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Résumé (in French)

Cette thèse porte sur la conception de trajectoires interplanétaires, à poussée
faible. Les systèmes de propulsion électriques, à poussée faible ou continue, ont
permis d'accroitre signi�cativement les possibilités de trajectoires, au détriment
de mission plus longues. La poussée faible limite également la manoeuvrabilité
du système. A�n de parer à ces inconvénients, on utilise généralement des ma-
noeuvres d'assistances gravitationnelles, pour ainsi réduire la consommation et la
durée de transfert de la sonde.

Le rôle de l'analyste mission est donc de déterminer le meilleur scénario (la
séquence de planètes à visiter). De nos jours, ce problème est résolu de manière
expérimentale et heuristique. Cependant, bien que la trajectoire produite soit
optimale à scénario donné, il n'y a aucune garantie que le scénario en lui-même
soit optimal. De plus, cette approche est relativement fastidieuse.

Notre objectif a donc été de mettre en place des outils et méthodes permettant
de trouver des scénario optimaux pour un objectif �xé.

Durant cette thèse, nous avons suivit 2 approches.
La première approche consiste à considérer le problème comme étant un prob-

lème d'optimisation globale, à variables discrètes. Un ensemble de scénario est
étudié à priori. Pour simpli�er et faciliter la recherche de séquences, on a modélisé
le problème de transfert à poussée faible, en utilisant un principe d'inversion dy-
namique. Ce modèle utilise des arcs balistiques pour minimiser la consommation,
et introduire des degrés de liberté supplémentaires pour satisfaire des contraintes
terminales. On a mis au point un algorithme de complexité polynomiale pour ré-
soudre le problème. A�n de réduire le coût calculatoire, nous avons mis en place
des contraintes de " pruning " permettant de réduire l'espace de recherche.

La deuxième approche consiste à formuler le problème comme un problème
de commande optimale, où la dynamique inclut les principaux corps perturba-
teurs. Le scénario est alors déterminé à postériori. On résoud numériquement
le problème au N corps. On montre que les méthodes indirectes (Pontryaguin)
et directes (Collocation, Transcription) ne nous permettent pas de résoudre ce
problème. On a donc mis au point un solveur de deuxième ordre respectant à la
fois les conditions d'optimalité et de précision connues des méthodes indirectes,
et des propriétés de robustesse généralement attribué aux méthodes directes.

Mots clés: optimisation, commande optimale, optimisation globale, trajectoire
interplanétaire, poussée faible, modélisation de trajectoires, inversion dynamique,
assistance gravitationnelle, swing-by, contrainte de pruning, méthodes indirectes,
calcul de variation.
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Abstract

Electrical propulsion systems allow broader a class of spacecraft trajectories than
conventional chemical propulsion. But because low-thrust propulsion systems
induce limited controllability for the spacecraft and increase overall trajectory
transfer duration, it is generally useful to use gravitational assistances. Gravity
assists allow reducing both the consumption and the mission duration.

The optimisation of continuous thrust trajectory remains a terrible task. Gen-
eral methods may be di�cult to converge. In addition, the optimisation of the
scenario, i.e. seeking the optimal planet sequence for the gravity assists, is never
included in the optimisation process. The planet sequence is very likely not op-
timal. Mission analysts usually consider several di�erent planet sequences. The
trade-o� between the di�erent solutions permit identifying a promising planet
sequence. This approach is however time consuming.

The purpose of this thesis is to provide method to design optimal scenarios.

This thesis proposes methods for the determination of the optimal scenario.
Two approaches have been considered.

The �rst approach considers the problem as an integer programming problem,
when many sequences are considered a-priori. A low-thrust trajectory model
has been designed, using inversion dynamics approach, to compute e�ciently
approximate solutions to the low-thrust trajectory transfer problem. This low-
thrust model uses coast arcs to minimise the consumption, but also to increase
the degree of freedom for satisfying terminal constraints. We set up an algorithm
with polynomial complexity to solve the multi-gravity-assist low-thrust problem.
The computational cost is limited using pruning constraints to reduce the size of
the search boxes.

The second approach formulates the problem as an indirect continuous optimal
control problem. The dynamic includes all major gravitational bodies. Swing-bys
are not introduced with intermediate constraint, but implicit with the dynamic
and the appropriate control. We show that usual direct and indirect methods have
di�cult convergence for this problem. Using a second order gradient method, we
seek the optimal control that transfers the spacecraft to its destination while in
a multi-body dynamics. In some case, the optimal control manages to introduce
gravity assist on the trajectory. The scenario is then given a posteriori, once an
optimal control has been found.

Keywords: optimisation, optimal control, global optimisation, interplanetary
trajectory, low thrust, trajectory modelling, dynamic inversion, gravity assist,
swing-by, pruning constraint, indirect method, calculus of variations.



Introduction

Motivations

The advance in low-thrust propulsion systems makes low-thrust trajectory quite
appealing. Also, the optimisation of low thrust trajectories is a demanding task
for the mission analyst. However, although low-thrust propulsion systems are,
so far, the most practical and e�cient way to travel into space, they present
limited manoeuvrability. Their use increases mission duration. At this point,
gravitational assistance is of particular importance. The use of planet' gravity to
propulse quicker and further the spacecraft reduces the overall fuel consumption
and the mission time of �ight.

There are plenty of methods to optimise and solve interplanetary space tra-
jectory problems. Bertrand [Ber01] provides an e�cient way for solving low-
thrust interplanetary trajectory problems. His approach provides the optimal
trajectory for a given planet sequence. For a particular mission, one can wonder
whether the mission is indeed optimal. So far, the approach considered was to
provide a planetary sequence and then optimise the trajectory with interior point
constraints. The mission analysts investigate many possible di�erent scenarios
(planet sequence) according to his own experience and general knowledge. This
approach is however time consuming and does not guarantee the optimality of the
mission scenario. The purpose of the present study is thus to provide methods to
automatically �nd the optimal scenario.

During my research, this subject has often raised questions from experts. This
is understandable since it can be seen as �nding a proof of global optimality of
a general non-linear and non-convex function. However, this issue is of strong
interest in the space community, as can be shown by recent Global Trajectory Op-
timisation Competitions, initiated by the ESA/ESTEC Advanced Concept Team.

Such solution methods would reduce mission operation duration, risks and
costs. It would also be possible to increase the scienti�c payload of interplanetary
spacecrafts and the scienti�c returns.

iii
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Proposed Approaches and Contributions

Two approaches have been considered:

1. The initial and �rst idea was to consider this problem as a global optimi-
sation problem. In a �rst step, the best scenario can be found by iterating
on most of the possible planet sequences. Because the general low-thrust
problem is already di�cult to solve when the planet sequence is known,
we introduce a low thrust model which provides an approximation of the
trajectory. The trajectory problem can then easily be solved. The initial
in�nite dimensional optimisation problem can now be turned into a para-
metric �nite dimensional optimisation problem. To reduce complexity, spe-
ci�c constraints and assumptions are made. To reduce computational time,
the planet sequence length is limited and only the most probable planets
are considered. The most probable planets can be found using energetic
approaches.

Dynamic Programming and Global Optimisation algorithms are used for the
search. We also consider the Mixed Integer Programming (MIP) approach
to �nd the optimal sequence of planets.

We reduce as much as possible the engineering expertise needed to �nd the
optimal scenario. However, it would clearly be a mistake to consider those
solution methods as "push button" methods.

2. Another approach which was considered is to actually not focus on global
optimisation but rather to local optimisation. Indeed, during the research
we clearly highlight the fact that most of the current techniques are unable to
solve accurately the general multi-gravity interplanetary transfer problem.
In other words, most of the optimisation techniques are unable to solve an
interplanetary transfer considering swing-by that would not be forced with
intermediate constraints and patched conic approximation.

We consider a general formulation, where the gravity �eld of most promising
planets is taken into account. No interior point constraints are considered. If
a swing-by is to be used, it is only because of the dynamics. A challenging
task is then to design a solver that would automatically get the locally
optimal swing-bys.

In a �rst step, we set-up a benchmark problem which should help design the
algorithm. The new problem results in solving interplanetary direct transfer
considering the initial planet escape and �nal planet capture phases. This
leads to the design a gradient based algorithm. In a second step we con-
sider the general interplanetary transfer problem, considering intermediate
planets.
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Planeto-centric spiralling phases last a long time and require precise inte-
gration. The capture-escape problem is thus more di�cult than the general
interplanetary transfer problem. However, the later needs appropriate ini-
tialisation to automatically �nd locally optimal swing-bys.

To produce as much swing-by trajectory as possible, a gravity continuation
extension is investigated. This extension proposes to modify the planets
gravitational constant to be placed in particular locally convex sub-spaces.

These two approaches have some strong di�erences, but are complementary.
The �rst approach can be useful to initialise the second one. The major di�erence
is on the property of the optimum found. The �rst approach is likely to provide
a fair global "optimum", whereas the second one would provide an accurate local
optimum.

Among main results, those which are original can be listed as:

1. a pruning procedure is proposed to tackle the high computational com-
plexity of multi-gravity assist trajectories, through parametrised trajectory
models[Oly07a].

2. a new low-thrust[Oly07b] model that extends previous work in the �eld.
The low-thrust model is very close to the optimal solution, and allows to
rapidly �nd interesting opportunity windows for low-thrust interplanetary
missions. It is also very practical, i.e. fast and easy to implement.

3. development of a gradient method, extended speci�cally to interplanetary
transfer problems in multi-body dynamics[Oly08]. Control constraints are
handled through a function transformation approach. Convergence is im-
proved with the use of an augmented Lagrangian formulation. An adap-
tive control mesh procedure is proposed for the continuous formulation.
Focus has also been aimed on understanding advantages and �aws of di-
rect/indirect methods.

4. application of gradient methods to �nd a locally optimal planet sequence,
and swing-by.

Thesis Outline

This thesis is split into three parts.

Chapter 1 describes the most important concepts and technology to under-
stand the subject properly. We introduce high and low-thrust propulsion, with
brief historical reviews. We introduce the dynamics and physics of swing-by,
major concern of the study.



vi

Chapter 2, Chapter 3 and Chapter 4 are the �rst parts of the study. They
consider the problem as a parameter global optimisation problem. As an introduc-
tion to space trajectory problems, Chapter 3 deals with the problem of impulsive
or chemical thrust trajectories. We describe common approaches to tackle the
problem. We introduce an approach that allows reducing the complexity of the
multi-gravity assist trajectory problem, when we can parametrise the control.
This is the case in Chapter 2, however, in Chapter 3 we introduce a low-thrust
parametrised model.

The model presented in Chapter 3 allows using the exact same methods as
those presented for the impulsive trajectory design problem of Chapter 2. A
pruning policy is introduced to identify potentially good opportunities for a given
mission.

Chapter 4 presents some examples of the approach.

Chapter 5, Chapter 6 and Chapter 7 are the second part of the study. They
deal with the optimal control problem. Chapter 5 is a brief review of major opti-
mal control methods. The optimal control problem is formulated. The dynamics
include all major body dynamics. As a result, the patched conic approximation is
never used. We discuss its use for our problem, and try to highlight the di�culties.
This allows setting the requirements for a robust optimiser.

Chapter 6 introduces the robust optimiser, which is capable of handling swing-
bys.

Chapter 7 presents examples of the trajectory problem, solved with our opti-
miser. Examples with changes of dynamics are considered. Examples of automatic
swing-by optimisation are also treated.
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Chapter 1

Introduction to Space

Trajectory Problems

1.1 Space Propulsion Systems

1.1.1 General considerations

Any body in space is under the in�uence of a general central force �eld. Because
of the large distance between planets and the Sun, the spacecraft is up to �rst ap-
proximation under the in�uence of a single massive body. Second order in�uences
include perturbations such as:

• the gravity potential of the planets

• the non homogeneous material of the body (J2)

• the solar radiation pressure

• the luni-solar potential

A spacecraft in space is thus primarily under the in�uence of a major body,
called primary. It is said to be in a heliocentric region if the Sun is the primary
body, or a planetocentric region if a planet is the primary body. These regions are
often called gravispheres for planets and can be related to the Sphere of In�uence
or the region of Hill, depending on the dynamics considered.

Under no thrust conditions, its movement around this major body is (neglect-
ing second order perturbations) a Keplerian arc referred to as a conic (circles,
ellipses, hyperbolas and parabolas∗. This results from the integration of the fol-

∗These are conics of di�erent energy. Closed shapes have a negative energy (E ≤ 0), while
parabolas and hyperbolas have a positive energy (E > 0)

1
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lowing equation:
dV
dt

= −µ R

‖R‖3
(1.1)

where R and V are the spacecraft position and velocity wrt the central body, and
µ is the central body gravitational parameter.

In this study, we shall only consider the gravity potentials of the planets. In
practice, though, the second order perturbations have an in�uence over long time
periods.

No energy is required to move along this arc, however to place the spacecraft at
the desired location and at a desired date, we need to create a force that changes
the current orbit energy.

In rocket propulsion, acceleration is caused by reaction (second law of Kepler).
We create a thrust with mass m and celerity c.

There are two ways of doing this:

• aerobic: the mass comes from the outside (air) and is accelerated. ex:
Turbopropulsor, Turboreactor... mainly aircraft engines

• anaerobic: the mass belongs to the system and is expelled. ex: Rocket.

Because of the vacuum, only anaerobic propulsion is used on spacecrafts.

The thrust of a rocket is de�ned by the resultant of the forces of pressure on
the overall system. With c the exhaust velocity, Ps the exit pressure, and Pa
the ambient pressure (free stream pressure), applying the Euler theorem to an
elementary mass leads to:

F = cṁ+A(Ps − Pa) (1.2)

In a vacuum, we usually simplify this expression by writing F = cṁ, where c
includes the exhaust velocity plus the pressure term.

From this equation, there are basically two ways of producing high thrust. We
can either have a very high �ow rate ṁ, or have a very important exit velocity c.

We de�ne the speci�c impulse, Isp, by the ratio:

Isp =
c

g0
(1.3)

The speci�c impulse is, for historic reasons, de�ned in seconds [s]. It represents the
amount of thrust we can generate with the weight of propellant expelled during 1
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s. The speci�c impulse is often used to compare thrust systems, under the same
working conditions.

In mission analysis, and for impulsive manoeuvres, we often work with ∆V
which is the quantity that represents the velocity increment needed to perform a
manoeuvre. With:

F = m
dV

dt
= cṁ

The velocity increment ∆V is given by Tsiolkovsky formula. The ∆V increase
due to the thrust, from t0 to tf , is:

∆V = Ispg0 ln
m(t0)
m(tf )

(1.4)

= Ispg0 ln(1 + pmf)

with the introduction of the propellant mass fraction:

pmf =
∆m
m(tf )

(1.5)

∆V accounts for the change in energy required to perform a manoeuvre, or a
change of orbit. It is usual to use the ∆V as an indicator of the performance of
the spacecraft [SKL+02].

1.1.2 Chemical Propulsion

Brief History

The very �rst solid rocket probably dates back to the �rst centuries AD in China,
with a special form of gunpowder. Many experiments have been carried out since
then, but only with solid fuel.

A Russian teacher, Tsiolkovsky (1857 - 1935), studied many concepts of rock-
ets. Both Robert Goddard (1882 - 1945) and Tsiolkovsky drew the conclusion
that liquid propellants have more power than solid propellants. In 1926, Robert
Goddard successfully launched the �rst rocket using liquid chemical propulsion.

In Germany, in 1934, Werhner von Braun (1912 - 1977) successfully launched
an ethanol - liquid oxygen A2 rocket, stabilised with a gyroscope. In 1942, he
launched the �rst successful A4, later known as V-2. This same rocket was later
improved and used for the US space program. With the Cold War and rapid
rocket development, chemical propulsion and rockets were �rst used by the Soviet
Union, for space applications, in October 1957, with Sputnik 1. Sputnik was
launched with a two-stage R7 rocket, using liquid Oxygen and Kerosene.

Walter Hohmann (1880 - 1941) provided the �rst calculation of interplanetary
orbit transfers. Tsiolkovsky demonstrated the necessity of multi-stage rockets for
reaching space orbits. It is important to note that the �rst ideas of launching a
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satellite into orbit are mainly due to famous scienti�c authors such as Jules Verne
(1828 - 1905), Edward Hale (1822 - 1902), or Arthur C. Clarke (1917 - 2008).

Physics

Chemical propulsion is limited by the chemical energy of the propellant. The
chemical energy is equal to the di�erence in heat of formation between the re-
actants and the products of the reaction, usually noted ∆H. Indeed, the best
bi-propellant combination is LOX/LH2. This combination is theoretically limited
to about ∆H = 3.7kWh/kg. This gives a temperature of combustion, from which
we deduce the characteristic velocity c = 2435m/s. The practical upper Isp for
LOX/LH2 is then 450s in the vacuum.

In fact, all the chemical energy ∆H is not practically available due to dissocia-
tion products at high temperature. Also, the �nal Isp depends on the geometrical
con�guration of the thruster. A slight improvement on the Isp can generally
increase the payload mass by few very useful kilogrammes.

Model

With chemical propulsion, with high thrust, the duration of burn arcs is low
compared to mission duration. Manoeuvres can be considered as impulsive and
isolated (no other impulse in the immediate neighbourhood).∫ t+δt

t

F
m
dt→ ∆V(t) (1.6)

Thus, applying a thrust manoeuvre at time tm results in the following change of
velocity:

∆V(tm) = v(t+m)− v(t−m) (1.7)

This is the di�erence between the velocity before t−m and after t+m, the impulse. A
method to evaluate ∆V(tm) is provided in the next section 2.2.2. The amount of
fuel required to perform the manoeuvre is calculated using equation 1.4.

Types of Chemical Propulsion

Chemical propulsion encompasses solid and liquid propulsion.

• Solid : With an Isp varying between 250-300s, solid propulsion is essentially
used for launcher boosters. They are simple to integrate but due to notice-
able dispersion in impulse, they are not use for precise manoeuvre. They
also cannot be restarted, limiting their use to the �rst stage of launchers.
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• Liquid:

� Monopropellant engines are the best known propulsion system, with
high reliability and moderate cost. Their Isp ranges from 350s to 450s.

� Bipropellant engines can be restarted, but are generally more complex
and costly than monopropellant engines.

1.1.3 Electrical Propulsion Systems

Brief History

As early as 1906, Robert Goddard (1882 - 1945) was the �rst to demonstrate
the attractiveness of Electrical Propulsion[JC02]. He noted that charged particles
could be accelerated to high speed, which is not possible with chemical propulsion
due to heating wall issues. He concluded that electrically accelerated particle sys-
tems could provide high exhaust velocity propulsion systems. He also envisioned
the utility of electrical propulsion for interplanetary transfers!

Later followed the work of Tolstoiski (1911), Oberth (Possibilities of Space

Flight in 1929, Man Into Space in 1957) and Stuhlinger (Possibilities of Electrical
Space Ship Propulsion at IAC 1955).

The U.S. ambition in space rapidly helped research in Electrical Propulsion
thrive. Those systems have existed now for more than 40 years. Electrical Propul-
sion was �rst tested in the early 1970s. In the 1990s, the US used electrical
propulsion on communication satellites (e.g. the Iridium satellite constellation),
but only as a station keeping and attitude control option. They have only been
used as a primary propulsion system since the late 1990's, mainly because of a
lack of con�dence in those systems.

However, those systems are far more e�cient than conventional chemical
propulsion systems. They allow bigger ∆V , allowing more complex missions.

The �rst use of such systems, as a primary propulsion system, was on NASA's
Deep Space 1 mission in 1998 (�gure 1.1). Europe tested its �rst electrical propul-
sion system in space with spacecraft Artemis in 2001. But Smart-1, on its way to
the Moon, was the �rst successful European probe to use electrical propulsion in
2003. Later on that year, Japan's Hayabusa spacecraft used electrical propulsion
for an asteroid sample return mission.

The BepiColombo mission to planet Mercury (launch scheduled on 2013) will
use both chemical and electrical propulsion systems (SEP). Based on their expe-
rience with SMART-1, ESA will combine low-thrust propulsion and gravity assist
to approach planet Mercury. A special capture strategy using chemical propulsion
will be used to place the spacecraft into orbit.
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Figure 1.1: Deep Space One (DS1) Ion Propulsion ( c©NASA/JPL)

The current DAWN mission[RFRR04, RFRR05], launched in 2007, is using
electrical propulsion to reach comet Ceres and asteroid Vesta. Its accumulated
thrust time is about 6 years, for a total mission time of about 8 years.

Physics

Ion propulsion systems basically accelerate ions. Such a propulsion has no energy
limit. Energy can come from a nuclear cell or can be from solar origin. Thus, for
solar power units, the limitation comes from the sun illumination.

The propellant velocity is a few orders of magnitude greater than for chemical
propulsion. The total impulses are of the same order, although electrical propul-
sion works over a long duration. This is called continuous thrust . When the ratio
of thrust over gravity is small, we say we have low-thrust propulsion.

Thus, as opposed to chemical propulsion, thrust manoeuvre cannot be ap-
proximated by an instantaneous change in velocity.

Electrothermal

Electrothermal propulsion has similarities with chemical liquid propulsion. A pro-
pellant gas is warmed, and accelerated by expansion through a divergent nozzle.
Nuclear thermal propulsion is limited by maximum wall temperature. In practice,
the maximum Isp is around 1000s.

Systems: Arcjets, Resistojets, Microwave plasma.

Electrostatic (ion propulsion)

Charged particles are accelerated by electrostatic forces.
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With an Electrostatic force �eld E:

F = qE (1.8)

The e�ciency of ion propulsion comes from the association between very light
particles and great electrical charges, to create important particle acceleration.

Systems: Gridded electrostatic ion, Field Emission (FEEP), (Contact Ion).
Propellant for ion propulsion can be: Carbon 60, Cesium, Krypton, or Xenon.

Electromagnetic (plasma)

A stream of conduction material is electromagnetically accelerated.
With the Lorentz force, a charged particle q is accelerated with the electrical

force �eld E and deviated by the magnetic �eld B:

F = q(E + v ×B) (1.9)

Systems: Pulsed Inductive, Hall e�ect, (Magneto-plasma-dynamics).
Propellant for ion propulsion can be: Argon, Hydrogen, Nitrogen.

The Variable Speci�c Impulse Magnetoplasma Rocket (VASIMIR (TM) [EFP04,
BBS+06]) bridges the gap between chemical propulsion and low-thrust propulsion
systems.

1.1.4 Comparisons

Figure 1.2 and Table 1.1 compare the range of thrust for di�erent space propulsion
systems.

Basically, with electrical systems, we have more thrust for the same mass,
compared to chemical propulsion. However, with electrical propulsion systems,
the engine must operate for a longer time.

For these reasons, Electrical and Chemical Propulsion have their speci�c, and
sometimes common, uses. Ion propulsion cannot be used when great acceleration
is required.

Typically, missions requiring high thrust (or chemical propulsion) can be:

• Takeo� and landing

• apogee and perigee correction

• manned missions (so far?)

Missions requiring high Isp (or electrical propulsion systems) can be:

• Deep Space mission
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Figure 1.2: Space Propulsion ranges (source:http://www-ssc.igpp.ucla.edu)

System Isp [s] Thrust [N] Application

Chemical Liquid
Monopropellant 150 - 235 0.1 to 100 Upper stage
Bipropellant 320 - 460 to 107 First stage, S/C

Chemical Solid
260 - 360 103 to 107 Rocket booster

Electric
Electrothermal 500 - 1000 10−2 to 10 Low-Thrust S/C
Electromagnetic 1000 - 7000 10−3 to 10 Low-Thrust S/C
Electrostatic 2000 - 10000 10−6 to 10−3 Low-Thrust S/C
Nuclear 800 - 1100 up to 1.2 107

VASIMIR 1000 - 30000 up to 1200 no current use

Table 1.1: Typical thrust systems

• long term correction

• compensation (e.g. drag e�ect for ESA mission GOCE, 2008)
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1.2 Multi body dynamics

1.2.1 General Dynamical Equations

The spacecraft is supposed to be only under the in�uence of the Sun and the
gravity force �elds of the planets. We de�ne the reference frame by the centre of
the Solar System, with axes oriented in a �xed direction. The reference frame is
thus inertial. Using u as position vector, the spacecraft dynamical equation is :

d2usc
dt2

= −µSUN
usc − uSUN
‖usc − uSUN‖3

+
∑
i=1,9

µi

(
usc − ui
‖usc − ui‖3

)
(1.10)

Where µ∗ = Gm∗, G universal gravitational constant, and m∗ is the attractive
body mass.

Now consider the Sun dynamics in the same reference frame. The position of
the spacecraft with respect to the Sun position is:

rsc = usc − uSUN (1.11)

The dynamics of the spacecraft with respect to the Sun, in the reference frame,
are then:

d2rsc
dt2

= −(µSUN + µsc)
rsc
‖rsc‖3

−
∑
i=1,9

µi

(
rsc − ri
‖rsc − ri‖3

+
ri
‖ri‖3

)
As the spacecraft mass msc is negligible compared to the Sun mass mSUN , we

can simplify to:

d2rsc
dt2

= −µSUN
r

‖r‖3
−
∑
i=1,9

µi

(
r− ri
‖r− ri‖3

+
ri
‖ri‖3

)
(1.12)

The sum is negligible away from planets, but becomes important when close
to a planet. Typically, as we will de�ne it later, in the Sphere of In�uence of a
planet, the Sun in�uence can be discarded.

1.2.2 Sphere of In�uence

Consider an object SC of mass m under the in�uence of 2 primaries, S and P of
respective mass m1 and m2, with m2 < m1.The action of P acting on SC is:

FP→SC = −G mm2

d2
P→SC

(1.13)

We denote dA→B the distance between A and B. The constant G is the uni-
versal gravitational constant.

Similarly, the action of S on SC is:

FS→SC = −G mm1

d2
S→SC

(1.14)
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Comparing FP→SC and FS→SC provides a way to establish when one force
overcomes the other.

The Sphere of In�uence(SOI) de�nes the spherical limit where the planet grav-
itational in�uence overcomes other gravitational forces (disturbing acceleration)
and in particular the Sun in�uence. In other words, according to this approxima-
tion, a spacecraft on orbit around a planet is not in�uenced by the Sun.

This notion is however just a de�nition and an approximation. It does not
underline any physical phenomenon. Indeed, the gravity potentials are continuous
functions in space.

The Sphere of In�uence radius is thus given by[Bat01]:

RSOI = dP→SC

(
m2

m1

)0.4

(1.15)

On the sphere of in�uence frontier, we admit we are at an in�nite distance of
the planet.

1.2.3 Patched Conic Approximation

The Patched Conic approximation is often used for interplanetary missions [MS65,
PK94].

We often consider massless planets [MS63] [Joh69] [Ber01]. The trajectory is
split into 2-body dynamical legs. The spacecraft is never under the in�uence of
two bodies or more. The Sphere of In�uence is used to place the limit between
each leg. The conics are patched together according to position and velocity
constraints.

This approximation often provides satisfactory results.

1.3 Gravitational Assist (Gravity Assist, Swing-by)

1.3.1 Description

When a point mass (e.g. a spacecraft) passes close to a planet with hyperbolic
speed, it is not captured by the planet's gravity onto a negative energy orbit. But
the planet gravity perturbs the mass object trajectory. Because of the conservative
law of motion, the total linear momentum is conserved, i.e. the linear momentum
before and after the encounter is the same. Thus, there has been an exchange of
linear momentum between the spacecraft and the planet. Indeed, the spacecraft
has changed speed, as well as the planet, however the relative velocity of the
spacecraft, at in�nity, with respect to the planet has not changed in magnitude.
The manoeuvre has only re-oriented the relative velocity vector. Swing-bys are
interesting to modify, sometimes signi�cantly, the trajectory without expending
more fuel. Because of their respective mass, the velocity change of the planet is
negligible.
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Figure 1.3: Patched Conic scheme

Mathematically[VA03], we can write:

mpl∆Epl +msc∆Esc = 0 (1.16)

The quantity m and E stand respectively for mass and orbit energy, whereas
the subscripts sc and pl stand respectively for the spacecraft and the planet
variables.

This phenomenon if called gravitational assist or swing-by . Sometimes it is
also referred to as �y-by. A �y-by is usually more related to the close approach
to an object rather than the physical phenomenon itself.

Planet Mercury can provide the biggest energy exchange, whereas Jupiter can
provide the biggest angular deviation.

The �rst idea of using planets to gain or lose energy came way back in 1918 to
Yuri Kondratyuk (1897 - 1942). The �rst concepts came a short time later with
Lawden and Firsho� in 1954.

The �rst mission to use a gravity assist was Mariner 10, launched in 1973.
The Mariner 10 spacecraft made a swing-by of Venus (Feb. 1974) before multiple
swing-byes of Mercury.

Voyager 1 and Voyager 2 , both launched in 1977 (Voyager 2 was launched
�rst) are probably the most impressive missions using gravity assists (see �gure
1.3.1). The initial 4 year mission spacecrafts, Voyager 1 and Voyager 2, both used
a swing-by of Jupiter to reach Saturn. Voyager 2 continued its route to Uranus,
Neptune, using perfectly synchronised swing-byes. It is likely that at this current
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Figure 1.4: [Left]Voyager 1 and Voyager 2 trajectories. [Right] Voyager 2 velocity
pro�le.

date, such a journey would not be possible without thrusting to have the perfect
swing-by timing conditions. Voyager 1 continues its route after a Saturn swing-
by to reach interstellar space. In September 2008, Voyager 1 should be at about
107.6 AU from the Sun. The initial 720 kg spacecraft has only used gravity assists
to reach that point, and no thrust (Voyagers' thrusters have a thrust of less than
1 N!). It should wander into interstellar space for long, although the community
is divided on whether it has passed the Termination Shock yet.

Swing-bys modify the heliocentric velocity (or energy) of the spacecraft. The
inclination, and all other orbital parameters, are also modi�ed. As an example,
the Ulysses mission was able to be positioned over the poles of the Sun with a
Jupiter swing-by.

One of the most complex mission to date is Cassini. Launched in 1997, the
spacecraft used swing-bys of Venus, Earth and Jupiter to reach Saturn. Once on
orbit around Saturn, the spacecraft will performs till 30 swing-byes of the Saturn
moon Titan to explore the Saturnian system.

More recently, in the New Horizon program, the mission to Pluto was signi�-
cantly reduced in time and consumption thanks to a Jupiter swing-by. The use of
the swing-by permits to reduce the �ight time by reorienting the velocity vector
at Jupiter to reach Pluto more rapidly. The spacecraft should reach Pluto at 32
AU from the Earth in "only" 9.5 years.

1.3.2 Simpli�ed Model

Since the spacecraft making the swing-by must not be captured, its movement
in the sphere of in�uence is a hyperbola. The point of closest approach is thus
called periapsis.

A swing-by can be described by the incoming and outgoing hyperbolic velocity
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Figure 1.5: Ecliptic projection of the Pioneer 10 swing-by with planet Jupiter, on
December 1973. Ticks represent 2 hours time intervals.

Figure 1.6: Geometrical con�guration (source: [Tad04])

vectors, respectively noted V pl
sc1 and V pl

sc2, or also V
−
∞ and V +

∞ (�gure 1.6), and:

Vpl
sc1 = Vsc(t1)−Vpl(t1)

Vpl
sc2 = Vsc(t2)−Vpl(t2)

These vectors are evaluated at the boundary of the Sphere of In�uence, thus
the velocity at an "in�nite" distance from the planet. They de�ne the hyperbolic
trajectory in this region. Because of angular momentum conservation, these two
vectors lie in the same plane, the trajectory plane.

To describe the geometry of the swing-by, we should introduce a reference
frame. The geometrical description is given by �gure 1.7. The B-plane is per-
pendicular to the incoming hyperbolic velocity vector V−∞, and goes through the
central body gravity centre. Vector T is the vector leaving the central body, lead-
ing to the point of intersection between the vector V−∞ and the B-plane. We de�ne
vector B as the vector coming from the central body, along the line of intersection
between the B-plane and the trajectory plane (the ecliptic, or any other plane of
reference).

When no thrust manoeuvre is performed within the Sphere of In�uence (SOI)[Bat01],
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Figure 1.7: Swing-by geometrical description

the spacecraft energy is conserved. Thus, the incoming and outgoing hyperbolic
velocities at the Sphere of In�uence are the same:

∥∥V+
∞
∥∥ =

∥∥V−∞∥∥ (1.17)

The angular deviation due to the swing-by is given by:

sin δ =
µ

µ+ rV 2
∞

(1.18)

end the angular rotation between the vectors V+
∞ and V−∞ is:

φ = 2δ = 2 arctan
µpl

rpV∞
2 (1.19)

The constant µ de�nes the swing-by planet gravity constant.
A swing-by is practically feasible only if the pericenter radius is beyond the

planet radius. We thus deduce the maximum deviation:

sin δmax =
µ

µ+ rminV 2
∞

(1.20)

The velocity increase module is given by:

∆V = ‖Vsc(t2)−Vsc(t1)‖ (1.21)

= 2V∞ sin δ (1.22)

In the patched-conic and massless swing-by planet approximation, a swing-by is
equivalent to performing an impulsive manoeuvre. Table 1.3.2 shows the maxi-
mum ∆V for each planet.

The time spend in the SOI is given by the hyperbolic motion. This time can
be computed using Kepler's equation and the SOI hyperbola parameters. We
have then[BGRC04]:
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Planet max ∆V RSOI
Mercury 3.01 km/s 112400 km
Venus 7.33 km/s 616300 km
Earth 7.91 km/s 927000 km (145REarth)
Mars 3.55 km/s 577200 km
Jupiter 42.73 km/s 48.3 106 km (657RJupiter)
Saturn 25.62 km/s 54.74 106 km
Uranus 15.8 km/s 51.64 106 km
Neptune 16.78 km/s 86.59 106 km
Pluto 1.10 km/s 31.34 106 km

Table 1.2: Swing-By e�ects from planets. ∆V referred as the maximum hyper-
bolic velocity increase after a swing-by. RSOI de�nes the radius of the Sphere of
in�uence.

∆t = 2

√
a3

µpl

(
csc

φ

2
sinhH −H

)
(1.23)

coshH =
(

1 +
rSOI
a

)
sin

φ

2
(1.24)

1
a

=
v2

1

µpl
− 2
rSOI

(1.25)

Usually we suppose the time spent in the SOI negligible compared to the
mission duration (see for example �gure 1.5). In most cases, for interplanetary
transfers, the swing-by can be considered as instantaneous.

With the angular momentum vector H = [hx, hy, hz]T , we de�ne the rotation
matrix R(H, φ). The rotation matrix R(H, φ) performs a rotation of angle φ
around H:

R(H, φ) =

 h2
x + cosφ(h2

x − 1) hxhy(1− cosφ)− hz sinφ hzhx(1− cosφ) + hy sinφ
hxhy(1− cosφ) + hz sinφ h2

y + cosφ(1− h2
y) hyhz(1− cosφ)− hx sinφ

hzhx(1− cosφ)− hz sinφ hyhz(1− cosφ) + hxsinφ h2
z + cosφ(1− h2

z)


(1.26)

Thus, using H as the spacecraft angular momentum during the swing-by, this is
the rotation matrix bringing Vsc(t1) to Vsc(t2).

1.3.3 Tisserand Criterion

A swing-by is a useful tool to change a spacecraft orbit. However, it is not always
possible to place the spacecraft onto the desired orbit. The conservation of kinetic
and angular momentum only allows certain con�gurations. The changes of energy
for the spacecraft and/or the planet are bounded.
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Tisserand (1845 - 1896) demonstrated that for 2 point masses m (the space-
craft) and M (the planet), m << M , orbiting around the Sun, there is a pa-
rameter provided by the orbital elements of m and invariant with the dynamics
of M . As explained with the swing-by, the point mass m is mostly under the
in�uence of the Sun on an elliptical orbit, but close to M . Hence, before and
after the swing-by, the point mass m is on a regular orbit (i.e. elliptical with
constant semi-major axis, eccentricity and inclination). In general however the
orbital parameters will change after the encounter.

Consider the Restricted Three Body Problem (RTBP)[KLMR01, KMLR02]
{Sun, M , m}, with (x, y, z) and (ẋ, ẏ, ż), respectively the position and velocity of
m with respect to the central body. The RTBP frame is rotating with respect to
a �xed frame, at the constant angular velocity ω. We have the Jacobi equation
[BGRC04, Bat01]:

C(x, y, z, ẋ, ẏ, ż) = 2Ω(x, y, z)−
(
ẋ2
r + ẏ2

r + ż2
r

)
(1.27)

With:

Ω(x, y, z) =
ω(x2

r + y2
r )

2
+
µ1

r1
+
µ2

r2
(1.28)

Then note with µ2 << µ1 = µ and ρ = r1:

ẋ2
r + ẏ2

r + ż2
r = V 2 (1.29)

= µ(−1
a

+
2
ρ

)

ω(x2
r + y2

r ) = h cos(i) (1.30)

=
√
a(1− e2) cos(i)

Thus during a swing-by:

C

µ
=

1
a

+ 2

√
a(1− e2)

ρ3
cos(i) (1.31)

This is known as the Tisserand Criterion. It depends on the semi-major axis
a, the eccentricity e and the inclination i with respect to the point mass M orbit
plane.

Figure 1.8 shows the Tisserand Criterion evolution. During a swing-by, we
can "jump" from one curve to another as long as the criterion is kept constant.
The limits are given by the planet-to-reach perihelion and aphelion. These ensure
that we get the good parameter to reach the desired planet after a swing-by.

In practice, one should conclude that the Tisserand Criterion is the same
before and after the encounter. It can be used for swing-by design[MW02]. Using
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Figure 1.8: Tisserand Parameter evolution

�gure 1.8, we can �nd what are the incoming orbit parameters to obtain the
desired outgoing orbit parameters.

Often, astronomers use the Criterion Parameter to determine if the comet they
are observing is not a previously discovered one, which has changed its orbital
parameters because of a planet interaction.

1.4 Problem Statement

Recent advances in mission analysis and space trajectory optimisation provide
e�cient numerical techniques for continuous-thrust interplanetary trajectory op-
timisation with swing-bys.

Such methods are however limited to �xed mission scenario, where the planet
sequence is a-priori known. The mission analysts are thus compelled to consider
many di�erent planet sequences, and select the one which presents the lowest cost,
the best opportunity, and the best robustness. However, there is no evidence that
the planet sequence considered is optimal.

The purpose of this thesis is to provide ways to �nd the "best" planet sequence.
We have to solve simultaneously and automatically the transfer problems and
the sequence determination problem.
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Presentation of Part I

This part deals with the global optimisation of spacecraft interplanetary trajec-
tories.

In Chapter 2, we focus on impulsive trajectories. The impulsive trajectory
problem is generally formulated as a parameter optimisation problem. From
preceding work, we know that under mild assumptions, it is possible to �nd a
neighbourhood of the global optimum with a tractable computational cost. In
this part, we extend and develop past results for impulsive trajectories with Deep
Space Manoeuvres.

Then, in Chapter 3, to deal with the low-thrust trajectory problem, we create
a model for low-thrust trajectories which simplify the search of solutions. Not only
this model allows to transform the in�nite dimensional problem (typical in low-
thrust propulsion), but it also allows to assess quickly mission opportunities. As
the low-thrust model is parameterised, the approach initiated with the impulsive
trajectory problem with Deep Space Manoeuvres can still be applied with the
low-thrust model problem.

It is a the cost of a fast and e�ective solving process that we can evaluate
di�erent possible planet sequences.
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Chapter 2

Automated Approach for

Impulsive Interplanetary

Trajectories

2.1 Energetics Approaches for promising Planet Sequences

When doing a systematic search of planet sequences, we can use mathematical
and physical tools to preclude the calculation of uninteresting possibilities.

2.1.1 GAP Plots

It is possible to quickly assess the attainability of a planet with a given swing-by
sequence. Gravity Assist Potential Plots ("GAP plots") introduced by [PLB00]
are a simple way to evaluate a planet sequence. This evaluation provides the
biggest semi-major axis reachable.

The GAP plots (�gure 2.1) display the evolution of the semi-major axis with
respect to the departure planet hyperbolic excess velocity V∞.

To compute the semi-major axis of the �nal transfer orbit we make the fol-
lowing hypotheses:

• transfers are purely Keplerian

• the launch velocity is co-linear with the departure planet velocity

• phasing and ephemeris are not considered

• all planets lie in the same plane, and their orbits are circular

• for each swing-by the maximum de�ection is considered

23
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For the swing-by, the direction of V∞ is outward if the following planet in the
sequence is at a higher radius (Rcurrentplanet < Rnextplanet). The direction of V∞
is inward if the following planet is inside.

Figure 2.1: GAP plots

2.1.2 V∞ plot

V∞ - rp plot

Strange and Longuski [SL02] introduced an e�cient graphical (�gure 2.2) method
that quickly identi�es all possible ballistic gravity-assist sequences. The method
is based on the Tisserand criterion (section 1.3.3).

For each V∞ and for each planet in the sequence, we "shoot" with variable
directions α ∈ [0, 2π]. For each direction, we evaluate the apoapsis (furthest point)
and the periapsis (closest point), as well as the period of the "shooting orbit". We
can plot the period against the periapsis. This indicates, for a ballistic transfer,
what launch or swing-by energy is required to reach a certain distance from the
Sun in space, and what is the average duration of the transfer.

Similarly, Miller and Weeks[MW02] use the Tisserand Criterion to identify the
transfer orbits between planets. They consider impulsive transfers, and a given
planet sequence. They seek the encounter times with the Tisserand criterion.

These energetic approaches mainly describe ballistic transfer, where the space-
craft does not thrust. We shall therefore study the problem with impulsive ma-
noeuvres. This is a good transition before studying continuous thrust in chapter
Chapter 3.



2.2. CHEMICAL TRAJECTORY OPTIMISATION 25

Figure 2.2: V∞ plots

2.2 Chemical Trajectory Optimisation

2.2.1 Problem statement

With chemical propulsion, manoeuvres can be considered as impulsive and iso-
lated (section 1.1.2). For multi-gravity assist trajectories, we use the patched conic
approximation, with massless planets. The objective function, for the minimum
mass problem, is to minimise the characteristic velocity :

J(X) =
∑
i

‖∆Vi‖ (2.1)

where ∆Vi are the impulsive manoeuvres that control the spacecraft trajectory
(see �gure 2.3), and X is a decision vector, which will be explained later.

The objective function J can also include the rendezvous manoeuvre cost,
depending of the problem. The problem is thus to seek the optimal impulses
description and the time of �ight for each leg. The planet sequence (mission
scenario) is part of the solution we seek. In this part, and as explained in the
introduction, the planet sequence is always considered sequentially. Indeed, for
each possible planet sequence, a new transfer problem is solved. We should be
able to compute quickly and e�ciently the solution transfers.

This problem is very non-linear and not strictly convex. It is a parameter
optimisation problem (POP). There are many local minima. To �nd the best
a-priori scenario we use global optimisation techniques, but the global optimum
can be di�cult to �nd. Usually seeking the global optimum can be reduced to
seeking the best local optimum.
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2.2.2 Impulsive Trajectories

For interplanetary transfers with swing-bys, the POP needs an e�cient Lambert's
problem [Bat01] solver.

Gibb's problem [VM97] Suppose given three non zero points, coplanar but
not co-linear position vectors, representing the position of the satellite in orbit at
three di�erent dates. Gibb's problem is to determine the parameters of the orbit
passing through these position vectors.

This orbit is de�ned by the three quantities:

• kinetic momentum vector

• eccentricity vector, pointed toward the periapsis (perigee, perihelion)

• semi-latus rectum, de�ned as the distance from a focus to the ellipse mea-
sured along a line perpendicular to the major axis.

Clearly, the number of conics linking 2 points is in�nite. However, we can
demonstrate that this number is �nite if the transfer time is given. This is equiv-
alent to adding a third point. We have Lambert's theorem[Bat01]:

Theorem 2.2.1 (Lambert's theorem). According to Gibb's theorem the time T

required for the transfer from A to B depends only on the semi-major axis, the

length of the chord between A and B, and the sum of A and B radii measured from

the centre of attraction.

This theorem is useful when seeking a transfer orbit. Lambert's problem is
the problem of calculating a conic arc passing through 2 points A and B with a
given time length T. If the conic arc is less than a revolution, Lambert's problem
has a unique solution.

Solving Lambert's problem reduces to seeking the orbital elements of the de-
sired transfer orbit. Providing the orbital elements permits evaluating the initial
and �nal velocity, respectively at A and B. We thus have a way to calculate the
required ∆V .

Solving this problem is not di�cult, and it has been widely used in the liter-
ature[Pru79, Bat01].

Using the patched conic approximation, and the swing-by simpli�ed model we
can compute the manoeuvres to apply along the trajectory. The optimal control
problem (OCP) can be formulated considering a parameter optimisation problem
(POP). We thus work in a �nite dimensional space.
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Figure 2.3: Trajectory with one intermediate impulse (1 DSM)

Figure 2.4: Intermediate Impulse Description (DSM)

2.2.3 Impulsive Trajectories with Deep Space Manoeuvres

If we now consider using intermediate manoeuvres along the trajectory (Deep
Space Manoeuvres (DSM)), it becomes much more di�cult to seek the global
optimum. First, transfers from one planet to the next are not uniquely given.
Second, the number of variables has widely increased. The complexity is no more
polynomial.

As shown on �gure 2.4, a deep space manoeuvre (DSM) is de�ned by at least
4 variables. We use here a time-position model, and the DSM is described by:

XDSM = [tDSM ,RDSM ] (2.2)

The date of the manoeuvre is given by tDSM . The position of the manoeuvre in
the position space is given by RDSM .
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2.2.4 Multi-Gravity Assist Trajectory problems

Using pruning techniques and appropriate meshing of the solution space, we can
easily compute the set of extrema. The Gravity Assist Space Pruning algorithm
GASP [Mya03] evaluates quite e�ciently the solution space to produce restricted
search boxes in the solution space. These search boxes include interesting local
optima. With an appropriate meshing the global optimum belongs to the set
of local optima. Heuristic solvers such as Particle Swarm Optimisers (PSO) or
Di�erential Evolution solvers (DE) can thus work in smaller sub-spaces and pro-
vide the global optimum with good certainty. This approach has a polynomial
complexity in the number of phases.

2.2.5 Multi-Gravity Assist Trajectory problems with Deep Space

Manoeuvres

The multi-gravity assist problem, with deep space manoeuvres (MGA DSM prob-
lem), is more complex than the MGA problem.

With the objective function:

J(X) = ∆V0(X) + ∆Vf (X) +
n∑
i=1

∆VDSM(n)(X) (2.3)

we can describe the MGADSM problem with the decision vector:

X = [t0, V0, α0, β0, t
1
DSM , ..., ti, φi, r

i
p, t

i
DSM , ..., tn−1, φn, r

n
p , t

n
DSM , tf ]T (2.4)

The launch hyperbolic velocity V0 is given by [V0, α0, β0]. Variables φi and
rip de�ne the swing-by conditions, and also the hyperbolic excess velocity vector
V∞,i outgoing from the swing-by (equation 1.19).

The trajectory is integrated with the outgoing conditions V∞,i of the swing-
byes, or the initial velocity V0, from ti to tDSM,i. This results in the position
and velocity before the DSM is applied. The resulting DSM position permits to
formulate and solve a Lambert's problem. By subtracting the change of velocity,
between the resulting velocity and the Lambert's problem results (see �gure 2.3),
we can evaluate the manoeuvre velocity change ∆VDSM,i.

We can the evaluate the objective function J (equation 2.3).

This formulation leads to a medium/large scale problem. It results in a di�cult
resolution. This problem has already been tackled in the literature, but with
restrictions. Ceolin [Ceo98] uses the Melder-Mead simplex to optimise a DSM-
trajectory. The number of impulses is �xed and rarely exceeds 1 DSM per leg.

The Primer Vector Theory [Law92] has been extended to multi-gravity assist
trajectory[Oly07a]. The number of DSM per leg is thus free. This allows �nding
the best general impulsive trajectory without restrictions.
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The complexity of this problem is important. This problem can also solved
with global optimisation algorithms such as Branch and Bound, or heuristic al-
gorithms like PSO, when the number of DSM is known.

2.3 Global Optimisation

2.3.1 Branch and Bound

Branch and Bound[Neu04, TZ88] is an optimisation algorithm particularly suited
for solving discrete and combinatorial problems. The basic principle consists in
evaluating an objective function J(X) on di�erent subset S 3 X. The lower and
upper bounds of the objective function J on each S are used to prune safely
the solution space. The procedure starts again by splitting the best subset into
multiple subsets, until the candidate subset reduces to a single element.

This algorithm is particularly useful when we have an a-priori understanding
of the problem structure. Branch and Bound algorithms provide suitable methods
for solving many global optimisation problems.

For impulsive space trajectory problems, with gravity assists, the space can
be readily split according to the phases of the problem. As the cost is additive
along the phases, we can easily prune out the solution space.

For example, suppose an Earth-Venus-Mercury (EVY) transfer. Suppose, that
we have one complete solution. We are thus able to give an upper bound CM on
the minimal cost c∗ for this problem, over the search sub-space S = SEV ∪ SEY .
Now, for each Earth-Venus leg in s ⊂ SEV , having a cost cEV > cM , we can
safely admit that each complete solution, starting with this sequence and for the
problem de�nition in s ⊂ SEV , has a �nal cost cEV Y = cEV + cV Y > cM . Thus,
we avoid the computation of all subsequent legs following the sub-sequence EV.

2.3.2 Particle Swarm Optimisation

Particle Swarm Optimisation [KE95, PV95] (PSO) algorithms are in�uenced by
natural animal behavior (bird �ock and �sh school). It permits to search for an
optimum of a problem in a hyperspace.

Consider a particle i described by its position xi and velocity vi, at time k,
with the solution vector pi:

pki =

[
xki
vki

]
The particle position represents the decision vector. Each particle i moves

then in the solution space, with velocity vki . As the solution space directions do
not represent the same physical quantities, the decision vector is usually scaled.
This then improves the exploration of the space by the particles.
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The particle position and velocity are updated at each time k, with the up-
dating dynamical equations:

vk+1
i = vki + γ1

i (pLi − xki ) + γ2
i (pG − xki ) (2.5)

xk+1
i = xki + vk+1

i (2.6)

where i is the particle index, k is the position in time of the particle, x and
v are respectively the position and the velocity of the particle, pLi is the best
solution found by the particle, pG is the best solution found so far by the whole
population (or swarm), and γ1

i and γ2
i are random numbers of Ω(0, 1). Random

initial positions and velocities permit initialising the algorithm.
Most PSO algorithms use a slight modi�cation, including an inertia variable

I:
vk+1
i = Ikvki + γ1

i (pi − xki ) + γ2
i (pG − xki ) (2.7)

The inertia I permits to take or not advantage of the preceding velocity. For
example, a decreasing inertia function permits minimising the in�uence of the
past velocity.

The acceleration constant γ1 has a local in�uence on the best local optimum:
it is the independent behavior. The acceleration constant γ2 has an in�uence on
the global optimum: it is the social behavior.

This a-priori random behavior allows the algorithm to not get trapped into a
local minimum, so that a global optimum may be found. This algorithm is quite
close to evolutionary algorithms because of the random part of the algorithm. At
the same time, the "crossover" operation between local and swarm optimum has
similarities with genetic algorithms.

The parameters that need to be de�ned are then:

• the number of particles or population size.

• acceleration constants γ1 and γ2.

• initial and �nal weight inertia.

• the initial velocity of the particles.

No general rules exist for choosing them.

2.3.3 Brief synthesis

The advantages of PSO algorithms (or others heuristic algorithms such as DE)
are that they are easy to code, have a small computational cost. But the main
advantage, like any other stochastic/evolutionary algorithms, is that they do not
ask for the value function to be convex or linear and we may lack information
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on the derivatives. These algorithm can �nd the best optimum even though the
value function is not well behaved.

Their major drawback is that they are slow to converge when close to the
optimal point, as opposed to gradient methods (super linear).

DE is known to be one of the most e�cient heuristic optimisation algorithm,
with fewer function evaluations than PSO for example.

Other global optimisation methods include Interval Arithmetic[Kea97], Ho-
motopy [AG90, HMG04].

Name Methods Comment
Deterministic Branch and Bound, DIRECT, MCS Deterministic, very expensive
Heuristic PSO, DE, ... Evolutionary and Memetics
Stochastic SA, MONTE-CARLO, ... random

Interval Arithmetic exact, global optimum
Local Continuation, Homotopy Problem speci�c

Table 2.1: Global Optimisation methods

Heuristic solvers are widely used because they provide fast results. It is then
possible to quickly compute "good" trajectories, and focus on sequence deter-
mination. They should however be restricted to preliminary studies, when an
a-priori good knowledge of the problem is not required.

On the other hand, deterministic methods ensure we �nd the global optimum
of the trajectory transfer problems, but require more computational time due to
the high complexity of the problems. The sequence determination is thus longer.

A deterministic algorithm and systematic study of the sequences should al-
ways be preferred to heuristics, even when computational resources are limited.
Heuristics should be preferred to understand the a-priori structure of the solution.

In the last section, we provide a new approach that allows to rapidly prune
parts of the search space. Combining this approach with deterministic or heuris-
tic methods provides a good algorithm. Note that the quality of the sequence
determination is highly dependent on the resolution of the intermediate transfer
problems.

2.4 Simplifying the Search Space of Parameterised Tra-

jectories for Global Optimisation

2.4.1 General problem and objectives

Consider the general minimisation problem:

min
X∈Dx

J(X) (2.8)
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without constraints, where J : Dx → R is assumed to be C2 continuous, and Dx

is a bounded set of RM , M ∈ N. We suppose J additive.

We want to reduce the complexity of a grid search algorithm (brute search).
With gravity assist, the complexity of such algorithm is exponential with the
number of phases. We present an approach to have a polynomial complexity.

The following approach has been presented in [Oly07a], where we considered
a MGADSM problem. This approach reduces the complexity of the MGADSM
problem. The cost of calling a solver increases polynomially with the number of
phases considered.

2.4.2 General Approach

Creating independent sub-problems

The exponential complexity is mainly the result of phases that depend of each
other because of the swing-by parameters. It is however possible to turn the single
initial problem into many smaller sub-problems.

The procedure can be summarised in 2 steps:

1. Following the phase number or a natural decomposition, duplicate each
boundary variable and assign a copy to every process that needs the original.
The original decision vector X turns into X̃ ∈ RK , with K > M .

2. Partition X̃ into n variables xi ∈ RN , and nN = K = M+D where D is the
number of duplicated boundary variables. There are as many duplications
as junctions.

Each sub-problems are independent, and describe di�erent swing-by possibil-
ities.

Because we now consider the sub-problems independently, we need to set up
intermediate constraints to construct complete solutions.

Setting linking conditions

Linking conditions to compute complete solutions are only the result of the dupli-
cated variables. The duplicated variables act as coordination variables between
the sub-problems.

Let's �nd C ∈ M(R)D,K . K is related to the dimension of the intermediate
constraints. For intermediate rendezvous we simply have K = 0.
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We have an equality condition between the duplicated variables and their
respective originals:

C

x0

...

xn

 = 0 (2.9)

The constant matrix C is needed to account for the matching conditions on the
duplicated variables, referred to a ~. C is a sparse matrix with one -1 and one 1
element on each line.

It can be decomposed into blocks Ci ∈ M(R)D,2N following the problem
partitioning:

Ci

[
xi

xi+1

]
= 0 (2.10)

The constraints ensure we can construct a complete trajectory.

Constructing complete solutions

To solve the original problem, we simply need to solve the sub-problems:

min
xi∈RN

Ji(xi) (2.11)

with the constraints given in equation 2.10.
However, when solving the sub-problem i with decision vector xi, the decision

vector xi+1 (de�ned in equation 2.10) is unknown. The sub-problem must then be
solved for all the di�erent boundary conditions de�ned by xi+1 in order to be able
to construct a complete solution. This can indeed be done with the coordination
variables already included in xi.

Proposition 2.4.1. Note XF
i the feasible region for variable xi, and XF the

feasible region for the original problem. We have:

XF ⊂
⋃
i

XF
i (2.12)

No information has been lost when duplicating the variables and partitioning
the problem.

2.4.3 Application: MGADSM Space trajectory

We want to solve a MGADSM problem (see equation 2.3), with n+ 1 phases (n
swing-bys). The planet sequence is given by vector p. The objective function is
to minimise the characteristic velocity. We consider the following limitations:

• one unique DSM per leg.

• non powered swing-by.
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Setting the partitioned problems

With equation 2.3 and the decision vector 2.4, we apply the following partitioning:

J0(x0) = ∆V1(t0, V 1
∞, φ1, r

1
p, tDSM,1) + ∆V0(t0, tDSM,1) (2.13)

Ji(xi) = ∆Vi(ti, V i
∞, φi, r

i
p, tDSM,i) (2.14)

Jf (xf ) = ∆Vn(tn, V n
∞, φn, r

n
p , tDSM,n) + ∆Vf (tf , V n

∞, φn, r
n
p , tDSM,n) (2.15)

where:

• t0: initial date

• ti: intermediate date, planet encounter

• tf : �nal date

• tDSM,i: swing-by date for the phase i

• [rp, φ] or [rp, V∞]: swing-bys description

The decision vectors x0, xi and xf of each sub-problem must describe its entire
state space, regardless of the other sub-problems. We use the same description
for each leg, as we suppose the same dimension for each sub-problems. The
partitioning and the set of variables are resumed on �gure 2.5.

And:
Xi = [ti, V i

∞, φ
i, rip, t

i
DSM , Ṽ

i
∞, φ̃

i, r̃ip, ti+1] (2.16)

Indeed, since the trajectory is forward propagated, each leg needs informa-
tion from the preceding leg, and must provide information to the following leg.
Junction variables rp and φ (i.e. de�ning the swing-by) are thus duplicated and
assigned to their respective sub-problems. Because there is no degree of freedom
on the value of ti, these variables are not duplicated.

Note that Ṽi
∞ is indeed the (incoming) hyperbolic excess velocity at the next

swing-by.

Proposition 2.4.2. To simplify the search process, we removed the constraint on

the angular deviation of the swing-by. We suppose, a-priori, all the swing-bys are

feasible. This point shall be checked later on in the process, once we have complete

solutions.

This allows replacing V∞f with V∞f in the decision vector 2.16. The variables
φ̃i and r̃ip can be dropped out.

The decision vector for each sub-problem then reduces to:

Xi = [ti0, V
i
∞0, α

i
0, β

i
0, t

i
DSM , V

i
∞f , t

i
f ]T (2.17)

Where:
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• ti0 is the departure date for the single leg.

• tiDSM is the date of the Deep Space Manoeuvre (DSM).

• tif is the arrival date for the single leg.

• V i
∞0 is the hyperbolic excess velocity at departure of the leg.

• αi0 and βi0 gives the Vi
∞0 vector direction.

• V i
∞f is the hyperbolic excess velocity upon arrival.

Because of this simpli�cation, we cannot check if the swing-byes are feasible or
not. We may compute swing-by infeasible trajectories. But this is easily checked
when patching the legs together when constructing complete transfers.

Patching Constraints

The tilde ~variables are a copy of the preceding non tilde variables.
The redundant variables must coincide, so we have of course:

Ṽ i
∞ = V i+1

∞ (2.18)

This expression allows constructing complete trajectories.
Because of proposition 2.4.2 we do not need to use:

φ̃i = φi+1 (2.19)

r̃ip = ri+1
p (2.20)

Solving the sub-problems

To simplify the resolution of the sub-problems, let's consider discrete and contin-
uous variables of the sub-problem decision vector. The discrete variables are:

XDi = [ti0, V
i
∞0, t

i
DSM , V

i
∞f , t

i
f ] (2.21)

The continuous variables are:

XCi = [αi0, β
i
0] (2.22)

The sub-problems to solve once XDi is given, rely only on seeking XCi, which
minimises the functions J0, Ji and Jf (equations 2.13, 2.14 and 2.15), with the
constraints:

Ψ1
i (XDi) =

∥∥∥Vp(i)(t
i
0)−V(ti0)

∥∥∥− V i
∞0 (2.23)

Ψ2
i (XDi) =

∥∥∥Vp(i+1)(t
i
f )−V(tif )

∥∥∥− V i
∞f (2.24)
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Figure 2.5: Decomposition scheme

where Vp(i) and Vp(i+1) are respectively the departure and arrival planets velocity.
This constraint permits to construct solutions with the desired hyperbolic

excess velocity upon departure and arrival, describing di�erent swing-by possibil-
ities.

Then, the sub-problems can be formulated as:

∀XDi min
XCi

Ji(XDi,XCi) (2.25)

s.t. Ψ1
i (XDi) = 0 (2.26)

s.t. Ψ2
i (XDi) = 0 (2.27)

Figure 2.5 shows the sub-problem de�nition.
Sub-problems must be solved for all points of the map de�ning XDi (see

algorithm 1).

Remark We now have to solve M problems in a search space of dimension N ,
whereas in the initial approach we solved 1 problem in a search space of dimension
L > N , whereM is the number of phases, and N is the size of the decision vector
for each sub-problem.

The construction of the overall problem solutions, with equation 2.18 and
the date of encounter with the planet, takes place once we have computed all
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the extremals for the XDi hypercubes. This constructs complete trajectories by
patching legs of each of the sub-problem solution spaces.

This approach allows to apply pruning methods on the sub problems, before
constructing the solution. In addition the complexity is reduced compared to the
initial problem.

Pruning

To limit the search space, we place pruning constraints. Pruning constraints are
constraints on the state that avoid seeking in uninteresting sub-spaces without
jeopardising any potentially good solutions.

We use the following pruning strategies:

1. constraints on the initial departure manoeuvre V∞0 = ∆V0

2. constraints on the �nal breaking manoeuvre V∞n = ∆Vf

3. limitation on the swing-bys hyperbolic excess velocity V∞ and Ṽ∞.

4. constraint on ∆VDSM(i) amplitude.

5. forward pruning [BMN+05, IBM+06].

When all sub-problems have been solve, each strategy permits to remove
branch of the solution tree. Once the sub-solutions have been appropriately sort
out, we can construct complete solution, using the constraints describe above.
To construct solution, we should construct the solution tree, and with a dynamic
programming algorithm we can get the best solution. However, from a mission
analyst point of view, we can also construct all possible solution, and then sort
them.

Complexity

It is necessary to compute the complexity of the algorithm. In particular, the
number of calls to the solver of the sub-problems (partitioned problems de�ned
by equations 2.13, 2.14, 2.15). Pose:

• NP the number of phases or sub-problems.

• NT0 the number of bins of the initial launch date mesh MT0.

• Nt the number of bins in the time of �ight mesh MT0.

• NV the number of bins in the V∞ mesh MT0.
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Input: Sequence of planets {B}i=1..N , time grid [t0 : dt : tf ], time of �ight
grid [tofmin : dt : tofmax], [V∞min : ∆V∞ : V∞max] grid

Output: solutions on the grids
List of arrival dates of rank 0: T 0

f ← [t0 : dt : tf ];
foreach i (rank) from 1 to N − 1 do

Departure Body = Bi;
Arrival Body = Bi+1;
List of departure dates of rank i: T i0 ← T i−1

f ;

foreach Departure date t0 ∈ T i0 do
foreach Time of �ight tofi in the time grid [tofmin : dt : tofmax] do

foreach V∞i and V∞j in the [V∞min : ∆V∞ : V∞max] grid do
P = [t0, Bi, Bi+1, tofi, V∞i];
Minimise J(P,XDSM ) s.t. Ψ(V∞j , Bi+1) = 0;
Store the solution and associated cost in the table
St0,V∞i,tofi,Bi,Bi+1

.;
end

end

end
Prune solutions.;
List of arrival date of rank i: T if ← List of arrival date of for the
existing solution of the rank i;

end
Apply dynamic programming to table S and construct complete
trajectories.;

Algorithm 1: GASP-DSM algorithm

We can thus construct a mesh for the arrival dates on each phase i: M i
Tf =

M i
T0 +Mt.
For phase i, the number of calls to the solver is:

Ci = iNT0(NtN
2
V ) (2.28)

From one phase to the next, we have M i+1
T0 = M i

Tf . By a simple recurrence,
assuming the mesh step size and the number of mesh points are the same for T0
and t, the number of launch date mesh points increases for each phase, from NT0

to NPNT0.
Thus, the number of calls to the solver is given by:

C = NT0(NtN
2
V )NP

NP + 1
2

(2.29)

The complexity of calling the solver is polynomial. This should be compared
to the number of calls that would be required if each possible decision vector of
the grids is considered separately. In this case the complexity would be de�ned
by the number of points in the hypercube grid:

CMAX = NT0N
NP
t NNP−1

V (2.30)
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This approach starts to be bene�cial when M > 1, but the bene�ts become
great for a high number of legs. More importantly, with this approach we did not
make any assumption that would prevent us from �nding the global optimum,
except that we constrained the body to body legs to have exactly one DSM.

2.5 Conclusions

The problem of global optimisation is a di�cult one. In this section, we noted
that solving the MGADSM problem was already a di�cult task. The question of
�nding the optimal scenario for this class of trajectory problem is a bit challenging.
The di�culty does not rely on the mathematical problem formulation, but more
on the computational complexity.

We provided an approach allowing the use of a pruning strategy, and reducing
the computational complexity. But even with this approach, we hardly made the
problem tractable. A fair amount of time is needed to cope with the computational
load of global optimisation problems. The approach described here can be applied
to any problems regardless of separability issues.

To cope with the global problem optimisation, we can often use heuristics[VSD05].
Our approach, in comparison, is conservative with respect to the global optimum,
and ensures we can �nd it with reasonable precision. The approach allows par-
allelling the computations, thus reducing the computational time and giving a
rapid solution to the mission analyst.





Chapter 3

Automated Approach for

Low-Thrust Interplanetary

Trajectories

3.1 Introduction

3.1.1 Low-Thrust Trajectory vs Impulsive Trajectory Sequence De-

sign

As opposed to impulsive trajectories, continuous thrust trajectories have signi�-
cant burning time. It is not possible to parametrise the control exactly. We need
to �nd a control function u(t) in a Hilbert Space, that minimises a given objective
function. For the sequence design, it is important to have a reliable approach.

Indirect methods usually lack of robustness. The basin of attraction is small,
and it is di�cult to implement an automated program[Ber01]. Considering many
possible sequences with an indirect approach can lead to wrong conclusions. If the
algorithm fails to converge, we cannot conclude that there is no solution. Direct
methods are fast and provide good solutions. Usually, direct methods should be
favoured when considering many sequences.

Another approach, which can be even faster than direct methods, is the use of
models. It is possible to build an approximation to the optimal control and con-
tinuous thrust dynamics with models. Modeling the control consists in choosing
a family of functions that best �ts the expected optimal control. This approach is
useful to initiate exact algorithms. In addition, the algorithm presented in 2.4.2
can be used to e�ciently found solutions to transfer problems.

41
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Alemany and Braun[AB07] present the global optimisation problem for low-
thrust asteroid selection missions. They brie�y survey local optimisation methods
for low-thrust trajectory optimisation and global optimisation. They mention
the prohibitive amount of calculation needed to tackle this global optimisation
problem. They de�ne the global optimiser feature we should look for to solve this
problem.

3.1.2 Examples of Low-Thrust Global Optimisation Problems

GTOC2 (2006)

GTOC2 was the second issue of the Global Trajectory Optimisation Competition,
initiated by the Advanced Concept Team of ESA/ESTEC. It was organised in
2006, by the JPL, the winning team of the 2005 edition. We recall the problem.

Problem description The problem is a multiple asteroid ren-
dezvous. A low-thrust trajectory must be designed including ren-
dezvous manoeuvre with one asteroid from each of four de�ned
groups of asteroids.

Mission and Engineering Constraints The spacecraft is to
launch from the Earth, with a hyperbolic excess velocity of up
to 3.5 km/s and of unconstrained direction. The year of launch
must lie in the range 2015 to 2035, inclusive. After launch, the
spacecraft must rendezvous with one asteroid from each group.
(...) A stay time of at least 90 days is required at each of the
�rst three asteroids. The �ight time from launch to the �nal
rendezvous with the fourth asteroid, must not exceed 20 years.
Gravity assists are not permitted. Objective of the optimisation
is to maximise the quantity:

J = mf/tf

The spacecraft has a �xed initial mass of 1500 kg (...). The
propulsion is by means of a thruster (...) has a constant spe-
ci�c impulse of 4000s (...) maximum thrust level of 0.1N. (...).

Figure 3.1 shows the best reported solution. This problem is very di�cult due
to the combinatorial complexity. The group order is of importance and allows
to reduce the complexity. Most teams found the same group order. Seeking the
asteroid sequence is also di�cult. Most methods rely on heuristics and experience.
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Figure 3.1: GTOC2 best reported solution (Polytecnico di Torino, Italy, 2006)

GTOC3 (2007)

GTOC3 was organised by Politecnico di Torino, Italy. The problem deals with
a multiple near-Earth asteroid (NEA) rendezvous mission. The spacecraft is
launched from Earth, must rendezvous with three asteroids from a speci�ed group
of NEAs, and return to Earth. The maximum mission duration is limited to 10
years.

Spacecraft and Trajectory Constraints The spacecraft is to
launch from the Earth, with hyperbolic excess velocity v1 of up to
0.5 km/s and of unconstrained direction. The year of launch must
lie in the range 2016 to 2025, inclusive. After launch, the space-
craft must �rst rendezvous with three di�erent asteroids (...), and
then rendezvous with the Earth. The choice of the asteroids is
part of the optimisation process. The stay times at each of the
three asteroids (τ1, τ2, τ3), must be longer than 60 days. The
�ight time, τ , measured from launch up to the point of rendezvous
with the Earth, must not exceed 10 years. Only gravity assists
from the Earth are permitted. The spacecraft has a �xed initial
mass mi of 2000 kg (it does not change with launch v1). The
propulsion is by means of a thruster, which can be turned on
or o� at will, has a constant speci�c impulse Isp of 3000 s, and
has a maximum thrust level T of 0.15 N. There is no constraint
on the thrust direction. The spacecraft mass only varies because
of the propellant consumption during thrusting and is otherwise
constant (no mass dumping or collecting is allowed). (...)
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The problem is quite similar to GTOC2. The performance index to maximise
is given below.

Performance index Objective of the optimisation is to max-
imise the non dimensional quantity

J =
mf

mi
+K

minj=1,3 τj
τmax

where mi and mf are the spacecraft initial and �nal mass, re-
spectively; τj , with j = 1, 3, represents the stay-time at the j-th
asteroid in the rendezvous sequence and:

min
j=1,3

τj

is the shortest asteroid stay-time; τmax = 10 years is the available
trip time, and K = 0.2. The performance index is chosen in order
to favour low propellant consumption (i.e., large payload) and
long stay-times on the asteroids, thus increasing mission scienti�c
return.(...)

As for GTOC2, the problem was to �nd the best Asteroid Sequence among
a restricted set of asteroids, with low thrust propulsion, although, contrary to
GTOC2, the restricted set was of lesser size and did not pose any combinatorial
issue. The great di�culty of the problem was actually the possibility to use Earth
swing-bys.

The best submitted solutions, all considered 3 to 4 swing-by of Earth. The
worst solutions did not consider any. From this point, it was important to question
their utility, and how to place them. The problem was not combinatorial but
relied hugely on the quality of the local optimisation, and the optimisation of the
swing-bys. The more swing-byes the solver was able to handle, the more chance
we might have to �nd the best solution.

Figure 3.2 shows the best solution found for this problem. It was identi�ed by
the CNES. They use an indirect method approach for the transfer problem. They
were thus able to �nd a very accurate optimal control. However, the sequence
of asteroids was found with heuristics. The use of swing-byes mainly followed
experience and common sense. In other cases, a systematic approach should be
considered.
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Figure 3.2: GTOC3 best reported solution (CNES, France, 2007)

3.2 Current Models and Limitations

So far, exponential sinusoids [Pet02, PL01, Izz06] are used because they proved
their e�ciency and their ease of use. However one can emphasise that the initial
guess proposed by exponential sinusoid methods has sometimes a cost very far
from that of the optimised trajectory. The di�erences essentially come from a
control that is continuously thrusting, with no bang-bang sequences. And the
model cannot correctly describe the rendezvous phase. The latter is of great im-
portance and a major issue in most low thrust models. Only shaping methods
through parametrised pseudo equinoctial elements [VD06] manage to solve the
problem. But they present a violation of the dynamics and errors when prop-
agated. Markopoulos [MC95] introduced a thrusting program, which includes a
throttle parameter. In addition, his model allows multiple switching; however he
didn't treat the case with the zero throttling parameter which would be needed
for coast segments.

In [VSJ05], the authors survey the just mentioned low thrust models and
propose a program for the global optimisation of multi-gravity assist low thrust
trajectories. They also study the optimality of the exponential sinusoid. Their
conclusion is that this model is far from satisfying the necessary condition of
optimality, unlike the pseudo-equinoctial elements model. Curiously though, the
exponential sinusoid model provides a cost closer to the optimum than the pseudo
equinoctial model, whereas the latter provides more �exibility.

One of the most interesting models is the one of Pinkham, who models the
thrust instead of the shape of the trajectory to get his low thrust model. Conse-
quently, it is possible to construct a multi-level trajectory, however no such results
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have been found in the literature.
Sims et al[SF99] use a di�erent approach from the shape based ones. They dis-

cretise the trajectory into segments, with an impulse at the middle, and matching
conditions at junctions. Then, they formulate a nonlinear programming problem.
According to the results published, this method is robust and agrees with more
precise indirect method tools.

We introduce a model implementing coast arcs [Oly07b], which improves our
low thrust trajectory modeling with few parameters. The model provides the
thrusters capability, and informs about the trajectory feasibility. Some conditions
on the choice of the model parameters will be given. We shall introduce an
optimisation problem that gets the optimal value for the parameters under speci�c
constraints. It is expected, that through this optimiser we can get a good initial
guess that can be close to the optimal low thrust trajectory. We show that we
manage to get a better cost than any other shape based low-thrust models. We
also show that under some conditions, we can reduce the rendezvous manoeuvre
cost.

3.3 A Continuous Thrust Model

3.3.1 Dynamics

Our goal is not to introduce another function in the �eld of shape based methods,
but rather to have a formulation as close as possible to optimal low thrust arc. We
shall then further introduce switching points between coast (no thrust) - thrust
sequences in the trajectory. Bang-bang control is indeed the optimal control for
a low-thrust, maximum mass, with �nal constraints, space trajectory transfer
problem.

To simplify our program and model, we need to �nd a model that is valid for
both Keplerian and continuous thrust transfers.

We use the following model equation, in its domain of de�nition:

r(θ, k) =
p

1 + e cos(kθ − φ)
(3.1)

Where θ is the polar angle, k is what we will later on call the thrust parameter,
φ is a phasing parameter, p and e are analogous to respectively the Keplerian
parameter and eccentricity. This model has been derived from the classical for-
mula for conics, and it is referred as dilated conic. It has been enumerated among
others in the endless list of potential shape-based trajectories in the conclusions of
Petropoulos' thesis[PLB00, Pet02, PL01]. It is also very similar to Pinkham's spi-
ral, which includes additional exponential terms that allow reaching hyperbolic
speeds after an initial spiralling movement. This last feature is not of interest
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in our case as our goal is to introduce a preliminary design tool for interplane-
tary transfer, with �nal rendezvous conditions. Other models are possible. The
approach followed here simply extend the model to general multi-thrust level
segments.

The advantage of model 3.1 comes from the very few parameters (p, e, k and
φ) and the possibility to model coast legs. This results in a simpli�ed program.

This will permit to introduce a low thrust gravity assist program that can
reliably enumerate preliminary trajectory design options.

3.3.2 Geometrical properties

Using equation 3.1, for all points (R1, θ1) ∈ R× [0, 2π] and (R2, θ2) ∈ R× [0, 2π],
for a given transfer angle θ̄ = θ2 − θ1, there exist φ ∈ R and k ∈ R such that:

p = R1R2
cosφ− cos(kθ̄ − φ)

R1 cosφ−R2 cos(kθ̄ − φ)
(3.2)

e =
1

cosφ

(
p

R1
− 1
)

(3.3)

De�ne a continuous thrust trajectory from (R1, θ1) to (R2, θ2). The trajectory
lies in the plane de�ned by the normal R1 ×R2.

Proposition 3.3.1. If {p, e, k, φ} is a transfer from R1(R1, θ1) to R2(R2, θ2),
then {p, e,−k,−φ} represent the exact same transfer.

We de�ne the �ight path angle as the angle between the velocity vector and
the unit orthoradial vector uθ (see �gure 3.3). Thus, the expression for the �ight
path angle is:

tanγ =
ek sin(kθ − φ)

1 + e cos(kθ − φ)
(3.4)

We de�ne the �ight path direction as the direction following the velocity vector.
The ratio φ/k represents the angular distance between θ = 0 and the most

distant, respectively closest, point of the inward, respectively outward, trajectory
from the central body.

Figure 3.4 represents part of the set of trajectories that geometrically match
the initial and �nal position, for di�erent values of the parameter k, and φ = 0.

3.3.3 Physical properties

We are interested in de�ning properties such as the control, time of �ight, con-
sumption, and velocity along the trajectory. In this section, we study the single
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Figure 3.3: Geometrical con�guration

Figure 3.4: Set of transfer legs. R1 = 1, R2 = 1.5, θ̄ = 5π/4
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segment transfer from R1(R1, θ1) to R2(R2, θ2), [R1, R2] ∈ R2 and [θ1, θ2] ∈
[0, 2π]2.

Control Steering

With the control:

u = cosαuθ + sinαur (3.5)

The equations of motion give the angular momentum which leads to:

dr

dθ
Vθ

2 + rVθ
dVθ
dθ

= Fthr
2 cosα (3.6)

Where Fth is the thrust acceleration, α is the thrust direction with respect to the
unit orthoradial vector uθ.

Proposition 3.3.2. The trajectory shape given by equation 3.1 can be followed

by many di�erent control laws, according to the thrust direction and amplitude.

Radial and orthoradial thrusts have already been proposed in the literature
[Bat01, Bol91, Bol92] for other models. The control law we seek is the one which
would apriori reduce consumption while following the trajectory shape. The best
approach would be to �nd the control that minimises consumption while respect-
ing the model geometry. We have to select FTh and/or u that follow the model.

With the polar dynamical equations for the state variables x = [r, θ, Vr, Vθ], we
construct the HamiltonianH introducing the costate variables Λ = [λr, λθ, λVr , λVθ ]:

H(x,Λ, α; t) = λrVr+λθ
Vθ
r

+λVr

(
− µ
r2

+
V 2
θ

r
+ Fth sinα

)
+λVθ(−

VrVθ
r

+Fth cosα)

(3.7)
A necessary condition of optimality gives:

tanα∗ =
λVr
λVθ

(3.8)

Thus, we assume the optimum thrust is in the �ight-path direction (α = γ). We do
not apriori satisfy the necessary condition of optimality for the thrust amplitude.
This is because we want to seek FTh that follows the geometrical shape de�ned
by equation 3.1. This problem is less than obvious. In the next section 3.3.4, we
will show that it is not always possible to �nd a good Fth.

With a derivation wrt θ, and after simpli�cations, we get the thrust force:

Fth

(
r2

µ

)
cos γ = a (3.9)
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With:

a =
ek sin(kθ − φ)

2
(1 + e cos(kθ − φ))(1− k2)
(1 + e cos(kθ − φ)(1− k2))2

(3.10)

Or in a compact form:

Fth =
tanγ

2 cos γ
(1− k2)

r4

µ

(
dθ

dt

)4

The parameter k plays the role of a throttling parameter∗.

Remark The case k = 0 will now be omitted as it does not represent any transfer
( R1 = R2 and tan γ = 0).

Clearly, a condition to have a low thrust trajectory is to have a < 1 (equation
3.10). That simply means that the thrust acceleration is small compared to the
local gravitational acceleration.

The geometry of such a transfer can be seen on �gure 3.3.

Time of �ight

Because of the assumption on the thrust vector being aligned with velocity, ex-
pressions are simpli�ed and we can express the angular velocity with:

dθ

dt

2

=
µ

r(k, φ, θ)4

p(k, φ)
1 + e(k, φ)(1− k2) cos(kθ − φ)

(3.11)

where µ is the attractive body gravitational constant.
Again, for the particular values k ∈ {−1, 1} and φ = 0 we �nd the classical

equation from Kepler's second law of planetary motion [Bat01].
Then, when θ :→ θ(t) de�nes a di�eomorphism, the time of �ight is simply

expressed as an analytical integral:

T =

√
1

p(k, φ)µ

∫ θf

θ0

r(k, φ, θ)2
√

1 + e(k, φ)(1− k2) cos(kθ − φ)dθ (3.12)

A complicated integration shows that this integral can be expressed with El-
liptical integrals[Bat01].

Equation 3.12 permits to get the lower limit in the time of �ight:

T0 =

√
p(k = 0, φ)3

µ
(θf − θ0) (3.13)

Proposition 3.3.3. There is a minimum time that ensures the existence of a

solution for the model.
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Figure 3.5: Time of �ight, θ2 − θ1 = 4π/3, R1 = 1, R2 = 1.5, µ = 1, φ = 0

Solutions to the transfer problem with a single segment exist only for a par-
ticular interval of time of �ight. The lower bound of the interval corresponds to
a circular transfer for which R1 = R2.

From �gure 3.5 we note that for a single transfer segment, the solution is not
unique. This implies that we can have di�erent thrust level solutions for the same
transfer problem.

Consumption

Assuming equation 3.9 is well de�ned and bounded, the expression of the con-
sumption, for a constant speci�c impulse, is simpli�ed to:

∆Vt =
1
µ
|1− k2|

∫ θf

θ0

| tanγ
2 cos γ

|r4|dθ
dt
|3dθ (3.14)

where µ is the attractive body gravitational constant.
As can be seen on �gure 3.6, the values of k around 1 from below, are those

which permit to get a low consumption. The two vertical asymptotes at k = −1
and k = 1, on the semi-logarithmic plot, indicate the 0−∆V consumption points.

Because of the integration of an absolute quantity for the consumption func-
tion (equation 3.14), the consumption is not di�erentiable around k = 1 and
k = −1.

Using proposition 3.3.1, we can limit the range of k to positive values.

Velocity

For the rendezvous transfer, it can be of interest to compute the velocity vector on
the trajectory. In the transfer plane, writing the radial and orthoradial velocity

∗For k ∈ {−1, 1, 0}, we get a ballistic transfer: Fth = 0.
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Figure 3.6: Consumption, θ2 − θ1 = 4π/3, R1 = 1, R2 = 1.5, µ = 1, φ = 0

and using the de�nition of the �ight path angle, gives:

V = R
dθ

dt
(uθ + tanγur) (3.15)

ur and uθ = uh × ur are respectively the radial and orthoradial vectors. uh
is the normal to the trajectory plane, co-linear with the momentum vector. The
trajectory plane is de�ned by the initial and �nal positions, and the position of
the sun or the main attractive body.

3.3.4 Existence of solutions

The existence of solutions to the model is obvious by considering the duality of
this model with Lambert's problem (k = 1). Any ballistic solution of Lambert's
problem, is available through this model. But this ballistic solution does not
necessary comply with the low thrust condition (|a| > 0), as we do not thrust at
all!

The transfer from R1(R1, θ1) to R2(R2, θ2) is coplanar. Considering a single
transfer segment (only a thrust arc), the physical transfer is determined by the
variables R1, R2 and θ2− θ1. And we seek the model variables k and φ. Then for
a single segment transfer the thrust segment is completely described with k and
φ.

We de�ne the physically feasible region Df with:

Df =

{
(k, φ) ∈ R+2

s.t.

{
r(k, φ, θ) > 0
p

1+e(1−k2) cos(kθ−φ)
> 0

}
∀θ ∈ [0, θ̄]

}
(3.16)

This ensures the radius to be positive, and the angular velocity to be correctly
de�ned.
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We have the following proposition.

Proposition 3.3.4. Consider the points R1(R1, θ1) and R2(R2, θ2) (R1 6= R2),

and a transfer angle θ̄ = θ2 − θ1 + 2nrevπ > 0, nrev ∈ N. The physically feasible

region Df is given by:

Df =

(k, φ) ∈ R+2
s.t.


p(k, φ) > 0
|e(k, φ)| < 1
|1− k2| ≤ 1


 (3.17)

Proof. The positivity of p is required by equation 3.12.

We look for the domain of de�nition for e. Pose: cm = minθ∈[0,θ̄] cos(kθ − φ)
and cM = maxθ∈[0,θ̄] cos(kθ − φ).

Then:

0 < 1 + ecm < 1 + e cos(kθ − φ) < 1 + ecM

There are 3 cases.

• if cm < cM < 0 then 0 < e < −1
cm

.

• if cm < 0 < cM then −1
cM

< e < −1
cm

.

• if 0 < cm < cM then −1
cM

< e < 0.

It remains to check the domain of de�nition of k. We must have: e(1− k2) cos(kθ − φ) >
−1. This leads to the condition: − cM

cm
≤ 1− k2 ≤ 1.

Accepting any possible transfers, and in particular those for which θ̄ > 2π, we
have cm = −1 and cM = 1. The conditions of feasibility turn to be: |e| < 1 and
|1− k2| ≤ 1.

The variables p, e and θ̄ give the range of values for the parameter φ for an
inbound (R2 < R1) or outbound (R1 < R2), and a prograde (θ̇ > 0) or retrograde
(θ̇ < 0) orbit.

Because of the assumption of positiveness of p, φmust be in a particular region
Dφ. We note:

Dφ(k, θ̄, R1, R2) =

{
φ ∈ R− Zπ/2s.t.

{
cosφ ≥ cos(φ− kθ̄)

R1
R2

cosφ > cos(φ− kθ̄)

}}
(3.18)

Indeed, φ is explicitly related to the initial γ0 (see equation 3.4). Choosing φ
selects the initial V∞ slope.
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3.4 Multi-thrust Segment Transfer

3.4.1 Construction of Coast - Thrust Control

Because of the possibility to model low thrust arcs as well as ballistic arcs, it is
appealing to build mixed transfers with thrusting and coasting phase. This leads
to a simpli�ed model. We do not need to introduce other models for the ballistic
transfer.

At a coast - thrust switching point (the case thrust - coast being similar) we
have:

k− = 1 (3.19)

r− = r+ (3.20)

γ− = γ+ (3.21)

dθ

dt

−
=
dθ

dt

+

(3.22)

The superscripts − and + stand respectively for the state before (coast) and
after (thrust) the switching point.

Using equation 3.1, we have to solve the following system:

p−

1 + e− cos(θ̄− − φ−)
=

p+

1 + e+ cos(φ−)
(3.23)

p−

1 + e− cos(θ̄− − φ−)
=

p+

1 + e+ cos(φ−)
(3.24)

p− =
p+

1 + e+ cos(φ−)(1− k+2)
(3.25)

Where θ̄ is the angular position of the switching point. The boundary condi-
tions on the radiuses (r0, rf ) complete the problem.

3.4.2 Formulation of the multi-switch transfer

The general transfer problem from r0 to rN , during time duration T̄ , comprises
N legs, with N − 1 switching points ri, i ∈ I = J1, NK, between the coast phases
and the thrusting phases.

Legs description is given by the variables : Pi = {ri, ri+1, ei, pi, ki, φi, θ̄i}. As
we de�ne the trajectory as thrust - coast sequences, we de�ne T the set of odd
indices in I and C the even indices in I. Thus, Pi for i ∈ T de�nes the thrust
segments parameters, while Pi for i ∈ C de�nes the coast segments parameters.

As opposed to the single thrust segment transfer, we need all the variables
to account for the junction conditions 3.19. We can however reduce this search
space by considering the model dynamics.



3.4. MULTI-THRUST SEGMENT TRANSFER 55

To solve the transfer problem we should seek Pi for all i ∈ I with 3N − 1
equations.

For all coast arcs c ∈ C, we have kc = 1 and θ̄c is a free variable. Variables ec,
φc are given by the preceding thrust leg parameters Pt, t ∈ T . Indeed, coast arcs
c are only described by their sweep angle θc because the coast arcs result from
the Keplerian propagation of the �nal state of the preceding thrust arc.

Equation 3.23 gives explicitly the variable e+, such that the variables ei for
all i ∈ {2, ..., N} are completely determined, once e1 is given.

In addition, the choice of the parameters Pi for all i ∈ I completely describes
the sequence of intermediate points ri∈1,...,N−1. The decision vector is then de-
scribed with a very few parameters:

Z = [e1, {ki, φi, θ̄i, θ̄j}i∈T,j∈C ] (3.26)

The multi thrust - coast sequence trajectory is then mainly described by the
arc sweep angles θ̄i, the throttling parameter ki of each thrust arc, and the phasing
parameters φi for all arcs.

Then assuming the switching points are given, coast arcs need 1 single variable
and thrust arcs need 2 variables.

We can then also eliminate N equations, as all the positions are determined.
From 3.23, there is now only one equation to use (second or third). We then have
only (NThrust − 1) + 3 equations to solve. The defect conditions to satisfy are
expressed in equation 3.23 and �gure 3.7. The initial condition is on the departure
radius and angular position.

ξ =


ξi

ξr = rn − rf
ξθ = θ̄ −

∑
j=1,N θ̄j

ξT = T̄ −
∑

j=1,N tj

 = 0 (3.27)

With:

ξi =
p2i

p2i+1

e2i+1k2i+1 sinφ2i+1

e2ik2i sinφ2iθ̄2i−φ2i

(3.28)

for all i ∈ T .
Variables ei are given by equation 3.23 for the thrust leg and equation 3.4 for

the coast legs. Variables pi are then given by equations 3.2 and 3.3.

3.4.3 Number of switching points

There is a gain in controllability that goes with the increasing number of switch-
ing and the time duration of the arcs. Including coast arc limits the error in
control compared to the optimal one, as the trajectory is less prone to the model
assumptions.
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Figure 3.7: Defect conditions overview

As the program proposed by Markopoulos[MC95] suggests, a one segment
solution for a particular transfer problem (time of �ight and dates given) may
not in general always exist. Thus he seeks the transfer in the space of feasible
trajectories. Our problem, because of its close resemblance to Lambert's problem,
always allows for a solution, which might however not be a continuous thrust
solution.

The choice of the switching number can be done by increasing it till the
cost bene�t becomes small enough to be considered insigni�cant. The constraint
feasibility is also an argument for increasing the number of switchings. Indeed, for
a given number of revolutions, increasing the number of switching points permits
to get degrees of freedom such that we can reduce boundary constraints violations.
For rendezvous transfer problem, this approach asymptotically approaches the
optimal low-thrust problem.

Figure 3.9 shows that when increasing the number of switchings the �nal
rendezvous ∆V can be decreased. In addition, it also emphasises that it is better
to place a �nal thrust arc to reduce the rendezvous penalty.

On �gures 3.8 and 3.9, the objective function to minimise was, for the purpose
of the illustration, the sum of all consumption and delta-V (the initial and the
�nal impulses). The launch date was kept �xed.

Remark We can reduce the �nal hyperbolic excess velocity either by increasing
the number of revolutions of the trajectory, or by improving controllability by
adding thrust - coast sequences.
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Figure 3.8: In�uence of the number of switchings over the consumption for a
departing leg. Earth-Mars transfer, launch in 2004, time of �ight ranging from
200 to 400 days.

Figure 3.9: In�uence of the number of switchings over the rendezvous manoeuvre.
Earth-Mars transfer, launch in 2004, time of �ight ranging from 200 to 400 days.
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3.5 Optimisation problem

3.5.1 Formulation for the parameterised trajectory problem

Direct transfer problem

The biggest challenge in the resolution is to �nd the switching points that satisfy
the constraints quali�cation, and a cost close to the in�mum.

We then propose to formulate an optimisation problem:

min
z∈Df

J(z) =
∫ tf

t0

Fth(z)dt = ∆Vt(z) (3.29)

under the constraints:

∆V0min ≤ ∆V0 ≤ ∆V0max (3.30)

∆Vfmin ≤ ∆Vf ≤ ∆Vfmax (3.31)

ξ(z) = 0 (3.32)

and the initial conditions:

r(θ0) = r0 (3.33)

θ(t0) = θ0 (3.34)

with z being described by 3.26.
It has been observed that usually this problem leads to a Lambert's problem

solution. The sweep angles of the thrust arcs either reduce to zero or the throttling
parameter tends toward 1. To avoid this undesirable, but interesting case as
it motivates an initialisation algorithm, we added the constraint on the launch
velocity ∆V0 and �nal rendezvous manoeuvre ∆Vf .

RendezVous problem

The formulation is the same as in section 3.5.1, except that the cost includes the
�nal braking manoeuvre.

min
z∈Df

J(z) = ∆Vf (z) + ∆Vt(z) (3.35)

The rendezvous problem is described by constraints on position and velocity.
In the continuous thrust case, the �nal braking manoeuvre usually reduces to
zero. The best solution is selected according to the lowest rendezvous manoeuvre
∆Vf , and the lowest consumption.
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MGA trajectory problem

We can solve the general MGA problem using the approach described in section
2.4.2. The gravity assist is not powered and modelled in the patched conic ap-
proximation. It is then important to study all possible values of V∞ at interior
points to span the search space.

We then consider the minimisation sub-problems:

min
z0∈Df

J0(z0) = ∆V0(z0) + ∆Vt(z0) (3.36)

min
zi∈Df

Ji(zi) = ∆Vt(zi) (3.37)

min
zf∈Df

Jf (zf ) = ∆Vt(zi) + ∆Vf (zf ) (3.38)

under the constraints:

∆V0min ≤ ∆V0 ≤ ∆V0max (3.39)

∆Vfmin ≤ ∆Vf ≤ ∆Vfmax (3.40)

ξ(zi) = 0 (3.41)

and the initial conditions:

r(θ0) = r0 (3.42)

θ(t0) = θ0 (3.43)

Each sub-problem can have a di�erent number of thrust segments. They are
independent from each other following section 2.4.2.

Lastly, among the set of solutions, we keep those, which are feasible and have
a reasonable swing-by altitude. The altitude is calculated using equations 1.19
and 3.15.

The best solution is selected according to the rendezvous manoeuvre ∆Vf , the
launch velocity ∆V0, or the consumption.

3.5.2 Algorithm

To solve the multi-thrust-segment transfer, with or without gravity-assist, we split
the decision vector is local and global variables. The local variables ki, φi and θi
are sought with a local SQP solver. These variables describe the thrust segments.
The remaining variables, or global variables, θ2i describe the sweep angles of each
coast segment. They are sought with a grid search approach.

3.5.3 Local Solver for the Thrust Segments

We introduce the Lagrangian variable vector ν associated with the constraints ξ.
With the necessary conditions of optimality, which express the stationarity of the
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Lagrangian, we get the following system to solve:

F (S) =


ξ(e1, θ̄i, ki, φi)
∂J
∂e1

+ νT ∂ξ
∂e1

∂J
∂ki

+ νT ∂ξ
∂ki

∂J
∂φi

+ νT ∂ξ
∂φi

∂J
∂θi

+ νT ∂ξ
∂θi

 = 0 (3.44)

for all i ∈ T

The derivatives of the constraints can be analytically calculated. A symbolic
computation tool, or an automatic di�erentiation code such as ADiMAT[BLV03],
permits to overcome a great amount of calculation.

Matrix of equation 3.45 shows the parts of the Jacobian matrix which can be
analytically calculated, and those which pose more problems or are the result of
transcendental equations and require a numerical computation (noted nc). The-
oretically all the elements of the Jacobian matrix (constraints) can be calculated,
only the constraint on the time of �ight and gradient of the performance index
can pose problem, as we have to derivate an integral.

∇xξ =


ξi=1..n

ξr
ξθ
ξT

 =



nc ∂ξ1
∂x1

∂ξ1
∂x2

nc ... nc nc

nc nc ∂ξ2
∂x2

ξ2
∂x3

... nc nc

nc ... nc nc

nc nc nc nc ... ∂ξn−1

∂xn−1

∂ξn−1

∂xn

nc nc nc nc ... nc ∂ξr
∂xn

nc nc nc nc ... nc nc

0 ∂ξθ
∂x1

∂ξθ
∂x2

∂ξθ
∂x3

... ∂ξθ
∂xn−1

∂ξθ
∂xn


(3.45)

With:
xi = [ki, φi, θi] for all i ∈ T

The SQP solver SNOPT [GMS08] has been used to solve the NLP minimisa-
tion problem. SNOPT, through the constraint infeasibility procedure, allows to
safely evaluate the functions provided linear constraints are given. In addition, it
converges quite e�ciently because of an augmented Lagrangian approach.

3.5.4 Global Search for the Coast Segments

Completely solving problem 3.29 for z usually results in poor solutions. We were
never sure a better solution might exist for the case considered.

To get the a-priori best trajectory, the global search space consists in the set
of coast arcs sweep angle variables θ̄j , j ∈ C. Considering m coast arcs, and k
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regularly spaced point in [0, θ̄], we construct a m× k-grid for θ̄j . For each point
of the grid, the local solver seeks the optimal parameters of the thrusting legs.
One can decide to stop the algorithm with the �rst solution, or decide to look
down the m× k-grid to �nd the best optimum. When constructing the grid, it is
important to consider the case θ̄j = 0 as it indicates whether we introduced too
many switching points. The upper bound of the search grid can be reduced to
[0, 2π] for multiple revolution transfers.

Another option investigated is to use promising heuristic algorithm such as
the Particle Swarm Optimisation algorithm (see section 2.3.2).

3.6 Conclusions

A continuous thrust model has been presented and studied. Coasting arcs have
been inserted in the trajectory to produce Thrust - Coast sequence trajectories.
Switching conditions have then been derived. We demonstrate that we need a
very small number of parameters to describe the multi thrust - coast sequence
trajectory. An optimisation problem for the rendezvous case has been introduced.
An optimisation process has been designed to account for multi-gravity assist
trajectories where interplanetary legs are not necessarily uniquely �xed by the
dates of planet encounters. The model parameters allow di�erent thrust pro�le
regardless of the time of �ight or the planet position, as would be the case with
Lambert's problem arc or other continuous thrust models.

The optimisation algorithm used a SQP solver, and proved to be very robust
and fast. The sequences can be easily evaluated.

The control provided by the model respects the dynamics. It can be used as
an initial guess for a low-thrust trajectory problem considering fewer restrictions
(direct method solver with low-thrust dynamics, or see chapter 5).

Among the perspectives are the choice of the number of switching points
according to an optimality criterion or an implicit switching function. To model
3-D trajectories, inclination corrections and out of plane motion can be performed
at each coast - thrust junction with a small impulsive manoeuvre.

Algorithm presented in 2.4 can be used to �nd LT-MGA trajectories. This is
explained in the next examples sections.





Chapter 4

Applications

4.1 Earth - Mars rendezvous transfer

As a test we look for the best direct transfer from Earth to Mars, with rendezvous
terminal conditions. We restrict the transfer to less than a revolution, with only
2 switching points or 2 thrust arcs.

Variable Lower Upper Step
Departure (MM/YYYY) 01/2001 01/2010 20

T EM (days) 150 400 20
∆Vf (km/s) 0 2.5 -
Switch (-) 2 2 -

Table 4.1: Search space characteristics

As impulsive manoeuvre trajectories are more delicate to reproduce with low-
thrust propulsion, we favour low cost impulsive manoeuvres. Thus, the solution
has been selected according to the lowest rendezvous manoeuvre, and then the
lowest impulse ∆Vimp ∗. Various other criteria can be used such as the lowest
consumption, time of �ight, or thrust level.

It as been observed that a harsh constraint on ∆V0 favours a full thrusting
solution.

As expected, the solutions found di�er according to the constraint on ∆Vf .
It is not sure our optimisation strategy is the best when using the solution as
initialisation for an indirect method program. We should keep track of all the
solutions found.

∗ ∆Vimp = ∆V0 + ∆Vf
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Figure 4.1: Earth - Mars transfer trajectory

Figure 4.2: Earth - Mars transfer control

Table 4.2 displays three di�erent solutions. Solution 2 represents the trajec-
tory with the lowest rendezvous ∆V , while the trajectory with the lowest overall
∆V is given by solution 3.

Other solutions might exist for a di�erent number of switchings. Figures 4.3
and 4.2 display solution 1 trajectory and control.

The maximum amplitude of the control gives information for the thruster
design. According to �gure 4.2, thrusters of 0.3N of thrust and an Isp of 2500s
for an initial mass of 1000kg permit to follow this trajectory.

However, it is not clear how an indirect solver would deliver the trajectory. We
must favour solutions with a low-thrust level variation during burning; otherwise
we should expect a di�erent number of burn arcs, or shorter burning time for the
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Figure 4.3: Earth - Mars transfer cost map

Sol. 1 Sol. 2 Sol.3
T0 (dd/mm/20yy) 09/06/05 11/05/03 06/10/09

T EM (days) 390 370 330
∆V0 (km/s) 2.93 2.63 2.64

∆Von−going (km/s) 2.74 3.18 2.38
∆VF (km/s) 0.82 0.141 0.649

∆Vimp (km/s) 3.75 2.77 3.29
Σ∆V (km/s) 6.49 5.95 5.67

Table 4.2: Solutions

thrusters.

4.2 Earth - Venus - Mercury transfer

The following example is a low-thrust multi-gravity assist problem. This example
has been selected for its di�culty toward the rendezvous manoeuvre. Because
of the high speed of planet Mercury, the �nal rendezvous manoeuvre is usually
important. A method to reduce it, is to allow multiple gravity-assists as in the
MESSENGER mission, or BepiColombo with an EVVYY planet sequence (Earth
- 2 Venus - 2 mercurY). However, such a multiple gravity assist scenario will not
be considered here. Rather we seek the EVY trajectory (Earth Venus mercurY)
allowing the lowest rendezvous manoeuvre. As a preliminary design tool we are
mostly interested in a launch window, mission duration and overall consumption.

The algorithm seeks the minimum overall V trajectory. The solution obtained
can then be optimised with a tool using an indirect formulation.

To reduce the breaking manoeuvre cost and the maximum thrust acceleration,
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Upper Step
Departure (Year) 2002 2003 10 days
T EV (days) 150 250 10
T VY (days) 400 700 10

(km/s) 0 5 -
(km/s) 0 5 -

V V (km/s) 5 10 0.5

Table 4.3: Search space characteristics

it is important in low-thrust propulsion to allow multiple switching times and
multiple revolution transfer. The "good" number of revolutions depends on the
time of �ight and the mean orbital period between the planets. Along with
this strategy, 2 switching points are used per revolution or 1 coast period per
revolution. Indeed, a long time of �ight for a short transfer distance tends to
increase consumption. But long transfer distances might tend to increase coast
phases. In our case, considering an average thrust pro�le, this can be seen from
equations 3.9, 3.14 and the averaged term:

(
dθ

dt
)−1 ≈ T

θ

Thus, for the VY phase, the estimated number of full revolutions varies from
2 to 5.

Let's formulate the problem for an use with the algorithm of section 2.4. For
the rendezvous problem we have the 2 minimisation sub-problems:

JEV = ∆V0 + ∆V EV
lowthrust (4.1)

ψEV (ti) = V∞(ti)− V∞ (4.2)

and:

JV Y = ∆V V Y
lowthrust + ∆Vf (4.3)

ψV Y (ti) = V∞(ti)− V∞ (4.4)

with ψEV and ψV Y de�ning respectively the terminal and initial conditions, while
V∞ is a linking variables. ∆V0 and ∆Vf de�ne respectively the launch manoeuvre
and the braking manoeuvre. ∆Vlowthrust de�nes the low-thrust consumption on
the segment.

Because the minimal solution for the global problem is not generally the solu-
tion minimizing the 2 sub-problems separately, variable V∞ evolves in a range on
values. We have then many legs reaching Venus for di�erent dates ti and di�erent
hyperbolic excess velocities V∞. These converging solutions generate a new sub
space of initial date for the second phase VY.
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Model Sauer[Sau97]
T0 (dd/mm/20yy) 31/07/02 27/08/02
TF (dd/mm/20yy) 11/04/04 22/12/04

T EV (days) 200 185
T VY (days) 400 663
VY revolution 2.9 5.7

Launch V∞ (km/s) 1.98 2.31
Final V∞ (km/s) 4.9 0.00

pmf 0.34 0.275
Swing-by V∞ (km/s) 6.50 5.58
Swing-by rad. (km) 6764 -

Table 4.4: modelled and optimal solutions

The algorithm found 952 converging solutions for the EV phase. As some
solutions for the EV phase have the same date of encounter with Venus and
the same �nal V∞, the points to start from in the VY phase are reduce. This
e�ciently reduces computational time. Thus, we have 185 initial points {ti, V∞}
for the phase VY. We then �nd 360 converging solutions for the VY phase. With
all possible combinations, these lead to more than 1400 complete EVY solutions,
feasible or infeasible.

Among the possible solutions, we remove those having maximum thrust ac-
celeration above 1 mm/s2. Because this is a wide margin constraint, which only
removes unreasonable trajectories, we have a constraint on the average accel-
eration. This constraint is given by the thrusters' capabilities. The thrusters
considered have a 3kW power unit and provide a maximum acceleration of 0.3
mm/s2. The VY leg is the most critical for this constraint. Most of the low num-
ber of revolution legs have been pruned out, beside the low braking manoeuvre
cost ∆Vf , as low as 0.5km/s.

The complete solution has then been selected according to the lowest charac-
teristic velocity (sum of ∆V0 and ∆Vf ) and the lowest consumption. It is very
close to the one published by Sauer [Sau97] for the same thrusters performance.
The solution of [Sau97] presents 5 coast periods (10 switching times) on the VY
phase. However, our case needs a higher launch energy, and in addition the out
of plane correction is only done during the swing by.

The solution of Sauer [Sau97] presents 6 coast periods (12 switching times) on
the VY phase, but the thrusters used provide an acceleration of 0.3 mm/s2.

4.3 Earth - Mars - Vesta - Ceres

The Earth to Vesta and Ceres mission (DAWN mission [RFRR04]) is the most
recent low thrust mission. It is also the �rst mission to visit both an asteroid and
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Figure 4.4: Earth - Venus - Mercury transfer trajectory

Figure 4.5: DAWN original trajectory

a dwarf planet.
The spacecraft is �rst targeting asteroid Vesta, after a Mars gravity assist. Af-

ter nearly 7 months in orbit around Vesta, for science experiments, the spacecraft
will target the dwarf planet Ceres.

We allow a maximum of 1 complete revolution per phase, as in the original
mission. As before we allow 2 switching times per revolution. To simplify our
approach we consider the orbiting time around Vesta variable. That way we can
independently optimise the transfer from Earth to Vesta and from Vesta to Ceres.
We only limit the orbiting time to be between 3 and 10 months.

In the original mission, time margins have been added during the transfers as
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Upper Step
Departure (Year) 2007 2008 10 days
T EM (days) 400 700 10

T M.Vesta (days) 800 1200 25
T Vesta.Ceres (days) 800 1200 25

V0 (km/s) 0 5 -
Vf (km/s) 0 5 -

Mars V∞ (km/s) 3 8 0.5

Table 4.5: Search space characteristics

TEARTH (dd/mm/20yy) 25/06/07
TV ESTA (dd/mm/20yy) 28/08/11

T EM (days) 700
T M.Vesta (days) 825
C3 (km2/s2) 1.65

Vesta V∞ (km/s) 4.14
Swing-by V∞ (km/s) 6.50

pmf 0.38
Max Acc (mm/s2) 0.17

Table 4.6: Earth - Mars - Vesta trajectory

safety measures and to prevent any thrust issues. This has not been taken into
account here.

These results are in line with the original mission scenario. However the �nal
V∞ at Vesta is high, and more switching times should be added on the Mars to
Vesta leg to reduce it.

The automated approach permits to identify 2 opportunity windows for the
Vesta to Ceres transfer: Nov 2011 and Aug - Nov 2012. Here, the �rst window has
been selected because of the good opportunities for the Earth to Vesta transfer.
Thus, the orbiting time found around Vesta is about 4 months.

4.4 GTOC3 problem

For the third edition of GTOC (section 3.1.2) we used the low-thrust model de-
scribed above, and the pruning strategy de�ned in chapter 2.4. In a systematic
approach, we thus computed:

• E - * : all the legs coming from Earth to each of the asteroids on the list,
with:

� launch date ranging from 2016 to 2020
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Figure 4.6: Earth - Mars - Vesta - Ceres transfer trajectory

� initial hyperbolic velocity not exceeding 0.5km/s

� time of �ight comprised between 0.5 to 2 years

� objective function de�ned as a combination of the consumption and
the initial launch velocity.

• * - * : all asteroid-to-asteroid legs, with:

� starting date ranging from 2016 to 2034

� initial and �nal hyperbolic velocity minimised to zero

� time of �ight ranging from 0.5 to 2 years

� objective function de�ned as the consumption

• * - E : all the leg coming from an asteroid to reach planet Earth, with:

� starting date ranging from 2016 to 2034

� initial hyperbolic velocity minimised to zero

� �nal hyperbolic velocity minimised to zero

� time of �ight ranging from 0.5 to 2 years

� objective function de�ned as a combination of the consumption and
the breaking manoeuvre ∆V

Besides these search conditions, the maximum acceleration was added to the
model.

This approach might seem quite expensive with probably non useful calcula-
tions. However, once we computed and recorded all the body to body transfers,



4.4. GTOC3 PROBLEM 71

Data base elements
Total number of legs found AST-AST 3380

Total number of legs found AST-EARTH 3447
Total number of legs found EARTH-AST 1457

Building constraints
Maximum Mean acceleration 0.000075 m/s2

Maximum Abs. acceleration 0.001000 m/s2

Thruster Power: 2206.35 W
Maximum dV1 3000.0 m/s
Maximum dV2 3000.0 m/s

Number of points removed 5024 / 10274
Phase: Construction of the tree

Phase 2 2079 nodes
Phase 3 14892 nodes
Phase 4 25046 nodes

Number of solutions found 25046

Table 4.7: Statistics of the algorithm

the construction of a list of solutions requires only post processing of the data
recorded with a dynamic programming algorithm. We can easily list the possible
solutions for di�erent constraints or conditions without much calculation.

Tables 4.7 and 4.4 list the �rst best solutions. Some sequences appear many
time as they account for di�erent date or time of �ight. During the competition,
we discarded a-priori non interesting asteroids to reduce the data and computation
time.

In addition, we can also impose a swing-by of earth for the ith item of the
sequence without much calculation. Also, we obviously note that di�erent con-
straints produce di�erent scenarii.

The only di�culty with the approach is the somewhat cumbersome data to
handle. This is however easily handled on today's computer environments.

Inserting an Earth swing-by to the third solution provides the 5th GTOC3
solution. It is important to list and test as many sequences as possible and not
only test the apriori best solution delivered by the model.

Figure 4.4 shows a trajectory example. No swing-bys have been considered on
this example.

The sequence we found was: E-96-E-88-49-E
As the results of the competition show, to get the maximum value of the

objective function, we should have had more Earth swing-bys.
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seq. nb sequence

1 3 86 98 59 3
2 3 86 98 59 3
3 3 98 106 59 3
4 3 86 98 59 3
5 3 86 98 59 3
6 3 86 98 59 3
7 3 98 106 59 3
8 3 86 98 59 3
9 3 86 98 59 3
10 3 98 106 59 3
11 3 86 98 59 3
12 3 86 98 59 3
13 3 86 98 59 3
14 3 86 98 59 3
15 3 98 106 59 3
...

Table 4.8: List of Di�erent Scenarii

Figure 4.7: Trajectory for GTOC3 without Earth swing-bys
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Presentation of Part II

This chapter, and the following, are the second part of the research. They present
a completely di�erent approach from that followed in previous chapters. From
now on, we focus on local optimisation procedures to �nd locally optimal swing-by
scenarii. This is di�erent from the �rst part, as here we determine the scenario
only a-posteriori, as the result of a post-optimisation analysis.

The solution method presented in chapters 2, 3 is great in the general case
when we are looking for a sequence of particular bodies such as comets and as-
teroids which do not necessarily present gravitational properties and we are not
looking for gravity assists. When selected bodies have a strong and measurable
gravitational �eld such as planets, other optimisation methods taking advantage
of these dynamics can be used.

In this chapter 5 we review and examine local optimisation methods and
present their limitations for the problem considered. Next chapter 6 will present
another local optimisation method which could be the basis of new solution meth-
ods for the problem.
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Chapter 5

Review of Optimal Control

Methods applied to

Low-Thrust Interplanetary

Trajectories

5.1 General Problem formulation

5.1.1 Problem Description

Optimal Control Problem Consider the problem of transferring a spacecraft
from an initial state (X0, t0) to a �nal state (Xf , tf ) in a given time of �ight
T = tf−t0 > 0. The state of the spacecraft is composed of its position R(t) ∈ R3,
its velocity V(t) ∈ R3 and its mass m(t) ∈ R. The control u(t) ∈ R3 provides the
thrust and steering of the spacecraft. We are concerned with the minimisation of
the quantity of propellant required (thus maximising the �nal mass).

The propulsion of the spacecraft is done through an electric propulsion system,
for which the Speci�c Impulse is noted ISp and the Thrust Force is noted FTh.
Then, the spacecraft is under the in�uence of the Sun gravitational force �eld and
the gravity accelerations of the planets. The dynamics are formulated with the

77



78
CHAPTER 5. REVIEW OF OPTIMAL CONTROL METHODS APPLIED TO

LOW-THRUST INTERPLANETARY TRAJECTORIES

Cartesian model:

f(x,u; t) =
d

dt

R
V
m



=


V

−µSUN R
‖R‖3 −

∑9
i=1 µi

(
R−Ri

‖R−Ri‖3
+ Ri

‖Ri‖3

)
+ FThu

− FTh
g0ISp

‖u‖


(5.1)

with the initial conditions, de�ned at initial time t0:

X(t0) = X0 (5.2)

This model has been chosen because of its simplicity for handling gravitational
perturbations.

We note nx = 7 the dimension of the state vector.
The �nal time tf equality constraints ψ : Rnx → Rnk , nk ∈ N, are:

ψ(X(tf ); tf ) = 0 (5.3)

, We admit that the Jacobian ψx(x) has full rank.
We have an additional constraint for the limited thrust pro�le:

‖u(t)‖ ≤ 1 (5.4)

We note nu = 3 the dimension of the control vector. We de�ne U as the admissible
set for the control u.

The cost functional J : Rnx×U → R to minimise, under the Bolza form[Bol33],
is:

J(x,u) = φ(x(tf )) +
∫ tf

t0

L(x,u; t)dt

= −m(tf )
(5.5)

This represents the maximum �nal mass problem. The cost can be indi�erently
formulated either as an integral cost (φ = 0), or a terminal cost (L = 0). We here
choose the terminal cost formulation (L = 0).

We suppose f is smooth on Rnx∗ × U . We suppose functions φ and L are
continuously di�erentiable with respect to their arguments.

For 2-body and 3-body problems, the solution can be found analytically in
some cases, and are essentially well known. Of course, for an N-body interplane-
tary transfer (N > 3) problem, we are hardly simultaneously under the in�uence
of more than 3 bodies. However, in comparison with the 3-body problem (and its
approximations RTBP, CRTBP), we cannot work in a restricted frame, and want
we be as general as possible.



5.2. DIRECT PROBLEM FORMULATION 79

5.1.2 State of the art

Some attempts to solve the general multi-body dynamical transfer problem have
already been made.

An interesting problem is the problem of escape and capture. Transferring
a spacecraft from one planet to another, considering their respective gravity
�eld is challenging. The spiralling movement around the planets, followed by
an interplanetary phase, makes optimisation di�cult. Most attempts [RO08,
NVB01, VN00] consider a patched conic approximation. The trajectory is di-
vided into segments. Other approximations consider curve �ts[Klu02], averaging
techniques[Gao07], or low-thrust models for the spiralling capture phase. This
escape and capture problem will be considered in this study as our benchmark
problem.

In [JCGK01] was performed a gravitational capture at Mercury. Using the
Sun gravity, weak ballistic capture conditions at Mercury were derived.

A special case of trajectory optimisation in multi-body dynamics concerns
the case of R3BP. The R3BP provides the means to study the capture phe-
nomenon[KP95, Gay88]. In [Rus07], the primer vector theory is used, within
a global search procedure, for an Europa DRO transfer and an Earth - Moon
transfer.

In [Whi01, WS02] the author optimises the trajectory in the multi-body dy-
namics. According to these articles, the algorithm is capable of automatically
�nding gravity assists. However, �nding an e�ective swing-by is not a simple task
as an appropriate initial guess is needed.

There are basically two formulations that can be used to solve the optimal
control problem (OCP) 5.1, 5.4, 5.5 [Bet98]: direct methods and indirect methods.

5.2 Direct Problem Formulation

We said we have a direct method when the change in the cost function is directly
related to the change in the control or the decision vector.

5.2.1 Formulation

Suppose we want to minimise the objective function given by eq. 5.5, under the
dynamical constraints given by eq. 5.1. Consider also the dynamical constraint
on u, and the terminal state constraints ψ(x(tf ),xf ) given by eq. 5.3, with initial
condition x(t0) = x0.

The time is split into N sub-intervals. The instants ti are de�ned at each mesh
point: t0 < t1 < ... < tN .
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Nodes:                i                   i+1                    i+2                    i+3                     i+4

xi+1 = x(ti+1)

xi+3 = x(ti+3) 

xi+2 = x(ti+2) 

xi = x(ti)

xi+4 = x(ti+4) 

Figure 5.1: Mesh description.

We note:

xi = x(ti)

ui = u(ti)

The decision vector is thus composed of state variables xi and control variables
ui at di�erent dates ti ∈ [t0, tf ].

The optimal control problem (OCP) is turned into a parameter optimisation
problem (POP) or NLP problem (transcription). The values of the state and the
control at a mesh point are the NLP variables.

We have then to solve defect equations[TC95] at each mesh point i = 1, ..., N .
And:

ξi = xi+1 − xi −
∫ ti+1

ti

f(xi,ui; t)dt (5.6)

Because the state is part of the decision vector, the integral must be approxi-
mated to account for the decision vector (�gure 5.2). The basis for transcription
methods is to replace the ODEs with NLP variables and defect conditions[Bet98].

Clearly, one could have suggested to use only the control ui as NLP vari-
ables[Hul97]. However this a-priori interesting approach conceals the problem of
computing derivatives. In the most general case, these derivatives can only be
computed by �nite di�erences, thus requiring high precision integration of the
dynamics, and problems of convergence.

The integral is thus approximated by a quadrature, such as:

• Euler, Trapeze collocation [BC95]

• Runge-Kutta, Simpson transcription [EC92, SC94]
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Figure 5.2: Transcription. The points xL, xC and xR must be adjusted to nullify
the defect condition on the slope at the center.[TC95]

• Gauss-Lobatto (Pseudo Spectral methods) [FR02, Hun07]

The higher the order of the approximation, the better the accuracy[HC96, FR02].
Usually we assign the term collocation to the Simpson rule, and direct transcrip-
tion to any implicit integration rule[Hul03].

The general formulation is:

ξi = xi+1 − xi −
n∑
j=1

ωjfj (5.7)

with:
fj = f(x,u; tj) tj ∈ [ti, ti+1]

where the constants ωi ∈ R are given by the integration rule scheme.
For example in the trapeze transcription:

ξi = xi+1 − xi −
hi
2

(f(xi+1,ui+1; ti+1)− f(xi,ui; ti)) (5.8)

The decision vector can also include midpoint values for the state xm and
the control um. Typically pseudo spectral methods use the root of a particular
polynomial to de�ne the mid-points over each sub-interval [ti, ti+1]. One tremen-
dous advantage of pseudo-spectral methods is the possibility to link the NLP
multipliers to the OCP costates[Hun07, BHTR06, FR01].

To reduce the parameter space dimension, we can remove the control descrip-
tion from the decision vector. The di�erential inclusion method consists in elim-
inating the control from the dynamics. We are replacing the usual ODEs seeking
for a control, by ODEs providing the attainable set for the control[Sey94]. This
method has been applied successfully for space trajectory problems [CCW94].

Recent tools taking advantage of the sparse structure of the Jacobian can solve
this problem quite e�ciently (SNOPT, IPOPT [WB06]).
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5.2.2 Limitations

The main advantages of direct methods, for the problem considered, are that:

• they do not need an explicit formulation of the necessary conditions of
optimality.

• they are not very sensitive, because the control history is guessed. We do
not have to use the Euler-Lagrange equations.

This approach has however 2 major �aws: the satisfaction of conditions of opti-
mality, and the accuracy of the solution.

Inadapted Meshing

Direct transcription methods are initially seen as approximation methods. The
meshing should be tailored to follow the dynamics as closely as possible. In this
case, we can either have a very high order of interpolation, or an adaptive mesh.

Depending on the transcription, some algorithms[GFR08] adapt the mesh dur-
ing the iterations. Laurent-Varin[LVBBT07] uses the Runge-Kutta scheme, and
adapts the mesh formulating an optimal re�nement problem. Indeed, he adds
mesh points, and tries to minimise the number of subdivision on each interval
to respect a maximal local error threshold. Other algorithms[BH98], and codes
(SOCS [Bet], RIOTS95[SPC97], DIDO[Ros03]), update the mesh only after a so-
lution has been found, to start the solver again. Often the reference for mesh
update is the knowledge of the geometrical structure of the control.

Mostly, these approaches follow only the order of smoothness of the solution.
Although these approaches reduce the error in some metric from the continuous
solution, the meshing is not determined by an optimal policy.

Lack of Optimality

In addition, the optimality equations are never integrated, and the accuracy of
the dual problem might never be met. We may be concerned by the optimality
of the control, and expect only a sub-optimal control[Hul03]. The control is often
only �rst order accurate. We can expect a second order O(h2) approximation of
the optimal continuous solution under conditions of coercivity and smoothness of
the solution, depending on the quadrature rule[Eng06, DHV01]. However, due
to the bang-bang structure of the optimal control, these conditions do not hold.
Many published results present a control amplitude which is hardly bang-bang.
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It is then not sure whether direct transcription is reliable enough for handling
swing-byes, and taking advantage of the swing-by dynamics (equation 5.1). This
point should however be explored more closely.

5.3 Indirect Problem Formulation

For indirect methods, the control is implicitly given by variational equations. It
is the solution of an ODE (Euler-Lagrange equation). The only unknowns of the
problems are some initial and �nal conditions for the ODE.

5.3.1 Examples of Low-Thrust Trajectory optimisation

In [Rus07], the author performs a global trade-o� study. He does not immediately
consider the optimal control structure, but supposes the control is bang-bang on
the Pareto front. Thus, he does not need to solve the Two Point Boundary
Value Problem (TPBVP) for the costate. Then a random initialisation of the
initial costate variables permits to �nd solutions that satisfy the transversality
conditions.

In [Tad04], a solution for the VSI (Variable Speci�c Impulse) problem is used.
This solution admits an unbounded control. It is used to estimate initial costate
variables for the original CSI problem (Constant Speci�c Impulse). Thus, an
iterative process (using a Powell method) permits to �nd the optimal control.
The switching function is used, with a forward integration of the state equations
to satisfy the terminal state constraints.

In [BE02], the author uses continuation and smoothing methods to �nd the
optimal bang-bang structure of the control. In [Ber01], the author uses a decom-
position technique to tackle the low-thrust multi-gravity-assist trajectory prob-
lem. He does not integrate the dynamical equations during the swing-by. His
approach is probably state-of-the-art for indirect algorithms considering interme-
diate swing-bys (GTOC 3). However, beside the requirement to know the planet
sequence apriori, the trajectory is not reliable close to planets, because of the
patched conic approximation.

Providing a planet sequence only gives an optimal solution for the problem
with these speci�c swing-by constraints. A better solution might exist, which
considers di�erent planets. This is the focus of next chapter 6.

5.3.2 The Maximum Principle

Minimisation problem

Consider the objective function given by equation 5.5, and the problem description
of section 5.1. The Lagrangian (or augmented cost functional) L : Rnx×Rnx×U →
R is the cost functional augmented with the state dynamical constraint and the
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terminal constraints assigned with Lagrange multipliers ν ∈ Rnc:

L = φ(x(tf )) +
∫ tf

t0

λT (f(x,u; t)− dx
dt

)dt+ νTψ(x(tf ); tf ) (5.9)

The costate vector λ(t) ∈ Rnx play the role of dynamical Lagrange multipliers
assigned to the dynamics.

We use the Pontryaguin Maximum Principle to �nd an optimal control. Pon-
tryaguin Maximum Principle [Pon53] refers to optimisation around a speci�c tra-
jectory. Note that we use the terminal cost formulation (L = 0), while the original
formulation of the Maximum Principle uses an integral cost. Had we wanted to
use the integral formulation, we would have added an additional state equation
and an additional costate variable λ0.

Theorem 5.3.1 (Pontryaguin Principle). [Pon53] Let u(t), t0 ≤ t ≤ tf be an

admissible control such that the corresponding trajectory x(t) which begins at the

point x0 at the time t0 passes, at some time tf through a point of line Π. In order

that u(t) and x(t) be optimal it is necessary that there exist a nonzero continuous

function λ(t) corresponding to u(t) and x(t), such that:

1. ∀t ∈ [t0, tf ], the function H(x(t), λ(t),u) = λT f(x,u) of the variable u ∈ U
attains its maximum at the point u = u(t)

H(x(t), λ(t),u(t)) = sup
u∈U

H(x(t), λ(t),u)

2. at the terminal time tf the relations

λ(tf ) ≤ 0

sup
u∈U

H(x(tf ), λ(tf ),u) = 0

are satis�ed.

Furthermore, it turns out that if λ(t), x(t) and u(t) satisfy the Euler-Lagrange

equations and the �rst condition, the second condition can be veri�ed at any time

t ∈ [t0, tf ].

The function H(x(t), λ(t),u) is usually called the Hamiltonian.
We call extremal a solution (x, λ,u) of the Euler-Lagrange equations.
Di�erentiating the Lagrangian L provides the necessary conditions of opti-

mality, such as the Euler-Lagrange equations and the transversality conditions.
A second order check is often necessary to con�rm that the solution is a minimum.

As L = 0 (de�ned in equation 5.5), we do not use λ0, and the Hamiltonian is
simply:

H(x, λ,u; t) = λT f(x,u; t) (5.10)
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The Euler-Lagrange equations give states and costates dynamical ODEs:

dxT

dt
=
∂H(x, λ,u; t)

∂λ
(5.11)

dλT

dt
= −∂H(x, λ,u; t)

∂x
(5.12)

We shall note F : Rnx × Rnx × U → R2nx the problem dynamics:

F(x, λ,u; t) =
d

dt

[
x
λ

]
(5.13)

The optimal control u∗ is given by the minimisation problem:

u∗ = arg min
‖u‖≤1

H(x, λ,u; t) (5.14)

The control u∗ is bang-bang[Ber01].

Transversality conditions

The terminal state constraints are transposed in the dual space to completely
set the problem. As dates t0 and tf are �xed, we have no conditions on the
Hamiltonian H.

Transversality conditions are conditions on the initial and �nal costate vector
values. Noting TxM0 and TxMf the tangent hyperplane [Pon53][Tre07] to the
initial and �nal space M0 and Mf , such that:

M0 = {x s.t. φ(x, t0) = 0} (5.15)

Mf = {x s.t. ψ(x, tf ) = 0} (5.16)

TxM = {x, < x,∇X >≥ 0} (5.17)

We have:

λ(t0) ⊥ TxM0 (5.18)

λ(tf )− ∂φ

∂x
(tf ) ⊥ TxMf (5.19)

These equations explain the term Transversality conditions. With φ = 0, and
the linear dependancy of λ0 and λf on M0 and Mf , we write:

λ(t0) ∈ Rnx (5.20)

λ(tf ) =
∂φ

∂xf
+ νT

∂ψ

∂xf
(5.21)

After simpli�cations, in accordance with the Lagrangian di�erential, we de�ne
the constraint on the costate vector at terminal time:

τ(x, λ, ν) =
∂m(tf )
∂xf

+ νT
∂ψ

∂xf
− λ(tf ) (5.22)
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The TPBVP can be solved e�ciently using a simple or multiple shooting
algorithm [Ber01]. The roots are found using, for example, a simple Newton-
Raphson's method. In this case, the convergence can be highly improved by
providing the Jacobian.

5.3.3 Numerical derivatives

The costate vector gives the sensitivity of the cost wrt the current state vector.
Up to �rst order, a deviation of the current extremal state x∗(t) of amount δx(t)
produces the change:

δJ∗(x∗,u∗; t) = λ(t)T δx(t) (5.23)

This simple equation will be helpful to understand the limitations of indirect
methods. Equation 5.23 also provides a mean to evaluate the derivatives.

The Jacobian of the problem can be evaluated quite precisely, and can improve
convergence while �nite di�erences fail[ZO05]. We use a sensitivity matrix and
construct a state/costate transition matrix[BH75, Bat01]. Denoting Φ(t, t0) the
(2nx)× (2nx) transition matrix, we have:

dΦ(t, t0)
dt

=
∂F
∂S

Φ(t, t0) (5.24)

Φ(t0, t0) = I (5.25)

Where: S = [xT , λT ]T .
Using equation 5.1, and the Gravity Gradient Matrix G(µ,R) [Bat01], we

have:

∂F
∂S

=



0 I3×3 0 0 0 0
G(µ,R) 0 −FTh

m2 0 0 0
0 0 0 0 0 0

−∂GλV
∂R 0 0 0 −G(µ,R) 0
0 0 0 −I3×3 0 0
0 0 −2FThλm

m3 0 0 FTh
m2


(5.26)

The transition matrix can be written:

∂S
∂S0

=



ΦR,R ΦV,R Φm,R ΦλR,R ΦλV ,R Φλm,R

ΦR,V ΦV,V Φm,V ΦλR,V ΦλV ,V Φλm,V

ΦR,m ΦV,m Φm,m ΦλR,m ΦλV ,m Φλm,m

ΦR,λR ΦV,λR Φm,λR ΦλR,λR ΦλV ,λR Φλm,λR

ΦR,λV ΦV,λV Φm,λV ΦλR,λV ΦλV ,λV Φλm,λV

ΦR,λm ΦV,λm Φm,λm ΦλR,λm ΦλV ,λm Φλm,λm


(t,t0)

(5.27)

Thus, to evaluate the Jacobian of the �nal constraint on X(tf ) with respect
to the initial costate vector λ(t0), we use:

∂Sf
∂S0

= Φ(tf , t0) (5.28)
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Then for the constraints we only need the left lower part of Φ:

∂xf
∂λ0

=

ΦR,λR ΦR,λV ΦR,λm

ΦV,λR ΦV,λV ΦV,λm

Φm,λR Φm,λV Φm,λm


(tf ,t0)

(5.29)

∂ψ

∂λ0
=

∂ψ

∂xf

∂xf
∂λ0

(5.30)

For the transversality conditions:

∂λf
∂λ0

=

ΦλR,λR ΦλR,λV ΦλR,λm

ΦλV ,λR ΦλV ,λV ΦλV ,λm

Φλm,λR Φλm,λV Φλm,λm


(tf ,t0)

(5.31)

∂τ

∂λ0
=

∂τ

∂xf

∂xf
∂λ0

+
∂τ

∂λf

∂λf
∂λ0

(5.32)

Equations 5.30 and 5.32 provide the gradient for the OCP problem.
This approach has been successfully used in [Oly07a], using the Primer Vector

Theory.

5.3.4 Limitations

Sensitivity at Swing-bys

The sensitivity of the method is due to the Euler-Lagrange equations. Numeri-
cally, we can observe this di�culty by observing the costates dynamic.

Figure 5.3 depicts the costate vector dynamics computed along the Voyager 2
trajectory. To obtain this costate vector history, we integrated the Euler Lagrange
equations, for each unit initial solution vector, along the state trajectory. As the
spacecraft does not thrust along this trajectory, the value of the initial costate
vector is not important to observe the behaviour of the costate. We can indeed
consider the trajectory optimal for the maximum mass problem.

The sensitivity outside and inside the swing-by planet SOI, to account for
the di�erence of change in the dynamics, is compared. In equation 5.26, the term
G(µp,R−Rp) becomes predominant in front of G(µ,R). There is also a di�erence
in scale between G and ∂G

∂R of the order of ‖R−Rp‖2. The small duration of the
swing-by makes the costate dynamics change rapidly of many orders of magnitude.

The states are rather steady. This is not the case for the costate variables.
Because any �nal cost function is very sensitive to a swing-by condition, the
value of the costate variables at the swing-by gets high values (see equation 5.23).
Figure 5.3 outlines the numerical di�culty appearing when the dynamics change.
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Figure 5.3: Costate dynamics along the Voyager 2 optimal trajectory

Note that with the patched conic approximation and a swing-by model[Ber01],
we avoid any swing-by peak because the swing-by dynamics do not exist.

These di�erent behaviours, between the state and the costate dynamics, make
the resolution of the ODE related to the indirect TPBVP imprecise, and the state
transition matrix φ(t, t0) inaccurate. The Jacobian computed with the integration
becomes ill-conditioned. A low condition number ensures that the computer has
su�cient digits to handle the small di�erences in scale over a long time horizon.
This is a source of discrepancy that prevents any solver from converging properly.

Robustness

The di�culty of this method is the convergence and robustness. A good initial
estimation of the Lagrange multipliers is necessary. As initialisation methods
are not readily available, �nding an initial guess that would lie in the radius of
convergence of a solution is a terrible task. Recently, Graichen and Petit[GP08]
proposed a co-state initialisation approach using homotopy. The radius of conver-
gence of an indirect method is considerably smaller than the radius of convergence
of a direct method [Bet98]. Usually the solution found lies in the vicinity of the
initial guess. The di�culty becomes stronger in more complex dynamics.

Recently, however an indirect method has been used in a N-body problem
(GTOC 1). No swing-byes were performed, but the gravity �eld of Jupiter was
used to perturb "optimally" the spacecraft dynamics.

Solution methods could have been:

• the use of homotopy methods. An initial solution of a simpli�ed problem
is used to initiate the algorithm. From iteration to iteration the problem is
modi�ed to match the original problem. Di�culties arise when the dynamics
change, and very high precision is required to tackle the sensitivity of the
Euler-Lagrange equations.
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• a very good initial guess ...

Numerical Tools

The problem of the method comes also from the numerical tools used such as
shooting methods. Usually, the e�ciency of a method depends on the condition
number of the Hessian. The rapidity of a method decreases with a bad condition
number. The Hessian, unless provided, is often computed by �nite di�erences
using the Jacobian and quasi Newton approximation[GMS08],[KLW06].

A solution method could have been the use an augmented Lagrangian ap-
proach. Luenberger showed that the Hessian of the augmented Lagrangian tends
toward the identity matrix. We thus have a good condition number, and a quicker
convergence. But, the Hessian of the constraints does not change.

Numerical Accuracy

These solution methods are not su�cient, as they do not prevent the numerical
inaccuracy of the state/costate during the swing-by[BH75, Bet98], and the implicit
use of state transition matrices.

5.4 Summary, Conclusions

Methods Constraint Mathematical model Numerical Di�culties
Non linear programming Yes continuous, discrete high dimensionality, accuracy
Calculus of variation No continuous TPBVP, sti�ness
Maximum Principle Yes continuous, discrete TPBVP, sti�ness

Dynamic programming Yes continuous, discrete curse of dimensionality

Table 5.1: Methods for optimal control, [MS62]

Table 5.1 sums up the properties of commonly used formulations for OCP.

Direct formulation and direct methods generally provide robust algorithms.
They however lack accuracy. The pinpoint property of swing-bys, and their e�ec-
tive advantage make the interpolation step of co-location methods inadequate.

Looking for the control instead of the costates history is one of the reasons for
the robustness. This point will be exploited for the algorithm of the next section.

Indirect methods are usually exact up to the integrator precision and w.r.t
the problem model. However, because of the sensitivity of the Euler-Lagrange
equations, it is often a challenging task to �nd a solution to the indirect problem
formulation. A change in the dynamics induces high sti�ness in the integration
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and the calculation of the gradient. We could not ensure that any indirect methods
based on the Euler-Lagrange equations, and more particularly on the computation
of a transition matrix, permits to solve swing-by optimal control problems.

It is important to note that today very few algorithms exist for the general
optimisation of a trajectory in multi-body dynamics. We have now the basic
directions for a solver capable of handling swing-bys. The ideal optimiser should
encompass the following properties:

• accurate integration of the state equations, regardless of the costate dynam-
ics.

• accurate integration of the costate equations, regardless of the state dynam-
ics.

• important radius of convergence.

• robustness.

Integrating state and costate equations separately will provide more accurate
and robust optimisation algorithms. This is the purpose of Chapter 6. Another
optimisation method will be presented. It is a great solution method to handle
the issue mentioned heretofore.



Chapter 6

Algorithm for Optimising

Low-Thrust Interplanetary

Transfers in Multi-Body

Dynamics

6.1 Introduction

6.1.1 Issues and Objectives

The problem is that of transferring a spacecraft from one planet to another, taking
into account their respective gravitational �eld, but also other massive bodies of
the Solar System. Typically, the gravity acceleration of a planet is a second order
perturbation, till the spacecraft reaches its sphere of in�uence. At this moment,
the second order perturbation is no more a perturbation. This produces a change
in the dynamics.

The di�culty of such transfers comes from the sensitivity of the Euler-Lagrange
equations during the spiralling legs around the departing and target body. The
Jacobian may also become ill-conditioned during the dynamical change from plan-
etocentric to heliocentric, and from heliocentric to planetocentric.

This problem was chosen as it is a good benchmark for the swing-by transfer
problem. When the planet sequence is unknown, there is no reason to expect
an optimal trajectory including swing-bys. From this point, it would have been
di�cult to evaluate the adequacy of the approach.

Recently, Whi�en[Whi01] presented results and solutions to this transfer prob-
lem, although the method and algorithm is not described. This motivates us to

91
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seek an algorithm capable of �nding such results.

6.2 Solution Methods

6.2.1 General considerations

Although the preceding developments (chapter 5) provide a good approach for
solving the general two-body problem, it is not suitable for departing and arriving
gravitational bodies or intermediate gravitational swing-by bodies.

The approach proposed here tackles the major numerical issues for the prob-
lem, such as:

• non linear objective

• non linear dynamics

• non convexity of the problem

• discontinuous control

• non autonomous state equation

• large di�erence of scale

Numerical discrepancies are avoided by using exact derivatives. To reduce the
general sensitivity of the Euler-Lagrange equations, the di�erence of scale between
the state and costate ODEs should be removed. The method, which is presented
in this chapter, is based on gradient methods.

Gradient methods have been used in the past on simple applications. Jacob-
son[JM70] studies the case of the 2 dimensional orbital transfer of a spacecraft
with full thrust. The Goddard or Dreyfus problem, considering the maximisation
of the horizontal velocity of a launcher, has also been considered.

Indeed, gradient methods did not seem very popular, and this is understand-
able. Gradient methods, although robust, need to be adapted to each particular
problem. Convergence often requires perfect tuning of convergence parameters.

6.2.2 Modi�ed Gradient Method

Typically, a gradient method in optimal control theory relates the change in δu
to the gradient of the Hamiltonian with respect to the control u.

We are trying to have a relation of the form of a feedback control law:

δu = α+ βδx
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where α and β depend on the Hamiltonian H and its gradient Hu and Hx and
possibly second order information Huu. The problem is solved by a modi�ed 2nd
order gradient method [BH75]. The initial guess is provided by the sensitivity
matrix procedure, described earlier, or the model described in chapter 3.

The general approach is an iterative process. The Lagrangian is expanded to
second order around a reference state-costate trajectory. A forward - backward
procedure is implemented to seek the optimal control. This is the key point about
the method. Integrating separately the state and costate equations removes the
numerical discrepancy when evaluating the Jacobian. As noted by Williamson
and Tapley[WT72], such a method is more robust than the sensitivity approach.
On the other side, we can state that the sensitivity approach is less stringent on
the initial guess.

The required improvement on the �nal constraints gives updates on the con-
trol. The control follows a feedback law where the coe�cient depends on the
expected improvement in cost and �nal constraint reduction. At each iterative
step, the second order development is respected and ensures weak displacements
of the updates on the control.

Let's pose the general problem, as de�ned in section 5.1.1. We pose: nx = 7
and nu = 3 as the dimension of the state vector and the control vector for the space
trajectory problem de�ned in Chapter 5. nk is the dimension of the constraint
vector ψ.

Again, all functions are continuously di�erentiable on their domain of de�-
nition for the variables x and u. In addition, they have to be integrable with
respect to time t. Thus: f ∈ C∞(Rnx × Rnu)\0), ψ ∈ C∞Rnx .

Constraints ψ also de�ne consistent terminal constraints. This means that
ψx = ∇xfψ is of full rank.

Consider the cost function to minimise de�ned in equation 5.5. The La-
grangian is augmented with a quadratic term in the terminal constraints. The
augmented Lagrangian[Ber82] is then:

L(x,u, λ, ν, Cp) = −m(tf ) +
∫ tf

t0

(
H(x,u, λ; t)− λT dX

dt

)
dt

+ νTψ(x(tf ), tf )

+ ψ(x(tf ), tf )TCpψ(x(tf ), tf )

(6.1)

With:
H(x,u, λ; t) = λT f(x,u; t) +

1
2

∆uTCδ∆u

where x(t) is the state vector at time t, λ(t) ∈ R the costate vector at time
t, u(t) the minimising control vector, ν ∈ Rnk is a static Lagrange multiplier as-
signed to the constraints, Cp ∈M(R)nk,nk is a penalty matrix for the constraints,
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and Cδ ∈ M(R)nu,nu . The term m(tf ) stands for the objective function to be
minimised (equation 5.5).

Thus di�erentiating to second order Lagrangian equation 6.1 around a nom-
inal trajectory {x̄(t), λ̄(t), ū(t)}, t ∈ T = [t0, tf ], with admissible perturbations
{δx, δλ, δu}, and 2 integrations by parts give∗:

dL = −
dm(tf )
dxf

δxf

+ νT (
1
2
δxTf

d2ψ

dx2
f

+
dψ

dxf
)δxf + δνTψ

+ (
dψ

dx
δxf +

1
2
δxTf

d2ψ

dx2
δxf )TCpψf

+ ψTf Cp(
dψ

dx
δxf +

1
2
δxTf

d2ψ

dx2
δxf )

− λTf δxf + λT0 δx0

+
∫
T

(Hxδx +Huδu +Hλδλ)dt

+
∫
T

dλ+ δλ

dt

T

δxdt−
∫
T
δλT

dx
dt
dt

+
1
2

∫
T

(δxTHxxδx + δuTHuuδu + δxTHxuδu + δuTHuxδx)dt

+
∫
T
δλTHλxδx + δxTHxλδλ+ δλTHλuδu + δuTHuλδλ)dt

+
∫
T
o(‖δx‖2 , ‖δλ‖2 , ‖δu‖2)dt

(6.2)

For the minimisation of L, the �rst order part should vanish, and the second
order part should be positive[BH75].

The admissible perturbations δx ∈ L∞(T,Rnx), δλ ∈ L∞(T,Rnx) and δu ∈
L∞(T,Rnu) ensure that the Taylor development is correct. In other words, for
all (x, λ,u) ⊂ B(x̄, o(‖x‖)) × B(λ̄, o(‖λ‖)) × B(ū, o(‖u‖)), equation 6.2, without
higher order terms, remains valid. This assumption should be respected and
checked numerically when updating the control. This issue will be of concern
later.

Because Hx, Hu, Hxx, Hxu, Hu can be computed analytically, all the deriva-
tives of L and subsequent development are precise up to the ode solvers and
machine precision.

∗We use the mathematical conventions cited at the beginning of this dissertation, for the
derivatives. Variables are omitted for conciseness, but all functions are evaluated for x, λ and u
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With a �xed terminal time tf , initial conditions x0 = x(t0) considered �xed,
we have the following conditions:

δx0 = 0 (6.3)

λTf = −
dm(tf )
dxf

+ νT
dψ

dxf
+ ψTCp

dψ

dxf
(6.4)

The second equation de�nes the transversality conditions for the problem consid-
ered.

6.2.3 Optimal Control

We are seeking the control that minimises the Lagrangian L given in equation
6.1.

The optimal control is given by the necessary conditions:

Hu + δxTHxu + δλTHλu + δuTHuu = 0 (6.5)

Now assume Huu has full rank, and is thus invertible. From this equation, we
deduce the optimal perturbation policy for the nominal control:

δu = (Huu)−1(−Hu −Huxδx +Huλδλ) (6.6)

Note that as the nominal control is not necessarily optimal, we can not directly use
Hu = 0. The �rst part provides a descent direction to minimise the Hamiltonian
H. The second and third terms provide feedback information on the state and
costate trajectories, respectively x̄(t) and λ̄(t).

To ensure that the perturbation δu leads to an improvement in the control,
we should check that Huu > 0 for the minimisation problem 5.5. This condition,
with the Euler-Lagrange equation give us conditions for a strong minimum.

Besides, δx is given with the following equations, which should be integrated
forward and concurrently with the state dynamic equations:

dδx
dt

= fx(x̄, ū; t)δx + fu(x̄, ū; t)δu (6.7)

δu = ū− u (6.8)

δx0 = 0 (6.9)

Proposition 6.2.1. For the continuous formulation, the amplitude of ‖δx‖ is

limited by the amplitude of ‖δu‖. If ‖δu‖ respects second order information, then

‖δx‖ should also respect second order information.

We are seeking a law on the co-state vector and the �nal constraints pertur-
bations.
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Proposition 6.2.2. Introducing a matrix A(t) ∈M(R)nx,nx, we can write:

δλ(t) = A(t)δx(t) (6.10)

Proof. The state transition matrix approach shows that we can relate the state
vector x to the costate vector λ. We thus use:

x(tf ) = φ11(tf , t)x(t) + φ12(tf , t)λ(t)

λ(t) = φ21(t, tf )x(tf ) + φ22(t, tf )λ(tf )

We get the dynamical equation on the costate vector:

dλ

dt
= −HT

x +HuH
−1
uu (Hux + fTu A) (6.11)

Note that λ is di�erent from the solution to the Maximum Principle. There is
however an equivalence when Hu(t) = 0.

And also for the matrix A:

− dA

dt
= Hxx +Afx + fTx A− (Hux + fTu A)TH−1

uu (Hux + fTu A) (6.12)

The matrix A(t) is a symmetric matrix.

Eventually, supposing Huu is positive de�nite, the optimal control perturba-
tion, minimising the Lagrangian L, becomes:

δu = −H−1
uuHu −H−1

uu (Hux + fTu A)δx (6.13)

This has the form of a feedback control law. We can thus expect a property
of robustness around a nominal trajectory regarding dynamical perturbations.

Proposition 6.2.3. Around the nominal trajectory x̄(t), and for the nominal

control ū(t), we have the equivalence:

Hu(x̄, λ, ū; t) = 0⇔ δu(t) = 0

Proof. For convenience, we omit x, λ and u in the writing of H, Hu and Huu. In
the �rst direction (right to left), we have:

δu(t) = Huu(t)−1(Hux(t) + fTu (t)A(t))δx(t)

As δx(t0) = 0, recursively we have also δx(t) = 0 and δu(t) = 0.
In the other direction, as δu(t) = 0, no changes are made on the current

trajectory compared to the nominal trajectory. Using equation 6.7, we get δx = 0.
Thus we have: H−1

uuHu = 0. As Huu is symmetric and positive de�nite, we
conclude Hu = 0.
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We then pose:

I(t) =
∫ t

t0

HT
uH

−1
uuHudt (6.14)

Proposition 6.2.4. The function I(t) is increasing and positive. For an optimal

trajectory, I(tf ) = 0.

Proof. As Huu is supposed positive de�nite, the integrand HT
uHuuHu ≥ 0 is pos-

itive, continuous and integrable. Thus, if I(tf ) = 0, we have Hu = 0. Conversely,
for Hu = 0, the integrand is identically null, thus I(t) = 0.

6.2.4 Terminal State Constraints

Terminal equality constraints are taken into account using a weighting matrix Cp
and a Lagrange vector λ. The use of Lagrange multipliers, as they have been
introduced in equation 6.1, ensures the reduction of constraint violations at each
iteration.

Proposition 6.2.5. We have the following relationships:

δλ = Aδx +Kdν (6.15)

δψ = KT δx +Qdν (6.16)

where K(t) ∈M(R)nx,nk and Q(t) ∈M(R)nk,nk.

Proof. With the state transition matrix, we write:

x(tf ) = φ11(tf , t)x(t) + φ12(tf , t)λ(t)

λ(t) = φ21(t, tf )x(tf ) + φ22(t, tf )λ(tf )

The transversality conditions (equation 6.3) for the terminal constraints pro-
vide the value for λ(tf ). We get:

(1− φ21(t, tf )φ12(tf , t))λ(t) = φ21(t, tf )φ11(tf , t)x(t)

+ φ22(t, tf )ψTxf ν

+ φ22(t, tf )(−
dm(tf )
dxf

+ ψTxfCpψ)

A small perturbation of the variables x and ν gives:

δλ(t) = (1− φ21(t, tf )φ12(tf , t))−1φ21(t, tf )φ11(tf , t)δx(t)

+ (1− φ21(t, tf )φ12(tf , t))−1φ22(t, tf )ψTxf δν
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We have the equations:

dK

dt
= ((fx − fuH−1

uuHux)T +A(fuH−1
uu f

T
u )T )K (6.17)

and:
dQ

dt
= KT fuH

−1
uu f

T
u K (6.18)

These equations are integrated while on the nominal trajectory. We note
immediately that directly computing A, K, Q with ODEs (equations 6.17 and
6.18) prevents the inversion of the transition matrix, and thus this approach is less
prone to numerical errors. Particularly for sensitivity equations, where elements
of the transition matrix can get high values (bad condition number).

Equation 6.2 gives the �nal conditions to solve the IVPs (6.12, 6.17, 6.18):

A(tf ) = νT
d2ψ

dx2
(x(tf )) + ψTCp

d2ψ

dx2
+
dψ

dx

T

Cp
dψ

dx
(6.19)

K(tf ) =
dψ

dx
(x(tf )) (6.20)

Q(tf ) = 0 (6.21)

The optimal perturbation, taking into account the Lagrange vector ν for the
constraints, becomes:

δu = −H−1
uuHu −H−1

uu (Hux + fuA)δx−H−1
uu fuKδν (6.22)

We then improve at the same time the optimality of the current control and
the reduction of the terminal constraints.

To guarantee a reduction of the terminal error (�nal constraints), we must
have Q(t0) negative de�nite. Using equation 6.16, we would then (Q(t0) < 0) get
the Lagrange vector updates:

dν = −Q(t0)−1δψ (6.23)

Proposition 6.2.6. For Q(t0) to be negative de�nite, we must have:

• Huu(x̄,u, λ; t) > 0.

• the linear system around (x̄, ū) is fully controllable.

• ψx(x; tf ) has full rank.

Proof. If the linear system (equation 6.7) is fully controllable, and Huu > 0,
fuH

−1
uu f

T
u is positive de�nite. Then, using Q(tf ) = 0, we have

Q(t0) = −
∫ tf

t0

KT fuH
−1
uu f

T
u Kdt
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Note that equation 6.17 is a linear equation of the form:

dK

dt
= kK

k = fx + fu(−H−1
uuH

T
ux +H−1

uu fu)K

k has also full rank because of the condition of controllability. As K(tf ) =
dψ
dx (x(tf )) has also full rank, K(t) has full rank too† for all t ∈ [t0, tf ].

The integral is thus positive de�nite, and Q(t0) < 0.
A similar proof can be found in [JM70], where a transition matrix is used, and

Huu(x̄,u∗, λ; t) is considered.

This condition is however not su�cient. Nothing guarantee we have ψ(x; tf ) =
0 for some control u(t). Let use the notations of [Tre07], and denote by Acc(T ) the
set of accessible points for the solution of the optimal control problem (equations
5.1, 5.5, and 5.3) in transfer time T . The system is fully controllable if Acc(tf >
t0) contains Rnx . However, here we are only interested with Acc(tf−t0 > Tmin) 6=
∅. The minimum transfer time Tmin is generally found by studying the minimum
time problem. If tf − t0 > Tmin, we have at least one solution, and the condition
Q(t0) < 0 is su�cient to have ψ(x; tf ) = 0.

After each step, the Lagrange vector is updated with δν. The vector ν can
reach high values to satisfy the constraints. Compared to an approach where
the terminal constraints are handled by a constant penalty matrix, this approach
ensures that, for each iteration, both the cost function J and the terminal con-
straints violation ψ are reduced.

Intermediate state constraints (equality and inequality) such as minimum
swing-by altitude, minimum distance to Sun, ... have not been explicitly con-
sidered in this study. The formulation is su�ciently well posed to easily handle
intermediate constraints using a penalty approach.

Terminal inequality constraints can be handled using either penalty methods
as above, or slack variables. The use of slack variables amounts to introducing
unknown parameters.

It is possible to solve the problem with unknown parameters. Such parameters
can be the departure orbital parameters, or the launch date. This has not been
considered here. But, using the exact same development as in this section, using
a Lagrangian approach, provides the equations for the update of the unknown
parameters. Note however that any additional parameter needs additional ODE
to solve.

†Every solution can be written using the unit basis solution, then by de�nition every solution
has full rank.
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As the purpose of this study is to �nd swing-bys, it is worth mentioning
that besides not using intermediate constraints to force swing-by, we can place
constraints on the minimum radius of a possible swing-by. This would require
using penalty functions depending on the relative distances with planets, and
over the entire spacecraft trajectory.

6.2.5 Constraint on the Control

As the thruster power is limited, the thrust force is itself bounded. We thus have
the condition:

‖u(t)‖ ≤ 1 (6.24)

Here, we propose a method that removes this constraint (equation 6.24).
Given the space trajectory problem (equation 5.1), we seek the control func-

tions α ⊂ C0(R), β ⊂ C0(R) and δ ⊂ C0(R), and an application s : R → [0, 1]
such that the bounded control can be written:

u(t) = s(δ(t))

cosα(t) cosβ(t)
cosα(t) sinβ(t)

sinα(t)

 (6.25)

The control u is still constrained, but the variables α(t), β(t) and δ(t) are
unconstrained. Some restrictions apply:

Proposition 6.2.7. For the minimisation problem, if the application s respects

the following:

• being at least twice continuous di�erentiable.

• being bounded.

• having exactly one maximum and one minimum, possibly multiple.

the amplitude ‖u‖ of the control can be bang-bang.

Proof. The �rst point is is due to the linear dependency of u in the Hamiltonian
H, and the necessary computation of Hu, Huu and Hxu.

For the solution to be bang-bang, Hu should vanish. Note then that:

∂H

∂δ
= ρ(x, λ; t)

∂s

∂δ

where ρ is a switching function [Ber01]. Remember that, because of the maximum
principle, ρ < 0 implies s at a maximum, and ρ > 0 implies s at a minimum.
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The only way we can make Hu vanish, is to have s(t) = 0. The function ρ can
only vanish if we are on a singular solution.

Now, we assume the second derivative of H w.r.t. δ is positive, for the min-
imisation problem, and:

∂2H

∂δ2
= ρ(x, λ; t)

∂2s

∂δ2
> 0

Thus:

• if ρ(t) > 0 and s(t) = 0, we have ∂2s
∂δ2

(t) > 0. This means that s is a
minimum.

• if ρ(t) < 0 and s(t) = 0, we have ∂2s
∂δ2

(t) < 0. This means that s is a
maximum.

By contradiction, we show that if s has more than one maximum and one
minimum, we have di�erent thrust levels, and the solution cannot be bang-bang.
This maximum and minimum can however be multiple.

To respect the range [0, 1], s can be easily scaled or translated without chang-
ing this result.

Such applications can be for example: sin, sin2, cos2, ... or linear combinations
of them.

Note however, that although this transformation can be appealing, in theory
it introduces strong singularities in the control. The introduction of matrix Cδ
circumvents this point in practice.

This approach can be compared to other solution methods. If the control
structure is known a-priori, we can simplify the canonical system. The parametri-
sation of the instants of commutation of the control allows to remove the control
amplitude, and the mass-related ODEs.

We can also use a penalty function in the Hamiltonian to limit the amplitude
of u. The major issue of this approach is that the control might exceed its
allowed bounds in the process. Thus, during the process and for a bad initial
guess, nothing prevents the control amplitude from being negative or exceeding
unity! Even though this allows extra controllability for seeking optimal solutions,
the solution might not be feasible. In addition, with a penalty approach, it would
have been di�cult to have Hu = 0, while trajectories can be very good.

Our approach guarantees feasible and optimal trajectories and controls.
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6.3 Convergence Issues

The present development is valid and provides an optimal control under strict
conditions:

1. the second order development is respected.

2. no conjugate points are encountered.

3. the problem is feasible.

6.3.1 Minimisation

One of the major issues when dealing with equation 6.12 is the possible unbounded
matrix. The matrix A can rapidly increase and prevent the algorithm from con-
verging. This appears when Huu is near singular, or not su�ciently positive
de�nite. As a result the feedback control law given by equations 6.6 or 6.22 does
not exist.

Jacobson, Bullock and, Williamson and Tapley[WT72] introduced the de�ni-
tion of conjugate point .

Conjugate Point Along an extremal, the conjugate time tc is de�ned as the
instant where the determinant of the second derivative of H wrt u vanishes. The
point x(tc) is a conjugate point.

A conjugate point is de�ned as a point where many extremals pass. In other
words, at a conjugate point, two neighboring extremals with the same performance
index, meet. So if a conjugate point is encountered, we know in our case that a
minimum extremal exists in the neighbourhood.

Detecting a conjugate point resume to test for the rank of a matrix. Prussing
and Sandrik[PS02] provide a conjugate point test using a condition on the rank of
a matrix. If the determinant of that matrix vanishes at some time tc, then we may
have a conjugate point at tc. This is an interesting test, as often it is numerically
di�cult to detect the conjugate point. If the A matrix get an unbounded value
at some point, the conjugate point is likely to be placed some time before.

Forcing Huu(t) > 0 for all t ∈ [t0, tf ] around the nominal trajectory x̄(t)
ensures that we are always on a unique extremal and we can provide a feedback
control (implicit function theorem). The most common approaches to make a
given Hessian positive-de�nite, is with solving a Trust Region problem, or using
a Levenberg algorithm.
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Trust Region Problem [Kel99] Let's note q the quadratic model of a function
H(u) at u = uk:

q(u) = Hu(u− uk) +
1
2

(u− uk)THuu(u− uk)

We thus de�ne the neighbourhood D = {u ∈ Rnu s.t. ‖u− uk‖ < ∆}.
The standard Trust-Region problem is thus to solve:

min
u∈D

q(u)

The positive de�niteness ofHuu is controlled by both a Trust region algorithm,
and the matrix Cδ. The Trust-Region problem then permits to �nd a positive-
de�nite update of the Hessian matrix Huu. It also limits the length of δu(t)‡.
Cδ is a penalty matrix which ensures the positive de�niteness of Huu, and slight
variations in u(t) (see also [Jar83, Jar75]).

Another solution to get rid of this problem is to change the value of Cp. Chang-
ing Cp, provides a slightly di�erent costate trajectory, thus a di�erent control and
a new neighboring extremal, which eventually gets away from the conjugate point.

6.3.2 Constraints reduction, and Problem Feasibility

Feasibility

We suppose proposition 6.2.6 is respected. Since the method proposed here is an
iterative method, the constraint satisfaction is the primary concern, before the
optimality of the control. If terminal constraints can be satis�ed, an optimal con-
trol respecting the BVP (dynamic, terminal constraint, transversality conditions,
cost) exists.

Thus we do not initially solve the optimal control problem, but �rst the con-
straint problem. We solve at �rst:

min
u
ρJ + ψ(xf )TCpψ(xf )

s.c.
dx
dt

= f(x,u; t)

x(t0) = x0

(6.26)

with ρ = 0. That means that for the terminal cost problem the transversality con-
ditions (equation6.3) are modi�ed. Once the constraints have been signi�cantly
reduced, the problem cost (equation 5.5) is considered (ρ = 1) in the minimisation
problem. It is however important that the constraints on the control be respected,

‡|α(t)| ≤ ∆, |β(t)| ≤ ∆ and |δ(t)| ≤ ∆
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otherwise we have no real indication of the problem feasibility. This legitimates
the approach on the control constraint explained above.

Indeed, there are results on the local controllability of nonlinear system, using
Lie brackets[Tre07]. Proposition 6.2.6 only refers to local controllability. There
are no results of full controllability, i.e. the existence of a control function that
would bring any initial state to the desired �nal state, particularly when the
dynamics change (from interplanetary to planetary and vice versa). It is thus
important to assess as soon as possible the feasibility of the problem, to gain
more time. To make the problem feasible, the time of �ight is usually increased,
as the minimum time problem provides a limit on controllability.

Constraint Reduction

In the Lagrangian 6.1, the matrix Cp controls the constraints feasibility. Setting
Cp only, without the Lagrange multipliers ν, can lead to convergence. However,
the convergence can be slow. High Cp does not ensure reduction of constraint.
Low Cp leads to slow convergence, and might favour cost rather that constraints.

The use of both ν and Cp in the Lagrangian equation is indeed an augmented
Lagrangian. The augmented Lagrangian comes from a regularisation (Yosida-
Moreau). Due to Hestenes, Powell, Rockafellar and Bertsekas[Ber82], it permits
to provide a poor initial guess while still converging (global convergence). The
penalty parameter does not need to reach a very high value to get a satisfactory
constraint feasibility.

It has the following advantages:

• it avoids the use of penalty parameters that are di�cult to control correctly
(penalty methods)

• it ensures the existence of a saddle point, even though a duality gap exists.
The duality gap is the di�erence between the primal and dual objective
values.

The duality gap is the di�erence between these 2 quantities.

min
x

sup
λ
J(x) + λTψ(x)

sup
λ

min
x
J(x) + λTψ(x)

It is not null when the primal problem is non convex. The role of Cp is to
convexify the primal problem. In this case, Cp should not be seen as a penalty
matrix for the constraint, but as a regularisation matrix of the dual problem.
Furthermore, if ψ is chosen to have a su�ciently positive de�nite Hessian, for
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Cp large enough, the Lagrangian L(x,u, λ, ν, Cp) becomes strictly convex[Ber95].
Thus the primal has an optimal solution. By the strong Duality Theorem[DT97],
the dual problem has also an optimal solution, and there is no duality gap.

Remark Let's note J the objective function, and L the augmented Lagrangian
with Lagrange variable ν, and assume these functions are su�ciently regular. The
properties of the augmented Lagrangian are summarised below[LP]:

• L(ν) < J∗, ∀ν ≥ 0

• L(ν∗) = maxν L(ν) = J∗

• L is di�erentiable and concave for ν

∂L

∂ν
= ψ(xf ) (6.27)

To update Cp, we should use equation 6.27 to get ascent the step in L. How-
ever, opposite to most augmented Lagrangian approaches[LT98, BCM], we can
compute the Lagrange vector ν. The value of Cp must be found to have the good
ascent direction and to avoid ill-conditioning. Usually, a small value of Cp must
be used initially. Cp must be increased in case of infeasibility.

6.3.3 Improvement in Optimality

In addition, if the new control u = ū + δu does not reduce the Lagrangian
signi�cantly, a line search is performed. The line search, with parameter ε, uses
the control uε = ū+δuε with δuε = εα+βδx+εdν. The parameter ε is decreased
from 1 to 0 until a satisfactory change is encountered.

For ε = 0, we have obviously (proposition 6.2.3) an equivalence between the
perturbed and the nominal control and trajectory:

uε=0 = ū (6.28)

xε=0 = x̄ (6.29)

The line search is supposed to correct the calculated improvement when the
second order development does not hold strictly. For ε ∈ [0, 1], the line search
procedure produces a control update δuε in a descent direction.

Proposition 6.3.1. For the line search algorithm, the change in cost, between

the value of the functional L(u; t) evaluated for the nominal control u, and the

value of L(uε; t) evaluated for the perturbed control uε is:

dL(uε) = −ε(1− ε

2
)I(tf ) + o(‖δx‖2)
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Proof. First, note that I(tf ) > 0, as was demonstrated earlier. The expression of
L in equation 6.1, with the Euler equations and conditions 6.3, gives:

dL =
∫ tf

t0

dHdt

+ (
1
2
δxTf

d2νTψ

dx2
f

)δxf + δνTψ

+ (
dψ

dx
δxf +

1
2
δxTf

d2ψ

dx2
δxf )TCpψf

+ ψTf Cp(
1
2
δxTf

d2ψ

dx2
δxf )

With:

dH = Hxδx+Huδu+
1
2
δxTHxxδx+

1
2
δuTHuuδu+δuTHuxδx+δxTHxuδu+o(‖δx‖2 , ‖δu‖2)

Replacing with δu, and collecting terms, gives:

dH = −εHu(H−1
uuHu) +

1
2
ε2(H−1

uuHu)THuu(H−1
uuHu)

+ (Hx +HuH
−1
uu (Hux + fuA)− ε

2
(H−1

uuHu)THuu(Hux + fuA)− ε

2
(H−1

uuHu)THux)δx

− ε

2
δxT ((Hux + fuA)THu)

+
1
2
δxT (Hxx + (Hux + fuA)THuu(Hux + fuA)

+ (H−1
uuHu)THuu(Hux + fuA) + (Hux + fuA)THux)δx

+HuH
−1
uu fuKδν

+
ε

2
HT
uH

−1
uu fuKδν

+
1
2
δxT (Hux + fuA)TH−1

uu fuKδν

− δxTHxuH
−1
uu fuKδν

− δνTKfuH−1
uuHuxδx

+ o(‖δx‖2) + o(‖δν‖2)

δν can be replaced with equation 6.23.
Or also, on a nominal trajectory, and after simpli�cations:

dH = (
1
2
ε2 − ε)HT

uH
−1
uuHu + o(‖δx‖)

Thus:

dL = (
1
2
ε2 − ε)I(tf ) + o(‖δxf‖) ≤ 0
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This line search procedure di�ers from the Trust-Region problem. While the
Trust-Region problem ensures a reduction of the Lagrangian by positivity, the line
search procedure ensures the validity of the second order developments, regarding
‖δx‖ and ‖δu‖. However, if the Trust-Region problem is solved with a su�ciently
small radius, the second order developments are respected and the line search on
ε is generally useless.

In practice, a good ode solver should be used to avoid additional truncation
errors.

6.4 Numerical approach of the Continuous Problem

Control

6.4.1 Continuous control issue

As opposed to Direct methods (section 5.2), no approximations are made during
propagation of both state x and costate λ. However, the control needs to be
stored, because it is used for both backward and forward propagations, as opposed
to indirect methods (section 5.3.2). It is di�cult to store a continuous solution,
without making approximations.

Discretisation of the control has an impact on the full controllability of the
system, and the quality of the solution. This is a major issue, when the dynamics
include di�erent changes in scale.

Thus, we can wonder what is the best discrete approximation of the contin-
uous control u(t), and in particular for bang-bang solutions. We thus seek the
discretised control u(t) that is close, in a certain metric of L∞(T,U), to the con-
tinuous optimal control u∗(t) of problem 5.5. Indeed, this encourages an adaptive
mesh procedure that would:

1. increase or move points close to a bang-bang commutation. We can adapt
the time mesh size in the neighbourhood of a bang-bang switching. The
variation of the control will still be smooth, but the density of points allows
for big variation on the time interval, and respect second order information.

2. adapt the meshing when the dynamics change (e.g. when going from the
interplanetary phase to a planetocentric phase).

3. adapt the meshing when the optimality conditions are not satis�ed.

For the bang-bang issue, two approaches can be considered, depending on
the problem nature: autonomous (non dependant of time), and non autonomous
systems. We can:
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• add to each control thrust direction a date of application. This amounts to
providing speci�c time interval to each thrust control.

• observe the control derivative wrt time. Strong variations in the control
suggest placing a switch point.

6.4.2 Optimal placement for Autonomous Systems

The state is extended with the time variable t. The integration is done with
a variable s ∈ [s0, sf ]. A change of variable must be done appropriately with
equations 6.17, 6.18 and 6.12.

The control is extended. It is described with:

ue = [u,∆t] (6.30)

∆t holds for the interval of application of the control u. We must include the
constraint:

t(sf ) = tof (6.31)

As ∆t is constant on each s-interval, this constraint is equivalent to:∑
i

∆t = tof (6.32)

The bounded interval [s0, sf ] can thus be chosen such that with ∆t ∈ [0, 1] and
s0 = 0, we have sf ≥ tof .

In addition, the Hamiltonian is extended with:

He(ue,x, λ; s) = H(u,x, λ; s) + ∆t∆uδ (6.33)

The variable uδ is the bang-bang part of the control u, and ∆uδ(t) = uδ(t)−
uδ(t−) is the di�erence of control between two immediately successive instants
of time. The process is then allowed to freely and optimally change the control
duration to reduce the cost function value.

Proposition 6.4.1. For the system, linear in the control u, the extended Hamil-

tonian He is continuous on an extremal for a bang-bang solution.

Proof. Consider t− = ti−1 and t+ = ti the instant immediately before and after
a bang-bang switch. Consider extended dynamics:

f(x,u; t) = f0(x; t) + f1(x; t)δ(t)u(t)
dt

ds
= ∆t

with the initial condition t(s0) = t0, under the constraints t(sf ) = tf and
ψ(x; tf ) = 0. The function δ(t) is the control amplitude, and ‖u‖ (t) = 1.
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The Hamiltonian is:

H(x, λ,u, δ,∆t; s) = λT f0(x; s)+

λT f1(x; s)δu)+

λt∆t+ ∆t(δ − δ−)

As x, λ(t), u and the dynamics are continuous, we have:

H(x, λ,u, δ,∆t; t+)−H(x, λ,u, δ,∆t; t−) = λT f1(x; t)(δ+u+ − δ−u−)

+ ∆t+(δi − δ−i )

−∆t−(δi−1 − δ−i−1)

+ λt(∆t+ −∆t−)

With: ∆t+ = ti+1 − t+ and ∆t− = ti − t−, and t = t+ = t−. On an extremal
the control is bang-bang, and ∆t+(δi − δ−i ) and ∆t−(δi−1 − δ−i−1) vanish. This
simpli�es to:

H(x, λ,u, δ,∆t; t+)−H(x, λ,u, δ,∆t; t−) = −λt∆t−

The necessary condition of optimality for ∆t, on the segment [ti−2, ti−1] con-
cludes: λt∆t− = 0.

This shows there is no numerical issue that can appear because of bang-bang.
For �xed time transfer, with non gravitating bodies (other than the Sun), this

approach is easily applied.

It is possible to turn the problem into an autonomous one. However, this task
may not be easy, or may require approximations.

For example, in the space trajectory problem, the dynamics depend on the
planet position. We thus need to evaluate the 1st and 2nd time derivatives of the
planets position Rp wrt the Sun. We have then:

dRp

dt
= Vp (6.34)

dVp

dt
= −µSUN

Rp

‖Rp‖3
+ γ (6.35)

d2Vp

dt2
= −µSUN

d

dt

Rp

‖Rp‖3
+
dγ

dt
(6.36)

Usually Rp is given using an ephemeris database. We need to di�erentiate
the ephemeris function with respect to time. This reduces to calculating the
perturbation function γ(t). This perturbation function depends on the in�uence
of other planets and bodies in the Solar System.

Of course, it is possible to assume the planet's dynamics to be exactly Kep-
lerian (γ(t) = 0). But this limits the accuracy. Trajectory scenarii considering
multiple swing-bys over long time horizon might result in approximate solutions.
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6.4.3 Mesh Placement Strategies

In the general case, for non autonomous systems, we consider di�erent strategies
to update as best as possible the mesh.

1. use information on the smoothness of the dynamics.

2. use the size of steps δu or δx.

3. use information on the trajectory solution. The solution mesh provided by
a RK solver is used for the control mesh.

The �rst case has already somewhat been treated in numerous publications
about direct methods.

For the second strategy, consider the size of δu or δx. Even though δu and
δx might respect second order developments, their size is also limited by adding
intermediate control points. This approach is equivalent to studying Hu. It also
provides information on the steepness of the optimal control, for the reference
trajectory.

The third strategy considers a constant ratio of the number of control points
over the number of state points. The control is then updated every given number
of points. This limits the error.

Both strategies 2 and 3 can solve global controllability issues, where the dy-
namics are highly nonlinear, to ensure a reduction of the Lagrangian. However,
strategy 3 can be quite expensive in memory usage for rapidly changing dynamics.

Strategy 2: Using derivatives

When the control amplitude undergoes a rapid change, it is likely that we can
have a bang-bang commutation. More speci�cally, Hu provides the necessary
information on the rapid change in the control.

Proposition 6.4.2. Bang-bang switches occur when the part of Hu(t) related to

the control amplitude changes sign.

Proof. Simply note that Hu(x, λ; t) is related to the switching function ρ(x, λ; t).

Hδ(x, λ,u; t) = F (
λv
m

u− λm
g0ISp

)

For the optimal direction, u∗ is aligned with the primer vector λV .

This proposition is of a very strong practical interest as Hu is computed when
constructing the control 6.6, 6.22.

Basically, we give thresholds for:

• the minimum segment length ∆tmin
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• the maximum segment length ∆tmax

• the maximum slope γmax

For each of these thresholds, points can be added or removed. The general algo-
rithm is presented in algorithm 2.

Input: Initial mesh points {ti}i=1..N , threshold h
Output: Adapted mesh {ti}i=1..M

M = N ;
Measure the slope of each component of ∆Hu(ti) = Hu(ti+1)−Hu(ti);
foreach mesh points i s.t. ∆Hu(ti) > h do

t = ti;
n = ∆Hu(ti)/h;
dt = (ti+1 − ti)/n;
Add n− 1 points between ti and ti+1, with step dt;
copy the control ui at ti at the new control points.;
M ←M + n;

end
Algorithm 2: Step Update

We get the following proposition:

Proposition 6.4.3. Algorithm 2 converges with a �nite number of mesh points.

On convergence, when Hu = 0 the algorithm does not add any new mesh
points. When adding mesh points, because of the conservative law on the new
mesh points placement, the trajectory is not modi�ed. Consequently, when adding
points the convergence of the algorithm is not degraded.

6.5 Algorithm and discussions

6.5.1 Presentation of the algorithm

For the �rst step, a nominal control u(t) and ν are provided. The sensitivity
equations are integrated backward. We then construct a feedback control law.
This control law is used in the forward propagation to compute an improved
trajectory. The nominal control is updated after each successful iteration. The
process is repeated until we get the desired accuracy in the initial and �nal state,
and gets close to zero.

A line search procedure seeks the value of ε such that the merit function
decreases. If the error measure has not signi�cantly decreased, the penalty pa-
rameter Cp is increased.
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Input: initial control ū, initial trajectory x̄
Output: optimal control
ψold ← ψ;
select η1 > 0 and η2 > 0;
while ‖ψ‖ ≥ η1 and I(tf ) ≥ η2 do

Backward integration of eq. 6.12;
Backward integration of eqs. 6.17 and 6.18;
ε← 1;
while ‖ψ‖ ≥ ‖ψold‖ do

Compute new control uε;
Compute new trajectory x;
ε← ε/2;

end
ū← u;
x̄← x;

end
Algorithm 3: Modi�ed Gradient Algorithm (simple form)

6.6 Academic Examples

6.6.1 Goddard's Problem

The Goddard's problem is the classical 2-D rocket problem.
The dynamics are:

d

dt


X

Y

Vx
Vy

 =


Vx
Vy

F cosα
F sinα− g


X, Y are respectively the rocket horizontal position and altitude. Vx and Vy

are respectively the rocket horizontal and vertical velocity. We suppose the thrust
to be F = 2g, and g = 1. This accounts for a constant thrust. The mass �ow
rate is not taken into account. α(t) is the 1-D steering control law.

We want to maximise the �nal horizontal velocity J = Vx(tf ) with the �nal
constraints:

Y (tf ) = 1

Vy(tf ) = 0

The �nal constraints and the objective function impose the rocket to convert all
of its velocity into a horizontal component.

The initial guess is u(t) = π/2 ∀t ∈ [0, tf ]. The algorithm converged in 27
iterations, with a tolerance of 1e-6 on the �nal constraints. The optimal cost
found is Vx(tf ) = 1.915. Figure 6.1 displays the trajectory.

The problem can also simply be solved using the Maximum Principle. As-
signing the Lagrange variables [λX , λY , λV x, λV y] to the respective state variables
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Figure 6.1: Goddard's problem: state trajectory

[X,Y, Vx, Vy], we have the following Euler-Lagrange equations:

d

dt


λX
λY
λVx
λVy

 =


0
0
−λX
λY


and the transversality conditions:

λx(tf ) = 0 and λVx(tf ) = 1

With a simple Newton type solver, we converge in 7 iterations and the optimal
cost found is Vx(tf ) = 1.96. The trajectory and the optimal control are presented
on �gure 6.2.

The di�erence in cost (2.5%) comes from the discretisation scheme that was
used with our solver.

6.6.2 Orbital Transfer

This example deals with the transfer from an orbit to another. We start from an
initial circular Low Earth Orbit (RLEO = 20000km), and target a circular Earth
orbit at RMEO = 42000km [MC64].

The transfer is coplanar. The transfer time is �xed at 4 days. The control is
given by the steering angle α and the throttle variable δ. We have the limited
thrust constraint: 0 ≤ δ ≤ 1.

The spacecraft initial mass is m0 = 1000kg, and is equipped with a F = 5N ,
Isp = 2000s thruster. This example is for the sake of illustration, and may not
be of interest in practice. The objective is to maximise the �nal mass.
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Figure 6.2: Goddard's problem solution with Maximum Principle: state trajec-
tory(left), control (right)

The dynamics are:

d

dt


r

Vr
Vθ
m

 =


Vr

V 2
θ
r −

µEarth
r2

+ F
m sinα

−VrVθ
r + F

mδ cosα
−qδ


r is the radial distance. Vr and Vθ are respectively the radial and ortho-radial
velocities norms. m is the spacecraft mass. The Earth gravitation e�ect is taken
into account through the constant µEarth.

The �nal constraints can be written:

(r(tf )−RMEO)2 = 0

Vr(tf ) = 0

Vθ(tf )−
√
µEarth
r(tf )

= 0

These constraints impose the spacecraft to be on a �nal circular orbit, with radius
RMEO.

Variable Our tool (gradient) T3D (indirect)

Time of �ight 4 days
Initial mass m0 1000 kg
Final Mass 932.60 kg 932.02 kg

Table 6.1: Mars-Earth validation case comparisons

Table 6.6.2 compares the �nal result with T3D. They are close, but slight
di�erences the relative accuracy of the integration and the stopping criterion for
the optimality norm.
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Figure 6.3: Optimal Low-Thrust Orbital Transfer Trajectory fromRLEO toRMEO

Figure 6.4: Optimal Low-Thrust Orbital Transfer Control from RLEO to RMEO.
Comparison of T3D control (left) and the method control (right).

The transfer includes 7 revolutions (�gure 6.3).
Looking at �gure 6.4, the control given by T3D[DM04] is quite similar to ours.

The control in our method is not bang-bang on the �nal segment. This is due
to the limited optimality that we requested (10−5). From a practical point of
view, convergence was much longer than for T3D, but somewhat easier once we
�nd the appropriate iteration scheme and parameters (Cp, Cδ, ...). The terminal
constraints are easily validated, while the optimality condition for the control
might not be met. It is then important to put a stringent condition on the
optimality (Hu) to expect the bang-bang structure.
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6.7 Conclusion, discussions

We derive equations to solve the optimal control problem 5.5, 5.1, 5.3, 5.4. We
get a feedback control law that allows computing a robust trajectory regarding
dynamical perturbations. Most of these equations are not new, although these
equations are di�erent from DDP, or the Successive-Sweep or Second Order Weak
Variation algorithms.

We focus on understanding why such an approach is relevant to our prob-
lem. Decoupling Euler-Lagrange equations during the integration adds robust-
ness. Backward integration makes the integration stable numerically. The sen-
sitivity of the Euler-Lagrange equations is spread along the state and costate
trajectory. As long as we are able to solve properly the ODEs (equations 6.12,
6.17, 6.18) we are able to �nd a better or optimal solution.

The main advantage of the gradient method is thus its ability to handle com-
plex dynamics. Compared to a transition matrix approach, a natural explanation
of the method would be to say that the more equations we have, the more sensi-
tivity we remove.

Convergence is relatively slow compared to usual algorithms (e.g. shooting).
The accuracy of the solution requires many iterations, even though the process
might converge quite easily. In the end, for complex dynamics, this method
provides a high �delity trajectory

Often in the literature, authors prefer talking about "better solution" rather
than optimal solution. The use of the augmented Lagrangian, the control trans-
formation and the continuous control approximation should prevent such conclu-
sions. In our examples, we always get bang-bang control. To my knowledge,
no implicit bang-bang control results have been published for space trajectory
problems.



Chapter 7

Numerical Examples

7.1 Mars - Earth rendezvous transfer

This case is a validation case. We compare the results with those of T3D[DM04]
Consider a Mars-Earth transfer. We minimise the consumption, and the time
of �ight is �xed. The terminal constraints impose a rendezvous with the arrival
planet (Earth). The planets gravity is not considered. Launch and Rendezvous
are performed with massless planets.

The dynamics are those described in chapter 5. The rendezvous terminal
constraints, respecting the rank condition, are:

ψ(x; tf ) =

[
rf − r(tf )
vf − v(tf )

]
(7.1)

We consider a launch date on September 1st, 2009. The time of �ight is 350
days. The spacecraft has a 0.215N thruster with 3500s Isp.

Table 7.1 displays the results of the optimisation, and a comparison with a so-
lution provided by T3D. The trajectory computed with our algorithm is displayed
on �gures 7.1 and 7.2.

Variable Our tool (gradient) T3D (indirect)

Launch date 01/09/2009
Time of �ight 350 days
Initial mass m0 500 kg
Final Mass 359.08 kg 359.11 kg

Table 7.1: Mars-Earth validation case comparisons

117
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Figure 7.1: Mars - Earth two-body transfer

Figure 7.2: Mars - Earth two-body transfer control
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7.2 Earth - Mars with capture and escape phases

These examples can be found in [Oly08].
We study direct transfers considering the departure and arrival planets gravity.

The spacecraft is initially on a high orbit around the departure planet. For the
capture cases, the terminal constraint (eq. 7.2) is a circular orbit of radius RHEO.

ψ(x; tf ) =

 ‖R(tf )‖ − rf
‖V(tf )‖ −

√
µp
rf

R(tf )TV(tf )

 (7.2)

where ‖R(tf )‖ and ‖V(tf )‖ are respectively the relative position and velocity
vectors wrt the arrival planet.

The planet positions are propagated from a given epoch date. This avoids
numerical discrepancies while evaluating gradients. However, we assume that
over a long time period the orbital elements do not change.

The initial guess for escape phases is a somewhat tangential thrust law, until
the relative energy reaches zero. With a quasi-tangential thrust law we increase
largely the orbit energy to escape rapidly. The thrust amplitude is �xed. If there
are too many revolutions, we either increase the thrust amplitude, or let the solver
remove them.

In all other cases, the initial guess was the un-converged solutions provided
by the indirect approach.

Earth to Mars transfer

The spacecraft uses a 3000s Isp thruster. The initial mass is m0 = 500kg. The
launch date has been chosen to have a short transfer time, and it is on 15/01/2016.
The time of �ight is �xed to 350 days.

We compare the di�erent cases, with or without Earth or Mars gravity �eld.

Phases are characterized by the zero energy condition (�gure 7.3) relative to
the central body of interest. Among this point, we have hyperbolic conditions
relative to that same central body.

In Tables 7.2, 7.3 and 7.4, we compare the di�erent possible cases, with the
capture phase, the escape phase, both or none. For the escape phase, the initial
orbit is a High Earth Orbit (HEO), circular with a radius RHEO = 100000km.
For the capture phase, the �nal orbit is High Mars Orbit (HMO), circular with
radius RHMO = 100000km.

To limit infeasible cases we assign a high radius for RHMO around Mars. This
also limits the in�uence of the multi-body dynamics so that we can rigorously
compare two-body capture with three-body capture. Indeed, when setting a small
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Figure 7.3: Earth HEO escape - Mars HMO insertion, spacecraft total energy and
relative velocity with respect to Earth and Mars.

radius, much time and thus consumption is spent for correcting the �nal radius,
which is of no interest for this �rst comparison (although we can wonder whether
the radius RHMO has a real in�uence on the capture phenomenon).

In Table 7.2, we consider capture problems. The initial guesses for the capture
cases were quite poor, as they did not include the capture phase.

Case 2a is a two-body escape to a Mars HMO insertion. Case 2b is a direct
result from case 2a as the time of �ight is the duration of two-body segment
of case 2a. There is thus no third body capture phenomenon, nor rendezvous.
Case 2c, take the information from case 2b, time of �ight, to rendezvous Mars.
The 2-body capture mass is computed from the capture solution. It is the mass
when the spacecraft is captured by the arrival planet. This value could then be
compared with the rendezvous solution. Thus cases 2b and 2c can be somewhat
compared.

1 2a 2b 2c
Cases Earth Earth Earth Earth

Mars RdV Mars HMO Mars Capture 2-body Mars Capture

Initial mass m0 500 kg
Time of �ight (days) 350 350 342.0 342.0
Final Vrel (km/s) 0 0.674 0.597 0
Final Mass mf (kg) 407.7 402.1 408.2 407.7

Table 7.2: Earth-Mars transfer comparisons, capture cases. (‖ψ‖ ≤ 10−6)

Because the duration of the capture phase is not very long, we have a direct
indicator of the in�uence of the planet gravity over the performance. Comparisons
are di�cult, as the problems are di�erent, but the case studied here slightly
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demonstrates a trend. In fact, capture phases tend to reduce the consumption.
The stronger the gravity acceleration of the arrival planet, or the closer to the
planet is the �nal orbit, the more bene�t we should have on the consumption.

Figure 7.4 depicts the Earth - Mars capture. The spacecraft is captured on a
High Mars orbit (HMO).

Figure 7.4: Earth - Mars HMO capture trajectory.

Figure 7.5: Earth - Mars HMO capture, close view of the capture phase.

In Table 7.3, we consider escape phases. Case 3a considers a departure from a
HEO. Case 3b takes as initial conditions, the conditions at the end of the escape
phase of case 3a. We change the launch date, the initial mass, and introduce a
hyperbolic excess velocity.

According to this example, a low-thrust escapes under-performs a V∞ launch.
The escape date is T0 + 51.7 days, and V∞ = 1.07 km/s. Because V∞ is not null
(�g. 7.3), the escape phase has indeed an in�uence on the interplanetary travel.
The optimality principle dictates that both trajectory are optimal from the point
of escape to Mars. Thus, it is likely that the di�erence of performance comes
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1 3a 3b
Cases Earth Earth HEO escape Earth V∞

Mars RdV Mars RdV Mars RdV

Time of �ight (days) 350 350 298.3
Departure from t0 0 0 51.7
Initial mass m0 (kg) 500 500 476.6

V∞(km/s) 0 - 1.068
Final Mass mf (kg) 407.7 374.5 385.7

Table 7.3: Earth-Mars transfer comparisons, with escape phase. (‖ψ‖ ≤ 10−7)

from the bad orientation of the velocity when escaping, for case 3a. In addition,
in the multi-body case, when escaped we are still under the in�uence of Earth's
gravity, such that we tend to increase gravity losses. Although, the position of
the spacecraft on the circular HEO might be of importance for the orientation of
the velocity vector. This position has not been optimized here.

On �gure 7.6, we take the same initial conditions, but we rendezvous Mars,
as for the usual two-body problem.

Figure 7.7 depicts a close view of the escape phase. It includes coast arc. This
show the method to be able to correctly identify the switching of the optimal
control on the entire trajectory, despite the sensitivity of the problem and the
di�erence of scale in the dynamics.

Figure 7.7 depicts 4 coast phases. Trajectories have not many revolutions
around Mars (�g. 7.4) because of the high altitude of 100000 km and the low
gravitational parameter µ.

In table 7.4, we study the escape and capture problem. Case 4a considers an
HEO escape to an HMO insertion. Case 4b is a direct consequence of case 4a, as
the time of �ight and the launch date give the two-body transfer leg of case 4a.
Case 4c, is the two-body transfer problem taking as initial conditions the outgoing
conditions of the escape phase of case 4a, and considers a two-body rendezvous
with Mars.

The di�erence between cases 4b and 4c is signi�cant. Although, we did not
perform further check, as the solution found for case 4c might as well be a local
solution. There are many degree of freedom due to the un-speci�ed direction of
V∞.

Figure 7.8 gives the Earth escape to Mars capture, considering both Earth and
Mars gravity �eld. The trajectory is spiraling out to escape Earth gravity �eld,
then enter the interplanetary phase. Close to Mars, the spacecraft is captured
and spirals in to reach the desired Mars altitude as on �g. 7.5.
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Figure 7.6: Earth HEO escape - Mars trajectory and control.

Back to Earth

The spacecraft is the same as in the previous example, but the initial mass is set
to m0 = 300kg. The launch date is on 15/01/2018. We study the capture phase
with planet Earth.

We seek a return trajectory, from Mars to Earth, departing from Mars on the
15/01/2018.

The spacecraft is placed on a HEO around the Earth. Figure 7.9 depicts the
spiraling movement of the spacecraft around the Earth, for the di�erent circular
radius targets. We assume the spiral begins when the spacecraft is captured.
Compared to the Mars capture, the number of revolution around Earth is more
important than around Mars, for the same altitude. This is due to a stronger
gravity acceleration. It appears that di�erent classes of solutions exist, seeing at
the �nal inclination of the orbits. Indeed, the di�erence from a trajectory point
of view can be seen on �gure �g:earthcaptureclose.

A bad initial guess for this problem can result in many iterations.
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Figure 7.7: Earth HEO escape, close view of the escape phase.

1 4a 4b 4c
Cases Earth Earth HEO esc. Earth HEO esc. Earth V∞

Mars RdV Mars HMO capt. 2-body Mars capt. 2-body Mars capt.

Time of �ight (days) 350 350 292.1 292.1
V∞(km/s) 0 - 1.088 1.088

Initial mass m0 (kg) 500 500 476.6 476.6
Final Mass mf (kg) 407.7 375.4 378.7 322.8

Table 7.4: Earth-Mars transfer comparisons, with escape and capture phases.
(‖ψ‖ ≤ 10−6)

Figure 7.8: Complete Earth escape - Mars capture trajectory and control.

Comments

The optimization of such trajectory is more di�cult than it appears to be. Most
of the time, it is di�cult to say whether the solver simply fails to converge, or
the problem simply has no solution. The feasibility procedure is of great help in
practice.
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Figure 7.9: Close look at the Earth capture phase, Mars - Earth transfer, for
respectively 800 103 km, 500 103 km, 200 103 km radius

RHEO (km) Time of NREV Final mass (kg)
Flight (days)

two-body 300 - 247.82
800 300 < 1 247.26
500 300 < 1 247.42
200 300 1+ 233.73

Table 7.5: Mars-Earth with capture phase, continuation on RHEO, departing from
Mars on 15/01/2018. Number of revolutions around Earth.

Our algorithm does not seem to su�er from a problem of sensitivity, as be-
ing captured on a negative energy orbit around a planet is a simple task. The
di�culty arises when we are looking for a speci�c orbit. Indeed, besides the in-
terplanetary transfer time, we should allow su�cient time for the spacecraft to
make the correction to be on the correct planetocentric orbit. This additional
time, regarding the two-body transfer problem, can be important for low planet
orbits. Seeing at the examples, the spacecraft needs about 30 days to escape the
earth in�uence (SOI of about 1e6km), while it needs about 250 days to travel the
interplanetary phase. Planetocentric phases are thus far from being negligible.

This problem does not appear though for swing-by, as swing-by only lasts but
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a few days.

7.3 GTOC3 Asteroid to Asteroid leg, with Automatic

Swingby Design

The problem is the one of transferring a spacecraft from an asteroid to another,
as speci�ed in the GTOC 3 (see 3.1.2). The initial and �nal asteroids are given.
The time of �ight is �xed, and the dynamics include only the Sun and the Earth
gravity.

In the reference cases, Earth swing-bys are used to reach the asteroid. Here,
as our program allows, we do not impose any swing-by. But the gravitational
potential of the Sun and the Earth are both considered.

The thruster has a 3000s Isp, and 0.15 N of thrust.
Table 7.6 is the de�nition of the transfer. It is a sub-trajectory of our solution

trajectory.

Variable Our tool (gradient) T3D +
Patched Conic Approx.

Launch date t0 01/07/2020
Time of �ight T 551.5 days
Departure Body 2001 GP2
Arrival Body 1991 VG
Initial mass m0 1907.7 kg
Final Mass mf 1760.2 kg 1760.0 kg
Swing-by date ≈ t0 + 100days t0 + 101.8days

Swing-by radius R ≈ 199649km 176604.6 km

Table 7.6: GTOC3 asteroid - Earth - asteroid, Swing-by case comparison

On this example the initial guess used has no particular property. We solve
the problem from scratch. Indeed, it was not possible to use the initial guess
provided by T3D. The patched conic approximation provides an initial guess to
our algorithm that crashes the spacecraft on Earth. This example proves the good
convergence of our algorithm.

Our algorithm manages to �nd an Earth swing-by. This allows comparisons
between our solution, and the solution we submitted for GTOC3∗. They are
summarised in table 7.6.

For these examples, and all examples where swing-bys can be expected, as
the feasibility procedure of section 6.3.2 dictates, we should seek the constraint
feasibility �rst. If the constraint-satis�ed trajectory manages to get swing-byes,
then the optimal trajectory necessarily keeps the swing-byes, if those are of bene�t.

∗Swing-by radiuses are estimated with the total gravity acceleration graph.
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Figure 7.10: GTOC3: Asteroid to Asteroid transfer trajectory, with intermediate
Earth Swing By

Figure 7.11: GTOC3: Asteroid to Asteroid transfer gravity acceleration, with
intermediate Earth Swing By



128 CHAPTER 7. NUMERICAL EXAMPLES

Figure 7.12: GTOC3: Asteroid to Asteroid transfer energy, with intermediate
Earth Swing By

Figure 7.12 and 7.11 show the transfer energy and the gravity �eld measured
by the spacecraft during the transfer. The gravity acceleration graph shows a
very steep peek that matches the instant of Earth swing-by. In accordance, the
energy graph shows a rapid increase in energy. These observations are typical of
swing-by transfers, as they have been introduced in section 1.3.

Figure 7.14 displays the close approach to Earth. Because of the high alti-
tude, and the hyperbolic excess velocity, the deviation is not very important (see
equation 1.19).
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Figure 7.13: GTOC3: Asteroid to Asteroid transfer thrust, with intermediate
Earth Swing By
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Figure 7.14: GTOC3: Earth Swing By



Conclusions

Le vrai point d'honneur n'est pas d'être toujours

dans le vrai. Il est d'oser, de proposer des idées

neuves, et ensuite de les véri�er. Il est aussi, bien

sûr, de savoir reconnaître publiquement ses

erreurs (. . . ). L'honneur du scienti�que est (. . . )

d'accepter de perdre la face

Pierre-Gilles de Gennes, Prix Nobel de Physique

1991

Thesis Summary

We provide 2 di�erent, but somewhat complementary, approaches.

The �rst approach considers the patched conic approximation, and a low-
thrust model to evaluate as quickly as possible di�erent scenarii. We introduce
a new low-thrust shape-based model, which includes a Keplerian parameterized
function. This model improves on the current models, as the coast segments limit
the control approximation regarding the optimal control. As a result, investigating
a search space is quick and close to optimal possibilities.

We introduce a simpli�ed computational procedure that permits, along with a
pruning approach, to reduce the computational cost of evaluating di�erent multi-
gravity assist trajectories. We show that the complexity of using any parametrised
model is polynomial with the number of phases. The approach can be easily
parallelled.

Search for and evaluating di�erent scenarii can then be done easily. However,
besides the energetic tools presented in chapter 2, we did not �nd any new ap-
proaches that would help evaluating a scenario. Systematic approaches should be
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preferred to heuristics. Energetic tool and experience help in reducing the number
of possibilities.

Often it is considered that determining the scenario demands to be able to �nd
the global optimum of the problem. Indeed, among a perusal of literature locally
optimal scenarii are never explicitely sought, while for "simple" direct transfer
cases, the global optimality of solution is still an open problem. The second
approach addresses then local optimal control methods, to seek locally optimal
scenario.

We investigate current tools and methods, and try to demonstrate the limita-
tion of direct and indirect methods for complex dynamical problems. A formula-
tion is introduced to tackle di�cult dynamical problems.

We try to solve problem with big variations and changes in the dynamics. This
was a good benchmark to gravity assist trajectories. We successfully manage to
optimise multi-gravity assist trajectories. The solver is able to automatically �nd
the necessary swing-bys, however it is still a matter of luck and good initial guess.

Perspectives

The optimal control method is di�cult in practice, even with robust optimisers.
The di�erences in scale introduce error of integration, as the mantissa of double

numbers is limited. Further investigations should be made using more precise
computer architectures to limit truncations error.

Also, e�cient and more precise integrators should be studied for multi-scale
multi-body dynamics. Some signi�cant work seems to have been done in this �eld
in molecular dynamics.

Any initial guess does not necessarily provide a solution with swing-by, if such
solutions exist. In that scope, it should be possible to encourage the search of
swing-by by modifying the dynamics. Some future work can address this problem,
either by deforming the physics with a homotopy approach, or by imposing swing-
bys as an initial guess and testing if the optimised transfer preserves them.
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Planets' numerical data

Name Radius (km) Excentricity Period (days) Avg. Dist. µ (1014 m3s−2)
from SUN (AU)

Mercury ' 2439.7 0.20563 87.969 0.38 0.22032

Venus ♀ 6051.8 0.00677 224.701 0.72 3.24858

Earth ♁ 6378.14 0.01671 365.25 1.0 3.98600

Mars ♂ 3402.45 0.09341233 779.96 1.52 0.428283

Jupiter X 71492 0.0483926 4335.35 5.2 1266.86537

Saturn Y 60268 0.0541506 10757.74 9.53 37931284.5

Uranus Z 25656 0.0471677 30708.16 19.2 57.93947

Neptun [ 24961 0.0085858 60224.9 30.07 68.35107

Pluto \ 2300 0.25 90613.3 39.48 0.00870

Planets' position is given by DE405 JPL ephemeris database.

AU = 1.49597870691 1011 m

µSUN = 1.32712440018 120 m3/s2

G = 6.67259e− 11 m3/s2/kg

Tsideral = 365.25636 days
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List of Symbols

and Abbreviations

Symbol Name Description Unit

a semi major axis m

c Exhaust velocity m/s

e eccentricity

E Orbital Energy m2/s2

F Thrust force N

f dynamic function

H Hamiltonian

H angular momentum vector m2/s

h angular momentum m2/s

ISp Speci�c Impulse s

J Performance index m/s

M mass kg

m spacecraft mass kg

P power W

p semi latus rectum m

q mass �ow rate kg/s

r radius m

t Time, Epoch(MJD2000)

u control vector

V∞ Hyperbolic excess velocity km/s

Vx,Vy,Vz Cartesian velocity components m/s

x state vector

x,y,z Cartesian position components m

µ gravitational constant m3/s2

δ swing-by angular deviation rad

∆V Velocity increase m/s

Λ Co-state vector

ν Lagrange multiplier for constraints
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146 LIST OF SYMBOLS, CONSTANTS, AND ABBREVIATIONS

Constant Name Description Value

AU Astronomical Unit 1.495978706911011 m

g0 Gravity acceleration constant 9.80665 m/s2

G Universal gravitational constant 6.67259 10−11 m3/s2/kg

µSUN Sun gravitational constant 1.32712440018 1020 m3/s2

Abbreviation Description De�nition

AIAA American Institute of Aeronautics and Astronau-

tics

BC Boundary Condition

BVP Boundary Value Problem page 103

CNES Centre National d'Etudes Spatiales (France)

COV Calculus of Variation

DE405 JPL ephemeris data

DRO Distant Retrograde Orbit

DSM Deep Space Manoeuvre page 27

ESA European Space Agency

JPL Jet Propulsion Laboratory

MGA Multi Gravity Assist page 28

MJD Modi�ed Julien Date

MJD2000 Modi�ed Julien Date with reference epoch Jan 1st,

2000 at 12:00:00

NASA National Aeronautics and Space Administration

(USA)

NEA Near Earth Asteroids

ODE Ordinary Di�erential Equation

OCP Optimal Control Problem page 79

POP Parameter Optimisation Problem page 25

R3BP Restricted 3 Body Problem page 79

SNOPT Sparse Nonlinear OPTimizer [GMS08]

SOI Sphere Of In�uence [Bat01] page 10

SQP Sequential Quadratic Programming page 61

TPBVP Two Point BVP page 83
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apoapsis, 24

collocation, 81

condition number, 88

Conjugate Point, 102

constraint

rendezvous, 117

continuous thrust, 6

controllable, 99

cost function, 78

costate vector, 84

Deep Space 1, 5

direct transcription, 81

duality gap, 104

Euler Lagrange, 85

extremal, 84

feasible swing-by, 14

feedback control law, 92

�ight path

angle, 47

direction, 47

Fly-By, 11

global convergence, 104

gravisphere, 1

gravity assist, 11

Gravity Gradient Matrix, 86

Hamiltonian, 49, 84

heliocentric, 1

Lagrange multipliers, 84, 93

Lagrangian, 83

Augmented Lagrangian, 89

Lambert's problem, 26

low-thrust propulsion, 6

orbit

conic, 1

Keplerian arc, 1

prograde, 53

retrograde, 53

Particle Swarm Optimisation, 29

Patched Conic Approximation, 10

penalty matrix, 93

periapsis, 12, 24, 26

planetocentric, 1

propellant mass fraction, 3

pruning, 37

semi-latus rectum, 26

Smart-1, 5

speci�c impulse, 2

Sphere of In�uence, 10

strong minimum, 95

Swing-By, 11

system

autonomous, 107

Tisserand Criterion, 16

Tolstoïski formula, 3

transcription, 80

Transition matrix, 86

Transversality conditions, 85

velocity

characteristic velocity, 25

hyperbolic velocity, 12

velocity increment, 3

Voyager program, 11
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