C. Contrainte-Élongationnelle, 85 III. 6. 5. Nombre de Weissenberg critique, p.90

.. Etude-de-l-'instabilité-volumique-en-sortie-de-filière, 100 IV. 2. 1. Morphologie des extrudats obtenus, p.101

.. De-la-loi-de-comportement, Géométrie de maillages et conditions limites utilisées, V. 3. 2. Identification des paramètres, p.165

.. Comportement-singulier-du-ps-2-en-Écoulement-axisymétrique and .. Dans-la-zone-oscillante, 169 V. 4. 2. Courbes d'écoulement apparentes, pour différents rapports184 A. II. Courbes d'écoulement apparentes du PS 2 obtenues en rhéométrie capillaire, pour différents rapports de longueur, p.188

V. Quantification-du-défaut-hélicoïdal-du-pp:-mesure-de-pas, .. Diamètres-et-volumes-hélicoïdaux, and D. Un-même-diamètre, 190 A. V. 2. Mesure de pas et diamètres hélicoïdaux, A. V. A. V. Mesure de volumes hélicoïdaux, vol.1, issue.3, 0191.

A. Vii, P. Contrainte-Élongationnelle-critique,-calculée-en-rhéométrie-capillaire,-pour-le, and .. , 194 A. VIII Nombre de Weissenberg critique calculé en rhéométrie capillaire, 195 A. VIII. 2. Déclenchement du défaut hélicoïdal pour le PS 2

A. I. Fréquence-du-défaut-volumique-périodique-pour-le, P. En-filière-plate, and .. , 197 A. X. 1. Equation sans étirement en régime permanent, 197 A. X. 2. Equation avec étirement en régime permanent

A. X. Influence-de-la-température-sur-le-déclenchement-du-défaut-volumique-oscillant, P. Le, and .. , 201 A. XI. 1. Courbes d'écoulement apparentes obtenues avec L, p.202

A. Iv, Courbes d'écoulement en contrainte réelle, obtenue en rhéométrie capillaire A. IV. 1. Courbes d'

A. Viii, Nombre de Weissenberg critique calculé en rhéométrie capillaire A. VIII. 1. Déclenchement du défaut hélicoïdal pour le PP -a -b A. 8. 1. : Variation du nombre de Weissenberg critique pour différents diamètres et longueurs de filière, °C. La figure (b) est à une échelle zoomée par rapport à la figure (a)

A. Viii, Déclenchement du défaut hélicoïdal pour le PS 2 -a -b A. 8. 2. : Variation du nombre de Weissenberg critique pour différents diamètres et longueurs de filière, à 180 °C. La figure (b) est à une échelle zoomée par rapport à la figure (a)

A. Xi, Influence de la température sur le déclenchement du défaut volumique oscillant

A. Xi, 1. Courbes d'écoulement apparentes obtenues avec L
URL : https://hal.archives-ouvertes.fr/hal-00341610

R. G. Larson, Instabilities in viscoelastic flows, Rheologica Acta, vol.33, issue.2, pp.213-263, 1992.
DOI : 10.1007/BF00366504

C. J. Petrie and M. M. Denn, Instabilities in polymer processing, AIChE Journal, vol.22, issue.2, pp.209-236, 1976.
DOI : 10.1002/aic.690220202

J. P. Tordella, UNSTABLE FLOW OF MOLTEN POLYMERS, Rheology, F. R. Eirich, 1969.
DOI : 10.1016/B978-1-4832-2942-3.50008-9

L. Robert, Instabilités oscillante de polyéthylènes linéaires : observations et interprétations, Thèse de doctorat, 2001.

C. Venet and B. Vergnes, Experimental characterization of sharkskin in polyethylenes, Journal of Rheology, vol.41, issue.4, pp.1319-1334, 2000.
DOI : 10.1122/1.550837

P. Beaufils, B. Vergnes, and J. F. Agassant, Characterization of the Sharkskin Defect and its Development with the Flow Conditions**, International Polymer Processing, vol.4, issue.2, pp.78-84, 1989.
DOI : 10.3139/217.890078

N. Kissi and J. M. Piau, Stability phenomena during polymer melt extrusion, Rheology for Polymer Melt Processing, Rheology series, 1996.
DOI : 10.1016/S0169-3107(96)80014-1

C. Venet, Propriétés d'écoulement et défauts de surface de résines polyéthylènes, Thèse de doctorat, 1996.

G. Sornberger, J. C. Quantin, R. Fajolle, B. Vergnes, and J. F. Agassant, Experimental study of the sharkskin defect in linear low density polyethylene, Journal of Non-Newtonian Fluid Mechanics, vol.23, pp.123-135, 1987.
DOI : 10.1016/0377-0257(87)80014-9

C. Venet and B. Vergnes, Stress distribution around capillary die exit: an interpretation of the onset of sharkskin defect, Journal of Non-Newtonian Fluid Mechanics, vol.93, issue.1, pp.117-132, 2000.
DOI : 10.1016/S0377-0257(00)00105-1

URL : https://hal.archives-ouvertes.fr/hal-00538179

R. Rutgers and M. R. Mackley, The correlation of experimental surface extrusion instabilities with numerically predicted exit surface stress concentrations and melt strength for linear low density polyethylene, Journal of Rheology, vol.44, issue.6, pp.1319-1334, 2000.
DOI : 10.1122/1.1319176

J. M. Piau, N. Kissi, F. Toussaint, and A. Mezghani, Distortions of polymer melt extrudates and their elimination using slippery surfaces, Rheologica Acta, vol.23, issue.6, pp.40-57, 1995.
DOI : 10.1007/BF00396053

H. Münstedt, M. Schmidt, and E. Wassner, Stick and slip phenomena during extrusion of polyethylene melts as investigated by laser-Doppler velocimetry, Journal of Rheology, vol.44, issue.2, pp.413-427, 2000.
DOI : 10.1122/1.551092

L. Robert, Y. Demay, and B. Vergnes, Stick-slip flow of high density polyethylene in a transparent slit die investigated by laser Doppler velocimetry, Rheologica Acta, vol.43, issue.1, pp.89-98, 2004.
DOI : 10.1007/s00397-003-0323-x

URL : https://hal.archives-ouvertes.fr/hal-00015321

J. J. Baik and C. Tzoganakis, A study of extrudate distortion in controlled-rheology polypropylenes, Polymer Engineering & Science, vol.38, issue.2, pp.274-281, 1998.
DOI : 10.1002/pen.10188

T. F. Ballenger, I. J. Chen, J. W. Crowder, G. E. Hagler, D. Bogue et al., Polymer Melt Flow Instabilities in Extrusion: Investigation of the Mechanism and Material and Geometric Variables, Transactions of the Society of Rheology, vol.15, issue.2, pp.195-215, 1971.
DOI : 10.1122/1.549207

E. B. Bagley and A. M. Birks, Flow of Polyethylene into a Capillary, Journal of Applied Physics, vol.31, issue.3, pp.556-561, 1960.
DOI : 10.1063/1.1735627

E. B. Bagley and H. P. Schreiber, Effect of Die Entry Geometry on Polymer Melt Fracture and Extrudate Distortion, Transactions of the Society of Rheology, vol.5, issue.1, pp.341-353, 1961.
DOI : 10.1122/1.548904

J. M. Piau, N. Kissi, and B. Tremblay, Influence of upstream instabilities and wall slip on melt fracture and sharkskin phenomena during silicones extrusion through orifice dies, Journal of Non-Newtonian Fluid Mechanics, vol.34, issue.2, pp.145-180, 1990.
DOI : 10.1016/0377-0257(90)80016-S

J. L. White, Critique on flow patterns in polymer fluids at the entrance of a die and instabilities leading to extrudate distortions, Appl. Poly. Symp, vol.20, pp.155-174, 1973.

T. F. Ballenger and J. L. White, The development of the velocity field in polymer melts in a reservoir approaching a capillary die, Journal of Applied Polymer Science, vol.15, issue.8, pp.1949-1962, 1971.
DOI : 10.1002/app.1971.070150813

J. M. Piau, N. Kissi, and B. Tremblay, Low Reynolds number flow visualization of linear and branched silicones upstream of orifice dies, Journal of Non-Newtonian Fluid Mechanics, vol.30, issue.2-3, pp.197-232, 1988.
DOI : 10.1016/0377-0257(88)85025-0

K. Nakamura, S. Ituaki, T. Nishimura, and A. Horikawa, Instability of polymeric flow through an abrupt contraction, Trans. J. Textile Mach. Soc. Japan, vol.40, pp.57-65, 1987.

D. V. Boger, Viscoelastic Flows Through Contractions, Annual Review of Fluid Mechanics, vol.19, issue.1, pp.157-182, 1987.
DOI : 10.1146/annurev.fl.19.010187.001105

Y. Oyanagi, A study of irregular flow behavior of high density polyethylene, Appl. Poly. Symp, vol.20, pp.123-136, 1973.

N. Bergem, Visualization studies of polymer melt flow anomalies in extrusion, Proc VII Congress Rheology, Gothenberg, pp.50-54, 1976.

Y. Goutille, J. C. Majeste, J. F. Tassin, and J. Guillet, Molecular structure and gross melt fracture triggering, Journal of Non-Newtonian Fluid Mechanics, vol.111, issue.2-3, pp.175-198, 2003.
DOI : 10.1016/S0377-0257(03)00054-5

F. Legrand and J. M. Piau, Spatially resolved stress birefringence and flow visualization in the flow instabilities of a polydimethylsiloxane extruded through a slit die, Journal of Non-Newtonian Fluid Mechanics, vol.77, issue.1-2, pp.123-150, 1998.
DOI : 10.1016/S0377-0257(97)00129-8

E. Wassner, M. Schmidt, and H. Münstedt, Entry flow of a low-density-polyethylene melt into a slit die: An experimental study by laser-Doppler velocimetry, Journal of Rheology, vol.43, issue.6, pp.1339-1353, 1999.
DOI : 10.1122/1.551050

S. Nigen, Instabilités en extrusion de polymères fondus, Thèse de doctorat, 2000.

S. Nigen, N. Kissi, J. M. Piau, and S. Sadun, Velocity field for polymer melts extrusion using particle image velocimetry, Journal of Non-Newtonian Fluid Mechanics, vol.112, issue.2-3, pp.177-202, 2003.
DOI : 10.1016/S0377-0257(03)00097-1

J. P. Tordella, An instability in the flow of molten polymers, Rheologica Acta, vol.30, issue.No. 8, pp.216-221, 1958.
DOI : 10.1007/BF01968870

I. B. Kasatchkov, S. G. Hatzikiriakos, and C. W. Stewart, Extrude distortion in the capillary/slit extrusion of a molten polypropylene, Polymer Engineering and Science, vol.26, issue.23, pp.1864-1871, 1995.
DOI : 10.1002/pen.760352305

Y. Goutille and J. Guillet, Influence of filters in the die entrance region on gross melt fracture: extrudate and flow visualization, Journal of Non-Newtonian Fluid Mechanics, vol.102, issue.1, pp.19-36, 2001.
DOI : 10.1016/S0377-0257(01)00125-2

R. S. Spencer and R. E. Dillon, The viscous flow of molten polystyrene. II, Journal of Colloid Science, vol.4, issue.3, pp.241-255, 1949.
DOI : 10.1016/0095-8522(49)90007-0

J. L. Wales, Apparatus for the measurement of flow birefringence of polymer melts at high shear stresses, Rheologica Acta, vol.17, issue.1, p.38, 1969.
DOI : 10.1007/BF02321353

F. Ramsteiner, The effect of die geometry on flow resistance, extrudate dilatation and melt fracture of plastics melts, p.766, 1972.

A. B. Metzner, E. L. Carley, and I. K. Park, Polymeric melts : a study of steady-state flow, extrudate irregularities and normal stresses, Modern Plastics, pp.133-140, 1960.

J. M. Piau, S. Nigen, and N. Kissi, Effect of die entrance filtering on mitigation of upstream instability during extrusion of polymer melts, Journal of Non-Newtonian Fluid Mechanics, vol.91, issue.1, pp.37-57, 2000.
DOI : 10.1016/S0377-0257(99)00083-X

J. Vlachopoulos and M. Alam, Critical stress and recoverable shear for polymer melt fracture, Polym. Eng. Sci, vol.10, pp.193-203, 1970.

R. S. Spencer and R. E. Dillon, The viscous flow of molten polystyrene, Journal of Colloid Science, vol.3, issue.2, pp.163-180, 1948.
DOI : 10.1016/0095-8522(48)90066-X

J. M. Lupton and R. W. Regester, Melt flow of polyethylene at high rates, Polymer Engineering and Science, vol.7, issue.4, pp.235-245, 1965.
DOI : 10.1002/pen.760050406

J. J. Benbow and P. Lamb, New aspects of melt fracture, Polymer Engineering and Science, vol.46, issue.1, pp.7-17, 1963.
DOI : 10.1002/pen.760030104

G. Mckinley, W. P. Raiford, R. A. Brown, and R. C. Armstrong, Nonlinear dynamics of viscoelastic flow in axisymmetric abrupt contractions, Journal of Fluid Mechanics, vol.200, issue.-1, pp.411-456, 1991.
DOI : 10.1016/0377-0257(82)85003-9

S. Kim and J. M. Dealy, Gross melt fracture of polyethylene. I: A criterion based on tensile stress, Polymer Engineering & Science, vol.25, issue.3, pp.482-494, 2002.
DOI : 10.1002/pen.10965

E. B. Bagley, The Separation of Elastic and Viscous Effects in Polymer Flow, Transactions of the Society of Rheology, vol.5, issue.1, pp.355-368, 1961.
DOI : 10.1122/1.548905

A. E. Everage and R. L. Ballman, A mechanism for polymer melt or solution fracture, Journal of Applied Polymer Science, vol.18, issue.3
DOI : 10.1002/app.1974.070180326

D. R. Paul and L. H. Southern, The role of entanglements in the elastic fracture of polymer solutions, Journal of Applied Polymer Science, vol.19, issue.12, pp.3375-3380, 1975.
DOI : 10.1002/app.1975.070191222

A. Lavernhe-gerbier, Modèles moléculaires appliqués aux instabilités d'écoulement de polymères fondus, Thèse de doctorat, 2003.

J. P. Villemaire, Etude d'un rhéomètre à pré-cisaillement : le Rhéoplast. Application à la mesure du comportement visqueux, Thèse de doctorat, Ecole Nationale Supérieure des Mines de Paris, 1993.

E. B. Bagley, End Corrections in the Capillary Flow of Polyethylene, Journal of Applied Physics, vol.28, issue.5, pp.624-627, 1957.
DOI : 10.1063/1.1722814

R. Muller and B. Vergnes, Validity of the stress optical law and application of birefringence to polymer complex flows, Rheology for Polymer Melt Processing, Rheology series, 1996.
DOI : 10.1016/S0169-3107(96)80010-4

J. L. Wales, The application of flow birefringence to rheological studies of polymer melts, 1976.
DOI : 10.1007/978-94-010-1556-1

C. Combeaud, Y. Demay, and B. Vergnes, Etude expérimentale du défaut hélicoïdal d'un polystyrène en écoulement, Rhéologie, pp.50-57, 2003.

J. Vlachopoulos and S. Lidorikis, Melt fracture of polystyrene, Polymer Engineering and Science, vol.47, issue.1, pp.1-5, 1971.
DOI : 10.1002/pen.760110102

C. Combeaud, Y. Demay, and B. Vergnes, Experimental study of the volume defects in polystyrene extrusion, Journal of Non-Newtonian Fluid Mechanics, vol.121, issue.2-3, pp.175-185, 2004.
DOI : 10.1016/j.jnnfm.2004.06.007

URL : https://hal.archives-ouvertes.fr/hal-00015351

R. Graham, A. Likthman, T. Mcleish, and S. Milner, Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release, Journal of Rheology, vol.47, issue.5, pp.1171-1200, 2003.
DOI : 10.1122/1.1595099

A. E. Likhtman and R. S. Graham, Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie???Poly equation, Journal of Non-Newtonian Fluid Mechanics, vol.114, issue.1, pp.1-12, 2003.
DOI : 10.1016/S0377-0257(03)00114-9

J. D. Doelder and R. Koopmans, Single-branch spurt of long-chain-branched polyolefins, soumis à, J. Rheol, 2004.