®. Durabilité-du-nafion, 42 3.1. Durabilité de la membrane Nafion ® : Tests in-situ, p.42

®. Nafion and . Hui-rédhibitoire, à la faveur de notre étude montrant qu'on peut le « rajeunir » et même l'empêcher de vieillir

M. Aubert, Rapport sur le projet de loi autorisant l'approbation du protocole de Kyoto à la Convention-cadre sur le changement climatique, 2000.

P. Dietrich and J. Caveron, Hydrogène, rayon d'espoir : que peut-on en attendre vraiment?, Le point sur l'énergie, p.12, 2004.

F. Barbier and T. Priem, La pile à combustible en questions, Clefs CEA, p.65, 2004.

H. Dhar, On solid polymer fuel cells, Journal of Electroanalytical Chemistry, vol.357, issue.1-2, pp.237-250, 1993.
DOI : 10.1016/0022-0728(93)80382-R

J. Riva and . Granier, Les piles basse température PEMFC, pp.48-56, 2000.

F. De-bruijn, V. Dam, and G. Janssen, Review: Durability and Degradation Issues of PEM Fuel Cell Components, Fuel Cells, vol.127, issue.446, pp.3-22, 2008.
DOI : 10.1002/fuce.200700053

G. Meyer, G. Gebel, L. Gonon, P. Capron, D. Marscaq et al., Degradation of sulfonated polyimide membranes in fuel cell conditions, Journal of Power Sources, vol.157, issue.1, 2005.
DOI : 10.1016/j.jpowsour.2005.07.049

URL : https://hal.archives-ouvertes.fr/hal-00555854

S. Escribano, P. Aldebert, and M. Pineri, Volumic electrodes of fuel cells with polymer electrolyte membranes: electrochemical performances and structural analysis by thermoporometry, Electrochimica Acta, vol.43, issue.14-15, pp.43-2195, 1998.
DOI : 10.1016/S0013-4686(97)10108-6

S. Escribano and P. Aldebert, Electrodes of hydrogen/oxygen polymer electrolyte membrane fuel cells, Solid State Ionics, pp.318-323, 1995.

A. Biyikoglu, Review of proton exchange membrane fuel cell models, International Journal of Hydrogen Energy, vol.30, issue.11, pp.1181-1212, 2005.
DOI : 10.1016/j.ijhydene.2005.05.010

M. Tsuda, N. Arboleda, and H. Kasai, Initial driving force for proton transfer in Nafion, Chemical Physics, vol.324, issue.2-3, 2005.
DOI : 10.1016/j.chemphys.2005.11.011

G. Meyer, Etude des modes de dégradation de membranes polyinmides sulfonés en pile à combustible H 2, Thèse de doctorat, 2004.

R. O-'hayre, D. Barnett, and F. , Prinz, the triple phase boundary : A mathematical model and experimental investigations for fuel cells, Journal of Electrochemical Society, vol.152, issue.2, pp.439-444, 2005.

N. Jalani and R. Datta, The effect of equivalent weight, temperature, cationic forms, sorbates, and nanoinorganic additives on the sorption behavior of Nafion??, Journal of Membrane Science, vol.264, issue.1-2, pp.167-175, 2005.
DOI : 10.1016/j.memsci.2005.04.047

E. Easton, Chemical modification of fuel cell catalysts and electrochemistry of proton exchange membrane fuel cell electrodes, Thèse de doctorat, 1998.

D. Curtin, R. Lousenberg, T. Henry, P. Tangeman, and M. Tisack, Advanced materials for improved PEMFC performance and life, Journal of Power Sources, pp.131-172, 2004.
DOI : 10.1016/b978-008044696-7/50053-2

L. Rubatat, Nouveau modèle structural des membranes Nafion ® , polymère de référence pour l'application pile à combustible basse température, Thèse de doctorat, 2003.

J. Uan-zo-li, The effects of structure, humidity and aging on the properties of polymeric ionomers for fuel cell applications, Thèse de Master, 2001.

A. Gruger, A. Régis, T. Schmatko, and P. Colomban, Nanostructure of Nafion?? membranes at different states of hydration, Vibrational Spectroscopy, vol.26, issue.2, pp.215-225, 2001.
DOI : 10.1016/S0924-2031(01)00116-3

J. Elliot, P. James, T. Mcmaster, J. Newton, A. Elliot et al., Hydrolysis of the Nafion ® precursor studied by X-ray scattering and in-situ atomic force microscopy, e- Polymers, 2001.

A. Lehmani, S. Durand-vidal, and P. Turq, Surface morphology of Nafion 117 membrane by tapping mode atomic force microscope, Journal of Applied Polymer Science, vol.68, issue.3, pp.68-503, 1998.
DOI : 10.1002/(SICI)1097-4628(19980418)68:3<503::AID-APP16>3.0.CO;2-V

H. Yeager and A. Steck, Cation and Water Diffusion in Nafion Ion Exchange Membranes: Influence of Polymer Structure, Journal of The Electrochemical Society, vol.128, issue.9, p.1880, 1981.
DOI : 10.1149/1.2127757

K. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, Journal of Membrane Science, vol.185, issue.1, pp.29-39, 2001.
DOI : 10.1016/S0376-7388(00)00632-3

G. Gebel and O. Diat, Neutron and X-ray Scattering: Suitable Tools for Studying Ionomer Membranes, Fuel Cells, vol.46, issue.324, pp.261-276, 2005.
DOI : 10.1002/fuce.200400080

J. Chabé, Etude des interactions moléculaires polymère-eau lors de l'hydratation de la membrane Nafion, électrolyte de référence de la pile à combustible, Thèse de doctorat, 2008.

M. Falk, Infrared spectra of perfluorosulfonated polymer and of water in perfluorosulfonated polymer Perfluorinated Ionomer Membranes, ACS Symposium Series, 1977.

J. Ostrowska and A. Narebska, Infrared study of hydration and association of functional groups in a perfluorinated Nafion membrane, Colloid & Polymer Science, pp.261-93, 1983.

J. Ostrowska and A. Narebska, Infrared study of hydration and association of functional groups in a perfluorinated Nafion membrane. ??? Part 2, Colloid & Polymer Science, vol.187, issue.4, pp.305-310, 1984.
DOI : 10.1007/BF01410469

M. Laporta, M. Pegoraro, and L. Zanderighi, Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity, Physical Chemistry Chemical Physics, vol.1, issue.19, pp.4619-4628, 1999.
DOI : 10.1039/a904460d

L. Lage, P. Delgado, and Y. Kawano, Vibrational and thermal characterization of Nafion ® membranes substituted by alkaline earth cations, European Polymer Journal, pp.40-1309, 2004.

T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi et al., Durability of perfluorinated ionomer membrane against hydrogen peroxide, Journal of Power Sources, vol.158, issue.2, pp.158-1222, 2006.
DOI : 10.1016/j.jpowsour.2005.10.043

J. Qiao, M. Saito, K. Hayamizu, and T. Okada, Degradation of Perfluorinated Ionomer Membranes for PEM Fuel Cells during Processing with H[sub 2]O[sub 2], Journal of The Electrochemical Society, vol.153, issue.6, pp.967-974, 2006.
DOI : 10.1149/1.2186768

Q. Chen and K. Schmidt-rohr, 19 F and 13 C NMR Signal Assignment and Analysis in a Perfluorinated Ionomer (Nafion) by Two-Dimensional Solid-State NMR, Macromolecules, pp.37-5995, 2004.

P. Batamack and J. Fraissard, Proton NMR studies on concentrated aqueous sulfuric acid solutions and Nafion-H, Catalysis Letters, pp.129-136, 1997.

J. Zhang, M. Giotto, W. Wen, and A. Jones, An NMR study of the state of ions and diffusion in perfluorosulfonate ionomer, Journal of Membrane Science, vol.269, issue.1-2, pp.118-125, 2006.
DOI : 10.1016/j.memsci.2005.06.026

S. Hietala, S. Maunu, F. Sundholm, T. Lehtinen, and G. Sundholm, Water sorption and diffusion coefficients of protons and water in PVDF-g-PSSA polymer electrolyte membranes, Journal of Polymer Science, Part B: Polymer Physics, issue.20, pp.37-2893, 1999.

R. Dinius, M. Emerson, and G. Choppin, NUCLEAR MAGNETIC RESONANCE STUDY OF ION-EXCHANGE RESINS. I. HYDRATED DOWEX-50 RESINS, The Journal of Physical Chemistry, vol.67, issue.6, pp.1178-82, 1963.
DOI : 10.1021/j100800a003

G. Ye, N. Janzen, and G. Goward, Solid-State NMR Study of Two Classic Proton Conducting Polymers:?? Nafion and Sulfonated Poly(ether ether ketone)s, Macromolecules, vol.39, issue.9, pp.39-3283, 2006.
DOI : 10.1021/ma0523825

C. Heitner-wirguin, Recent advances in perfluorinated ionomer membranes: structure, properties and applications, Journal of Membrane Science, vol.120, issue.1, pp.1-33, 1996.
DOI : 10.1016/0376-7388(96)00155-X

P. James, J. Elliott, T. Mcmaster, J. Newton, A. Elliott et al., Hydration of Nafion ® studied by AFM and X-ray scattering, Journal of Material Science, pp.35-5111, 2000.

J. Healy, C. Hayden, T. Xie, K. Olson, R. Waldo et al., Aspects of the Chemical Degradation of PFSA Ionomers used in PEM Fuel Cells, Fuel Cells, vol.48, issue.2, pp.302-308, 2005.
DOI : 10.1002/fuce.200400050

S. Yeo and A. Eisenberg, Physical properties and supermolecular structure of perfluorinated ion-containing (nafion) polymers, Journal of Applied Polymer Science, vol.21, issue.4, p.875, 1977.
DOI : 10.1002/app.1977.070210401

T. Kyu and A. Eisenberg, Mechanical relaxations in perfluorosulfonate ionomère membranes Perfluorinated Ionomer Membranes, ACS Symposium Series, 1977.

A. Eisenberg and M. King, Ion-Containing Polymers : Physical Properties and Structure, pp.163-169, 1977.

M. Rigdahl and A. Eisenberg, Viscoelastic properties of sulfonated styrene ionomers, Journal of Polymer Science: Polymer Physics Edition, vol.19, issue.10, pp.1641-1654, 1981.
DOI : 10.1002/pol.1981.180191013

T. Zawodzinski, T. Springer, J. Davey, R. Jestel, C. Lopez et al., A Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes, Journal of The Electrochemical Society, vol.140, issue.7, p.7, 1981.
DOI : 10.1149/1.2220749

R. Duplessix, M. Escoubès, B. Rodmacq, F. Volino, E. Roche et al., Water Absorption in Acid Nafion Membranes, ACS Symposium Series, vol.127, issue.28, pp.469-486, 1980.
DOI : 10.1021/bk-1980-0127.ch028

T. Hashimoto, M. Fujimura, and H. Kawai, Structure of Sulfonated and Carboxylated Perfluorinated Ionomer Membranes, ACS Symposium Series, vol.180, pp.11-217, 1982.
DOI : 10.1021/bk-1982-0180.ch011

M. Cappadonia, J. Erning, and U. Stimming, Proton conduction of Nafion?? 117 membrane between 140 K and room temperature, Journal of Electroanalytical Chemistry, vol.376, issue.1-2, pp.376-189, 1994.
DOI : 10.1016/0022-0728(94)03586-5

D. Morris and X. Sun, Water-sorption and transport properties of Nafion 117 H, Journal of Applied Polymer Science, vol.50, issue.8, pp.1445-1452, 1993.
DOI : 10.1002/app.1993.070500816

T. Takamatsu, M. Hashiyama, and A. Eisenberg, Sorption phenomena in nafion membranes, Journal of Applied Polymer Science, vol.24, issue.11, p.2199, 1979.
DOI : 10.1002/app.1979.070241101

M. Legras, Y. Hirata, Q. T. Nguyen, D. Langevin, and M. Métayer, Sorption and diffusion behaviors of water in Nation 117 membranes with different counter ions, Desalination, vol.147, issue.1-3, pp.147-351, 2002.
DOI : 10.1016/S0011-9164(02)00608-2

R. Duplessix, M. Escoubes, B. Rodmacq, V. Volino, E. Roche et al., Water Absorption in Acid Nafion Membranes, ACS Symposium SeriesWater in Polymers, vol.127, pp.469-486, 1980.
DOI : 10.1021/bk-1980-0127.ch028

M. Escoubes and M. Pineri, Thermodynamic Studies of the Water-Perfluorinated Polymer Interactions Perfluorinated Ionomer Membranes, ACS Symposium Series, pp.9-24, 1977.

T. Takamatsu, M. Hashiyama, and A. Eisenberg, Sorption phenomena in nafion membranes, Journal of Applied Polymer Science, vol.24, issue.11, pp.2199-2220, 1979.
DOI : 10.1002/app.1979.070241101

Y. Kawano, Y. Wang, R. Palmer, and S. Aubuchon, Stress-strain curves of Nafion membranes in acid and salt forms, Polímeros : Ciência e Tecnologia, pp.96-101, 2002.

S. Kundu, L. Simon, M. Fowler, and S. Grot, Mechanical properties of Nafion??? electrolyte membranes under hydrated conditions, Polymer, vol.46, issue.25, pp.46-11707, 2005.
DOI : 10.1016/j.polymer.2005.09.059

R. Kambour, J. Kelly, and B. Mckinley, Modulus and yield resistance of glassy blends containing diluents manifesting varying degrees of mobility: Polyphenylene ether/polystyrene/diluent mixtures, Journal of Polymer Science Part B: Polymer Physics, vol.27, issue.10, pp.27-1979, 1989.
DOI : 10.1002/polb.1989.090271003

F. Wilson, D. Garzon, P. Wood, K. Zelenay, K. More et al., Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chemical Reviews, vol.107, pp.3904-3951, 2007.

M. Williams, H. Kunz, and J. Fenton, Operation of Nafion??-based PEM fuel cells with no external humidification: influence of operating conditions and gas diffusion layers, Journal of Power Sources, vol.135, issue.1-2, pp.135-122, 2004.
DOI : 10.1016/j.jpowsour.2004.04.010

D. Steeliger, C. Hartnig, and E. Spohr, Aqueous pore structure and proton dynamics in solvated Nafion membranes, Electrochimica Acta, vol.50, issue.21, pp.4234-4240, 2005.
DOI : 10.1016/j.electacta.2005.03.071

D. Chu and R. Jiang, Comparative studies of polymer electrolyte membrane fuel cell stack and single cell, Journal of Power Sources, vol.80, issue.1-2, pp.226-234, 1999.
DOI : 10.1016/S0378-7753(98)00263-8

H. Tang, S. Peikang, S. Jiang, F. Wang, and M. Pan, A degradation study of Nafion proton exchange membrane of PEM fuel cells, Journal of Power Sources, vol.170, issue.1, pp.85-92, 2007.
DOI : 10.1016/j.jpowsour.2007.03.061

A. B. Laconti, M. Hamdan, and R. C. Mcdonald, Mechanisms of membrane degradation " extrait de handbook of Fuel Cells ? Fundamentals Chichster 71. M. Inaba, Degradation Mechanism of Polymer Electrolyte Fuel Cells Effect of agglomeration of Pt/C catalyst on hydrogen peroxide formation, 14th International Conference on the Properties of Water and Steam: Symposium 6 A474- A476 73. U. Paulus, T. Schmidt, H. Gasteiger, R. Behm, Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst : a thin-film rotating ring-disk electrode study, pp.647-662, 2001.

J. Healy, C. Hayden, T. Xie, K. Olson, R. Waldo et al., Aspects of the Chemical Degradation of PFSA Ionomers used in PEM Fuel Cells, Fuel Cells, vol.48, issue.2, pp.302-308, 2005.
DOI : 10.1002/fuce.200400050

M. Inaba, T. Kinumoto, M. Kiriake, R. Umebayashi, A. Tasaka et al., Gas crossover and membrane degradation in polymer electrolyte fuel cells, Electrochimica Acta, vol.51, issue.26, pp.51-5746, 2006.
DOI : 10.1016/j.electacta.2006.03.008

M. Aoki, H. Uchida, and M. Watanabe, Novel evaluation method for degradation rate of polymer electrolytes in fuel cells, Electrochemistry Communications, vol.7, issue.12, pp.1434-1438, 2005.
DOI : 10.1016/j.elecom.2005.10.008

M. Pianca, E. Barchiesi, G. Esposto, and S. Radice, End groups in fluoropolymers, Journal of Fluorine Chemistry, vol.95, issue.1-2, pp.95-71, 1999.
DOI : 10.1016/S0022-1139(98)00304-2

A. Alentiev, J. Kostina, and G. Bondarenko, Chemical aging of Nafion: FTIR study, Desalination, pp.32-33, 2006.

Q. Deng, C. Wilkie, R. Moore, and K. Mauritz, TGA???FTi.r. investigation of the thermal degradation of Nafion?? and Nafion??/[silicon oxide]-based nanocomposites, Polymer, vol.39, issue.24, pp.39-5961, 1998.
DOI : 10.1016/S0032-3861(98)00055-X

S. Samms, S. Wasmus, and R. Savinell, Thermal Stability of Nafion?? in Simulated Fuel Cell Environments, Journal of The Electrochemical Society, vol.143, issue.5, pp.1498-1504, 1996.
DOI : 10.1149/1.1836669

S. De-almeida and Y. Kawano, Ultraviolet-visible spectra of Nafion membrane, European Polymer Journal, vol.33, issue.8, pp.1307-1311, 1997.
DOI : 10.1016/S0014-3057(96)00217-0

K. Page, K. Cable, and R. Moore, Molecular Origins of the Thermal Transitions and Dynamic Mechanical Relaxations in Perfluorosulfonate Ionomers, Macromolecules, vol.38, issue.15, pp.38-6472, 2005.
DOI : 10.1021/ma0503559

T. Zawodzinski, C. Derouin, S. Radzinski, R. Sherman, V. Smith et al., Water Uptake by and Transport Through Nafion?? 117 Membranes, Journal of The Electrochemical Society, vol.140, issue.4, pp.1041-1047, 1993.
DOI : 10.1149/1.2056194

B. Fayolle, L. Auouin, and J. Verdu, Radiation induced embrittlement of PTFE, Polymer, pp.44-2773, 2003.

S. Slade, S. Campbell, T. Ralph, F. Walsh, L. Rubatat et al., Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes, Journal of The Electrochemical Society, vol.149, issue.12, pp.1556-1564, 2002.
DOI : 10.1149/1.1517281

T. Gramstad and R. Haszeldine, Perfluoroalkyl derivatives of sulfur. Part VII.Alkyl Trifluoromethanesulfonates as alkylating agents, trifluoromethanesulfonic anhydride as a promoter for esterification, and some reactions of trifluormethanesulfonic acid, Journal of Chemical Society, pp.4069-4079, 1957.

M. Smith, Aliphatic nucleophilic substitution (ch.10, p 575). Dans : March's advanced organic chemistry, 2001.

N. Cornet, G. Gebel, and A. De-geyer, Existence d'un paradoxe de Schroeder avec la membrane Nafion ? ??tude par diffusion de rayons X aux petits angles, Le Journal de Physique IV, vol.08, issue.PR5, pp.5-63, 1998.
DOI : 10.1051/jp4:1998509

M. Bass and V. Freger, An experimental study of Schroeder's paradox in Nafion and Dowex polymer electrolytes, Desalination, pp.199-277, 2006.

I. Merdas, F. Thominette, and J. Verdu, Hydrolytic ageing of polyamide 11???effect of carbon dioxide on polyamide 11 hydrolysis, Polymer Degradation and Stability, vol.79, issue.3, pp.419-425, 2003.
DOI : 10.1016/S0141-3910(02)00358-0

URL : https://hal.archives-ouvertes.fr/hal-00114043

. La-comparaison-du-nafion, 112 et du Nafion ® 212-CS montre que le Nafion ® 212-CS vieillit trois fois moins vite que le Nafion ® 112. La catalyse de la réaction de condensation par les cations métalliques présents en plus grande quantité dans le Nafion ® 212-CS est à l

. Enfin and . Qu, en présence de catalyseur, la réaction de condensation est réversible : il y a hydrolyse de l'anhydride conduisant à des propriétés recouvrées