.. Formulation-matricielle-et-résolution-du-problème-de-navier-stokes, 81 4.1. Traitement explicite de la convection, p.81

D. De-transport, 111 3.4 Adaptation de maillage, p.117

C. De-transport, 123 4.4. Validations du solveur de convection pure, p.145

]. D. Références, J. A. Adalsteinsson, and . Sethian, A fast level set method for propagating interfaces, J. Comput. Phys, vol.118, p.269, 1995.

J. Kesselman, A. Leigh, A. Sim, B. Shoshani, D. Drach et al., High- Performance Remote Access to Climate Simulation Data: A Challenge Problem for Data Grid Technologies, Proceedings of SC 2001, 2001.

J. Seidel and . Shalf, Solving Einstein's equations on supercomputers, IEEE Computer, vol.32, p.12, 1999.

]. G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M. Ripeanu et al., Supporting efficient execution in heterogeneous distributed computing environments with cactus and globus, Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM) , Supercomputing '01, p.10, 2001.
DOI : 10.1145/582034.582086

]. J. Anagnostopoulos and G. Bergeles, Three-dimensional modeling of the flow and the interface surface in a continuous casting mold model, Metallurgical and materials transaction N, 30B, pp.1095-1105, 1999.
DOI : 10.1007/s11663-999-0116-4

B. F. Mcinnes, H. Smith, and . Zhang, PETSc : Users Manual ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2002.

I. Zechter, O. Foster, and . Larsson, Large-Scale Distributed Computational Fluid Dynamics on the Information Power Grid using Globus, Proc. of Frontiers '99, 1999.

]. A. Basermann, J. Clinckemaillie, T. Coupez, J. Fingberg, H. Digonnet et al., Dynamic load-balancing of finite element applications with the DRAMA library, Applied Mathematical Modelling, vol.25, issue.2, pp.25-83, 2000.
DOI : 10.1016/S0307-904X(00)00043-3

URL : https://hal.archives-ouvertes.fr/hal-00536626

S. N. Schmidt and . Goldstein, The International Grid (iGrid): Empowering Global Research Community Networking Using High Performance International Internet Services, p.iGrid, 1999.

D. Gomez and . Jespersen, Overflow user's manual, version 1, NASA Ames Research Center, issue.6, 1995.

]. B. Merriman, J. Bence, and S. Osher, Motion of Multiple Junctions: A Level Set Approach, Journal of Computational Physics, vol.112, issue.2, p.334, 1994.
DOI : 10.1006/jcph.1994.1105

]. S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, 1988.
DOI : 10.1016/0021-9991(88)90002-2

]. L. Pearlman, C. Kesselman, S. Gullapalli, B. F. Spencer, J. et al., Distributed hybrid earthquake engineering experiments: experiences with a ground-shaking grid application, Proceedings. 13th IEEE International Symposium on High performance Distributed Computing, 2004., 2004.
DOI : 10.1109/HPDC.2004.1323474

]. D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, A PDE-Based Fast Local Level Set Method, Journal of Computational Physics, vol.155, issue.2, p.410, 1999.
DOI : 10.1006/jcph.1999.6345

]. M. Ripeanu, A. Iamnitchi, and I. Foster, Performance Predictions for a Numerical Relativity Package in Grid Environments, International Journal of High Performance Computing Applications, vol.15, issue.4, 2001.
DOI : 10.1177/109434200101500404

]. B. Shirazi, A. R. Hurson, and K. M. Kavi, Scheduling and load balancing in parallel and distributed systems, 1995.

]. M. Sussman, P. Smereka, and S. Osher, A level set method for computing solutions to incompressible two-phase flow, J. Comput. Phys, vol.122, p.179, 1996.

]. A. Wissink and R. Meakin, Computational fluid dynamics with adaptive overset grids on parallel and distributed computer platforms, 1998.

]. H. Zhao, T. Chan, B. Merriman, and S. Osher, A variational level set approach to multi-phase motion, J. Comput. Phys, vol.122, p.179, 1996.

]. H. Zhao, B. Merriman, S. Osher, and L. Wang, Capturing the Behavior of Bubbles and Drops Using the Variational Level Set Approach, Journal of Computational Physics, vol.143, issue.2, p.495, 1998.
DOI : 10.1006/jcph.1997.5810

]. U. Ghia, K. N. Ghia, and T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, vol.48, issue.3, pp.387-411, 1982.
DOI : 10.1016/0021-9991(82)90058-4

]. C. Gruau, T. Coupez, and ]. Guermond, Anisotropic and multidomain mesh automatic generation for viscous flow finite element method Some implementations of projection methods for Navier-Stokes equations, International Conference on Adaptative and Modeling Simulation Barcelone (2003) [Guermond, pp.637-667, 1996.

]. T. Hughes, G. R. Feijoo, L. Mazzei, and J. Quincy, The variational multiscale method???a paradigm for computational mechanics, Computer Methods in Applied Mechanics and Engineering, vol.166, issue.1-2, pp.3-24, 1998.
DOI : 10.1016/S0045-7825(98)00079-6

]. F. Hetu and . Ilinca, A finite element method for casting simulations. Numerical Heat Transfer, pp.657-679, 1999.

]. B. Magnin, « Modélisation du remplissage des moules d'injection pour les polymères thermoplastiques par une méthode eulérienne-lagrangienne arbitraire, Thèse de doctorat, Ecole Nationale supérieure des Mines de Paris, 1994.

]. A. Masud and T. J. Hughes, A stabilized mixed finite element method for Darcy flow, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.39-40, pp.4341-4378, 2002.
DOI : 10.1016/S0045-7825(02)00371-7

]. E. Perchat, MINI-élément et factorisations incomplètes pour la parallélisationd'un solveur de Stokes 2D, Thèse de doctorat, 2000.

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

]. R. Temam, Some developments on Navier-Stokes equations in the second half of the 20 th century, Development of Mathematics, 1950.

]. D. Références, J. A. Adalsteinsson, and . Sethian, A fast level set method for propagating interfaces, J. Comput. Phys, vol.118, p.269, 1995.

]. S. Batkam, Thermique multidomaine en simulation numérique du remplissage 3D, Thèse de doctorat, Ecole Nationale supérieure des Mines de Paris, 2002.

]. E. Bigot and T. Coupez, Capture of 3D moving free surfaces and material interfaces by mesh deformation, In European Congress on Computational Methods in Applied Sciences and Engineering, 2000.

]. E. Bigot, Simulation tridimensionnelle du remplissage de corps mince par injection, Thèse de doctorat, 2001.

]. F. Brezzi and A. Russo, CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS, Mathematical Models and Methods in Applied Sciences, vol.04, issue.04, pp.571-587, 1994.
DOI : 10.1142/S0218202594000327

]. F. Brezzi, L. P. Franca, T. J. Hugues, and A. Russo, b = ??? g, Computer Methods in Applied Mechanics and Engineering, vol.145, issue.3-4, pp.329-339, 1997.
DOI : 10.1016/S0045-7825(96)01221-2

]. A. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.32, issue.1-3, pp.199-259, 1982.
DOI : 10.1016/0045-7825(82)90071-8

J. Bruchon and T. Coupez, ??tude 3D de la formation d'une structure de mousse polym??re par simulation de l'expansion anisotherme de bulles de gazA study of the 3D polymer foam formation based on the simulation of anisothermal bubble expansion, M??canique & Industries, vol.4, issue.4, p.331, 2003.
DOI : 10.1016/S1296-2139(03)00077-0

]. Y. Chang, T. Y. Hou, B. Merriman, and S. J. Osher, A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows, Journal of Computational Physics, vol.124, issue.2, pp.449-464, 1996.
DOI : 10.1006/jcph.1996.0072

]. Y. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, Journal of Differential Geometry, vol.33, issue.3, p.749, 1991.
DOI : 10.4310/jdg/1214446564

]. T. Coupez, J. Bruchon, and E. S. Batkam, Space-Time Finite Element Method for 3D Process Modelling, 18th Annual Meeting of the Polymer Processing Society, p.18, 2000.

]. T. Coupez, Réinitialisation convective et locale des fonctions Level Set pour le mouvement de surfaces et interfaces, Chapitre III Calculs d'interfaces [Coupez, 2006.

]. D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, A Hybrid Particle Level Set Method for Improved Interface Capturing, Journal of Computational Physics, vol.183, issue.1, p.83, 2002.
DOI : 10.1006/jcph.2002.7166

]. D. Enright, F. Losasso, and R. Fedkiw, A fast and accurate semi-Lagrangian particle level set method, Computers & Structures, vol.83, issue.6-7, p.479, 2005.
DOI : 10.1016/j.compstruc.2004.04.024

]. L. Evans and J. Spruck, Motion of level sets by mean curvature. I, Journal of Differential Geometry, vol.33, issue.3, p.635, 1991.
DOI : 10.4310/jdg/1214446559

]. L. Franca and A. Russo, On Petrov-Galerkin formulations for the linear hyperbolic equation, appeared with the titlè`Recovering SUPG using Petrov- Galerkin formulations enriched with adjoint residula-free bubbles, 2000.

]. E. Harabetian, S. Osher, and C. W. Shu, An Eulerian Approach for Vortex Motion Using a Level Set Regularization Procedure, Journal of Computational Physics, vol.127, issue.1, p.15, 1996.
DOI : 10.1006/jcph.1996.0155

]. T. Hughes and A. N. Brooks, A multi-dimensional upwind scheme with no crossing diffusion " , Finite Element Methods for Convection Dominated Flows, pp.19-35, 1979.

]. T. Hughes, A. N. Brooks, and R. H. , A theoretical framework for Petrov- Galerkin methods with discontinuous weighting functions: Applications to the streamline-upwind procedure, Finite Elements in Fluids, 1982.

J. Magnaudet, M. Rivero, J. B. Fabre, and . Magnin, Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow, Thèse de doctorat, Ecole Nationale supérieure des Mines de Paris, pp.97-136, 1994.
DOI : 10.1016/0301-9322(79)90024-7

]. B. Merriman, J. Bence, and S. Osher, Motion of Multiple Junctions: A Level Set Approach, Journal of Computational Physics, vol.112, issue.2, p.334, 1994.
DOI : 10.1006/jcph.1994.1105

]. S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, p.12, 1988.
DOI : 10.1016/0021-9991(88)90002-2

]. D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, A PDE-Based Fast Local Level Set Method, Journal of Computational Physics, vol.155, issue.2, p.410, 1999.
DOI : 10.1006/jcph.1999.6345

]. E. Pichelin and T. Coupez, A Taylor discontinuous Galerkin method for the thermal solution in 3D mold filling, Chapitre III Calculs d'interfaces [Pichelin, 1998.
DOI : 10.1016/S0045-7825(99)00011-0

URL : https://hal.archives-ouvertes.fr/hal-00542132

]. W. Rider and D. B. Kothe, Stretching and tearing interface tracking methods, 12th Computational Fluid Dynamics Conference, p.1, 1995.
DOI : 10.2514/6.1995-1717

]. J. Sethian, Turbulent combustion in open and closed vessels, Journal of Computational Physics, vol.54, issue.3, 1984.
DOI : 10.1016/0021-9991(84)90126-8

]. M. Sussman, P. Smereka, and S. Osher, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, vol.114, issue.1, p.146, 1994.
DOI : 10.1006/jcph.1994.1155

]. M. Sussman, E. Fatemi, P. Smereka, and S. Osher, An improved level set method for incompressible two-phase flows, Computers & Fluids, vol.27, issue.5-6, p.663, 1998.
DOI : 10.1016/S0045-7930(97)00053-4

. Welcomey, An Adaptive Level Set Approach for Incompressible Two-Phase Flows, Journal of Computational Physics, vol.148, p.81, 1999.

]. M. Sussman and E. G. Puckett, A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows, Journal of Computational Physics, vol.162, issue.2, 2000.
DOI : 10.1006/jcph.2000.6537

]. S. Vincent and J. Caltagirone, Efficient solving method for unsteady incompressible interfacial flow problems, International Journal for Numerical Methods in Fluids, vol.30, issue.6, p.795, 1998.
DOI : 10.1002/(SICI)1097-0363(19990730)30:6<795::AID-FLD872>3.3.CO;2-U

]. H. Zhao, T. Chan, B. Merriman, and S. Osher, A variational level set approach to multi-phase motion, J. Comput. Phys, vol.122, p.197, 1996.

]. H. Zhao, B. Merriman, S. Osher, and L. Wang, Capturing the Behavior of Bubbles and Drops Using the Variational Level Set Approach, Journal of Computational Physics, vol.143, issue.2, p.495, 1998.
DOI : 10.1006/jcph.1997.5810

. Dans-un-premier and . Temps, on utilise la méthode Volume of Fluid décrite dans le chapitre des calculs d'interfaces. On y associe une technique de r-adaptation (adaptation dynamique du maillage) qui limite les effets néfastes de la diffusion numérique

. Le-rapport-de-stage-de-morgane-pascal-]-réalisé-au-cemef-traite-de-cette-expérience, Elle a reproduit le dispositif expérimental étudié dans] pour visualiser le jet de Worthington produit par la chute d'une bille dans une bassine de fluide, 1996.

. Enfin, une caméra rapide filme l'expérience en capturant 1000 images par seconde

. Le-fluide-contenu-dans-le, bac est du sirop de glucose obtenu par dissolution de sucre dans de l'eau. Le sirop utilisé contient 70% de sucre en masse et a une viscosité d'environ 0

. Pa, il existe une marge d'erreur assez importante sur la viscosité expérimentale du fluide De plus, le lâché manuel de la bille entraîne une approximation assez importante sur la chute libre, avant qu'elle ne rencontre le fluide. Ainsi, il sera difficile d'exploiter les résultats de cette expérience de façon très rigoureuse. Toutefois, une comparaison qualitative avec des résultats numériques reste possible. La figure (20) montre la chute d'une bille d'acier (avec une masse volumique de 7800 kg.m -3 ) de 1 cm de diamètre lancée d'une hauteur de 10 cm par rapport à la surface du fluide

]. J. Références, G. Anagnostopoulos, and . Bergeles, Three-Dimensional Modeling of the Flow and the Interface Surface in a Continuous Casting Mold Model, Metallurgical and materials transaction N, 30B, pp.1095-1105, 1999.

]. Cheny and K. Walters, Extravagant viscoelastic effects in the Worthington jet experiment, Journal of Non-Newtonian Fluid Mechanics, vol.67, pp.125-135, 1996.
DOI : 10.1016/S0377-0257(96)01473-5

]. Cheny and K. Walters, Rheological influences on the splashing experiment, Journal of Non-Newtonian Fluid Mechanics, vol.86, issue.1-2, pp.185-210, 1999.
DOI : 10.1016/S0377-0257(98)00208-0

]. J. Cocchi and R. Saurel, A Riemann Problem Based Method for the Resolution of Compressible Multimaterial Flows, Journal of Computational Physics, vol.137, issue.2, pp.137-139, 1997.
DOI : 10.1006/jcph.1997.5768

]. L. Gaston, Simulation numérique par éléments finis bidimensionnels du remplissage de moule de fonderie et étude expérimentale sur maquette hydraulique, Thèse de doctorat, 1997.

. Allain, Numerical simulations of wave breaking, Mathematical Modelling and Numerical Analysis, pp.39-42, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00017441

]. V. Maronnier, Simulation numérique d'écoulements de fluides incompressibles avec surface libre, Thèse de doctorat, 2000.

]. Martin and M. J. Moyce, Some gravity wave problems in the motion of perfect liquids, Philos. Trans. Roy. Soc. London Ser. A, vol.244, pp.231-334, 1952.

]. S. Nigen and K. Walters, On the two-dimensional splashing experiment for Newtonian and slightly elastic liquids, Journal of Non-Newtonian Fluid Mechanics, vol.97, issue.2-3, pp.233-250, 2001.
DOI : 10.1016/S0377-0257(00)00221-4

]. M. Pascal, Interaction fluide-structure. Chute d'un solide dans un liquide, CEMEF, 2005.

]. M. Tanaka, The stability of solitary waves, Physics of Fluids, vol.29, issue.3, pp.650-655, 1986.
DOI : 10.1063/1.865459

]. T. Yasuda, H. Mutsuda, and N. Mizutani, Kinematics of overturning solitary waves and their relations to breaker types, Coastal Engineering, vol.29, issue.3-4, pp.317-346, 1997.
DOI : 10.1016/S0378-3839(96)00032-4