Rock mass classification using numerical homogeneisation methods - Archive ouverte HAL Access content directly
Theses Year : 2006

Rock mass classification using numerical homogeneisation methods

Apports des méthodes d'homogénéisation numériques à la classification des massifs rocheux fracturés

(1)
1
Michel Chalhoub
  • Function : Author
  • PersonId : 862897

Abstract

The calculation method of the homogenized and anisotropic mechanical properties (elasticity tensor and resistance) of a rock mass using the finite element method, on a large scale, is first presented in this thesis.

The application of different types of numerical loading representing various compression and shear tests allows the determination of homogenized laws. These laws are deduced from the relations between the average stress and strain in a Representative Elementary Volume (REV). The different types of numerical loading (by prescribed stress or displacements) and their effects on the homogenized parameters are discussed.

A special attention is paid to the application of the theory of ellipsoidal elasticity of Saint Venant to the case of rock masses. This theory has several advantages. In particular, it allows the calculation of a three-dimensional (3D) elasticity tensor based on a plane (2D) calculations.
In addition to the method of determination of mechanical REV, a comparison with the size of the geometrical REV, which is easier to calculate, was elaborated. An approached analytical formula for the REV size is established for some non periodic rock masses according to the geometrical parameters of discontinuities.

The fundamental contribution of this thesis consists in establishing a mechanical classification of a family of rock masses. This classification is founded on the numerical homogenization methods that we propose. Then, a parametric study was carried out to determine the sensitivity of the results to the geometrical and mechanical parameters of the rock matrix and discontinuities. The homogenized mechanical parameters thus obtained constitute a useful data for the design and the study of different projects in rock masses (tunnels, slopes, dams foundations). The adjustment of some fundamental mechanical parameters (Young modulus, shear modulus) has led to the development of analytical expressions generalizing, for the cases of finite size fractures, the formulations of Amadei and Goodman [1981].

The development of this numerical classification has required the development and the validation of a powerful tool for numerical homogenization (HELEN) and, which is also easily usable in the case of other types of heterogeneous and anisotropic mediums (concrete, masonry...)

.
Cette thèse présente d'abord la méthodologie de calcul des propriétés élastoplastiques à grande échelle d'un massif rocheux par la méthode d'homogénéisation numérique en éléments finis.

Des chargements simulant différents essais mécaniques de compression et de cisaillement sont appliqués sur un Volume Elémentaire Représentatif (VER). La loi de comportement homogénéisée est déduite des contraintes et déformations moyennes calculées dans ce VER. Les différents types de chargements numériques, en contrainte ou en déplacement imposés, et leur effets sur les paramètres homogénéisés sont discutés.

Une attention particulière est portée à l'application de la théorie d'élasticité ellipsoïdale de Saint Venant au cas des massifs rocheux. Cette théorie présente plusieurs avantages. En particulier, elle permet de fixer pour les massifs que nous étudions, un modèle élastique tridimensionnel à partir d'un calcul plan.
Une comparaison entre les tailles de VER mécanique et géométrique a été faite et il a été montré que pour les massifs étudiés le VER mécanique peut être déduit du VER géométrique qui est plus simple à calculer. Une formule approchée donnant la taille du VER en fonction des paramètres géométriques des fractures a été établie pour des massifs non périodiques.

L'apport fondamental de cette thèse consiste à établir une classification mécanique de certains types de massifs rocheux fondée sur la méthode d'homogénéisation numérique que nous avons proposée. Ensuite, une étude paramétrique a été réalisée pour déterminer la sensibilité des résultats aux paramètres géométriques et mécaniques de la matrice rocheuse et des discontinuités. Les paramètres mécaniques homogénéisés ainsi obtenus constituent des données très utiles pour la conception et l'étude des ouvrages dans les massifs rocheux (tunnels, déblais, fondations au rocher). L'ajustement de quelques paramètres mécaniques fondamentaux (module d'Young, module de cisaillement) a conduit à l'élaboration d'expressions analytiques généralisant la formulation d'Amadei et Goodman [1981] pour des cas où l'extension des fractures est finie.

L'élaboration de cette classification numérique a exigé le développement et la validation d'un outil d'homogénéisation numérique performant (HELEN) et qui est aussi facilement utilisable dans le cas d'autres types de milieux hétérogènes fissurés et anisotropes (bétons, maçonnerie...)

.
Fichier principal
Vignette du fichier
These_Michel_Chalhoub_-_Mines_ParisTech_2006.pdf (6.89 Mo) Télécharger le fichier
Vignette du fichier
Presentation_These_Michel_Chalhoub.pps (6.58 Mo) Télécharger le fichier
Vignette du fichier
These_Chalhoub_numerical_tool_HELEN.avi (4.75 Mo) Télécharger le fichier
Format : Other
Format : Other
Loading...

Dates and versions

tel-00412033 , version 1 (30-09-2009)

Identifiers

  • HAL Id : tel-00412033 , version 1

Cite

Michel Chalhoub. Apports des méthodes d'homogénéisation numériques à la classification des massifs rocheux fracturés. Sciences de l'ingénieur [physics]. École Nationale Supérieure des Mines de Paris, 2006. Français. ⟨NNT : ⟩. ⟨tel-00412033⟩
563 View
2605 Download

Share

Gmail Facebook Twitter LinkedIn More