M. , Vogelius -Determining Conductivity by Boundary Measurments II, Interior Results Comm.Pure.Appl.Math, vol.XXXVIII, pp.643-667, 1985.

R. V. Kohn and M. , Vogelius -Relaxation of a Variational Method for Impedance Computed Tomography Comm, Pure.Appl.Math, vol.XL, pp.745-777, 1987.

S. Kubo, K. Ohji, and K. , Konishi -Finite Element Based Inversion Schemes for Estimating Distributions of elastic constants in Inverse Problems, 1993.

P. Ladevèze and D. , Leguillon -Error estimates procedures in the finite element method and applications SIAM, J.Numer.Anal, vol.20, issue.3, 1983.

P. Ladevèze, M. Reynier, and D. H. , Nedjar -Parametric Corrections of Finite Element Models Using Modal Tests IUTAM Symposium on Inverse problems in engineering mechanics (11-15, 1992.

J. Lemaitre and J. , Chaboche -Mécanique des matèriaux solides, 1985.

J. T. Lin and O. , Jones -Progress in Impedance Imaging for Gas-Liquid Flows : Experimental Results : Part 1 Analytical and Numerical Developments dans Inverse Problems in Engineering : Theory and Practice ed, N.Zabarras et al. Engineering Foundation, pp.357-209, 1993.

G. Maeder, J. L. Lebrun, and J. M. , Sprauel -Present possibilities for the X-ray diffraction method of stress measurement, NDT International, pp.45-5235, 1981.

C. Man and W. Y. , Lu -Towards an acoustoelastic theory for measurment of residual stress J.of Elasticity, pp.159-182, 1987.

J. Mandel, Cours de Mécanique des milieux continus, 1966.

M. G. Moore and W. P. , Evans -Mathematical correction for stress in removed layers in X-ray diffraction reesidual stress analysis, SAE Trans, vol.66, pp.340-345, 1958.

F. Murat, Contre-exemples pour diversprobì emes o` u le controle intervient dans les coefficients Ann, Math.Pura e Appl, vol.62, pp.49-68, 1977.

G. Nakamura and G. , Uhlmann -Uniqueness for identifying Lamé moduli by Dirichlet to Neumann map Inverse Problems in Engineering Sciences -ICM-90

Y. H. Pao, W. Sachse, and H. , Fukuoka -Acoustoelasticity and ultrasonic measurments of residual stresses Physical Acoustics, 1984.

F. Santosa and M. , Vogelius -A Computational Algorithm to Determine Cracks from Electrostatic Boundary Measurments IntVogelius -A backprojection algorithm for electrical impedance tomography, J.Engng.Sci. SIAM J.Appl.Math, vol.2950, issue.8, pp.917-937, 1990.

H. Shu, L. Ovaciuk, J. T. Lin, and O. , Jones -Progress in Impedance Imaging for Gas- Liquid Flows : Experimental Results : Part 2 Experimental Results dans Inverse Problems in Engineering : Theory and Practice ed, N.Zabarras et al. Engineering Foundation, pp.357-209, 1993.

Z. Sun and G. , Uhlmann -Generic uniqueness for determined inverse problems in 2, dimensions Inverse Problems in Engineering Sciences -ICM-90 Satellite Conference Proceedings, 1991.

A. N. Tikhonov and V. Y. , Arsenin -Solutions to ill-posed problems, 1977.

G. M. Wing, -primer on integral equations of the first kind SIAM, 1991.
URL : https://hal.archives-ouvertes.fr/in2p3-00309474

W. Yeih, T. Koya, and T. Mura, An Inverse Problem in Elasticity With Partially Overprescribed Boundary Conditions, Part I: Theoretical Approach, Journal of Applied Mechanics, vol.60, issue.3, pp.595-606, 1993.
DOI : 10.1115/1.2900845

. Elasticité-sphère-creuse......, Convergence des déplacements u N r (lignes continues N = 6, 10) vers la solution u r (en tirets), p.33

. Elasticité-sphère-creuse...., Convergence des contraintes ? N rr (lignes continues N = 6, 10) vers la contrainte ? rr (en tirets), p.34

C. Elasticité-sphère, Convergence du coefficient µ N (lignes continues N = 6, 10) vers le coefficient µ (en tirets), p.35

C. Elasticité-sphère, Convergence du coefficient ? N (lignes continues N = 6, 10) vers le coefficient ? (en tirets), p.36

.. Inclusion-plastique-rectangulaire-dans-un-demi-espacé-elastique, 123 B.3 Distributions des contraintes résiduelles selon l'axe z :? xx (courbe continue), et mesurées ? m xx (courbe en tirets) pour un demi-espcéespcé elastique contenant une inclusion plastique (sansenì evement (I) et avecenì evement dematì ere (II & III)), p.124