.. De-burger, Profil de vitesse d'un gaz de particule obéissantobéissantà l'´ equation, p.89

M. Anguelova and B. Wennberg, Communication privée, p.106

W. Baur and V. Strassen, The complexity of partial derivatives, Theoretical Computer Science, vol.22, issue.3, pp.317-330, 1983.
DOI : 10.1016/0304-3975(83)90110-X

B. Beckermann and G. Labahn, A uniform approach for Hermite Pad?? and simultaneous Pad?? approximants and their matrix-type generalizations, Numerical Algorithms, vol.1, issue.1, pp.45-54, 1992.
DOI : 10.1007/BF02141914

R. Bellman and K. J. , On structural identifiability, Mathematical Biosciences, vol.7, issue.3-4, pp.329-339, 1970.
DOI : 10.1016/0025-5564(70)90132-X

A. Bensoussan, G. Da-prato, M. C. Delfour, and S. K. Mitter, Representation and control of infinite dimensional systems, Birkhäuser, vol.1, issue.2, p.65, 1992.

M. Berger and B. Gostiaux, Géométrie différentielle : variété, courbes et surfaces, Presse universitaire de France, p.36, 1987.

S. J. Berkowitz, On computing the determinant in small parallel time using a small number of processors, Information Processing Letters, vol.18, issue.3, pp.147-150, 1984.
DOI : 10.1016/0020-0190(84)90018-8

F. Boulier, Etude et implantation de quelques algorithmes en algèbre différentielle, Thèse de doctorat, LIFL, pp.25-27, 1994.

F. Boulier, Efficient computation of regular differential systems by change of rankings using Kähler differentials. Prépublication 1999-14, pp.26-39, 1999.

F. Boulier, D. Lazard, F. Ollivier, and M. Petitot, Representation for the radical of a finitely generated differential ideal, Proceedings of the 1995 international symposium on Symbolic and algebraic computation , ISSAC '95, pp.158-166, 1995.
DOI : 10.1145/220346.220367

URL : https://hal.archives-ouvertes.fr/hal-00138020

F. Boulier, D. Lazard, F. Ollivier, and M. Petitot, Computing representations for radicals of finitely generated differential ideals, Applicable Algebra in Engineering, Communication and Computing, vol.3, issue.1, 1999.
DOI : 10.1007/s00200-009-0091-7

URL : https://hal.archives-ouvertes.fr/hal-00820902

F. Boulier and F. Lemaire, Computing canonical representatives of regular differential ideals, Proceedings of the 2000 international symposium on Symbolic and algebraic computation symbolic and algebraic computation , ISSAC '00, pp.37-46, 2000.
DOI : 10.1145/345542.345571

URL : https://hal.archives-ouvertes.fr/hal-00139177

F. Boyer, C. , and P. , Symbolic modeling of a flexible manipulator via assembling of its generalized Newton Euler model. Mechanism and machine theory 31, pp.45-56, 1996.

K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, Classics in applied Mathematics. SIAM, vol.14, p.73, 1996.
DOI : 10.1137/1.9781611971224

R. P. Brent and H. T. Kung, Fast Algorithms for Manipulating Formal Power Series, Journal of the Association for Computing Machinery 58, 59) [17] Bronstein, M. Symbolic integration I, transcendantal function of Algorithms and Computation in Mathematics, pp.581-595, 1978.
DOI : 10.1145/322092.322099

P. Brunovsk´ybrunovsk´y, A classification of linear controllable systems, Kybernetica, vol.6, pp.176-188, 1970.

P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic complexity theory of Grundlehren der mathematischen wissenschaften, p.31, 1997.

A. Butkovskiy, Structural theory of distributed systems, Ellis Horwood, pp.65-75, 1983.

S. L. Campbell, DAE approximations of PDE modeled control problems, IEEE Mediterranean symposium on new directions in control and automation (Crete, pp.407-414, 1994.

S. L. Campbell, High-Index Differential Algebraic Equations, Mechanics of Structures and Machines, vol.92, issue.2, pp.199-222, 1995.
DOI : 10.1016/0094-114X(89)90057-8

S. L. Campbell and C. W. Gear, The index of general nonlinear DAEs, Numerische Mathematik, vol.72, issue.2, pp.173-196, 1995.
DOI : 10.1007/s002110050165

G. Carrà-ferro, Gröbner bases and differential ideals algebraic algorithms and error-correcting codes (Mernoca, Spain, Proceedings of the 5th International Applied algebra 356 in Lecture notes in computer science, pp.129-140, 1987.

G. Carrà-ferro, A Resultant Theory for the Systems of Two Ordinary Algebraic Differential Equations, Applicable Algebra in Engineering, Communication and Computing, vol.8, issue.6, pp.539-561, 1997.
DOI : 10.1007/s002000050090

´. E. Cartan, Sur l'intégration de certains systèmes indéterminés d'´ equations différentielles, Journal für die reine und angewandte Mathematik, vol.145, pp.86-91, 1915.

D. Castro, K. Hägele, J. Morais, and L. M. Pardo, Kronecker's and Newton's Approaches to Solving: A First Comparison, Journal of Complexity, vol.17, issue.1, pp.212-303, 2001.
DOI : 10.1006/jcom.2000.0572

A. Caumo, C. , and C. , Hepatic glucose production during the labelled IVGTT estimation by the convolution with a new minimal model, Amer. J. Physiol, vol.264, pp.829-841, 1993.

P. D. Christofides, Nonlinear and robust control of PDE systems. Methods and applications to transport-reaction processes. Systems & control : foundations & applications, Birkhäuser, p.65, 2001.

F. Chyzak, Fonctions holonomes en calcul formel, p.4, 1998.
URL : https://hal.archives-ouvertes.fr/tel-00991717

D. Cox, J. Little, O. Shea, and D. , Ideals, varieties and algorithms : an introduction to computational algebraic geometry and commutative algebra. Undergraduate texts in Mathematics, pp.7-23, 1992.

J. Denef and L. Lipshitz, Power series solutions of algebraic differential equations, Mathematische Annalen, vol.25, issue.2, pp.213-238, 1984.
DOI : 10.1007/BF01579200

. Diffalg, The diffalg package Adresse URL : http ://www-sop.inria.fr, pp.26-28, 2001.

S. Diop, Elimination in control theory, Mathematics of Control, Signals, and Systems, vol.50, issue.1, pp.17-32, 1991.
DOI : 10.1007/BF02551378

S. Diop, Differential-algebraic decision methods and some applications to system theory. Theoretical computer science 98, pp.137-161, 1992.

S. Diop and M. Fliess, On nonlinear observability, Proceedings of the first european control conference, pp.152-157, 1991.

D. Eisenbud, Commutative algebra with a view toward algebraic geometry. No. 150 in Graduate texts in Mathematics, pp.40-43, 1994.

C. Fabre, J. Puel, and E. Zuazua, Approximate controllability of the semilinear heat equation, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.31, issue.01, pp.31-61, 1995.
DOI : 10.1007/978-1-4612-5561-1

J. C. Faugère, P. Gianni, D. Lazard, M. , and T. , Efficient Computation of Zero-dimensional Gr??bner Bases by Change of Ordering, Journal of Symbolic Computation, vol.16, issue.4, pp.329-344, 1993.
DOI : 10.1006/jsco.1993.1051

M. Fliess, Automatique et corps diff??rentiels, Forum Mathematicum, vol.1, issue.1, pp.227-238, 1989.
DOI : 10.1515/form.1989.1.227

M. Fliess, Some basic structural properties of generalized linear systems, Systems & Control Letters, vol.15, issue.5, pp.391-396, 1990.
DOI : 10.1016/0167-6911(90)90062-Y

M. Fliess, J. Lévine, P. Martin, F. Ollivier, and P. And-rouchon, A remark on nonlinear accessibility conditions and infinite prolongations. Systems and control letters 31, pp.77-83, 1997.
DOI : 10.1016/s0167-6911(97)00028-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Fliess, J. Lévine, P. Martin, and P. And-rouchon, Flatness and defect of non-linear systems: introductory theory and examples, International Journal of Control, vol.4, issue.6, pp.1327-1361, 1995.
DOI : 10.1109/9.73561

M. Fliess, J. Lévine, P. Martin, and P. And-rouchon, Implicit differential equations and Lie- Bäcklund mapping, Proceedings of 34th conference on decision and control, pp.36-40, 1995.
DOI : 10.1109/cdc.1995.478523

M. Fliess, J. Lévine, P. Martin, and P. And-rouchon, A Lie-Backlund approach to equivalence and flatness of nonlinear systems, IEEE Transactions on Automatic Control, vol.44, issue.5, pp.922-937, 1999.
DOI : 10.1109/9.763209

M. Fliess and H. Mounier, Controllability and observability of linear delay systems : an algebraic approach. ESAIM : control optimisation and calculus of variations 3, pp.301-314, 1998.

M. Fliess and H. Mounier, Tracking Control and ??-Freeness of Infinite Dimensional Linear Systems, Dynamical systems, pp.45-68, 1999.
DOI : 10.1007/978-3-0348-8970-4_3

M. Fliess, H. Mounier, P. Rouchon, R. , and J. , Systèmes linéaires sur les opérateurs de Mikusi´nskiMikusi´nski et commande d'une poutre flexible. InÉlasticitéIn´InÉlasticité, viscoélasticité et contrôle optimal : 8` eme entretiens du centre Jacques Cartier, ESAIM : Proceedings, pp.183-193, 1997.
DOI : 10.1051/proc:1997012

K. Forsman, Applications of Gröbner bases to nonlinear systems, Proceedings of first european control conference, pp.164-169, 1991.

K. Forsman, Some generic results on algebraic observability and connections with realization theory, Proceedings of 2nd european control conference, pp.1185-1190, 1996.

K. Forsman, J. , and M. , Some finiteness issues in differential algebraic systems theory. research report 1994-02-24, p.5, 1994.

G. Gallo, B. Mishra, G. Gallo, B. Mishra, and F. Ollivier, Efficient algorithms and bounds for Wu-Ritt characteristic sets In Effective methods in algebraic geometry (proceedings of MEGA'90) Some constructions in rings of differential polynomials, Proceedings of the 9th International Applied algebra, algebraic algorithms and error-correcting codes 539 in Lecture notes in computer science, pp.119-142, 1991.

V. Gathen, J. Zur, G. , and J. , Modern computer algebra, pp.23-31, 1999.

K. Geddes, Convergence behaviour of the Newton iteration for first order differential equations, Symbolic and Algebraic Computation, Proceedings of EUROSAM'79 72 in Lecture notes in computer science, pp.189-199, 1979.
DOI : 10.1007/3-540-09519-5_71

M. Gevrey, La nature analytique des solutions deséquationsdeséquations aux dérivées partielles Annales scientifiques de l' ´ Ecole Normale Supérieure, pp.129-190, 1918.

M. Giusti, K. Hägele, G. Lecerf, J. Marchand, and B. Salvy, The Projective Noether Maple Package: Computing the Dimension of a Projective Variety, Journal of Symbolic Computation, vol.30, issue.3, pp.291-307, 2000.
DOI : 10.1006/jsco.2000.0369

URL : https://hal.archives-ouvertes.fr/inria-00073465

M. Giusti, J. Heintz, J. E. Morais, J. Morgenstern, and L. M. Pardo, Straight-line programs in geometric elimination theory, Journal of Pure and Applied Algebra, vol.124, issue.1-3, pp.1-3, 1998.
DOI : 10.1016/S0022-4049(96)00099-0

A. Goldbeter, A Model for Circadian Oscillations in the Drosophila Period Protein (PER), Proceedings of the Royal Society B: Biological Sciences, vol.261, issue.1362, pp.319-324, 1995.
DOI : 10.1098/rspb.1995.0153

E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations I, of Springer Series in Computational Mathematics, pp.71-79, 1993.
DOI : 10.1007/978-3-662-12607-3

D. Henry, Geometric theory of semilinear parabolic equations, of Lecture notes in Mathematics, p.67, 1981.
DOI : 10.1007/BFb0089647

R. Hermann and A. J. Krener, Nonlinear controllability and observability, IEEE Transactions on Automatic Control, vol.22, issue.5, pp.728-740, 1977.
DOI : 10.1109/TAC.1977.1101601

´. E. Hubert, Etude algébrique et algorithmique des singularités deséquationsdeséquations différentielles implicites, Thèse de doctorat, pp.26-27, 1997.

´. E. Hubert, Essential components of an algebraic differential equation Journal of symbolic computation 28, pp.657-681, 1999.

´. E. Hubert, Factorization-free Decomposition Algorithms in Differential Algebra, Journal of Symbolic Computation, vol.29, issue.4-5, pp.641-662, 2000.
DOI : 10.1006/jsco.1999.0344

A. Isidori, Nonlinear control systems of Communications and control engineering series, pp.13-49, 1989.

J. Johnson, Kahler Differentials and Differential Algebra, The Annals of Mathematics, vol.89, issue.1, pp.92-98, 1969.
DOI : 10.2307/1970810

J. Johnson, Kähler differentials and differential algebra in arbitrary characteristic. Transaction of the, pp.201-208, 1974.

R. E. Kalman, On the general theory of control systems, Proceedings of the first international congress on automatic control, pp.481-492, 1961.
DOI : 10.1109/TAC.1959.1104873

E. Kaltofen, Computational differentiation and algebraic complexity theory, Workshop report on first theory institute on computational differentiationMCS-TM-183 of tech. rep. Argonne national laboratory, pp.28-30, 1993.

E. Kaltofen and M. F. Singer, Size efficient parallel algebraic circuits for partial derivatives, IV International conference on computer algebra in physical research, pp.133-145, 1991.

D. E. Knuth, The art of computer programming : seminumerical algorithms

E. R. Kolchin, Differential algebra and algebraic groups Academic press, of Pure and applied Mathematics, pp.27-54, 1973.

A. Kumar and P. Daoutidis, Control of nonlinear differential algebraic equation systems, Research notes in Mathematics. Chapman and Hall / CRC, p.104, 1999.

B. Laroche, Extension de la notion de platitudè a des systèmes décrits par deséquationsdeséquations aux dérivées partielles linéaires, pp.19-65, 2000.

B. Laroche, P. Martin, and P. And-rouchon, Motion planning for the heat equation, International Journal of Robust and Nonlinear Control, vol.59, issue.60, pp.629-643, 2000.
DOI : 10.1002/1099-1239(20000715)10:8<629::AID-RNC502>3.0.CO;2-N

G. Lecerf, Une alternative aux méthodes de réécriture pour la résolution des systèmes algébriques, Thèse de doctorat, ´ Ecole polytechnique, p.31, 2001.

Y. Lecourtier, F. Lamnabhi-lagarrigue, and ´. E. Walter, A method to prove that nonlinear models can be unidentifiable, 26th IEEE Conference on Decision and Control, pp.2144-2145, 1987.
DOI : 10.1109/CDC.1987.272467

H. Lewy, An Example of a Smooth Linear Partial Differential Equation Without Solution, The Annals of Mathematics, vol.66, issue.1, pp.155-158, 1957.
DOI : 10.2307/1970121

J. Lions, Contrôle optimal des systèmes gouvernés par deséquationsdeséquations aux dérivées partielles. Dunod, p.65, 1968.

L. Ljung, System identification ? Theory for the user, p.51, 1987.

L. Ljung, G. , and T. , Parametrization of nonlinear model structures as linear regressions, 11th IFAC word congress, pp.67-71, 1990.

L. Ljung, G. , and T. , On global identifiability for arbitrary model parametrizations, Automatica, vol.30, issue.2, pp.265-276, 1994.
DOI : 10.1016/0005-1098(94)90029-9

A. F. Lynch, R. , and J. , Flatness-based boundary control of a nonlinear parabolic equation modelling a tubular reactor In Nonlinear control in the year, of Lecture notes in control and information sciences, pp.45-54, 2000.

E. Mansfield and L. , Differential Gröbner bases, p.23, 1991.

G. Margaria, Applications of differential algebra to the structural identifiability of non linear models, p.27, 1999.

G. Margaria and L. White, Multispecies model for the transmission of pathogens

R. Marino and P. Valigi, Nonlinear control of induction motors : a simulation study, Proceedings of first european control conference, pp.1057-1062, 1991.

P. Martin and P. And-rouchon, Any (controllable) driftless system with 3 inputs and 5 states is flat, Systems & Control Letters, vol.25, issue.3, pp.167-173, 1995.
DOI : 10.1016/0167-6911(94)00060-9

P. Martin and P. And-rouchon, Systèmes plats : planification et suivi de trajectoires, 1999.

G. Matera and A. Sedoglavic, The differential Hilbert function of a differential rational mapping can be computed in polynomial time, Proceedings of the 2002 international symposium on Symbolic and algebraic computation , ISSAC '02, pp.184-191, 2002.
DOI : 10.1145/780506.780530

URL : https://hal.archives-ouvertes.fr/hal-00129689

E. W. Mayr and A. Meyer, The complexity of the word problems for commutative semigroups and polynomial ideals, Advances in Mathematics, vol.46, issue.3, pp.305-329, 1982.
DOI : 10.1016/0001-8708(82)90048-2

J. Mikusi´nskimikusi´nski, Operational calculus. Pergamon press, p.68, 1959.

M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, and S. M. Vorkoetter, Maple V programming guide, p.59, 1996.
DOI : 10.1007/978-1-4684-0241-4

URL : http://dx.doi.org/10.1016/s0898-1221(96)90201-1

J. Morgenstern, How to compute fast a function and all its derivatives, SIGACT news, pp.60-62, 1985.
DOI : 10.1145/382242.382836

H. Mounier, Propriétés structurelles des systèmes linéaireslinéaires`linéairesà retards : aspects théoriques et pratiques, Thèse de doctorat, pp.19-68, 1995.

V. Nieuwstadt, M. Rathinam, M. , M. , and R. M. , Differential Flatness and Absolute Equivalence of Nonlinear Control Systems, SIAM Journal on Control and Optimization, vol.36, issue.4, pp.1225-1239, 1998.
DOI : 10.1137/S0363012995274027

C. Noiret, Utilisation du calcul formel pour l'identifiabilité de modèles paramètriques et nouveaux algorithmes en estimation de paramètres, Thèse de doctorat, p.52, 2000.

F. Ollivier, Leprobì eme de l'identifiabilité structurelle globale : approche théorique, méthodes effectives et bornes de complexité, Thèse de doctorat, ´ Ecole polytechnique, pp.16-27, 1990.

F. Ollivier, Standard bases of differential ideals, Proceedings of the 8th International Applied algebra, algebraic algorithms and error-correcting codes of Lecture notes in computer science, pp.304-321, 1990.
DOI : 10.1007/3-540-54195-0_60

F. Ollivier, Une réponse négative auprobì eme de Lüroth différentiel en dimension 2 Compte rendu de l'Académie des sciences de Paris 327, pp.881-886, 1998.

F. Ollivier, Une réponse négative auprobì eme de Noether différentiel Compte rendu de l'Académie des sciences de Paris 328, Série I, pp.99-104, 1999.

F. Ollivier and A. Sedoglavic, A generalization of flatness to nonlinear systems of partial differential equations Application to the command of a flexible rod, Proceedings of the 5th IFAC Symposium " Nonlinear Control Systems " (Saint, pp.196-200, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00126994

F. Ollivier and A. Sedoglavic, Algorithmes efficaces pour tester l'identifiabilité locale, Actes de la Conférence Internationale Francophone d'Automatique, pp.811-816, 2002.

G. Ordonneau, Démarrage d'un moteuràmoteurà cycle expander : analyse des temps caractéristiques, Office National d' ´ Etudes et de Recherches Aérospatiales, p.14, 1999.

N. Petit, Y. Creff, and P. And-rouchon, Motion planning for two classes of nonlinear systems with delays depending on the control, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), pp.13-20, 1998.
DOI : 10.1109/CDC.1998.760828

H. Pohjanpalo, System identifiability based on the power series expansion of the solution, Mathematical Biosciences, vol.41, issue.1-2, pp.1-2, 1978.
DOI : 10.1016/0025-5564(78)90063-9

J. Pomet, On dynamic feedback linearization of four-dimensional affine control systems with two inputs, ESAIM : Control optimisation calculus variations, pp.151-230, 1997.
DOI : 10.1051/cocv:1997107

URL : https://hal.archives-ouvertes.fr/inria-00073941

A. Péladan, Tests effectifs de nullité dans des extensions d'anneaux différentiels, pp.27-44, 1997.

P. Rabier, J. Rheinboldt, and C. Werner, A Geometric Treatment of Implicit Differential-Algebraic Equations, Journal of Differential Equations, vol.109, issue.1, pp.110-146, 1994.
DOI : 10.1006/jdeq.1994.1046

A. Raksanyi, Utilisation du calcul formel pour l'´ etude des systèmes d'´ equations polynomiales (applications en modélisation) Thèse de doctorat, pp.27-102, 1986.

A. Raksanyi, Y. Lecourtier, ´. E. Walter, and A. Venot, Identifiability and distinguishability testing via computer algebra, Mathematical Biosciences, vol.77, issue.1-2, pp.245-266, 1985.
DOI : 10.1016/0025-5564(85)90100-2

G. J. Reid, P. Lin, and A. D. Wittkopf, Differential Elimination-Completion Algorithms for DAE and PDAE, Studies in Applied Mathematics, vol.106, issue.1, pp.1-45, 2001.
DOI : 10.1111/1467-9590.00159

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Ritt, Differential algebra, 1950.
DOI : 10.1090/coll/033

A. Rosenfeld, Specialization in differential algebra. Transaction of the, pp.394-407, 1959.

P. Rouchon, Necessary condition and genericity of dynamic feedback linearization Journal of mathematical systems, pp.345-358, 1995.

H. Ryser, of Carus mathematical monographs, J. Combinatorial Mathematics, vol.14, p.32, 1963.

B. Sadik, The complexity of formal resolution of linear partial differential equations, Proceedings of 11th International Symposium Applied algebra, algebraic algorithms and error-correcting codes no. 948 in Lecture notes in computer science, pp.408-414, 1995.
DOI : 10.1007/3-540-60114-7_31

B. Sadik, A bound for the order of characteristic set elements of an ordinary prime differential ideal and some applications Applicable algebra in engineering, pp.251-268, 2000.

M. Safey-el-din, Résolution réelle des systèmes polynomiaux en dimension positive, Thèse de doctorat, p.16, 2001.

S. Sastry, Nonlinear systems : analysis, stability and control, pp.14-49, 1999.
DOI : 10.1007/978-1-4757-3108-8

. Schaft and A. Van-der, On realization of nonlinear systems described by higher-order differential equations, Mathematical Systems Theory, vol.22, issue.1, pp.239-275, 1987.
DOI : 10.1007/BF01704916

´. E. Schost, Sur la résolution des systèmes polynomiauxàpolynomiaux`polynomiauxà paramètres, Thèse de doctorat, ´ Ecole polytechnique, p.31, 2000.

R. Sedgewick and P. Flajolet, An introduction to the analysis of algorithms, p.73, 1996.

A. Sedoglavic and . Page-personnelle, Adresse URL : http ://medicis.polytechnique.fr/?sedoglav, (page consultée en septembre, p.62, 2001.

A. Sedoglavic, A mixed symbolic-numeric method to study prime ordinary differential ideal, GAGE laboratory, 2000.

A. Sedoglavic, A probabilistic algorithm to test local algebraic observability in polynomial time, Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, pp.309-316, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00126995

A. Seidenberg, An elimination theory for differential algebra, University of California publications in Mathematics, vol.3, issue.2, pp.31-65, 1956.

W. M. Seiler, Analysis and application of the formal theory of partial differential equations Thèse de doctorat, School of Physics and Chemistry at Lancaster University, september 1994, p.39

Y. Sibuya and S. Sperber, Arithmetic properties of power series solutions of algebraic differential equations Exact linearization in switched-mod DC-to-DC power converters, Annals of Mathematics. Second series International journal of control, vol.113135, issue.2, pp.111-157, 1981.

T. Söderström and P. Stoica, System Identification, Journal of Dynamic Systems, Measurement, and Control, vol.115, issue.4, p.51, 1989.
DOI : 10.1115/1.2899207

W. J. Stortelder, P. W. Hemker, and H. C. Hemker, Mathematical modelling in blood coagulation ; simulation and parameter estimation, p.104, 1997.

V. Strassen and . Vermeidung-von-divisionen, Journal für die reine und angewandte, Mathematik, vol.264, pp.58-184, 1973.

G. Thomas, Contributions théoriques et algorithmiquesàalgorithmiques`algorithmiquesà l'´ etude deséquationsdeséquations différentiellesalgébriques ; approche par le calcul formel, Thèse de doctorat, pp.14-27, 1997.

J. Tóth, Communication privée, p.106

A. Tresse, Sur les invariants diff??rentiels des groupes continus de transformations, Acta Mathematica, vol.18, issue.0, pp.1-88, 1894.
DOI : 10.1007/BF02418270

S. Vajda, IDENTIFIABILITY OF POLYNOMIAL SYSTEMS: STRUCTURAL AND NUMERICAL ASPECTS, Identifiability of parametric models, pp.42-48, 1987.
DOI : 10.1016/B978-0-08-034929-9.50008-X

S. Vajda, K. R. Godfrey, R. , and H. , Similarity transformation approach to identifiability analysis of nonlinear compartmental models, Mathematical Biosciences, vol.93, issue.2, pp.217-248, 1989.
DOI : 10.1016/0025-5564(89)90024-2

L. G. Valiant, Reducibility by algebraic projections. L'enseignement Mathématique, IIe Séries, vol.28, pp.3-4, 1982.

´. E. Walter, Identifiability of state space model of Lectures notes in biomathematics, p.50, 1982.

´. E. Walter and Y. Lecourtier, Unidentifiable compartmental models: what to do?, 51) [149] Walter, ´ E., and Pronzato, L. Identification des modèles paramétriques. Masson, pp.1-25, 1981.
DOI : 10.1016/0025-5564(81)90025-0

J. C. Willems, Paradigms and puzzles in the theory of dynamical systems, IEEE Transactions on Automatic Control, vol.36, issue.3, pp.259-294, 1991.
DOI : 10.1109/9.73561

W. Wu, Automatic derivation of Newton's gravitational law from Kepler's laws, Academica Sinica Mathematics?Mechanization Research Preprints, p.27, 1987.

N. N. Yanenko, The method of fractional steps, p.71, 1971.
DOI : 10.1007/978-3-642-65108-3

O. Zariski and P. Samuel, Commutative algebra volume I, of Graduate texts in Mathematics, p.4, 1958.

R. Zippel, Probabilistic algorithms for sparse polynomials, Symbolic and Algebraic Computation Proceedings of EUROSAM'79 of Lecture notes in computer science, pp.216-226, 1979.
DOI : 10.1007/3-540-09519-5_73