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Introduction

Objectives and context of the work The present work is devoted to the development of
an efficient implicit scheme for computing compressible and low-speed flows on unstructured
meshes. In this introduction, we will first explain why the Commissariat & 'Energie Atomique
(CEA) is interested in the development of such an efficient flow solver for all-speed flows, which
tools were available at the start of this thesis and what were their limitations; next we will detail
the strategy followed to improve over the existing tools and enable the analysis of configurations
that were previously out of range.

The global context of this work is the development by the CEA of numerical tools for studying
by way of simulation the safety of nuclear plants or other energy-producing devices such as
fuel cells and hydrogen energy. In this latter case for instance, a major issue is precisely to
guarantee the use of hydrogen will remain safe when this highly energetic and strongly explosive
gas will be made available to the general public. The European excellence network Hysafe
(Safety of Hydrogen as an Energy Carrier) precisely aims at analyzing the risks of occurrence
and possible consequences of a number of hydrogen-related accidental phenomena in order to
establish hydrogen-technologies as a credible alternative to conventional sources of energy and
to gain public acceptance for their daily use. In order to reach these goals, the members of the
network plan to carry out numerous experimental and numerical studies; among these members,
the Laboratoire d’Etudes des Transferts et de Mécanique des Fluides (LTMF / Laboratory for
the study of transfer phenomena and of fluid mechanics), belonging to the CEA center located
in Saclay, has developed a strong expertise on the study of the hydrogen risk in contained use
through years of activity in the field of civil nuclear engineering and is now turning this expertise
towards the field of fuel cells and hydrogen energy.

Let us now be a little more specific on the concept of hydrogen risk since it is a key factor
in the development of a flow-solver for all-speed flows. At some stages of accident scenarios
in nuclear plants, hydrogen may be released or generated inside a nuclear reactor such as the
current and future REP (Réacteur & Eau Pressurisée) or PWR (Pressurised Water Reactor)!; a
reactive mixture of air, water steam and hydrogen may then locally form and it is necessary to
be able to accurately predict the distribution of these different gas species inside the geometry in
order to correctly simulate the combustion process for hydrogen. Indeed, depending on the local
concentration of species and on the presence of mitigation devices, hydrogen may burn following
different modes (flame diffusion, local or global deflagration, accelerated flames, detonation)
or not burn at all. So-called 0D models or Lumped-parameter models have been intensively
used for years when carrying safety studies and have successively allowed to obtain averaged
values for temperature, pressure and chemical species concentration. However, these models

'A similar situation may occur with hydrogen used as an energy carrier, in which case the nuclear reactor
could be replaced with a common garage; this makes clear the natural application of the CEA expertise within
the Hysafe network.

10
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are unable to provide a detailed information on the local concentration of the gases or on a
stratification process. Specific CFD tools have thus been developed in order to assess the risks of
ignitability and detonation of gas mixtures by solving with high-resolution schemes the full 3D
systems of conservation laws governing the flows under consideration : the LTMF has developed
in particular the numerical platform CAST3M Fluids [4] as well as the TONUS code [6], in
collaboration with the IRSN (Institut pour la Radioprotection et la Stireté Nucléaire / National
Institute for Radiation and Nuclear Safety).

The flows encountered when simulating hydrogen release and combustion in the large scale
geometries typical of nuclear reactors are extremely varied, with a large spectrum of space and
time characteristic scales and flow regimes : for instance, a stratification process may last for
hours while a combustion process will be over in a matter of seconds; while the whole volume of a
REP/PWR is about 50000 m?, with geometrical obstacles measuring several meters, the typical
length of a breach in the primary circuit will be of a few centimeters, which is also the size of the
flame fronts that must be accurately computed in order to assess the induced dynamic loads; last,
as already pointed out, hydrogen combustion may give rise to very weakly compressible flows
for a slow deflagration or a flame diffusion but also to highly compressible phenomena when a
denotation takes place. When confronted with such a wide spectrum of flows, two main strategies
can be considered : the first one aims at developing separately the most appropriate and accurate
numerical method for each type of flows while the second one is oriented towards the development
of an "all-purpose" flow solver. Clearly, when developing the CAST3M platform, the necessity
to be able to compute both (quasi) incompressible and compressible flows has been a major issue
and the next paragraph of this introduction is entirely devoted to a quick description of the
state of the art regarding the design of all-speed flow solvers, completed with an overview of the
existing choices made within the CAST3M tool at the start of this work.

Development of all-speed flow solvers The "incompressible flows" and "compressible
flows" scientific communities have long been two separate worlds, as illustrated by the fact
reference books on the numerical methods specific to each of these flow regimes are usually
almost exclusively devoted to one or the other (see for instance [27] for techniques specific
to compressible flow problems such as the Godunov scheme and [24] for methods related to
incompressible flow problems such as fractional step or projection methods). However, for some
years now, a continuous effort has been devoted to building bridges between these two "worlds",
motivated by the fact a number of real-world applications display simultaneously flow regions
that remain essentially incompressible and others where compressibility effects occur and have
to be taken into account; examples of interest for the CEA have been given above with the
various phenomena involved in the hydrogen combustion process and another example related
to aeronautical issues may be found in [62] with the study of a vertical take-off and landing
aircraft where the flow over the complete aircraft in landing situation remains low-speed hence
incompressible while the flow emitted from the manoeuvring jets is highly compressible.

As recalled in the recent review paper [42], the major difference between the incompressible
and compressible Euler or Navier-Stokes equations lies in the continuity (or mass conservation)
equation. Purely incompressible flow solvers rely on pressure-based methods, thus christened
because the pressure is used as a mapping parameter to satisfy the continuity equation, which
are usually applied in two steps : the momentum equations are solved in a first step, with a
pressure gradient computed from the pressure in the previous time step or simply not taken into
account, so as to yield an auxiliary velocity field; the pressure field is then computed in a second
step, from a Poisson equation, in such a way the auxiliary velocity maps onto a divergence-free
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velocity field, thus satisfying exactly the continuity equation. Purely compressible flow solvers
are density-based, meaning they rely on the solution of the mass, momentum and energy
equations written as an hyperbolic system of conservation laws for the set of conservative
variables (p,pv, pE) where p is the density, V the velocity vector and E the specific total
energy.

A first strategy to develop an all-speed flow solver could be therefore to implement both
pressure-based and density based methods within the code. This was precisely done for
the CAST3M software which provides on one hand a pressure-based solver, for computing
incompressible or low-speed variable density flows such as encountered in stratification process
and on the other hand a density-based solver using shock-capturing conservative techniques
for computing detonation problems. More precisely, the pressure-based method is applied
to the asymptotic approximation of the Navier-Stokes equations in the limit of small Mach
numbers, which allows to filter out the acoustic waves; the space discretization is based on
the Finite-Element method while the time advancement is performed through a semi-implicit
projection algorithm. When dealing with detonation problems, the effects of viscosity are
neglected so that the Euler equations remain to be solved using upwind discretization techniques
within a cell-centered Finite-Volume formulation on general unstructured grids. The upwind
schemes available in CAST3M are either of the flux vector splitting type (with Van Leer scheme
[79] for instance), or of the flux difference splitting type, with the Roe scheme [67] or else hybrid
schemes such as the AUSM+ scheme[46]. The time-integration is performed either explicitly or
in an implicit way , using a Newton-Krylov approach.

A first drawback of a tool relying on such ad-hoc numerical techniques is the need to develop
some a-priori knowledge on the flow of interest so as to be in position to select the proper
technique. However, the main drawback of such a strategy is that it simply fails when the flows
under study simultaneously display nearly incompressible and highly compressible flow regions.
Indeed, asymptotic models are valid only when the Mach number is small enough (typically up
to M = 0.3) while classical density-based methods fail to correctly compute inviscid flows in
which the Mach number becomes too low (typically less than M = 0.1). Indeed, when the speed
of the material wave becomes small with respect to the acoustic speed, the Euler system becomes
stiff which leads to a very slow convergence rate to steady-state for standard density-based
methods [75]; moreover, when M — 0, some components of the numerical dissipation introduced
by upwinding become excessively high, which yields poorly-accurate or even totally wrong flow
solutions [28].

Turning to the second strategy, i.e. to the development of an all-speed or Mach-independent
numerical method, requires either to extend the "incompressible" pressure-based methods to
higher Mach number flows or to extend the "compressible" density-based methods to low Mach
number flows. The first option has been explored since the beginning of the seventies [29]
and more or less continuously since then [7], [68]; this line of work has probably culminated
with the recent work [59]. The second option has been the object of thorough investigations
since the mid-eighties, with the seminal work of Turkel [75], but finds its roots in one of the
earliest attempt at drawing connections between incompressible and compressible flow solving
techniques, namely the artificial compressibility method devised by Chorin [15]; this method
turns the system of conservation laws governing an incompressible flow into an hyperbolic
system of conservation laws that can be solved using one of the many schemes developed for the
compressible Euler or Navier-Stokes equations (such as the Roe scheme for instance, provided
the eigensystem can be computed). The application of the artificial compressibility method
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remains limited to purely incompressible flows; however, Chorin’s idea was later exploited by
Turkel [75] who proposed to multiply the time-derivative of the Euler hyperbolic system with
a so-called low-Mach preconditioning matrix designed to alter the acoustic speed associated
with this system in such a way all eigenvalues of the flux Jacobian matrix remain of the same
order when the Mach number goes to zero, thus avoiding the numerical stiffness issue. The
preconditioning matrix introduced by Turkel was designed by working on a formulation of the
Euler equations in terms of entropic variables (p,V,S), where p is the pressure and S the
entropy, so as to decouple the pressure equation from the other evolution equations since only
the pressure equation is to be affected by the application of preconditioning; simple matrix
transformations allows then to recover the preconditioned Euler equations expressed in terms
of conservative variables, to which numerical schemes developed for the fully compressible
system can be directly applied. Following Turkel, several researchers such as Choi & Merkle
[14], Weiss & Smith [85], Van Leer [80], Venkateswaran & Merkle [81], have proposed their
own preconditioning matrix. Although derived from different philosophies and from different
sets of variables (entropic for Turkel and Van Leer, viscous primitive (p, 17, T) for Choi &
Merkle and Weiss & Smith), all these preconditioners are closely related. For instance, they
all become singular when M = 0 so they all require a cut-off value for their parameter. As
already pointed out, preconditioning the system of conservation laws is not without effect on
the numerical scheme applied to the system : for instance, when applying Roe’s flux-difference
splitting scheme to the preconditioned Euler equations, the matrix-based numerical dissipation
must be constructed from the new eigensystem associated with this set of equations, fortunately
available in closed form when the Turkel preconditioning is used (see [83]). Low-Mach number
preconditioned versions of the AUSM+-, Harten-Lax-van Leer or Jameson’s CUSP schemes are
respectively provided in [46] [51] [77].

The choice of an all-speed pressure-based solver or an all-speed density-based solver is essentially
determined by the initial investment of the code developers towards one of this specifically
targeted technique : in the case of the CAST3M code, the amount of efforts put into the develop-
ment of high-resolution upwind schemes for solving compressible flows on general unstructured
grids has motivated the implementation of Turkel low-Mach number preconditioning so as to
give an all-speed capability to the solver. The preconditioned upwind schemes (Roe, AUSM+)
implemented within CAST3M have proved their ability to yield accurate solutions of both
weakly and highly compressible flows, with a convergence to steady state largely independent
from the freestream Mach number, all properties precisely expected from the use of a low-Mach
preconditioning [5]. In practice, it was observed however that schemes including preconditioning
may display some lack of robustness (i.e. the computation blows up because of the occurrence
of non-physical states, such as negative values of the pressure, within the flow); this robustness
issue seems to be related with the use and definition of a cut-off (or limiting) value prescribed
when computing the parameters appearing in the preconditioning matrix in order to prevent the
matrix from becoming singular at M = 0, namely for stagnation flow. Although this "cut-off"
definition is now used in every computation, it is still difficult to optimize its value for complex
problem. Several definitions of the "cut-off" are available, which depend on the nature of the
flow (inviscid or viscous, steady or unsteady) and also on the grid used for the computation
(regular or stretched, which may introduce an aspect ratio in the cut-off definition). Moreover,
it is possible to use a global "cut-off" for the whole computational domain or a local "cut-off" in
each control cell (¢f. [76] for a large review of such cases). Some authors tried to unify all the
definitions by distinguishing each case [81]; nevertheless, it appears to be still challenging to get
a simple but efficient "cut-off" definition. This point will be dealt with in this work but was not
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the key issue that motivated the present study. In fact, once solved the all-speed flow issue and
the solver applied to real-life computations involving a very large number of grid points because
of the need to discretize simultaneously the large-scale geometry of a containment and specific
regions such as the neighborhood of a breach, it appeared the Newton-Krylov implicit treatment
used for speeding-up the convergence to steady-state was too memory-consuming. The first
motivation of this work was therefore to develop, implement and validate within CAST3M an
alternative implicit treatment which could offer a reduced memory requirements while preserving
the global efficiency of the code, with the additional and crucial constraint to provide such
properties for the whole range of Mach numbers, that is including the use of preconditioning.
The next paragraph will now describe the strategy followed in this work to improve over the
existing implicit scheme in the specific context of a preconditioned compressible flow solver.

Low-cost implicit treatments for all-speed flows Since the first objective of this work is
to design a low cost implicit scheme for all-speed flows, where low-cost means both low com-
putational cost and low storage, a first step is naturally to examine the existing low or at-least
reduced cost strategies for compressible flow solvers; the second step will be the adaptation of
such strategies to preconditioned schemes. Designing a low-cost implicit treatment means solving
a multi-objective optimization problem in which one looks for the simultaneous minimization of
the computational time involved in the convergence to steady (physical or dual) state and of
the associated storage requirement. The minimization of computational cost can be performed
by considering a two-objective problem since the global computational cost spent to reach a
steady-state is a combination of intrinsic efficiency (i.e. the number of iterations needed to
reach this steady-state) and unit cost per iteration. Overall, designing an efficient or low-cost
implicit scheme means finding a solution of the 3-objective optimization problem summarized
in Fig. 0.0.1. Usually, the maximization of intrinsic efficiency, that is the minimization of the

A Cost per point and per iteration
(to minimize)

Intrinsic Efficiency
(to maximize)

Memory Storage
(to minimize)

Figure 0.0.1: Design of an efficient implicit treatment : a multi-objective optimization problem.
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number of iterations needed to achieve steady-state, and the minimization of the cost per point
per iteration are conflicting objectives so that there is no unique solution to the multi-objective
optimization problem but a set of optimal trade-off solutions, known as the Pareto optimal set.
Thus, the Newton-Krylov method available in CAST3M may be considered as one of these op-
timal choices, which minimizes the number of iterations needed to reach steady-state, hence
provides maximal intrinsic efficiency, at the expense of a rather high unit cost; moreover, the
Newton-Krylov method is definitely not optimal as far as the storage objective is concerned.
There exists a number of other optimal choices with respect to the two objectives related with
the computational cost and we wish to select among those choices the one(s) yielding the lower
memory requirements. The excessive memory demand introduced by an implicit stage can be
often related to the use of a block implicit stage, based on flux Jacobian matrices introduced when
linearizing the numerical fluxes in order to derive the implicit part of the scheme; moreover the
unit cost of a solution method for a block implicit stage is usually rather high. However, the main
advantage of using a block implicit stage comes from its high intrinsic efficiency, which explains
block approaches may still constitute optimal choices as far as computational cost is concerned.
A way to reduce memory requirement for an implicit method is to develop implicit treatments
that do not rely on full Jacobian matrices, which means some kind of simplification has to be
introduced in the explicit stage linearization; in turn, such a simplification is likely to induce a
loss of intrinsic efficiency which will have to be compensated through a lower unit cost, so as to
preserve the global efficiency. Following this line of idea, Pulliam et Chaussée proposed in 1981
a diagonalized implicit treatment applied to alternate direction factorization method [65] : using
diagonal matrices for each 1D implicit stage instead of full matrices allows to reduce both the unit
cost and memory requirement of the original implicit stage, even though some approximations
are made when deriving this diagonal implicit stage, which leads to a slightly lower intrinsic effi-
ciency with respect to the baseline block treatment. More recently, Buelow et al. have extended
this diagonal approximate factorization technique to the case of preconditioned schemes within a
dual-time framework and have successfully computed unsteady low-Mach number flows [10]; this
same technique has been implemented by Pandya et al. within the NASA code OVERFLOW
[62]. In the mid-nineties, Corre and Lerat have applied similar diagonalization ideas to line-
relaxation methods of Jacobi and Gauss-Seidel type [21] and, in 2004, Corre and Kloczko have
derived an extension of these ideas to preconditioned schemes [20]. It was estimated, however,
that such diagonal or quasi-diagonal treatments, even though they allow a substantial reduction
of memory requirements with respect to more standard block treatments while preserving an
equivalent level of global computational cost (loss of intrinsic efficiency balanced by unit cost
reduction), still remain too-memory consuming for grids containing very large number of grids
points, likely to be used in the applications targeted at CEA. Moreover, when computing flows
on structured grids, the diagonalization is successively performed along each grid direction; the
extension of these ideas to unstructured grids means the diagonalization process will have to be
successively applied on each face of a control volume, in the direction normal to that face, which
may become quite expensive. It was therefore decided to opt for even more simplified methods
such as matrix-free implicit methods. A well-known prototype of such methods is the implicit
residual smoothing technique initially introduced in [45] for the Lax-Wendroff scheme and made
popular by Jameson [35] : the basic idea of the residual smoothing technique applied to the
Lax-Wendroff implicit scheme is to replace the square of the fluxes Jacobian matrices appearing
in the implicit stage with their respective spectral radius (an operation made possible without
altering the unconditional linear stability of the scheme thanks to the definite positive character
of these dissipation matrices). The linear system associated with this simplified implicit stage is
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no longer a block system but is purely scalar : it can then be solved for a reduced computational
cost per iteration and with very low memory requirements; naturally, the price to pay for this
simplification from block to scalar is a loss of intrinsic efficiency. However, it was found in prac-
tice that this loss of intrinsic efficiency was usually balanced by a truly low unit cost, resulting
eventually in a global efficiency as good as that of the original block treatment, with the benefit
of a reduced memory storage. Shortly after the introduction of this spectral radius simplification
in [45] Jameson and Baker demonstrated in [35] the same matrix-free implicit stage could be
successively coupled with the explicit Jameson’s scheme [37] based on a centered discretization
completed with a well-tuned scalar artificial viscosity : in spite of the lack of consistency between
the explicit and implicit stage, the resulting scheme had good stability properties and was much
more efficient than a purely explicit scheme for a modest extra-cost due to the very simple form
of this matrix-free implicit stage. Similar ideas made their way in the context of upwind schemes
and though it seems difficult to trace back very precisely the origin of matrix-free implicit up-
wind schemes, a first contribution can be found in the work of Jameson and Yoon [38] where
the absolute values of Jacobian matrices appearing in a block implicit stage are replaced with
their respective spectral radius, taking advantage here again of the definite positive character
of these dissipation matrices. However, contrary to the case of the Lax-Wendroff scheme where
this spectral radius simplification is sufficient to make the implicit stage matrix-free, the implicit
stage associated with (typically) Roe upwind scheme also contains flux Jacobian matrices that
cannot be simplified since they are not definite positive in general; however, since these flux
Jacobian matrices appear in the implicit stage as multiplied by time-increments of the conserved
variables, it is possible to replace such products with time-increments of the flux-vectors and
to relax these new unknown when solving the resulting matrix-free implicit stage. It seems the
idea of this approximation, which allows to turn a block implicit upwind scheme into a matrix-
free implicit scheme originates in the work of Sharov and Nakahashi [71]. Using simultaneously
the spectral radius simplification and the flux-vector increment relaxation, Lohner et al. have
successfully developed a matrix-free implicit method for solving the 3D Navier-Stokes equations
on unstructured grids [48], which has been next further extended to unsteady flows [49] as well
as to all-speed flows using a preconditioning technique [50]. Let us emphasize once again the
intrinsic efficiency provided by such a matrix-free implicit stage is rather low : however its ex-
tremely low cost per iteration makes it globally as efficient as (or even more efficient than) the
original block implicit stage; moreover, its modest memory requirements make it truly attractive
for large scale computations. It was then decided at the start of this thesis to focus our work on
the development of a matrix-free implicit scheme such as initially introduced in [48] as a low-cost
alternative to the existing implicit treatment available in CAST3M, with the clear objective of
making large-scale computations accessible with this improved version. Since the intrinsic effi-
ciency of matrix-free methods is quite poor, it is absolutely crucial to make the unit cost of these
methods as low as possible in order to preserve their global efficiency. A difficulty appears when
a low-Mach preconditioning matrix is introduced for viscous or unsteady flow computations since
in that case it is no longer possible to make the implicit stage truly matrix-free; it will be shown
however in this work that a proper formulation of the implicit stage, which takes advantage of
properties specific to Turkel preconditioning matrix, allows to preserve an extremely low cost per
iteration for all-speed viscous unsteady flows, thus making the proposed matrix-free approach a
viable implicit strategy to be used within CAST3M.

Research work organization and presentation The research work has been organized in
three main stages, around a numerical tool associated with each stage :
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e in the first stage the intrinsic efficiency of the proposed matrix-free treatment has been
studied following a Von Neumann analysis; a code has been developed in order to compute
the amplification matrix associated with this scheme for the linearized Euler and Navier-
Stokes equations in the steady and unsteady case (this latter being treated within a dual
time framework) and to compare the matrix-free treatment, from the viewpoint of intrinsic
efficiency, with block treatments, for compressible as well as low-Mach number flows. Von
Neumann analysis has also been used to assess the intrinsic performances of various implicit
treatments (Jacobi relaxation, Lower-Upper Successive Gauss-Seidel) that can be used to
solve the matrix-free implicit stage.

e in the second stage, some of the most interesting implicit treatments selected on the basis
of the previous study have been implemented in a specially-developed structured code in
order to assess their global performance as well as their associated memory requirements.
This intermediate step, prior to any implementation within the general-purpose CAST3M
code, has allowed to evaluate efficiently and with great flexibility the numerous choices that
have been investigated throughout this work (be it implicit strategies or cut-off choices for
low-Mach preconditioning for instance). This evaluation has been systematically performed
on a set of well-chosen test-problems and the most efficient treatments selected on the basis
of this second stage have been actually implemented within CAST3M.

e in the last stage of our work, the matrix-free treatment previously developed in the context
of finite-difference schemes on structured grids has been extended to a finite-volume for-
mulation for unstructured grid computations and implemented within CAST3M. A point-
Jacobi and LU-SGS solution of the matrix-free implicit stage have been developed and
these new implicit treatments have been compared with the already available block im-
plicit stage solved with a Newton-Krylov approach both for weakly compressible and com-
pressible, steady and unsteady flows, demonstrating the superior efficiency of the newly
implemented matrix-free treatment. The preconditioned compressible flow solver has also
been successfully compared with the existing pressure-based solver applied to an asymptotic
model.

The detailed presentation of our research work in this report follows the above chronology :

e the first part of the report is devoted to the review and analysis of some standard block-
implicit treatments for the two-dimensional Euler and Navier-Stokes equations with a view
to identify the best candidate for a fair comparison with the matrix-free treatment in-
troduced in the second part of the report. A 2D framework is retained for the sake of
presentation simplicity only : the 2D analysis extends immediately to 3D problems and
all the later developments have been carried out in 3D. Chapter 1 described the design
principles for building a block implicit upwind scheme that can be applied for all regimes
of inviscid or viscous, steady or unsteady flows, using low-Mach preconditioning and dual-
time stepping. Chapter 2 details various techniques (approximation factorization in its
basic or modified form, point or line-relaxation) for solving the block linear system as-
sociated with the previous scheme. These first two chapters also allow to introduce the
notations (discretization operators in particular) that will be used throughout this report.
In chapter 3, the linear stability and intrinsic efficiency of the previously presented implicit
treatments is studied using a Von Neumann analysis and the hierarchy deduced from this
analysis allows to select an alternate line-relaxation treatment as the reference efficient (but
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memory-consuming) treatment to which the proposed matrix-free method will be compared
to.

A Chapters1land 2
bloc implicit stage
Cost per point
per iteration Chapter 8 ~— exact solver
(to minimize) < approximate solver

(factorization, relaxation)

Intrinsic Efficiency
(to maximize)

Figure 0.0.2: Road map for the design of an efficient implicit treatment : cost-analysis of standard
block-implicit treatments.

e the second part of the report forms the main original contribution of this research

work, namely the description and systematic analysis of a matrix-free treatment that
can be applied to any type of flow (inviscid/viscous, low-Mach/highly compressible,
steady /unsteady). Chapter 4 describe the design principles of a matrix-free method for
solving the steady Euler equations as well as the extensions to perform when solving the
Navier-Stokes equations and unsteady flows within a dual time-step approach. Taking ad-
vantage of the properties of Turkel preconditioning matrix, an optimized implicit treatment
is introduced, that allows to preserve an extremely low unit cost even when the low-Mach
preconditioning is active. Chapters 5,6 and 7 are then devoted to the Von Neumann anal-
ysis of the matrix-free treatment, when applied respectively to the steady (chapters 5 and
6) and unsteady (chapter 7) Euler and Navier-Stokes equations, with a particular emphasis
on low-Mach number flows. The loss of intrinsic efficiency introduced by the matrix-free
simplifications is thus clearly evidenced, which makes crucial the requirement of an ex-
tremely low unit cost to preserve global efficiency - this reduced cost being ensured by the
proposed matrix-free treatment. The flexibility offered by the Von Neumann analysis also
allows to analyze the modifications to apply to the standard choice of low-Mach precon-
ditioning cut-off when computing viscous or unsteady flows. Finally, chapter 8 presents
the results obtained for some significant test-cases computed using either a high-intrinsic-
efficiency block-treatment or the proposed low-cost matrix-free treatment. The advantages
brought by this latter approach, both in terms of global computational time and memory
requirement, are clearly demonstrated and motivate the implementation of the matrix-free
treatment within the CAST3M numerical platform, as described in the last part of the
report.

the third part of the report deals with the implementation of the proposed matrix-free
treatment within CAST3M and the demonstration of its advantages over existing tech-
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Cost per point
per iteration

(to minimize)

Chapter 4

Matrix—Free implicit treatment

Chapters5,6and 7

Intrinsic Efficiency B
(to maximize)

>

Figure 0.0.3: Road map for the design of an efficient implicit treatment : cost-analysis of the
matrix-free treatment.

niques for computing applications of interest for the CEA. Chapter 9 is thus devoted to
the extension of the matrix-free approach to a finite-volume formulation on unstructured
grids. It is shown the high simplicity of the method is preserved without particular diffi-
culty. Chapter 10 presents some comparisons between the Newton-Krylov implicit method
available in CAST3M and the newly implemented approach : a classical 2D inviscid flow
over a bump is first computed to demonstrate the computational time reduction offered by
the matrix-free treatment; the same problem is then computed in 3D to make even clearer
the gain obtained as far as the memory storage is concerned. The 11*" and last chapter
displays a comparison between the asymptotic solver available in CAST3M and the newly
implemented low-Mach matrix-free treatment for the case of laminar, low-Mach number
steady and unsteady flows in a Tee junction. The results provided by the matrix-free treat-
ment confirm its interest for the efficient computation of low-Mach number (single-species)
flows.
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Cost per point
per iteration A

(to minimize)

bloc implicit treatment

Chapter 9 (unstructured)
Chapter 4 (structured)
Matrix—Free g
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|:|/ Chapter 8 (structured)
’ Chapters 10 and 11 (unstructured)
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(to minimize) O

Figure 0.0.4: Road map for the design of an efficient implicit treatment : global (cost and memory
requirement) analysis.




Part 1

Analysis of Classical Implicit Methods

21






Chapter 1

Classical Implicit Upwind Scheme

This first chapter provides the basics of the physical modeling and of the numerical methods
used throughout this study : all the flow problems considered in this work can be described
using either the FEuler or the Navier-Stokes equations written for a perfect gas, which are briefly
recalled in a first section. These equations are then approximated with an upwind scheme which
is made implicit in order to increase the scheme’s convergence to steady state. In the first part
of the study, implicit schemes will be analyzed on Cartesian grids so that the general principles
governing the design of such conventional block implicit schemes are recalled within a finite
difference framework in section 2. Some usual simplifications when designing implicit stages
coupled with high order explicit stages for viscous flow problems are also pointed out. Since
our work is focused on the design of an efficient implicit scheme for all-speed flows, the use
of a preconditioning strategy when computing low-Mach number problems and its impact on
the space and time discretization are detailed in section 3. The last section is devoted to a
brief reminder of the dual-time technique used in the present study for computing low-Mach
number unsteady flows : this technique is retained because it will allow to take advantage,
when dealing with unsteady flows, of the developments performed for reaching steady-state at a
reduced computational cost for steady flows.

1.1 Governing Equations

1.1.1 Navier-Stokes equations for a perfect gas flow

The Navier-Stokes equations express the conservation of mass, momentum and energy for a com-
pressible viscous fluid low. When written using dimensional quantities, denoted by superscript ~
hereafter, the differential conservative form of these conservation laws reads :

5 V- (pu)=0, (1.1.1a)
aﬁf_l: N =4 z . .z

WﬂLV'(PUU)ﬂLVP:V'IJrPQa (1.1.1b)
aﬁ~ A > 2 E A =

W+V~(p )=V -(AVT)+V - (T-a)+pg-u . (1.1.1¢)
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where p represents the gas density, i is the velocity vector, p is the static pressure, and E and
H are the specific total energy and specific total enthalpy, related by the following equation,

H=FE + (1.1.2)

™

In the right-hand-side (RHS) of (1.1.1b), (1.1.1c), T is the temperature, A the thermal conductiv-
ity, g the gravitational acceleration and 7 denotes the shear stress tensor which, for a Newtonian
fluid, is given by :
= = 2 >
F =i (Vi+(Vi)') - = (VD) (1.1.3)

where i is the dynamic viscosity (when the viscous effects are negligible, one can take i = 0
and one recovers the hyperbolic system of the Euler equations).

The system is closed by the equation of state for a single-species calorically perfect gas,
- e (s 1= e
b= ORT = (1= 0p (B 3liP) = (- 1 (1.1.4)

where € is the specific internal energy, R is the specific gas constant and -y is the ratio of specific

heats, v = g—fj’, equal to 1.4 for air at moderate temperatures. Eventually, the sound speed is

given by :

!

i2=yRT="2 (1.1.5)
p

1.1.2 Non-dimensional form

The equations (1.1.1a) to (1.1.4) are made non-dimensional by using reference quantities denoted
by the subscript 0o, e.g. free stream conditions, and a length scale L specific to the considered
flow problem (the channel height for internal flows for instance). Non-dimensional quantities are
then defined by :

R N P
Too Hoo Aoo

7=

Qu

ES , €=, (1.1.6)

e

e =y

and this first set of reference values can be used to define next a reference velocity, pressure, time
and energy as follows :

-

B i a b t E

u = ~—= = = ) b= = ~9 ) t= = ~ ) E ~o
Inserting these non-dimensional quantities into the original Navier-Stokes equations yields the
non-dimensional form of the system :

H
H=—
uOO

(1.1.7)

— + V- (pl) = 1.1
i +V-(pu) =0, (1.1.8a)
opi = - 1 - 1

9PY L (pi @ = — (V1) 4 — pé, 1.1.8b
5 + V- (pu @)+ Vp oo (V-1)+ 7y PC9 ( )
Ip 5 gl > L, 1 q

9P% | (piH) = (VT + — V(- 1.1.8
5 + V- (puH) G-1 PR V- (uVT) + 7y Pe U+ Toe Ve(r-a), ( c)
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where standard non-dimensional numbers such as the Reynolds, Froude and Prandtl numbers
have been introduced :

~ ~ L ~9 é ~
Re = Pele , Fr = Zfof’ , pr = Zpf= (1.1.9)
The non-dimensional form of the equation of state reads :
1.
p=pT"=(-1p (E - QIUI2> = (y=1)pe . (1.1.10)
and the dimensionless sound speed is :
A=n.7="17 (1.1.11)

p
In the remainder of this chapter, only the 2D version of the Navier-Stokes equations without
the gravity source term will be considered for the sake of presentation simplicity. Note however
the methods here described in 2D are readily extended to 3D problems : such an extension has
been actually performed and the chapter devoted to the application of the numerical method
developed in this work will naturally present some 3D test-cases. The two-dimensional Navier-
Stokes equations in the absence of gravity effects can be put in the following conservative form :

we + (FE(w) — Y (w,wg,wy))e + (6% (w) — g% (w,wz,wy))y = 0 (1.1.12)

where ¢ is the time, x and y are the space coordinates, w = w(z,y,t) is the vector of conserved
variables, f¥ and g% are the inviscid flux vector functions and f" and ¢" are the viscous flux
vector functions :

P pU pu
2
pu pu” +p pUv
w = ) fE = ) gE = 2
pU puv pv°+0p
pE puH pvH
0 0 (1.1.13)
fV B L Tex = %,Uur - %ny gV B L Tyx = ,U(uy + 'Uz)
he Tay = Uy + vz) he Tyy = FHUy — 1

UTgz + VTzy + %ez UTyq + VTyy + %ey

Let us also introduce the Jacobian matrices of the inviscid and viscous flux functions that will
be needed later on, when deriving an implicit scheme for solving system (1.1.12) :

drf dg®
AP (w) = %@U) ; BF(w) = %(w) :
afv gV
Ag(w,wz,wy) = %(w,ww,wy) , B(‘)/(w,wx,wy) = %(w,wx,wy) ,
(1.1.14)
1% afv % 89V
Al (w, wg, wy) = W(w,ww,wy) . B (w,wg,wy) = %(w,wm,wy) ,
orv gV
5 (W, wg, wy) o, (w, wg, wy) 5 (W, Wy, wy) o, (w, wg, wy)
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The (well-known) expressions of these matrices are summarized in Appendix A.

1.2 Standard Block Implicit Scheme

Let us now recall the standard steps to build a block implicit scheme for solving the Navier-Stokes
equations. Since our interest will be restricted to discretization schemes that treat separately the
convective and diffusive physical fluxes and since, moreover, the viscous fluxes discretization is
straightforward because purely centered, we will first consider the derivation of a block implicit
upwind scheme for the Euler equations before proceeding to the Navier-Stokes case.

1.2.1 Euler implicit scheme

The two-dimensional Euler equations written in conservative form read :
we + fEw)e + ¢5w), = 0 (1.2.1)

Let ¢;; be a mesh function defined on a uniform Cartesian grid (z; = 0z, y; = joy), with
constant steps dx and dy and let us introduce the following basic difference and average operators
acting in each grid direction :

010)iy1 ;= Pit1,j = big (020); j11 = Pij+1 = bij
(1.2.2)
(119)iy1 ;= 5(Biv1+0ig) o (p20); 01 = 5(dijr1 + dig)

2

The time step used for time integration will be denoted At and the ratio between this time step
At At

and the space step in each direction writes : 01 = s oy = 5, -
x

Explicit stage

The exact solution of system (1.2.1) can be approximated by an explicit scheme formally written
as follows :

ntl _ wh.
— B L E(w™) =0 1.2.3
e () (123)
where w;’; denotes the numerical solution at time nAt and mesh point (z = idz , y = joy),
£ is the space operator defining the discretization scheme. In the case of a conservative scheme,
operator £ can be expressed in the form :

n NnF  5:G\" _ 1 n
5(w )— <E+ E)i’j = W <(Fi+%,j 7Fi7%,j) 5$ + (GLjJr% 7Gl’7j*%) 5y) (124)

where the equivalence between a conservative finite-difference treatment and a finite-volume
formulation on a Cartesian grid has been emphasized. The quantities ' and G are the numerical
fluxes approximating the inviscid fluxes f¥ and g” at the faces of the control cell (4,5) (cf.
figure 1.2.1). In the most simple approach, these numerical fluxes can be simply evaluated
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Figure 1.2.1: Control cell used to write the scheme

at each face by using the physical states in the cells located on each side of a given face (cf.
figure 1.2.2) :

_ L R ; L — s R — e
Fi-{-%J - F(wl+%’]7wl+%7j) with wi+%,j - wZv] ’ wi+%,j - wZ-‘rL] )
(1.2.5)
_ L R ; L — s R — s
Gi,j—% = G(wi’jié,wiﬁ.i%) with Wil = Wigm1 Wi = Wiy
For a large class of schemes, these numerical fluxes can be cast into the form :
n _ E\n __ n
Fi+%’j - ((le ) dl(w ))Z+%’]
(1.2.6)
E
G? 1= ((p2g®)" = d2(wn))ijfl
J=3 J=3

where 11 f¥, pog? correspond to a simply centered approximations of the inviscid fluxes, while
di(w™), do(w™) denote the numerical dissipation fluxes. Many choices of numerical dissipation
are available in the literature but they can be roughly categorized into scalar or matrix dissipation
[74]. Thus the numerical dissipation fluxes take eventually the form :

di(w) = Di(w)hw , do(w) = Da(w)dow (1.2.7)

where Dq(w) and Dy(w) are the numerical dissipation (either scalar or matrix) coefficients. In
the case of the Roe scheme [67], these coefficients are matrices defined by :

Dy(w) = 3|AE| | Do(w)=3|BE| | (1.2.8)

where AL (resp. BE) denotes the Roe average of the Jacobian AP (resp. B¥). For the Rusanov
scheme [69], the coeflicients D; are scalars :

Di(w) = p(AP) , Da(w) = Lp(BE) | (12.9)
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W] face i+1/2,]

ij-1

VV'Ijj—I/ZJ

1

Figure 1.2.2: Classical stencil for a first-order space accurate upwind scheme

where p(A) (resp. p(B¥)) denotes the spectral radius of the Jacobian A” (resp. BF).

Implicit stage

The explicit scheme (1.2.3) is submitted to a restrictive so-called CFL condition on the time-step
that can be used in the convergence process to a steady-state. An implicit version of the scheme
can be developed which allows to get rid of any stability restriction on the choice of At (for
linear problems at least). Making the scheme implicit with respect to time ¢ comes to replace
the numerical flux F™ (resp. G™) with its evaluation F™! (resp. G"*!) at the new time-level,
leading to :

wif' — <51F+5QG)”+1

= 1.2.1
At ox oy 0 ( 0)

0,3
Introducing the increment Aw" = w"*! — w", the numerical fluxes at time level (n + 1) can be
expressed as follows :

Fn+1 _ (leE)n—H _ dl (wn—i-l)
= ,ule(w” + Aw™) — di(w" + Aw™)
(1.2.11)
Gn-‘rl — ('LLQgE)n-H _ dg(w”H)
= pog? (w" 4+ Aw™) — da(w™ + Aw™)
Using now the Jacobian matrices A, BY and linearizing the above expressions around time
level n yields :
F''l e g (B + (AP iy Aw™ — dy (w™) — D6 Aw™

(1.2.12)
G 2 o (gP)™ + (BE) pp Aw™ — da(w™) — DES Aw™ |
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where the dissipation matrices D; and D5 are "frozen" at time level n. Eventually, the linearized
numerical fluxes are given by :

FrH & B 4 (AP g Aw™ — DSy Aw™

(1.2.13)
G"H ~ G" + (BE) iy Aw™ — DR Aw™ .
Inserting these expressions into the implicit stage (1.2.10) yields :

where the right hand side Rj’; and the operator H associated with the implicit stage are defined

by :
F n
re = (8F L 2G\T
TNy /g, (1.2.15)

H = (Id + 0'151 (AE)n/Ll + UQ(;Q(BE)n'LLZ — JlélD?él — UQ(SQDS’(SQ) R

with Id the identity operator. The left hand side of equation (1.2.14) can also be written as
follows :

where the coefficients C’i, Cy are given by :

C; =—o1 (%AE + D1)?_%7j = —01 (-A+)?—%,j

Cf =01 (AP D),y = o (AN,

Cy =02 (387 + Do)} 1 = —02 (BY)]; (1.2.17)
Cy =09 (%BE - D2)Zj+% =02 (B_)Zj-i-%

Applying the implicit scheme (1.2.14) at each point of the computational domain (without taking
into account the boundary conditions) yields the following linear system :

M- [Aw"] = [R"] , (1.2.18)
with a left-hand-side (LHS) matrix defined by

n
.1
7‘7]75

x
x
Tr X x
x x
M=|. ¢ - - Ccf cvcf - - cf - |, (1.2.19)
T x r X €T
x r X
T x €T
X
L . x 33$_
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where x denotes a non-zero generic coefficient, all the dotted spots corresponding to null coeffi-
cients; [Aw"] and [R"] denote respectively the vector of unknown implicit increments and know
explicit increments :

Aij -1 ijl
szﬂ—lu ?—1,]'
[Aw"] = | Aw}, , [R"]=-At| R} : (1.2.20)
AWy Ri1,
AW Rij+

The scheme defined by (1.2.18),(1.2.19), (1.2.20) is referred to as a block implicit scheme because
all the coefficients of the matrix M are 4 x 4 (respectively 5 x 5) matrices for 2D (respectively 3D)
problems. Time-advancement using the block implicit scheme requires to solve the linear system
(1.2.18) at each iteration in order to obtain w"*! from Aw™ (W™ = w™ + Aw™). Hence, the
efficiency of the block implicit scheme strongly depends on the method used to solve the linear
system. It is important to point out a direct solution of (1.2.18) is seldom undertaken because of
its excessive cost both in terms of computational time and memory storage. Alternatively, system
(1.2.18) is usually solved in a approximate way taking advantage of some factorization of the LHS
matrix M or resorting to some iterative process. The design of a numerical treatment offering
a fast solution (in terms of CPU time) while requiring low memory constraints is at the very
heart of the present work. The next chapter will be devoted to the presentation and discussion of
some standard implicit treatments such as LU-decomposition, Approximate Factorization, Line
Relaxation, Krylov Methods ... The following sections of this chapter deal with the description
of some extensions of the implicit upwind scheme first presented for the Euler equations : higher-
order extension, viscous case, low-Mach number regime and unsteady flows. As will be shown,
the basic formulation (1.2.18) remains formally unchanged : introducing viscous effects, physical
time-derivative and preconditioning into the implicit stage will simply lead to more involved
expression of the block coefficients (1.2.17).

Remark

Even though not every scheme can be put in the assumed form (1.2.6), it is nevertheless not
difficult to adapt the previous design steps of a block implicit stage to other forms of ex-
plicit numerical fluxes. For instance, let us consider the numerical fluxes formally expressed

_ L R . N )

as Fi+%7j = F(wz’+%,j’ wi+%’j) with wH%,j = w; j, wi+%7j wj41,; for a first-order scheme and
L _ L R - L N :
similarly Gi’jJr% = G(wi,j+§’wi,j+§) with wi7j+% = wj j, wi,j+% w; j+1- To be a little more

specific, for a scheme of Flux Vector Splitting type (such as Van Leer scheme for instance), the
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numerical fluxes will read :

F(wt , Jwh | )=F*(wt

— (R
i+1.50 i+l )+ (w

it3.d z‘+%,j>
L R — (Y (L — (R
Glwy W) =G W ) + G (w5, 0)
Note that Roe and Rusanov schemes are obtained by taking :

L R _1¢¢eE(, L E( R R L
Flwy iy ) = Ui )+ 720wy ) = (D (g 5 =iy )

L R _ 1/ E( L _ R _ oL
Gl 0iGan) = 3005w ) + 955, 1)) = (Da)gy g (Wi — i)

with the dissipation coefficients respectively given by (1.2.8) and (1.2.9).

The derivation of an implicit stage associated with the explicit scheme based on such expressions
of the numerical fluxes follows the same steps than the process previously described. Taking the
numerical fluxes at the new time-level, F"*! and G"*!, and linearizing these terms around time
level n leads to :

Lyn+1 Ryn+1 n L\n
F((w )’H—%,j’ (U} )7;_;'_%7]) F;+27] (Jl )Z+2,] (Aw )i-f—%,] (Jl )Z+2, (AU] )Z+27J )
n+1 n+1
G((wL)Z7j+%7 ('LUR)Z’;:_%) = G 7]_;’_1 + (J2 ) ’]+ (Aw ) ] 1 + (J2 ) ’]J,» (Aw ) 7]_;’__ )
(1.2.21)

where JI' = OF/ow®, JF = 0F/ow® and JI = 0G/ow", JF = 0G/ow™ are the Jacobian
matrices of the numerical fluxes F' and GG. The implicit scheme takes eventually the generic form
(identical to (1.2.14)) :

H-Awl; = —At-RY

©,J
with

n _ (OF  5G\"
Ri7j_<6x " 6y>‘7]‘ ’

H - Aw}; = CoAw;'; + C Aw; 1]+C’ Awiyy ; + Cy Aw;'; L+ CF Awig

where the matrix coefficients C’;t, Cy are given by :

(Ol =),
2?

Cf = o1 (JYy

Cy = _02(J2 )

7]__
C;_ - (JZ ) ,j+2

CO:Id—%-Ul(JlL)?JF%’j—O'l(JlR) +O’2(J2)

Ry\n

It is easy to check the above expressions give back (1.2.17) when the explicit stage is based on
the Roe or Rusanov scheme. For other numerical flux formulas, alternative expressions will be
found for the coefficients C’;E but, clearly, whatever the numerical flux retained when writing the
explicit stage, the resulting implicit scheme will require the solution of a block linear system.
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1.2.2 High-order extension

The upwind scheme presented in the previous section is based on a compact stencil making use
of three points in each space direction, which leads to a first-order accurate upwind scheme. This
accuracy order is not sufficient for practical purposes (where the grid resolution is not necessarily
very high) so that it is customary to increase the space accuracy of an upwind scheme (be it
of Flux Vector Splitting, Flux Difference Splitting or Hybrid type - AUSM+, CUSP schemes)
by resorting to the well-known variable reconstruction MUSCL (Monotone Upwind Scheme for
Conservative Law) approach originally introduced by Van Leer [78|. Using this technique, the
numerical flux formulas previously introduced and based on a left w” and right w’ states remain
unchanged but these left and right states are now approximated with an increased accuracy
thanks to an extrapolation using the values of w available on an enlarged stencil (¢f. figure
1.2.3) :

wz'L+1/2,j = wi; +3(1=r)( wiy —wiy )+ 7L+ R)(wiy ;- wily)
wﬁ_l/gd‘ =wiy; — A+ r) (Wi ; — wly) = §(1—r)(wls; —wiy ;)
(1.2.22)
wz'L,jq/z =wij_y + 71— r)(wiy_ —wil; o) + 31+ /)( wily —wilj_y)
wfj_l/Q = wi; — T+ r)( wit; — wgfj_l) - S(1- /<;)(w2jJrl - wl )

where the choice ¢ = 0 gives back the first-order schemes while £ = 1 activates the reconstruction
process. The parameter x allows to control the order of accuracy of the reconstruction as will
be soon explained. In the case of the Roe or Rusanov schemes for instance, the numerical fluxes

X j+2
WiL+1/2,j
><i‘+1
face i,j-1/2 ) \Nﬁ-l/Z.j
“ie2g i \ i / “iely Xis2j
— AN
Wﬁi-l/z/ face i+1/2,j
X
ij-1
\N}:j—I/ZJ
ij-2

Figure 1.2.3: Enlarged stencil for 2nd-order space accurate upwind scheme
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are then evaluated using the previously introduced formulas :

1

L R _ E(, L E( R - R L

F%“%+%J’“%+§J)“§'(f (Wi ;) +7 (“%+%J))"lh(“%+%d)(“%+§J"“%+%J)
(1.2.23)

L R E(, L E(, R - R L
G(w"]*“”'fl):'_(g (wij_y) 9 U%Jf%)>_"DQO%J*%><U%475__“%475>
where w denotes an average state (Roe average for instance) computed at the face using the left
and right states w”, w’. In the linear case, where f¥ = APw, ¢¥ = BPw with A”, BF constant
matrices, it is easy to show formulas (1.2.23) can be developed as :

n _ Ey _ &/ 2 +EV)" _ _ & 3. \"
iy = (Gaf®) = 50 = w) @ f %;,j (@ =a)Disiw - 501 m)Dlalw)W
dq
n _ Ey €. 2 B _ _ & 3. \"
Glys = ((nag) = 30 = 0Gag®) _, = (1= 9Dadw = S0 = 0)Datu)
ds
(1.2.24)

and eventually yield the following explicit residual (approximating the flux balance fZ + gf ) :

RY. — (SN f(l_ﬁ)w
wl ox 4 dx
S1(Didrw); e 351(D15%w)?j
1.2.25
+®m@%%_§“_@£m@%& (1:225)
oy 4 oy
62(D252w)”- g 62(D26§w)”~
(] = e\sy A2 Wiy s, 30 T202 W

As already pointed out, the choice ¢ = 0 allows to recover the initial first-order formulation
(1.2.6). If ¢ = 1, the numerical dissipative fluxes dj, do become 3rd-order terms so that the
resulting dissipation in the above expression is based on fourth-derivatives multiplied by some
positive coefficient (in order to ensure the scheme is truly dissipative); meanwhile, the non-
dissipative fluxes remain in general approximated at second order using simply centered formulas.
However, in the particular case x = 1/3, the reconstruction process allows to cancel the dispersive
error of the central average leading to a 4th-order centered approximation of the non-dissipative
fluxes, completed of course with the third-order dissipation, thus yielding a globally 3rd-order
accurate upwind scheme :

S1pn (Id — §63) ()7 Ly 4, 01(D16}w)};

Rij = dx " 67" ozt
1.2.26
N dopa(Id — %5%)(9E)Zj n 15 3% ( )
oy 6 y oyt .
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There is basically two ways to make the above Roe-MUSCL or Rusanov-MUSCL scheme implicit,
that both lead anyway to an implicit scheme of the form :

H-Aw}; = —At- (RUH? (1.2.27)
where the notation R’/ emphasizes the fact a third-order reconstruction (¢ = 1, k = 1/3) has
been used in the explicit stage. For the sake of simplicity in the presentation, let us assume
scheme (1.2.27) is applied to a linear problem with f¥ = AFw, ¢¥ = BFw, AF and B being
constant matrices. Under this assumption, the residual R/ reads (when the Roe flux formula
is used) :

51#1(Id — —52) (S
Ry _ gE AE
(R 5 | = 53:
Sopa(Id — $03)wl, 1 Saw
i BE 2/'1/2( 6 2) i,j —|B | 1]
0y 12 oy
or, since the problem is linear, —A¢(R!!! )? —ICH wy'; with a third-order explicit stage

discretization operator given by :
IIT _ AE 1o 5E L L iea 1 pEia
KH = A%51pu(Id — 651) + B%6op2(1d — 652) + E\A |07 + E‘B |03,

where AP = 2L AP BF = ?—;BE . Using a first-order discretization yields —A#(R')}; = —K'w}!;
with :

. . 1 . 1 .
K' = AB61un + BP0 — S| A|6} — 5| B4,

Starting from a first-order explicit stage, it is natural to derive a first-order upwind implicit
scheme of the form :

H' - Aw); = —K'w], (1.2.28)

with H! = Id+K' and this expression corresponds precisely to the linear version of the previously
derived implicit stage (1.2.15); such a scheme will be referred to as I/I to recall a first-order
implicit stage is associated to a first-order explicit stage.

Starting now from a third-order explicit stage, a direct approach would lead to a third-order
upwind implicit scheme of the form :

H - Awpy = KMl (1.2.29)
with H! = Id 4+ K. However, it is easy to check the linear system associated with such an
implicit stage is much more involved than the one obtained with a simple first-order implicit
stage since it couples now 5 (instead of 3) unknown time-increments in each grid-direction (in
other words the bandwidth of the block matrix M defined in (1.2.19) is increased). Even though
the choice (1.2.29), denoted III/III from now on to recall a third-order implicit stage is associated
with a third-order explicit stage, is judicious in terms of intrinsic efficiency - ¢.e. it provides a
strong damping of all the error modes at each time iteration (this point will be demonstrated
using Fourier analysis in chapter 3) -, the necessity to solve a more complex linear system is likely
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to increase the cost per iteration of this implicit scheme in such a proportion that alternative
simpler choices eventually become more interesting. Precisely, a strategy followed by many
authors [64, 12], and also retained in this work, is to associate a simple first-order implicit stage
to a third-order explicit stage :

H - Awly; = —KM (1.2.30)
where the implicit and explicit discretization operators used in this I/III strategy have been
previously defined. As will be seen using Fourier analysis, such a choice leads naturally to a
lower intrinsic efficiency but this loss of error damping is more than balanced by the reduced

cost taken by the solution of a simple first-order implicit stage instead of a more involved third-
order implicit stage.

Remark

In the case of the Euler equations, the inviscid fluxes f¥ and ¢ are non-linear functions of w,
so that the choice k = 1/3 cannot ensure a true 3rd-order accuracy (a reconstruction process
applied on the fluxes would circumvent this problem). Nevertheless, since this simple choice of
variable reconstruction allows anyway to increase the effective accuracy of an upwind scheme,
it is commonly retained and will be systematically used for the calculations presented in this
work. Note also several choices are possible for the vector of variables on which to apply the
reconstruction process. In practice, the set of primitive variables (p, u, v, p)T is typically used
rather than the set of conservative variables (p, pu, pv, pE)T.

1.2.3 Extension to Navier-Stokes equations

Consider now the two-dimensional Navier-Stokes equations :
wy + (fE(w) - fv(wa wftva))ﬂi + (gE(w) - gv(wawx,wy))y =0 (1231)

where the notations used for fV and g" emphasize the viscous fluxes depend not only on the
conservative variables w but also on their gradients. All the schemes considered in the present
work rely on a separate treatment for the inviscid and viscous fluxes. Namely, the discretization
of the inviscid fluxes is carried out in the way described in the previous section. The numerical
approximation of the viscous fluxes is purely centered and second-order accurate; it is obtained
from the following steps. When discretizing (1.2.31) at point (4,j) of a regular Cartesian grid
with space steps 0z and dy (of the same order h), the numerical approximation of f¥ and g"
requires to evaluate the vector w and the space derivatives w, and w, on each face of the control
cell (see Fig. 1.2.4). In other words, the viscous numerical fluxes V" and G" can be expressed
as :

where it remains to evaluate the quantities Wit g (wx)H_%,j, (wy)m-%,j and W1 (wx)i,j_%,

(wy), o1 )- This evaluation is performed using simple second-order centered approximation (since
)

the isotropy of the diffusion phenomena does not call for any kind of upwinding). Let us consider
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for instance the face (i +1/2, j) where the evaluation is carried out as follows :

Wij + Wit

(W)it1/2,; = 5 +0(h?)
Jw Wi j — Wi, 2
it = 22 — Wi — Witlj 1.2.32
(Wx)iv1/2,5 D2 |11 o, 57 + O(h?) (1.2.32)
ow Wit1/2,5+1/2 — Wit1/2,j—1/2 2
Wy ); L= —— = : ’ +O(h
Wi = gy| - (#2)

In the last formula, the states needed at nodes (i+1/2,5+1/2) and (i+1/2,7—1/2) to compute

i+1/2,j4172
i=Lj+1 Lj+1 i+1,j+1
+ *, P
i-1/2,j-172 _— Finj
-1 W / .
+ + Jr i+1,j
+ uh
=11 i+1,j-1
GYi-in L i+1/2,j-172

Figure 1.2.4: Stencil for the discretization of the viscous fluxes.

the space derivative w, on the face (i + %, Jj) are obtained by taking the average of the states in
the four neighboring cells (cf. figure 1.2.4) :

(w)i+1/2,j+1/2 =

Wi 5+ Wit1,5 + Wit1,j41 + Wi j+1

4

+0(h?) = (M1 p2w)it1/2,541/2 + O(h?)

Thus the vector w and the space derivatives w, and w, evaluated on the face (i + 1/2,j) read

finally :

(W)ig1/25 = (W)iy1/2,5 + O(h?)

(We)iv1/2,5 = (

(wy)i+1/2,j = (

51w

E)iﬂ/z,j +0(h?)

do i1 praw

0y

Jit1/2,5 O(h?)

(1.2.33)
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The expression of the numerical viscous fluxes 'V and GV can be summarized as :

d1w Oofio b1 W
FXH/QJ = fv((ﬂlw)z‘ﬂ/zja (g—x)i—i—l/Q,ja (%)Hl/m)

5 5 (1.2.34)
141 pow 2W

Gii1ja = 9" ((naw)ij1sa, (T)mq/z, (E)i,jq/z)

Finally, the full numerical fluxes (including the inviscid and viscous contributions) can be written
as follows :

(O1w)iv1/a,; (Sapipaw)iviya

Fij125 = FE(wz‘LH/z,jv wﬁl/zj) - fv((ﬂlw)i+1/2,j7 Sz ) 5y )
(6 ) (5y) (1.2.35)
1H2HIW )G 5172 (02W); 5-1/2
Gi,j—l/2 = GE(wiL,jfl/wwfjflﬂ) - QV((M2w) i,j—1/2> or i1/ ) 5; / )

where the exact expression of F¥ and G depends on the choice of the inviscid numerical flux
formula (Roe, Rusanov, AUSM+, ...)

Implicit treatment

Deriving an implicit version of the scheme defined by the explicit stage :

"nF  0:G

5z oy )t

with F and G given by (1.2.35) supposes to build an approximation of the viscous fluxes IV, GV
at the new time level (n+1). Performing a Taylor development of these fluxes around (n+1)At
and making use of the Jacobian matrices A}, AY, AY and B}, B}, BY introduced in the first
section of this chapter (see (1.1.14)) leads to :

AW = At

(FV) L = (FV)" 4+ At AY %“’ + At AY 8;% + At AY 6;”y +O(A2)

(1.2.36)
GV = (GY)" + At BY ?97 + At BY 87“”; + At BY % +O(A)

so that a centered approximation of the terms appearing in these developments yields the fol-
lowing discrete formulas :

(FV)n-‘rl (FV)

1% n
i+3.5 i+ +(Ag)ipy 5 mAw; +5d

v 51Aw il
+ (4] )i—i-%,] T2
; dopop Aw?
+ (A2 )iJr%,j 5y

1
24 oA, h?)

(GV)n-H (1.2.37)

7]77

= (GV)" o1t (Bo) 1 M2Aw”_1

0 Aw? .
=
Dij-y — 5

(SQAU]” 1

+(BY)yy —5, T O
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In order to obtain a viscous contribution to the implicit stage that remains as simple as the first-
order upwind contribution coming from the inviscid numerical fluxes, the following simplified
development is retained :

(51Aw)

Vyn+1 Vn Vin i+1/2,j

(F )Zj_l/QJ (F )z+1/2] (Al )i+l/2,]T
(1.2.38)

((52AU))Z 1/9

(Gv)rfj_ll/Q (Gv)z] 1/2 (BQ )z] 1/2 5?/ =l

The terms containing the viscous Jacobian matrices AY and B} are discarded because they
enlarge the stencil of the implicit stage with respect to a basic 3-point per direction support; as
for the terms containing the viscous Jacobian matrices Ag , B(‘)/ they are not retained because the
evaluation of these matrices is quite expensive, since it requires to compute components of the
gradient of w. Finally, the block-implicit upwind scheme used to approximate the Navier-Stokes
equations remains formally unchanged with respect to the case of the Euler equations :
H-Aw; = —At-R};

Z]’

with

E_ v E_ AV \\"
R n(F F") n 02(G G") ’
ox oy ;

7 7]
7]

AY BY
H = <Id + 0161 (AP)" 1y + 0262(B) o — 0161 (D1 + ﬁ)”& — 0202(D2 5—2)n5 > :
(1.2.39)
The LHS of equation (1.2.39) can also be expanded as follows :

H - Aw;; = CoAwy; + C7 Aw;'y ; + CYAw},, ; +Cy Aw}'i_q + CyAwj, (1.2.40)

where the matrix coeflicients C’f, Cy now include a viscous contribution :

r Cf:—al (%AE—f—Dl'f'éAY):L%J

= —o1 (A7);.

Z_Ej

+ _ 1 AF 1 VT _ —
Cf =01 (A" = D= AV )1y =01 (AT)iy,

n
Cy = oy (%BE + Dy + ﬁBZ’V)i,j_% = —02 (B} s (1.2.41)
C';' =0y (%BE Dy — LBQ ) il = 09 (B_)Zj—i-%
Co=1d+ o (A+)?+%,j —o1 (A7) s Lj + o9 (B+)Zj+% — 09 (B_)Zj—%

Applying the viscous implicit scheme (1.2.39) at each point of the computational domain, one
recovers the linear block system (1.2.18) where the coefficients of the matrix M and the residual
[R"] take into account the viscous terms as detailed in the above formulas.
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1.3 Low-Mach Number Flows

1.3.1 Context

In view of the particular applications the CEA is interested in, namely the simulation of buoy-
ant multicomponent reactive flow in nuclear reactor containment, the schemes developed in the
present work should be versatile enough to deal with flow regimes ranging from nearly incom-
pressible to highly compressible. It has been explained in the introduction of this thesis that
two distinct strategies can be adopted in that case : either the extension of incompressible
(pressure-based) flow solvers to non-zero Mach number flows or the extension of compressible
(density-based) flows solvers to low-Mach number. It has been known for more than a decade
now that a proper preconditioning, so-called low-Mach preconditioning, of the equations govern-
ing compressible flows enables the application of the schemes initially developed for compressible
flows to the simulation of nearly incompressible flow problems and this choice is retained in
our work for reasons detailed in the introduction (mainly because of the importance of existing
developments on compressible solvers in CAST3M).

The implementation of a preconditioning method requires the preliminary choice of a set of
variables in terms of which the Euler equations will be expressed before introducing a precondi-
tioning. In fact, some of the preconditioning strategies proposed in the literature are identical
but built using different sets of variables. For instance, Turkel [75] developed the first-version
of his preconditioning starting from the Euler equations expressed in terms of entropic variables
(p, u, v, S)T whereas the preconditioning strategy proposed by Weiss and Smith [85] is developed
from the Euler and Navier-Stokes equations written for the primitive variables ¢ = (p, u, v, T,
also called viscous variables since viscous terms can be easily expressed using them, but turns
out to be exactly the one proposed by Turkel when expressed with the same set of entropic vari-
ables. Note that Van Leer [80] developed his own preconditioning technique also using entropic
variables (p, u, v, S)7 whereas Choi and Merkle [14] or Venkateswaran et al. [81] employed
primitive or viscous variables (p, u, v, T)T. Note however, it is always the conservative form
of the Euler or Navier-Stokes equations that is solved in order to ensure correct shock-capturing
properties when the space-discretization is applied. The choice of viscous variables to express a
preconditioned block-implicit upwind scheme can be convenient for general fluids with equations
of state written in terms of pressure and temperature and can also be interesting to reduce the
number of algebraic operations during the computation. Nevertheless, it must be clear that these
different choices do not affect the convergence performance of the preconditioned scheme. During
the course of this thesis, the use of either the vector of conservative variables w = (p, pu, pv, pE)T
and its increment Aw or the primitive variables through ¢ and Aq has been thoroughly investi-
gated (see the report [40]) in order to determine whether it was worth switching from the current
w-based formulation in CAST3M to a g-based formulation. The results obtained, not reported
here for the sake of conciseness, proved that the unit cost reduction offered by the choice of the
primitive variables was too modest to undertake such heavy developments (such findings are not
necessarily in agreement with the study [30] for instance but this question is clearly very much
implementation / code-dependent). Consequently, the description of the preconditioned upwind
schemes will focus in the present work on a formulation based on the set of conserved variables w.
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1.3.2 Low-Mach preconditioning for conservative system

The low-Mach preconditioning method used in this work is based on the Turkel preconditioner
[75]. This preconditioner has been originally applied for the Euler equations expressed in terms
of entropic variables V = (p, u, v, S)T (with S = In(p/p?)). In quasi-linear form, this system
takes the following form :

Pl Vit Ao Vo + BV, =0 (1.3.1)
where
u pc 0 0 v 0 pc? 0
A_de_ 1/p u 0 0 B_dgE_ 0 v 0
CCadav [ o 0 w o ’ AV [ 1/p 0 v 0
0 0 0 u 0 0 0 w

with ¢ the speed of sound. As for the preconditioning matrix P,, it is designed so as to scale the
pressure equation only :

%2000
1
Pe:O 0 0
0 010
0 00 1

The parameter 32 is chosen such that the eigenvalues of the preconditioned system keep the same
order of magnitude when the Mach number becomes small. The original definition proposed by
Turkel [75] is :

G2 = min(max(ZMQ7 Mgo), 1) (1.3.2)

where M, denotes the reference Mach number (inflow Mach number for external flows or max-
imum Mach number within the field for internal flows). This definition ensures the robustness
of the preconditioned scheme and turns the scheme into its non-preconditioned version when
M > 1. This choice is often referred to as a "global cut-off" because it does not allow 3 to be
less than the inflow Mach number. Some local definitions are available in the literature, such as
the one given in [23], which introduces a dependence on local gradients of pressure :

4? = min(max(M?, M]?), 1)
with

_ 1op|

M? =12
p c

P
Unfortunately, the convergence rate of the preconditioned scheme with such a definition can
become quite poor. On the other hand, the accuracy increases with the local cut-off since
can be less than the inflow Mach number which allows to scale more properly the numerical
dissipation (see next sections). However, both local and global definitions fail to ensure a good
efficiency for viscous or unsteady flows. It is thus necessary to redefine the cut-off in these cases
so as to preserve efficiency. In [81], Venkateswaran et al have proposed the following definition :

3* = min(max(M?, 32, 52),1)
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where (3, and (3, denote some viscous and unsteady cut-off respectively. In chapters 6 and 7,
the definition of these new parameters will be detailed and their efficiency will be studied.

In order to build a low-Mach preconditioning for the Euler equations written in terms of
conservative variables :

wi + f(w)e + g(w)y =0,

the transformation matrices allowing to switch from entropic variables V' to conservative variables
w = (p, pu, pv, pE)T are needed :

/e 0 0 —p/y
ow u/c2 p 0 —pu/y

ov v/ 0 p —pu/y
H/ pu pv —pg*[2y

(v=Dg*/2 —u(y—-1) —wv(y-1) v-1

v _ | —u 1/p 0 0

ow —v/p 0 1/p 0
=1¢® 7 _u(y=1) _v(y=h) (D)

2p p p p p

where ¢? = u? + v%. Introducing these transformations into equation (1.3.1) yields :

ov ov ov
Peil‘8—w‘wt+Ae'a_w'wa:+Be'a_w'wy:0 (133)

0
and left-multiplying by % leads to :

ow oV ow ov ow ov
_— - —_ _ . —_ _— ¢ — . = 1. .4
ov T gu Mt gy A gyt gy Ber gy v =0 (1:34)

Therefore, the preconditioning matrix for the Euler equations in conservative variables can be
defined as :

ow ov

=50 1 b

(1.3.5)

while the usual (conservative) Jacobian matrices of the convective fluxes are recovered by :

E E
_dT ow 0, NV _9F e " _p 0w p OV 09 g4

AF — — . e - - —
dw ov "¢ dw  ow dw YOV T dw ow

Thus, the quasi-linear form of the Euler equations written in terms of conservative variables
reads :

Pgl‘wt—i—Aw-wx#—Bw-wy:O , (1.3.7)
which eventually leads back to the conservative form :

Pl w4 fE(w), + gF (w), =0 . (1.3.8)
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Properties of the matrix P,

The Turkel low-Mach preconditioner written in terms of entropic variables can also be expressed
as follows :

P.=1Id+(3*-1)Q. with Q. = Diagl1,0,0,0] (1.3.9)

where it is worth noticing matrix Q. is idempotent, i.e. Q* = Q.; consequently the inverse of
the preconditioning matrix is simply computed as :

_ 1
Pl=1d+ (@ —1)Q. (1.3.10)
. . . . . ow ov .
Since the conservative version of the preconditioner is such that P, = v P, 70’ it follows
that :
ow ov
P, = Id 2 )= Q. — =1d 2 _1)Qu 1.3.11
(0= g Qer 5o = Td+ (B2~ 1)Q (1:3.11)
and simple calculations yield :
1
ow oV y—-1 U q>
w = Ay, We ' 53 — =5 — ;—;1 . 1.3.12
@ ov @ ow c? v < 2 e (13.12)

H

Obviously, the matrix Q. is also idempotent (Q2 = Q,,) so that P! = Id + (1/5% — 1)Qu;
moreover, the particular form of this matrix @),, enables to compute the matrix-vector product
Qu - X very easily, as already pointed out in |76] :

X, 1
Xo =1 (¢ u

. = =X —uXo—vX3+ Xy ) - 1.3.13

Qu X, =2 ( 5 X1 —uXy —vX3+ Xy ; ( )
Xy H

These properties will prove soon very useful when optimizing the cost of an implicit Matrix-Free
treatment for all speed flows in Chapter 4. Note that from now on the simple notations P, @
will be used to denote the conservative preconditioner P,, and its associated matrix @),,.

Preconditioned eigensystem

Pre-multiplying the time-derivative term of the Euler equations by the matrix P~! leads to a
new eigensystem since equation (1.3.7) can be re-written as follows :

wy + A-wy + B -wy, =0 (1.3.14)

where the preconditioned Jacobian matrices A = P- A and B = P - B have been introduced.
In order to compute the eigenvectors and eigenvalues of these preconditioned matrices, it is
recommended [83, 84] to start from the entropic preconditioned Jacobian matrices P, - A., P.- Be
and to use next relation (1.3.5) to recover the conservative matrices. The eigenvalues of the
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preconditioned Jacobian J = An, + Bny (with n, and n, the components of the normal vector
i) are given by :

A = ung +ovny =V,

22 =y,

A = %(1 + 8V + \/6%2 + %(52 _ 1212 (1.3.15)

50 =La s - foe s L e

In what follows, A(n,, ny) denotes the diagonal matrix Diag[S\(i)] containing the preconditioned
eigenvalues. Note that when [ is of the same order than the Mach number and this latter is
small, all the preconditioned eigenvalues are of the same order than the particle velocity V,,. This
means the system is no longer ill-conditioned for low speed flows. The preconditioned matrix
P, ([lenm + B’eny) can be expressed using A as follows :

P. - (Acng + Beny) = Je(ng,ny) = To(ng, ny) - Mng,ny) - To L (0, ny) (1.3.16)

e

where the eigenvector matrices T, and T, ! are given in [84] and reproduced here :

0 0 1 1 0 0 0 1
0 n T Ny S Ny 0 —Ty Ny 0
~ My 2 2 2 2 -~
T, = ppict pphic , Tt = 2 2 2 2
T My s My s pPc pBc n. 0
0 ne D232 p B 2t 2t 2t Y
2 2 2 2
10 0 0 _ropbe e
2t 2t 2t
(1.3.17)
with
. ] 3@ _ 30
r= 208 — V.52, s =Y - V.8, t = — (1.3.18)

In the same manner, the preconditioned Jacobian expressed in terms of conservative variables
can also be made diagonal :

P - (An, + Bny) = J(ng,ny) = T(ng,ny) - Ang,ny) - T (ng,ny) (1.3.19)

Using the transformation relations between entropic and conservative variables, this Jacobian
takes also the following form :

- w - OV dw . - -y OV
A A S Y W DA 1.3.2
J(?VJeaw 8VTAT€ ow (1.320)
% Hf_/
=T =71

All the above expressions will be used in the next section when building the artificial dissipation
of a preconditioned upwind scheme.
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1.3.3 Preconditioned upwind scheme

Guillard and Viozat showed in [83, 84, 28] how to build a version of the Roe scheme adapted
to the preconditioned system (1.3.8); such a scheme is christened Roe-Turkel scheme in [83]
by reference to the use of Turkel preconditioning. This section summarizes the derivation of
the Roe-Turkel scheme introduced in [83] with the notations used in the present work. Our
starting point is the quasi-linear system (1.3.14), space-discretized using a first-order accurate
Roe scheme :

_ - S~ Su - ~
wi+ A wy + B wy = ;(|A\wx)x + 7y(|B|wy)y (1.3.21)

where it must be understood all the space-derivatives are discretized using simple second-order
accurate centered formulas. Left-multiplying this expression by P~! and going back to a con-
servative form for the flux balance yields the following semi-discrete form for the preconditioned
Roe scheme :

_ 0w, 1) _
Pl wi+ fo+ g, = (P 1|P-A|wx)x+?y(P YP . Blwy), (1.3.22)

Guillard and Viozat [28] proved that, for a low Mach number flow, all the components of the
above numerical dissipation fluxes remain of the same order of magnitude than the corresponding
non-dissipative parts of the numerical fluxes, which enables to preserve accuracy for low speed
flows. In order to evaluate this preconditioned dissipation in a simple manner, the different
expressions defined in the previous section are now used :

ov

ow -~ ~ OV,
ow

P ' |P-An, + P-Bny| = (P " oy Te) - IAl- (T 1 =719 |A|-T¢ (1.3.23)

Matrices 79 and T are easily computed from matrices T e Tg L g—x and P! since :

- - ow ~
T9(ny, =pt.17="—.p 1. T,
(n 777’?/) av e
. B N1 7s (1.3.24)
T ng,ny) =T =T, —
(n 7”3!) e aw

and their respective explicit expression reads :

1 0 1 1
2 3% 2 2 32 2
U + 7Ny U + S Ng
uo Ny 2 2 2 2
79 = 25 ¢ 25 ¢ (1.3.25)
v+ rng v+ SNy
voo—n
v 2 32 ¢2 2 32 ¢2
H V., H V,
q2 _‘/2 + r n + s n

2 3% 2 2 32 2
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and
1_7—1(12 y—-1. y- 1 v -1
c? c? c? c?
Vi Ny —MNyg 0
7 -
sq?(y — 1) + B2V, Csu(y =1+ B2cn, Csu(y—1)+ B2cn,  s(y—1)
t t t
rP(y =D+ B2V ruly =)+ BPne ro(y =)+ 8%Pn, r(y—1)
t t t t
(1.3.26)

where V; = —uny, + vng, ¢* = %(uz +v?), H=F+ %, E = e+ ¢* with p = (y — 1)pe and 7, s,
t are functions of the preconditioned Jacobian eigenvalues defined by (1.3.18). Note that taking
% =1 yields r = ¢, s = —c and t = —c so that the matrices given by (1.3.25) and (1.3.26)
reduce to the classical matrices which make the Jacobian (An, + Bn,) diagonal (see for instance
[31]).

The fully-discrete version of the Roe-Turkel scheme (1.3.22) reads :

Aw! . nEF  5,G
1 +2

—1 2,
L VR

)ij =0 (1.3.27)
with numerical fluxes defined by :

Fiy=(uf =3P [P Al 6w)p s = (uf — 579(1,0) - [A(1,0)] - T(1,0) - 1w)

z+2,] H’%J
Gy ) = (g = 3PP Bl-dow), ) = (pag — $790.1) - [3(0.1)| - T90,1) - b0),
(1.3.28)

Extending the scheme to higher-order accuracy is done by taking :

F;-s-%,j = §(f( ) + f( H— j)) - 5 Z+2,] ’ z+%,j| ’ (wi+%7]‘ - wi—&—%,j)
Lo L R [ R L
Gi,,;% = 5(9(“’ ,]__) +g(w J__)) - §P”1_% ) |P237% 'Bi,j7%| ) (wi’j__ —w; J__)

where the states w’ and w’ are reconstructed using relations defined in section 1.2.2.

If the Rusanov scheme is used instead of the Roe scheme, matrices |A(1,0)], |A(0,1)| are replaced
with their respective spectral radius yielding the following numerical fluxes for the preconditioned
Rusanov scheme :

1 1 _

Firys = pUlwiiy ) + 1 wily ) = 3PP (Wi ; —wigy )
B 1 L 1 —1 R L

Gyos = (90wl ) + gl )= 3p(PBIPT - (wf  —wl, 1)

since T9 - T% = P~!. Note the numerical dissipation of this preconditioned Rusanov scheme is
no longer purely scalar since it contains now the preconditioning matrix P~1.
Low-Mach number preconditioned versions of the AUSM+, Harten-Lax-van Leer, Jameson’s
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CUSP schemes are respectively provided in [46] [51] [77]. In the present work, low-Mach number
versions of the Roe, Rusanov and AUSM+ schemes have been used. The Von Neumann analysis
carried out in the next chapters has focused on the implicit Roe upwind scheme mainly because
its expression is available for the full non-linear Euler equations as well as for its linearized version
while, for instance, the derivation of the AUSM+ scheme applied to the linearized form of the
Euler equations requires some tedious developments and a number of approximations (see [46]
for more details).

For the Roe or Rusanov scheme, the preconditioning method affects in a simple way the definition
of the numerical dissipation. From now on, D1 and Dg will denote the preconditioned numerical
dissipation coefficients associated with each space direction while the preconditioned numerical
inviscid fluxes will be denoted F'Z and G¥. Thus, the numerical fluxes of the Roe and Rusanov
schemes combined with Turkel preconditioning can be unified as :

- 1 -
Fﬁ%ﬂ - §(fE< i+3 1)+ o Wiyl ) =D (wiliéd' - wiLJr%J)
(1.3.29)
. 1 .
E _ L1 B/ L R _ (R L
ij—= - 2(9 (w j——)+g ( 7]_%)) Dy (wi,j—% wi,j—%)
with
Dy = LP-1|P A = L79(1,0) - |A(1,0)] - T4(1,0)
(1.3.30)
Dy = 5P7'|P B = 5T9(0,1) - [A(0, 1)| - T%(0,1)
for the preconditioned Roe scheme or the Roe-Turkel scheme and
= .
D, = QP(P A)P
(1.3.31)

Dy = ip(P B)P~?

for the preconditioned Rusanov scheme. This formulation is extended to the Navier-Stokes
system in a straightforward way since the purely centered discretization of the viscous fluxes
remains unaffected by the preconditioning of the equations. In other words, the preconditioned
Navier-Stoke equations :

Pt w4+ (fF(w) = fY(w,ws,w0y))e + (95(w) = g¥ (w,wa,wy))y = 0 (1.3.32)

are approximated by the conservative scheme

Aw™. E _ gV E_avy\"
ox oy

2y At

'7j
where the preconditioned inviscid numerical fluxes are given above and the viscous fluxes keep
their expression (1.2.34).

Implicit stage

The low-Mach preconditioning technique applied to the Roe or Rusanov scheme modifies the
time derivative term and the numerical dissipation with respect to the standard version of these
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schemes but introduces no technical difficulty in the process of making scheme (1.3.27) or (1.3.33)
implicit; in fact, the form of the implicit preconditioned scheme for the Navier-Stokes equations
remains unchanged :

H - Awgfj = —At- R’f] , (1.3.34)
with
PE VvV SE V"
RN = 0 (F Ia )+52(G G") 7
7 ox Sy -
i,j

- AV - BY
H = ((Pl)n + O’151(AE)n,U1 + 0’252(BE)nug — 01(51(D1 + ﬁ)"él - 0’252(D2 + 5—;)”52> .
(1.3.35)
The LHS of equation (1.3.34) can be also expanded as :

where the coefficients C;E take now into account the modification of the numerical dissipation
terms by the low-Mach preconditioning and Cj includes the preconditioning matrix :

,

Or = o1 (§47 + D1+ £A) | = —or (AN},
Z—E,]
CF oy (347 = Du— £ AY)L | =on (A,
Z+§,j 2
C2_ = —09 (%BE + [)2 =+ %Bg)n L, = 02 (B+)Zj—% (1337)
Z,j—i
Cf =02 (387~ Do 5BY) | =0 (B )iy
W2
Co= (PN} +o1 (AN 1 — o1 (A7)l + 02 (BY) 1 — 02 (BY); s

When the preconditioned implicit upwind scheme (1.3.34) is applied at each point of the compu-
tational domain, the linear block system (1.2.18) is recovered and must be solved in an efficient
way.

1.4 Unsteady Flows

1.4.1 Dual-time framework

Unsteady fluid dynamic processes are frequently encountered in engineering problems and are
now commonly computed by the CFD practitioner. An immediate way to obtain a time-accurate
solution of the (unsteady) Navier-Stokes equations,

ow

S = et (0" =)y =0
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would be to apply the following scheme :

witt —wls  (5F 5G\"
1,9 1,j +< 1 + 2G> -0 (1.4.1)

At ox oy i
with a unique global time step At in each cell of the computational domain. However, such
an explicit scheme is only first-order time-accurate which is not sufficient for computing aero-
dynamic problems, unless very small time-step are used which leads in turn to high CPU time
consumption. Furthermore, in the case of low Mach number flow problems, stability criteria
would impose further limitations on the time-step size which would impair anyway the useful-
ness of such an algorithm. Consequently, in order to increase both the accuracy and the efficiency
of the time-integration process, it is usual to retain the following implicit scheme :

3w — 4w w5 F 5,6\
irj i,j i\j +< 17, %2 ) -0 (1.4.2)

2At ox oy i
An immediate Taylor-development around the new time-level (n + 1) shows that scheme (1.4.2)
provides a second-order accurate approximation of the unsteady Navier-Stokes equations; more-
over, the implicit character of the scheme allows to use large time-steps when advancing in time
without encountering stability problems (in practice, the time-step is limited by accuracy issues :
too large a time-step prevents from correctly representing the time-evolution of the flow prob-
lem). Naturally, it remains to explain how equation (1.4.2) is solved at each time-step in order
to yield a new physical state.

Approximate-Newton method

A first way to solve this scheme is to use an iterative approximate-Newton method. State w"t!
is replaced by a provisional state w™**! and the fluxes are linearized around the iterative level
(n, k) which leads to the following iterative implicit scheme :

nk n,k
H-AwlF = —At-RIF

with
Ek nkdl &
Awy = w5 —wy
IV it T TR LV A
2,7 2At 5&: (5y i ’
3 AV BY nk
H= <§Id + 0161 (AF) g + 0202 (BF g — 0161 (D1 + ﬁ)& — 0903(Dsa + ﬁ)@) .

(1.4.3)

At the first sub-iteration, w™ is set equal to w™ and once the sub-iterative process has converged
(i.e. Aw™> = 0), the unsteady equations are clearly satisfied. The solution at the time level
(n + 1) is then given by w"! = w™°.
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Dual-time stepping scheme

An alternative approach for the solution of the unsteady Navier-Stokes equations is the dual-time
method which has been commonly used for incompressible flows for a long time now [63] but was
first applied to compressible flow computations by Jameson [34]. At each physical time-step, state
w1 is computed as a steady-state with respect to a pseudo-time 7 (or dual-time). In practice,
an artificial (or dual) time-derivative is introduced in addition to the physical time-derivative
leading to the following discretization :

W™ —wiy | 3w — dwl T (61F ., 52G>”’m“

Ar 2AL ox | oy

=0 (1.4.4)

z‘?j

where A7 is the pseudo-time step and w™™*! denotes the state at pseudo-time (m + 1)A7 in
the convergence process from the physical state at time (nAt) to the one at time (n + 1)At.
Linearizing the numerical fluxes around the pseudo-time level (n,m) yields :

H-Awi™ = —AT - R (1.4.5)
with
Aw" = wi™ "
i _ B0 Ay F it (B F | 5G\™
1,] 2At 5x 5y i )

3 E E AY By n’m
H={((1+ §>\)Id—|— 0101 A" py + 0262 B iy — 0101(D1 + 5)51 — 0202(D2 + @)52 ;

(1.4.6)

where the parameter \ = % has been introduced and the quantity oy (resp. o2) denotes now
the ratio between the pseudo-time step and the space step in the x (resp. y) space-direction :
o1 = %, g9 = %yT

As in the approximate-Newton scheme, the first pseudo-state w is set equal to w"”, and,
when the pseudo-convergence process is achieved, i.e. Aw™> = 0, the LHS of equation (1.4.5)
vanishes. The unsteady equations are therefore satisfied (with second-order accuracy in time
and a space-accuracy depending on the choice of the numerical fluxes formulas) and the solution
at physical-time level (n + 1) is given by w"*! = w™>. One can notice that taking AT = oo
makes the dual-time stepping scheme identical to the approximate-Newton one. In fact, the
approximate-Newton method can be seen as a particular case of the dual-time stepping approach.
The decisive interest of the dual-time stepping scheme is that it allows a direct re-use of the
convergence speedup strategies ordinarily applied for steady flow calculations. Indeed, the LHS
of equation (1.4.5) can also be expressed as follows :

m—+1,0

H - Awl™ = CoAw}'i" + CT AwY , + CF Awl s + Oy Aw™ | + CF Aw (1.4.7)

where the coefficients C’Z-i are formally unchanged with respect to the steady case (but note the
definition of o, is now based on the dual time-step) and Cj is slightly modified since it includes
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now the ratio A between the physical and dual time-steps :

Cr =—o1 (3AF + Dy + %AY)?_’EJ =—0 (AJF)ZZE,J'

Cf =01 (2AF - AV)ZT =0y (A‘);:”;j

Cy = —o (%BE 4Dyt %BQ/)T — o2 (B, (1.4.8)
Cf =05 (38" — Dy - &BY) ;2 o2 (B)1

Co=(1+3 /\)Id+ op (AT vl 01 (A- ) ;o2 (B ij+l T 02 (Bf)z;nj%

Applying the time-accurate implicit upwind scheme (1.4.5) at each point of the computational
domain, one obtains a linear block system similar to the one expressed in (1.2.18). Hence, one
can use the same treatments employed for steady cases in order to solve the time-dependent
system.

1.4.2 Unsteady low-Mach number flows

The dual-time stepping formulation makes the implementation of the low Mach preconditioning
very easy. Indeed, applying the preconditioning matrix to the pseudo-time derivative enables to
preserve the time-consistency while the convergence rate of the dual-process is improved and the
accuracy of the computation is ensured by the preconditioned numerical dissipation. Thus the
form of the time-accurate implicit scheme remains the same :

nm __ n,m
H-Aw] = —Ar R (1.4.9)
with
nm _  n,m+l n,m
Aw; 7 =wij T Wi

3w, —4w +w S((FE _ FV AE vy
R _ i + 1( )+ 62(G” — GV)
b 2At ox oy

'7]’

3 - AY BY \""
H= <P_1 + §)Jd + 0161 A 1 + 0265 B jip — 0161 (D1 + 6—1)51 — 0205(Ds + 52 )52> ;

\

(1.4.10)

where we recall that ¥ and G¥ are the preconditioned convective fluxes (from the Roe-Turkel
scheme for instance) while Dl and Dg are the preconditioned numerical dissipation terms.

As mentioned earlier in the section dedicated to low Mach preconditioning, the efficiency and
the robustness of the preconditioning method for the unsteady equations rely on the value of the
"cut-off" used in the definition of the § parameter. Venkateswaran et al. showed in [81] that it
is necessary to modify the definition of the "cut-off" when going from steady to unsteady flow
problems. Using Von Neumann analysis, they proved that steady preconditioning is particularly
inefficient for computing unsteady flows. In the chapter dedicated to the Von Neumann analysis,
we will resume their work in the case of the implicit Matrix-Free method.
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1.5 Conclusions

This introductory chapter has recalled the design principles for building a block implicit upwind
scheme, successively for the steady compressible Euler and Navier-Stokes equations, then their
low-Mach number (preconditioned) version and finally in the unsteady low-Mach number case
treated using a dual time-step technique. Going from the steady compressible Euler equations
to the unsteady low-Mach number Navier-Stokes equations does not modify formally the linear
block system that must be solved at each iteration in order to obtain a new value for the vector
increment of conserved variables Aw. If we restrict ourselves to a three-point per direction first-
order linearization of the inviscid numerical fluxes, the block implicit scheme reads in all the
cases :

nm __ n,m
H - Awm = —-AT- RM ,
with an implicit operator of the form

H - Aw™ = CoAw " + CT Aw"T ; + CF AwlY s + Cy Aw™ | + CF Aw}Y

where C’;t, Cp are 4 x 4 (in 2D) block matrices built from the inviscid and viscous Jacobian
matrices plus the preconditioning matrix for low-Mach number flows and the A parameter for
dual-time computation. It will be shown in chapter 3 that the intrinsic efficiency of such a block
implicit stage is quite high; however, solving directly (with a Gauss-inversion) the linear system
associated with the implicit stage would become much too expensive as soon as the grid size
increases. In practice, this linear system is approximately solved and different solution methods
can be considered to this end. The next chapter describes two main classes of standard solution
methods : approximate factorization techniques and relaxation techniques, with a view to select
the one providing the best efficiency.







Chapter 2

Implicit Treatments

The block implicit stages described in the previous chapter can be ideally solved as such, meaning
the linear system associated with the implicit stage can be exactly solved (using some Gauss-type
inversion method for instance) but this is very rarely done in practice because such a direct solver
would be much too computational time and memory consuming ! In what follows however, the
direct solution of a given implicit stage will be considered as a reference as far as the intrinsic
efficiency is concerned since such a direct solution does provide the lowest number of iterations
to reach a steady-state (though, once again, at the expense of an unacceptably large unit cost).
There exists an ongoing quest for efficient approximate solutions of implicit stages, as proved
for instance by a recent contribution of Jameson and Caughey [36] : the basic motivation of
this quest has first been to find techniques that would simply allow to approximately solve the
implicit stage for a reasonable unit cost and the main achievement in that respect has been
the development of approximate factorization methods, with decisive contributions in the field
of Computational Fluid Dynamics by Beam and Warming [3] and Briley and MacDonald [§];
approximate factorization methods, in spite of some limitations that will be recalled in the next
chapter when studying the amplification factor of various implicit treatments, are still much in
favor in some heavily used flow solvers (see [62] for instance where an approximate factoriza-
tion technique is used within the OVERFLOW code; note that in this specific case the implicit
stage is made diagonal per direction, taking advantage of the specific form of approximate fac-
torization, which makes the approach attractive for its reduced unit cost and lowered memory
requirement). Next, with the development of iterative techniques, the focus has switched on find-
ing an approximate (iterative) solution method allowing to achieve an intrinsic efficiency similar
to that provided by the direct solver for the lowest possible unit cost. Following the pioneering
work of MacCormack [52] [57], numerous applications of relaxation techniques have been success-
fully applied to implicit upwind schemes. For several years, researchers and engineers working
on the development of efficient implicit schemes have divided themselves between those favoring
the approximate factorization methods and the ones promoting the use of relaxation techniques.
However, with the development of iterative approximation methods, (re)introduced in the late
nineties in particular by MacCormack [54] [55] [56], MacCormack, Pulliam et Venkateswaran
[64], it turned out such a division was largely artificial : line-relaxation and approximate factor-
ization techniques are now viewed as belonging to the same family of iterative solution methods,
with the standard ADI or modified ADI technique a particular case where a single iteration
is performed [9], [22]. For the sake of clarity, the presentation of these various techniques in
the present chapter will be progressive, starting with the basic factorization approach, followed
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by its more recent iterative version and ending up with point or line-relaxation approach; the
connection between factorization and relaxation techniques will be underlined throughout this
chapter as well as in the next one, devoted to the Von Neumann analysis of the implicit solution
methods here reviewed.

2.1 Approximate Factorization Methods

As previously mentioned, approximate factorization methods were the first successful implicit
methods used in CFD. Before the mid-1980s and the development of upwind implicit schemes,
the use of central difference schemes implied a lack of diagonal dominance of the matrix M of
the linear system (1.2.18) which made the standard relaxation techniques unstable. That is why
factorization techniques met a great success until recent years. In this section, two widely-used
approximate factorization methods are presented: the alternate direction implicit method (ADI)
and the modified approximate factorization method (MAF) [54] also sometimes referred to as
Dominant Diagonal ADI or DDADI [64].

2.1.1 Alternating Direction Implicit Method

The alternating direction implicit method (ADI), also called approximate factorization method
(AF), was successfully used in CEFD for the first time by Beam and Warming [3] and Briley and
MacDonald [8]. For standard compressible flows, the matrix M of the linear system (1.2.18) is
approached by the product of two tri-diagonal matrices, but applying this method to low-Mach
number flows requires an additional diagonal matrix so that the factorization is carried out as
follows :

M~ M,-D ' M, (2.1.1)
with
[z i [z x |
xr T
. x . . . x . x . :,U .
My=|. - ¢ ¢ cf - - ., My=| . cy - CY - Cf - , (2.1.2)
T T T €T x
T €T T T
L - - $ : x_
and
o -
€T
. . x . . . .
D=1|. - . ¢ . . .|, (2.1.3)
€T
X
L : :17_
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where the diagonal coefficients C¥, C§ and C{) are defined by :

V=Pl ro (3484 Dy) | —oi(345-D) |
1+5.J =3,

[\

C§=P ' toy (B4 D) —oa(3BE-Dn)
1,j+5 Ll—3

cg=p"!

\

One can notice that for compressible flows the preconditioning matrix P becomes equal to the
identity matrix so that one recovers the standard ADI factorization. Once the factorization
performed, the linear system can be solved in three steps as follows :

My - [Aw'] = [R"] |
[Aw*] = D - [Aw*] | (2.1.4)
M - [Aw"] = [Aw™]

where Aw™* and Aw™** are provisional values stored respectively after the first and the second step.
For carrying out the first and third steps, all is needed is the inversion of a tri-diagonal matrix,
which can be easily - viz. at a reduced cost - achieved using a LU factorization. Nevertheless,
the ADI method produces a factorization error which can limit the stability of the method in
some cases and most of all adversely affects the intrinsic efficiency of this method. The stability
and convergence properties of the ADI technique are now well established and understood (see
for instance [64]); in the next chapter, we will summarize, through a Von Neumann analysis, the
main weakness of this approach, namely its lack of intrinsic efficiency. Let us recall however the
ADI treatment applied to a block implicit stage can be made diagonal per direction [65] which
allows to significantly reduce its unit cost.

2.1.2 Modified Approximate Factorization Method

The standard ADI method can be modified in order to reduce the factorization error and thus
improve its intrinsic efficiency properties, in particular when large time-steps or CFL numbers
are used [56]. This can be achieved by approximating the matrix M associated with the implicit
stage as follows :

M~ M D' M) (2.1.5)
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with
[z i [z T ]
T T
e I I T I I TR -
T T =z x x x
A T x
i i i A
(2.1.6)
x
x
x
D= Co
T
T
L $_

Thanks to this modified factorization, non-zero coefficients of the matrix M are left unchanged,
while initially zero coefficients can still be modified which means a factorization error is still
introduced - it is however much reduced with respect to the baseline ADI approach, in particular
when large time-steps are used. The modified approximate factorization (MAF) is performed in
three steps :

M- [Aw] = [R"]
[Aw™] = D - [Aw"] | (2.1.7)
M} - [Aw”] = [Aw]

The MAF method is also called DDADI method to emphasize the fact that the matrices involved
in the factorization process are diagonal dominant [12]. The Von Neumann analysis presented
in the next chapter will demonstrate the MAF approach provides a better convergence rate than
the basic AF or ADI approach, though still far from the intrinsic efficiency associated with a
direct solution of the implicit stage.

2.1.3 TIterative correction of factorization error

ADI and MAF methods introduce a factorization error which can be expressed as follows :

M, D' My= M+ Papy
M{-D™' M, =M+ Pyar

In other terms, the actual system solved when using a factorization method is the following one :

M- [Aw"] + P [Aw"] = [R"]
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In order to eliminate this factorization error, a sub-iterative process can be employed :

Aw®] =0

Il=0,p

M - [Aw ] + P [Aw™Y] = [R"] + P - [Aw®] (2.1.8)
[Aw"] = [AwP)]

where Aw® = w® — w". When the method has converged, i.e. when w1 = w® the factor-
ization error vanishes and the exact solution of the linear system (1.2.18) is obtained. In practice,
the previous algorithm is written in a different way, so as to avoid the expensive evaluation of
the factorization error P; for instance the iterative MAF algorithm is rather expressed as :

[Aw®] =0

l=0,p

M- D7t Mb - [w D —w®) = [R7] = M - [w® — w™] (2.1.9)
[Aw"] = [w®) —w"]

or even more explicitly :

[Aw@] =0

[=0,p

M - [w* —w®] = [R"] = M - [w® — w"]

[w* —w] =D - [w —w?®] (2.1.10)
Mé . [,w(l—l-l) _ w(l)] _ [w** _ U}*]

[Aw"] = [w®) —w"]

The iterative MAF method requires the same tri-diagonal matrix inversions than the standard
MAF technique. Moreover these inversions can be done just once at the beginning of the sub-
iterative process. The over-cost of the iterative method is only due to the computation of the RHS
at each sub-iteration, which remains very cheap. The convergence rate improvement provided
by MAF will be assessed through a Von Neumann analysis in the next chapter.

2.2 Relaxation Methods

In the mid-eighties, MacCormack proposed to use relaxation techniques in order to increase the
efficiency of implicit treatments [52, 53]. Prior to that period, the implicit LHS operator was
generally inverted using the previously presented AF or ADI factorization method. The use of
relaxation methods was promoted by the simultaneous development of implicit upwind schemes
which ensured the diagonal dominance of the system - even though some studies have proved
block-implicit centered schemes of Lax-Wendroff type could also be efficiently solved using those
same line-relaxation techniques [19] [16]. Since that time, many studies have been dedicated to
these methods, and, more recently, Venkateswaran et al. [12] carried out a wide study to analyze
the performance capabilities of implicit upwind schemes solved by these techniques [9] [22].

In this section we introduce the principles of the relaxation methods and then we deal with the
most popular of them.
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2.2.1 Principles and properties

As always, our starting point is the linear system associated with the implicit upwind scheme
described in the previous chapter :

M - [Aw"] = [R"] ,
A generic relaxation technique may be expressed by the following step :
M- [AwtD] = R — (M = M) - [AwY] | (2.2.1)

where Aw® = w® — w" and M’ derives from a particular splitting of the matrix M; more
precisely, M’ is chosen so as to ensure the above linear system will be easier to solve than the
initial one : typically, M’ is chosen as a tridiagonal matrix since a tridiagonal system can be
solved for a reduced cost using a particular LU factorization known as Thomas algorithm [31]
[47]. In order to increase the intrinsic efficiency of relaxation methods, it is customary to split
M in different ways, corresponding for instance to alternate line or / and symmetric sweeps; for
instance, a relaxation technique making use of two sweeps would read :

M{ - [Aw*] = [R"] — (M — M) - [Aw®)] |
M}y - [AwHD] = [R™] — (M — M) - [Aw*] (2.2.2)

where Aw* is a provisional value after the first relaxation sweep. Setting M"” = M7 + M} — M,
these two steps can be combined and written as :

M- MMy - ™D — ) = [R?) = M- [w® —w"] (2.2.3)

which is an iterative approximate factorization version of the linear system. Expression (2.2.3)
makes clear the close connection between relaxation methods and iterative approximate factor-
ization techniques, as shown in [12]. In equation (2.2.3), [ represents a "sub" iteration counter
which corresponds to multiple sweeps of the linear system, while n denotes the non-linear counter
of the time-marching procedure. In practice, w(? is initialized as w(®) = w" and p sub-iterations
are carried out. When the method has converged, w1 = w® and the RHS of equation (2.2.3)
is satisfied; w"?! is then set equal to w® and the solution is advanced to the next time step.
The efficiency of the relaxation method relies on the number of the sub-iterations that are nec-
essary to approach the exact solution of the linear system. If p is too small, the method would
be fast - i.e. the unit cost would be low - but a great number of non-linear iterations would be
necessary to reach the steady state, whereas if p is taken too large, the unit cost method would
be higher but it would take fewer non-linear iterations to converge to steady-state. Thus the
choice of p is crucial for determining the intrinsic efficiency of the relaxation method. However,
this choice may turn to be case-dependent as will be seen in the following chapters, so that it
may be difficult to know a priori the optimum value of p.

Let us now review some of the most popular relaxation techniques. Each of them corresponds
to a specific choice of matrices M{ and M/ in (2.2.2) with corresponding specific properties of
stability and efficiency. Before describing in detail these methods, let us introduce some matrices
that will be helpful in the rest of the section; the matrix M associated with the implicit stage
may be decomposed as follows :

M=D+L+U;+ Lo+ Us




2.2.

RELAXATION METHODS

59

where the lower and upper matrices associated with each space direction are given by :

x
x
Ly = Cy U =
) ] ) ] (2.2.4)
- - - . -
x
x x -
Ly = Cy , U= - - - . Cf
x x
x
L x - - -
2.2.2 Alternate-Line Jacobi relaxation procedure
This well-known relaxation method relies on the following splitting matrices :
M { =I1+D+U; ,
My=Ly+D+U, , (2.2.5)

which correspond respectively to the relaxation of extra-diagonal unknown increments Aw in
the y direction when a system is solved with M/ as LHS matrix and to the relaxation of extra-
diagonal unknown increments Aw in the x direction when the system is solved with M. The
alternate-line Jacobi algorithm, denote hereafter ALJ(p), is expressed as follows :

[Aw @] =0

[l=0,p

M, - [Aw] = [R"] — (Ls + Us) - [Aw®)]

My - [AwD) = [R?] — (Ly + 1)) - [Aw] (2.2.6)
[Aw"] = [AwP)]

The first step corresponds to a line-implicit z-sweep, while the second step corresponds to a
line-implicit y-sweep. The cost per sub-iteration of this method is not so expensive since one
simply needs to invert a simple tridiagonal block system in each space direction, which can be
easily achieved by the use of Thomas algorithm and has to performed only once per non-linear
iteration : as in the case of iterative error correction for approximate factorization, only the RHS
of (2.2.6) have to be recomputed at each [ sub-iteration. However, the global cost of the method
will remain low only if the total number p of sub-iterations is not too large. This point will be
carefully analyzed in chapter 3. It can already be stated that ALJ(p) is generally not optimal
in terms of global efficiency : relaxation methods of Gauss-Seidel type, that make use of the
states already evaluated within a sweep, are in general more efficient, as will be shown in the
next chapter through the Von Neumann analysis of the amplification factor.
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2.2.3 Alternate-Line Gauss-Seidel relaxation procedure

The alternate-line Gauss-Seidel method performs symmetric z-sweeps followed by symmetric y-
sweeps. During each sweep, the states which have already been evaluated and whose new values
are available are used to compute the next states. This leads to the alternate-line Gauss-Seidel
algorithm (ALGS(p)) of the form :

l

( ) [Aw] = [R"] = Uz - [Aw)]

(M7 + Us) - [Aw™] = [R"] — Lo - [Aw’]

( ) [Aw™] = [R"] = Ur - [Aw™] (2:2.7)
( )-

As will be shown in the next chapter, this ALGS algorithm provides a better convergence rate
than the ALJ algorithm. However, as already observed in [12], it will also be shown that the
above procedure is only conditionally stable - which may seem rather surprising since ALGS(p)
is a widely-used line-relaxation procedure but we will comment on this point later on. The
ALGS(p) method allows to recover the level of intrinsic efficiency provided by a direct solution
of the implicit stage for a very small number p of sub-iterations; the price to pay for such a
high intrinsic efficiency is the need to invert 4 tridiagonal systems in (2.2.7) at each non-linear
iteration. An alternative strategy would be to use a relaxation method that does not require
any system inversion, at the expense of a probably much lower intrinsic efficiency, even for large
values of p. The balance between this poor intrinsic efficiency and the particularly low unit cost
of the approach may lead to a globally efficient strategy.

2.2.4 Point Jacobi relaxation procedure

The Point Jacobi or PJ relaxation method is precisely the simplest conceivable relaxation tech-
nique since it retains only diagonal terms at the new level (I+1) in the LHS; the following choice
for matrix M’ :

M =D, (2.2.8)

leads to the point Jacobi algorithm (PJ(p)) :

[Aw®] =0

Il=0,p

D - [AwY] = [R"] — (Ly + Ly + Uy + Us) - [AwWY)] (2.2.9)
[Aw"] = [AwP)]

Naturally, the point Jacobi algorithm is expected to have a much poorer convergence rate than
ALGS(p) : the quantification of this intrinsic efficiency loss will be performed in the next chapter
through Fourier analysis. Moreover, Von Neumann analysis will reveal that PJ(p) is in fact
unstable when it is used in conjunction with a block implicit scheme. Nevertheless, this algorithm
will prove to be a very cheap method to solve the matrix-free implicit scheme.
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2.2.5 Symmetric Point Gauss-Seidel relaxation procedure

The Point Jacobi algorithm can also be improved using a Gauss-Seidel type procedure : states
evaluated during a sweep are immediately used to compute the next ones; moreover a reverse
sweep is performed to increase the efficiency of the method. Consequently, the choice of the
matrices associated with such a procedure is the following one :

M{:L2+L1+D 5
My;=D+U+Us , (2.2.10)

which leads to the symmetric point Gauss-Seidel algorithm (SGS(p)) :

[Aw®] =0

Il=0,p

M - [Aw*] = [R"] — (Uy + Uy) - [AwWY)]

M} - [AwD] = [R"] — (L1 + Ly) - [Aw’] (2.2.11)
[Aw"] = [Aw(p)}

It must be well understood that the above algorithm does not introduce any actual inversion of
tridiagonal systems ! It could also be written as :

[Aw @] =0

[l=0,p

D-[Aw*] = [R"] = (L1 + Lo) - [Aw*] — (U1 + Ua) - [Aw®)]

D [AwD] = [R"] = (Uy + Us) - [Aw V] = (Ly + Ly) - [Aw*] (22.12)
[Aw™] = [Aw®)]

in order to make clearer the fact that the quantity (L; + Lo) - [Aw*] in the first sweep can
be computed using the new states Aw™* by simply taking advantage of immediate actualization
within the sweep; the same comment holds concerning the quantity (U + Us) - [Aw(*V] in the
second sweep.

Since the first matrix used in 2.2.11 is a lower triangular matrix and the second one is an upper
triangular matrix, this algorithm is sometimes referred to as LU-SGS. Using expression (2.2.3),
the above SGS relaxation procedure also reads :

M} - D7 My [wY — O] = [R7] = M - [wD — w™]

with an associated algorithm that can be expressed as :

[Aw®] =0

l=0,p

M- [w* —w®] = [R"] = M - [w® — w"]

[w* —w*] =D - [w —w®] (2.2.13)

Mé . [w(l—i-l) - w(l)] _ [’UJ** _ U}*]

[Aw"] = [w® —w"]
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Clearly, when a single sub-iteration is performed, the well-known LU approximate factorization
method is recovered. This remarks is aimed at pointing out once again the strong link between
factorization methods and relaxation procedures. As will be shown in the next chapter on
the basis of a Von Neumann analysis, the SGS algorithm allows to dramatically improve the
convergence rate with respect to the basic PJ method.

2.3 Conclusions

Several implicit treatments have been reviewed, that can be used to approximate at each time-
step the solution of the block implicit scheme presented in the first chapter of this thesis. Dividing
them between factorization and relaxation techniques would be rather artificial since standard
factorization techniques are nothing but iterative factorization technique applied with a single
iteration; it seems more interesting to distinguish between those treatments that make use of
tridiagonal systems inversions (AF(p), MAF(p), ALJ(p), ALGS(p)) and those that do not require
any system inversion (PJ(p), LU-SGS(p)). The latter treatments are bound to provide a rather
poor intrinsic efficiency but are nonetheless interesting for their low unit cost whereas the former
treatments are naturally more time-consuming but offer a much better convergence rate. Such
qualitative comments are naturally not sufficient to allow the selection of the best globally efficient
block implicit treatment hence the quantitative Von Neumann analysis performed in the next
chapter.




Chapter 3

Intrinsic Efficiency of Implicit Block
Schemes

3.1 Introduction and objectives

Most of the analytical tools used to study the convergence performance of numerical schemes are
limited to linear problems. However, performing a stability analysis is not easy even with such
a simplification. Among the various methods available to carry out this task, Von Neumann
analysis is certainly the most valuable. It is based on the Fourier transform of the numerical
scheme and it allows to know whether the numerical errors introduced in the solution by the
discretization are amplified (instability) or damped (stability) [31] [47]. Besides, Von Neumann
analysis can be used to estimate how fast the error will be damped (or amplified), providing a
quantitative information to rank a variety of implicit treatments on the basis of their convergence
rate. Of course, the results obtained by such a method have to be commented carefully. Indeed, as
mention upper, Von Neumann theory requires a linear problem which means that the coefficients
of the equations are constant; moreover, periodic boundary conditions are assumed in order to
allow the use of Fourier series. In spite of these limitations, many researchers, such as Merkle’s
co-workers in the USA [14, 11, 81] and Lerat’s team in France [39, 43, 44|, have employed this
technique to study the stability and efficiency properties of numerical schemes not only applied
to linear scalar equations but also when used to solve the full (linearized) Euler or Navier-Stokes.
The stability (and efficiency) results obtained in this latter case are in general - and in spite
of the above-mentioned restrictions on the scope of Von Neumann analysis - meaningful for
practical computations. Therefore, this chapter will be focused on the Von Neumann analysis of
the implicit treatments presented in chapter 2, when used to solve the block-implicit stage of the
Roe upwind scheme presented in the first chapter of the thesis in the case of the linearized Euler
equations. The goal of this preliminary study is to identify the numerical treatment providing
the best global efficiency for all-speed flows, regardless of memory-storage issue for the time
being. The select block-implicit treatment will stand as a reference point for the matrix-free
implicit treatment introduced in the next chapter. In the present chapter, the principles of the
Von Neumann analysis are first briefly outlined; this analysis is then applied to the block-implicit
Roe-type upwind scheme and global and local stability / efficiency results are presented both for
the reference direct solver and the iterative methods introduced in the previous chapter.
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3.2 Linearization of the implicit upwind scheme

Let us consider the implicit upwind scheme for low-Mach unsteady flows (1.4.9) that was de-
scribed at the end of the first chapter. All other cases (steady inviscid flows and so on), also
described in chapter 1, can be derived from this scheme after different simplifications. This
scheme reads, using the notations introduced in chapter 1 :

H - AwZ}m = —-AT- R:L]m ,
with

( nm _  nm+l n,m
Aw; - = w; ij o

nn _ 305"~ dwiy bt (6(FE - FY) | y(GE - 6Y)\ ™"
" 24t 0x 3y y
Z)-]

1,3 B B 5oL AL Ao By YT
H=|P +§)\Id+0'1(51A ,U,l—i-O'Q(SQB /1,2—0'1(51(D1+5—x)51—O’252(D2+E)52 ,

where

AT AT AT
A=R7 1= 5 2=
In order to apply Von Neumann analysis, we have to linearize this system. This is done by
"freezing" at a constant state the Jacobian matrices of the inviscid and viscous fluxes as well as
the dissipation matrices, so that all these matrices do not depend on space nor time anymore.
In such a case, the physical inviscid fluxes simply read :

(fE)n,m — AE ™ ’
3.2.1
(gE)n,m — BE ™ ( )

Considering higher-order extension, the numerical inviscid fluxes are linearized as follows :

Eynm _ [ 4E € 3 - 2 € 4 n,m
01(F )U - _A (51“1 - Z(l - “)51N1> + Dy ((1 — )0y — Z(l - “)51)] "W
Eynm _ [ pE € 3 - 9 € 4 nm  (3.2.2)
0(G")y;" = |B (52M2 —,0- H)%/@) + Dy ((1 —e)oy — (1~ H)%ﬂ Wi
while the numerical viscous fluxes read :
[ 52 410
Vinm 1% 1 v Yl 2M1 2 LM
51 (F )’L,j ~ _Al ’ St + A2 6y :| wi,j 3
020 62 (3.2.3)
vym | pVv  9201H2H1 v 02 n,m
G~ [Bl T T @] L

Using these expressions, the linearized system can be written under the following form :

3\ A
HeAwi™ = =K wl™ o+ wly o+ A (3.2.4)
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with
3 . £ P . L £
K=K = S+ AP (81 — il /)02 1) — (1 —e)Dy + AY)oF — Dy (1~ K)0}

+ B (G2 — S(1 = K)63u2) — (1 =€) D2 + BY)33 — Do (1 — n)3

— SV 511102410

H =P~ + 3\Id+ AP6 1y + BESyy — (D1 + AY)6? — (Dy + BY )62
(3.2.5)

where the following notations were used :

i . AV . AY
AE :O'lAE R AY :Uli 5 Ag :Ulé 3
. . BY . BY
BY =0B%, BY =0y -, Bgzagﬁ ,

§V = AV 4 BY |
If the first-order upwind scheme is used, the linearized explicit operator K takes the simple form :

K= ]CI = g)\Id—F AE51M1 + BE52M2 — (Dl + A}/)é% — (DQ + B;/)&% — Svélulézug
In the remainder of this chapter, we will mainly focus on the third-order explicit stage Ky since
it is the one used in practice; however, the implicit operator H will be the one deduced from the
first-order upwind scheme (see 3.2.5), for cost reason as explained in chapter 1. A few words will
be said about the impact of this choice, with reference to the case where the implicit stage is
consistent with a first-order explicit stage defined by K;I1.

3.3 Fourier Transform

In order to perform a Von Neumann analysis of the general linear scheme (3.2.4), it must be
transformed into the Fourier space. The appendix B at the end of the thesis provides more
details on the Fourier transform for the interested reader. The present section goes straight to
the point of giving the Fourier transform of the general scheme (3.2.4)-(3.2.5) that will be used
hereafter in the Von Neumann analysis. An angle of phase or reduced wavenumber is associated
with each geometric direction :

2 2
— . =_.4 3.1
3 A, o, m Ny Yy, (3.3.1)

where )\, and )\, denote the wavelengths in each direction. When applied to the space difference
operators, the Fourier transformation leads to :

— . — . ~2 ~9
011 =181, O =1sy, 61 =—221, 02 =—2z2,
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where

sy =sin(§), sy=sin(n), 21 =(1—--cos(§)), z2=(1—cos(n)).

Since constant functions are not represented in the Fourier space, the contribution of states
w™ and w" !, which remain constant during the convergence of the dual-time stepping scheme,
vanish. By transforming each side of equation (3.2.4) we eventually obtain :

H-Awgy" = —K-wi5" (3.3.2)

where H, K and w™™ denote the transformed functions of H, K and w™™ respectively. In the
present case of the dual-time implicit scheme, operators H and K read :

p

3 2 . 2 .
K = SAd + 2((1—5)1)1 + Alv)zl + 2((1—5)1)2 + BZV)Z2
+e(1- Ii)ﬁl 22+ e(1— Ii)ﬁz 22 — SVs1s9

+1i (AEsl <1+§(1—1{)21>+BE52 <1+§(1—m)22>>

H = P '+ g)\ld + 2(51 + AY) 21+ 2(52 + Bg) 29 + i_(AE31+BE32>
(3.3.3)

If the first-order upwind scheme is used, the Fourier transform of the explicit operator K7 is
given by :

3 2 . 2 . . L .
K =Ad+2 (D1 + AY) 2142 (Dy+ BY) 20 — SVs150 +1 (AFs) + BFsy)

3.4 Amplification factor

In order to study the stability properties of the implicit upwind scheme, we have to define the
amplification factor. For any pseudo-time level (n,m), the following relation between ™™}
and W™™ can be written :

@) = G m) - @ (E ) (3.4.1)

where GG denotes the amplification matrix which depends on wavenumbers &, 1 as well as on the
Jacobian matrices and dissipation matrices. The linear stability of the scheme is known from the
amplification factor which is the spectral radius p(G) of this amplification matrix G : namely,
if p(G) < 1 the errors in the system are damped whereas if p(G) > 1 the errors are amplified
leading to instability. More importantly, the magnitude of the amplification factor allows to
estimate the convergence rate of the numerical scheme. Indeed, if p(G) — 0, a fast damping of
all the error modes can be expected and consequently a fast convergence, while if p(G) — 1,
a poor damping and hence a poor convergence rate is bound to be obtained. In practice, to
analyze the performances of the scheme, a finite number of values for the wave numbers is fixed
(in other words the wave numbers plane is discretized with a given level of refinement) then
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the amplification factor is computed for each combination of these values. This computation is
not performed analytically when dealing with a linearized system of equation but using our own
Fourier analysis code. In this chapter, our attention will be restricted to the case of the linearized
(preconditioned) Euler equations because our studies have shown that the conclusions drawn in
that case regarding the most efficient implicit treatment could be extended with confidence to
the case of viscous and unsteady flows.

3.5 Analysis of the Direct scheme

The first method to be analyzed is the one for which the system associated with the implicit stage
is solved directly, 7.e. without approximation. This so-called direct solver does not introduce any
error (contrarily to approximate factorization method for instance), so it is expected to provide
the best amplification factor. Hence, it will stand as our point of reference, as far as convergence
rate or intrinsic efficiency is concerned, in the remainder of the chapter. The amplification matrix
associated to this scheme reads :

G.=Id-H ' K (3.5.1)

For a given implicit and explicit stage, the amplification factor of the direct solver (or any
other implicit treatment besides) applied to the linearized Euler equations depends on a limited
number of parameters, through the definition of H and K : the wave-numbers of course, the
ratio o1, o9, the Jacobian matrices A¥ and B and the dissipation matrices corresponding to
the Roe upwind scheme, that is given by (1.2.8) for compressible flows and by (1.3.30) in the
low-Mach number preconditioned case. For the linearized Euler equations, A”, B, D1 and D2
are constant matrices that essentially depend on the Mach number M and the flow direction
v/u (the speed of sound ¢ and the density p can be kept constant at a reference value without
loss of generality while the ratio of specific heats  is such that v = 1.4; for the non-dimensional
Euler equations the choice p = 1, ¢ = 1 is retained). Moreover, through the ratio oy and o9, H
and K also depend on the aspect ratio AR = dy/dx and on the C'F'L number introduced in the
definition of the time-step :

At =CFL- min(é—i, =
Al A

) (3.5.2)
where \] and A\ denote the spectral radii of A® and B¥ (A = |u| +c and A\] = |v|+¢). When
preconditioning is applied, the time step is defined using the spectral radius of the preconditioned
Jacobians PAF and PB¥. Using this time step definition, the parameters ¢; and o can be
computed :

At 1 AR

. 5 : E
AF =20 :CFL.mm(E,E)-A (v/u, M)

. o (3.5.3)
BE — FL - mi —)-BF M

5 =C ( )‘ii_ a)\;_) (v/u, )

Since p(AF )s p(BF) (or their preconditioned equivalents) depend themselves on v/u and M, the
quantities A¥ and B¥ depend eventually on the Mach number M, flow direction v/u, CFL




68 CHaAPITRE 3. INTRINSIC EFFICIENCY OF IMPLICIT BLOCK SCHEMES

number and aspect ratio dy/dz; the dissipation matrices are also functions of these same param-

eters. In the preconditioned case, P, f)l = 01[71 and Dg = 02152 can also be expressed in terms
of these parameters since the preconditioning parameter (3, expressed using the global definition
(1.3.2) depends exclusively on the (fixed) Mach number. Summing things up, it is thus possible
to write :

G*(éan; M; CFL7U/U7AR) = Id—Hil(f,n;M,CFL,U/U,AR) K(§7777M7CFL7U/U7AR)

Preliminary studies have shown that the most influential parameters in the case of the linearized
Euler equations are the Mach number for the physics and the C'F'L number for the numerics.
In the remainder of this chapter, it will therefore be assumed that the aspect ratio is equal to
1 (which is a reasonable assumption for the grids used in inviscid flow computations) and the
flow direction is diagonal with respect to the Cartesian grid (v/u = 1 which makes the flow truly
2D). Several types of analysis can be performed on the amplification factor :

e local stability and efficiency analysis :

for a given set of physical (M, v/u) and numerical (CFL, AR) parameters, the spectral
radius p(Gy)(§,n) is computed with a sweep on the wave-numbers £ € [0, 7], n € [0, 7] ; if
there exists at least a value of (§,7n) for which p(G.) > 1 the scheme is unstable for the
fixed values of the physical and numerical parameters considered. Apart from the couple
(&,m) = (0,0) for which p(G.) = 1 for consistency reason, achieving the smallest possible
value of p(G,) for all (£,n) # (0,0) ensures a fast damping (or a high intrinsic efficiency)
of the scheme under study.

e global stability analysis :
the quantity p***(M,CFL) = maxec(o xnefo,x] (P(G«(&,n; M, CFL))) is computed with a
sweep on the physical parameter M and the numerical parameter CF L. If the scheme
is stable for a given (M,CFL) couple, this maximal value is equal to 1 (obtained for
¢ =n =0). So that, if a scheme is globally stable for the whole range of Mach and CFL
numbers considered in the study, p***(M,CFL) = 1VM, YCF L. If the scheme is unstable
for some (M, CFL) couples, values larger than 1 for p***(M,CFL) appear in the study.

e global efficiency analysis :

the quantity p.(M,CFL) is the mean value of p(G«(&,n; M,CFL)) computed when £ and
n vary between 0 and 7. It is computed with a sweep on the physical parameter M and
the numerical parameter CF L. This mean value may of course be lower than 1 even
though the scheme is unstable and exhibits p(G(&,n)) > 1 for some values of (§,7); so the
quantity p.(M,CFL) does not provide any information on the scheme stability. However,
it completes very usefully the previous global stability analysis based on p***(M,CFL).
Indeed, if the scheme is stable for a given (M,CFL) couple (p***(M,CFL) < 1), the
mean value provides a quantitative information on the damping or intrinsic efficiency of
the scheme : the slower the value of p.(M,CFL), the better the damping offered by the
numerical treatment for this couple of Mach and CFL numbers.

Naturally, the local or global analysis carried out for the direct solver can be also performed,
with the same interpretation for the approximate solution methods considered in the present
work. Let us start with a study of the direct solver amplification factor p(G.) when M and CFL
are free parameters (while v/u =1 and AR = 1).
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3.5.1 Effects of inconsistency between implicit and explicit stages

The effect on efficiency of coupling a simple first-order implicit operator H! = I + K! with a
third-order explicit operator K//! has already been analyzed in the literature (for instance by
Pulliam et al. in [64]). Since this simple non-consistent choice is retained throughout this work,
it seems interesting to summarize the consequences of such a choice for the whole range of Mach
number. First of all, both [1I/III and I/III schemes are found to be unconditionally stable
when exactly solved, be it in their non-preconditioned or low-Mach preconditioned version. The
efficiency of both schemes in the non-preconditioned case is analyzed through the plots of p, in
function of M and C'FL displayed in figure 3.5.1 :

e when large CF'L numbers are used, the consistent choice IT71/I1I provides an excellent
damping as long as the Mach number does not become too low. When M — 0, the error
damping goes to 1 (almost no damping at all hence a very low convergence rate) whatever
the value of the CFL number. This well-known behavior is typical of the low-Mach number
issue with upwind compressible flow solvers.

e the non-consistent choice I/III displays the same weakness for low values of the Mach
number. Moreover, for large values of the C'F'L number, the mean value of the amplification
factor does not tend to zero any longer but to a finite value (typically above 0.5 for the
whole range of Mach number) : this loss of efficiency is a direct consequence of the fact
HI =T+ KM #1+ KM

) o
a =
° e
g 2
g g
< <

0.25 0.25

Figure 3.5.1: Average amplification factor for the Direct scheme. Left : consistent scheme IIT/III.
Right : Inconsistent scheme I/III.

Considering the behavior of the average value of the amplification factor, it can seem unnecessary
to use high CFL numbers for the inconsistent scheme I/III. In order to investigate this point,
a local study, that is a study of the amplification factor versus the wavenumbers ¢ and 7 for a
specific Mach number and for two different CFL numbers, is performed. A subsonic case (M =
0.5) is selected (to avoid any interference with low-Mach effects that will be dealt with below)




70 CHaAPITRE 3. INTRINSIC EFFICIENCY OF IMPLICIT BLOCK SCHEMES

and a comparison is made between the amplification factor of the Direct Scheme obtained with
CFL =100 and CFL = 105. The results are presented in figure 3.5.2. As expected, the global
shape of the amplification factor is quite the same for CFL = 100 and CFL = 10°. Nevertheless,
in the low-frequency region, that is for wave-numbers close to zero, there is a non-negligible gain
of efficiency achieved by using a very high CFL. In appendix B, we explain why the efficiency of
a method in the low-frequency zone is in fact essential for the convergence performance. Thus,
in spite of an average value p, almost independent of C'F'L once this parameter is large enough,
there is still a benefit to run at infinite CFL numbers.

1 1
] \ ] \
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/\ ] I e
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~ 05 0.6 ~ 05 0.6
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Figure 3.5.2: Amplification factor for the Direct Scheme at M = 0.5. Left : CFL = 100. Right :
CFL = 10°.

3.5.2 Low Mach number effects

It has been noted on figure 3.5.1 that the average amplification factor of the Direct Scheme goes
to unity when the Mach number goes to zero, leading to a poor damping of the errors. This
problem motivated to use of low-Mach preconditioning methods in order to improve the efficiency
of the compressible solver in this regime. The Direct I /111 scheme using Turkel preconditioner
recovers a very good efficiency for small Mach numbers (c¢f. figure 3.5.3) and remains stable for
all CFL numbers. Note the results obtained for the Direct I11/I1I scheme demonstrate that
low-Mach preconditioning is essential to provide truly excellent damping and fast convergence
for the whole range of Mach number when large C'F'L numbers are used (but, alas, the consistent
IIT/III scheme is clearly too expensive both in terms of unit computational cost and memory
storage). In the manner of the previous section, a local analysis can be carried out in order to
analyze more closely the gain of efficiency obtained with the preconditioned Direct I /I11 Scheme
with respect to the non-preconditioned version. A low-Mach case (M = 1073) is now selected
and a high CFL number (CFL = 10°) is retained since it has been previously shown that such a
choice enables to increase the damping over the low-frequency part of the spectrum. The results
are presented in figure 3.5.4 :

e for the non-preconditioned scheme, there is still a good damping in the high-wavenumber
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regions but the amplification factor in the low wavenumber area becomes very close to
unity, leading therefore to poor damping and convergence (low intrinsic efficiency).

e on the other hand, the preconditioned Direct Scheme provides a very good damping over the
entire wavenumber domain. Indeed, the results are very close to the original scheme under
standard "compressible flow" conditions given in figure 3.5.2. Similar analyzes are made
by Merkle and Venkateswaran in [81] and the reader can refer to this work for instance
for further studies about preconditioning techniques (viscous flow, high-aspect ratio or
unsteady flow for instance).

Since the Direct Solver efficiency properties represent an ideal to achieve at the lowest possible
cost using an approximate iterative solution technique, only the preconditioned implicit stage
will be considered in the remainder of this chapter.

Average (p(G))
Average (p(G))

Figure 3.5.3: Mean value of the amplification factor for the Direct scheme using the Turkel
preconditioner. Left :consistent scheme III/III. Right : Inconsistent scheme I/III.
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Figure 3.5.4: Amplification factor for the Direct Scheme at M = 10~3 with CFL = 10°. Top :
No Preconditioning. Bottom : Turkel Preconditioning.
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3.6 Analysis of approximate iterative implicit treatment

In chapter 2, several approximate inversion methods have been described to solve the linear
system (1.2.18). The presentation of these methods has been precisely based on a linear system
viewpoint, introducing matrices Mj, M} and D to split the large-banded matrix M associated
with (1.2.18) as well as lower and upper matrices Ly, Lo, Uy and U,. The present section is
devoted to the presentation of a unifying viewpoint on all these methods that will make easier
the Fourier analysis of these various implicit treatments. This unifying formulation is based on a
difference operator viewpoint rather than a linear system viewpoint (though both are equivalent).
Let us thus first consider the implicit scheme for low-Mach number unsteady flows (1.4.9) and
let us focus on the implicit operator H, which can be split into :

H=Do+7T + T (3.6.1)

where Dy, 77 and 75 are difference operators given by :

Dy=P '+ g)\ld ,

- AV
T =01 (51AE,M1 —01(Dy + ﬁ)(sl) ;

- BY
Ty =0y (52BEM2 — 02(Dg + ﬁ)@) .

Assuming constant coefficients, that is considering a linear problem, the operators 7, become :
T = AP81pq — (Dy + AY)dF,
To = BEGyuy — (Dy + BY)62 .

Alternately, the implicit operator H can be also split as follows :

H=D+&+S& (3.6.2)
where D, S§; and S, are defined as :
D=C",

nm _ ~+ n,m - n,m
St Awm =] Awi—H,j +C] sz‘—l,j ,

Sy - AwZ}m = C;r CAw 4+ CF - Aw"

ij+1 b=l
with
( cf = (%AE — (D1 + AY))H%,J' = Az'_+§,j ’
Ccr = —(%AE +(Dy +A¥))i—§,j = _Azt%,j ’
Cyf = (%BE — (152 + B;/))i,ﬁré - B;j+% ’

1. . )
Cy ==(3B "+ (Da+ BY));; 1 =-B, .,
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For a linear problem, the operators S and the coefficient D can be simplified into :
3 2 . * .
D=pP '+ SMd+2(D1+ AY)+2(Dy + BY)
S = A& - Ater
Sy =B & - BYE;
where the operators &, are shift operators over one grid cell such that :
EF - Awj = Awiz
+ R .
52 . Aww = sz,jil .

The two splittings (3.6.1) and (3.6.2) will be useful to characterize approximate factorization and
relaxation treatments once all these treatments put under the form of a general iterative scheme,
as explained below. The Fourier transform H of the implicit operator H has been defined in
(3.3.3); alternatively, if T}, T» denote the Fourier transforms of 77 and 73, and similarly, S and
So are the Fourier transforms of &; and So, the symbol H can also be expressed as :

H=Dy+T1+T5=D+ 51+ 52 (3.6.3)
Making use in particular of the Fourier transformation of the difference operators £* :
Efc = eii— £ ,

+_ g
Ey =e .

leads to the following definition of the symbols T}, and S, :
( T =2 (El + AY))ZI +1i AE.Sl ,
Ty =2 (Do + BY))zs +1 BEs ,

Si = —(Dy + AV)) cos(€) +1 APs, |

Sy = —(Ds + BY)) cos(n) +i BEs, .
with
z1=(1—=cos(§), z2=(1—cos(n)), s1=sin(&), s9=-sin(n) .

Keeping in mind these various definitions for future use, we are now going to introduce a gen-
eral form for the iterative schemes under study. A general iterative scheme whose form covers
both iterative relaxation methods (such as ALJ(p), ALGS(p), PJ(p) or SGS(p)) and iterative
factorization methods (such as AF(p), M AF (p)) reads :

Ho - Aw TV = —ATRIT — (H —Ha) - Aw) (3.6.4)

where Aw(+D) = D — ™ and H, is a difference operator that depends on the choice of
the iterative method. In fact, as pointed out in chapter 2, the operator H, is not necessarily
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the same at each stage of the sub-iteration process, so that a more general form of the iterative
scheme is :

a=1, N
He - sz(,l]]-wa) - _Ar. R:;n — (H —Ha) - Aw(lN+a—1) (3.6.5)

Z?]

The full algorithm is then given by :

a=1 N (3.6.6)

Ha - Awl ™ = —Ar R = (H—Ha) - Al 7Y

n,m __ (pN)
| Aw;j = Aw;j

The expression of operators H,, for the different iterative methods previously introduced will be
detailed in the next paragraphs. First, the Fourier transform is applied to this general iterative
algorithm in order to obtain a closed-form expression for the associated amplification factor :

(Ar RO =K anm
AGO =0
l=0,p—1
(3.6.7)
a=1, N

H, - AQUN+a) — g (H — Hy) - ApN+a=1)

AG™™ = AgpPN)
At each step of the sub-iterative process, a provisional amplification matrix can be defined :
Viello, pN] @® =G;-a™™

Obviously, the choice Aw® = 0 yields Gy = Id and the amplification matrix resulting from the
global algorithm is :

G =G,y

We want to express this matrix as a function of the Fourier symbols H, K and H,. We will now
recall the analysis presented in [39], [19]. Let us write the iterative scheme using the provisional
matrix G; :

Hy (Ginsa — Id) = —K — (H — Hy) (Ginsa_r — Id)

Now let us introduce in this expression the amplification matrix of the Direct Scheme
G, = Id — H™'.K;immediate calculations yield :

GiNta = Ginta—1 — Hy' H Ginia-1 + Hy' H G,
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Subtracting G from the LHS and RHS leads to :
(GiNta — Gi) = (Id— H;' H) (Ginta-1— Gs)

When « varies from 1 to N, we obtain :

N
(Guynn —Gs) = H(Id —H;' H) (Giy — Gx)

a=1
Eventually, when the sub-iterative process is completed after p iterations, we have :

N p
(Gpn — G.) = [H(Id — H! H)] (Id—G,)

a=1

The amplification matrix of the general iterative scheme is therefore defined by :
G=G,+ VP (Id-G,)

N (3.6.8)
vV=]]ud-H" H)

a=1
This formula enables us to quantify the impact on intrinsic efficiency of the two levels which
drive the efficiency of an iterative method : firstly, the exact implicit scheme should provide the
best damping, that is the best amplification matrix G,; secondly, the iterative method should
converge as fast as possible to this exact solver. According to formula (3.6.8), for a given exact
implicit stage (such as the block one studied in the previous section), the convergence rate of an
approximate solver depends on the coefficient V' which is itself a function of the exact implicit
stage Fourier transform H and of the Fourier transform(s) H,, specific to the chosen approximate
treatment. This coefficient V' should be as small as possible so as to provide the best damping
for a reduced number of sub-iterations. If H, = H then V = 0 and the amplification factor
of the Direct Scheme which provides the best damping is naturally recovered. In the following
sections, formula (3.6.8) will be used to analyze the amplification factor of the iterative implicit
treatments described in chapter 2.

3.7 Alternate Direction Implicit Method

The ADI or AF method improved by a sub-iterative process aimed at canceling the factorization
error can be clearly cast into the general form (3.6.6) using the single implicit operator H,
(a=1):

Hapr = (Do +T1) - Dyt - (Do + T2) (3.7.1)
that is
Hapr=H+Ti-Dy'- T (3.7.2)

The amplification matrix associated with this method is immediately deduced from (3.6.6) :

GADI = G* + VgDI (Id - G*)
(3.7.3)
Vapr = (Id = Hyp, H)
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with
Hapr = (Do +Ty)- Dyt (Do +To) =H+T Dyt Ty (3.7.4)

One can notice that when a single sub-iteration is performed (p = 1), the original ADI scheme is
recovered with the corresponding amplification factor G apr = Id — HEL]‘) 7+ K. Let us now study
the properties of the ADI(p) or AF(p) method using Von Neumann analysis.

3.7.1 Global analysis
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Figure 3.7.1: Average (left) and maximum (right) amplification factor of the non-iterative ADI
scheme.

The average papr and maximum p'J'7y; amplification factor for the non-iterative ADI scheme

are plotted in figure (3.7.1) as a function of the Mach number and the CFL number. The very
well-known behavior of this method, namely a very poor damping for high CFL numbers due
to a dominant factorization error, is made clear by these plots. We observe that the optimal
CFL value is around 5 which is also well-established by several studies [64]. The sub-iterative
process that was previously described (ADI(p) or AF(p)) improves the amplification factor.
The ADI scheme with 20 sub-iterations provides a better damping of the error (cf. figure 3.7.2).
However, this damping still deteriorates for high CFL number and we even note instabilities
for CFL > 100. There is still an optimum CFL number whose value is about 20. We showed
previously that for such value of the CFL number, the Direct Scheme does not provide the
best damping, so the efficiency of the ADI method, even with a sub-iterative process, is not
satisfactory since it does not allow anyhow to recover the convergence rate offered by the exact
solver.

3.7.2 Local analysis

Studying more precisely the properties of the ADI scheme requires a local analysis. We choose
a low-Mach case (M = 1073) and we use the ADI scheme with 20 sub-iterations. Since the
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Figure 3.7.2: Average (left) and maximum (right) amplification factor of the non-iterative ADI
scheme.

global analysis showed that the optimum CFL number was 20 in that case, we compare this
method with the Direct Scheme at CFL 20. The results are presented in figure 3.7.3. The
amplification factor of the ADI scheme is close to the Direct Scheme for the low wavenumbers.
Nevertheless, we note that 20 sub-iterations are not sufficient to obtain the same efficiency than
the Direct Scheme, especially for the high frequency regions. Further analyzes have shown that
50 sub-iterations have to be made, at least, to recover this efficiency over the entire wavenumber
domain. This result confirms that ADI scheme, even with a sub-iteration process, is inefficient.
First, it requires a finite time-step for which the error damping will be anyway sub-optimal
(with respect to the one that can be expected from the exact treatment); second, it needs a
large amount of sub-iterations to be as efficient as the Direct Scheme, even for this sub-optimal
time-step value.
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Figure 3.7.3: Amplification factor at M = 1072 and CFL = 20. Left : ADI scheme with 20
sub-iterations. Right : Direct Scheme.
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3.8 Modified Approximate Factorization Method

The DDADI or MAF method improved by a sub-iterative process aimed at canceling the factor-
ization error can be clearly cast into the general form (3.6.6) using the single implicit operator

Hyar = (D+81) D' (D+S8y) (3.8.1)
that is
Hyar=H+S1- D t. Sy (3.8.2)

The amplification matrix associated with this method is given by :

(3.8.3)
Virar = (Id = Hy/yp H)
with
Hyarp=(D+S8) D' (D+S)=H+S,-D '8 (3.8.4)

As mentioned for the ADI method, one can notice that for one sub-iteration (p = 1), one recovers
the original MAF scheme, and therefore the original amplification factor Gayap = I d—HAjIlA K.
Let us now study the properties of M AF(p) using Von Neumann analysis.

3.8.1 Global analysis

Average (p(G) )
Maximum ( p(G) )

Figure 3.8.1: Average (left) and maximum (right) amplification factor of the non-iterative MAF
scheme.

Unlike the ADI scheme, the average amplification factor of the MAF scheme provides a quite
good damping for all CFL numbers and for all Mach numbers (¢f. figure 3.8.1). Unfortunately,
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we also note that the maximum value of the amplification factor is greater than unity for the
same conditions. It means that the MAF method is unstable if no sub-iteration process is used.
The amplification factor of the multi-sweep MAF scheme using 20 sub-iterations is plotted in
figure 3.8.2. Using the sub-iteration process improves dramatically the efficiency of the scheme
since it recovers the map of the Direct Scheme (cf. figure 3.5.3). Besides, as the maximum value
of the amplification factor remains equal to unity, the stability is ensured. Hence, the multi-
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Figure 3.8.2: Average (left) and maximum (right) amplification factor of the multi-sweep MAF
scheme with 20 sub-iterations.

sweep MAF scheme is a very competitive method compare to the ADI scheme. This technique
enables the use of infinite time-step and it requires a little amount of sweeps to obtain the same
efficiency than the Direct Scheme.

3.8.2 Local analysis

Let us now lead a local study of the MAF scheme for a low-Mach case (M = 1073). In figure
3.8.3, we drew the amplification factor of the original MAF scheme at CFL = 10 and the one
related to the multi-sweep MAF scheme at CF L = 105 with 20 sub-iterations. As expected from
the global analysis, instability arises for the original scheme in the low wavenumber regions.
The plot also shows that, in the same wavenumber regions, the damping of such a scheme is
quite poor. On the other hand, the multi-sweep scheme provides an excellent damping over the
entire wavenumber domain. Nevertheless, compare to the Direct Scheme, we note a little loss of
efficiency in the low frequency area. This loss can be circumvented by increasing the number of
the sweeps.

Approximate Factorization methods using a sub-iteration process provides very different
behaviors according to the choice of Factorization (basic ADI or improved MAF). Indeed, the
iterative or multi-sweep strategy reveals itself to be almost useless for the ADI scheme while
it dramatically increases the efficiency of the MAF method. Such results have been further
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Figure 3.8.3: Amplification factor at M = 1072 and CFL = 10%. Left : Original MAF scheme.
Right : MAF scheme with 20 sub-iterations.

investigated in [64]| and the observations made in this section do not differ from the conclusions
previously drawn by these authors.

3.9 Alternate-Line Jacobi relaxation procedure

The ALJ relaxation procedure implies two symmetric sweeps per sub-iteration. Hence, one has
to define two operators as follows :

Hi = (D + 51)
(3.9.1)
Ho = (D + Ss)
The amplification matrix associated with this method is given by :
Garyg =Gy + V}{JLJ (Id— G*)
(3.9.2)
Vars = (Id—Hy' H)-(Id— H; ' H)
with
Hy=(D+ 5)
(3.9.3)
Hy = (D +5)

It is interesting to point out that in the two-dimensional case, the ALJ scheme is, in fact, identical
to the MAF scheme. Indeed, simple algebra gives :

Vapy =1d—(Hy' D H')-H (3.9.4)
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and obviously we have :
Hy' D H{'=Hyy (3.9.5)

Consequently, we do not investigate further this method and simply refer to the previous section.
However, let us mention M AF(p) and ALJ(p) are no longer identical in the 3D case, even though
the two methods keep quite similar properties (cf. [22] [17]).

3.10 Alternate-Line Gauss-Seidel relaxation procedure

The ALGS relaxation procedure requires four inner-sweeps per sub-iteration (c¢f. chapter 2). It
can be cast into the general form (3.6.6) provided 4 operators H,, are defined as follows :

(( Hi=(D+8 — BT
Hy=(D+S; — B~ &M

. (3.10.1)
Hz=(D+Sy— ATE)

Hyi=(D+Sy— A &)
The amplification matrix associated with this method is then given by :

GALGS = G* + VZ;LGS (Id - G*)
(3.10.2)
Vargs = (Id— Hy* H) - (Id— H;* H) - (Id — Hy* H) - (Id — H;' H)
with the Fourier symbols :

H, = (D + .51 — B+€_in)

Hy=(D+ 51— B_e+i")
o (3.10.3)
Hy = (D + Sy — ATe ™)

Hy=(D+ 8, — A=etit)

\

Let us now study the efficiency of this scheme using Von Neumann analysis.

3.10.1 Global analysis

max

The average pargs and maximum p'}7'¢,¢ amplification factor of the ALGS method are plotted
in figure 3.10.1. A strong instability is noticeable for the highest CFL numbers. Even though
this scheme provides a very good global damping for all CFL numbers and all Mach number, it
cannot be used for CFL greater than 30. Increasing the number of sweeps do not circumvent
these instabilities, on the contrary it deteriorates even more dramatically the amplification factor
(¢f. figure 3.10.2). The formula (3.6.8) provides a clear explanation of this behavior, at least
when a scalar advection problem is consider - but the mechanism extends to the system case - :
the relationship |G — G| = |V|P|1 — G| can be immediately deduced from (3.6.8); if |[V|P > 1,




84 CHaAPITRE 3. INTRINSIC EFFICIENCY OF IMPLICIT BLOCK SCHEMES

Average (p(G))
Maximum ( p(G) )

Figure 3.10.1: Average (left) and maximum (right) amplification factor of the ALGS scheme with
one sub-iteration.

which turns to be the case when ALGS is applied to the first-order upwind implicit stage, then
increasing the number of sub-iterations p tends to further increase the difference between G, and
G up to a complete divergence of the iterative solver. Such a behaviour was outlined by Buelow
et al. in [12]. Analyzes of the I/I ALGS scheme performed in this work also show unstable
behaviors for high CFL numbers. This means that this instability does not arise from the non-
consistent choice of a first-order implicit stage / third-order explicit stage but is directly related
to the first-order implicit stage. This point is further confirmed by stability results obtained with
ALGS applied to a Lax-Wendroff type implicit scheme for which no instability is detected [18].
In fact, this instability of ALGS(p) seems to be closely connected with the multi-dimensional
upwind implicit stage : ALGS inner iteration process can be split into two main sweeps, the first
one in the x-direction, the second one in the y-direction; now, using a sweep in one direction
only avoids the occurrence of instabilities but leads to a poor damping of the error while the
combination of both sweeps can provide a very good damping if the time-step is restricted.

3.10.2 Local analysis

In figure 3.10.3, the amplification factor of the ALGS(1) scheme is presented for M = 102 and
for two different CFL numbers. As previously shown on the global analysis, for CFL = 106,
there exists a little peak for which the amplification factor is greater than unity. This peak is
located in the very low frequency area, consequently, in practical computations, if the mesh is
not fine enough, high CFL numbers can be used anyhow without triggering instability. This
may be the reason for the conventional wisdom which considers Gauss-Seidel method applied
to a block-implicit upwind scheme as unconditionally stable. On the other hand, the ALGS(1)
scheme at CFL = 20 is as efficient as the Direct Scheme (cf. figure 3.7.3) and remains stable over
the entire wavenumber domain. Thus, unless the time-step has to be restricted, the ALGS(1)
scheme provides a good damping, moreover it requires only one sub-iteration which is very cheap
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Figure 3.10.2: Average (left) and maximum (right) amplification factor of the ALGS scheme with
20 sub-iterations.

for practical computations.
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Figure 3.10.3: Amplification factor of the ALGS(1) scheme at M = 1073, Left : CFL = 20.
Right : CFL = 10°.
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3.11 Point Jacobi relaxation procedure

PJ scheme is certainly the simplest relaxation method. Indeed the associated single operator
Ha (e =1) is given by :

Hpy =D (3.11.1)
The amplification matrix is therefore defined as follows :

Gpj =G, —i—VIID)J (Id — Gy)
(3.11.2)
Vpy = (Id— D' H)

Unfortunately, such a simplicity involves an important lack of efficiency which will appear in the
Von Neumann analysis described in the next paragraph.

3.11.1 Global analysis

The PJ scheme without inner iteration (p = 1) is strongly unstable for all CFL numbers and for
all Mach numbers (cf. figure 3.11.1). This instability is partially circumvented if 50 sub-iterations
are made : PJ(50) scheme is then stable for CFL numbers smaller than 30. The average of the
amplification factor seems to show a rather good damping in such conditions. Let us now make
a local analysis in order to investigate a bit more deeply the particular behavior of the P.J(p)
scheme.

Maximum ( p(G) )
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Figure 3.11.1: Average (left) and maximum (right) amplification factor of the PJ(1) scheme.

3.11.2 Local analysis

The local analysis is performed for M = 1073 and CFL = 20 (stable conditions) and results
are presented in figure 3.11.3. Using PJ scheme with 50 sub-iterations enables to obtain a good
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Figure 3.11.2: Average (left) and maximum (right) amplification factor of the PJ scheme with
50 sub-iterations.

damping over a large part of the wavenumber domain. The amplification factor map becomes
close to the Direct Scheme’s one (¢f. figure 3.11.3); however, spurious oscillations occur, specially
for the high frequencies, along the diagonal line £ = 7. To emphasize this behavior a cutline of
the amplification factor along £ = 7 is also plotted for the PJ scheme and the Direct Scheme.
Reducing the number of sub-iterations yields less oscillations but of larger amplitude which
can therefore leads to instabilities. On the other hand, increasing the number of sub-iterations
yields a greater number of oscillations, each of smaller amplitude. Using 100 sub-iterations
at CFL = 20 allows to make all the oscillations vanish or, more precisely, yields such small-
amplitude oscillations that they can no longer be detected. During the course of this study,
it was noted that the Line-Jacobi scheme displays a similar behavior - note Line-Jacobi (LJ)
means relaxation is performed along the x direction or the y direction and not successively along
both directions as in the Alternate-Line Jacobi method. The LJ method applied in the first (x)
space-direction makes use of the operator H; = D + S; and its associated V7 ; coefficient reads :

Vig=1Id—H;' H=—(D+ S;)7'5, (3.11.3)

The amplification map of this method is presented in figure 3.11.4. The efficiency is clearly close
to the Direct Scheme’s one but we note that here again oscillations appear, along the line £ = 0 in
this case. The plot of the amplification factor along this line shows a "sine curve" phenomenon.
For both the PJ and LJ methods, this oscillation problem highly disturbs the damping at high
CFL numbers since a large amount of sub-iterations is needed to cancel the "sine curve" effect,
making these methods potentially expensive.
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Figure 3.11.3: Amplification factor of the PJ(50) scheme at M = 1072 and CFL = 20. Left :
Map over the whole wavenumber domain. Right : Diagonal profile along £ = .
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Figure 3.11.4: Amplification factor of the LJ(20) scheme at M = 1073 and CFL = 20. Left :
Map over the whole wavenumber domain. Right : Diagonal profile along £ = 7.

3.12 Symmetric Gauss-Seidel relaxation procedure

The SGS relaxation procedure requires two inner-sweeps per sub-iteration (cf. chapter 2); these
two steps are defined by the two following operators as follows :

Hi = (D - Atet —BTES)
. ' (3.12.1)
Ho=(D+ A& + B &)
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The amplification matrix associated with this method is then given by :

Gsas = Gu + Vigg (Id — Gy)
(3.12.2)
Vsgs = (Id — Hy' H) - (Id — H;* H)

with

Hy = (D _ AJre*iﬁ _ B+e*i77)
. ) . ) (3.12.3)
Hy = (D + A=e™ 4 B=e™n)

When only one sub-iteration is performed, SGS scheme is also called LU approximate factoriza-
tion method, and will be denoted LU-SGS in the remainder of the section (rather than SGS(1)).
Now, let us study the efficiency of LU-SGS and SGS(p) using the Von Neumann analysis.

3.12.1 Global analysis

The maximum and the average values of the amplification factor versus CFL and Mach numbers
are presented in figures 3.12.1 and 3.12.2. We notice that LU-SGS scheme is unstable for Mach
numbers close to unity, even if the CFL is small. It is therefore necessary to perform several
inner iterations in order to circumvent the instability. As shown in figure 3.12.2, using 20 sub-
iterations enables to recover the efficiency of the Direct Scheme. It is noticeable that, unlike the
ALGS scheme, the SGS scheme remains stable even at high CFL numbers. However, Buelow et
al. in [12] show that SGS(p) loses a great part of its efficiency for high aspect ratios - this point
will be further investigated in the second part of this thesis, when SGS is applied for solving a
matrix-free implicit stage. Nevertheless, the SGS method remains of great interest since it can be
easily applied on unstructured grids, like PJ of course, which is not the case for other methods.
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Figure 3.12.1: Average (left) and maximum (right) amplification factor of the LU-SGS scheme.
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Figure 3.12.2: Average (left) and maximum (right) amplification factor of the SGS scheme with
20 sub-iterations.

3.12.2 Local analysis

The local analysis is made for a low-Mach number case (M = 1073) and at CFL = 10°. In
such conditions, the LU-SGS scheme is stable but its efficiency is poor, especially in the low
wavenumber regions (c¢f. figure 3.12.3). Using 20 inner-iterations provides excellent damping
over the entire wavenumber domain, the efficiency is very close to the Direct Scheme’s one
making the SGS scheme an attractive method, in particular for computing flows on unstructured
grids, since it can be easily implemented on such grids.

3.13 Conclusions

The present chapter concludes the first part of this thesis devoted to the analysis of some classical
implicit methods, with the objective to select the most efficient treatment for the block implicit
scheme with which we plan to compare the matrix-free treatment developed in the next part of
the thesis. Let us recall memory storage has not yet been taken into account in our analysis
of efficiency, which has been mainly focused on intrinsic efficiency. Among the line implicit
treatments, i.e. those that make use at some stage of tridiagonal system inversion(s), ALGS(p)
with p very small (typically p = 1 or 2) appears as the most efficient treatment, even though
some instabilities may occur on very fine grids. The point implicit treatments such as PJ(p) and
SGS(p) offer a much lower unit cost since they only require the local inversion of a 4 x 4 (in 2D)
block for each non-linear iteration but since they also need a larger number of inner iterations
(especially PJ(p) because of the oscillatory behavior of the amplification factor) to achieve the
Direct Solver’s intrinsic efficiency they are not necessarily more globally efficient than ALGS(1)
for instance. The hierarchy between ALGS(p) and mostly SGS(p) depends also on the unit
cost of each treatment, itself dependent on the particular implementation of the method within
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Figure 3.12.3: Amplification factor of the SGS scheme at M = 1073 and CFL = 10°. Left :
SGS(1). Right : SGS(20).

the flow solver. In this work, all the block implicit treatments presented up to now have been
implemented within a "model" structured flow solver, dedicated to the solution of the Euler
and Navier-Stokes equations on Cartesian grids. Numerical experiments carried out with this
code have shown ALGS(1) was in practice the most efficient treatment (regardless of memory
issue); consequently, ALGS(1) will be retained in the second part of this work as the reference
block implicit treatment (as far as computational efficiency is concerned). It is worthwhile to
point out SGS(p), though found less computationally efficient than ALGS(1) when used in our
model structured-grid flow solver to solve the block-implicit Roe upwind scheme, is particularly
interesting in the perspective of an application in the context of unstructured grids. With this
property in mind, a particular attention will be devoted to this point treatment in the next part
of this thesis when looking for an approximate solution of the matrix-free implicit stage since
the planned implementation of the matrix-free treatment in CAST3M has to be realized for
unstructured grid computations (note also the PJ(p) will be reconsidered because its properties
when applied to the matrix-free implicit stage will be quite different from those observed with
the block implicit stage).
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Chapter 4

Matrix-Free Implicit Method

4.1 Objectives

The first part of the thesis has been dedicated to the description of implicit treatments which
provide a high intrinsic efficiency, namely a fast damping of all error modes. However, as men-
tioned in the introduction of this work, such an efficiency is usually obtained at the expense
of a relatively high unit computational cost and strong memory requirements. The excessive
memory demand introduced by an implicit stage is mainly related to the use of block Jacobian
matrices when linearizing the numerical fluxes so as to derive the implicit part of the scheme.
Hence, a way to reduce memory requirements is to develop implicit treatments that do not rely
on full Jacobian matrices and this may be achieved by introducing simplifications in the explicit
stage linearization. The price to pay for such a simplified choice of implicit stage is a loss of
intrinsic efficiency; nevertheless, if the unit computational cost is also reduced, a competitive
global efficiency can be preserved. As already pointed out in the general introduction of this
work, a low-cost/low-memory/low intrinsic efficiency implicit treatment is one of the trade-off
solutions to the multi-objective optimization problem represented by the derivation of a globally
efficient implicit scheme. The second part of this thesis is entirely devoted to the review of

Cost per point
periteration | ______________________________________

(to minimize)

First Part

Second Part

>

Intrinsic Efficiency
(to maximize)

Figure 4.1.1: Pareto optimal set for an efficient implicit treatment.
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such low-cost treatments as alternative solutions to the high-cost/large-memory/high intrinsic
efficiency treatments detailed in the first part of the thesis (see also figure 4.1).

Several low-cost implicit treatments have been developed since the early-eighties. The diago-
nalized implicit treatments firstly introduced by Pulliam and Chaussée [65] in the context of
compressible flows and recently extended to low-Mach unsteady flows [10] allow to reduce unit
cost but they do not ensure enough reduction in memory requirements when large scale prob-
lems are computed. It is therefore necessary to opt for even more simplified methods such as
Matrix-Free implicit treatments. These methods consist in replacing the absolute values of Ja-
cobian matrices that appear in the implicit stage after the linearization of an upwind scheme, by
their spectral radius [38]. Then, approximating the product between Jacobian matrix and time-
increments of the conserved variables by the time-increment of the flux-vectors [71], it is possible
to obtain a truly Matrix-Free implicit scheme [48]. However, when low-Mach unsteady flows are
computed using a dual-time stepping approach, the scheme loses its matrix-free properties and
both unit cost and memory requirements increase significantly. The objective of this chapter is
to outline an implicit treatment which preserves the simplicity of the Matrix-Free approach for
low-Mach unsteady flows. The difficulties related to this kind of flows will be detailed and it will
be shown how to reap the benefit of the Turkel’s preconditioner’s properties so as to produce a
truly Matrix-Free scheme for all speed flows. The following chapters (5, 6 and 7) will then be
devoted to the systematic analysis of the intrinsic efficiency of the new implicit treatment for a
wide range of configurations (inviscid or viscous, steady or unsteady flows); in particular, the a
priori Von Neumann analysis will give us the opportunity to tune properly the cut-off definition
that must be selected when computing low-Mach number flows with a preconditioned upwind
scheme : the need to adapt this definition to the type of problem under study (inviscid/viscous,
steady /unsteady) will be underlined. The last chapter of this second part will eventually provide
some comparisons between an efficient implicit block treatment and the Matrix-Free schemes
over representative test-cases, computed on structured grids. The possibility to obtain a satis-
factory global efficiency from a low-cost matrix-free treatment will be demonstrated in a way
convincing enough to justify further developments for the implementation of this technique in
the numerical platform CAST3M.

4.2 Matrix-Free implicit treatment

4.2.1 General principles

Let us first describe the design principles of the Matrix-Free implicit treatment for the 2D Euler
equations. In the manner of the first chapter, let us consider the class of upwind schemes which
are defined as follows :

F 1 - ((leE)n - Dl(slwn)i+l j

’L+2, 2

ey = ((n2g")" = Dadpu™) 5.y

where D7 and Dy are matrices of numerical dissipation. The implicit stage reads :

wifl —wly (6F &G\
,J ,J 1 2

= 42.1
N ( sz oy ) 0 (42.1)

/L"j
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The derivation of a Matrix-Free implicit stage is carried out in two steps. First, only the dissi-
pative parts of the numerical fluxes are linearized around time level (n + 1) :

[Dl(;l’w]n—i_l = D’félw” + A [Dlélw]" ~ D’félw” + D’fdlAw” s
(4.2.2)
[Dodow]™ = DBGow™ + A [Dadow]™ ~ DESaw™ + DESsAw™
while the centered parts of the numerical fluxes are computed using the definition of the time
increment Ag" = ¢t — ¢" -

p(fE) = m (2 + m AP pe(g®)" = p2(g”)" + meA(g")" . (4.2.3)
Hence, the numerical fluxes at time level (n + 1) now read :
vl o~ oy ,ulA(fE)” — D761 Aw™
(4.2.4)
G = G™ 4 e A(gF)" — DS Aw™ .
The second step consists in replacing the dissipation matrices D; and Dy by the numerical scalar
dissipation of the Rusanov scheme :

Dy — 1p(AP)Id = p¥1d
(4.2.5)

Dy — Lp(BE)Id = 1p¥Id
Note such a simplification can be performed without altering the stability of the numerical

treatment because the dissipation matrices are definite positive. The numerical fluxes at time
level (n + 1) are finally approximated as follows :

Frttm P i A(FE)" = 5 (pf) o1 Aw™
(4.2.6)
G" R G+ A (") = 5(pF) B2 A"

Inserting expressions (4.2.6) into the implicit stage (4.2.1) yields :

CoAw}; + CpAw, ; + C’frAw?HJ + Cy Awy;_; + C;AijH
(4.2.7)
= —At- RY; — 0151M1A(fE)Zj — agég,ugA(gE)Zj
where the explicit residual Ri;is defined as follows :
n _ (OF  5G\"
Rij = ( ox * oy )Z] ’
and where the coefficients C' are now given by :

(O =301 ()]s,

)
)7 (4.2.8)
)
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Eventually, the implicit contributions in the LHS and RHS of scheme (4.2.7) are truly Matrix-
Free and it is noticeable that the simplifications that have been performed do not affect the
explicit stage accuracy. Thus, the accuracy of the scheme remains unchanged provided that the
method converges to a steady-state. Moreover, let us emphasize that this Matrix-Free implicit
treatment does only require simplifications and approximations over the dissipative terms derived
from the linearization. The scheme (4.2.7) involving increment vector Aw™ and flux increment
vectors A(fF)" and A(g¥)" has now to be solved.

Remark :

A number of viewpoints are encountered in the literature when it comes to the derivation of
the previous matrix-free implicit stage; they are briefly reviewed here for the sake of a complete
reference to existing works. Following the viewpoint adopted by Sharov and Nakahashi [71] and
later used by Lohner et al. in [48], a starting point for the matrix-free treatment derivation will
be the classical linearization of the numerical fluxes around time level (n + 1) :

Ftl o Fn 4 (AP g Aw™ — D61 Aw™ |

G x~ G" + (BE) ug Aw™ — DS Aw™ .
Then, performing a spectral radius simplification over the dissipative terms leads to :

Frlm B 4 (AP g Aw™ — S (pF )61 Aw™

Gl ~ G + (BE)",uzAw” - %(pf)"égAw” .
Inserting these expressions into the implicit stage yields :

Awh

1,

+ 0151((AE)",u1Aw”)i,j — %0’151 ((pf)"élAw")w
(4.2.9)

+ 0'252((BE)7L,[L2A’U)TL)Z'J — %0'252 ((p2E)n62Awn)z’] = —At'RZj
At this point, it is noticeable that, although a spectral radius simplification was introduced, the
LHS still contains Jacobian matrices A” and B¥. Hence, the resolution of the system remains
expensive and the issues related to memory requirements are not solved. In order to circumvent
this difficulty, the product of the Jacobian matrix and incremental vector can be approximated

by the increment of the flux vector :
AE - Aw™ e m A(FE) = (£ = (F5))
(4.2.10)
BE o Aw™ =~ pa A(gP)" = pa ((¢7)" = (95)™)

Inserting these relations in (4.2.9) yields :
CoAw?,

1o+ CrAw! 4+ CF Aw}, + O Awp, |+ CF Aw}

i+1,5 2,541

= —At'RZj — Ul(sllLlA(fE)Zj — GQ(SQ/.LQA(QE)

n .
27‘7

where (4.2.7) is recovered, with the coefficients C’;)t still defined by (4.2.8).
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Since some numerical fluxes such as AUSM+ or CUSP cannot be easily written under
the form of a centered flux augmented with a matrix or scalar dissipation flux, yet another
viewpoint for the design of the Matrix-Free implicit scheme can be given. Let us indeed consider
the numerical fluxes F"*! and G™! and let us expand these fluxes as follows :

Frtl = P AF™
Gl =G" + AG™ .

In order to obtain a Matrix-Free implicit stage, an inconsistent evaluation of the time-increment
flux vectors is performed, i.e. the latter are computed using the first order space accurate
Rusanov scheme :

AFF = 1y (A(E)") - 3pFo(Aun)
AGHR = pa(A(gP)") — 505 da(Aw™) .

We recall that once the steady solution is reached, these increments vanish and, therefore, the
choice of the Rusanov scheme to evaluate them does not affect the accuracy of the solution. Now
inserting these expressions into the implicit stage yields again the previously obtained matrix-free
implicit stage :

Aw?. + UlélulA(fE)Zj — %0151 ((pf?)”élAw”)

1,7 ,J

+ UgézugA(gE)Zj — %0252 ((pf)”égAw”)m = —At-sz

The matrix-free treatment can thus be seen as a non-consistent (in the general case) implicitation
of a given upwind explicit stage - the implicit and explicit stages being consistent when the
Rusanov scheme is also used for the explicit space discretization, which is rarely done in practice
because of the large numerical dissipation associated with this scheme. The idea of coupling /
combining various implicit and explicit stages in order to improve the global efficiency properties
of a flow solver has been investigated for instance in [1], but in the context of block-implicit
schemes. The recent work [51], where the above Rusanov-type implicit stage is now coupled with
an HLL-based explicit stage after having been used in conjunction with other upwind explicit
stages, illustrates the flexibility of such a non-consistent choice. Naturally, the global efficiency of
the matrix-free treatment depends on the unit cost that can be achieved when actually solving
the implicit stage (4.2.7)-(4.2.8) : this point is detailed hereafter, in particular in the case of
all-speed flows, which introduces a preconditioning matrix in the implicit stage.

4.2.2 Resolution of the Matrix-Free scheme

In this paragraph, we want to outline how to solve the Matrix-Free implicit stage which contains
variable increment vector Aw™ and flux increment vectors A(f¥)"™ and A(g¥)". To achieve this
task, an iterative technique is used and the flux increment vectors are first relaxed as follows :

Corw TV 4 or A+ of At + oy AT+ of Aw!' T

= —At-R?J — UldlulA(fE)Eg - 0262M2A<9E)1(,l])'
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where the exponent (I) denotes the counter of the iterative method. In order to reduce the
memory storage of the method, one can employ the Point Jacobi relaxation procedure which is
especially easy to implement on unstructured grids. All extra-diagonal terms are also relaxed,
thus, the Matrix-Free Point Jacobi (MF-PJ) scheme reads :

1

sz(,lj—l) — 5 | —=At- RZ] — 0151M1A(fE)§fj)- - 0252N2A(9E)7(L,lg)'
0 (4.2.11)
+CrAwl [+ Cfawl),  + CyAw!)_ + of Awll)

This Matrix-Free formulation does not require any matrix inversion since the coefficient Cj is
purely scalar. The method is therefore very cheap in terms of both cost per iteration and mem-
ory storage. Of course, the Point Jacobi procedure is well known to display a poor intrinsic
efficiency : a thorough analysis is therefore required to determine whether the low-cost of the
treatment can nonetheless balance this poor efficiency; such a study, relying on Von Neumann
analysis for evaluating intrinsic efficiency and on test-problems in order to take into account the
actual cost of the approach, will be performed in the following chapters.

The Matrix-Free implicit scheme could be improved, as far as intrinsic efficiency is concerned, by
resorting to other solution methods, such as the line-treatments described in the previous chap-
ters. However, since we also require the method to remain easy to implement on unstructured
grids, we rather turn toward the Symmetric Gauss-Seidel relaxation procedure, which seems a
good candidate to ensure such requirements, that is to improve over Point Jacobi concerning
intrinsic efficiency while remaining easy to implement on unstructured grids. Indeed, we previ-
ously showed that this procedure enables the implicit Block scheme to recover the Direct Solver
efficiency with a number of inner-iterations much reduced with respect to Point Jacobi. The
next chapters, including Von Neumann analysis as well as validation test-cases, will be dedicated
to the study of this procedure coupled with the Matrix-Free implicit stage that has just been
described. Meanwhile, let us describe how to modify the PJ algorithm so as to adapt it to the
SGS strategy. The MF-PJ algorithm reads :

Aw? =0, 1=0,p
I+1 1 n 1 ! “Aw L : ; Awy!
sz(,j ) _ o ~At-RY; + ‘71§A(fE)z(—)1,j +C; szf_)lvj + 02§A(9E)£,j)'—1 + Awi])-_l
1 I ! 1 ! :
—0y §A(fE)§+)1,j + CfLsz(le,j B U2§A(9E)E,J)'+1 * C’jAw;;H
Wi = wf; + Aw®)
(4.2.12)

The SGS algorithm makes immediately use of the states that are being evaluated during the
forward sweep (resp. the backward sweep) in order to compute the next ones. Thus, the new
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algorithm reads :

( Awg?j):O, l=0,p

Forward sweep :

* 1 n * 1
Aw’(’j)_co [ At-RY +J (fE)Z( )1J+C Aw() A+02§A(9E)() 0y sz(])l
1 !
SAUEI D + O Aull, — g A+ Cf ), |

Backward sweep :

I+1 1 n 1 1 *
AwHY = — . {—At-Rm—i—aliA(fE) + 07 Awl, +022A(gE)£J) L+ Oy Awl

irj Co

i—1,7

i+1 ] 1 7,+1 ,J 2 i,7+1

1
o1 AGEYHD 4 o Aw®) oA )Elﬁi +02+Aw(l.“)]

w?jl = w; —|—Aw( ?)

(4.2.13)

It is clear that the above algorithm does not add complexity to the method since it only requires
the inversion of the coefficient Cy. Moreover it still does not involve any matrix storage. In
the rest of the thesis, it will be denoted MF-SGS. As explained earlier, the MF-SGS scheme is
expected to provide a better efficiency than the MF-PJ scheme. We will study the properties of
theses schemes in the next chapters when successively applied to inviscid, viscous and unsteady
flow problems. Therefore, let us describe in the next section the extension of the Matrix-Free
framework to viscous flows.

4.2.3 Extension to viscous flows

In the first chapter, we retained a simplified implicit stage for the viscous fluxes in order to
preserve the diagonal dominance of the I/III system. The numerical viscous fluxes at time level
(n+ 1) are therefore linearized as follows :

(61 Aw)™
Vyn+1 Vyn Vin i+1/2,j
(F ):L+1/2,] (F )1+1/2] (A )z+1/2] St
(62 Aw)?
Viyn+1 1% 174 1/2
(G )n;— 12~ ~ (Gl + (B2 76;]
v _ 8fV 39V
where we recall that A and B;/ = ——. So as to preserve the Matrix-Free property,
© Ow, owy

matrices A} and B) are replaced by their viscous spectral radius. In appendix A, it is shown
for the sake of completeness that both matrices possess the same spectral radius :

AVY = o(BYY = )V = _TH 4214
,0( 1) P( 2) p Pr Re p ( )
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However, in the rest of the thesis, for the sake of clarity, we will distinguish the viscous spectral
radius in each direction by setting :

A B
V 1 V 2
= — = — 4.2.1

Hence, the simplified numerical fluxes read :

(FV)?jll/zj ~ (FV):L—FI/Q,]' + (p}/)?—i-l/&j((slAw)?—&-l/Zj

\% 1 ~ \% \%
GV} )2 = (GV)E i1 yp + (02 )71 2 (028w
Inserting these expressions into the implicit stage yields :

C’koZj + Cwa:-LLj + C’waZ”HJ + C{Aw?’jfl + C;Awgfjﬂ

= —At-RY; — 010y A(fE)}; — 020ap2A (")}

where the coefficients C' take into account the viscous contribution :

( n

.1
7’757]

Cr =—o1 (27 +0Y)

Cf =—-o (%m + PY)ZFW
Cy = —0oa (3pF + ’Og)Zj*% (4.2.16)
C3 = =02 (308 +05); .1

Co =1-Cp =Cy =Cy =Gy

\

Besides, the explicit stage reads :

E _ VvV E _ AV n
Rn n(FF¥ —F )+52(G G")
J ox oy

0,

Hence, the Matrix-Free implicit treatment extends straightforwardly to viscous flows. Indeed,
thanks to the viscous spectral radius simplification, there is no need to store the viscous Jacobian
matrices and the simplicity of the method is preserved. The scheme can then be solved using
SGS procedure or PJ method as well. In chapter 6, the impact of the viscous spectral radius
simplification on the efficiency of the scheme will be studied. In the next paragraph, the extension
of the method to the resolution of unsteady flows is presented.

4.2.4 Extension to unsteady flows

In the first chapter, the dual-time stepping formulation was introduced so as to compute un-
steady flows. We showed that this method enables us to use the convergence speedup strategies
ordinarily applied for steady flow calculations. In this paragraph, we will outline how the dual-
time stepping scheme can be also easily adapted to the Matrix-Free framework.

Let us first recall the expression of the dual-time stepping discretization :

n,m+1
(]

n n,m+1

i N 3wz‘,j — 4w2j +w2].’1 N 51(FE _ FV) N 52(GE . GV) n,m+1
AT 2At ox oy

w

=0

/L"j
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where At is the pseudo-time step and w™™ ! denotes the state at pseudo-time (m+1)A7 in the
convergence process toward the physical state at time (n+1)At. The Matrix-Free simplifications
can be simply applied during the linearization of the numerical fluxes around the pseudo-time
level (n,m). As far as the inviscid numerical fluxes are concerned, we have :

(FEYm 1 s (FEYS™ 4 iy A(FEYS™ — L (pP)mms, Awnm
(4.2.17)
(GE)n m+1l (GE)n moy MZA( ) mo_ %(pg‘)n,mézAwn,m .
Similarly, the viscous spectral radius simplification yields :
(FV)n m+1 (FV)nm + (p}/)n,mélAwn,m ,
(4.2.18)
(GV)n m+1 (GV)n m + (p;/)n,m(SQAwn,m )
Inserting these expression into the implicit stage yields :
C’oAfw”m + CT Aw;"7 1 C+sz+1g + Cy Afw?]ml + C;Aw”“
(4.2.19)
= —Ar- RZ’]m — 0151,U,1A(fE)Z’j — 0252,U,QA( ) Jm
where the coefficients C' are now given by :
Cr =—o1 (o1 + 1),
Cff = —a1 (3o + 1)1
Cy = —os (2pF + p;/)z;”j% (4.2.20)
Cy = —o2 (505 + Pg)?ﬁ%
Co =(1+30)-Cy —Cf —=Cy = CF

with

)\_AT _AT _AT
A PTG PTGy

The operator R?Jm remains unchanged with respect to the block-implicit scheme :

3wn’m — 4w _|- wn E _ vV E _ AV n,m
R _ T 0 LY o1 (F Fr) + 02(G G")
I ox oy ;

2At i
Eventually, SGS relaxation procedure as well as PJ algorithm can be employed to solve the
Matrix-Free dual-time stepping scheme. Thus, the extension of the Matrix-Free implicit treat-
ment to unsteady flows does not add complexity. We now want to study the impact of the
low-Mach preconditioning on the MF formulation.
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4.2.5 Impact of the low-Mach preconditioning

In the first chapter, we showed that the low-Mach preconditioning only modifies the pseudo-time
derivative term and the dissipation of the numerical inviscid fluxes. The preconditioning has
therefore an impact on the spectral radius simplification, indeed, the preconditioned Rusanov
scheme reads :

Fi = (m(fP) = 5p(PARYP™Y - G1w), 1 5 = (a(FF) = 3p0 P71 Biw)yy

GRus

i1 = (u2(g”) — $p(PBE)P! . Ow); j 1 = (n2(g®) — 5p5 P+ Oow); ;1

As a result, applying the substitution of the numerical dissipation matrices yields in this precon-
ditioned case :

(FEymtl s (FEysm 4 iy (A fEym — 15EP=1 . 5, Ao
4.2.21
(GEym+t = (GEYm 4 o AgE)ym — LEP . sy o
and inserting this linearization into the implicit stage leads to :
Cko”m + Cy Aw"'} L C+Aw?+TJ + Cy Aw” , o+ C+Aw?ﬁl
4.2.22
= —AT- R?Jm — 0151M1A(fE)Z’jm — agég,ugA(gE)Z;.m ( )
with
RV — Sw%m — dwi; +w7'f;l + (61(FE —-FY) 4 02(G*F — Gv)>n’m
“J 2At ox oy N
i,
and
/ Cl =-o (%ﬁfp—l + p‘{[d)?jgd
CF = o1 (3P4 Ta)Y
Cy = -0y (305P7 1+ pY Id)Z’ﬁ% (4.2.23)
Cf = —oy (pFP71 + pQVId)Z;’Z%
Co =P 1+3N\d-—Cy —Cf —Cy —CF

Thus, the diagonal coefficient Cy given by (4.2.23) is now a full matrix, to be inverted, and
coefficient C* are also block coefficients, so that storage requirement and operations count of
the implicit treatment increase for low-Mach number flows. The next section explains how it
is possible to take advantage of the properties of the preconditioning matrix P to keep the
preconditioned approach as simple as its compressible flow version.
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4.3 Preserving the Matrix-Free property with Preconditioning

4.3.1 General framework

Before detailing the Matrix-Free method for low-Mach number flows, let us introduce a general
framework to compute the time-accurate Navier-Stokes equations on multi-dimensional (2D or
3D) Cartesian grids : this gives us the opportunity to show the numerical developments that are
almost constantly presented in 2D in this thesis for the sake of simplicity can be extended to the
3D case in a genuinely straightforward fashion. The multidimensional governing equations read :

ow  ow Loff L ofy
Pl N~ P 4.3.1
8T+8t+z:18xp pz:(?:z:p’ (4:3.1)

p=

where we recall that w is the vector of the conserved variable, 7 is the pseudo-time, t is the
physical time, ff and f;/ are respectively the convective and viscous fluxes in the p' space-
direction (d is the dimension of the problem) and P is a preconditioning matrix which takes, in
the present work, the form proposed in [75] as described in details in section 1.3.2 - the properties
of this preconditioning matrix will be further recalled in section 4.3.2. To solve system (4.3.1),
the following numerical scheme is used :

Awn’m §(w7},m+1 o wn) o %Awn—l d S-h n,m+1
(Pc—l);},m ATTJW‘ 4247 Ajt I 4 Z (_p p) =0, (4.3.2)
j J

where m is the pseudo-iteration counter, n is the time step counter, Aw™™ = w™™m+! ™

— wnm
Aw™ 1 = w" —w 't j = (j1,42,...,74) is a multi-integer associated with a point
zj = (ji10z1,...,ja0xq) of a regular Cartesian grid. (dphp) is the difference operator on a
grid cell ¢, in the p space-direction applied to the numerical flux h, approximating the physi-

cal flux (ff—f;/) :
(6php)j = (hp)]q_%?? - (hp)j_e_l’

where e, is a multi-integer with the g-th component e,, which is equal to 0 if ¢ # p and to 1 if
g = p. Equation (4.3.2) can be written in the following form :

Awi™ 3 AW L5, (ARy)\ "
S 2 PP =—(R)P™ 4.3.
() A TAr T ; < 5a >j (R);™ (4.3.3)

with an explicit stage given by :

3 n,m n 1 n—1 d n,m
nm _ 5(11)]- — wj) B 5ij ophp \ ™
(R);™ = Ar 25 ).

p=1 J

When the steady state with respect to pseudo-time 7 is reached, the LHS of (4.3.3) goes to zero,
hence, the numerical approach used to compute the LHS of equation (4.3.3) does not affect the
(space and time) accuracy of the method (provided that the convergence on m is reached). We
can then apply the Matrix-Free simplifications on the LHS terms. On the other hand, in the
RHS of (4.3.3), the inviscid fluxes are computed using classical inviscid numerical fluxes (e.g.
Roe, Rusanov AUSM™...), extended to higher order using a variable reconstruction approach
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(MUSCL) and with a numerical dissipation taking into account the preconditioning of (4.3.1).
Viscous fluxes are approximated at second-order using centered formula (cf. chapter 1).

In order to apply the Matrix-Free method that was described in the previous sections,
the inviscid fluxes of the LHS are evaluated using the first-order accurate preconditioned
Rusanov scheme :

1
WY = pupfl — 5P Lp(PAY)spw (4.3.4)

where 1, is the average operator over a grid cell in the p'" space direction :

(0)s = 5 (G0)saze + (D)2 )
ofp

w)'

and p(PA;)E ) = ﬁf denotes the spectral radius of the preconditioned Jacobian matrix (
Introducing formula (4.3.4) into the expression of (A(h))) leads to :

n,m 1 . n,m
(BRI = (S = 20 (P158) 0y 0~ )
(Afp )]ie + 5 (P 1~E)]iep/2A(wj_wji6p)n7m

It follows that :

(6p (Ahf))?’ = Oppip (A S )ﬁe + = ((P— ~E)He /2—|—(P— ~E)j ep/2) Auw™
(4.3.5)

1 i 1 i ,
2 (P ! E)j—}—ep/QA ;l-:elp - 5 (P ! PE)j ep/2 w;‘l—rﬂelp

As far as the viscous fluxes of the LHS are concerned, we neglect their dependence with respect
to the tangential derivatives :

ow v
1% _ V =(Q
(hp )jﬂtep/2 (Ap 5$p>j:|:e /2 ( p )jiep/2 (5pw)ji€p/2 ’

then, we proceed to the viscous spectral radius simplification as follows :

(B ) ey o ™ P(Qp iy 2 (pt0) e, o = (0 )jtep /2 (pt0) e o 430
so that :
1% n,m Viyn,m n,m m
" =~ (D G )
(4.3.7)

nm

+(pp )j+e /QAw;L-&-TZ + (Pp )] e /2A
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Inserting (4.3.5) and (4.3.7) into (4.3.3) yields the following simple implicit scheme :

DnmA nm+2{< p/;PA(fE)nm>_(Cp)ij ?ngp_(C;)ij ;L_:Z}:_(R)?ma
J

(4.3.8)
where
nm __ 1 1 i Conm
S <A—TPC )j 2AtId+Z{ + () (4.3.9)
1 1 n,m
i, <_ﬁEP1 +ﬁv> | 43.10
( p)] 5$p 2P D itey)2 ( )

This implicit scheme is solved using a relaxation procedure such as Point Jacobi (or Symmetric
Gauss-Seidel) which leads to :

D AW+ = nm Ophp A (1B —ynm (D) nm A (D)
s = - (Bt - @ s, - ;" ol |
p J
(4.3.11)

Hence, the coefficient D has to be inverted in order to obtain the increment Aw(*1). As men-
tioned in the previous paragraph, the inversion is achieved directly when compressible flows are
computed since, in this case, the matrix D is purely scalar. However, when low-Mach num-
ber flows are computed, the preconditioning is turned on so that P is no longer the identity
matrix and consequently D becomes a full matrix as well as the coefficients C*. Nevertheless,
it is possible to take advantage of the properties of the preconditioning matrix P to keep the
preconditioned approach as simple as its compressible version.

4.3.2 Detail of the preconditioning matrix

We showed in the first chapter that the Turkel preconditioner could be written under the following
form :

P=I;+(3*-1)-Q

with
@ = L(u® +0?) u —v 1 1
v—1 ug? —u? —uwv wu v—1 i 9
_ = ; —uy —v; 1
@ c? vq? —ww  —v? c? v (4 )
Hg? —uH —vH H H

The matrix ) was shown to be idempotent, i.e. Q?> = Q. This property is very useful since it
enables us to invert in a simple way the preconditioning matrix P :
1

P‘1:Id+ﬁQ
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Now, if the matrix D} is calculated using a single evaluation of the matrix P~ at point j, it
can be written as follows :

nm __ _n,m —1\m 7,M
Dy =ap™ - (P 00

with

d
n,m 1 ~ SE\™
a;’ A AT ; oz, { ) J+6p/2 + (pf)j—epﬂ}

+Z(5x { o2 ) jreye t (o0 )?lip/z}

Then using the property of @, the invert of the matrix D" is computed explicitly as follows :

—1\nm 1 a (/82 - 1) -
(D7), = (a—er <Id+ WQ)) | (4.3.12)
J

Besides, if in the coefficients C*, the matrices P~! are evaluated at the point j, it is possible to
rewrite the scheme (4.3.11) in the form :

Al = (D) (8ull) 4 (D (P ()

with the following definitions for the increments <Aw§l)> ~and (Awél)) B
j j
oy n m n,m 0]
(Awl )j = Z Sz { fE ]—i—ep - (pz‘J/)jJrep/Z ’ ij-l—ep
n,m !
(fp )J €p ('O;’/)j—ep/Q ' Aw](_)ep}

(Aw2l)) j Z 6a:p { ~E J+ep/2 ij(lle + (ﬁf);lf:p/2 . Aw§lzep}

The matrix product (D‘1 - P~ ) that appears in the expression of the implicit scheme can be
also calculated explicitly thanks to the properties of each matrix :

—1\n,m —1\nm 1 b (62 - 1) o
(D )j . (P )j = <a——|—b (Id+ WQC (4313)

J

These expressions enable us to build a truly Matrix-Free implicit treatment for all speed flows.
Such a scheme is described in the next paragraph.

4.3.3 A truly Matrix-Free treatment for flows at all speeds

Using expressions (4.3.12) and (4.3.13) to evaluate ij(.lﬂ) yields the following implicit treat-
ment :

(1+1) 1
ij 7( D)

G
((a+b) (a+b5%))5

[Awgl) + Awél)} ;
(4.3.14)

a— Qn mo [an,mAwgl) + bn,mAwgl)] ‘
J
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This implicit treatment enables to decouple nicely the standard Matrix-Free implicit treatment
used for the compressible flow (that is for 3 = 1 so that the second term cancels) from the added
treatment specific to low-Mach number flows (in this case 5 # 1). Besides, treatment (4.3.14)
becomes wholly Matrix-Free if the specific expression of matrix @ is employed to compute a
matrix-vector product such as @) - X under the form :

0 X = 7_—21 <q2X(1> CuX® _yx® +X(4)> .
C

e 2 =

(I+1)

with X (™ the components of vector X. Eventually, Aw J can be computed at a low cost and
with a reduced memory storage using the following expression :

n,m

1
Awf™ = [aul + Awgﬂ + g

) T (4.3.15)

T 2 =

where the scalar Agzﬁﬁ-” is given by :
A¢ X" [q2 (aAwgl) + bAwél)) —u (aAwgg) + bAw§2)>

—v (aAwiS) + bAw§3)> + (aAwfl) + bAwgl))El)

and with

n,m __ 7_1 52_1 o
Xj _[ c2 '(a+b)(a+bﬂ2)]

Formula (4.3.15) summarizes the all-speed flow low-cost matrix-free treatment investigated in
the present work. Note this formula is specifically written for a Point-Jacobi treatment of the
implicit stage. The extension to the SGS framework can be performed straightforwardly. Indeed,
during the forward and the backward sweeps, the increments Awgl) and Awg) have just to be
computed using the states that have already been evaluated. For sake of clarity, let us express
the new formulation of such increments in the case of the forward sweep only :

(duf™) == @)y 225 (AU, ~ )] Al

,

AR, = (o) A,

% 1 _E\TM,m ~F\ ;M *
(207, = 3 g, {0 sl + G -, )
p

J

where the exponant (*,[) emphasizes the fact that the increments rely on both iterative levels
(1) and (x) (see also SGS algorithm (4.2.13)).
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4.4 Treatment of the boundaries of the computational domain

4.4.1 Explicit treatment

A simple way to deal with the boundaries of the computational domain is to set the increments
at the boundaries equal to zero :

Awg) = wg) —wp =0

END _ pe (D) E\" _
A(fP)B - (fp )B _(fP)B_O
Hence, this explicit treatment does not add any calculation into the the Matrix-Free algorithm.
However, such a choice will be shown to be inefficient in the case of high aspect ratio grids. It is
therefore necessary to enhance the treatment of the boundaries.

4.4.2 Implicit treatment

In order to improve the Matrix-Free implicit method, we can implement the following treatment.
First, let be ¢ the vector of the well-suited variables for the computation of the boundary con-
ditions. Then, the increments at the boundaries can be expressed in function of the interior
increments :

Agy) = A-Aq)

where A denotes the matrix which defines the boundary conditions. Eventually, the increments
of the conservative variables are computed as follows :

wy = w(qy) Awy) = wi) —wj

()Y = £ w) ADY = (DY~ (Fy

Thus, it is just necessary to evaluate the matrix 4 so as to compute these increments. Next
paragraph will detail the evaluation of this matrix for specific cases.

4.4.3 Matrix of the boundary conditions

For each case detailed in the following, the computation variables are first precised.

Adiabatic wall

The computation variables are naturally the "viscous" ones, namely ¢ = (p, u, v, T)”. The
boundary conditions are given by :

or

op _ or
on

6n—0; u=0; v=0;

0.
Consequently, we have :

pep=pr; up=0; wvg=0; Tp=T17.
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or
ApY =apl s Al =0 Al =0; ATy = AT

The matrix is then defined as follows :

Isothermal wall

We keep the "viscous" variables and the boundary conditions read :

@:0; u=0; v=0; T=Tw.
on
Hence we have :
A =apl s Ad) =0; A =0; ATy =0.

The matrix is then defined as follows :

Slip conditions

In this case, we can choose the primitive variables ¢ = (p, u, v, p)T to define the boundary
conditions :

o _ M .

on =03 Va=05 =05 50 =0.

where V,, and V; denote the normal and the tangential velocities. It follows that :
Apg,) = Ap}l) ; Au%) = niAugl)—nxnyAvy) ; Avg) = niAvy)—nxnyAugl) ; Apg,) = Apgl) .

The matrix is then defined as follows :

1 0 0 0
A= 0 nz —ngny 0
0 —ngny n2 0
0 0 0 1
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Subsonic inlet

In this case, we impose the inlet enthalpy, the inlet entropy and the flow angle while we extrap-
olate the pressure from the interior of the domain :

(Vi)
Hp=Hy ; Sp=5x; = Qo ; PB=DPI-
(Vo)

The vector of the computation variables is therefore ¢ = (H, S, a, p)” and the matrix A reads :

1

( Apl) = Ap)
n\ /v n
MY — 0 _ g _ PPN\
B B B Seo Seo

(1) (v=1)/~ Ny
AV = 2 | lg -0 (pf ) g (pp)
"B 1+ a2, ¥ oy-1 g X oy-1 g

AV = ag - (AV)Y

Incompressible inlet

The vector of the primitive variable is the best-suited for such conditions since we have :
PB =Poc; UB=1Us; UB=Usc; DPB=DI-

or
Apg’,) =0; Au%) =0; Avg) =0; Ap%) = Apy) .

The matrix A reads :

Incompressible outlet

We still consider the vector of the primitive variable :

PB=pPr;, UBp=uUr; VB=V7; PB=Pxo -
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or
Apg) = Apy) ; Aug) = Aug-l) ; Avg) = Avy) ; Ap%) =0.

The matrix A reads :

Low-Mach injection

In the case of a low-Mach injection we impose the inlet temperature, the inlet momentum, the
tangential velocity and we extrapolate the pressure from the interior of the domain :
Tp=Tynj; mp=ryj; Vp=0; pp=pr.

If the vector ¢ is such as ¢ = (T, i, Vi, p)” the matrix reads :

1

Then, the primitive variables are computed as follows :

Apl) = apl)

(1) : 1 13
A“B_nr'R'Tinj'minj'<p__n> ;

I
l . 1 1
AUJ(B):”:L/'R'Tinj'minj' <W——n







Chapter 5

Stability Analysis of the Matrix-Free
Method for the Euler equations

5.1 Introduction

The previous chapter has described a matrix-free implicit treatment that can be applied for
all-speed flows with a particularly low cost per iteration. Let us emphasize again the different

stages involved in the derivation of this implicit treatment :

e the primary form of the matrix-free implicit scheme is given by (4.2.7)-(4.2.8) and may
be viewed as a first-order Rusanov-type implicit stage coupled with whatever high-order
upwind explicit stage one may choose to use for accuracy purpose.

CoAw?,

7‘7
= —At-RY; — 010y A(fP)}; — 02022 (g")}
with R the explicit residual and the scalar implicit coeflicients given by :

+ 1 E\T + 1 E\T _ — + — +
Cl ——50'1 (,01 )i:t%,j s 02 ——50'2 (p2 )i,j:t% s C(] _]‘_Cl _Cl —02 —02.

As far as the amplification factor analysis of this scheme is concerned, the only difference
with a block implicit treatment lies in the replacement of the matrix dissipation coefficients
with the spectral radii p*, p’ since in the linear (or linearized) case, where f¥ = AF . w
with A® = constant (and similarly for g¥) one can write §; 1 A(fF) = AFS iy Aw™ (and
similarly in the y direction). The use of 611 Af¥, dauaAg” for practical purpose allows
to simplify and thus reduce the cost of the evaluation of these implicit terms, but bears no
consequence on the scheme stability and efficiency with respect to the case of the block-

implicit treatment relying on A¥3; 3 Aw™, BEapo Aw™.

in a second step, the previous implicit stage must be approximately solved and this task
is performed using Point-Jacobi relaxation method or the SGS relaxation method; both
treatments allow to deal with the solution of the above implicit stage including variable
and flux vector increments (Aw™, A(f¥)", A(g¥)") : they are summarized by formulae
(4.2.12) and (4.2.13) given in the previous chapter.
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e in a third and last step, the PJ-MF and SGS-MF treatments are expressed in the form
(4.3.15) so as to minimize their unit computational cost when low-Mach preconditioning
of the governing equations is applied.

In this chapter, we want first to assess specifically the impact on intrinsic efficiency of the choice of
a first-order Rusanov-type implicit stage coupled with a third-order Roe explicit stage, instead
of a consistent first-order Roe (block-)implicit stage as done in chapter 1 to 3 of this thesis.
In other words, taking into account the above remarks, we simply want to assess the loss of
intrinsic efficiency introduced by the spectral radius simplification on the numerical dissipation
in the implicit stage. We focus on the steady Euler equations; Navier-Stokes and unsteady
analyses will be successively presented in chapters 6 and 7. Next, we also analyze the implicit
Point Jacobi and Symmetric Gauss-Seidel treatments applied to the matrix-free scheme.

The Von Neumann analysis for the linearized Euler equations is performed in the manner of the
third chapter. More precisely, it was shown that inviscid Jacobians and dissipation matrices could
be expressed using a limited number of parameters such as the flow angle, the Mach number,
the CFL number and the aspect ratio dy/dzx (cf. section 3.5).

5.2 Impact of the Matrix-Free simplification

5.2.1 Global analysis

5 5
= a
© ©
I I
o o
> >
< <

0.25 0.25

Figure 5.2.1: Average amplification factor of the Direct scheme. Left : Block scheme. Right :
Matrix-Free scheme.

In the manner of the third chapter, we carry out a global analysis with respect to the Mach
number and the CFL number. The results for the non-preconditioned scheme are presented in
figure 5.2.1. We note immediately that the matrix-free simplification reduces dramatically the
efficiency of the implicit scheme, especially for the Mach number close to unity and for the very
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low Mach numbers. We also remark that, unlike block scheme, high CFL values do not enable
to improve the average damping. The results for the preconditioned scheme are presented in
figure 5.2.2. As expected, the low-Mach preconditioner enhances the intrinsic efficiency over
the low Mach numbers domain, and it is also remarkable that the loss of efficiency due to the
simplification is less important than for higher Mach numbers. Such results reveal that the
method requires a large amount of iteration to reach the steady state and, consequently, the cost
per iteration of the Matrix-Free method has to be very cheap in order to recover a competitive
global cost. The study of the cost per iteration is the subject of the third part of this thesis. In the
following paragraph, we will try to explain why the matrix-free simplification is less penalizing
over the low-Mach domain and we will detail more precisely the impact of the preconditioning
on the matrix-free scheme.

o g
[ [
T Y
g 8
9] [
> >
< <

0.25 0.25

Figure 5.2.2: Average amplification factor of the preconditioned Direct scheme. Left : Block
scheme. Right : Matrix-Free scheme.

5.2.2 Local analysis

In order to carry out a precise analysis of the properties of the Matrix-Free method, we use
a local analysis. We showed in chapter 3 that using high CFL numbers enable to obtain a
good damping over the low-frequency domain. We therefore choose such values to perform our
analyses.

We first set the Mach number at M = 0.5 and the CFL number at CFL = 109 then
we draw the amplification factor map for the Matrix-Free scheme with and without low-Mach
preconditioner. The results are exhibited in figure 5.2.3. There are slightly differences between
both methods but the preconditioned scheme seems to provide a slight better damping over the
high frequency region. Nonetheless, the global efficiencies are very similar.

Second we set the Mach number at M = 0.1, the results are presented in figure 5.2.4.
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Figure 5.2.3: Amplification factor map of the Matrix-Free Direct scheme at Mach M = 0.5 and
CFL = 10%. Left : No preconditioning. Right : Turkel preconditioning.

The non-preconditioned scheme is highly inefficient over a large part of the frequency domain
showing that it is not worthwhile to use such a method to compute low-Mach number flows. On
the other hand, the preconditioned scheme provides a very good damping and, as forecasted by
the global analysis, its efficiency is better than for higher Mach numbers. In order to emphasize
this property, we plot the amplification factor of both methods along the line £ = 7 at the same
Mach numbers and we compare them with respect to the block scheme’s damping. The results
are exhibited in figure 5.2.5. We observe that the gap between the Matrix-Free method and the
Block scheme is reduced for the small Mach number. A potential explanation of such results
can be found in the effects of the preconditioner. Indeed, the goal of preconditioning techniques
is to make the condition number of the system close to unity. It means that the gap between
all the eigenvalues is reduced dramatically for the low Mach limit. Moreover, the efficiency of
the Turkel preconditioner, for instance, is better when Mach number is smaller than 0.1. As
a consequence, the impact of maximizing the numerical dissipation, as it is the case for the
Matrix-Free scheme, is less important for low-Mach numbers for which the eigenvalues are very
close than for higher Mach values.

To achieve the analysis of the impact of the spectral radius simplification, we draw the
amplification map of Block and Matrix-Free schemes at Mach M = 1073. We notice that the
shapes of the amplification factor maps are similar for both methods. Matrix-Free scheme
provides a good damping over the very low-frequency domain, but its efficiency is very low for
the rest of the frequency map. Nevertheless, the gap between both methods is not so important,
and, although it requires more iteration to damp the error modes, Matrix-Free method can be
competitive if its cost per iteration is very cheap.
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Figure 5.2.4: Amplification factor map of the Matrix-Free Direct scheme at Mach M = 0.1 and
CFL = 10%. Left : No preconditioning. Right : Turkel preconditioning.
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Figure 5.2.5: Amplification factor along the axis ¢ = n at CFL = 10°. Left : Mach M = 0.5.
Right : Mach M = 0.1.
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Figure 5.2.6: Amplification factor map for the Direct scheme at Mach M = 1073 and CFL = 106.
Top : Block scheme. Bottom : Matrix-Free scheme.
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5.3 Matrix-Free Symmetric Gauss-Seidel scheme

In chapter 3, we studied the SGS scheme applied to an implicit Block stage and we outlined
that, unless performing several inner iterations, the method was unstable for high CFL numbers.
However, in the purpose of computing flows on unstructured meshes, SGS procedure is very
easy to implement. In this section, we want to know if such a procedure is still interesting
coupling with a matrix-free implicit stage. We lead global and local analyses in order to come
into conclusion.

5.3.1 Global analysis

The maximum and the average values of the amplification factor versus CFL and Mach numbers
are presented in figure 5.3.1 for one inner iteration and in figure 5.3.2 for 20 inner iterations.
Only one inner iteration is not sufficient to provide stability for all the Mach numbers. However,
using 20 inner iterations does not really increase the cost per iteration of the MF-SGS method
but it enables to recover the performances of the Direct scheme. Such a method is therefore
promising in terms of cost and efficiency.
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Figure 5.3.1: Amplification factor of the MF-SGS(1) scheme. Left : Average. Right : Maximum.

5.3.2 Local analysis

The local analysis is made for a low-Mach number case (M = 1073) and at CFL = 10°. In
such conditions, the MF-SGS scheme is stable but its efficiency is poor, specially in the low
wavenumber regions (c¢f. figure 5.3.3). Using 30 inner-iterations enables to recover the efficiency
is very close to the Direct Scheme’s one. Thanks to its simplicity and its good convergence
properties, SGS relaxation procedure is well-suited to be coupled with the Matrix-Free implicit
stage.
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Figure 5.3.2: Amplification factor of the MF-SGS(20) scheme. Left : Average. Right : Maximum.
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Figure 5.3.3: Amplification factor at M = 1072 and CFL = 105. Left : MF-SGS(1) scheme.
Right : MF-SGS(30).
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5.4 Matrix-Free Point Jacobi scheme

In chapter 3, Point Jacobi Block scheme was shown to be very unstable and ineffective. However,
practical computations using MF-PJ method has been carried out for several years in SINUMEF
laboratory. In our first developments (cf. [26]), we used with success the same technique to
compute low-Mach number flows. The properties of this method were obviously not well-known.
Thus, it appeared necessary to investigate further the performances of such a method.

5.4.1 Global analysis

MF-PJ scheme with only one sub-iteration is strongly unstable for all CFL numbers and for all
Mach numbers (cf. figure 5.4.1). However, unlike PJ Block scheme, 50 inner iterations enable to
provide stability even for large CFL numbers (cf. figure 5.4.2). Besides, the plot of the average
amplification factor shows that the efficiency is very similar to the MF-SGS method’s one. In
the next paragraph, we will study more precisely the efficiency of the MF-PJ method at very
great CFL number.
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Figure 5.4.1: Amplification factor of the MF-PJ(1) scheme. Left : Average. Right : Maximum.

5.4.2 Local analysis

The first local analysis is made at Mach M = 1072 and at CFL 10°. The results in figure
5.4.3 emphasize the amplification factor for one and 50 inner iterations. MF-PJ(1) is strongly
unstable but this issue can be partially circumvented using MF-PJ(50). Indeed, instabilities
are pinpointed in the very low-frequency region, in other words, the method would be unstable
for fine meshes only. Two strategies are then imaginable, namely reducing the CFL number at
the expense of a great loss of efficiency for the low-frequency modes, or increasing the number
of sub-iterations to preserve the intrinsic efficiency at the expense of the global cost. Figure
5.4.4 presents the amplification factor maps of MF-PJ(50) at CFL = 10? and of MF-PJ(500)
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Figure 5.4.2: Amplification factor of the MF-PJ(50) scheme. Left : Average. Right : Maximum.

at CFL = 10%. Both methods are stable and their damping properties are very similar except
for the very low-frequency area. The final choice relies on subjective considerations, in our
case, we favor high CFL numbers and, consequently, a more important amount of inner iterations.

SGS and PJ relaxation procedures seem to be valuable choices to solve an implicit Matrix-Free
stage. They both provide simplicity and efficiency compare to the Matrix-Free Direct scheme.
Nonetheless, we need further analyses to know if such methods are competitive in all cases.
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Figure 5.4.4: Amplification factor at M = 1073.
Right : MF-PJ(500) scheme at CFL = 106.
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5.5 [Effect of high aspect ratio

We now turn our attention to the relative performance of the Matrix-Free implicit method in the
presence of high aspect ratio grids. Several authors have studied the effects of high aspect ratio
on Block scheme solved by ADI method [11] or by relaxation procedures [12]. An interesting
definition of the time step is given by Buelow et al., namely the "min-CFL" definition for which
we have :

CFL-6x CFL -y
P

At = max (5.5.1)

This definition enables to maintain an optimum CFL value in the axial direction in the case of
high aspect ratio. However, the authors show also that the SGS Block scheme looses a lot of
efficiency at high aspect ratio and this definition does not improve the scheme. In our case, we
want to know whether the same behaviour is observed with the MF-SGS scheme and the MF-PJ
scheme.

5.5.1 MPF-SGS scheme
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Figure 5.5.1: Amplification factor map of the MF-SGS(40) scheme at M = 10~2 and CFL = 103.
Left : Aspect ratio of 1071 Right : Aspect ratio of 1072

In figure 5.5.1, we plotted the amplification factor map of the MF-SGS(40) scheme at CFL = 103
and M = 1073 and for two different values of the aspect ratio, namely 10~! and 1072. We use the
original CFL definition for the moment. As long as the aspect ratio decreases, the amplification
factor of the MF-SGS method deteriorates for the pure axial mode, that is for n = 0. We
can visualize more clearly such a behaviour in the figure 5.5.2 which represents the profile of the
amplification factor along the x-axis. We compare the MF-SGS scheme to the MF Direct Scheme,
and we notice that the damping of MF-SGS method is reduced dramatically as soon as the aspect
ratio is lower than 10~'. MF-SGS method is well conditioned for the mid-wavenumbers but it
presents a large lack of efficiency for the purely longitudinal modes, indicating poor convergence
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Figure 5.5.2: Amplification factor profile along z-axis at M = 1072 and CFL = 103. Left :
Aspect ratio of 107!, Right : Aspect ratio of 1072,

rate.

In order to circumvent this issue, we employ the "min-CFL" definition and we draw the z-profile
of the amplification factor at AR = 10~*. Results are presented in figure 5.5.3. The "min-CFL"
definition enables the Direct Scheme to recover the efficiency of AR = 1, unfortunately, it does
not improve the damping of the MF-SGS method which remains stiff for axial modes. According
to this study, we can conclude that the matrix-free simplification is not the cause of the loss of
efficiency at high aspect ratio. The stiffness of the method for purely axial modes relies on the
SGS algorithm which is unsuited to high aspect ratio grids. We will study in the next chapter
whether the same tendency is still valid for Navier-Stokes equations. However, we can already
mention that this is a weakness of the method.

5.5.2 MPF-PJ scheme

To our knowledge, effects of high aspect ratio on PJ procedure have not been studied. Hence, it
is interesting to study the behaviour of this method for such conditions. High aspect ratio have
surprising effects on the MF-PJ method. We recall that PJ relaxation procedure could lead to
oscillation in the damping, and sizes of such oscillations could cause instabilities. However, we
showed that, coupled with an implicit matrix-free stage, the algorithm remained stable. Setting
the aspect ratio at 10™! creates oscillations in the low-frequency region and the high-frequency
area (cf. figure 5.5.4 left part). The oscillating phenomena spreads to the whole wavenumber
domain for higher aspect ratio (¢f. figure 5.5.4 right part), leading to strong instability.

For aspect ratio around 1074, it is necessary to reduce the CFL number in order to preserve
stability. For such aspect ratio, the damping is almost unidirectional, thus we can easily visualize
the efficiency of the method by plotting the amplification factor along the y-direction. In figure
5.5.5, we observe clearly that the oscillating phenomena cause instability for great CFL numbers,
and we notice that using a great amount of inner iteration does not circumvent the problem (right
part of the figure). Nonetheless, this phenomena can be mitigated by setting a more reasonable
CFL number, MF-PJ method is then stable and quite efficient (left part of the figure) for purely
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Figure 5.5.3: Amplification factor at M = 1073, CFL = 10% and AR = 10~%. Left : Whole
wavenumber domain. Right : Close-up of region near z-axis.
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Figure 5.5.4: Amplification factor map of the MF-PJ(50) scheme at M = 10~3 and CFL = 10°.
Left : AR = 0y/dz = 107!, Right : AR =102

cross-stream modes. Unfortunately, MF-PJ method presents the same drawbacks than the MF-
SGS technique, that is a very poor damping of longitudinal disturbances (not shown here since
the results are identical to the ones obtained with MF-SGS method). PJ algorithm, in the
manner of the SGS algorithm, appears to be unsuited to high aspect ratio grids. Next chapter
will deal with the case of the Navier-Stokes equations so as to confirm such a behaviour.
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5.6 Conclusions

In this chapter, we saw that the spectral radius simplification reduces the damping properties
of the implicit Matrix-Free scheme. However, such a simplification is less penalizing at low-
Mach number. Thus this loss of intrinsic efficiency does not affect the global cost of the method
providing that its cost per iteration is very low. In chapter 4, we saw that SGS and PJ algorithm
ensure the simplicity and the low cost of the Matrix-Free method. Besides, the studies that we
lead in this chapter show that such algorithms are well-suited to solve Euler equations since they
provide a good damping for a reasonable amount of inner-iterations. However, these algorithms
make the method stiff for purely axial modes when high aspect ratio grids are used. These
schemes are therefore less attractive as soon as we have to deal with very stretched grids. In the
next chapter, we will study whether it is still the case for the Navier-Stokes equations.







Chapter 6

Stability Analysis of the Matrix-Free
Method for the Navier-Stokes equations

6.1 Introduction

In the previous chapter, the impact of the matrix-free simplification on the intrinsic efficiency
has been studied in the case of the Euler equations. We now want to evaluate the loss of intrinsic
efficiency due to the viscous spectral radius simplification in the implicit stage. We recall that
for the Navier-Stokes equations, the form of the Matrix-Free scheme is formally unchanged with
respect to the inviscid case :

CoAw?,

v+ CrAw, ; + C’wa?_HJ + Oy Aw}; ) + C’;szj_s_1

= —At- RZ] - UlélﬂlA(fE)Zj - O'Q(SQ,U,QA(L(]E)Zj
with R the explicit residual involving the viscous contribution and the scalar implicit coefficients
now given by :

Ci = —%01 (o7 +p‘1/)?:|:%,j , Gy = _%@ 3 +P¥)Z]~i% , Co =1-Cy =Cf -Cy = Cy.
When the Matrix-Free scheme is applied to solve viscous low-Mach number flows, the precondi-
tioning matrix P appears in the previous coefficients (cf. expression (4.2.23)). In this chapter,
the impact of the viscous spectral radius simplification will be first studied, then we will also
analyse the efficiency of the viscous preconditioning for the Matrix-Free approach. Eventually,
the performances of the MF-SGS and MF-PF schemes will be studied, especially in the case of
high grid aspect ratio.

6.2 Parameters of the study

In the manner of the previous chapter, we need to define carefully the parameters of the study.
After non-dimensionalization, inviscid Jacobians can be expressed thanks to the Mach number
M, the flow angle v/u and the ratio of specific heats v, while the viscous Jacobians require the
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Reynolds and the Prandtl numbers in addition. Convective and diffusive phenomena possess
their respective characteristic time-step which can be defined as follows :

ox Oy
AtF = min(—, =)
ATTAS
oz 5y
vV _
At = n( ,OV ) p—v)

where )\f and )\; are the spectral radius of the eigensystem in each direction while p¥ is the
viscous spectral radius which, for the air, reads :

v_ K
PrRep

We can choose the time-step as the minimum between the convective and the diffusive charac-
teristic time multiplied by a safety factor x :

At = x - min(At?, AtY)

When convective effects are dominant, typically far from the walls, we have AtF << At the
time-step is therefore given by :

At =y - AtF

and the coefficient y would correspond to the CFL number. On the other hand, we get AtV <<
AtP when viscous effects are preponderant, that is in the shear layer, the time-step is then

defined by :
At =y - AtV

and the coefficient y would correspond to the VNN number. In order to lead stability analyses
for the Navier-Stokes equations, we need a significant parameter in order to determine whether
the flow is dominated by the convective effects or whether it is dominated by the viscous effects.
In each direction, one can define a cell Reynolds number as follows :

u-ox v -0y
Re — 5 Re = —
z ,OV Y pV
The cell Reynolds number is then defined as the minimum between these two values :
. u-r . AR
Rem = m1n<R€$, Rey) = p—v . mln(l, m)

If we suppose that the flow angle is equal to 45 degrees, then the ratio v/u is equal to unity and
the cell Reynolds number reads :

U 0T

This cell Reynolds number enables us to evaluate the ratio between the viscous time-step and
the convective time-step. Indeed, we have :

AtV A\ -6
AtE oV

AR 17!
-min(1, AR?) - [min(l, 7)]
A3 /AT
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which, in the case of a 45 degree flow angle, reduces to :

AtV A\ -6
AtE oV

/\-l-
-min(1, AR) = 71 -Re,, =0 (6.2.2)

The ratio between the two time-steps relies on the cell Reynolds number and the ratio between
the biggest eigenvalue and the particle velocity. In the case of the inviscid preconditioning, the
definition of the preconditioned eigenvalue yields :

)\f ~u
which leads to :

AtV

AE ~ Fem

However, we will see that the definition of the preconditioning should be modify in order to
remain effective for the viscous dominated flows. Such a modification makes the eigenvalue
)\f different from the particle velocity. For this reason we will denote the ratio of the viscous
time-step with respect to the convective time-step by O :

At = x - AtP -min(1,0) = x - AtV - min(1,1/0)

Now we can easily determine all the Jacobians of the problem as follows :

AP = SEAP = x - min( ey, iphy) - min(1,0) - AP(v/u, M, 9)

B}

. . 1/AR 3
BE = %;BE =x- mln(p(/AE ’p(El%E ) -min(1, ©) - BE(v/u, M, ~)

~
~

AV = 264V = x - £2 . min(1, AR?) - min(1,1/0) - AV (v/u, M, v, Pr) (6.2.3)

BY = (SATEBV = x- £ min(1,1/AR?) - min(1,1/0) - BV (v/u, M, ~, Pr)

SV = (ﬁgysv =1.x- % -min(AR,1/AR) - min(1,1/0) - SV (v/u, M)

where AV, BV and SV are given in appendix.

Finally, the required parameters which define the whole viscous problem are the follow-
ing : v/u, M, ~, x, AR, Pr and Re,,.
6.2.1 Low-Mach parameter

An additional parameter is necessary to carry out studies at small Mach number, namely the
low-Mach parameter 3 that we introduced in chapter 1. For inviscid flows, it is customary to
take it equal to the Mach number :

(2 = min[M?,1]

However, such a definition was shown to be unadapted to viscous flows [14], specially when the
Reynolds number is very small. In order to emphasize the issue due to the use of the inviscid
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definition, let us consider a low-Mach viscous dominated flow at M << 1 and Re,, << 1 and
let us study the CFL and the VNN numbers :

+.
C’FLx:)\l At

ox

\%

p’ - At
NN, =2 =%
v o2

Using the inviscid preconditioning yields \] ~ u and as Re,, << 1 it follows that :

A At u- At pV - At
A << =VNN,
o ox dx? *
For viscous dominated flows, the parameter x enables to optimize the VNN number only. The
inviscid preconditioning does not ensure that the CFL number would be set at its optimum value.
In order to circumvent this issue, Venkateswaran et al. proposed in [81] a new definition of the

low-Mach parameter :

52 = max ( afm—l) - afar— 1) > (6.2.4)

v a; —1+c2/u?’ as—14c2/v?

CFL, =

with

1 pV 1 pV
= =t =_—=I— . 2.
Re, udr 2 Re,  wvdy (6:25)

aq

For the case that we considered, simple calculations yields :

AL
- C

B

so that the eigenvalue is now equal to A\ ~ p" /§z which leads to :

A At - pV Jox - At _
ox ox
Consequently, the viscous preconditioning allows to optimize the VNN number and the CFL

number at the same time. The definition of the low-Mach parameter for the viscous case is
therefore the following :

CFL, =

VNN,

3 = min[max[M?, 57], 1]

We can notice that there is no need of additional data in order to define the low-Mach parameter.

6.3 Impact of viscous spectral radius simplification for subsonic
cases

In order to examine precisely the behaviour of the Matrix-Free scheme for the Navier-Stokes
equations, we distinguish four types of implicit stages. The first one is the classical Block scheme
for which inviscid and viscous terms are evaluated using block Jacobians. The second one is an
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Figure 6.3.1: Amplification factor profiles along diagonal axis for the four different implicit stages.
Top-Left : M = 0.5, Re,, = 10. Top-Right : M = 0.5, Re,, = 1. Bottom-Left : M = 0.5,
Re,, = 0.1. Bottom-Right : M = 0.05, Re,,, = 0.1

hybrid stage for which the inviscid terms are simplified using spectral radius while the viscous
terms are treated like the Block scheme. The third stage is built using inviscid Jacobians and
viscous spectral radius. Then, the last one is our Matrix-Free scheme for which both inviscid
and viscous terms are evaluated thanks to spectral radius. In practice, the second and the third
schemes are not really interesting because they are expected to provide less efficiency without
reducing the memory storage. Nonetheless, using theses four implicit stages enables us to know
which simplification, inviscid or viscous one, is mainly penalizing to obtain good efficiency. In
this section, we consider subsonic flows and we vary the cell Reynolds number from convective
dominated flows (Re,, > 1) to viscous dominated flows (Re,, < 1). The results in figure 6.3.1
present the amplification factor along the diagonal axis of the wavenumber domain. We first set
the Mach number at M = 0.5 and we took successively the cell Reynolds number at 10, 1 and
0.1. We observe that for Re,, = 10, the loss of efficiency is mainly due to the inviscid spectral
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radius simplification since the simplification in the viscous part does not deteriorate efficiency.
On the other hand, at Re,, = 0.1 the viscous spectral radius is the cause of the bad damping
properties. For Re,, = 1, that is when convective and viscous effects are of the same order, the
loss of efficiency is equally distributed between the two simplification. According to this first
analysis, one can think that the effects of the viscous spectral simplification on the efficiency
are mainly driven by the value of the cell Reynolds number, as this latter decreases the viscous
simplification becomes more penalizing. In fact, this is a bit more complex, indeed, by keeping
the cell Reynolds number at 0.1 and setting the Mach number at M = 0.05 we can notice that
the effects of both simplification become of the same order. Consequently, the impact of the
viscous spectral radius simplification seems to rely on the ratio Re,,/M rather than Re,,. This
ratio is known as the "acoustic" Reynolds number and it is denoted as follows :

_c
- v/ox

Re, (6.3.1)

When Re. > 1, acoustic effects dominate the flow, thus the viscous spectral radius simplification
does not affect the efficiency of the method. On the other hand, when Re. < 1, the viscous
characteristic time is the smaller and the simplification on the viscous terms is therefore highly
penalizing. However, in our practical computations, the "acoustic" Reynolds number is rarely
smaller than unity. We can reasonably think that the viscous spectral radius does not cause too
big a loss of efficiency. In the rest of the chapter, our studies will aim at low-speed, viscous-
dominated flows, that is for Re,, << 1, M << 1 and Re. > 1.

6.4 Low-Mach viscous-dominated regime

In this section, we want to study precisely the efficiency of the Matrix-Free method in the case of
low-Mach viscous dominated flows. Before tackling this subject, let us first study the impact of
the viscous preconditioning on the implicit block scheme. We set the Mach number at M = 107>
and the cell Reynolds number at Re,, = 10~! and we draw the amplification factor map for the
inviscid and the viscous preconditioning (cf. figure 6.4.1). The viscous preconditioning allows
to increase dramatically the intrinsic efficiency of the Block scheme over the entire wavenumber
domain. As mentioned earlier, it approximately equalizes the acoustic-CFL number and the
VNN number which removes the stiffness from the Navier-Stokes system.

We now make the same study for the Matrix-Free scheme. The results are presented in
figure 6.4.2. Unlike the Block case, the viscous preconditioning does not improve significantly
the intrinsic efficiency of the Matrix-Free method. We even note that the inviscid preconditioning
provides a better damping for the low-frequency modes. The reasons of such a behaviour are
not clearly indentified, we suppose that the viscous spectral radius simplification is at the origin
of the problem. Nevertheless, we tried to find a mean so as to improve the efficiency of the
method. This research led us to modify the viscous preconditioning definition.
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Figure 6.4.1: Amplification factor map of the Block scheme solved directly at M = 1077,
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6.5 Viscous preconditioning enhancement

First researches to increase the damping of the Matrix-Free scheme for the low-Mach viscous
dominated regime revealed that the optimum value of the low-Mach parameter 3 settled between
By and M. For the cases that we studied, we usually have 3, > M which means that the viscous
preconditioning creates more numerical dissipation than the inviscid one. As the viscous spectral
radius simplification provides over-dissipation, we tried to reduce this numerical dissipation by
setting :

Bp =By x M

The results obtained with this choice are presented for the Block and the Matrix-Free schemes
in figure 6.5.1. We notice that this new version of the viscous preconditioning does not enable
the Block scheme to be more efficient compare to the classical version. On the other hand,
the Matrix-Free scheme reaps a great benefit of this new choice. Indeed, there is a significant
improvement of the damping over the entire wavenumber domain and the performances in the
very low-frequency region are now very similar to the inviscid preconditioning. Thus, the classical
version of the viscous preconditioning is clearly well-suited for the Block scheme while the Matrix-
Free algorithm requires an alternative version. In the rest of the paragraph we will investigate
further the impact of this enhanced preconditioning on the Matrix-Free method.
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Figure 6.5.1: Amplification factor map of the Direct Solver with the enhanced preconditioning
at M = 107>, Re,, = 107! and y = 10%. Left : Block scheme. Right : Matrix-Free scheme.

The good properties of the new definition of the viscous preconditioning remain valid provided
that the acoustic Reynolds number is greater than unity. So as to confirm this interesting
behaviour, we present in figures 6.5.2 and 6.5.3 some comparisons between all the types of
preconditioning in the case of the Matrix-Free scheme solved directly. We draw the amplification
factor along the diagonal line £ = 7. For every case, the inviscid preconditioning provides a
better damping of the low-frequency modes while the viscous preconditioning is more efficient
in the rest of the wavenumber domain. The new definition enables to preserve both types of
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efficiency. Indeed, we note that the enhanced preconditioning provides a similar damping than
the inviscid one for the low-frequency modes while it is more efficient than the viscous one in
the rest of the wavenumber domain.
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Figure 6.5.2: Amplification factor of the Matrix-Free scheme solved directly along the diagonal
line & = 7). Left : Comparison at M = 1073, Re,, = 107! and y = 10°. Right : Comparison at
M =10"', Re,, = 107! and y = 10°.

Thanks to this enhanced definition of the viscous preconditioning, the loss of efficiency due to the
Matrix-Free simplifications is reduced. The method can be then very competitive with respect
to the Block scheme. Next paragraph is devoted to the study of the Matrix-Free scheme solved
by SGS or PJ relaxation procedures. Given to the good results obtained with the enhanced
preconditioning, we will only consider it for the MF schemes.

6.6 MF-SGS scheme and MF-PJ scheme

MF-SGS and MF-PJ algorithms appeared to be competitive methods to solve Euler equations
without high aspect ratio (c¢f. chapter 5). Indeed, both methods provide good damping for a
reasonable number of inner-iterations. We expect to obtain the same properties for the Navier-
Stokes equations. Let us consider the case detailed in the previous section (M = 107° and
Re,, = 1071). In figure 6.6.1, we plotted the amplification factors of the MF-SGS(40) method
(on the left) and of the MF-PJ(50) algorithm (on the right).

As expected, MF-SGS scheme enables us to obtain damping properties close to the ones derived
from the Direct scheme. However, we note that for the very low wavenumbers, MF-SGS scheme
is a little bit stiffer than the Direct method, indicating a loss of efficiency. Despite this, MF-SGS
scheme can be regarded as a valuable choice to solve the Navier-Stokes equations.

Similarly, MF-PJ(50) method provides a good damping above a large part of the wavenumber
domain, nonetheless, it becomes really stiff for the low-frequency area. This issue can be partially
circumvented by using more inner-iterations at the expense of an increase of the cost per non-
linear iteration. However, MF-PJ scheme remains also competitive and we can notice that, unlike




140 CHAPITRE 6. STABILITY ANALYSIS OF THE MATRIX-FREE METHOD FOR THE NAVIER-STOKES EQUATIONS

R M=10", x=10°, Re, =10°, AR=1 R M=10", x=10°, Re, =107, AR=1

3 3
01sf ! . 075 ! '~

| |

ir

pG)
pG)

—-—@—-—- Inviscid Preconditioning —-—@—-—- Inviscid Preconditioning
025 - — —A— - Viscous Preconditioning 0.25 - — —A— - Viscous Preconditioning
r ——— Enhanced Preconditioning r ——— Enhanced Preconditioning
0 T I T I T I | 0 T I T I T I |
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
E/m=n/1 E/m=n/m
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for the Euler equations, the method remains stable for high value of the safety factor y.

In the previous chapter, we observed that both algorithm were not well-suited for solving Euler
equations in the presence of high aspect ratio grids. Using stretched grids is customary to solve
the Navier-Stokes equations since we need more points to describe the flow in the shear layer. It
is therefore necessary to analyze the performance of SGS and PJ algorithms in such conditions.
This is the objective of the next section.
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Figure 6.6.1: Amplification factor map at M = 107, Re,, = 10! and y = 105. Left : MF-
SGS(40) scheme with enhanced viscous preconditioning. Right : MF-PJ(50) scheme with en-
hanced viscous preconditioning.
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6.7 Effect of high aspect ratio

High grid aspect ratio are customary encountered in practical computations since shear layers
require a large amount of points in the direction normal to the wall in order to resolve the
high gradient regions. In chapter 5, we dealt with such high aspect ratio issues for the Euler
equations and we showed that the Matrix-Free simplification did not generate any difficulties.
On the other hand, we noticed that SGS and PJ algorithms were not well-suited for problems
involving very stretched meshes. Theses methods are expected to behave similarly for the Navier-
Stokes equations. In order to show the difficulty of dealing with viscous flows over high aspect
ratio grids, let us consider an example. Let us suppose that Re,, < 1, M << 1 and AR << 1.
We suppose also that we use the classical viscous preconditioning and we compute the CFL
numbers and the VNN numbers in each direction as follows :

A At N pV At

CFL, = ~ — VNN, x AR

ox dxdy y

Ay At pV At

CFLy= 2= = Foss VNN,

VA
VNN, = 'OTQt — VNN, x AR’

x

VoAt

VNN, =" 52

In the case of grids stretched in the z-direction, the viscous preconditioning enables to optimize
the VNN and the CFL numbers in the cross-stream direction. As a result, the CF L, number and
the VNN, number are maintained at small value if the aspect ratio is very small, indicating a
poor damping of the longitudinal error modes. Such a strategy is refered as the "max-CFL/max-
VNN" combination since it optimizes the highest value of CFL and VNN parameters. The
modification of the viscous preconditioning for the Matrix-Free scheme does not change this
situation. To circumvent this issue, Venkastewaran and Merkle proposed in [81] a modification
of the viscous preconditioning. Their idea is to simultaneously optimize the viscous processes in
the cross-stream direction with the acoustic wave propagation in the longitudinal direction. In
our case, the new definition of the viscous preconditioning tries to maintain the C'F'L, number
and the VNN, number at their optimum values. This can be achieved by changing the definition
(6.2.5) of a1 and ay as follows :

11 1 )

o] =
This strategy is refered as the "min-CFL/max-VNN" combination since it optimises the minimum
CFL number and the maximum VNN number. However, even with this new preconditioning the
V NN, number remains very small which still creates stiffness for the pure longitudinal modes.
Moreover, this definition of the preconditioning provides more numerical dissipation. Indeed,
simple calculations yields :

Viey 1 V)6
g PO L /0y

c AR c
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When the aspect ratio is very small, the preconditioned scheme can even turn back to its non-
preconditioned version. Hence, such a strategy seems clearly unadapted to our Matrix-Free
scheme which requires less numerical dissipation, as mentioned earlier. The analysis that we
performed indicates clearly that, for this choice, the Matrix-Free scheme is stiff over the entire
wavenumber domain. A last strategy was also designed by Merkles’ team [11, 81] and refered as
the "min-CFL/min-VNN" combination since it tries to maintain the minimum CFL and VNN
numbers at their optimal value. This choice can be enforced by taking the minimum instead of
the maximum in expression (6.2.4) :

52=min< ar (a1 —1) as (g — 1) )

v a; —1+c2/u?’ as—1+c%/v?

with the original definition of the coefficients a;; and «. This choice enables to obtain a very good
damping in the longitudinal direction, however, it implies that the values of the CFL number
and the VNN number in the cross-stream direction are very big which can generate some stiffness
over the frequency domain. Moreover, the choice of the minimum in the viscous preconditioning
implies that the low-Mach parameter 5 can become equal to the Mach number as for the inviscid
preconditioning and resulting stiffness can then appear. Next paragraph is devoted to the study
of these different strategies in the case of the Direct Scheme.

6.7.1 Direct scheme

Let us consider a flow at M = 107°, Re,, = 10~! and let us take AR = 10~2. We plotted in
figure 6.7.1 the results obtained for the Block scheme at x = 10% and with the "max-CFL /max-
VNN" preconditioning. The scheme provides an excellent damping over the entire frequency
domain and even for the pure-longitudinal modes as it can be seen on the close-up. These good
properties along the x-axis are mainly due to the use of high values of time-step (we recall that
x = 10°%). Hence, in that case, we can estimate that CF L, ~ 10* while VNN, ~ 10? which are
still high values for these parameters.

In figure 6.7.2, we present the results obtained with the Matrix-Free scheme for the same condi-
tions except that we used the modified viscous preconditioning. We notice that the damping is
good over a large part of the frequency domain. Nonetheless, we also note that the stiffness is
mainly concentrated along the z-axis, as one can see in the close-up. Unlike the Block scheme,
the damping of the Matrix-Free method deteriorates for the pure longitudinal modes and partic-
ularly for the high frequencies. Hence, it can be interesting to study the "min-CFL/min-VNN"
combination and its effects on the performance rate for the pure longitudinal modes.

In figure 6.7.3, we plotted the amplification factor map obtained with the "min-CFL/min-VNN"
strategy. As expected, the damping over the wavenumber domain is worse than with the previ-
ous version. High values of the transverse CFL and VNN numbers and the fact that the viscous
preconditioning equalizes the inviscid case are the main reasons of the stiffness. On the other
hand, as one can see in the close-up, the damping of the pure longitudinal modes is improved,
particularly for the high frequencies and the very small wavenumbers. However, Venkateswaran
and Merkle emphasize that with this kind of strategy the solutions may diverge and they pro-
pose to use the more conservative viscous preconditioning in the begining of the computation
and then switch to the "min-CFL/min-VNN" combination. At any case, the efficiency for pure
axial modes of the Matrix-Free scheme will rely also on the resolution method. Next section will
precisely deal with the performances of the SGS and PJ relaxation procedure with high aspect
ratio grids.
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Figure 6.7.1: Amplification factor map of the Direct Block scheme at M = 107°, Re,, = 1071,
x = 10% and AR = 1072. Left : Entire wavenumber domain. Right : Close-up near the absciss
axis.
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Figure 6.7.2: Amplification factor map of the Direct Matrix-Free scheme at M = 1075, Re,, =
107!, x = 10% and AR = 1072. Left : Entire wavenumber domain. Right : Close-up near the
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Figure 6.7.3: Amplification factor map of the Direct Matrix-Free scheme at M = 107°, Re,, =
1071, x = 10% and AR = 1072. The "min-CFL/min-VNN" strategy is used. Left : Entire
wavenumber domain. Right : Close-up near the absciss axis.

6.7.2 MPF-SGS and MF-PJ schemes

In this paragraph, we aim at studying the performances of MF-SGS and MF-PJ schemes in the
presence of high aspect ratio grids. As mentioned earlier, they are expected to provide poor
damping for the pure axial modes. Results from figure 6.7.4 show that for AR = 1072, both
methods are efficient to damp the mid-wavenumber modes but they fail to eliminate pure longi-
tudinal errors. Using "min-CFL/min-VNN" definition does not enable to improve significantly
the performances. In figures 6.7.5 and 6.7.6, we present the amplification factor along the x-
axis for the MF-SGS(40) and MF-PJ(50) schemes. For both schemes, the "min-CFL/min-VNN"
strategy fails to improve the pure axial damping. Further investigations revealed that taking
a very large amount of inner-sweeps enables both method to recover a little intrinsic efficiency
but such a strategy is not affordable in terms of CPU-time efficiency. As a result, the use of the
"min-CFL/min-VNN" combination cannot be reasonably considered for the Matrix-Free method
coupled with SGS or PJ algorithm.

6.8 Conclusions

In this chapter, we studied the impact of the viscous spectral radius and we emphasized that,
as long as Re. > 1, such a simplification does not affect the efficiency of the method. When
Re. < 1, the simplification is highly penalizing but we can reasonably consider that such a case
is rare for low-Mach number flows. Besides, we showed that the original viscous preconditioning
is not really well-suited for the Matrix-Free technique since it provides too much numerical
dissipation. Hence, we outlined a new definition of the viscous parameter which enables the
method to provide a good damping for every frequency modes. In the case of high aspect ratio
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Figure 6.7.5: Amplification factor of the MF-SGS(40) scheme along the z-axis. Left : Enhanced
viscous preconditioning. Right : "min-CFL/min-VNN" combination.

grids, we showed that the "min-CFL/min-VNN" combination can increase the efficiency of the
method for the pure axial modes. Unfortunately, the same strategy fails to make SGS and PJ
algorithms as efficient as the Direct scheme. However, some strategies are imaginable in order
to avoid high aspect ratio issues, such as unstretching grids far from the wall boundaries so as
to preserve efficiency. It was shown in [81] that axial modes can be eliminated by the boundary
condition specifications. In chapter 8, we will focus on such problems and we will try to outline
practical solutions.
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viscous preconditioning. Right : "min-CFL/min-VNN" combination.




Chapter 7

Stability Analysis of the Matrix-Free
Method for the Unsteady Equations

7.1 Introduction

Unsteady fluid dynamic processes are frequently encountered in engineering problems. As they
are governed by a wide range of time scales (typically from acoustic time to particle time),
they are challenging to compute. For low-Mach number flows, unsteady problem is even more
complex since there is a strong disparity between the characteristic time related to acoustic
waves and the characteristic time related to particle velocities. In this chapter, we focus on
the FEuler unsteady equations solved by a dual-time stepping scheme, wherein the physical-time
derivatives are employed to follow the physical transients and the pseudo-time derivatives serve
as an iterative device. In chapter 3, we showed how to obtain the expression of the dual-time
stepping scheme in the Fourier space. For the Euler case, it is given by the following system :

~N. M ~N,m
H-Awi} =-K- -w." |
9.

i,J
with
( 3AT AT ~ AT ~
K = Qﬂld + 25—x(1—8)D1 21 + 2@(1_5)172 %2
AT ~ AT ~
—+ %6 (1—H)D1 Z% —+ @6 (1—H)D2 Z%
A € AT g €
+i <§A 51 (14—5(1—/40)2’1)4-@3 S92 (1‘1‘5(1—5)22))
3AT AT - AT ~ AT AT
H=P'4+ 21d + 2— — i —AFs; +—B"
t o ld + 5$D1zl+25yD222+1(5xA Sl+6yB 52>

where we recall that At is the physical time-step and A7 is the pseudo-time step. In order
to perform a Von Neumann analysis, we need to customize the unsteady system. That is the
subject of the next paragraph.
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7.2 Parameters of the study

In the manner of the previous chapters, we need parameters which enable us to compute the
Jacobian matrices and the dissipation matrices. As shown earlier, the Mach number M, the flow
direction v/u and the ratio of specific heats v are sufficient to determine such matrices. Besides,
we have to compute the ratios Ar/dx, A7/0y and A7/At. The pseudo-time step reads :

AT =CFL;- min(é—i, 5—%)
AL A

where A\ and AJ are the spectral radius of the preconditioned system. Hence, we obtain :

AT 1 AR

— =CFL; -min(—, —)

ox AT (72.1)
AT 1/AR 1 o
= CFL, -min(£52, —

5 C min( A )\;)

Consequently, two others parameters are required, namely the aspect ratio AR = dy/dx and the
dual CFL number CFL,. Furthermore, we have to define the physical-time step. There are two
possible definitions, the first one based on the acoustic time scale, the second one based on the
particle time scale :

1 AR 1 AR

) or At =CFL; - 6z - min(—, —)

At = CFLy - §z - min( ,
u+c v+c U v

At any case, we have :

AT AT oz

At oz At
Thus, we choose the physical CFL number C'F'L; as the additional parameter to set the physical
time step. Before performing analyses, we want to define two practical numbers, namely the
CFL number based on the particle velocity and denoted C'F'L,, and the CFL number based on
the acoustic wave and denoted C'F Ly :

C’FLu:u'g and CFLu:(u+c)-§
ox ox
When the Mach number is very small, the scheme has to deal with a strong disparity between
these two numbers. For instance, if the Mach number is set at M = 1073 and if we are interesting
in the acoustic phenomena, then we have CFL,,. ~ 1 and CFL, ~ 1073. Hence, we can
encounter some problems because of these very different time-scale. Let us now deal with the
low-Mach parameter which enables us to circumvent such issues.

7.3 Unsteady preconditioning

As mentioned earlier, the large disparity between acoustic CFL number and particle CFL num-
ber that we encounter for low-Mach number flow obliges us to redefine properly the low-Mach
parameter. Several studies about this problem are available in the literature and Merkle’s teams
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provided an enhancement of steady preconditioning in [81]. Using standard steady precondition-
ing can be specially ineffective for acoustic problems. In figure 7.3.1, we plotted the amplification
factor obtained with the MF-SGS(30) scheme with the steady preconditioning (left) and without
any preconditioning (right). We notice that the preconditioned scheme becomes particularly
stiff for the low-frequency area and, as a result, it is inappropriate for such problems. On the
other hand, the standard scheme appears to be well-suited for this case and provides a very good
damping over the entire wavenumber domain.
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Figure 7.3.1: Amplification factor of the MF-SGS(30) scheme at M = 1073, CFL,,. = 1 and
CFL, = 10°. Left : Steady preconditioning. Right : No preconditioning.

For particle problems, that is when CFL, = 1, the results are different. Indeed, in figure
7.3.2, we can note that the Steady preconditioning scheme provides a good damping while the
unpreconditioned scheme is highly stiff for such a case. Steady preconditioning is then more
appropriate for particle problems, however we remark that the damping over the low-frequency
region is still ineffective, indicating slow convergence. Standard preconditioning is therefore not
versatile enough to deal with the limits of small and large physical time-steps. Moreover, in
the case of intermediate choices of time-step size, neither steady preconditioned scheme nor un-
preconditioned one provide good convergence properties. Researches showed that an additional
definition of the low-Mach parameter was then necessary. The unsteady parameter is defined as
follows :

Lo,
T Atc w At e

By = max( )

where [, and [, are characteristic lengths of the physical problem. In practice, it is customary
to take these lengths equal to the size of the computational domain. The main reason is that we
want to damp efficiently the low-frequency error modes since they usually control the convergence
rate. These modes are related to the longest wavelengths that can be captured over the domain,
it is therefore reasonable to consider that such wavelengths are of the order of the size of the
computational domain. As a result, the ratio [, /At can be regarded as the speed of these waves
and the unsteady parameter can be considered as the Mach number which defines them.
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Figure 7.3.2: Amplification factor of the MF-SGS(30) scheme at M = 1073, CFL, = 1 and
CFL, = 105. Left : Steady preconditioning. Right : No preconditioning.

However, there exists another way to determine these lengths. In fact, the convergence rate is
controlled by the low-frequency modes but their representation in the Fourier space relies on
the mesh size. More precisely, when the grid becomes finer, the representation of the largest
wavelength corresponds to lower frequencies. Hence, there are two characteristic lengths which
have to be taken into account, namely the size of the wave and the size of the mesh. Considering
the fastest wave propagating at the speed (u + ¢) during the physical time-step At, we obtain
the following length :

Lacous = (U + C) At = CFLU_H; -0

According to the value of C'F Ly, this length can be seen as the number of space-step that the
fastest wave covers during one time-step. Moreover we can consider that it represents the scale
of the largest wavelength. As the frequency representation depends also on the mesh size, we
can take as reference length the geometry average of (Lgcous X 0) :

ly = v/ Lacous - 0x = 0x - \/CF Ly,

Thus, the unsteady parameter in the z-direction can be redefined as follows :

_ 5$/At \/CFLU+C
™

C

Bu

Let us consider an acoustic problem, C'FL,. is set to unity and the physical time-step is
therefore equal to At = dx/(u + ¢). The unsteady parameter is then given by :

u+c 1
ﬁu: i
C T

3 |

Using this parameter enables us to become very close to the unpreconditioned scheme which is
well-suited for acoustic problems. On the other hand, let us set C'FL, to unity which means
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that At = éx/u and CF Ly~ 1/M, we obtain :

.
=

ﬁu:

u /M VM
c T

Now the unsteady parameter is close to the steady one and we can expect a good damping of
the error modes. For intermediate cases, the square root of the acoustic CFL number enables
us to scale properly the unsteady parameter so as to preserve good convergence properties. In
figure 7.3.3, we show the results obtained with this definition of the unsteady parameter for
CFLyy. =1 on the left and C'F'L, =1 on the right. We notice that for both cases, the scheme
succeed in damping efficiently the low-frequency error modes, indicating fast convergence rate.
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Figure 7.3.3: Amplification factor of the MF-SGS(30) scheme with the unsteady preconditioning
at M = 1073 and CFL, = 105. Left : CFL,,. = 1. Right : CFL, = 1.

In figure 7.3.4, we drew the diagonal profile of the amplification factor at CF L, . = 1 and
CFL, = 1. The unsteady preconditioner appears to be the more versatile method to damp
correctly the low wavenumbers in both cases. Moreover, for intermediate configurations, namely
for CFL, = 107! and for CFL, = 1072, the unsteady preconditioner provides good convergence
properties as shown in figure 7.3.5.

Remark :

We want to stress on the fact that the unsteady preconditioning has a non-negligible effect on the
accuracy of the solution. Indeed, it implies that the low-Mach parameter is larger than for the
steady preconditioner so that the numerical dissipation becomes more important. It is especially
true in the case of the acoustic problems for which the unsteady preconditioning approaches
the no preconditioning formulation. The numerical dissipation is then poorly scale leading to
inaccuracy.
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Figure 7.3.4: Diagonal profile of the amplification factor of the MF-SGS(30) scheme at M = 1073

and CFL, = 10°%. Left : CFL,,. = 1. Right : CFL, = 1.

Figure 7.3.5: Amplification factor of the MF-SGS(30) scheme with unsteady preconditioning at
M =103 and CFL, = 10°. Left : CFL, = 107!, Right : CFL, = 1072
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7.4 Comparison Block / Matrix-Free

7.4.1 Regular grids
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Figure 7.4.1: Diagonal profiles of the amplification factor at M = 1072 and CF L, = 10° with the
unsteady preconditioning. Top : Comparison between Block-ALGS(1) scheme and MF-SGS(30)
scheme. Left : CF Ly, =1. Right : CFL, = 1. Bottom : Comparison between Block-ALGS(1)
scheme and MF-PJ(50) scheme. Left : CFL,.. = 1. Right : CFL, = 1.

The results presented in figure 7.4.1 are very interesting since they show that the Matrix-Free
method coupled with SGS algorithm or PJ algorithm is as efficient as the Block scheme solved
by ALGS procedure. Indeed, for acoustic and particle problems, that is for CFL,,. = 1 or
CFL, = 1, the Matrix-Free scheme provides a very good damping of the low-frequency error
modes which indicates a fast convergence rate. Thus, Matrix-Free method appears to be very
appropriate for the unsteady flows.
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7.4.2 Stretched grids

We first deal with the acoustic problems and we set the aspect ratio at 10~*. For such a case,
the MF-SGS scheme is very competitive since it provides an excellent damping over the entire
wavenumber domain and it eliminates completely the pure axial modes (cf. figure 7.4.2). These
results are surprising because we expected that the method provided a bad damping of the
longitudinal modes as it is the case for steady flows.
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Figure 7.4.2: Left : Amplification factor of the MF-SGS(30) scheme at M = 1073, CFL,.. =1
and CFL, = 10% with the unsteady preconditioning. Right : Profile of the amplification factor
along the y-axis (¢ = 0) for the same conditions. Comparison between Block-ALGS(1) scheme
and MF-SGS(30) scheme.

In fact, according to the chapter 3, we can easily explain this behaviour. Under such conditions,
the physical time-derivative term is highly dominant for the xz-modes and, consequently, the
operator matrices H; and Hs which define the SGS scheme (cf. expression 3.12.1) read :

AT AT
HlNEId and HQNEId

Moreover, the implicit operator H and the explicit operator K read also :

AT AT
H~—Id K~ —Id
At and At
As a result Vggg is equal to zero and the amplification matrix of the SGS scheme (Ggggs) is the
same than the Direct scheme’s one (G,). Besides, the amplification matrix of the Direct scheme
is given by :
AT AT

y=H ' (H-K)~H ' (=—Id—- —1Id) ~
G ( ) (K10 = J D) =0

Hence, the damping is maximum for the pure axial modes.
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Let us now study the particle problem with high aspect ratio grids. A priori, we can ex-
pect that, as the physical time-derivative term is less dominant, the behaviour of the MF-SGS
scheme becomes similar to the steady case. Figure 7.4.3 presents the results obtained for
AR =10""! and AR = 1073. We notice that, in the manner of the steady case, the amplification
factor becomes stiff for pure longitudinal modes.
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Figure 7.4.3: Amplification factor of the MF-SGS(30) scheme at M = 1073, CFL, = 1 and
CFL, = 105 with the unsteady preconditioning. Left : AR = 10~!. Right : AR = 1073.

However, the value of the aspect ratio implies that for longitudinal modes the physical
time-derivative term becomes larger, and, as a result, the loss of efficiency is expected to be less
important than for the steady case. In figure 7.4.4, we note that until AR = 1073, the MF-SGS
method is competitive compared to the Block-ALGS scheme which is well-known to possess
good properties in such conditions. Nevertheless, for AR = 10~*, MF-SGS scheme becomes
too stiff and, like for the steady case, it is unsuited for computing such problems. In spite of
this weakness, we can conclude that the Matrix-Free method is a valuable choice to carry out
unsteady computations with reasonable grid stretching.

7.5 Conclusion

In this chapter, we studied the performances of the Matrix-Free implicit method for the Euler
unsteady equations solved using a dual-time stepping strategy. We described the difficulties re-
lated to the low-Mach number computation and we outlined a specific definition of the low-Mach
preconditioner. Using this unsteady preconditioner, we showed that the Matrix-Free method
coupled with SGS or PJ algorithm is highly efficient to damp the low-frequency modes for both
acoustic and particle problems. Furthermore, we emphasized that the method is also versatile
enough to deal with the intermediate cases that can arise when one uses high aspect ratio grids.
The theoretical Von Neumann analysis enabled us to study the main features of the Matrix-Free
implicit method such that we can conclude that this method represents a valuable choice to
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compute unsteady flows. However, as mentioned earlier,
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scheme at M = 1073, CFL, = 1 and
: AR =10""1. Left : AR=1073.

we have to take care about the fact that

the unsteady preconditioner can have a negative effect on the accuracy of the computation since,
especially for acoustic problems, it approaches the no preconditioning formulation which implies
a poor scale of the numerical dissipation. We will study all these properties in the numerical

experiments.




Chapter 8

Basic Numerical Experiments

8.1 Introduction

This chapter deals with numerical experiments that have been carried out using a model code,
with a two-folded objective :

e to confirm by practical computations the a priori analysis of intrinsic efficiency based on
the study of the amplification factor for the steady and unsteady linearized Fuler and
Navier-Stokes equations,

e to complete the performance analysis of the proposed matrix-free treatment by taking
into account the computational cost of the method as well as its memory requirements,
thus gaining access to a preliminary assessment of the global efficiency provided by the
matrix-free approach.

The use of a model code was retained for flexibility reason : this code solely developed for our
own purpose proved to be a very useful numerical platform for carrying out a large number of
numerical experiments with several variants of the implicit schemes under study before actually
implementing in CEA’s CAST3M general-purpose platform the best choice identified at the
conclusion of this preliminary study. The model code is written using a finite-difference approach
on Cartesian grids. It is applied to three test-cases, designed so as to allow the investigation of a
wide range of configurations : namely an inviscid steady problem, both in the compressible and
low-Mach regime (flow over a sine-bump), a viscous low-Mach steady problem (Poiseuille flow)
and a viscous low-Mach unsteady problem (flow over an oscillating flat plate). For each case,
we want to outline the different properties of the Matrix-Free method, mainly the convergence
rate and the memory storage required, and situate these properties with respect to the ones
provided by standard block-implicit treatments (representative of the available block-implicit
treatment in CAST3M). The results that we are about to comment will enable us to justify (or
not!) the valuableness of our method in order to implement it into the CAST3M code of the CEA.
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8.2 Model platform framework

Let us present the governing equations and the non-dimensionalization that we applied in the
model program. Unlike the process that we described in chapter 1, we choose the free-stream
velocity as the reference speed. It follows that non-dimensional quantities are defined by :

L7 p L d T p
tr=—= , P== 5, U=—=—— , T == , P= o)
i A t E H
M:~L ) )\:~— 9 t= = ~ ) E:T ) H:T )
oo Aoo L/t ug, ug,

where subscript oo denotes the reference quantities. We can also define a reference sound speed
in order to determine the reference Mach number :

u2

2 2 o)
= ~vRT, = M2 =

Such choices lead to the following dimensionless equation of state :

1

= — )T
P= A’

The dimensionless Navier-Stokes equations that we implemented in our program are then the
following :

dp = o

E—FV‘(pu)—O

opil - o = 1 =
W—FV'(pUU)—FVp—Re (V-1)

opE - . B 1 - - 1 = .
—or TV pul) = gop e V(W) 4 o V(1)

where the primary dimensionless parameters are given by :

Poolloo L ,UJoon ugo 2
Re = Pxlie™ pp _Hxtp g —(v—1) M

In order to prevent the round-off errors which can occur at very low-Mach number, we split,
in the manner of [14], the pressure into two parts, namely a thermodynamic pressure of order
O(1/M?) which remains constant with respect to the space dimension and a dynamic pressure
of order O(1) which varies in time and in space. Hence we have :

p(t7$) = PO(t) —}-p/(t,:c)

where p is the total pressure, P is the thermodynamic pressure and p’ is the dynamic pressure.
Practical implementation in the "maquette" is inspired by the work of Sockol [73]. In the
following test-cases, the thermodynamic pressure is constant and equal to the initial pressure :

1

Py(t) =po=—+
TME,
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It follows that :

- 1
P=pr=omz

The density is obtained through the equation of state :

p=Q0+p/p) /T

while the total energy reads :

po+p 1 2
E=——++_- +
p 1 2p( v9)

Hence, we can also define a reduced energy :

/
1
e = 7]9_ 1 + §ﬂ(u2 +0%)

As a result the new set of conservative variables is the following :

w=(p, pu, pv, )"

In [40], we proved that such a correction enables the code to reach the machine zero even for

Mach numbers close to 10~®. Moreover, the quality of the solution can be also preserved.

Let us now describe some features that are common to all test-cases.

First of all, we

only deal with the Roe-Turkel scheme extended to higher accuracy thanks to the non-limited
MUSCL extrapolation. Second, we evaluate the viscous fluxes thanks to a second-order centered
formula. Explicit boundary conditions are used by default but, in some case, we will treat the

boundary conditions implicitly.

8.3 Flow over a sine bump

8.3.1 Description

An inviscid flow in a channel is computed. The geometry of the channel consists of a rectangular
domain (z,y) € [0;4] x [0;1], with a straight upper wall and a curved lower wall, whose

coordinates are given by :

r<l1 y=20
1>z>3 y=0.1(1-cos|[(z—1)n])
>3 y=20

In order to adapt this geometry to our Cartesian grid, the lower wall remains straight but, when

x € [1; 3], the normal to the wall is computed as follows :

{ ng = —0.1- 7 -sin[(x — 1)7]
ny =1
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Three grids are employed to carry out the studies, namely a coarse one (81 x 21), a medium one
(121 x 31) and a fine one (161 x 41). For each grid, we solve the Euler equations for an ideal gas,
with v = 1.4. For My, < 0.5 the flow remains subsonic, and hence isentropic and irrotational
(because for higher Mach numbers one gets a transonic flow with a shock), and the Mach isolines
are expected to be completely symmetrical with respect to the geometry (i.e. potential flow).
Non-dimensional values are taken as follows : pg = 1, ug = 1, vo = 0, Py = 1/yM?2 . For non-low
Mach number flows, that is when M., > 0.1, we consider subsonic boundary conditions :

e at the inlet (left) we impose the external total enthalpy, the external entropy and the flow
angle while we extrapolate the pressure from inside;

e at the outlet (right) we impose the static pressure while we extrapolate the density and
the velocity from inside.

On the other hand, when the Mach number is small (M, < 0.1), we modify the inlet conditions
by considering "incompressible" inlet conditions. We impose the external density and velocity
while we extrapolate the pressure from inside. In fact, we want to use the same boundary
conditions for My, = 0.1 and M., = 107> so that the comparisons between convergence rates
are not influenced by the boundary effects. The choice of the incompressible conditions is truly
justified for My, = 107 but is is of course debatable for M., = 0.1. At any case, our objective
in this chapter concerns more the performance properties of our scheme rather than the quality
of the solution.

8.3.2 Objectives of the study

Here, we first want to study the impact of our Matrix-Free framework in terms of CPU time.
Indeed, the Von Neumann analysis can tell us how the spectral radius simplification alters the
convergence rate but it fails to inform us about the gain obtained by the simplified procedure
that we described in chapter 4. For this reason, we created in the code an implicit stage named
RS (RS standing for "Rayon Spectral" or Spectral Radius). This RS implicit stage is in fact a
standard block implicit stage in which we replaced the numerical dissipation matrices by the
identity matrix multiplied by their spectral radius. Of course, such an implicit stage has no
practical interest since it combines the loss of efficiency due to the RS simplification plus the
high cost per iteration of the block scheme. However, if one compares this implicit stage coupled
with a Point Jacobi relaxation procedure with respect to the MF-PJ scheme, one can calculate
the amount of CPU time saved by the Matrix-Free framework.

Besides, we want to emphasize the impact of the low-Mach preconditioning in terms of
efficiency and accuracy. We especially insist on the independence of the convergence rate with
respect to the Mach number when the inviscid preconditioning is employed. Such results are
well-established now for the block schemes but they have to be confirmed for the Matrix-Free
method. Our reference method will be the block-ALGS(1) scheme which is well-known to
possess very good convergence properties. We will lead systematic comparisons between this
scheme and our Matrix-Free procedure for a subsonic case at My, = 0.5 and for a very low-Mach
case at Mo, = 107°. The MF scheme will be coupled with a SGS or a PJ relaxation procedure.
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8.3.3 Analysis of the Matrix-Free framework

Let us consider a subsonic flow at M., = 0.5. As mentioned in the previous paragraph, we
deal with a RS implicit stage and the Matrix-Free implicit stage. Both methods are solved by
the Point Jacobi relaxation procedure and they are employed to compute the subsonic flow on
the coarse grid. The difference between these two stages stands in the fact that the Matrix-Free
scheme minimizes the number of operations that are required to invert the system. The results are
presented in figure 8.3.1. Both methods require the same number of iteration to reach the steady
state, indicating that the Matrix-Free framework has no negative impact on the convergence
rate. In [41], we showed the same results for different grid sizes and also for the Poiseuille flow.
Besides, we notice in the summarizing table that the Matrix-Free framework enables us to save
CPU time. Indeed, the time to converge is dramatically reduced with the MF scheme (from
72 seconds to 38 seconds). These first results emphasize that the Matrix-Free method that we
developed possesses a very low cost per iteration and that the involved simplifications do not
affect the convergence rate.

RS implicit stage
_________ MF implicit stage

Point Jacobi relaxation procedure (20 inner-iterations)

Mesh: 81x21 Method | Tterations CPU
M=0.5

CFL = 10°

RS-PJ(20) | 900 | 72 sec.

MF-PJ(20) | 900 | 38 sec.

Log(Residual)
&
— 7T

12 P L1
0 200 400

Iterations

1
600

Figure 8.3.1: Impact of the Matrix-Free framework. Left : Convergence history of the residual on
the coarse grids for RS-PJ(20) and MF-PJ(20) methods at M., = 0.5 and CFL = 10°. Right :
Table summarizing the convergence properties of both methods, namely the number of iterations
to reach the steady state and the associated CPU time.

8.3.4 Comparison Block scheme / MF scheme for subsonic flow

In this paragraph, we want to corroborate the results obtained with the Von Neumann analysis.
Before leading comparisons, we have to define the cost of a numerical method. This cost can be
expressed as follows :

C=N-1I.

where C'is the global cost, NV is the number of iterations and 1. is the cost per iteration. In fact,
the number of iterations can be related to the amplification factor of the method according to
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the following expression :

(p(G)Y =¢

where p(G) is the amplification factor and ¢ is the level of convergence reached after N iterations.
Thus, one can predict the gap between two methods which reach the same level of convergence
as follows :

log(p(G1)) _ N2
log(p(G2)) N1

This formula is true for one error mode in the Fourier space. In order to get an estimation of
the gap for all the modes, we can make an average of the amplification factor :

P(G)ave = %/Oﬂ /(: p(G (& m)) d§ dn

In table 8.3.1, we present the average amplification factor at M., = 0.5 of the methods that we
want to compare, namely the BL-ALGS(1) scheme which is used as the reference one, the MF-
SGS(10) scheme and the MF-PJ(30) scheme. In the same table, we also provide the theoretical
ratio between all these methods. We notice that, in theory, the MF-SGS(10) scheme requires
2.5 times as many iterations as the BL-ALGS(1) scheme while the MF-PJ(30) scheme needs 2.8
times as many iterations. Such results emphasize that, if we want the MF-SGS(10) scheme to be
competitive in terms of CPU time, its cost per iteration has to be at least 2.5 times less expen-
sive than the BL-ALGS(1) scheme’s one. This method is just a qualitative tool since the Von

' Method | BL-ALGS(1) | MF-SGS(10) | MF-PJ(30)

(B ave 054 | 0.78 0.80

| Ni/Nyes 1 | 2.5 2.8

Table 8.3.1: Average amplification factor of several methods at M., = 0.5 : BL-ALGS(1) scheme,
MF-SGS(10) scheme and MF-PJ(30) scheme. The theoretical ratio of iteration between all these
methods is also provided, BL-ALGS(1) scheme is chosen as the reference.

Neumann analysis does not take into account the effects of the boundary conditions. Moreover,
we know that the convergence rate is mainly driven by the performance at low wavenumbers, so
we should increase the weight of the low-frequency in order to be more precise. Nevertheless, the
estimation given by this analysis points out the effort that must be made so that the Matrix-Free
method is competitive.

In figure 8.3.2, we present the diagonal profile of the amplification factors of these methods
and the convergence history of the residuals on the fine grids. We notice that the hierarchy
provided by the Von Neumann analysis remains the same for the numerical test-case : the BL-
ALGS(1) scheme is the most efficient, it requires N7 = 720 iterations to reach the zero machine;
it takes No = 1320 iterations for the MF-SGS(10) scheme to reach the same level and N3 = 1400
iterations for the MF-PJ(30) scheme. We have then the following relative efficiency :

Ny N3

— =1.83 — =194
N1 ’ Nl
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Figure 8.3.2: Comparison between BL-ALGS(1) scheme, MF-PJ(30) scheme and MF-SGS(10)
scheme at M., = 0.5. Left : Diagonal profile of the amplification factors. Right : Convergence
history of the residuals on the fine grid.

Thus, the Von Neumann analysis overestimates the loss of intrinsic efficiency related to the
Matrix-Free method. As explained earlier, the convergence rate relies mainly on the damping of
the low wavenumbers. Indeed, the comparison of the amplification factors emphasizes that the
gap between the different methods is less important over the low-frequency region. These results
then give credence to such an assumption. Nevertheless, an important cost reduction is still
necessary in order to make the Matrix-Free method competitive. The framework that we present
in chapter 4 ensures such a reduction. The results obtained at M., = 0.5 are presented in Table
8.3.2. The last column is related to the cost per point per iteration, we denote it CPPPI. The
CPPPI remains quite constant with respect to the grid size, it is therefore very useful to drive
comparisons. For the fine grid, the relative costs of the methods that we want to compare are
the following :

The Matrix-Free framework enables to reduce dramatically the CPPPI. Hence, the Matrix-Free
method coupled with the SGS algorithm or the PJ procedure becomes globally more competitive
than the Block scheme. Let us now focus on each technique. As the grid becomes finer, the
MF-PJ scheme requires a larger amount of inner-iterations in order to remain efficient. This
is in good agreement with the Von Neumann analysis, the MF-PJ algorithm needs many
inner-iterations so as to damp correctly the low-frequency error modes. However, we observe
some instabilities for very low wavenumbers while the scheme is stable in practice. The grid is
perhaps not fine enough to capture these low-frequency modes, at any case this is another reason
to increase the number of sub-iterations. On the other hand, the MF-SGS scheme remains very
efficient for all grids with only 10 inner-iterations. This is also confirmed by the Von Neumann
results. In the Table 8.3.2, we also provide the results obtained with the RS implicit stage for
the coarse grid. It is interesting to note that when it is coupled with the ALGS(1) relaxation
procedure, this method is the most efficient among the MF-type techniques.
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Hence, the loss of intrinsic efficiency inherent in the spectral radius simplification is bal-
anced by the Matrix-Free implicit framework that we outlined in chapter 4. Indeed, the cost
per iteration is strongly reduced so that the global cost becomes highly competitive compare
to the classical block scheme. Moreover, we can expect a dramatically decrease of the memory
requirements, thus, the Matrix-Free method is truly interesting to compute subsonic inviscid
flows. Let us now carry out studies over the low-Mach regime.
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NBEL | Method | CFL | Iterations CPU | CPI = CPPPI

1701 BL-ALGS(1) 20 | 400 | 53s. | 013 7.8.107°

RS-ALGS(1) | 10 | 710 | 83s. | 012 6.9-107°

RS-PJ(20) @ 106 72s. 0 0.08 4.7-107°

MF-PJ(10) = 106 = 1950 @ 53s. = 0.03 |1.6-107°

)

MF-PJ(20) 106 | 900 | 38s. | 0.04 25.107°
MF-PJ(30) | 106 | 830 | 48s. | 0.06 3.4-107°
MF-SGS(10) | 106 | 800 | 40s. | 0.05 | 3.10°°
MF-SGS(20) | 106 | 750 | 66s. | 0.09 5.1-1075

MF-SGS(30) | 106 | 730 | 92s. | 0.17 | 7.4-107°

3751 BL-ALGS(1) 20 | 550 | 169s.| 0.31 82-107°
MF-PJ(10) 106  NC | - | - _

MF-PJ(20) 106 = 1250  133s.  0.11 |2.8-107°

MF-PJ(30) 106 | 1120 | 165s.  0.15 '3.9.107°

MF-SGS(10) | 106 | 1070 1305 002 32107
MF-SGS(20) | 106 | 1000 | 215s. | 0.21  5.7-107°

MF-SGS(30) | 106 | 970 | 300s. | 0.31 821075

6601 |BL-ALGS(1) 20 = 720 3965 | 055 831070

MF-PJ(20) = 106 = 3000  581s. 0.19 |2.9.107°

MF-PJ(30) ' 105 = 1400 | 370s. | 0.26 | 41075
MF-SGS(10) | 106 | 1320 290s. 022 3.3-107°

MF-SGS(20) | 106 | 1250 | 482s. | 0.39s. 5.8-1075

MF-SGS(30) | 106 | 1200 | 667s. | 0.568 8.4-1075

Table 8.3.2: Inviscid steady flow over a sinebump at My, = 0.5. Regular Cartesian grids with
AR = 1. The computations were done with a Pentium 4, 2.4 GHz, 1GB RAM memory. NBEL
is the number of points. CPU is the time required to converge. CPI is the cost per iteration
while CPPPI is the cost per point per iteration.
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8.3.5 Comparisons in the low-Mach regime

Before performing comparisons, we want to outline the necessity of the preconditioning in order
to preserve efficiency and accuracy. Furthermore, we will emphasize the independence of the
convergence rate with respect to the Mach number when the scheme is preconditioned.

0 . o 0 . . S
I\ BL-ALGS(1) without preconditioning I MEF-SGS(30) W}thout precc?r?dlgomng
| BL-ALGS(1) with preconditioning | MF-SGS(10) with preconditioning
2F 2
4k 4k
= [ M=0.1 CFL=50 ’§‘ I M=0.1 CFL=10°
=
2ot Mesh: 121 x 31 2or Mesh: 121 x 31
& 6 S -6
2 °f 2 °f
30 g0
o S
-0 10
L co Ll o
0 200 400 600 800 1000 0 200 400 600 800 1000
Iterations Iterations

'PREC | Method | CFL | Iterations CPU | CPI CPPPI

" No |BL-ALGS(1) 50 | 850 222s.10.26 6-107°

| | MF-PJ(30) | 106 NC | - | - _

| | MF-SGS(10) | 106 | NC | - | - _

' Yes |BL-ALGS(1) 50 | 470 | 144s./0.31 82-107°

| . MF-PJ(30) | 106 | 990 | 144s./0.15 3.9-107°

| | MF-SGS(10) | 106 | 790 1965, 012 3.2.10°5

Figure 8.3.3: Inviscid steady flow over a sinebump at M., = 0.1 for the medium grid (3751
points). Regular Cartesian grid with AR = 1. Top-Left : Convergence history of the residual for
the BL-ALGS scheme with and without preconditioning. Top-Right : Convergence history of the
residual for the MF-SGS scheme with and without preconditioning. Bottom : Table summarizing
the performance of the preconditioned and unpreconditioned schemes at M., = 0.1.

In figure 8.3.3, we present the results obtained with the preconditioned and the non-
preconditioned schemes at My, = 0.1 on the medium grid. As expected, we clearly note that the
preconditioned schemes are faster than the unpreconditioned ones. As forecasted by the Von
Neumann analysis, we remark that the Matrix-Free schemes without preconditioning possess
poor convergence rate. We observe also that for the same grid, MF preconditioned schemes are
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better at M., = 0.1 than at M., = 0.5 since the number of iterations required to reach the
machine zero is smaller. This behaviour confirms the results of the chapter 5, the spectral radius
simplification is less penalizing at low-Mach number since the eigenvalues of the preconditioned
system are very close.

ANl =G

N ==\

Figure 8.3.4: Isolines of the Mach number (My, = 0.1, mesh (121 x31)). Top : Unpreconditioned
scheme. Bottom : Preconditioned scheme.

In figure 8.3.4, we draw the isolines of the Mach number at M, = 0.1 on the medium grid.
We note that, even if they converge to machine zero, the unpreconditioned schemes provide an
incorrect solution. This well-known result is due to the over-dissipation of the numerical scheme
which arises when the system is ill-conditioned (at low-Mach number for instance).

Another aspect of the low-Mach preconditioning’s effects is the independence of the con-
vergence rate with respect to the Mach number. In order to emphasize this property, we make
a comparison between all the methods on the medium grid at My, = 0.1 and My, = 107°. The
results are reported in table 8.3.3. As expected, the convergence rates of the different methods
do not vary much for both Mach numbers. We can therefore carry out all the comparisons for a
unique Mach number. We choose a quasi-incompressible case, namely M., = 107°.

In the manner of the previous section, we present in figure 8.3.5 the diagonal profile of the
amplification factors of different methods, namely the BL-ALGS(1) scheme, the MF-SGS(10)
scheme and the MF-PJ(30) scheme. We also draw the convergence history of their residuals.
Here again, the hierarchy provided by the Von Neumann analysis remains the same for the
numerical experiment : the Block scheme is the most efficient in terms of iteration while the
MF-SGS scheme is the fastest to reach the machine zero in terms of CPU time. These results
are confirmed on all grids (¢f. Table 8.3.4). As for the subsonic case, the loss of intrinsic
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MACH| Method | CFL | Iterations CPU | CPI| CPPPI
107! |BL-ALGS(1) | 50 | 470 | 144s.0.31 8.2.107°
- MF-PJ(30) | 106 | 990 |144s./0.15 3.9-107°
' MF-SGS(10) | 106 | 790 | 96s. 0.12 3.2 1075
105 | BL-ALGS(1) 50 | 470 | 144s. 0.31/8.2-1075
. MF-PJ(30) | 10 970 | 141s. 0.15 3.9-107°
' MF-SGS(10) | 106 | 780 | 95s. 0.123.2.1075

Table 8.3.3: Inviscid steady flow over a sinebump at M. = 0.1 and at My = 107 for the
medium grid (3751 points). Regular Cartesian grid with AR = 1. NBEL is the number of
points. CPU is the time required to converge. CPI is the cost per iteration while CPPPI is the
cost per point per iteration.

efficiency inherent in the spectral radius simplification is balanced by the Matrix-Free implicit
framework. The reduction of the cost per iteration enables the MF scheme to recover a very
good global efficiency. Consequently, the Matrix-Free method is a valuable alternative to
compute inviscid low-Mach number flow. Besides, the Matrix-Free implicit method has another
advantage compare to the Block schemes, namely the reduction of the memory storage.

0.25
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MF-SGS(10) scheme
MF-PJ(30) scheme
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Figure 8.3.5: Comparison between BL-ALGS(1) scheme, MF-SGS(10) scheme and MF-PJ(30)
scheme at M., = 107°. Left : Diagonal profile of the amplification factors. Right : Convergence
history of the residuals on the fine grid.
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'NBEL =~ Method | CFL | Iterations CPU | CPI CPPPI

| 1701 BL-ALGS(1) 50 | 370  49s. 0.3 7.8-1075

| MF-PJ(30) | 105 | 700 40s. | 0.06 3.4-107°

| MF-SGS(10) ' 106 = 550 | 27s. [0.05 3-107°

| 3751 | BL-ALGS(1) | 50 470 | 144s. 031 821075

| MF-PJ(30) 105 | 970 | 141s. |0.15 3.9.107°

| MF-SGS(10) 106 = 780 | 95s. 0.12 3.2.107°

| 6601 | BL-ALGS(1) | 50 560 | 308s. | 0.55 8.3-107°

| MF-PJ(30) ' 105 | 1230 | 325s. (0.26 4-107°

| MF-SGS(10) | 106 960 | 208 s. 0.22 3.3 1077

Table 8.3.4: Inviscid steady flow over a sinebump at M, = 107°. Regular Cartesian grids with
AR = 1. The computations were done with a Pentium 4, 2.4 GHz, 1GB RAM memory. NBEL
is the number of points. CPU is the time required to converge. CPI is the cost per iteration
while CPPPI is the cost per point per iteration.

8.3.6 Memory storage

The Matrix-Free implicit framework that we developed in Chapter 4 was asked by the French
Atomic Energy Commission (CEA) in order to reduce dramatically the requirements in memory
storage of the implicit schemes. The objective of such a reduction is to carry out numerical
simulation of complex industrial problems involving grids with a very large amount of points. In
this paragraph, we compare, for all grids, the memory requirements of each method with respect
to the explicit scheme. The results are presented in Table 8.3.5. We note that the MF-SGS
scheme is a bit more gluttonous with respect to the MF-PJ scheme. It is due to the fact that we
need to store the states which are evaluated during each sweep so as to compute the next ones.
On the other hand, the MF-PJ procedure does not need to store anything, this is the reason
why it is the cheapest implicit method in terms of memory storage. As expected, the Block
scheme’s requirements are the greatest. It needs 110 % more ressources than the explicit scheme
while the MF schemes require just 60 % more. Hence, the Matrix-Free framework enables to
reduce of about half the memory requirements of the implicit scheme. Besides, as shown in the
previous sections, the Matrix-Free implicit method is also very competitive in terms of CPU time
to simulate low-Mach inviscid flows.
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Coarse Grid 81 x 21

Medium Grid 121 x 31

Fine Grid 161 x 41 |

Memory storage | relative | Memory storage | relative | Memory storage ' relative |

(MB) size (MB) size (MB) size
Explicit scheme 3.1 1 6.6 1 12.2 1
MF-PJ scheme 4.7 1.52 10.1 1.53 19 156 |
MF-SGS scheme 4.8 1.55 10.5 1.59 19.6 161 |
BL-ALGS scheme 6.7 2.16 14.7 2.23 25.8 S 211

Table 8.3.5: Memory storage for all the methods with respect to the grid size. The explicit
scheme is taken as the reference so as to evaluate the relative sizes.

8.3.7 Conclusions

The Matrix-Free implicit method is then a valuable alternative to simulate the inviscid steady
flows. Indeed, even if its intrinsic efficiency is poor, its cost per iteration is so cheap that the
method is globally more efficient than a Block implicit scheme coupled with a ALGS relaxation
procedure. Furthermore, the Matrix-Free framework enables to reduce dramatically the need of
memory storage. Such results have to be confirmed for viscous flows. That is the subject of the

next section.
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8.4 Poiseuille low

8.4.1 Description

A viscous flow in straight channel is computed. The geometry of the channel consists of a
rectangular domain (z,y) € [0;10] x [—1;1].
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Figure 8.4.1: Computational domain for the Poiseuille flow.

For an incompressible steady flow without temperature and gravitational effects, the pressure
function is linear and the Navier-Stokes equations reduce to the momentum one (cf. [66] for
more details) :

1 &u_dp
Re dy? dx
where the Reynolds number is given by :

Re = Poe Moo too loc
Hoo
with I, = h which is chosen as the length scale of the problem. Given to the no-slip conditions
on each wall, the exact solution is then :
Re dp
u(y) :—7-%-(1—y2)
The velocity profile is therefore parabolic and the maximum value is obtained on the axis of the
channel :
Re dp
Vmax = =5 g
The average velocity is easily computed through the following expression :

1t 9 2
Ugve = 7 Umax * (1 -y ) dy = 5 " Umax
2/, 3

Setting arbitrarily the average velocity equal to unity, the incompressible exact solution is then
given by :
u(y) =15 (1-y?)

We expect to obtain the same parabolic profile at the outlet of the channel. Non-dimensional
values are taken as follows : pg = 1, ug = 1, vg = 0, Py = 1/yM2,, My, = 1075, Re = 15. We
consider the incompressible boundary conditions :
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e at the inlet (left) we impose the density, the velocity and its parabolic profile, and we
extrapolate the pressure from inside;

e at the outlet (right) we impose the static pressure while we extrapolate the density and
the velocity from inside.

The upper and lower walls are considered adiabatic and the no-slip condition is applied.

8.4.2 Objectives of the study

In chapter 6, we studied the impact of the viscous spectral radius simplification with the Von
Neumann analysis. We outlined that for low-Mach and low-Reynolds flow, the Matrix-Free
scheme was quite efficient providing that the aspect ratio remains of order one. We also presented
an enhancement of the viscous preconditioning which enables the Matrix-Free method to remain
competitive especially for the low-frequency modes. For this test-case, we want to confirm the
results of the Von Neumann analysis. First, we will study for AR = 1 the performances of the
implicit methods that we have already compared for the sinebump, namely the BL-ALGS scheme,
the MF-SGS scheme and the MF-PJ scheme. Then, we will emphasize the loss of efficiency of the
MF schemes when the aspect ratio increases. Finally, we will provide some practical solutions
in order to recover efficiency.

8.4.3 Comparison Block scheme / MF scheme for AR =1

In this paragraph, we consider a low-Mach viscous flow (My, = 1075 and Re = 15) and we
compute the solution on three grids with an aspect ratio equal to unity :

e 101 x 21 (coarse);
e 201 x 41 (medium);

e 301 x 61 (fine).

These three sizes of grid correspond to three different cell Reynolds numbers. Using the definition
(6.2.1), we compute ReS, = 0.76, Re™ = 0.38 and Rei,, = 0.25. For the fine grid, ie. for the case
for which the viscous effects are the most important, the acoustic Reynolds number is given by :

Ref;
M

Rel = =25-101>> 1.

We can therefore expect that the spectral radius simplification would be not too penalizing. Let
us now consider the fine grid. As every implicit scheme is coupled with the same explicit stage,
all the numerical solutions are the same. In figure 8.4.2, we draw the distribution of the velocity
at the outlet of the channel and we compare it with the exact incompressible solution.

The amplification factor at the reference state and the convergence history of the residuals of the
three implicit schemes are presented in figure 8.4.3. We note that for the very low wavenumbers,
the Matrix-Free schemes provide an as good damping as the BL-ALGS(1) scheme, indicating
a good convergence rate. The convergence history of the residuals confirms that Matrix-Free
schemes (MF-SGS(10) and MF-PJ(40)) are as efficient as the BL-ALGS(1). It is noticeable
that both MF schemes provide the same efficiency. However, as the MF-PJ scheme requires 40
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Figure 8.4.2: Distribution of the velocity at the outlet of the channel at M, = 1075, Re = 15
and for the fine grid (301 x 61). Square symbols represent the numerical solution while the solid
line stands for the exact incompressible solution.

inner-iterations, its cost per iteration is higher than the MF-SGS scheme with only 10 inner-
sweeps. The results in Table 8.4.1 emphasize the good intrinsic efficiency of the MF schemes
for all the grids. This is in good agreement with the observations of Chapter 6, that is the MF
implicit method is highly competitive to compute viscous flows over grids with aspect ratio close
to unity. Indeed, the MF method provides high intrinsic efficiency and a low cost per iteration, it
is therefore very interesting to compute such flows. Nevertheless, computing viscous flows often
requires stretched grids and we saw in Chapter 6 that the Matrix-Free method coupled with SGS
or PJ relaxation procedure becomes less efficient for such cases. We will study this issue in the
next paragraph.

8.4.4 Comparison for stretched grids

In order to carry out comparisons on stretched grids, we used three different grids. The two first
ones are built using constant space steps while the last one was made using variable space steps
in the y-direction :

o 21 x 41 with AR = §z/8y = 10;
e 21 x 81 with AR = dx /oy = 20;
e 21 x 41 with ARpax = 02/0ymin = 50 and ARuin = 02/0Ymax = 2.

Convergence histories of the residual obtained on each grid are presented in figure 8.4.4. As
expected, the efficiency of the MF-SGS scheme decrease as the aspect ratio becomes bigger.
This loss of intrinsic efficiency cannot be balanced by the low cost per iteration of the method as
it is shown in Table 8.4.2. Hence, the Matrix-Free implicit scheme is not a good alternative in
such cases. On the other hand, the BL-ALGS scheme remains efficient for all aspect ratio grids,
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Figure 8.4.3: Comparison between BL-ALGS(1) scheme, MF-SGS(10) scheme and MF-PJ(40)
scheme at M., = 107° and Re = 15. Left : Diagonal profile of the amplification factors. Right :
Convergence history of the residuals on the fine grid.

' NBEL Method CFL | Iterations | CPU CPI = CPPPI |

| 2121 | BL-ALGS(1) 10° = 450 75s. | 017 (7.9-107° |

| MF-PJ(30) = 105 = 690 53s. | 0.0773.6-107°

| MF-SGS(10) | 106 570 37s. 10.065 3-1075 |

| 8241 | BL-ALGS(1) 106 | 1300 | 903s. 0.7 |84-107°

| MF-PJ(30) | 108 | 1700 578's. | 0.34 | 4.1-107° |

| MF-SGS(10) ' 106 | 1310 | 360s. 0.27 3.3 -107° |

| 18361 | BL-ALGS(1) | 10° 2780 | 4375s.  1.57 | 8.6-107° |

| MF-PJ(40) | 105 = 2450 | 2383s. | 0.97 5.3-107°

| MF-SGS(10) | 106 = 2450 1538 s. 0.63 3.4 1075

Table 8.4.1: Viscous steady flow in a straight channel at M, = 10~° and Re = 15. Regular
Cartesian grids with AR = 1. NBEL is the number of points. CPU is the time required to
converge. CPI is the cost per iteration while CPPPI is the cost per point per iteration.

this is in good agreement with the results of Venkateswaran et al. [12]. In order to circumvent
this issue, we add the implicit treatment of the boundary conditions (IBC) that we described in
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chapter 4. Unfortunately, it does not enable the method to converge faster when constant space
steps are used. However, when the aspect ratio is chosen such as to be big close to the wall
and small far from it, the MF-SGS scheme with IBC recovers a quite good intrinsic efficiency.
Moreover, such a treatment does not increase the cost per iteration of the method, hence, the
Matrix-Free scheme can remain very competitive. In figure 8.4.4, we also present the distribution
of the velocity at the outlet of the channel obtained over each stretched grid. We note that the
accuracy is quite the same for every mesh and that it is relatively poor. This lack of accuracy is
only due to the small amount of points along the z-direction but it was not the main goal of the

study in this section.

P == -—- BL-ALGS(1) scheme
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Figure 8.4.4: Convergence histories of the residuals for the BL-ALGS(1) scheme, the MF-SGS(10)
scheme and the MF-SGS(10) scheme with an implicit treatment of the boundary conditions

(IBC).

My, = 107° and Re = 15. Top-Left : AR = 10. Top-Right : AR = 20. Bottom-Left :

ARmax = 50 and ARy = 2. Bottom-Right : Distribution of the velocity at the outlet of the

channel obtained over each stretched grid.
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Mesh | Method CFL | Tterations CPU | CPI = CPPPI

21 x41 | BL-ALGS(1) | 10° | 380 25s. 10.067 | 7.7-107°

AR =10 | MF-SGS(10)esp 106 | 720 | 17s. 0.024 2.7 -10°°

 MF-SGS(10)imp | 105 | 590 14 's. 0.024 2.7 -10°°

21 x81 | BL-ALGS(1) | 10 570 | 78s. 0.4 81-107°

AR=20 | MF-SGS(10)e,, = 106 | 1850 | 101s.| 0.055 3.2 1075

| MF-SGS(10)ip, 105 | 1900 |104s. 0.055 3.2 -107°

21 x41 | BL-ALGS(1) | 105 | 1240 | 84s. | 0.068 7.9-1075

ARpay = 50 | MF-SGS(10)ey, | 106 | 2820 | 67s. | 0.024 2.8 1075

ARpin =2 | MF-SGS(10)imp, 106 | 720 17 s. 1 0.024 2.8 -107°

Table 8.4.2: Viscous steady flow in a straight channel at My, = 107° and Re = 15. Regular
stretched grids with AR = 10, AR = 20. Irregular stretched grid with ARn.x = 50 and
ARmin = 2.

8.4.5 Memory storage

The Matrix-Free framework is limited to compute flows with very stretched grids. However, in
terms of memory storage, the method is still a valuable choice since it requires only 60 % of
additional memory with respect to the explicit scheme while the Block scheme needs about 110
% more. There is then a strong reduction of the memory requirement which can justify the use
of such a method to compute viscous flows.

8.4.6 Conclusions

As forecasted by the Von Neumann analysis in chapter 6, the Matrix-Free schemes provide very
good intrinsic efficiency to solve low-Mach viscous flows with grids whose aspect ratios are close
to unity. On the other hand, because of the use of the SGS or PJ relaxation procedure, the
method becomes stiff as the aspect ratio increases and the low cost per iteration inherent in
the Matrix-Free framework is not sufficient to balance the loss of efficiency. This problem can
be partially circumvented if one employs both an implicit treatment of the boundary conditions
and a non-constant aspect ratio (typically big close the wall and smaller far from it). For such
conditions, the Matrix-Free scheme recovers a very good intrinsic efficiency. Besides, the Matrix-
Free implicit method enables to reduce dramatically the memory requirements which makes the
method truly interesting to solve viscous flows despite aspect ratio issues.
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§.4. Porssomie sLow
Coarse Grid 101 x 21 Medium Grid 201 x 41 Fine Grid 301 x 61 |
Memory storage | relative | Memory storage | relative | Memory storage relative |

(MB) size (MB) size (MB) size
Explicit scheme 3.8 1 15.3 1 33.8 o1
MF-PJ scheme 5.8 1.53 23.7 1.55 52.6 156 |
MF-SGS scheme 6 1.58 24.5 1.6 54.3 161
BL-ALGS scheme 8.4 2.21 32.2 2.10 71.5 S 211

Table 8.4.3: Memory storage for all the methods with respect to the grid size. The explicit
scheme is taken as the reference so as to evaluate the relative sizes.
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8.5 Stokes’ second problem

8.5.1 Description

Now let us compute the flow over an infinite flat oscillating plate moving at the velocity
@(f) = i cos(wt). This motion involves steady oscillations that can be calculated analyti-

cally :

Lo | w - |w
w(g,t) = oo - exp(—7 %)'cos(wt—y ﬁ)

In order to nondimensionalize the problem, a reference length scale has to be defined. To achieve
this, one can use the velocity @, and the pulsation w :

Lo = Uoo
w
: : . liooLoo U2, :
Then using the following Reynolds number definition, Re = ——— = —=, one obtains :
% UV w

<!

u(y,t) = g:) = exp(—y\/%) ~cos(t — y\/%)

We can define the thickness & of the layer as the point where the velocity amplitude has dropped
to 1 percent of .. Thus, for the dimensionless problem, we obtain :

exp(—dy/ %) =0.01 =16

0~35- @

or

5

We then choose a squared computational domain such as the effects of the oscillating plate are
negligible at the top of the domain. We typically take :

L=H2>2-9

Setting the Reynolds number at 10 leads to a thickness of § = 2, so we can choose L = H = 4.
The computational domain is therefore chosen squared and it is presented in figure 8.5.1.

So as to determine the accuracy of each methods, we can compute the skin friction coef-
ficient which characterizes the flow :

_ 2 Ou
» Re 0Oy

2Ty 20 ou
Co= i = — e
pruZ,  Priloo Lo 0y

w
The analytical value of this coefficient is given by :

2 T

Cow = \/E-sm(t— Z)
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PN

Figure 8.5.1: Computational domain for the Stokes’ second problem. The mesh presented here
is the coarse one. The oscillating wall is at the bottom.

The accuracy of a numerical solution would be evaluated through the error deviation which is
defined as follows :

2
1
E = a_ w — Lnum 2
Irror 5 ZO:(C Chum)

where the numerical skin friction coefficient is calculated using a second-order formula :

o2 —ule+2) + (e +1) — 3u(ju)
num Re Q(y(]w + 1) — y(]w))

with j,, the value of the space counter at the wall.

Non-dimensional initial values are taken as follows : M, = 1073, Re = 10, py = 1,
up = 0, vg = 0, Py = 1/yM2. The no-slip condition is applied at the moving wall while
the incompressible conditions are considered for all the others boundaries, that is we impose
the static pressure and we extrapolate the density and the velocity. In order to compute the
unsteady flows, we use a dual-time-stepping framework, wherein the physical derivatives are
employed to follow the physical transients and the pseudo-time derivatives serve as an iterative
device. Computations are done using two different grids, namely a coarse one (21 x 81) and a
fine one (41 x 161).

8.5.2 Objectives of the test-case

In chapter 7, we outlined a new definition of the unsteady low-Mach parameter. We showed that
such a definition enables the preconditioned scheme to provide good damping for both acoustic
and material problems. In this paragraph, we want to confirm that the unsteady preconditioned
scheme is versatile enough for every type of problems. We will study also the performances of the
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implicit methods that we have already employed to compute steady flows. The Von Neumann
analysis emphasized that Matrix-Free schemes should be very competitive compare to the Block
scheme.

8.5.3 Unsteady preconditioning

In chapter 7, we outlined a new definition of the unsteady low-Mach parameter which enables
us to avoid the tricky choice of a proper length scale. We recall this new definition :

oz-\/CFL,.. 6y-\/CFL,,,

At-c-mt At-c -7

B = min

Then, the low-Mach parameter is classically defined as follows :

(3 = min [max(3s, Bu), 1]

where (5 is the steady low-Mach parameter. In this paragraph, our objective is to emphasize
the good convergence rate provided by the unsteady preconditioned scheme for every physical
time-step. So as to study its properties, we consider the MF-SGS(10) scheme with a pseudo
CFL number set at 10°. We compute one physical iteration over the fine grid and we alterna-
tively choose the no-preconditioned scheme, the steady preconditioned scheme and the unsteady
preconditioned scheme. The sub-iteration convergence is studied for several time-steps. The
time-step can be characterized by CFL, = uAt/dx and, ideally, for efficient time-marching so-
lution, this CFL number should be of order unity.

Figure 8.5.2 shows the results for My, = 0.001 and Re = 10, and for four values of CFL,,.
At such a speed, for low values of C'F'L,, the steady preconditioner does not converge in the
dual iteration. The unsteady preconditioner outperforms the non-preconditioned case even for
CFL, = 1073. At CFL, = 1, the non-preconditioned case diverges while the steady precon-
ditioner provides a quite good convergence rate. However, the unsteady preconditioner is still
the most efficient. At even higher CF L, = 10, the steady preconditioner performs as well as
its unsteady counterpart. It is thus clear that in all cases the unsteady preconditioning provides
optimal performance of the pseudo-time convergence. These results are in good agreement with
the Von Neumann analyses of chapter 7.

The dual-iteration convergence is important because it drives the accuracy of the solution : a not-
converged process would lead to an inaccurate solution. In practice, it is not necessary to reach
machine zero at each physical time-step, we therefore choose a certain level of residual to reach
so as to ensure efficiency and accuracy. Of course, accuracy relies also on the numerical dissi-
pation, hence, a no-preconditioned scheme would generate excessive artificial dissipation leading
to a wrong solution. Such an issue can also occur when one uses the unsteady preconditioning
with a small time-step; indeed, in this configuration, the unsteady preconditioning is close to
the no-preconditioned case and it can therefore provide an inaccurate solution. However, for the
problem that we are interested in, the time-steps correspond to C'F L, ~ 1, thus the unsteady
preconditioned scheme is expected to be as accurate as the steady preconditioned one. We com-
puted the steady oscillations during 4 periods over the coarse grid for each method. We used a
time-step equal to /20 which corresponds to CF L, ~ /4. Figure 8.5.3 shows the evolution of
the skin friction coefficient for the last period computed and the error made by each method over
the same period. We obtain the same accuracy with both steady and unsteady preconditioning
techniques : the error committed by each scheme is of the order of the percent on the coarse
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Figure 8.5.2: Comparisons of residual convergence with and without unsteady preconditioning at
My = 1073 and Re = 10 and on the fine grid (41 x 161). Top-Left : CFL, = 10~3. Top-Right :
CFL, = 1072. Bottom-Left : CFL, = 1. Bottom-Right : CFL,, = 10.

grid. The unsteady preconditioning enables to scale properly the artificial dissipation for such
a case. Besides, as it provides very fast convergence we will employ it for the next comparisons

between Matrix-Free method and Block scheme.

8.5.4 Comparisons Block scheme / Matrix-Free scheme

As we mentioned earlier, practical computations do not require to reach machine zero in pseudo-
convergence at each physical time-step. It is customary to target a certain order of convergence
before leaving the dual-time loop in the program. In this section, we want to emphasize that
the choice of the order of convergence is the main parameter which drives the efficiency of our
Matrix-Free implicit schemes. In figure 8.5.4, we present the dual-time convergence history of
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Figure 8.5.3: Left : Skin friction coefficient for the last period computed. My, = 1073, Re = 10,
At = 7/20 and mesh 21 x 81. Right : Table summarizing the error for each method.

the residual after one physical iteration for BL-ALGS(1) scheme, MF-SGS(10) scheme and MF-
PJ(30) scheme at My, = 1073, Re = 10, At = 7/20 and on the fine grid (41 x 161).

F M =0.001 Re=10 At =1720

6 . .
CFL, =10 Unsteady preconditioning

Mesh : 41 x 161

— — — — BL-ALGS(1) scheme
————— MF-SGS(10) scheme
_______ MEF-PJ(30) scheme

Log(Residual)
&
L O O O N A B B B

Dual iterations

'Residual | Method  Dual Tterations |

8 | BL-ALGS(1) | 95 |

| ' MF-SGS(10) | 180 |
' MF-PJ(30) | 180

4 | BL-ALGS(1) | 45 |

| ' MF-SGS(10) | 60 |

| ' MF-PJ(30) | 60 |

Figure 8.5.4: Left : Dual-time convergence history of the residual after one physical iteration at
My = 1073, Re = 10, At = /20 and on the fine grid. Right : Table showing the amount of
dual-iterations required to reach a certain order of convergence for each method.

We observe that Matrix-Free schemes require about 2.7 times as many iterations as the Block
scheme to reach machine zero. On the other hand, this figure decreases to 2 to reach 8-order
convergence and about 4/3 to reach 4-order convergence. Hence, according to the order of
convergence which is targeted, the performance of the Matrix Free schemes can be very different.
To emphasize that, we compute successively four periods of the steady oscillations for different
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levels of convergence. In Table 8.5.1, we present the results obtained when 8-order convergence
is required. The Block scheme provides of course the best intrinsic efficiency, however thanks
to their low-cost per iteration the Matrix-Free schemes, especially the MF-SGS one, remain
competitive. On the other hand, when only 4-order convergence is required, the Matrix-Free
schemes become very efficient in terms of iterations and CPU time. Besides, we notice that the
accuracy does not deteriorate. In fact, accuracy is mainly driven by the time-step size rather than
the order of convergence. Of course, a too small order of convergence would lead to inaccurate
solution. In practice, 4 or 5-order convergence is required to ensure accuracy. The Matrix-Free
implicit method is therefore very interesting to compute unsteady low-Mach flows.

Mesh ’ Method | CFL | Dual Tterations| CPU | CPI | CPPPI | FError |

21 x 81 | BL-ALGS(1) | 10° 7130 | 981s. 0.1388.1-107° | |
| MF-SGS(10) | 106 16305 | 905 s. | 0.056 3.3 1075 1.17-1072

- MF-PJ(30) | 106 16545 | 1106's. | 0.067 3.9-107° | |

41 x 161 | BL-ALGS(1) | 10° 13700 | 8265s. 0.6 | 9.1-1075 | |
' MF-SGS(10) | 106 25465 | 7632s. 0.3 4.5-107° 58-1073 |

' MF-PJ(30) | 106 26425 | 9572s. | 0.36 5.5-1077 | |

Table 8.5.1: Viscous flow over an oscillating flat plate at M., = 10~ and Re = 10. The physical
time-step is equal to 7/20 in every case while the pseudo-CFL number is set at 105. The order
of convergence required for each physical time-step is set at 8.

8.5.5 Conclusions

In this test-case, we studied the modification of the unsteady preconditioning selection that we
outlined in chapter 7. Such a modification significantly enhances the capability of the dual-
time scheme, enabling it to handle unsteady flows over a wide range of Mach numbers and time
scales. Specifically, the new definition of the unsteady low-Mach parameter improves efficiency
by optimizing the number of dual-iterations required at each physical time-step without defining
a specific length scale. Besides, the preconditioned dual-time Matrix-Free schemes were shown
to be very competitive with respect to classical Block formulation. When the required order of
convergence is not too large, the Matrix-Free method clearly outperforms the Block algorithm.
Furthermore, the reduction of memory requirements that we emphasized for steady flows is still
valid, making our Matrix-Free formulation very interesting to compute unsteady flows.
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Mesh | Method  CFL Dual Iterations CPU | CPI = CPPPI | Frror

21 x 81 | BL-ALGS(1) | 10° 3315 | 460s. 0.138 18.1-1077 | |
| MF-SGS(10) | 106 4795 | 268s. | 0.056 3.3 -107°1.17-1072 |
' MF-PJ(30) | 106 5000 | 335s. 10.067 3.9-107° | |

41 x 161 | BL-ALGS(1) | 10° 5320 1 3075s. | 0.58 | 8.8-1077 | |
| MF-SGS(10) | 106 7665 12300 s.| 031 4.5-107°/ 581073 |
' MF-PJ(30) | 10¢ 8885 132295, | 0.36 | 5.5-107° |

Table 8.5.2: Viscous flow over an oscillating flat plate at M., = 10732 and Re = 10. The physical
time-step is equal to 7/20 in every case while the pseudo-CFL number is set at 105. The order
of convergence required for each physical time-step is set at 4.
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Chapter 9

Matrix-Free Implicit Strategy for
Unstructured Grids

9.1 Presentation of the CAST3M code

During certain postulated accidents, hydrogen may be released or generated into nuclear reactor
containments, tokamak vacuum vessels and more generally into industrial units where hydrogen
risk analysis has to be taken into account. As combustible quantities of hydrogen, air and steam
may form locally, it is necessary to predict accurately the distribution of the different gases within
the geometry in order to simulate the combustion of the hydrogen. Indeed, depending on the
local concentration and/or the presence and activation of mitigation devices, hydrogen may burn
following different modes (diffusion flames, local or global deflagration, accelerated flames, det-
onation), or may not burn at all. However, the simulation of Hs distribution and combustion in
such geometries is a challenging task from the point of view of numerical simulation, as it involves
quite disparate length and times scales, which need to be resolved appropriately and efficiently.
The French Atomic Energy Commission (CEA) is involved in the development and validation of
codes to model such problems, for external clients such as IRSN, TECHNICATOME, or for its
own safety studies. All these codes are implemented and developed in the same computational
platform, the CAST3M code.

The CAST3M code incorporates both lumped-parameter and multi-dimensional formulations.
The lumped-parameter approach enables to represent the main flow of the mixture and the com-
partment average distribution for the different mixture species with a relatively small number
of compartments and junctions between them. Hence, the simulation can cover several hours of
physical time at a relatively low CPU cost. However, due to the limitations of the approach,
multi-dimensional effects such as local heat transfer cannot be modeled. Multi-dimensional ap-
proach has to deal with a wide range of spatial and time scales. The release and mixing of gases in
case of stratification is a long process, while the combustion phase is a short-lived phenomenon.
Furthermore, the burning modes of Hs range from nearly incompressible (deflagration) to highly
compressible (detonation).

A possible option to cope with this challenging simulations is to develop for each type of flow
the most suitable numerical method. Thus, the CAST3M code features a pressure-based solver
so as to carry out distribution calculations and a density-based solver in order to solve com-
bustion calculation. The pressure-based approach relies on an asymptotic approximation of the

187
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Navier-Stokes equations in the limit of small Mach numbers and leads to elliptic models in which
the acoustic waves have been filtered out. Moreover, the spatial discretization of the equations
is obtained by a Finite Element method while the time discretization is obtained through an
incremental implicit second order projection method. On the other hand, the density-based
solver uses shock-capturing conservative methods featuring different schemes such as Roe, Van
Leer or AUSM. It is applied in a unstructured cell-centered Finite Volume framework for the
spatial discretization. Explicit and implicit time-integrations are available, and in the latter case
a Newton-Krylov strategy was first used.

An alternative option to face with the different scales is to develop a single method suitable for
all flows regimes. Compressible flow solvers modified through the use of "preconditioning" tech-
niques enables to preserve efficiency and accuracy even when the Mach number becomes small.
The preconditioning matrix rescales properly the numerical dissipation and improves the con-
dition number of the system. Turkel-type preconditioning for Flux Difference splitting schemes
[75] and a low Mach number version of the AUSM+ scheme [25] have been implemented. Then,
the system is solved with the implicit Newton-Krylov technique. This method enables the use of
large time-steps to compute low-Mach number flow but it requires also the storage of Jacobian
matrices, which can become prohibitive when dealing with problems with a high number of de-
grees of freedom.

The Matrix-Free implicit framework that we presented in the previous chapters aims precisely
at reducing the memory overhead by simplifying the resolution of the system. In this chapter,
our objective is to extend the Matrix-Free implicit method to the unstructured Finite Volume
formula. We will see that such an extension can be carried out straightforwardly. Next chapters
will be dedicated to the study of the efficiency of the Matrix-Free technique with respect to the
existent methods in CAST3M.

9.2 Numerical methods for unstructured grids

A time-accurate solution of the Navier-Stokes equations is computed for flows at all speeds by
solving :

0w Ow 1 .
P 15 + En + Q Z(ffk - i‘,/k) Mk Sie =0 (9.2.1)
k

where w is the vector of the conserved variable, 7 is the pseudo or dual-time, ¢ is the physical
time, €2; is the volume of the i-th cell (¢f. figure 9.2.1), ﬁ and fxc are respectively the convective
and viscous fluxes at the face k, 1i; 1, is the outward normal and’Si,/z€ is the surface of the face k.
Eventually, P is the low-Mach preconditioning matrix presented earlier.

System (9.2.1) is solved using the numerical scheme :

) 1 -
nm Aw™ %(wner —wl) — LAt

—1\n, 7 i 2 i B v n.m+1l .
S An.’z“m + At &2 (Fik = Fik) ik Sik =0 (9.2.2)
where m is the pseudo-iteration counter, n is the time step counter, Aw™™ = ™™+l —

Aw™ 1 = w" — w"! and ]-'fkl (respectively ]-'i"/}g) is the numerical approximation of the flux

1Only preconditioned numerical inviscid fluxes are used in this chapter but for the sake of clarity we will omit
the superscript ™
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d((i,k);o(i,k))

Figure 9.2.1: Control cell for unstructured grid.

vector fE (respectively f). In the manner of the Cartesian case, the linearization of the
numerical fluxes around pseudo-time level (n,m) leads to :

Aw™ 3 Aw?’m

P—l n,m ) e
(P ATin’m—i_Q At

1
T DOAFN iy Sip = —RP™ (9.2.3)
(2
k

where the explicit residuum is given by :

3 (M n 1 n—1
1 S(w,"" —wl) — 5Aw;
n,m __ T, 1M — 2 7 7 2 1
Ry ==Y F i Sik+
k

: o (9.2.4)

and F = FF — FV. As far as the RHS of (9.2.3) is concerned, inviscid fluxes are computed using
classical upwind schemes (Roe, AUSM+), extended to higher order using the primitive variable
reconstruction of Barth and Jespersen, described in [2] and belonging to the MUSCL family;
besides the numerical dissipation of the inviscid schemes is corrected by taking into account Low
Mach number preconditioning. Viscous fluxes are approximated using a linearly-exact extension
of the diamond method of Noh [60]. On the other hand, the inviscid fluxes of the LHS of (9.2.3)
are evaluated using first-order space accuracy. Such a choice has no effect on the accuracy of the
solution since at convergence we have :

lim Aw™™ =0
m—0o0

and, as a result, the LHS of equation (9.2.3) goes to zero. For a large class of schemes, we then
have :

o 1 . R 1
fij?k Nk = 5 (fZE * Nk + ffzi,k) . ni,k) + §ka (wi — wo(i,k)) s (925)

where Q¥ is the (positive-definite) numerical diffusion matrix and the index o(i, k) refers to
the element which shares with the i-th element its k-th interface ("o" standing for "opposite"
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element (see also figure 9.2.1)). The time increment of the numerical inviscid flux is then given

= o (AP ™ = (AFE ) g+ 5 A (QF(wi = woi) "™

1 . 1 i~ nm
~ 5 (AT ™ = (AFE )™ ) - s+ S(QE)™™ A (wi = wopi)

Since

Z (AFlE)m nz k;Szk; = AFE (an kSz k) =Y,

k

it follows that, using formula (9.2.6),
ST (AFE) ™ i pSig = S (ark)" s
- i,k 1,k0,k 9 - ik i,k0,k
(Z w; — wo(i,k))n’msi,k )
k

As far as the evaluation of the diffusive flux in the LHS of (9.2.3) is concerned, we neglect the
dependence of the viscous flux with respect to the derivative of the variables in the tangential
direction (¢). Thus, we have :

ow ow ow
Vv —
ik Tk 71,3,k <aﬁ>z,k t,i,k < oF >z‘,k sk <an>2k

)

(9.2.7)

l\Dl*—‘

Then, we evaluate the normal derivative of w in the n-direction as follows :

(50, ~ awwm
07 ), dG, (i, k) + (i, k), (i, k)

where (d(i, (7, k)) +d((i, k), 0(i, k))) is the sum of the distances between the involved cell-centers
and the interface (¢f. figure 9.2.1). Eventually, we obtain the following expression :

Fle -tk = Qix - (Wo(i gy — wi) (9.2.8)
where the matrix QXk is defined as follows :

V= —— ! - ‘ “Aqik -
’ d(i, (i,k)) + d((i, k), o(i, k)) "

Using formula (9.2.8) and neglecting the variation of Q;/k from m to m + 1 yields :

STAF) kS = - (Z( VA (wi = weginy) " SM) . (9.2.9)

k k
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Finally, inserting (9.2.7) and (9.2.9) into the LHS of equation (9.2.3), we find the implicit scheme
for unstructured grids :

D™ Aw™ 4 ( 2;2‘ 3 (A fgi,k))"’m i Sk>

vk

1 1% 1 E e n,m n,m

Yok

(9.2.10)

with
1 n,m 3 1 1 n,m
DY = [ —p! . — Vi Z0F ,
= () (@D (e 5e)] )

In the particular case of the Cartesian grids, one recover the numerical scheme detailed in the
first part of the thesis.

9.3 Matrix-Free implicit treatment

The Matrix-Free framework can be straightforwardly applied to the unstructured scheme (9.2.10).
First, we proceed to the spectral radius simplification on the dissipative terms of the LHS :

szNP(PA )ik =Pik- P_

szNP( ) Id = sz Id

The unstructured scheme then becomes :

n,m n,m 1 nmo, 1 mn,m n,m n,m
Di Awl + <2—§22 zk: <Af0Eé’L,k)> . ni,k Sz,k) - (ﬁz § Civk . Awo(i,k) Sz,k) = _Rz

with

1 o 3 1 1 e
pvm— _P—l N § _ VI _~EP—1 .
i (AT >Z + AL d + <Ql;<,0 d+2p - Sz,k: )
chm = ( VId+ - ~EP )
' ik

In order to produce a Matrix-Free implicit method, all the non-diagonal terms are relaxed in the
manner of the Point Jacobi procedure to yield :

N D _pnm 1 r \O - 1 nm Ao ()
D7 Awg = =R — (2—91 Xk: (Afo(i,k)) Mg Sik |+ a %:Ci’k SAwg gy Sik

(9.3.1)
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In the particular case of the compressible flows, in which the preconditioning is not required, the
preconditioner P is equal to the identity matrix so that the coefficients D and C' reduce to :

DM = (a™ + b™) Id

2 7

1 n,m
C:;cm = <PV + §PE> )

ik

with
a;"" = 71nm+ ! Z(PEk)n’m ik | and bP" = iﬁ-iZ(PVk)n’m ik
v ATi’ QQl P’ b ’ v 2At QZ . b ’

Thus, the unstructured scheme (9.3.1) is truly Matrix-Free and it does not require neither
matrix inversion nor matrix storage. However, when we compute low-Mach number flows,
the preconditioning matrix differs from the identity. Consequently, the diagonal coefficient
D becomes a full matrix to be inverted, and C are also block coefficients, so that storage
requirement and operations count of the implicit treatment significantly increase. Nevertheless,
as shown in the Cartesian case, it is possible to take advantage of the properties of P to keep
the preconditioned approach as simple as its compressible flow version.

In the first chapter, the Turkel preconditioner written in conservative variables was pre-
sented :

P=Id+(8*-1)-Q

with
P =30w+v?) —u  —v 1 1
v—1 ug? —u?  —uwv  wu v—1 U 9
= == 3 —Uu ; —U 9 1
@ c2 vg? —ww  —v? v c2 v (4 )
Hg? —uH —vH H H

The matrix @ is idempotent, i.e. Q> = @, hence, the preconditioning matrix can be inverted
explicitly :
1 1
P :Id+(@—1)-Q
In order to exploit this property, in the matrix D;""™, we evaluate all the matrices P at the center
of the i-th cell, thus, we obtain :

DM =™ (P b Id

2 K3

Then, the matrix is inverted in the same way of the Cartesian case :

-1 1 a(ﬁQ—l) n,m
(i) —<a+b<“+mQ>>,

]
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Besides, in coefficient C, we can also evaluate the matrix P at the center of the i-th cell which
leads to the following expression :

Aw (l+l) (Dn m)

n,my—1 n,my—1
+ (D) - (BT)

(9.3.2)

As shown in chapter 4, the product D! - P! is explicitly given by :

n,my—1 n,my—1 1 b(52_1) e
(D7) - (B) _<a—+b <Id+WQ>>i

Hence, the expression (9.3.2) reads :

AwtV = 1
¢ (a+0b),”

(3" 1 nm oA 0
e O (sl bl

[Awy) + Awé)L
(9.3.3)

with
DY _ _pnm i 1 E U ~ Vnm ) .
(Awl >7, o R’L Q Z 2 <Afo(lzk)> i nl’k (pz’k) ) Awo(ifk) Sl’k
'k

( W2 >,~_29 me Awl - Sik

This implicit treatment enables to decouple nicely the standard Matrix-Free implicit treatment
used for compressible flow (§ = 1) from the added treatment specific to low-Mach number flows
(6 # 1). Moreover, in the manner of the chapter 4, the treatment (9.3.3) becomes wholly Matrix-
Free if the specific expression of matrix () is employed to compute a matrix-vector product such
as () - X under the form :

0 X = 7—21 (qu(l) X ® _yx® +X<4>) .
C

e 2

with X (™ the components of vector X. Eventually, Awglﬂ)

with a reduced memory storage using the following expression :

can be computed at a low cost and

n,m

A — 1

i T W [ (9.3.4)

Awgl) + Awgl) + Aqbgl)

e =2 =~
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where the increment Aqbgl) is given by :

26 =™ ¢ (eawf? + bawf) — u (eawf? + bAwf?)

—v (aAwfg) + bAw§3)) + (aAwYL) + bAwgl))} Fl)

(2

with

n,m __ 7_1_ (ﬁ2)_]— m
Xi _[ 2 (a+b)(a+b62)]

%

9.4 Conclusion

Thus, the Matrix-Free implicit framework extends easily to the unstructured grid formulation.
The form of the final algorithm remains the same than for the Cartesian case. Let us notice
that the previous algorithm can be coupled also with the Symmetric Gauss-Seidel relaxation
procedure, which is expected to improve the convergence rate of the method. Next chapters
are dedicated to the validation of the Matrix-Free technique that have been implemented in the
CAST3M code. We will compare it with respect to the Newton-Krylov algorithm and we will
also carry out comparisons with the asymptotic pressure-based solvers of CAST3M. s




Chapter 10

Validation of the Matrix-Free Method
for 2D-3D Euler Test-Cases

10.1 Introduction

The Newton-Krylov approach, which has been firstly implemented in the CAST3M code, theo-
retically allows to compute stationary solutions without time steps restriction linked to the CFL
condition. However, it requires computing and storing Jacobian matrices and, consequently,
when meshes with a huge number of elements are used, memory storage becomes an important
issue. The Matrix-Free implicit treatment which was presented in the previous chapters has
been developed to reduce the memory storage and it is also hoped that by simplifying the res-
olution, gains in CPU can also be achieved. This Chapter is devoted to the validation of the
newly implemented method in CAST3M over 2D-3D Euler test-cases. The promising properties
of the MF schemes which were exhibited in the Cartesian tests are expected to be preserved over
unstructured grids.

10.2 Flow over a sine bump

10.2.1 Position of the problem

An inviscid flow in a channel is computed. The geometry of the channel consists of a rectangular
domain (x,y) € [0;4] x [0;1], with a straight upper wall and a curved lower wall, whose
coordinates are given by :

r<1 y=20
1>2>3 y=0.1(1-cos[(x—1)n])
>3 y=20

Four irregular grids are employed to carry out the studies :
e a coarse grid with 878 triangular elements (cf. figure 10.2.1);

e a medium grid with 3468 triangular elements;

195
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Figure 10.2.1: Stationary flow over a sine bump. Irregular coarse mesh with 878 triangular
elements.

e a fine grid with 7898 triangular elements;
e a very fine grid with 14104 triangular elements.

For each grid, the Euler equations are solved for an ideal gas, with v = 1.4. For M., < 0.5 the
flow remains subsonic, and hence isentropic and irrotational (because for higher Mach numbers
one gets a transonic flow with a shock), and the Mach isolines are expected to be completely
symmetrical with respect to the geometry (i.e. potential flow). Non-dimensional values are taken
as follows : pg = 1.4, ugp = M, v9 = 0, Py = 1. Subsonic boundary conditions are considered :

e at the inlet (left) we impose the external total enthalpy, the external entropy and the flow
angle while we extrapolate the pressure from inside;

e at the outlet (right) we impose the static pressure while we extrapolate the density and
the velocity from inside;

e at the top and at the bottom, we impose wall boundary conditions.

10.2.2 Purpose

Three different values of the inlet Mach number are considered, namely M., = 0.1, M., = 10~*
and M = 0.5. Our purpose is to evaluate in terms of CPU time the following approaches :

e the Point Jacobi Matrix-Free method with « inner-iterations that we will denote MF-PJ(a);

e the Symmetric Gauss-Seidel Matrix-Free method with « inner-iterations that we will denote
MF-SGS(«);

e the Newton-Krylov algorithm (GMRES with ILUT preconditioner, Krylov space dimension
equal to 50) for which we consider that the convergence of the iterative scheme for the linear
system is achieved once the linear residuum is lower than 107* (NK(«)).

We directly solve the stationary Euler equations and we use the AUSM+(P) scheme introduced
by Edwards & Liou [25] and coupled with a non-limited linearly exact reconstruction. All the
following computations were performed using Intel Xeon 3 GHz with 2 GB RAM Memory.
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10.2.3 Numerical results at M = 0.1

At such a Mach number, the AUSM+(P) scheme provides a very correct solution since, as one can
see in the figure 10.2.3, the isolines of the Mach obtained on the finest grid remain symmetrical
with respect to the sinebump.

0.085 0.1 0.115 0.13 0.145

Figure 10.2.2: Stationary flow over a sine bump at My, = 0.1. Isolines of the Mach number
obtained on the finest grid.

In order to perform comparisons between the different methods described earlier, the criterion
which is used to determine the convergence rate is first defined. We retain the Lo norm of the
residual :

NBEL

(Awf)?
\ =

i=1

NBEL

\ Z (sz'l)z

=1

where "NBEL" is the number of elements and w denotes either the density, the momentum or
the energy.

In table 10.2.1, we present the results that we obtained with these different methods. Let us
precise the meaning of some acronyms. "NBEL" is the number of elements, "Iterations" and
"CPU" are respectively the number of non-linear iterations and the CPU time required to achieve
convergence, "CPI" represents the cost per iteration while "CPPPI" denotes the cost per iteration
and per element, finally, "MEQO" is the fraction of CPU time consumed by the Most Expensive
Operator. In the case of the Matrix-Free schemes, most of the CPU time is spent during the
sub-iterative process of the relaxation procedure (Point Jacobi or Symmetric Gauss-Seidel) while
in the case of Newton-Krylov algorithm, the CPU time is mainly consumed to find the solution
of the involved linear system.

As expected, Newton Krylov algorithm requires few iterations to achieve the convergence. In
this table, one can notice that, for the coarse grid, the NK scheme is strangely less efficient
than for finer grids since it requires 120 non-linear iterations to reach the steady state while it
takes only 45, 75 and 65 on the other finer grids. The reasons of such a behaviour are not well
understood. At any case, the NK scheme provides a very good intrinsic efficiency, however, as its
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cost per iteration is highly expensive, the global computational cost is not so small. Moreover, it
is noticeable that the cost per point per iteration (CPPPI) rises as the grid becomes finer. This
cost can be reduced a little by diminishing the amount of linear residuum required to achieve
the iterative process. Indeed, the NK(3) scheme provides the same efficiency than the NK(10)
scheme for a reduced computational cost. As a result, we did not perform the computation with
the NK(10) scheme on the finest grid.

On the other hand, the Matrix-Free schemes need a large amount of iteration to achieve the
convergence and, as forecasted by the Von Neumann analysis, this amount increase as the grid
becomes finer. In order to maintain a good damping of the low-frequency error modes, it is
necessary to increase the number of sub-iterations, especially for the Point-Jacobi algorithm (cf.
chapter 5). However, as the costs per iteration of the Matrix-Free schemes are dramatically
small, these schemes are globally more efficient than their Newton-Krylov counterparts.

In figure 10.2.3, the convergence history with respect to the number of iterations and with
respect to the CPU time is presented for the finest grid. We can clearly observe the strong
intrinsic efficiency of the NK scheme but, thanks to their very cheap costs per iteration, the MF
schemes are more competitive in terms of CPU time.

Flow over a sine bump
', AUSM+ (P) scheme 10"
, Mesh : 14104 triangular elements

Flow over a sine bump
A . AUSM+ (P) scheme
\"\ \ Mesh : 14104 triangular elements

M= 10" M= 10"

S J
= ! = — —A- —  Block - NK(3)
2wl 3 oL — % MF-SGS@0)
g A g —-—B-—- MF-PJ(120)
4 4
10” = 107 =
\ — —A- —  Block - NK(3) .\.
\ —~—— MF - SGS(40)
10" - \ —-—0O--—- MF-PJ(120) 10"~
\
‘a
4 Rl S T T T Y Y Y S 10" T T T I
0 100 200 300 400 500 0 500 1000 1500 2000
Iterations CPU Units

Figure 10.2.3: Stationary flow over a sine bump at M., = 0.1. Convergence history with respect
to the number of non-linear iterations (Left) and with respect to the CPU time (Right) for the
finest grid.

10.2.4 Cancellation error problem

Before studying the performance properties of each method at M = 107%, let us deal with
the problem of the cancellation errors that occurs when the Mach number is very small. As
the Mach number decreases, we observe that the convergence of the preconditioned scheme
does not reach the zero machine. In figure 10.2.4, we clearly notice such a behaviour. First
propositions to circumvent this issue can be found in [14] but further explanations and solutions
were given by Miiller in [58] and by Sesterhenn et al. in [70]. In fact, for low Mach number
problem, the average pressure is of the order of unity while its spatial variation is of the order
of square of the Mach number. Then, the more the Mach number decreases, the more the
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NBEL = Method |Iterations CPU |CPI!| CPPPI MEO |

878 | MF-PJ(50) 200 14s. 1007 8-10° | 79%

MF-SGS(15) | 190 12s. 1006 7.2-107° 76 %

NK(10) 120 71s. | 06 | 67-107° 72%

NK(3) 120 5ls. 043 48-107° | 62 %

3468 = MF-PJ(80) = 290  127s. | 0.44 12.6-1075 90 %

MF-SGS(20) 300 92s. 031 8.8-107° 86 %

NK(10) 45 188s. 4.2 120-1075 | 88 %

NK(3) 45 120s. 27 | 77-107° | 82 %

7898 | MF-PJ(100) | 380  474s. |1.25/15.8.107° 93 % |

MF-SGS(40) 370 | 472s. 128 16-107° |93 % |

NK(10) 75 | 1156s. 15  195-107 93 % |

NK(3) 75 682s. 9.1 115-107° 93 % |

14104 | MF-PJ(120) 430  1120s.| 26 185-107° | 94 % |
MF-SGS(40) 430 | 970 s. 227 16.1-1075| 93 % |
NK(10) - —s = - ~ % |

NK(3) 65  1707s. 26 | 184-107° | 93 % |

Table 10.2.1: Stationary flow over a sine bump. M = 0.1. NBEL is the number of elements,
Iterations is the number of non-linear iterations to achieve the convergence, CPU represents the
CPU time, CPI is the cost per iteration, CPPPI is the cost per iteration and per element, MEO
is the fraction of CPU time consumed by the "Most Expensive Operator".

spatial variation of the pressure becomes small with respect to its average value, and the more a
numerical algorithm involving a single pressure becomes intrinsically inaccurate because of the
cancellation error. For instance, in our case, the computed variation of the pressure is about
1078 at M = 10~%. Then, if the pressure converges to the zero machine, namely 107'°, the
spatial pressure variation is only accurate till the seven-th digit. This round-off error affects the
equations and, consequently, the convergence error cannot reaches the zero machine. In order
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to circumvent this issue, it is necessary to decouple the thermodynamic pressure from its spatial
dynamic part so as to eliminate it from the momentum equation. We introduced such corrections
in our Finite-Difference code and we succeeded in reach the machine zero for Mach numbers of
about 1078, The corrections of the CAST3M code require a large amount of modifications
and precautions. Besides, the flow speeds that we are interested in are usually of the order of
M = 10—* for which the accuracy is sufficient. Thus, we did not proceed to these modifications.
Nevertheless, it would be profitable to implement the corrections in the future.

In the figure 10.2.4, we can also notice that, although the minimum level of the residual increases
because of the cancellation errors, the convergence rate does not vary with respect to the Mach
number. This emphasizes a well-known property of the preconditioning techniques which remains
valid for the Matrix-Free implicit treatment.

10°

Flow over a sine bump
AUSM+ (P) scheme
107 (— Mesh : 3468 triangular elements

MF - SGS(20)

Residual (L,)

10" -

10 T TR ! TR ! I
100 200 300 400

Iterations

Figure 10.2.4: Stationary flow over a sine bump. Convergence history of the MF-SGS(20) scheme
on the second grid (3468 elements) for several Mach numbers. Emphasis of the cancellation error
problem.
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10.2.5 Numerical results at M = 10~*

In the manner of the previous paragraph, we present in figure 10.2.5 the isolines of the Mach
number obtained on the very fine grid. The solution remains symmetrical for this low-Mach num-
ber case confirming the good properties of the AUSM+(P) scheme in the quasi-incompressible
regime.

I [ T av=1s 0

8.50E-05 1.00E-04 1.15E-04 1.30E-04 1.45E-04

Figure 10.2.5: Stationary flow over a sine bump at M., = 10~%. Isolines of the Mach number
obtained on the finest grid.

The independence of the convergence rate with respect to the Mach number, that we showed
earlier, is valid for all the implicit schemes. Besides, owing to the cancellation errors, it takes
less iterations for every method to achieve the convergence. For instance, in figure 10.2.4, it is
noticeable that, for the MF-SGS(20) scheme on the second grid, the residual stagnates after 160
iterations at M = 10~ while it reach the machine accuracy after 300 iterations at M = 107!
These results are aslo confirm in table 10.2.2. As a result, CPU time consumption is smaller.
Nevertheless, one can notice that for the NK schemes the cost per point and per iteration in-
creases a little with respect to the case at M = 0.1. Indeed, we observed that the NK method
became less robust when the Mach number decreased and required more linear iterations to reach
the same level of linear residuum. It explains why the CPPPI is bigger than for the previous
case. Moreover, for the finest grid, this lack of robustness cannot be circumvented by enlarging
the size of the ILUT matrix because it then requires too much RAM memory. Thus, the question
of the memory requirements is a big issue even for a classical 2D test-case.

On the other hand, the cost per point per iteration does not vary much in the case of the
Matrix-Free schemes. They remain robust at small Mach number and, as noticed in the previous
section, MF-PJ and MF-SGS schemes provide quite the same efficiency. Moreover, they are more
competitive than their Newton-Krylov counterpart and it is noticeable that it takes less CPU
time to simulate the flow over the finest grid with the Matrix-Free schemes than to compute the
same flow over the third grid with the NK(3) algorithm. Furthermore, we did not meet any issue
with the memory requirements.
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NBEL | Method | Iterations CPU @ CPI | CPPPI HMEO

878 | MF-PJ(50) 100  7.6s. 0076 8.6-107° | 79%

' MF-SGS(15) | 100 78s. 1 0.078 89-107° | 76 %

. NK(10) 40 44s. | 11 125-107° | 84 %

. NK(3) 40 32s. 08 | 91-107° | 78 %

3468 | MF-PJ(80) 150 69s. | 046 13.3-107° | 90 %

' MF-SGS(20) | 160 52s. 033 9.4.107° |85 %

- NK(10) 22 184s. 84 | 241-107° | 94 %

. NK(@3) 22 146s. | 6.6 191-107° | 92 %

7898 < MF-PJ(100) =~ 180 | 228s.  1.27 | 16-107° |93 %

MF-SGS(40) 175 ' 227s. 13 164-107° 93 %

- NK(10) 22 | 1058s.| 48  610-107° | 98 %

. NK(3) 22 590s. | 27 | 340-1075 | 96 %

14104 | MF-PJ(120) = 225 | 585s. | 2.6 18.4-107° 93 %

' MF-SGS(40) | 220  514s. 234 16.6-107° 93 %

. NK(10) - s - - -%

. NK(@3) NEM* | —s. | — N

Table 10.2.2: Stationary flow over a sine bump. M = 10~%4. NBEL is the number of elements,
Iterations is the number of non-linear iterations to achieve the convergence, CPU represents the
CPU time, CPI is the cost per iteration, CPPPI is the cost per iteration and per element, MEO
is the fraction of CPU time consumed by the "Most Expensive Operator". NEM means Not
Enough Memory.
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10.2.6 Numerical results at M = 0.5

In this section, we study the performances of our Matrix-Free implicit treatment in the case of
subsonic flows. We then set the Mach number at M = 0.5 and we compare the method with
the Newton-Krylov approach. The results are given in table 10.2.3 and we can observe that,
compare to the low-Mach number cases, the Matrix-Free schemes require a larger amount of
iterations to reach the steady state. This is in good agreement with the Von Neumann analysis
that we performed in Chapter 5. For subsonic flows, the eigenvalues take very disparate values so
that the spectral radius simplification is very penalizing for the convergence rate. On the other
hand, when the preconditioning matrix is applied at small Mach number regimes the condition
number is very close to unity which ensures that the Matrix-Free simplification does not really
deteriorate the efficiency. Moreover, we note that the NK approach also requires more iterations

NBEL  Method |Tterations CPU | CPI = CPPPI |'MEO

878 | MF-PJ(50) 390 29s. 1 0.074 85-107° | 78 %
' MF-SGS(15) | 340 22's. | 0.065 7.37-107° | 75 %

- NK(3) 122 49s. | 04 46-1075 |60 %

3468 = MF-PJ(80) 410 184s. | 045 12.9-1075 190 %

'MF-SGS(20) 420 | 136s. 033 9.4-107° |85 %

. NK(@3) 65 158s. | 24 | 70-107° |80 %

7898 | MF-PJ(100) 480 604 s. 1.26 15.9-107° 93 %

' MF-SGS(40) 480 624s. | 1.3 16.4-107° 93 %

NK(3) 90 714s. 8 | 100-107° | 87 %

14104 | MF-PJ(100) = 650  1455s. | 224 15.9-107° | 93 %

' MF-SGS(40) | 610  1432s. 234 16.6-107° | 93 %

- NK(3) 75 1443s. | 19 | 136-107° | 91 %

Table 10.2.3: Stationary flow over a sine bump. M = 0.5. NBEL is the number of elements,
Iterations is the number of non-linear iterations to achieve the convergence, CPU represents the
CPU time, CPI is the cost per iteration, CPPPI is the cost per iteration and per element, MEO
is the fraction of CPU time consumed by the "Most Expensive Operator".

to converge. However this increase is less important than for the MF schemes. Indeed, when the
ratio in terms of iterations between the MF-SGS scheme and the NK algorithm is of about 6.6 for
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the finest mesh at M = 0.1, it reaches 8.1 at M = 0.5. However, these loss of intrinsic efficiency
is just sufficient to make the NK approach as competitive as its Matrix-Free counterparts.

The figure 10.2.6 presents the isovalues of the Mach number for this subsonic case. The solution
is still symmetric since the Mach number remains smaller than unity at the nozzle.

Figure 10.2.6: Stationary flow over a sine bump at M, = 0.5. Isolines of the Mach number
obtained on the finest grid.

10.2.7 Conclusions

For all the configurations that were studied, the Matrix-Free implicit treatment designed for the
unstructured grids was shown to be as efficient as its Cartesian version. This new implicit scheme,
coupled with either SGS or PJ relaxation procedure, enables to reduce dramatically the cost of the
computations with respect to the former Newton-Krylov implicit algorithm especially for the low-
Mach number flow. Moreover, even if the case considered was only 2D, we had to cope with the
issue of the memory requirement for the NK approach. On the other hand, the simplicity of the
Matrix-Free method allows to perform fast simulations with regular computers. As forecasted by
the Von Neumann analysis and the Cartesian test-cases, the MF-SGS scheme ensures a very good
convergence rate even when the mesh becomes very fine thanks to its good damping properties
over the low-frequency region, while the MF-PJ scheme requires more inner-iterations so as to
eliminate efficiently all the error modes. However, the latter remains a competitive alternate
approach for computing all speed flows over unstructured grids. Convergence performances will
be now studied for 3D configurations for which the question of the memory requirements will be
a crucial issue. The next section will aim at outlining whether the Matrix-Free schemes enable
to compute flow over grids involving a large amount of points or not.
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10.3 3D Inviscid Sinebump Channel

This test-case is a three-dimensional simulation of a two-dimensional flow. It is used to emphasize
the efficiency and the robustness of the new Matrix-Free implicit treatment. The initial and
boundary conditions remain the same with respect to the previous test-case. The geometry is
now a parallelepiped (x,y,z) € [0;4] x [0;0.5] x [0;1] with a straight upper wall and a curve
lower wall :

r<l1 z=0
1>2>3 z=0.1(1-cos|[(x—1)7])
>3 z=0

The lateral walls of the computational domain correspond to the surface of the 2D domain.
Hence, four different grids using six-face prisms are available as for the 2D test-case : a coarse
one with 4390 elements and 12103 faces (c¢f. figure 10.3), a medium one with 34,780 elements
and 91,428 faces, a fine one with 118,470 elements and 306, 323 faces, and a very fine one with
282,080 elements and 723, 304 faces.
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Figure 10.3.1: 3D inviscid sinebump channel. Coarse unstructured grid with 4,390 elements
(prisms) and 12,103 faces.

The solution of this test-case, as for its 2D counterpart, is symmetrical and isopotential. In
figure 10.3, the isoligns of the Mach number (top) and the isobaric curves (bottom) are presented.
They were computed with the Matrix-Free scheme over the finest grid at My, = 0.1. This
numerical solution computed with the AUSM+(P) approach is in good agreement with the
theoretical solution.
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Figure 10.3.2: Stationary flow in a 3D sinebump channel at M., = 0.1 and over the finest grid
(282080 elements). Top : Isoligns of the Mach number. Bottom : Isobaric curves.
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The results are summarized in the table 10.3.1. As expected the Newton-Krylov is highly limited
by its prohibited memory requirements. Indeed, from the second grid with only 34, 780 elements,
the memory storage is too big for the capacities of regular computers. Moreover, for the coarsest
mesh, the method suffers from its great cost per iteration which makes it totally inefficient
compare to the Matrix-Free schemes.

NBEL ' Method | Iterations' CPU |CPI CPPPI |'MEO

4,390 | MF-PJ(50) | 210 | 149s. 0.71 1.6-10~* 83 %
| MF-SGS(20) ' 220 | 153s. | 0.71 1.6-107* 83 %
. NK(3) | 120 | 17500s. | 146 332-107%| 95 %

34,780 | MF-PJ(80) = 310 | 2570s. 83 2.4-107% 85%

| MF-SGS(40) | 340 | 3180s. | 93 2.7-1074 /88 %

. NK(3) | NEM* | —s. - - =%

118,470 | MF-PJ(100) =~ 410 | 15000s.| 37 3.1-107% 85%

| MF-SGS(50) = 460 | 18800s. | 41 | 3.5-107% 89 %

282,080 | MF-PJ(120) | 580 | 62400 s. 107 3.8-1074 |86 %

| MF-SGS(50) | 630 | 65000s. 103 3.7 -107* |89 %

Table 10.3.1: Stationary flow over a 3D-sine bump. M = 0.1. NBEL is the number of elements,
Iterations is the number of non-linear iterations to achieve the convergence, CPU represents the
CPU time, CPI is the cost per iteration, CPPPI is the cost per iteration and per element, MEO
is the fraction of CPU time consumed by the "Most Expensive Operator". NEM means Not
Enough Memory.

On the other hand, the Matrix-Free technique enables to deal with grids involving a very large
number of elements with only 2 GB of RAM memory. In addition, the method provides a truly
competitive efficiency since computing the solution over the third grid takes as much CPU time
as for simulating the same flow on the coarsest grid with the NK approach. The objective of
reducing the memory requirements without deteriorating the efficiency is therefore reached.

As far as the Matrix-Free schemes are concerned, the hierarchy obtained for the 3D case is not
the same than the one derived from the 2D case. Indeed, it is noticeable that the MF-PJ scheme
is the more efficient. In fact, the convergence rate of the MF-SGS approach deteriorates with
respect to the 2D case while it remains the same for the MF-PJ technique. This loss of intrinsic
efficiency is accentuated by an increase of the CPPPI. Such a behaviour can be explained by
the fact that the intrinsic efficiency of the MF-SGS relies on the ordering of the mesh cells (cf.
[72]). As no re-ordering technique devoted to this technique is available in the CAST3M code,
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it is necessary to build the grid carefully in order to improve the efficiency. However, it does
not circumvent the problem of the increase of the CPPPI. As the SGS algorithm requires the
knowledge of the connectivity of the mesh cells and as the number of cells rises a lot for the 3D
cases, the cost of the method becomes more expensive. On the other hand, the Point Jacobi
procedure is not dependent on the ordering of the mesh cells and until the third mesh, its cost
per iteration remains quasi constant. This method seems therefore well-suited to perform fast
3D computations. However, it is noticeable that we should increase strongly the number of
inner-sweeps for the finest grids so as to damp correctly the low-frequency error modes. The
SGS algorithm becomes then competitive to carry out 3D calculations over grids involving very
small cells as shown in figure 10.3.

Flow over a 3D sine bump
AUSM+(P) scheme 10"

\

Mesh : 282080 elements

Flow over a 3D sine bump
AUSM+(P) scheme
Mesh : 282080 elements

10° 1 M=0.1 107 M=0.1

CFL =10° CFL =10°

S G-
10° - 10°
ot T MF-SGS(50) 10" ————m MF-SGS(50)
MF-PJ(120) \ MF-PJ(120)
10" | | ‘ ety 101 I | I L L L hd
200 400 600 800 0 20000 40000 60000 80000
Iteration CPU units

Figure 10.3.3: Stationary flow in a 3D sinebump channel at M, = 0.1 over the finest grid
(282080 elements). Convergence history with respect to the number of iterations (left) and with
respect to the CPU time (right).

10.4 Conclusions

This chapter was devoted to the comparisons between the implicit treatments available in the
CAST3M code over 2D and 3D inviscid test-cases. We aimed at confirming the very good
properties of the Matrix-Free framework in the case of unstructured grids. This method was
compared to the Newton-Krylov approach involving a GMRES algorithm preconditioned using
an ILUT technique.

The computation of an inviscid flow in a 2D sinebump channel at subsonic and low-Mach number
regime demonstrated that the newly implemented Matrix-Free approach was globally as efficient
as its Newton-Krylov block counterpart. Moreover, even for this simple 2D test-case, we had
to cope with the issue of the memory requirement for the NK approach. Indeed, a certain lack
of robustness obliged us to increase the size of the preconditioner ILUT which could not then
be treated by regular computers. On the other hand, the simplicity of the Matrix-Free method




10.4. CoONCLUSIONS 209

allowed to perform fast simulations for all the configurations. Both MF-PJ and MF-SGS schemes
provides good convergence rates; however, it is necessary to increase the number of inner-sweeps,
especially for the PJ procedure, in order to eliminate efficiently all the error modes when the
mesh becomes finer. In spite of this large amount of inner-iterations, both methods remain very
competitive to compute inviscid stationary flows.

The 3D test-case aimed at checking the ability of the Matrix-Free implicit treatment to deal with
grids involving a large amount of points. We then built a 3D version of the previous 2D test-
case. As expected, the Newton-Krylov scheme was quickly limited because of its huge memory
requirements. Indeed, the memory resources of regular computers (2GB RAM memory) are not
sufficient to deal with more than 10,000 elements in 3D. On the other hand, using Matrix-Free
schemes allowed to compute flow over grids involving more than 592,350 elements on the same
machines. In a 3D context, the MF-PJ scheme is surprisingly the most efficient. In fact, the
efficiency of its MF-SGS counterpart relies on the ordering of the cells and, moreover, it requires
the knowledge of the connectivity of the cells which contributes to increase the cost per iteration.
The MF-PJ method seems to be a very competitive approach to perform fast 3D computations.
This technique is also very attractive since, as it is said in [72], it can be easily implemented in
a parallel code.







Chapter 11

Modelling of a Tee Junction at
Low-Mach Number Regime

11.1 Introduction

The mixing of an hot and cold fluid in a tee junction (simplified scheme in figure 11.1.1) has
been the object of several investigations in Nuclear Energy Industry (see for instance [33, 32]).
Indeed in the region in which hot and cold flow streams join, random fluctuations of the coolant

= R F
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™ %

12 P13

Figure 11.1.1: Tee junction. H represents the inlet of the hot fluid, C of the cold one and O is
the outlet.

temperature can occur. Such fluctuations can cause cyclical thermal stresses (already known as
thermal striping) and subsequent fatigue cracking of the piping. Accidents linked to thermal
striping already occurred at some nuclear power plants (Oskarshamn/Ringhalsl /Barsabeck2 in
Sweden, Tsuruga in Japan, Civaux in France), which increased the interest on this phenomenon.
As mentioned in [13], such accidents are very complex to analyze. Indeed several fields are
involved: thermal-hydraulics, heat transmission, mechanics and material science. Each field has

211
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its limits, which makes this phenomenon difficult to understand.

The understanding of thermal stripping is beyond the purpose of this study. In fact, this chapter
displays a comparison between the asymptotic solver available in CAST3M [61] and the newly
implemented low-Mach matrix-free treatment for the case of laminar, low-Mach number, steady
and unsteady flows in a 2D Tee junction. The study aims at confirming the interest of the new
implicit algorithm for efficient computation of low-Mach number (single-species) flows.

11.2 The steady problem

Let us present the stationary problem we solve. We suppose to deal with a calorically perfect
gas (for instance air). As shown in figure 11.1.1, such gas enters the inlet H with temperature
Ty and momentum my and the inlet C with temperature T and momentum m¢. The inlet
temperatures are constant in space and time. The inlet momenta are parabolic, symmetric and
parallel with respect to the tube axis (zero at the surfaces):

N 6y [ d? 5 6me [ d
m(s) =~ <4 82) , el(s) =g <4 -5,

s being the distance with respect to the tube axis, my and mc the average momentums. At
the outlet O, the pressure is constant (in space and time) and equal to Py (plus the hydrostatic
component). Walls are impermeable and adiabatic everywhere. The velocity is zero at the wall.
For the sake of simplicity, we consider constant dynamic viscosity and thermal diffusivity.

11.3 Governing equations

We consider the Navier-Stokes equations for compressible, calorically perfect gas, namely :

op = -
PN (i) =0
0
81:[ A = =
5 +V-(pue@u+pl)=pg+V- -1
N (11.3.1)
0D = o~ 4 o = o 2 2.
%+v (piH) =g - i+ V- (7-7)+ V- (AVT)

%=ﬂ<§®ﬁ+(5®ﬁ)T—§(§-ﬁ)I>

Let us carry out the non-dimensionalization of the equations (11.3.1). First of all, we define the
following coefficients :

AT =Ty-Te , T=

Ty +T, AT - 7
%, e="= | du=rwg+imc , og=-—=L . (113.2)
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Then, the reference values are chosen as follows :

- - N by _ "y - d
lref =d , Pref =h , Pref = —= 5 Uref = = ) tref == )
RT Pres lires (11.3.3)

)\ref :)\(ﬁTef7PT'6f) ’ [Lref:/j‘(ﬁrefypref) .

In the system (11.3.1), dimensional values are replaced by :

F:"L ’ t:lfreff ’ u:~u ) p:"i ) p:~p ’ per = f)et ’
lref fref ) u"”‘if Pref preji Pref (1134)
T-T A I lyey
= — , == 5, MH== y T= =
AT Aref Href Hreflref
After straightforward calculations, the following system of equations is found :
op =
LIV (oi) =0
5 TV (pt)
opi. = 1 = 1 1 =
AV (0T + ——V - (p]) = — pe + — (V-
ot V- lpi@u)+ yMZ (p1) Fr "7 Re (V1)
. 2 2 . (11.3.5)
p. = - RIS - o TV & — B Vi Vi
—_— - (puH) = . V(- 2 V.- (AVT
ot + V- (piH) Fr peq -t t Re (z-)+ 67—1 Pr Re ( )
M2
p=p(1+27)=(y—1)p (E— 7 2001_['1_[)
where
Prefily Wl = firef 7 Milres R\ 1
M2 = —= = ——RT, Pr="%——R, Re=—"%, Fr=|— — .
7Pref ’Ypref )\ref v—1 Href Pref glref
(11.3.6)

Let us introduce the boundary conditions under dimensionless form. As the system is opened,
P(t) is given by the boundary conditions in the outlet O, i.e. P(t) = Po(t)/FPy. The inlet
temperatures are :

fy-T_ Ty-To _ o o Te-T _ Tc-Ty

= H= - ¢ " _ 5.
AT 2Ty —T¢) AT 2Ty —To)

The inlet average dimensionless momentum are given by :
My = pg - Ug = Qg - My me = po - uc = (1 —ag) - my .

The non-dimensional solution of this problem depends on the following non-dimensional param-
eters: Lq/d, Lo/d, and L3/d (which are non sensibly influent in the mixing region if they are big
enough), the specific heat ratio 7, the Reynolds number Re, the Prandtl number Pr, the Froude
number F'r, the Mach number, the ratios ag and e. It follows that, if we take as non-dimensional
parameters
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Ly/d Ly/d Ls/d ~ € ag Pr Re M Fr
12 9 7 14 0.2 0.8 0.7 100 1/300 1/9

and we fix the numerical values

P
d=1m, ﬁ:—ozlkgm’:”, my =1kgm

-2 .—1
RT 5

, R=288Jkg 1K1,

we can compute all the dimensional quantities involved in the problem (SI units):

Ly Ly L3 u i) T Ty Tce myg mo | o Y
129 | 7 |1 64290 | 223.2 267.8 1786 0.8 0.2 0.01 144

Conservation properties

The stationary solution of this problem must satisfy the divergence condition :
V- (ﬁﬁ) ~0. (11.3.7)

If we neglect the contribution of the heat diffusion at the inlet and at the outlet (approximation
which is correct if the sections are far enough from the mixing region), it must be :

a3 (ph7-ii) + [ a8 (pf5-7) = - [ a3 (phF-7) 1138
a8 (5 ) + [ a8 (pii-ii) = - [ as (o5 ) (11.38)
i.e., by neglecting the terms O(M?) :

/Hdg(pﬁﬁ.ﬁ)+/cd§(pﬁa.ﬁ) :/Odg(pﬁm) |

Since we are dealing with a calorically perfect gas and the so-called thermodynamic pressure is
constant, it follows that :

/Hdg(f?-ﬁ)jt/cdg(ﬁ-ﬁ) :_/Odg(m) ,

/dV (6 : ﬁ) ~0. (11.3.9)

From equation (11.3.8), we can also deduce that :
TSy +meToSe = - /O as (pHE )

If the outlet section O is far enough from the tee junction, the outlet 7" is constant, namely :
- muSy.  meS

To= 2227, + 2% = apTy + (1 — ax)Te =250 K . (11.3.10)
moSo moSo
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11.4 Numerical approaches

11.4.1 Fully compressible solver

The conservative compressible equations (11.3.1) are solved using the compressible density-based
solver of CAST3M which employs an unstructured Finite Volume approach. As described earlier,
the inviscid fluxes are computed using classical upwind schemes, extended to higher order using
the primitive variable reconstruction of Barth and Jespersen, described in [2] and belonging
to the MUSCL family; moreover the numerical dissipation of the inviscid schemes is corrected
taking into account Low Mach number preconditioning. Viscous fluxes are approximated using a
linearly-exact extension of the diamond method of Noh [60]. Concerning the time discretization,
the Euler implicit scheme is used. The non-linear problem arising from the time discretization is
solved via the Matrix-Free implicit method that we introduced in this thesis. Besides, we couple
the MF scheme with a Symmetric Gauss-Seidel relaxation procedure.

11.4.2 Low-Mach asymptotic compressible solver

In order to provide comparisons, the Tee junction problem is also computed using a pressure-
based solver of the CAST3M code. In such solver the compressible equations arising from
one-time scale and one-space scale low-Mach number asymptotics are solved, namely, one has to
compute the (constant in space) thermodynamic pressure P(%), the speed ﬁ(f_‘; t), the temperature
T(r,), and the dynamic pressure 7' ((7,1)), solution of the initial value problem :

71];}11; (6.5):77; V. (31)
g_? (ﬁ.é)gz%(_§~/+§.f)+g (11.4.1)
‘z_f: (ﬁ.é)f:%”%(fi_];ﬁ.(ﬁf))

The space discretization is performed using a Galerkin Finite Element approach. Velocity and
temperature shape functions are quadratic (triangular elements with 7 degree of freedoms and
quadrangular ones with 9) while pressure shape functions are linear (triangular elements with
3 degree of freedoms and quadrangular ones with 4). Concerning the time discretization, the
BDF1 implicit scheme is used. The non-linear problem arising from the time discretization is
solved via a fixed-point scheme :

1 (dﬁ>”+(é.anﬂ):vfe.(xem

,-ypn E ,-yPn
AN o 2\ f’" e =

~ n ~ ~ n
or o0 2\ —17™ [ (dP > sz
N () =TT (Y8 (357 )
ot v Pn dt
As shown in [61], this algorithm has also been validated in computing the solution of a square
cavity with large temperature differences.
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Dimensionless boundary conditions

Unlike the fully-compressible case for which we impose the dimensionless average momentum at
each inlet, here, we impose the dimensionless average velocities as follows :

_ 'L:LH aHT:ntﬁref 1 1

Uy = = = — = :OéHl—i—QETHf:OzHl—I-Ef,
Uref PH Ty ( )P ( )P

_ 1

uc:(l—aH)(l—e)F.

Besides, at the outlet, we impose that the velocity presents a profile which is parabolic and
symmetric with respect to the tube axis. The constant coefficient involved in such parabola is
determined using the divergence equation (first equation of (11.4.1)).

11.5 Numerical solutions

11.5.1 Convergence analysis

First of all let us perform a convergence analysis with respect to the mesh dimension. In the
case of the pressure-based solver, the coarsest has 3135 elements (15 elements per tube section
(cf. figure 11.5.1)) while the medium mesh has 5580 elements (20 elements per tube section) and
the finest mesh has 8725 elements (25 elements per tube section). In the case of the density-

Figure 11.5.1: Tee junction. The coarse mesh (3135 elements).

based solver, we take meshes with more elements (note that neither the degrees of freedom
nor the accuracy of the approach are the same as in the pressure-based solvers). The coarsest
grid has 12630 elements (30 elements per tube section). The medium mesh has 22400 elements
(40 elements per tube section) while the finest mesh has 35000 elements (50 elements er tube
section).

In figure 11.5.2 we represent the streamlines and the temperature isolines. As one can see,
the hot and the cold fluid do not mix, i.e. the heat transmission arrives by thermal diffusion.
In figures 11.5.3, we represent the solution on the sections Po3P33, PooPos and PooPsy that
we obtained using the asymptotic pressure-based compressible solver. On the other hand, in
figures 11.5.4, we represent the solution on the sections P93Ps3, P9oPa3 and P9oPsy that we
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. T ar-ask

185 212.5 240 267.5 295

Figure 11.5.2: Tee junction. Stationary solution. Streamlines (top) and temperature isolines
(bottom) given by the density-based compressible solver.

computed using the density-based compressible solver. As one can see, all the presented results
are quite mesh-independent.




“we)sAs 1§ oY) ur pesserdxe are senijuenb

oY) [[V "SSISqe IedUIIAIND 91y ST s ~(YYSL) LEJeeq pue (9[pprur) £2qed ‘(150]) E€g€eq uoryoas
oY) uo monn[og IvAf0s a[qisserdwod peseq-snsserd onojdwdsy -uonounl ey, ¢ T 0InSig

- - -
o o o
S S 3
o o <
S S S
@ @ @«
< < <
S 3 3
o o o
s S S
2Eg o
gE2 gE¢ s gEg
b= S35 E38
83 g3 S 23
E— £ £ R S £
o ° °
< o o ) < 5 o o o w ° @ g ¥ § = = 8 =z & o
3 S pe) 8 8 3 8 8 8 g g I § 2 8 8 3 8
3 3 3 3 S 3 3 S s 8 & = 3 8 s 3
fin fin
- - -
@ @ @
s S S
© = ©
o © o
@« ° @«
<
< <
S s S
o S o
o ° o
2eg
g5¢ 2
25 £
o8 =
E
. ° )
° ©o = o o o © °
e o ¥ © ® o & < © @ o & 3 8 g g & © & = © @ o & < o
S 3 5 o B - s 3 S 3 3 s S s 9 3 B .
Tn Tn Tn
- - -
——
o o @
E S S
© © o
s S 3
) ) )
< < <
S S S
o o o
° ° / i
LEQ LEQ oEW® /
E52 ESC ESC
£5¢ £5¢% £3¢
8 8 8 T~
. o ° °
s g 8 2 8§ g8 = 8 =g g w ) w ) w ) w 3 o S o ) 3 ) Y
2 8 8 § 8 8§ g8 8 8§ 8 a 2 8 g 8 8 2 8 R 2 2 g 3 ] 2
& & & & & ®§8 ’®§ 8’ 3 % & ] & S 1 a 1 a & & & S g ] ]

INIDTY HIGNNN HOVIN-MOT LV NOLLONA[ TFHJ, V 40 DNITTIAOJN "TT FHLIAVHD w._”N



"WRISAS TG oY) Ul possardxo
oIe serjrjuenb o) [[Y "BSSISUR IRSUI[IAIND 9y} ST & -(Jy8ur) € g%t pue (e[pprua) €¢J%g ‘(1391)
€€ J€CJ UOTJ00S O} UO UOTINOG "JOATOS d[qIsserdwiod paseq-£L)suo -uorounl 99, :F'¢ T 9IN31q

- - -
o @ @
S 3 3
o o o
S 3 3
@ @ @«
< < <
S S S
o o o
s 3 s
oE® vEQ® T~ v
gE2 g2 g2
=25 25 ~ -t
g g e g8
= S £
° ° °
< &8 = =8 8 3 8 o w o ~ P - A ° s ¢ ¥ § - 8 8 =z 8 o
T Y 2 8 8 3 8 8 8 8 2 g 8 2 8 ¥ 8§ 2 8 8 3 8
s s s s o5 3 s s s s s 3 & = s 3 s 3
fin fin fin
- - -
© @ @
3 3 3
© = ©
o © o
@« ° @«
<
< <
S S 3
o S o
o ° o
! LEQ
2Eg g5¢ o
£E5¢2 E2F g
1354 38 £
8 £°
L L ° L
° ©o = © °
s & T © ® = & < © © 8 3 g 8§ o ~ = © ® = ~ = o
s s s 3 403 4 3 s s 3 S s 3 3 3 R T |
Tn Tn
- - -
o @ @
S 3 3
© o o
s 3 3
@ » »
< < <
S 3 3
o o o
s S s
vEY 2eg 2eg
E38 E38 E38
28 88 38 T
E E E <
. ° ° °
s g 8 8 8 8 =2 8 3 =g o 5 P 3 Py 2 P 3 o 3 S 2 3 ) 5
2 8 8 § 8 § 8 8 8 8 2 £l 8 8 S 8 E 2 g 8 8 g 2 2 £l
5 & & ¥ & & & /& 2 8 By ] < < a a 2 £ 5 & g 3 2 S ]

QHN SNOILNTOS TVOIHEAWA N "G'TT



220 CHAPITRE 11. MODELLING OF A TEE JuNcTION AT Low-MacH NUMBER REGIME

11.5.2 Asymptotic pressure-based solver vs density-based solver

Accuracy

In figures 11.5.5 we represents the evolution of the temperature and the velocity on sections
P93P33, PosPao3 and PosP3o that we obtained with both approaches. As one can notice, the accu-
racy provided by the preconditioned density-based solver coupled with the Matrix-Free method
is very similar to the one obtained with the asyptotic pressure-based solver.

Performance

All the computations has been carried out on Pentium 4, 2 GHz CPU with 2 GB memory. As
mentioned earlier, the number of elements for each method cannot be compared since it does
not involve the same degrees of freedom in each case. Typically, the number of elements of the
asymptotic method has to be multiplied by 4 to approximate the real number of computation
points. In table 11.5.1, we report this approximate number for every grid, in order to perform
the comparisons.

| Mesh | NBEL Method Tterations CPU | CPI CPPPI |

| Coarse | 12540 = Asymptotic 180 | 4185s. | 23 | 1851075 |

| 112630 | MF-SGS(15) | 1050 | 1190 s. | 1.13|8.97 -1075 |

' Medium | 22320 | Asymtotic 220 | 7775s. | 35 | 158-1075 |

| 122400 | MF-SGS(15) | 1380 | 2770s. 2 |8.96 1077

| Fine | 34900 = Asymptotic = 260  13000s. 50 | 140-107° |

| 1 35000 MF-SGS(15) 2200 | 6930s. 3.15/ 9-.107°5 |

Table 11.5.1: Tee junction. Stationary flow. NBEL is the number of computation points.
"Tterations" denotes the number of non-linear iterations to converge to the steady state. CPU is
the CPU time to converge. CPI represents the cost per iteration while CPPPI denotes the Cost
per iteration and per number of points.

As one can notice, the asymptotic pressure-based solver is strongly efficient in terms of iterations.
However, its cost per iteration and per points (CPPPI) is very large. On the other hand, the
Matrix-Free implicit scheme possesses a small CPPPI which enables the method, despite a large
amount of non-linear iterations, to be more competitive in terms of CPU time. Hence, the

Matrix-Free method appears as a valuable alternative technique to compute complex steady
viscous flows with CAST3M.
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11.6 Non-stationary case

11.6.1 Description of the problem

Let us now study a non-stationary version of the tee junction problem. Starting from the
stationary solution previously computed, we modify the boundary conditions for the inlet H. More
precisely, we consider the same momentum my and we choose a time-dependent temperature
Ty as follows :

Tr(t) =Ty(t = 0)(1+ A sin(wt))

where A and w denote respectively the amplitude and the pulsation of the fluctuations.

3

294.58
/ .
281.19 L\

267.8

Ty

254.41
6 g/

N

7.85 15.7 23.55 314 39.25 47.1 54.95 62.8
t

241.02
0

Figure 11.6.1: Tee junction. Non-stationary solution. Evolution of the temperature Ty as
function of the time. All quantities are expressed in the SI units.

Different characteristic times are involved in this problem. First, since the convection velocity
is about 1 m/s, and the diameter is 1 m, the characteristic time for the temperature convection
can be expressed as follows :

~ d
teonref = = = 1s

Thus, it takes one second for a fluid element to run one diameter. Second, the diffusion coefficient
for the temperature reads :

Aref 0.4 -
Opef = = =144 ———— =0.0143 m” s
T 5, 1.4-288
Hence, the characteristic time for the temperature diffusion can read :
~ 2
tdif,ref = =70s
ref

Eventually, acoustic waves travel at sound speed, namely

| B
Cref = '}/70 =300 m Si1 .
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The characteristic time for acoustic wave is then the following :

. d
tac.rof = o= 3.33-103 s
Te

Table 11.6.1 resumes these characteristic times and their associated pulsations (27/t). In order to
observe significant temperature variations in the flow field during one period, we have to choose
a pulsation smaller than unity and a non-negligible amplitude. We therefore take the following
values :

A=01, w=01s""

The period of the temperature fluctuation at the inlet H is then 27/0.1 = 62.8 s (¢f. figure 11.6.1
for the representation of the temperature 7Ty during one period).

‘ 7§1ref (s) 27"/75~ref (Hz) }
| Acoustic |3.33-107% 1890 |
{ Convective ‘ 1 6.28 }

| Diffusive = 70 0.0898 |

Table 11.6.1: Tee junction. Characteristic times.

11.6.2 Numerical solutions

In figure 11.6.2, we present the temperatures isolines in the hot tube at different times, from
t =785stot=314s. We clearly observe the propagation of the temperature fluctuations.
In order to investigate further the effects of these variations, we focus on the section PogPss.
In figures 11.6.3 and 11.6.4, we draw the velocities u, and #,, and the temperature T for every
time level described in figure 11.6.1. At £ = 7.85 s (label 2), we observe a large variation of the
velocity t, whereas the fluid elements coming from the hot inlet have not reached the section
(cf. figure 11.6.2 top-left frame). Such a variation can be explained as follows. In fact, as the
inlet momentum My remains constant with time, the inlet velocity varies with the temperature
as follows :

- MH 7

Besides, according to asymptotic analysis, the speed divergence is subjected to the following
condition :

-

U

<

%é. (A7) .

In the hot tube, that is between Po3P33 and Po4P34, the RHS remains small such that V-a =~ 0.
This elliptic constraint is responsible for the fact that the variation of the inlet velocity ., g
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| [Tl ar-2s o [Tl ar-2s

185 2125 240 267.5 295 185 2125 240 267.5 295

[Tl ar-2s | 7 [Tl ar-2s

185 2125 240 267.5 295 185 2125 240 267.5 295

Figure 11.6.2: Tee junction. Non-stationary solution. Fully-compressible solver. Temperature
isolines (°K) in the hot tube at £ = 7.85 s (top-left), at £ = 15.7 s (top-right), at £ = 23.55 s
(bottom-left) and at = 31.4 s (bottom-right).

immediately affects the speed i, in section Po3Ps3. On the other hand, the temperature does
not vary much. This is due to the fact that, as mentioned earlier, the fluid elements arriving
from the hot inlet have not already reached the section. As the temperature remains constant
while the local velocity @, increases, the local momentum on the section increases. This reduces
the impact of the cold fluid and, as a result, it diminishes the %, speed.

Let us now compare the solutions at ¢ = 7.85 s (label 2) and at ¢ = 15.7 s (label 3). As the fluid
elements coming from the hot inlet have reached the section (cf. figure 11.6.2 top right frame),
the variation of the temperature is very important. Notice that the increase of temperature is
higher in the middle of the tube where the speed is the largest, i.e. where the heat exchanges
by convection are the most important. Besides, the speed along = has increased as well as its
y-component. The increase of u, is related to the decrease of the momentum m, with respect
to its value at ¢ = 7.85 s, and also to the fact the the buoyancy force has increased because the
temperature increases.

From ¢ = 15.7 s to t = 23.6 s (label 3 and 4 in figure 11.6.3), the velocity i, decreases with
time as expected. Nevertheless, because of the time delay linked to the fluid transport, the
temperature in the section keeps on increasing.

From t = 23.6 s to t = 31.4 s, the temperature decreases. Once again, it decreases more at
the tube center than at the tube wall, where the speed is more important, i.e. where the heat
exchange by convection is more important.

At the other time levels, the behavior is qualitatively the same, namely the velocity i, immedi-
ately follows the variation of the temperature (and of the speed) at the hot inlet; the temperature
is affected by a delay time due to convection, while the velocity @, follows both temperature and
momentum variations.
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Figure 11.6.3: Tee junction. Non-stationary solution. Evolution of the temperature and velocity
on the section Po3P33 at different times (label 1 refers to the initial time, label 5 to half-period
time, as one can see in figure 11.6.1). All quantities are expressed in the SI units.

11.6.3 Density-based solver vs asymptotic pressure-based solver
Accuracy

In order to obtain the same accuracy with both solvers, convergence analyses with respect to the
mesh dimension and the time-step are performed. For both methods, computations showed that
the fine grid used for the steady case was sufficient.
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Figure 11.6.4: Tee junction. Non-stationary solution. Evolution of the temperature and velocity
on the section Py3P33 at different times (label 5 refers to half-period time and label 9 to the final
time, as one can see in figure 11.6.1). All quantities are expressed in the SI units.

For unsteady flows governed by the particle wave speeds, it was shown in chapter 8 that the
particle CFL number (i.e. CFL, = uAt/dx) should be of order unity (or less) so as to ensure
temporal accuracy. From the CPU time point of view, however, it is customary to resort to
greater values of this parameter. In practice, great time-step are first choosen then their value
is decreased until the numerical solution does not vary much. Thus, the optimal time-steps for




11.6. NON-STATIONARY CASE 227

both approaches were likely established. These time-steps were defined as follows :

T 1
At = N
where N is an integer. It was found that for the asymptotic pressure-based solver the optimal
value for N was 80 while for the density-based solver the optimum was 160. Comparisons between
both methods are presented in figures 11.6.5 and 11.6.6. The temperature and the velocities in
section Po3P33 are plotted for the following time-levels : £ = 15.7 s and # = 31.4 s (figure 11.6.5),
t =471 s and t = 62.8 s (figure 11.6.6). As one can notice, the density-based solver coupled
with the low-Mach precondioning provides a solution as precise as the one computed using the
asymptotic pressure-based approach specially devoted to this type of unsteady low-Mach number
flows.

Performances

All the computations were performed using Intel Xeon 3GHz with 2GM Ram memory. As far
as the asymptotic pressure-base solver is concerned, we recall that the linear system derived
from the Finite-Element space-discretization and the BDF2 time-discretization, is solved using
a Picard type fixed-point scheme. The convergence criterion between two physical time levels is
based on the loss of five orders for the temperature residual during the iterative process.

In the case of the density-based solver written in a dual-time stepping framework and solved by
the MF-SGS scheme, the conditions of the computation are a little bit more complex. Indeed,
setting an appropriate value for the unsteady cut-off appeared to be quite difficult. In chapters 7
and 8, a new definition of this parameter was exhibited and it was shown that it provided a good
convergence rate for both acoustic and particle problems. This unsteady cut-of is here recalled :

o CFLU_,’_C

ﬁu:Atc. T

Unfortunately, numerical experiments emphasized that for such a definition the dual-time step-
ping scheme suffered from a lack of efficiency and robustness. On the other hand, choosing
a greater value for this parameter (about ten times the initial value) ensured robustness and
enabled to loose 3 orders for the energy residual. However, a precise analysis of the results out-
lined significant differences between both methods for the u, velocity in the section PosP33 (cf.
figure 11.6.7).

The exact values of the cut-off were precisely examined since this latter governs not only the
convergence rate but also the accuracy of the solution. Indeed, as it was mentionned in chap-
ters 7 and 8, and as it was brought up in [62], a too big cut-off scales unproperly the numerical
dissipation leading to an inaccurate solution. The studies revealed that in our case, the modified
unsteady cut-off was thirty times as much as the reference Mach number of the problem. Con-
sequently, so as to ensure both robustness and accuracy, we opted for the following strategy :
first, we set a great value for the cut-off then we diminish it during the dual-time convergence
process until reaching a value of the order of the Mach number. Thus, it was likely to maintain
a good convergence rate and to recover the same accuracy than with the pressure-based solver.
Nonetheless, it is necessary to outline that such a strategy provides fluctuating performances with
respect to the problem which is studied. Moreover, it is not always possible to reduce the cut-off
so as to scale properly the dissipation without deteriorate the robustness of the scheme. A likely
solution would be to separate the preconditioning formulation used for the time-derivative (which
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Figure 11.6.5: Tee junction. Non-stationary solution. Comparison between the presure-based
and the density based-solvers. Temperature (top frames), @, velocity (middle frames) and 1,
velocity (bottom frames) are represented on section Py3Pss and for the following time levels :
t =15.7s and t = 31.4 s. All quantities are expressed in the SI units.

is responsible for convergence efficiency) and that used for the artificial dissipation terms (re-
sponsible for accuracy). Such a formulation may be implemented within a multiple pseudo-time
framework as recently discussed in [82]. Implementation of such a multi-level preconditioning
formulation will have to be the subject of future work.

Despite a certain loss of efficiency with respect to the steady case, the density-based solver
coupled with the MF-SGS implicit treatment provides an accurate solution for a reasonable
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Figure 11.6.6: Tee junction. Non-stationary solution. Comparison between the presure-based
and the density based-solvers. Temperature (top frames), @, velocity (middle frames) and 1,
velocity (bottom frames) are represented on section Py3Pss and for the following time levels :
t =47.1 s and t = 62.8 s. All quantities are expressed in the SI units.

computational cost as one can see in the summarizing table 11.6.2. As mentioned previously,
the single dual-time stepping formulation cannot enable to define a versatile unsteady cut-off in
order to ensure both efficiency and accuracy. Moreover, the density-based solver requires twice
as many physical-time iterations as its pressure-based counterpart which penalizes significantly
the global computational cost. The reasons of the need of a smaller physical time-step have not
been clearly established yet.
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Figure 11.6.7: Tee Junction. Non-stationnary solution. Comparison between the density-based
solver and the pressure-based solver. Curves of the velocity 4, in section Po3P33 at time level
t = 15.7 s for a big value of the unsteady cut-off. All the quantities are expressed using SI units.

Mesh‘NBEL‘ Methode | CPU

Fine | 34900 | Asymptotic | 27000 s.

| 35000 | MF-SGS(30) | 36500 s.

Table 11.6.2: Tee Junction. Unsteady flow. NBEL is the number of computation points. CPU
is the global compuattion cost.

11.7 Conclusions

This last chapter enabled to validate the Matrix-Free implicit method over an application of
interest for the LTMF laboratory, namely the modelling of Tee junction at low-Mach number,
for steady and unsteady regimes. Performances of the Matrix-Free implicit scheme both in terms
of accuracy and computational cost were compared with the asymptotic pressure-based solver
available in CAST3M.

In the case of the low-Mach number steady flow, the newly implemented Matrix-Free implicit
scheme ensures the same level of accuracy than its asymptotic pressure-based couterpart. More-
over, for a same number of computational points, it provides a significant gain of CPU time.
The Matrix-Free implicit treatment can be regarded as a genuine competitive alternative for the
computation of viscous low-Mach number steady flows.
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On the other hand, the preconditioned dual-time stepping implicit scheme is less competitive
to deal with the low-Mach number unsteady flows. The loss of efficiency is mainly related to
the difficulty of defining an unsteady cut-off that ensures both good damping and accuracy.
Indeed, when the value of this parameter is widely greater than the local Mach number, a fast
convergence is obtained at the expense of a lack of accuracy. Conversely, when the cut-off is of
the order of the local Mach number, accuracy is preserved but the scheme then suffers from a
lack of robustness and when it remains stable its convergence rate becomes poor. Moreover, it
appears that the Matrix-Free implicit framework is more sensitive to this kind of instabilities
than its block counterpart. However, this difficulty might be circumvented through using separate
preconditioners for the dissipation and pseudo-time derivative terms. The former then controls
the accuracy of the discrete formulation, while the latter controls convergence efficiency of the
sub-iterations. This technique has already been developed in [82] via a multi-level preconditioning
formulation and will be certainly implemented in the future. However, in spite of its lower
efficiency, the preconditioned density-based solver coupled with the Matrix-Free implicit scheme
is still attractive for the simulation of unsteady flows since, unlike its pressure-based couterpart,
it can handle with a wide range of speeds for reasonable computational cost and memory storage.







Conclusions

The present thesis was motivated by a demand from the CEA for more efficient implicit treat-
ments in the context of unsteady low-Mach number flows, computed using preconditioned
density-based upwind schemes. The existing implicit treatments in CEA’s numerical platform
CAST3M were oriented towards the maximization of intrinsic efficiency at the expense of a high
unit computational cost and, most of all, stringent memory requirements that were becoming
prohibitive when large-scale computations were undertaken. The choice was made in this work
to target an implicit treatment favoring the minimization of the unit computational cost and
the minimization of memory requirements. Naturally, it was admitted from the start that such
a method would provide a poor intrinsic efficiency and thus require a large number of iterations
to reach a steady-state (be it in physical or dual time); however the objective was to reduce the
unit cost of the method in such a way it would balance anyhow the lack of intrinsic efficiency
and allow the method to remain competitive in terms of global computational cost with respect
to the existing treatment, while offering modest memory constraints.

In the course of this work, it appeared rapidly a so-called matrix-free approach was a good can-
didate for being retained as a low-cost alternative implicit treatment in CAST3M. Some issues
had to be solved however :

e it was imperative to make the approach attractive for the whole Mach number range but
the use of a preconditioning matrix was likely to increase the unit cost of the method
by making it lose its truly matrix-free character. Taking advantage of the fact Turkel’s
preconditioning matrix is idempotent allowed to fix this problem since the "matrix-free"
treatment can then be expressed under a form that remains cheap to compute even when
the preconditioning is on; consequently, the matrix-free treatment remains globally efficient
for all-speed flows.

e the matrix-free treatment as such defines an implicit stage that must be solved using some
kind of (iterative) solution technique. The choice of an efficient solution technique was
constrained by the need to use the method in a unstructured grid context, which ruled out
for instance any line-relaxation technique. An a priori Von Neumann analysis allowed to
select a Symmetric Gauss-Seidel (SGS) approach as a better choice over a basic Point Jacobi
(PJ) technique. However, the efficiency of the SGS procedure relies on the ordering of the
mesh cells and, moreover, for 3D computations, it requires more connectivity information
than the PJ approach. At any case, both approaches are easy to implement within an
unstructured framework and enable to reduce dramatically the memory storage of the
implicit treatment.

e it appeared also necessary to adapt the definition of the low-Mach cut-off in order to ensure
the efficiency of the Matrix-Free method for solving unsteady viscous low-Mach number

233
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flows. The Von Neumann analysis of the amplification matrix for the linearized Euler and
Navier-Stokes equations enabled to design and calibrate these cut-off values which play a
crucial role in the performance of preconditioned upwind schemes. Some choices were then
proposed for these values, that proved to perform well on real-life applications.

The assessment of the proposed matrix-free treatment for all-speed flows has been carried out
in two stages : a preliminary set of validations for a large spectrum of test-cases (inviscid and
viscous, steady and unsteady, low-Mach and compressible flows) has been computed using a
structured flow solver specifically tailored for this sole purpose. The results obtained in terms
of global efficiency and memory requirement were convincing enough to undertake an imple-
mentation within the general-purpose CAST3M code. The results obtained from a comparative
study between the existing implicit treatment (block-implicit stage solved by a Newton-Krylov
approach) and the low-cost approach demonstrate the interest of the matrix-free treatment both
in terms of global computational cost and memory requirement. The computation of a low-Mach
number unsteady viscous flow in a tee configuration presented in the last chapter of this thesis
shows in particular the preconditioned implicit density-based solver is a genuine alternative to
an existing pressure-based solver of a low-Mach asymptotic model.

However, some remaining unsolved issues deserve to be pointed out and the developments yet
to perform in order to make our tool applicable to the targeted hydrogen combustion problems
mentioned in the introduction of this thesis must be recalled :

e the matrix-free treatment presented in this thesis has also been applied to internal flow
problems, such as the differentially heated square cavity or an injection problem [61]. It
appears that, for this type of problems, the efficiency of the low-cost treatment degrades
in such a proportion the method eventually becomes (much) less efficient than the existing
block-implicit approach. It is postulated this lack of efficiency can be related to the
treatment of boundary conditions but further studies are strongly needed in order to make
the low-cost treatment globally efficient for such configurations.

e only a single-species version of the free-matrix treatment has been implemented within
CAST3M. The (truly straightforward) extension of the approach to multi-species flow
problems is of course needed for tackling hydrogen combustion problems and such a task
should probably be the first step to take following the conclusion of the present thesis.

e eventually, we want to stress that it is still a challenging task to apply preconditioned
compressible upwind solvers to the resolution of unsteady low-Mach number flows. Indeed,
the new definition of the unsteady cut-off designed for the Matrix-Free implicit treatment
cannot ensure simultaneously efficiency and accuracy demands. Thus, elaborate strategies
have to be developed for each case so as to unify these both requirements. A likely solution
to circumvent such issues, would be to separate the preconditioning formulation used for
the time-derivative (which is responsible for convergence efficiency) and that used for the
artificial dissipation terms (which control accuracy). Such a promising formulation may
be implemented within a multiple pseudo-time framework [82] and would be certainly the
subject of future developments.
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Appendix A

Matrices of the Navier-Stokes System

A.1 Euler Equations
A.1.1 Jacobian Matrices for the inviscid fluxes [31]
The dimensionless system of the Euler equations can be written under the following form :

we + (fF)e + (g% (w)y =0 (A.L1)

where t is the dimesionless time, = and y are the spacial coordinates, w = w(x,y,t) is the vector
of conserved variables, and f¥ and ¢F are the inviscid flux vector functions,

p pu pv

2
pu pu” +p puv
pU pUV pve+0p
pE puH pvH

where all the dimensionless quantities have been already defined in the first chapter. The system
is closed by the dimensionless equation of state :

p=pT = (-1p (E—%IUF) = (y—1Dpe . (A.1.3)

The dimensionless sound speed is defined as follows :

The specific total energy and enthalpy can then be defined as :
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Now, we can easily compute the inviscid Jacobian matrices :

0 1 0
Tt g (3=)u ~(r =1
AP =
—uv v u
_ _ 2,2 B 2y (m
yuE + (v — Du(u® +v%) vE — 5=(v* +3u®) —(y—1uv
0 0 1
—uv v u
BY =
77_3112 + 77_1u2 —(vy—1)u (B—v)v
—E + (v — Do(u? +v?) —(y - Duv vE — 5 (u? + 30?)
A.1.2 Transformation matrices [31]

(A.1.4)

(A.1.5)

In order to obtain the eigensystem derived from the Fuler equations, we need the transformation

matrices such that the Jacobian A” is diagonalized as follows :
u

PZl.AE'PA: Uu—+c

u—-c
The general expression of these transformation matrices is given by :

1 0 P P

2c 2c
U phy %(u + chy) %(u — CRy)
P, =
v —phe 3 (v + chy) 3 (v — chy)
W p(uky +vRy) Z(H AV -T,) L(H—cV-1,)
and
1— M2 v-1% (v-1%
+(vkg — uky) %y —
pl=
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When x = A then &, =1, Ry = 0 and TH = fx On the other hand, when x = B then &, = 0,
ky =1and 1, = 1.

A.2 Navier-Stokes equations

A.2.1 Viscous Jacobian matrices

The dimensionless system of the Navier-Stokes equations can be written under the following
form :

we + (fF(w) = [V (w,we,wy))e + (95 (w) = g% (w,wz,wy))y = 0 (A.2.1)
where f¥ and ¢" denote the viscous fluxes,
0 0
1 Too = 3tz — §10y 1 Tya = [i(ty + vz)
Y= = , = — . (A22)

fe Tay = Pty + vz)

UTpy + VUTey + Prea

_ 4 2
Tyy = 3HVy — 3HU

W
UTye + VTyy + prey

All the dimensionless quantities are defined in Chapter 1. The viscous Jacobian matrices are

expressed as follows :

afv
Ag(w,wx,wy) e (W, Wy, wy)
1% 0 v
Al (W, wy, wy) = %(w,wx,wy) :
1% 0 v
Ag (W,wmwy) = %(W,wm,wy) ;
y

o \%4
By (w, wg, wy) = ;ﬁ(w,wx,wy)
v ag¥
B (w,wg, wy) = aT(w,wx,wy)
T
v dg¥
By (w, wg, wy) = %(w,wx,wy)
Y

In order to ensure the diagonal dominance of the implicit upwind scheme, we neglected the
contribution of the tangential Jacobians in the implicit operator (c¢f. Chapter 1), more precisely
in the x-direction we only retained the Jacobian A} while in the y-direction we retained B) (see
also [16]). These Jacobian matrices can be written as follows :

0 0O 0 O
_4 4
AY _ [l}/ o U 0 0
Re p Re p —v 0 1 0
—au® — v’ — 5 E au fv 2
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0 0 0 O
B;/ _ B oy " —u 1 0 0
R R 4 4
cp €p iy 0 4 0
—av? —put — 4E fu av 2
with
4 v gl
= - — — e ]_ _—
@ 3 Pr and b Pr

To define the explicit operator, we also need the matrix SV which is given by :

0 0 0O
—v 0 1 0

SV — AV 4 BY = H_ogv_ _H
2 ! 3Re p 3Re p —uw 1.0 0

—2uv v uw 0

A.2.2 Viscous spectral radius

As AY and BY are lower triangular matrices, their spectral radius can be computed straightfor-
wardly. Moreover they share the same diagonal terms, involving that their respective spectral
radius are equal. This spectral radius is given by :

pV = P max o 4
Re p Pr’3

For the air at moderate temperature, we then have :

v__H T
Rep Pr
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Appendix B

Von Neumann Analysis

B.1 Introduction

Several methods have been developed in order to study the efficiency of numerical schemes. In
most of these methods, one neglects the effect of the boundary conditions by assuming that the
computational domain is limitless or by using periodic boundary conditions. The Von Neumann
method used in this work to study the stability of several numerical schemes is based on the
Fourier transform and the spectral analysis of these schemes. In practice, one checks that the
value of the amplification factor of the schemes remains smaller than unity on the whole domain.
The Von Neumann analysis enables also to estimate how fast the error will be damped (or
amplified), providing an idea of how the convergence rate of the algorithm evolves. Of cource,
the results obtained by such a method have to be commented carefully. Indeed, the Von Neumann
theory requires a linear problem which means that the coefficients of the equations are constant
and, as mention earlier, periodic boundary conditions are assumed which enables the use of
Fourier series. In spite of these limitations, stability results were shown to be meaningful for
practical computations. Besides the Von Neumann method can be used very easily through a
computer program in order to lead systematic studies.

B.2 Basic principles

In order to understand the fundamental principles of the Von Neumann analysis, let us consider
the linear scalar advection problem.

B.2.1 Linear scalar advection equation

ou ou

Let u be the exact solution of the equation (B.2.1), a discrete solution of this equation reads :

up = u; + € (B.2.2)
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where €' denotes the error at time level ¢, = n - At and at mesh point x; = ¢ - d=. Thus, the
centered scheme reads :

Znt+l _ =n n+l _ n

a ar € €l a ~ a
7 N iy A (- _26$ . (U?+1 _ U:,L_l) _ 25_$ . (Eqil—i-l — 5?_1) (B23)
or
et _en a
A s ) (B.24)

The error € is also a solution of the discrete advection equation.

B.2.2 Fourier Series

If the boundary conditions are assumed to be periodic, the error €' can be decomposed into a
Fourier series in space at each time level. Since the space domain is of a finite length one will
have a discrete Fourier representation summed over a finite number of harmonics.

In a one-dimensional domain of length 2L, the maximum wavelength that can be captured with
a mesh (cf. figure B.2.1) is :

Amaz = 2L (B.2.5)

N =28x

min

Figure B.2.1: Maximum and minimum wavelengths captured by a finite mesh

On the other hand, the minimum wavelength that can be obtained relies on the size of the mesh
ox :

>\min = 20z (B.2.6)

Wavenumbers associated with the wavelengths can be determined as follows :

_27T

A

Hence, one gets:

k (B.2.7)

T
m

kmam =
ox
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Let N be the number of space-steps dx requiered to discretize length L, the harmonics represented
on the mesh are given by :

. . T .
kj = 7 kmin = J Z VJ € [|07N|] (B'2'8)

The error € is decomposed into a Fourier series as :
N
&= > Ejexp(i-k;-idr) (B.2.9)
j=—N

Th produce k; - 0 denotes a phase angle, or reduced wavenumber, in the Fourier space :
¢ = kj- oz (B.2.10)
Thus, the Fourier series read :
N
€ = Z Elexp(1-igp) (B.2.11)
j=—N

The reduced wavenumber covers the domain [—; 7] in steps of /N :

ox
(bmz'n = f s T
¢maw = 7

The region around ¢ = 0 corresponds to low frequencies while the region close to ¢ = 7 is
associated with the high-frequency of the spectrum. In particular, the value ¢ = 7 is associated
with the highest frequency resolvable on the mesh, namely the frequency of wavelength A, =
20x.

B.2.3 Amplification factor

The problem is assumed to be linear, each harmonic of the error € is therefore a solution of the
discrete equation :

En+1 .
Ay exp(1 i¢) + % “(E"exp(r (i +1)¢) — E™exp(z (i —1)¢)) =0 (B.2.12)

Dividing by exp(z i¢) leads to :

B pn 4 % E"(exp(z ¢) — exp(—1 ¢)) = 0 (B.2.13)
where o = a_At_
ox

Th stability condition is satisfied if the amplitude of any error harmonic E" does not
grow in time, that is, the ratio

EnJrl
En

G| = ‘ <1 V. (B.2.14)
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G is the amplification factor, that is a function of time-step At, reduced wavenumber ¢ and mesh
size dx. For the centered scheme, one has :

G =1 — 10 sin(9) (B.2.15)
The modulus of G is, in this case, greater than 1 for all reduced wavenumbers :
G = 1 + o% sin’(¢) > 1 Vo (B.2.16)

Consequently, the centered scheme is unconditionally unstable.

B.3 System of equations

B.3.1 Linearization of the system

Let us consider the hyperbolic system of conservation laws :
w + f(w)y =0 (B.3.1)

where w(z,t) is a vector of m components and f is a flux function associated with the Jacobian
matrix A = 9f/0w. The system (B.3.1) can be approached by a first-order accurate upwind
explicit scheme :

At

1
el n n 2 (A sw");
w; w; S ((S/LfZ 5 S(|A" [ow )Z> (B.3.2)

We recall that the space discretization is achieved using difference operators :

ox B (5_:(: 1 ox

S(@)] = v+ ) v 0) ulp@)] = ot S

1 dx
2 5 5 )+ 5v(@— =) (B.3.3)

where v is defined at each mesh point z; = 7 - dz and dz is the constant mesh size. First, the
system is linearized by assuming that the Jacobian matrix A is constant. Thus the flux function
reads :

flw)y=A-w (B.3.4)
Second, the linear scheme is made implicit :
VneN H-Aw" =-K-w" (B.3.5)

where H and K are linear operators defined as :

n A 1 A n
with A=—Aand 6°=9 o 4.

VieZ
1€ 5z

= (A s — 5 4] )l
(B.3.6)

In order to study the amplification factor of the implicit upwind scheme associated with the
system of conservation laws, one need to use the Fourier transform.
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B.3.2 Fourier transform

Since the numerical solution is not necessarily periodic, one uses the Fourier transform. First,
one extends the linear scheme (B.3.5) to functions defined not only at the spatial mesh points
x = i-dz, but for all z € R. For ¢ € Ly(R)™, let Y= ® (1)) denote the spatial Fourier transform,
that is the function of La(R)™ defined as :

. 1 +oo €
P = = — exp(—1 = =z x)dr . B.3.7
W) =) =7 /_oo (-1 5 @) ¥(z) (B.3.7)
where ¢ denotes the reduced wave number and i = —1. For any function 1 € Lo(R)™, combi-

nations of space difference operators read :
ox) — -0
(3 () = LELID V20D
(8*9)(x) = ¥(x + bz) — 2 () + P(a — dz) ,

Applying the Fourier transform to these functions leads to :

B(d119)(€) =1 sin(€))
B(670)(€) = —2(1 — cos(£))?

Thus, the transformed space difference operators and their combinations take a very simple form.
By transforming each side of equation (B.3.5) one obtains :

H- AP = K- ot | (B.3.8)

(2

where H, K and @w""! denote the transformed functions of H, K and w™*! respectively. The
operators H and K read :

K = [A|(1 - cos(€)) + i Asin(¢)
H = Id+|A|(1 - cos(€)) + i Asin(¢)

B.3.3 Amplification factor

The amplication matrix of the linear implicit upwind scheme associated with the system of
conservation laws is defined as follows :

VneN "t =G -a" (B.3.9)
In the present case, one gets :

G=Id-H' K (B.3.10)
The Von Neumann stability condition is defined by :

VEe|-m w1l p(G(E)) <1 (B.3.11)

where p(G) is the spectral radius of the amplification matrix G. Given to the large number
of parameters that one has to take into account to analyse the stability of such a scheme, a
numerical study using sweeps over the space of the parameters is requiered. The way to analyse
the amplification factor is explained further.




246 CHAPITRE B. VoN NEUMANN ANALYSIS

B.4 Analysis of the amplification factor

B.4.1 An example : the amplification factor of the Direct Solver

Let us consider the implicit upwind scheme for the Euler equations in which the explicit stage is
of third-order while the implicit stage is of first-order. For two-dimensional problem, two reduced
wavenumbers have to be defined in each direction : ¢ in the z-direction and 7 in the y-direction.
After the Fourier transform, the linear implicit scheme reads :

H-Awl'=—-K ot (BA4.1)
with

K = ;(D1-21+D2'22) + 1 <AE 51 (1—%271)—%3]5 59 (1—%2?2))

H = Id + Z(Dl'zl + D2~22> + i(AE51+BE52>
Thus the amplification matrix associated with the Direct Solver reads :

G.=Id-—H' K (B.4.2)
The Von Neumann analysis is based on the study of the spectral radius of this amplification
% « - e -

Low Frequencies High Frequencies

0.75

0.25

0 0.25 0.5 0.75 1
E/m=n/T

Figure B.4.1: Amplification factor for the Direct Solver, M = 0.5, u/v = 1.

matrix. If p(G) < 1 the errors in the system are damped whereas if p(G) > 1 the errors are
amplified leading to instability. The use of a computer program enables us to draw the value
of the amplification factor with respect to the wavenumbers & and 7. For the sake of simplicity,
in this appendix, we would consider that £ = n. For M = 0.5, u/v = 1 and several CFL
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numbers (CFL = 10, CFL = 10? and CFL = 10?), the amplification factor of the direct solver
is represented on figure B.4.1. We can note that, for each CFL number, the amplification factor
remains smaller than unity for all wavenumbers which means that the Direct Solver scheme is
stable for such conditions. Obviously, the increase of the CFL number enables to improve the
efficiency of the scheme. Indeed, we can note that the value of the amplification factor decreases
for high CFL numbers. However, we also note that the decrease is not uniform upon the whole
space of the wavenumbers. For high frequencies, that is for wavenumbers close to m, increasing
the CFL number does not provide a great improvement since the amplification factor does not
change a lot. On the other hand, there is a great interest to take high CFL numbers in order to
obtain a better damping in the low frequency area (that is for the wavenumbers close to zero).

B.4.2 Link with the convergence rate

& S
LA L Y L RN N A Y NN B B I B B

Log(Residual)

1
oo

-10

L | :-------- \ ]
50 100 150 200 250
Iterations

-12 TR !

Figure B.4.2: Convergence history in bump-channel with 3600 elements, M = 0.5.

In this appendix, we want to show that the results from the Von Neumann analysis are meaningful
for practical computations. We computed the flow over a bump in a channel at M = 0.5 using a
Block Line Jacobi implicit treatment with 10 sub-iterations. The plot of the amplification factor
of such a method is very close to the one obtained with the Direct Solver scheme. We used a mesh
with 3600 elements and we chose the same CFL numbers than for the Von Neumann analysis.
The results are presented in figure B.4.2. As forcasted by the Von Neumann analysis, there
is a great difference between the convergence rate obtained with CFL = 10 and CFL = 103.
Besides, the convergence rates with CFL = 10? and CFL = 10% are very close as expected.

We can conclude from these results that the convergence rate of a method is mainly driven by
its efficiency in the low frequency area. Indeed, for high frequencies, the amplification factor is
approximatively the same for all CFL numbers while it is very different for low frequencies. The
practical computations on an academic test-case of a flow over a bump in a channel outline the
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strong influence of the choice of the CFL number on the convergence rate, and this behaviour
can be only due to the differences observed in the low frequency domain.

B.4.3 Effect of the mesh size

Let us consider a domain with a length of 2L and a constant mesh size dx. We showed in section
B.2 that the wavelengths which can be captured on such a domain range from 26z to 2L. The
corresponding reduced wavenumbers range from wdz/L to m. Thus, the size of the spectrum
relies on the mesh size. We saw that the region around = is related to the short wavelengths
while the region around 0 represents the long wavelengths. Let us precise how the notion of
short or long wavelength is mesh dependent.

Let us consider three meshes, a coarse mesh, a medium mesh and a fine mesh defined
as :

0re =20z =4-0xf (B.4.3)

The minimum wavenumber (k = 27/)) obtained on these three meshes is the same, namely :

™

R = R = K= < (B.4.4)
On the other hand, the maximum wavenumbers are :
T 2.7 4.7
k,maa: —_ kma:{: — ka/CE — . B.4.5
¢ dxe ™ Sz. ~ 7 0% ( )

Now, let us consider the reduced wavenumber whose definition is given by :
o=k oz (B.4.6)

It appears clearly that the reduced wavenumber 7 would correspond to a different wavenumber
with respect to the mesh size. For the finest mesh, we have :

wmﬂﬁvzg, wwﬂ&yzg, PO Sap = (B.4.7)
while for the coarse mesh, k7% and £** are not represented so we have :
El - dxe =T . (B.4.8)

Thus, for the coarse mesh, the wavenumber £7*** belongs to the high frequency area whereas for
the fine mesh, it belongs to the low-frequency area. There is a shift towards the low-frequency as
the mesh size diminishes. The high frequencies of a coarse mesh moved to the low-frequency part
of the spectrum (cf. figure B.4.3) when the mesh size falls off. As a result, the same wavelength
would be damped differently with respect to the mesh size. For instance, for the Direct Solver
scheme using CFL = 103, the wavelength related to k™% would be damped according three
different amplification factors :

p (G| = p(G(7)) =033,
p (GRS = p(G(7/2)) = 06,

p (GK))| = p (Gl /4)) = 0.57 .
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1 —
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Figure B.4.3: Low-frequency shift

The other effect of the mesh size is related to the accuracy. As the mesh becomes finer, the
representation of the longest wavelength is more accurate and the minimum reduced wavenumber
becomes very close to zero. The method becomes less efficient because the amplification factor
tends to unity for such reduced wavenumbers. Moreover, we showed that the efficiency upon
low-frequency area mainly drives the convergence rate, hence, a slowdown of the convergence
rate would be expected as the mesh size becomes finer. In practice, this phenomena is truly
observed.
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