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Réesung

Le but de cette thse est de psenter une analyse statiquengrique pour des pro-
grammes multéicheécrits enJava.

Les programmes mulfiche ekcutent plusieursithes en parale. Cesaches com-
muniquent implicitement par le biais de l&émoire partage et elles se synchonisent sur
des moniteurs (les primitivesait notify, etc, ...). Il y a quelques ages, les archi-
tectures avec double processeurs ont comimaritre disponibles sur le marela petit
prix. Aujourd’hui, presque tous les ordinateurs ont au moins deux noyaux, la tendance ac-
tuelle du march étant de mettre de plus en plus de processeurs par puce. &etiigtion
ameneégalement de nouveauk d en matere de programmation, car elle demande aux
déeveloppeurs d'implanter des programmes maidtite. Le multiiche est suppdten natif
par la plupart des langages de programmation courants, cdavaet C#.

Le but de l'analyse statique est de calculer des informations sur le comportement
d'un programme, de magie conservative et automatique. Une application de l'analyse
statique est le@veloppement d'outils qui aident aglobgage des programmes. Plusieurs
méthodes d'analyse statique @i propoges. Nous suivrons le cadre de l'intextation
abstraite, une #orie matematique permettant deechir des approximations correctes
de £mantiques de programmes. Cettethode a djaéte utilisee pour un large spectre de
langages de programmation.

L'id ee fondamentale des analyseurs statiquergrijues est de &elopper un ou-
tils qui puissenttre interfaé avec di érents domaines nugriques et diérentes pro-
prietes. Pendant ces deenés anées, beaucoup de travaux se sont a&amoet enjeu,
et ils ontéte appliques avec su@s pour @boguer des logiciels industriels. La force de
ces analyseureside dans le fait qu'une grande partie de l'analyse et eutilisee
pour \eri er plusieurs propretes. L'utilisation de di érents domaines nugriques permet
le developpement d'analyses plus rapides mais moiésipes, ou plus lentes mais plus
précises.

Dans cette tbse, nous @sentons la conception d'un analyseéngrique pour des
programmes multitche. Avant tout, nousathissons le moéle némoire, app@&happens-
before memory modePuis, nous approximons ce n&d meémoire en une semantique
calculable. Les magles némoire @ nissent les comportements aut@sspendant |'e&-
cution d'un programme muléitche. Commencant par l& aition (informelle) de ce
modele meémoire particulier, nousé&nissons une @mantique qui construit toutes les
exécutions nies selon ce made nemoire. Une e&cution d'un programme muléithe



est cecrite par une function qui associe lashesa des 8quences (ou traces)adats. Nous
montrons comment concevoir unensantique abstraite calculable, et nous montrons for-
mellement la correction degésultat de cette analyse.

Ensuite, nous& nissons et approximons une nouvelle pr@tiqui porte sur les com-
portements non @erministes ca@s par le multéche, c'esta dire ceux qui sont dus
aux entrelacements arbitraires pendantd@xtion de dierentes instructions de lecture.
Avant tout, le non dterminisme d'un programme muéithe se @ nit par une di érence
entre plusieurs écutions. Si deux é@cutions engendrent des comportement&nts
dus aux valeurs qui sont lues @arites en ramoire partage, alors le programme est
non ceterministe. Nous approximons cette préfgien deuxétapes : dans un premier
temps, nous regroupons, pour chacaeht, la valeur (abstraite) qui pediteécrite dans
la mémoire partagea un point de programme doanDans un deurime temps, nous
resumons toutes les valeurs pouvatreécrites en paratle, tout en nous rapellant I'en-
semble deséches qui pourraient les avdcrites.A un premier niveau d'approxima-
tion, nous introduisons un nouveau concept dedninisme faible. Nous proposons par
ailleurs d'autres mamre a aiblir la propriete de éterminisme, par exemple par projec-
tion des traces et deégats, puis nousé&lnissons une hierarchie globale de ces#blis-
sements. Nougtudions aussi comment lagsence de con it sur les aes des donges
peut a ecter le @terminisme du programme.

Nous appliquons ce cadre de travagdhiquea Java. En particulier, nous@&nissons
une €mantique du language objet dwva, selon sa sgci cation. Ensuite, nous approxi-
mons cette @mantique a n de garder uniqguement l'information qui eét@ssaire pour
I'analyse des programmes mudtdhe. Le cceur de cette abstraction est une analyse d'alias
qui approxime leséférences a n d'identi er les&ches, de éri er les aces en nemoire
partage, et de dtecter quand dewathes ont un moniteur commun a n d'ereduire
guelles parties du code ne peuvent paséexécutes en paratle.

L'analyseur grérique qui est écrit ci-dessus ate entierement implaét dans un ou-
tils appek f heckmate. f heckmate est ainsi le premier analyseugmgrique pour des pro-
grammes multéicheécrits enJava. Des Esultats exprimentaux sont dor@s et analyss
en cktails. En particulier, noustudions la pgcision de I'analyse lorsqu'elle est applig
a des schmas courants de la programmation concurrente, ainai djautres exemples.
Nous observonggalement les performances de I'analyse lorsqu'elle est aggamune
application incementale, ainsi ga' des exemples déférence bien connus.

Une autre contribution de cettegtbe est I'extension d'un analysel@rgrique existant
qui s'appelleClousot et qui permet de &ri er le non debordement des @moires tam-
pons. Il s'awere que cette analyse passkéchelle des programmes industriels et qu'elle
est pecise. En@&sung, nous pesentons une application d'un analyseur statiqarégque
industriel existant pour&tecter et prouver une propt pesentant un idet pratique, ce
gui montre la puissance de cette approche dansveldppement d'outils qui soient utiles
pour les @veloppeurs.



Riassunto

L'obiettivo di questa tese di presentare un‘analisi statica generica per progradana
multithread.

Un programma multithread esegue molteplici task, chiamati thread, in parallelo. | thread
comunicano implicitamente attraverso una memoria condivisa, e si sincronizzano attra-
verso monitor, primitive wait-notify, etc... Le prime architetture dual-core sono apparse
sul mercato a prezzi contenuti alcuni anni fa; oggi praticamente tutti i computer sono al-
meno dual-code. L'attuale trend di mercaaddirittura quello del many-core, ovvero di
aumentare sempre dipil numero di core presenti su una CPU. Alcune nuove s de sono
state introdotte da questa rivoluzione multicore a livello di linguaggi di programmazione,
dal momento che gli sviluppatori software devono implementare programmi multithread.
Questo pattern di programmazioaeupportato nativamente dalla maggior parte dei lin-
guaggi di programmazione moderni codava e C#.

Lo scopo dell'analisi statica di calcolare automaticamente e in maniera conservativa una
serie di informazioni sul comportamento a tempo di esecuzione di un programma; una sua
applicazionee lo sviluppo di strumenti che aiutino a trovare e correggere errori software.
In questo campo svariati approcci sono stati proposti: nel corso della teaiseguita

le teoria dell'interpretazione astratta, un approccio matematico che permette di de nire e
approssimare correttamente la semantica dei programmi. Questa meto@ojig&tata
utilizzata con successo per I'analisi di un vasto insieme di linguaggi di programmazione.
Gli analizzatori generici possono essere instanziati con diversi domini numerici e appli-
cati a svariate propriat Negli ultimi anni numerosi lavori sono stati centrati su questo
approccio, e alcuni di essi sono stati utilizzati con successo in contesto industriale. Il loro
punto di forzae il riutilizzo della maggior parte dell'analizzatore per veri care molteplici
propriet, e l'utilizzo di diversi domini numerici permette di ottenere analisi peloci

ma pu approssimate, oppureypprecise ma i lente.

Nel corso di questa tesi presenteremo un analizzatore generico per programmi multi-
thread.
De niremo innanzitutto il modello di memoria happens-before sotto forma di punto s-
SO e lo approssimeremo con una semantica che sia calcolabile. Un modello di memoria
de nisce quali comportamenti di un programma multithread sono consentiti durante la
sua esecuzione. A partire da una de nizione informale del modello di memoria happens-
before, introdurremo una semantica che costruisca tutte le esecuzioni nite che rispettino
tale modello di memoria; in tale contesto un‘esecuziemappresentata come una fun-



zione che associa ciascun thread ad una traccia di stati che rappresenta la sua esecuzione.
Introdurremo in ne una semantica astratta ch@ @ssere calcolata, provandone la cor-
rettezza formalmente.

De niremo e approssimeremo quindi una nuova proprietcalizzata sui comportamenti

non deterministici causati dall'esecuzione multithread (ad esempio dall'intercalarsi arbi-
trario durante I'esecuzione in parallelo di diversi thread). Prima di tutto, il non determini-
smo di un programma multithre@dde nito come di erenza tra esecuzioni. Un program-
mae non deterministico se due diverse esecuzioni espongono comportamengindi a

causa dei valori letti e scritti sulla memoria condivisa. Astrarremo quindi tale prapriet

su due livelli: inizialmente tracceremo per ogni thread il valore astratto che potrebbe aver
scritto sulla o letto dalla memoria condivisa. Al successivo passo di astrazione traccere-
mo un solo valore, che approssiradutti i possibili valori scritti in parallelo, e I'insieme

dei thread che potrebbero aver fatto.cBul primo livello di astrazione de niremo poi il
concetto di determinismo debole. Proporremo quindi diverse madiiliilassamento di

tale propried, in particolare proiettandola su un sottoinsieme delle traccie di esecuzione
e degli stati, de nendo una gerarchia complessiva. In ne studieremo come la presenza di
data race possa in uenzare il determinismo di un programma.

Tutto questo lavoro teorico vexrquindi applicato a programndava. In particolare de -
niremo una semantica concreta del linguaghfiva bytecode seguendo la sua speci ca.
Quindi lo approssimeremo in maniera da astrarre precisamente le informazioni richieste
per poter analizzare un programma multithread. Il fulcro diecfapprossimazione degli
indirizzi di memoria per poter identi care i diversi thread, per controllare gli accessi alla
memoria condivisa e per poter scoprire quando due thread sono sempre sincronizzati su
uno stesso monitor e quindi quali parti di codice non possono essere eseguite in parallelo.
L'analizzatore generico de nito n qui formalmente stato implementato ifiheckmate,

il primo analizzatore generico di programdava multithread. Riporteremo e studiere-

mo approfonditamente i risultati sperimentali: in particolare astudiata la precisione
dell'analisi quando utilizzata su alcuni pattern comuni di programmazione concorrente e
alcuni casi di studio, e le sue prestazioni quando eseguita su un‘applicazione incrementale
e su un insieme di benchmark esterni.

L'ultimo contributo della tesi sarI'estensione di un analizzatore generico industriale esi-
stente Clousot ) all'analisi degli accessi esttuati tramite puntatori diretti alla memoria.

In questa parte nale presenteremo I'applicazione di un analizzatore generico ad una pro-
prieta di interesse pratico su codice industriale, mostrando quindi la forza di questo tipo
di approccio allo scopo di costruire strumenti utili per sviluppare software.



Abstract

The goal of this thesis is to present a generic static analysiavaf multithreaded pro-
grams.

Multithreaded programs execute many task, called threads, in parallel. Threads communi-
cate through the shared memory implicitly, and they synchronize on monitaitsyotify
primitives, etc... Some years ago dual core architectures started being distributed on the
broad market at low price. Today almost all the computers are at least dual core. Many-
core, i.e. putting more and more cores on the same CPU, is now the current trend of CPU
market. This multicore revolution yields to new challenges on the programming side too,
asking the developers to implement multithreaded programs. Multithreading is supported
natively by the most common programming languages,Jagp andC#.

The goal of static analysis is to compute behavioral information about the executions of
a program, in a safe and automatic way. An application of static analysis is the develop-
ment of tools that help to debug programs. In the eld of static analysis, margreint
approaches have been proposed. We will follow the framework of abstract interpreta-
tion, a mathematical theory that allows to de ne and soundly approximate semantics of
programs. This methodology has been already applied to a wide set of programming lan-
guages.

The basic idea of generic analyzers is to develop a tool that can be plugged wth di

ent numerical domains and properties. During the last years many works addressed this
issue, and they were successfully applied to debug industrial software. The strength of
these analyzers is that the most part of the analysis can be re-used in order to check sev-
eral properties. The use of ddrent numerical domains allows to develop faster and less
precise or slower and more precise analyses.

In this thesis, the design of a generic analyzer for multithreaded programs is presented.
First of all, we de ne the happens-before memory model in xpoint form and we abstract
it with a computable semantics. Memory models de ne which behaviors are allowed
during the execution of a multithreaded program. Starting from the (informal) de nition
of the happens-before memory model, we de ne a semantics that builds up all the nite
executions following this memory model. An execution of a multithreaded program is
represented as a function that relates threads to traces of states. We show how to design a
computable abstract semantics, and we prove the correctness of the resulting analysis, in
a formal way.
Then we de ne and abstract a new property focused on the non-deterministic behaviors



due to multithreading, e.g. the arbitrary interleaving during the execution efelnt thre-

ads. First of all, the non-determinism of a multithreaded program is de ned asetice
between executions. If two executions exposesdént behaviors because of values read
from and written to the shared memory, then that program is not deterministic. We ab-
stract it in two steps: in the rst step we collect, for each thread, the (abstract) value that it
may write into a given location of the shared memory. At the second level we summarize
all the values written in parallel, while tracking the set of threads that may have written
it. At the rst level of abstraction, we introduce the new concept of weak determinism.
We propose other ways in order to relax the deterministic property, namely by projecting
traces and states, and we de ne a global hierarchy. We formally study how the presence
of data races may aict the determinism of the program.

We apply this theoretical framework fava. In particular, we de ne a concrete seman-

tics of bytecode language following its speci cation. Then we abstract it in order to track
the information required by the analysis of multithreaded programs. The core is an alias
analysis that approximates references in order to identify threads, to check the accesses
to the shared memory, and to detect when two threads own a common monitor thereby
inferring which parts of the code cannot be executed in parallel.

The generic analyzer described above has been fully implemented, leadingdonate,

the rst generic analyzer odava multithreaded programs. We report and deeply study
some experimental results. In particular, we analyze the precision of the analysis when
applied to some common pattern of concurrent programming and some case studies, and
its performances when applied to an incremental application and to a set of well-known
benchmarks.

An additional contribution of the thesis is about the extension of an existing industrial
generic analyzeflousot , to the checking of buer overrun. It turns out that this analysis

is scalable and precise. In summary, we present an application of an existing, industrial,
and generic static analyzer to a property of practical interest, showing the strength of this
approach in order to develop useful tools for developers.



Acknowledgments

First of all, I would like to thank my PhD advisors, Radhia Cousot and Agostino Cortesi,

to have introduced me to abstract interpretation, and to have strongly supported my work
throughout all my thesis. Their encouragements, suggestions, and enthusiasm were very
helpful to me.

Manuel Hermenegildo and Helmut Seidl accepted to be the reviewers of my thesis: | am
proud of that, and they deserve my biggest thanks for the time spent to read, comment,
and discuss the critical points of my work. 1 would like to thank also Eric Goubault for
taking part in my jury.

I met Francesco Logozzo about 5 years ago. At that time, | was amazed by his passion and
his strong principles. His enthusiasm as young researcher touched me. | had the pleasure
and the honor of being one of his interns at Microsoft Research, and to have him in my
jury. For all these things, | am particularly grateful to him.

Patrick Cousot deserves a special thank for his great work. His cousmkt Normale
Superieure was the best way to learn the deepest concepts of abstract interpretation. |
want to thank all the actual and former members of Cousmjgipethat | met during my

thesis: rst of all, Guillaume Capron and Elodie-Jane Sims that were my co-PhD at Ecole
Polytechnique, and also Julien Bertrane, Bruno Blanchet, Ligian Clédmé Feret,
Laurent Mauborgne, Antoine M&) David Monniaux, Xavier Rival, and Axel Simon.

Many thanks go also to all my friends, and in particular to Yasmina, Nicolas, Cesar,
Carolina, and China. It is impossible to remember all of them, so | chose to cite only the
ones that were at my PhD defense. These thanks extend to all other my friends of course.
| am particularly grateful to my family, that supported me all along my life, and thus
during the three years spent on my PhD thesis. In particular, | want to mention my mother
Luisella, my father Pino, my brother Jacopo, and my grandmother Lidia.

Last but not least, my deepest thank goes to Francesca, that strongly encouraged and
sustained me and my work. The time spent together in Paris will be one of the best
souvenirof my life.






1

Contents

Introduction 1
1.1 Motivation . . . . . . . . . e e 2
1.1.1 Multicore Architectures: Why, Where, When . . . .. ... ... 2
1.1.2 Multithreading . . . . . .. ... .. ... 4
1.1.3 StaticAnalysis . . . . . . . . ... 4
1.2 Context . . . . . . . e e e 5
1.21 MemoryModels . . ... .. ... ... 5
1.2.2 Static Analyses of Multithreaded Programs . . . . . . ... ... 6
1.2.3 Generic Static Analyzers . . . . . .. . ... ... 7
1.3 Contribution . . . . . . . . . e e 7
1.3.1 Static Analysis of the Happens-Before Memory Model . . . . .. 7
1.3.2 Determinism of Multithreaded Programs . . . . .. .. .. ... 8
1.3.3 A Generic Static Analyzer dava Multithreaded Programs . . . 8
1.3.4 AnIndustrial Case Study: UnsafeCode . . . ... ... ... .. 8
1.4 OverviewoftheThesis . . . . . . . . . . . . . . ... . ... .. .... 9
Preliminaries 11
2.1 Notation . . . . . . . . e 11
2.1.1  Sets . . . e 11
2.1.2 Partial Ordersand Lattices . . . . . ... ... ... ....... 12
2.1.3 Functions . . . . . . . . . e 12
214 FIXpoiNts . . . . . . .. 13
2.1.5 Traces . . . . . .. e e 14
2.2 Abstract Interpretation . . . . . ... L 14
2.2.1 GaloisConnections . . . . . . . . . ... e 15
2.2.2 Fixpoint Approximation . . . . . ... ... ... ... ... 16
223 Widening . . . . . .. 16
2.3 RunningExample . . . . . . . . 17
Static Analysis of the Happens-Before Memory Model 21
3.1 MemoryModels. . . . . . .. . .. 21
3.1.1 AnExample . .. .. ... ... 22
3.2 The Happens-Before Memory Model . . . . .. ... ... ........ 23
3.2.1 Reasoning Statically . . . ... ... ... ............ 24
3.22 TheExample . . . .. .. . . .. . . . .. 25
3.3 Multithreaded Concrete Semantics . . . . . . . . . . . . ... ...... 25

3.3.1 Assumptions . . . . ... e 25



ii Contents
3.3.2 Thread-Partitioning Concrete Domain . . . . ... .. ... ... 26
3.3.3 SingleStepFunction . . . .. ... ... ... ... ..., 28
3.34 FixpointSemantics . . . . ... .. ... .. 30
3.3.5 LaunchingaThread ... ... ... .. ... ... ..... 32
336 TheExample . . ... .. ... . .. ... .. . .. 32

3.4 Multithreaded Abstract Semantics . . . . ... ... .. ... ...... 33
3.4.1 ASSUMPLIONS . . . . . . . e e 33
3.4.2 Thread-partitioning Abstract Domain . . . . . .. .. ... ... 35
3.4.3 UpperBoundOperators . .. .. .. .. ... .. ........ 35
3.44 PartialOrderOperators . . . . . . ... .. ... ... ... 36
3.4.5 AbstractionFunctions . . .. ... ... ... ... .. ..., 41
3.4.6 stepFunction . . ... ... ... ... 42
3.4.7 FixpointSemantics . . . . . . ... ... 43
3.4.8 LaunchingaThread ... .. ................... 47
349 TheExample . . . .. .. ... . . ... ... 47

3.5 Relatedwork . . . .. . . . ... 47

3.6 DISCUSSION . . . . . . . . 49
3.6.1 Threadldentiers. . . .. ... ... ... ... .. .. ..., 49
3.6.2 Monitors . . . . ... 49
3.6.3 Modular Analysis of Multithreaded Programs . . . . . . ... .. 49

4 Determinism of Multithreaded Programs 51

4.1 Analyzing Multithreaded Programs . . . . . . . . .. ... . ... .... 51
411 DataRaces . . .. ... .. . .. ... 51
41.2 ModelofExecution. . . . .. ... ... ... ... ... ... 52
41.3 AnExample . ... ... .. ... 52

4.2 Syntaxand ConcreteSemantics. . . . . . . . . .. .. .. ... 53
421 Syntax . . . ... e e 53
422 ConcreteDomain . . . . . . .. ... L 53
423 TransferFunction. . . .. ... .. ... ... .......... 54
424 AnExample . ... ... .. ... 54

4.3 A \Value for Each Thread (Abstraction1) . . . . .. ... ... ...... 54
4.3.1 Abstract Domain (FirstLevel) . . .. ... ... ... ...... 54
4.3.2 UpperBoundOperator . . . . .. ... .. ... .. ....... 55
4.3.3 Abstraction Function . . . .. ... ... ... . L. 55
4.3.4 TransferFunction. . . . . .. ... ... .. .. ... ... 58
435 TheExample . . . .. . .. ... ... 59

4.4 Justone Value (Abstraction2) . ... .. ... . ... .. ... .. ... 60
441 Abstract Domain (SecondLevel). . . ... ... ... ... ... 60
4.4.2 UpperBoundOperator . . . .. ... ... ... .. ....... 60
4.4.3 Abstraction Function . . . .. ... ... L. 61
444 TransferFunction. . . . .. ... ... .. ... ... . 63

445 TheExample . . . . . . . . .. . . .. .. 65



Contents iii

4.5 The Deterministic Property . . . . . . . . . .. .. .. ... ... ... 65
451 Determinism . . . . . ... 65
4.5.2 Formal De nition of Determinism on the Concrete Domain . .. 66
45.3 FirstLevel of Abstraction . . . ... ... .. .......... 66
45.4 Second Level of Abstraction . . . .. .. ... .. ... ..., 67
455 TheExample . . . . . . . . . . . . .. .. 68

4.6 Weak Determinism . . . . . . . ... ... 69
4.6.1 Approximating NumericalValues . . . .. ... ... ...... 69
46.2 FormalDenition. . . .. .. .. ... .. .. ... .. ... 69
46.3 Example2 .. ... . ... 70

4.7 Tracing Nondeterminism . . . . . . . . . . . . . 70
471 ModifyingaValue . . ... ... ... .. ... .. ... 70
472 AnExample . ... .. ... .. 71
4.7.3 Writing on the Shared Memory . . . . . .. ... ... ..... 72
4.7.4 DISCUSSION . . . . . . . 72

4.8 Projecting TracesandStates . . . .. ... ... ... ... ....... 73
481 ConcreteStates . . . . . . .. ... e 73
4.8.2 AbstractStates . . ... ... .. .. .. ... . 74
483 ConcreteTraCces. . . . . . . . v v i i e e e e 75
484 AbstractStates . . . ... ... . .. ... 76
4.8.5 Projecting both Statesand Traces . . . . .. ... ... ..... 76
48.6 Hierarchy . . . ... ... ... ... 77
48.7 Anexample . . . . . ... 78
4.8.8 DISCUSSION . . . . . . e 79

49 SQLPhenomena . .. .. ... .. . .. ... 79
49.1 TheSQLApproach. .. ... ... ... . .. ... ... .... 79
4.9.2 SQL Phenomenainour Framework . . .. ... ... ...... 80
4.9.3 E ects of Phenomena on the Determinism. . . . . ... ... .. 80
4.9.4 Phenomena and Deterministic Property . . . . .. ... ... .. 81
495 IntheAbstract . ... ... .. ... . ... ... .. 82

4.10 DataRace Condition . . . . . . . . . . . . . . e 82
4.10.1 Synchronization . . . .. ... ... ... ... 82
4.10.2 Data Races and SQL Phenomena . . . .. .. ... ....... 83
4.10.3 Deterministic Property . . . . . . . . . ... ... ... 83
4.10.4 AbstractStates . . . . . .. . . . .. ... 84

4.11 From Determinism to Semi-Automatic Parallelization . . . . . . .. ... 84
4.11.1 Motivation . . . . . . . . e 84
4.11.2 Determinism and Parallelism . . . . . .. ... ... ....... 84
4.11.3 Relaxing the Deterministic Property . . . . . . ... ... .. .. 84
4114 Anexample . . . . . ... 85

412 Related Work . . . . . . . . . . . e 85

4,13 DISCUSSION . . . . . o e e e e e 86

4.13.1 RelationalDomains. . . . . . . . . . . . ... 86



iv Contents

4.13.2 StatesinTraces . . . . . . . . . e 87
4.13.3 Threadldentiers . . . . . .. ... .. .. .. ... ... .... 87
5 Concrete and Abstract Domain and Semantics of Java Bytecode 89
51 Notation . . . . . . . .. 89
5.2 Supported Language . . . . . . . .. e 90
53 AnExample . . . . . ... 91
54 ConcreteDomain . . . . . . . . ... 91
5.5 Concrete Operational Semantics . . . . . .. ... ... ... ...... 93
55.1 LoadandStore . .. .. ... .. .. .. ... .. 93
552 Monitors . . . . ... e 93
55.3 Objects . . . .. ... . 93
554 Amays. . . .. e e 94
5.5.5 ArithmeticExpressions . . . . . . ... ... ... ... ..., 94
556 Constants . . . . . . . . .. e 95
S.5.7 Jumps . ... e e 95
5.5.8¢ Method Invocation . . .. ... ... ... ............ 95
55,9 ApplyingittotheExample . . . . ... ... .. ... ...... 96
56 ControlFlowGraph . . . .. ... ... . ... ... ... 98
56,1 FormalDenition. . ... .. ... ... ... ... ... .... 98
5.6.2 Soundness with respect¥q *); i . ... ... ... ... .. 99
57 MethodCalls . .. ... ... .. . .. .. e 100
5.8 AbstractDomain . . . .. .. .. ... ... 100
5.8.1 AliasAnalysis . . . .. .. ... . ... 101
582 Domain . . . ... ... 103
5.9 Abstract Operational Semantics . . . . ... ... ... ......... 104
59.1 LoadandStore . .. .. ... ... ... ... 104
5.9.2 Monitors . . . . . .. e 104
59.3 Objects . . . . . . . e 105
594 Arrays. . . ... 106
5.9.5 ArithmeticExpressions . . . . . . . . .. . ... ... .. ..., 106
59.6 Constants . . . . . . . . .. . 106
5.9.7 Jumps, IfandMethodCalls . .. ... ... ........... 107
5.9.8 ApplyingittotheExample . . . . . .. ... .. ... ... ... 107
5.10 Soundness . . . . . .. e e e 107
5.10.1 Domain . . . . . . .. e e e 107
5.10.2 SemantiCS . . . . . . . . .. e 109
5.10.3 Objects . . . . . . . e 109
511 RelatedWork . . . . . . . . . . . 111
5.12 Application to the Happens-Before Memory Model . . . . . .. ... .. 112
5.12.1 ConcreteDomain . . . . . . . . . . ... e 112
5.12.2 Abstract Thread Identiers . . . . .. ... .. ... ....... 113

5.12.3 AbstractDomain . . . . . . . . . . . ... 113



Contents \%

5.13 Application to the Deterministic Property . . . . . . . .. .. ... ... 114
5.13.1 ConcreteDomain . . . . . . . . . . . e 114
5.13.2 AbstractDomain . . . .. ... ... ... ... .. .. ... 114
5.13.3 Second Level of Abstraction . . . . .. .. ... .. ....... 115

5.14 DISCUSSION . . . . . . . e e e 115

6 fheckmate: a Generic Static Analyzer ofJava Multithreaded Programs 117

6.1 GenericAnalyzers . . . . . . . ... 117

6.2 OnNative Methods . . . . ... .. .. ... ... . ... .. .. ..., 118

6.3 AnExample . . . . . . ... 119

6.4 Structure . . . . . . . e e 120
6.4.1 Property. . . . . . .. 120
6.4.2 NumericalDomain . . . . .. .. .. ... ..o 122
6.4.3 MemoryModel . . . . .. ... 122
6.4.4 AnExample of Interaction . . . . ... ... ... .. ...... 123

6.5 Parameters. . . . . . . .. 125
6.5.1 Properties . . . . . . ... 125
6.5.2 NumericalDomain . . . . .. .. ... ... ... ... ... 125
6.5.3 MemoryModels . .. ... ... ... ... 126

6.6 Userinterfaces . . ... .. . . . . . . .. 127
6.6.1 CommandlLine .. .. .. .. ... ... ... .. .. ..., 127
6.6.2 EclipsePlugin . . ... ... ... ... ... .. . .. ... 129

6.7 ExperimentalResults . . . .. ... .. ... .. .. .. ... .. ... 130
6.7.1 Common Patterns of Multithreaded Programs . . . . . . ... .. 130
6.7.2 WeakMemoryModel . .. ... ... ... ... ... .. 132
6.7.3 IncrementalExample . . . . . . ... .. oL oo 134
6.74 Benchmarks. . . . . . . . . . . . .. ... . 138

6.8 RelatedWork . . . . . . . .. . . .. 140
6.8.1 Concurrency Properties. . . . . . .. .. .. .. ... .. ... 140
6.8.2 Otherproperties . . .. .. ... .. ... .. ... ..., 143

6.9 DISCUSSION . . . . . . . . . e 143

7 Static Analysis of Unsafe Code 145

7.1 WhatisUnsafeCode . . . .. ... .. ... .. ... .. ... 145

7.2 DesignbyContracts. . . . . ... . ... ... 146
7.2.1 FOXtrot . . . . . . . . e 147

7.3 OurContribution . . . . . . . . .. e 147
7.3.1 Clousot . . ... . . . . . e 147
7.3.2 ApplyingClousot to the Analysis of Unsafe Code . . . . . . .. 149

7.4 Examples . . . . .. e 150
7.4.1 FromSourceCodetoMSIL . ... ... ... ... ....... 151
7.4.2 Array Initialization . . . .. ... L 152

743 CalleeChecking .. ... ... ... ... ... . ... ..... 152



vi

Contents

7.4.4 Interaction with the Operating System

7.5 Syntax and Concrete Semantics. . . . . ... .. ..
751 Syntax ... ... . ... . . e
75.2 ConcreteDomain. ... ............
7.5.3 Concrete Transition Semantics . . . . .. ...

7.6 AbstractSemantics . . .. ... ... ... .. ...,
7.6.1 Abstracting AwaytheValues . . . .. ... ..
7.6.2 Generic Memory Access Analysis . . . . . ..

7.7 The Right Numerical Abstract Domain . . . . .. ...

7.8 The Stripes Abstract Domain . . . . ... .. .. ...
78.1 Constraints . ... ... ............
7.8.2 Abstract Domain Structure . . . . .. ... ..
7.8.3 Re nement of the Abstract State . . . . . . ..
7.8.4 Transfer Functions . . . ... ... ......
7.8.5 Representaton&trp . . ... .........

7.9 RenedAbstract Semantics . . . .. ... ... ....

7.9.1 Checking Lower Bounds of Accesses

7.9.2 Compilationofxed . . ... ..........
7.10 Experiments . . . . . . . ...
7.10.1 System.Drawing Case Study . . . . .. .. ..
7.10.2 Summary . . ... .
7.11 RelatedWork . . . . ... ... ... ... .. .. ..
7.12 DISCUSSION . . . . . . v oo

Conclusions

Source Code of Examples Taken from [85]

A.1l ExpandableArray . . . . . . .. . .. ... ...
A2 LinkedCell. . . . . . . .. ... . ...
A3 Document. . . . .. . ... ...
Ad Dot . ... . . . e
A5 Cell ... .. . . e
A.6 TwoLockQueue . . . . . . . . . . . ... ..
A.7 Accountpackage . .. .. .. ... .. ... .. ...

Incremental application

B.1 Account . . . . . . . . . . ...
B.2 ATM . . . . . e
B.3 Bank. . . . . . . . ...
B.4 BankAccount . . . . . ... .. .. ... ...
B5 Card. . . ... .. . . . . e
B.6 Cheque . . ... .. ... . ... ...
B.7 Money . . . ... .. ...



Contents vii

B.8 Person . . . . ... e e e 197
B.9 ThreadATM . . . . . . . . . e e 198
B.10 ThreadDeposit . . . . . . . . . . . e 199
B.11 Threadinterests . . . . . . . . . . . . i e e e e 199
B.12 ThreadWithdraw . . . . . . . . . . . . . . o e 200
B.13 TransferFunds . . . . . . . . . . . e 200
B.14Test . . . . . . . e e e 201

Bibliography 203



viii Contents




Introduction

In this thesis we present a generic approach to the static analysis of multithreaded pro-
grams based on abstract interpretation. In particular, we present a generic framework for
the static analysis of object oriented programs containing multithreading and we instan-
tiate it to the analysis odava. Finally, we show the eectiveness of designing generic
static analyzers by extending an industrial one in order to analyzerkaverruns.

Static analysis of programs proves properties that are satis ed by all the possible ex-
ecutions at compile time. Since all the executions of a program cannot be computed (be-
cause of inputs, arbitrary interleaving of threads, etc..), static analysis needs to introduce
approximation. Because of this abstraction, we may not be able to prove the correctness
of a program even if all the executions respect the property of interest. In this case, our
analysis would produce false alarms. The optimal goal is to build a static analysis that is
precise enough to capture properties of interest, while producing as few as possible false
alarms, and coarse enough to be computable in aient way. Until now, static analy-
sis has been applied only to a relatively small part of the software developed worldwide,
while the most part is only tested on a nite number of cases. The situation seems to be
changing [37]: tools which automatically analyze programs are becoming of practical use
for almost all developers that have to deal with larger and mostly critical programs.

Multithreading consists in partitioning a large application into manyedent sub-
tasks, each of them possibly running in parallel. Threads can communicate through shared
memory and they can synchronize each other through monitors, rendez-vous style con-
structs (e.g. semaphores), etc.. The arbitrary interleaving occuring during the parallel
execution of di erent threads may lead to nondeterministic behaviors. These may be
di cult to reproduce, as they may depend upon a particular sequence of interleaving,
a speci ¢ compiler's optimization, etc. It is therefore generally known that developing
multithreaded applications is strictly more dsult than designing sequential programs.

The development of bug-free sequential programs is proven impossible in the practice.
In addition, multithreaded programs are particularly bug-prone. In this context, tools able
to discover bugs and provide useful informations on them are particularly welcomed.
This motivates why the design of static analyses for multithreaded programs is not only
a challenging topic at theoretical level, but also an appealing issue from a practical and
industrial point of view.



2 1. Introduction

1.1 Motivation

Multithreading appears to be the most common way to build parallel applications in com-
mercial programming languages. Parallelism cannot be avoided: it is the only immediate
and native way in order to take advantage from multicore architectures, that represent
the most important trend of CPU market today. On the other hand, it is hard to debug
multithreaded programs. In fact, arbitrary interleaving and compiler's optimizations may
expose unexpected behaviors. In addition, these are oftetuttito reproduce.

1.1.1 Multicore Architectures: Why, Where, When

The focus of researchers on better models and tools for multithreaded programs are in-
duced by the multicore revolution.
Why should we be more interested in multicore architectures today than 10 years ago?

“Manufacturers have found themselves unable txavely continue improv-

ing microprocessor performance the old-fashioned way — by shrinking tran-
sistors and packing more of them onto single-core chips. (...) Vendors are
increasing performance by building chips with multiple cores. (...) 16-core
chips will be available by the end of this decade. Intel has already developed
a research chip with 80 corég52] (D. Geer, 2007)

In this context, multicore hardware seems to be the only way in order to extend
Moore's law into the future. Increasing single-core performances today is too expen-
sive and di cult: it's better to start thinking about multiple cores on the same computer.
In addition, many-core will be the trend in the next future. In fact, prototype of 80 cores
(Intel c Tera ops Research Chip [72]) appeared in 2006, and 8 and 16 cores processors
(e.g. Intelc Xeon) are already available on the market. On the other hand, another ques-
tion arises: are we still interested in Moore's law? Processors today are enough powerful
in order to satisfy all the main needs of common people.

“Moore's law holds because it is pro table for semiconductor manufacturers;
for forty years, large numbers of consumers have paid high prices for the
highest performance designs. The revenue from this market has enabled the
research and development needed to move along the exponential growth path.
If multicore microprocessors fail to impress consumers, sales will fall at, and
revenue will be reducéd12] (M. C. Bell and P. H. Madden, 2006)

A great economic interest is behind the multicore revolution. In addition, developing
more and more powerful processors often opens up new applications. Until some years
ago, computers were mostly used to write and store documents. Then Internet arrived, and
they were used to write and send email, download and see textual documents, communi-
cate with other people. Today they are often used for multimedia documents, as watching
videos and listening music. New applications that fully exploit powerful graphic cards
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are commonplace on most of personal computers. As more powerful processors will be
released, new applications will exploit them.

The last question to be considered is: when and by whom will multicore architectures
be bought and exploited?

“Dual-core processors rst appeared on the marketin 2001. (...) The greatest
change in processor architecture came with the dual-core processors that
AMD and Intel introduced in 2005. (...) A desktop computer with a dual-core
processor can today be bought for less than $906] (A. Marowka, 2007)

It su ces to look at the market of PCs to understand that almost all the computers
sold today are multicore. In the next future the most part of common people (i.e. not only
researchers or specialists of information technology) will exploit multicore architecture.
Figure 1.1 depicts the trend in the market of multicore PC from January 2006 to July
2008. While until 3 years ago almost all PCs had one CPU (in fact the average CPU per
PC was about 1.00), at July 2008 the average was about 1.50 (so, since the most part of
multicore PCs were dual core, about the 50% was multicore). In 2 years and half, about
the 50% of PCs passed from single-core to multicore.
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Multicore architectures cannot be avoided and are already sold to the masses; what
we need is to exploit them as much as possible. If we will not take advantage of these
architectures, people will not be interested anymore in buying multicore computers.

1.1.2 Multithreading

“Any application that will run on a single-core Intel processor will run on
an Intel dual-code processor. However, in order for an application to take
advantage of the dual-core capabilities, the application should be optimized
for multithreading [79] (G. Koch, 2005)

“Multithreaded programming breaks an application into subtasks, or “thre-
ads”, that run concurrently and independently. To take advantage of multi-
core processors, applications must be redesigned for the processor to be able
to run them as multiple threatif96] (A. Marowka, 2007)

Arguing about threads is intrinsically problematic [86, 109], because of the arbitrary
interleaving during the execution of dérent threads that causes unexpected and some-
times counterintuitive behaviors. Other patterns and styles of parallelism exist, e.g. Soft-
ware Transactional Memory [127] and message passing [57]. On the other hand, popular
programming languages, e.gava and C#, support threads natively. Runtime environ-
ments can implement threads without too much overhead, while other solutions may re-
quire more resources, or limit the parallelism.

In this context, multithreading appears to be today the most common way in order to
exploit multicore architectures.

1.1.3 Static Analysis

“Parallel programming, because of its unfamiliarity and intrinsic dulty, is

going to require better programming tools to systematically nd defects, help
debug programs, nd performance bottlenecks, and aid in testing. Without
these tools, concurrency will become an impediment that reduces developer
and tester productivity and makes concurrent software more expensive and of
lower quality. (...) Conventional methods of debugging, such as re-executing
a program with a breakpoint set earlier in its execution, do not work well for
concurrent programs, whose execution paths and behaviors may vary from
one execution to the next. Systematic defect detection tools are extremely
valuable in this world. These tools use static program analysis to systemat-
ically explore all possible executions of a program, and so can catch errors
that are impossible to reprodutfl34] (H. Sutter and J. Larus, 2005)

The paragraph above fully explains the main motivations for applying static analysis
to multithreaded applications. Since it is not possible to compute all the executions of a
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Thread 1 | Thread 2

i=1; ifj == 1 && i == 0)
i=1; throw new Exception();

Figure 1.2: Why multithreading is subtle

program, the key idea of static analysis is to approximate the semantics of a program in
order to focus on a particular observational property of the behaviors of the program, and
check if such a property always holds in all of its possible executions.
Abstract interpretation [25, 27] is a mathematical theory that allows to build up completely
automatic static analyses that may apply directly on the source code. This is not the
case of model checking, another static analysis approach, as it requires a model of the
program (usually a Kripke structure) provided by the user as an input. It alsrdi
from theorem proving techniques, as they often require an interaction with a specialized
user (i.e. someone that thoroughly knows how the theorem prover works) to generate the
proofs.

In this context, applying abstract interpretation to the analysis of multithreaded pro-
grams appears to be particularly appealing.

1.2 Context

“For many years parallel computers have been used by an exclusive scien-
ti ¢ niche. Only rich universities and research institutions backed by gov-
ernment budgets or by multibillion-dollar corporations couldoad state-of-
the-art parallel machines. Multiprocessor machines are very expensive and
demand highly specialized expertise in systems administration and program-
ming skills” [96] (A. Marowka, 2007)

Even if researchers have worked on parallel computing during almost the last 30 years,
there are still important shortcomings in formal methods and static analysis with respect
to multithreading.

Research on multithreading is still ongoing. On one hand, the speci cation of program-
ming languages has been longtime awed [113], and only recent works tried to x this
problem [95]. On the other hand, because of the inherentlydity when dealing with
multithreading (both when developing applications and static analysis), most existing
static analyses are focused on speci ¢ properties.

1.2.1 Memory Models

What is legal during the execution of a program and what is not? Consider the example
depicted by Figure 1.2. If at the beginning of the computation the values of varialds
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j are both equal to zero, it seems impossible Ttrakad 2 raises an exception. However,

this is a possible and even acceptable behavior. Why?

For instance, a common optimization performed by compilers is to reorder independent
statements. As the two actions performedrbyead 1 apply on disjoint sets of variables,

they are independent, and so the compiler may reorder them. This optimization does not
expose any new behavior at the single thread level, but it may Gduead 2 to raise the
exception.

Memory models de ne which behaviors are allowed during the execution of a mul-
tithreaded programs. In particular, they specify which values written in parallel may be
read from shared memory. The interest in this topic has increased recently: for instance,
the rst speci cation of theJava Virtual Machine [89] was awed [113], and only recent
work [95] has revised it. This solution is quite complex, especially from a static analysis
point of view. Other memory models have been proposed in the past: [83] formalized the
sequentially consistency rule. It is quite simple, but too restrictive, as for instance it does
not allow the behavior presented in Figure 1.2.

1.2.2 Static Analyses of Multithreaded Programs

The problem of static analysis of multithreaded programs has already been partially in-
vestigated in the literature.

A large amount of work has been dedicated to speci ¢ properties, and, in particular,
races [106]. A general race happens when two threads access the same location of the
shared memory in parallel, and at least one of the two accesses performs a write opera-
tion. A data race additionally requires that the two threads are not synchronized at that
moment, e.g. they do not own a common monitor. The absence of general races guar-
antees the determinism of a multithreaded programs, but it is too restrictive: all commu-
nication between dierent threads must be strictly synchronized. In contrast, data races
allow some nondeterministic behaviors. For instance, if two threads are synchronized on
a monitor they can be executed in drent orders in dierent executions. In addition, as-
suming freedom of data races may sometimes require additional synchronization, thereby
restricting the parallelism of the program.

Since considering all the possible executions of a multithreaded program is particu-
larly di cult, due to both arbitrary interleaving and compiler optimizations, not so many
generic static analyses have been proposed in this context. In the last years a huge amount
of work has been revolved around context bound analysis [114]. As verifying a program
is undecidable [118], a multithreaded program is analyzed until a given context bound,
that is until the number of context switchings has reached a given bauddcontext
switch happens when the control passes from a thread to another. In this way, these anal-
yses are not sound for all the possible executions, but only for the ones with ahmost
context switchings. Furthermore, they take arbitrary interleavings into account, and not,
for instance, compiler optimizations. This approach is therefore closer to testing than to
static analysis. For instance, if the analysis proves a property, there may exist an execution
with a bigger number of context switchings for which the property is not validated.
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1.2.3 Generic Static Analyzers

Some generic static analyzers based on abstract interpretation have already been proposed
in the recent years. These static analyzers support the usearkedt domains (in order

to obtain faster and more approximated or slower and more re ned analyses) and they can
analyze di erent properties. Some example of these analyzers are [92, 91, 130, 112].

The main advantage of this approach is that the most part of an analyzer can be reused
to analyze dierent properties and tuned at drent levels of e ciency and precision
through the numerical domain. However, as far as we know, at the moment no existing
generic analyzers supports multithreading in non-trivial way.

1.3 Contribution

The main contribution of our work is to formalize and develop a generic static analyzer
of multithreaded programs. In order to achieve this goal, we de ne a generic static anal-
ysis of memory models by applying it to the happens-before model, and we introduce a
new property yielding a formal model of non-determinism. Then we develop an ad-hoc
semantics oflava bytecode language. We develop and implement a generic static ana-
lyzer that can be tted with dierent memory models, numerical domains, and in order
to check several properties. Finally, we extend an existing industrial generic analyzer in
order to check buer overruns, obtaining a scalable and precise analysis, then showing
the practical impact of generic analyzers.

1.3.1 Static Analysis of the Happens-Before Memory Model

In order to formally argue about concurrency, we need to de ne a static analysis sound
with respect to a memory model. But which model? Sequential consistency [83] has
been proved to be too much restrictive with respect to the needs of modern programming
languages. On the other hand, theva memory model [95] strongly relies on some
runtime informations. How to apply a static analysis to it is not at all clear, and it seems
quite di cult to trace all the informations formalized by the de nitions on executions at
static level. A good compromise is the happens-before memory model [82]: it is an over-
approximation of thelava oné€', and it is simple enough to base a static analysis on it.
Tuning a static analysis at this level will allow us to obtain an analysis that is sound with
respect taJava execution, even if more approximated than daea model.

We de ne the happens-before memory model in a way that is amenable to a xpoint
computation, and then we abstract it to a computable semantics. This approach is com-
pletely modular with respect to the semantics of statements of the programming language,
the domains used in order to trace information on numerical values, references, etc.., and
the property of interest.

twithout consideringut-of-thin-airvalues
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1.3.2 Determinism of Multithreaded Programs

In the literature, the proposed properties (e.g. general and data races) and models (e.g.
transactions) try to limit nondeterminism by de ning a restricted model of execution or by
avoiding some types of uncontrolled communications through shared memory. We think
that studying directly the eects of this nondeterminism can allow us to achieve more
interesting results. Intuitively, we want to trace information on theas of unordered
communications through shared memory, rather than working on the reasons that cause
them. To this end, we de ne and approximate the deterministic property of multithreaded
programs, and propose also a new property called weak determinism. We present some
di erent ways of projection on states and traces, thereby building up a global hierarchy.
We relate determinism to data races. This approach is strictly more exible than existing
ones, as it can be easily restricted only on a part of the shared memory, on a subset of the
active threads, on some statements, etc..

1.3.3 A Generic Static Analyzer ofJava Multithreaded Programs

If generic static analyzers have been successfully applied to the analysis of single-thread
programs, their application to multithreaded programs should be at least as successful as
for single-threading, since multithreading seems to be particularly interested in tools that
help to debugging.

We de ne and abstract the semanticsJaiva bytecode on a low-level domain, devel-

oping an alias analysis particularly focused on multithreading issues, i.e. identi cation
of threads, synchronization through monitors, and accesses on the shared memory. This
semantics is parameterized by

a numerical domain,
a property of interest,
a memory model.

This work has resulted in a static analyzer calfdgeckmate. In this context, we imple-
mented also the happens-before memory model, and the deterministic property of multi-
threaded programs. The experimental resultstedckmate are quite promising.

1.3.4 An Industrial Case Study: Unsafe Code

Finally, we apply an industrial generic static analyz€lousot ) to a speci c property,
showing the eectiveness of this type of static analyzers.

In particular, we check the absence of leu overruns in unsafe code (i.e. code containing
pointers) ofMSIL (i.e. bytecode of :NETframework). In order to obtain a fast and precise
analysis, we develoftrp, a new relational domain, and combine it with some existing
numerical domains in order to increase its precision. The analysis is particularly fast and
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precise: in average we are able to analyze about 20.000 methods in about 3 minutes, with
a precision of 58% on average, i.e. we validate automatically the 58% of unsafe accesses.

1.4 Overview of the Thesis

The results of Chapters 3, 4, 5, 6, and 7 have been published in the proceedings of inter-
national conferences with program committee [45, 44, 43, 46, 47].

Chapter 2 introduces the notation and some basic concepts about abstract interpreta-
tion.

Chapter 3 de nes the happens-before memory model in xpoint form and abstracts
it with a computable semantics. Starting from the (informal) de nition of the happens-
before memory model [82, 95], we de ne a xpoint semantics that builds up all the nite
executions following this memory model. An execution of a multithreaded program is
represented as a function that relates threads to traces of states. Then we abstract it with
a computable semantics before proving the correctness of our approach formally.

Chapter 4 de nes and abstracts the deterministic property. First of all, the non-
determinism of a multithreaded program is de ned asedence between executions. If
two executions expose derent behaviors because of values read from and written to the
shared memory, then that program is considered as non-deterministic. Then we abstract
it in two steps: in the rst step we collect, for each thread, the (abstract) value that it may
write into a given location of the shared memory. At the second level we summarize all
the values written in parallel, while tracking the threads that may have written it. At the
rst level of abstraction, we introduce the new concept of weak determinism. We propose
other ways in order to relax the deterministic property, namely by projecting traces and
states, and we de ne a global hierarchy. We formally study how the presence of data races
may a ict the determinism of the program.

Chapter 5 de nes a concrete semanticsafa bytecode language following its of-
cial speci cation [89]. Then we abstract it in order to precisely track the information
required by the framework developed in the two previous chapters. The core is an alias
analysis that precisely approximates references in order to identify threads, to check the
accesses to the shared memory, and to detect when two threads own a common monitor
thereby inferring which parts of the code cannot be executed in parallel.

Chapter 6 presentgheckmate, a generic static analyzer of multithreaded programs
that implements the theoretical framework developed in Chapters 3, 4, and 5. We report
and deeply study some experimental results. In particular, we analyze the precision of the
analysis when applied to some common patterns of concurrent programming [85], cer-
tain case studies presented in [94], and its performances when applied to an incremental
application, and to a set of well-known benchmarks [73, 138].

Chapter 7 presents the application of an industrial generic static anaBiresot ,
to the analysis of unsafe code (i.e. code containing pointers) itNiE&ramework. It
turns out that this analysis is scalable and precise when applied to industrial code. In
summary, we present an application of an existing, industrial, and generic static analyzer



10 1. Introduction

to a property of practical interest, showing the strength of this approach in order to develop
tools useful for developers.
Finally, Chapter 8 concludes and suggests the future work.



Preliminaries

This chapter introduces the mathematical background used throughout the thesis. In par-
ticular, we introduce some basic notation, and some well-known theoretical results on
lattices, xpoints, and abstract interpretation theory. In addition, we present a running
example that will be used in the following chapters to explain the concepts in practice.

2.1 Notation

In this section, we introduce some basic mathematical concepts and notations on sets,
lattices, functions, and traces.

2.1.1 Sets

We denote sets with sans serif strings beginning always with a capital letter, and elements
by sans serif strings with only lower case characters.9e¢toe a set, andl an element,
we denote byl 2 Set the fact theel is a member ofet.

Let N be the set of natural numbers (wher@ ). LetZ be the set of integer numbers,
andletp:b]bethesefi2Z:i a”i bg

Given two setx andY, their Cartesian product is denoted Xy Y. This set contains all
the possible pairs composed by an elemenX as rst component and by an element in
Y as second component. Formalk: Y =f(x;y) : x2 X"y 2Yg

A relationr betweerX andY is a subset of their Cartesian product (r.e. X YY), while

a relation onX is a subset of the Cartesian prodXct X. We denote relations by italic
strings beginning with a lower case letter.

The set containing all the elements)othat are de ned at least on o€ Y in a relation

r is called domain and is denoted bgm(r). Formallydom(r) = fx : x 2 X~ 9y 2

Y : (x;y) 2 rg In a similar way, the co-domain of a relatioopdongr), is de ned as
codonfr) =fy:y2Y”"9x 2 X: (x;y) 2rg We writexry to mean thatx;y) 2 r.
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2.1.2 Partial Orders and Lattices

A partial order on a seK is a relation orX such that it is:
reexive: 8x 2 X:x X
antisymmetric8x;;Xxo 2 X 1 Xy X2 X2 X1) X1 =X
transitive:8xy;Xo; X3 2 X 1 X3 XoM X2 X3) X1 X3

A partially ordered set (poset) is a set equipped with a partial order; we denotieit by

A posethX; i hasatopelementi >2 X~8x2X:x > . Dually, it has a bottom
element? i ?2 X"8x2X:? «x

GivenX; X, x 2 Xis an upper bound ok i 8x°2 X; : x° x. Itis the least upper
bound (lub) if8x; 2 X such thai, is an upper bound of,, thenx x;; we denote it by
X =1 X.

Symmetrically, we de ne lower bounds and greatest lower bounds (glb).

A lattice is a poset such that any two elements belonging bave a least upper bound
and a greatest lower bound. A complete lattice is a poset such that every sukdetof
a least upper bound and a greatest lower bound.

A chainC in a posetX; i is a subset oK such that8c;;c, 2 C:c; ¢, _cp cy.
An ascending chain is an ordered suldset i 2 [a::b] wherea;b 2 N[f1 ;+1ggof X
suchthaBj;k 2 [a::b] : j k) X X Dually, a descending chain is an ordered subset
of elements such that each element is less or equal than the previous ones.

2.1.3 Functions

A function is a relatiorr such that if k;y;) 2 r and &;y»2) 2 r, theny; = y,. In other
words, a function is a relation that relates each element of the domain to at most one
element of the co-domain. Thus, given an elemeBtdon(r), we denote the element in
the co-domain by(x). In order to de ne functions, we use thenotation. Byf = x:Expr

we denote a functioh that relates the evaluation of the expresdiompr, which depends
onx, to the element of its domain. We denote sets of functions by capital Greek letters.
Letf be a functionx an element in its domain arydan element in its co-domain. We use
the notatiorf[x 7! y] to represent a function that behaved a&xcept for the inpuk, for
which it returnsy. Similarly, [x 7! y] denotes an elements;{) of a function.

By the notatiorf : [X! Y] we mean that the domain of the functibms included inX,

and its co-domain is included M. Letf : [X! Y]andg:[Y! Z],theng f:[X! Z]
represents the composition of functidnandg, i.e. x:g(f(x)).

Given two posetsX; i andhy; i, afunctionf : [X! Y]is:

monotonici 8xy;;xo 2 X:x1 xX2) f(x1) v f(x2)

join preserving i 8xy;x2 2 X : f(x1 t x xo) = f(x1) t v f(x2) wheret x andt y are,
respectively, the lub ohX; «i andhy; i
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mplete join preserving i8X; X such thatFxxl exists, thenf(Fxxl) =
FO
f(X1)
Y

. . . F F
continuous i for all chainsC X we have that( \C)= ff(c):c2Cg

A posethX; i satis es the ascending chain condition (ACC) if every ascending chain
c1 ©Co of elements inX is eventually stationary, i.e9i 2 N : 8j > i : ¢; = ¢;.
Dually, a poset satis es the descending chain condition (DCC) if there is not any in nite
decreasing chain.

2.1.4 Fixpoints

Letf be a function on a poséK; i . The set of xpoints off isP = fx 2 X : f(x) = xg
An elementx 2 X is:

apre-xpointi x f(x);
a post- xpointi f(x) x;

A xpoint x 2 P of fis a least xpointoffif 8p 2 P : x p. If f has a least xpoint, this

is unique, and if it exists, we denote Hp, f the least xpoint off greater thard with
respect to the order.

A xpoint x 2 P of fis a greatest xpointofif 8p 2P : p x. If fhas a greatest xpoint,

this is unique, and if it exists, we denote gfp, f the greatest xpoint of smaller thard

with respect to the order.

The existence of the least and greatest xpoints on a monotonic map is guaranteed by the
following theorem.

Theorem2.1.1 (Tarski's theorem[136]) LethX; ;?;>;t ;ui be a complete lattice. Let
f . [X ! X] be amonotonic function on this lattice. Then the set of xpoints is a not-empty
complete lattice, and:

Ifp, f =ufx2X:f(x) xg

ofp, f =tf x2X:x f(x)g

This result is not constructive.

Theorem2.1.2 (Qnstructive version of Tarski's theorem[26]) LethX; ;?;>;t ;ui be
a complete lattice. Letf [X ! X] be a monotonic function on this lattice. De ne the
following sequence:

f0="2
= ]‘:(f 1) for every successor ordinal
f = _ f foreverylimit ordinal
Then the ascending chafff : 0 i  g(where is an ordinal) is ultimately stationary

forsome 2 Nthatisf = Ifp, f.
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2.1.5 Traces

Definition 2.1.3 (Trace) Given a seB, atrace is a partial function[N ! S] such that
Bi2N:i<dom())8 j>i:j<dom()

This de nition implies that the domain of all non-empty traces is a segme. ofn-
tuitively, a trace is an ordered sequence of elements such that it is de ned on the rst
elements. The empty trace (i.e. the tracguch thadon( ) = ;) is denoted by. Let be

S a generic set of elements, we denoteXythe set of all the nite traces composed of
elements irs.

len: [S* ! N]is the function that, given a trace, returns its length. Formady( ) =
i+1:i2dom( )Mi+1<donm().If = ,thenlen()=0.

Usually, we represent a trace as a sequence of statesyile. ;! represents the
tracef(0; o);(L; 1); 9

SF represents the set of tracesShending with a nal state with respect to the transition
T T

!,i.e.s;:fo! ! i. o! ! i28+;@j282 i! i9

The concatenation of two tracesand » is written as ; ! » and represents the trace
1[Fi70 9j2don( ) ti=j+len( 1); = 2()9

Given a set of initial elementS, and a transition relatiohT , the partial trace

semantics builds up all the traces that can be obtained by starting from traces containing
only a single element fror8, and then iteratively applying the transition relation until a
xpoint is reached.

Definition 2.1.4 (Rartial trace semantics [27]) Let be a set of states§, a set of

initial elements, and' a transition relation. Letf: [} ()! [ *! *]] be the
function de ned as:

F(So) = TA07! 0. 02 Sog[
f o! ! ittt ool ! i12T™ i1 g
The partial trace semantics is de ned as

PTJSoK= pr’ F(So)

2.2 Abstract Interpretation

Abstract interpretation is a mathematical theory of approximation of semantics developed
by P. and R. Cousot about 30 years ago [23, 25, 27]. Applied to static analysis of pro-
grams, abstract interpretation allows to approximate an uncomputable concrete semantics
with a computable abstract one. Approximation is required, then the result is correct but
incomplete. The inferred properties are satis ed by all the possible results of the concrete
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semantics, but if a property is not inferred in the abstract it may still be satis ed by the
concrete semantics.

The main idea of abstract interpretation is to de ne the semantics of a program as the
xpoint of a monotonic function.

2.2.1 Galois Connections

Definition 2.2.1 (Galois connectior) LethC; i andhC;vi be two posets. Two functions
[C! Cland :[C! C]form a Galois connection if and only if

8x2C:8x2C: (X)vx) x (X
We denote this fact by writing

hC; i1 hC; vi
Alternatively,hC; i | hC;vi holdsi
and are monotone,
is reductive (.e8x 2 C : X) v X);
is extensive (i.e8x 2 C : x (x)).

Usually, we call the left part of the Galois as the concrete poset, and the right one as
the abstract one. Similarly, is called the concretization andis the abstraction. The
concrete sets and elements are denoted as de ned in Section 2.1.1, while the abstract ones
are over-lined. For instance,¥fis a concrete set, the respective abstract set is denoted by
S. If funis the concrete one, its abstract counterpart is denotédrby
A Galois connection can be induced by an abstraction function that is a conplete
morphism, or dually by a function that is a completemorphism (wherau and are
respectively the lower bound operator on the abstract lattice and the upper bound operator
on the concrete lattice), as proved by Proposition 7 of [28].

Theorem2.2.2 (Galois connection induced by lub preserving mppet : [A ! A] be
a complete join preserving maps between pos&ts andbhA;vi. De ne:

= vy fz: (z2vyg
If is well-de ned then
hA; i | bA; vi

Theorem2.2.3 (Galois connection induced by glb preserving mppst [A!l A]be
a complete join preserving maps betvlveen pol&ts andhA;vi. De ne:

=y fzry (2)9
If iswell-de ned then
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An interesting property of Galois connections is that they are compositional, i.e. the
composition of two Galois connections is still a Galois connection.

Theorem2.2.4 (Gmposition ofGalois connection$ Suppose thatA; ;i 1 hA; i
andhA; i z hAC i, Then

1 2

hA\, 1i!21 I’N), 3i

2.2.2 Fixpoint Approximation

Usually in abstract interpretation the concrete and abstract semantics are de ned as the
Xpoint computation of monotonic functions. The ultimate goal is to prove the correct-
ness of the abstract semantics with respect to the concrete one, i.e. that the concretization
of the results of the abstract semantics over-approximates the output of the concrete se-
mantics.

Formally, letA : [C! C]andA : [C! C]be the concrete and the abstract semantics

respectively, wheréC; i | hC;vi. The abstract semantics is soundfor all the
pre xpointsp 2P C of A, we have that AJpK AJ (p)K

When applied to the static analysis of programs, the transfer function depends on a
programP.
There are many dierent ways in order to prove that an abstract semantics is sound, re-
lying on some dierent properties of transfer functions, concrete and abstract lattices,
concretization and abstraction functions. We refer the interested reader to [29] for a com-
plete overview on this topic. In this thesis, we will rely on the following theorem.

Theorem2.2.5 (Kleenelike, join-morphisnbased fixpoint approximatidi25]) Leth.;v
:ti andh_;v:;Ti be complete lattices. Let L ! L]andF:[L! L] be two monotone
functions with respect te andv respectively. Let : [L! L] be a join-morphism such
that FvF ,wherev is the lifting of the ordering operator to functions. Lea 2 L
be a pre xpoint of F. Then (Ifp; F) v Ifp” F.

2.2.3 Widening

If the abstract domain respects the ACC, the abstract semantics can be computed in a nite
time. Otherwise we need a widening operator in order to make the analysis convergent.

Definition 2.2.6 (WMdening Given an ascending chaidy, d; d, in a poset
hC; i , awidening operator : [C! C]is an upper bound operator such that the chain

Wo = do;w1 = Wor d1; ;Wi = w; 1I d

is ultimately stationary, .€9j 2 N : 8k 2N :k>j) w; = wy



2.3. Running Example 17

The use of widening on abstract domains not satisfying the ACC makes the analysis
convergent still obtaining sound (even if more approximated) results.

Theoren?.2.7 (Wdening soundnéssethA; i andhA;vi be two complete lattices, :

[Al Aland :[A! A]be two functions such thag; i | MA;vi.LetF:[A! A]
andF : [A! A] be two monotonic function such that (i) lfp(F).
Then the sequence de ned by

io = (r)

- _ F(ia) if F(Xi 1)V Xi 1

'~ FE( )rx . otherwise
is ultimately stationary and its limi is a post- xpoint ofF. Hence, it soundly approxi-
mates the concrete semantics, i.e(Hp Ifp(F) ().

2.3 Running Example

We will often recur to some examples in order to explain the ideas and the formalizations
presented throughout the next chapters. Chapter 7 would be an exception, as we will
use some code taken froMdETshipped libraries. Figure 2.1 contains the code of a class
Account. It is aimed at simulating some of the most common operations performed on a
bank account, i.e. deposits and withdraws. Clalssque is presented in Figure 2.2 and
represents a signed cheque that can be used to withdraw an amount. We can also check if
a cheque is valid, i.e. if it contains money that can be withdrawn, or if it is empty.

We will use these classes in order to illustrate how actions are performed in parallel and
thereby explain the formally de ned concepts in practice.
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public class Account f

private int amount=0;
private nal double interestRate=0.015;
public nal Signature signature;

public Account(int am, Signature sign) f
this .amount=am;
this .signature=sign;

g

public void withdraw(int money) f
synchronized (this) f

this .amount =money;

g

g
public void withdrawNoDebts(int money) f

synchronized (this) f
int temp=this .amount money;
if (temp>0)
this .amount=temp;
g

g
public void deposit(int money) f

synchronized (this) f
this .amount+=money;
g

g
public void calculatelnterests () f

synchronized (this) f
this .amount =1+this .interestRate;
g

g
public int getAmount() f

return this .amount;

g

public void printAmount() f
ATM.screen.print(this .amount);

g

Figure 2.1: The clas&ccount



2.3. Running Example

public class Cheque f
private Signature sign;
private int amount;
private Account account;

public Cheque(Signature s, int am, Account acc) f
this .sign=s;
this .amount=am;
this .account=acc;
g
public boolean withdraw() f
if (account! =null && this .sign.equals(account.signature)) f
this .account.withdraw(amount);
this .amount=0;
account=null ;
return true ;

g
else return false ;

g
public boolean isValid() f
if (this .amount>0 && this .account==null)
return false ;
else return true ;

Figure 2.2: The clasSheque
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Static Analysis of the Happens-Before
Memory Model

In this chapter, we will de ne the happens-before memory model in a xpoint form and
we approximate it with a computable semantics.

Memory models de ne which executions of multithreaded programs are legal. The hap-
pens-before one was formalized about 30 years ago [82], and it is an over-approximation
of the one adopted byava [95]. Our approach is completely independent of both the
programming language and the analyzed property. It appears to be a promising framework
to de ne, compare and statically analyze other memory models.

This chapter is based on the published paper [43].

3.1 Memory Models

The semantics of a programming language supporting multithreading must be de ned
well enough that developers can fully and easily understand which behaviors are allowed
during an execution. A common approach in the literature has been to consider all the
programs containing data races as incorrect [120], and to let unspeci ed the semantics
in this case. Many static analyses have been aimed at proving the absence of data races
[106, 121]. Leaving the semantics of these programs completely unspeci ed is unsatis-
fying for modern programming languages, particularly those that are focused on security
issues.

On the other hand, guaranteeing the sequential consistency [83] for programs containing
data races is not possible, as this would forbid the most part of compilers optimizations.
In this context, weak memory models have been introduced [35, 55]. These models o
greater performances [2].

The interest in this topic has increased during the last few years: for instance, the rst
speci cation of thelJava Virtual Machine [89], corrected in [95], was awed [113]. Nowa-
days, the speci cation of the memory model appears to be the “lingua franca” to de ne
which behaviors of multithreaded programs are allowed. In this context, twereht
approaches are considered:

to restrict the non-deterministic behaviors in order to provide a simple reference to
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the developers,

to allow as many compiler optimizations as possible, introducing non-deterministic
behaviors.

On this topic, the debate is still in progress [19], andedtient ideas and solutions have
been proposed [126, 17]. In particular, treva memory model seems to allow undesired
behaviors and to prohibit desirable executions [5].

Most state-of-the-art static analyses do not support multithreading, or they deal only with
the possible interleavings of instructions. This is why they are not sound with respect to
the memory model, as it usually allows more behaviors than the ones exposed by sequen-
tially consistent executions.

Contribution:  Given the current state of the art, a static analysis able to approximate
all the possible runtime behaviors of a multithreaded program with respect to a memory
model seems to be particularly appealing, as it would help developers to reason about the
parallel execution of multiple threads [134]. Moreover, since threads communicate im-
plicitly through shared memory, particularly subtle and unwanted interactions may arise,
and a static analysis may detect and provide useful information about them. Some exam-
ples of these interactions, like the one depicted by Figure 1.2, are presented in [95].

In the de nition of our concrete and abstract semantics we will focus on the consistency
condition [133]. In particular, it speci es which is the output of the shared memory when

a read is performed on it. This output is represented as a set of values written in parallel
with respect to the read action.

We rst de ne the concrete trace semantics in a xpoint form, aimed at formalizing the
happens-before memory model. Then we abstract it and we prove the soundness of our
analysis.

The semantics of statements does not to take multithreaded executions into account, i.e.
parallel writes on the shared memory and synchronization actions. In this way, we may
reuse the semantics on single-thread programs and apply them to the analysis of mul-
tithreaded programs. About synchronizations, we focus only on mutual exclusion and
launching of threads. Other synchronization patterns,&hgead:end() in Java, may be

easily added to our framework.

Our analysis is generic on the programming language, as the happens-before memory
model is. The only restrictions we applied are that the small step semantics of statements
is atomic, and that some functions, that returns a part of information on a given state, are
provided. Thus, our framework may be used to formalize, compare, and statically analyze
other memory models.

3.1.1 AnExample

Figure 3.1 depicts an example that will be used to illustrate the formal concepts introduced
in this chapter. It is composed of two threads that operate on a stiaegde. The code
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Thread 1 System Thread 2
Cheque cheque = new Cheque(sig; 1000; acc);

Baaaaaaaaaaaaaaaaaaaaaa111]]]]]]]]]]]]]]]]]]]]]]]

cheque:withdraw(100) "‘cheque:isValid()

Figure 3.1: Checking if a cheque is valid

of the called methods is presented in Section 2.3. We are interested in checking if the
methodisValid() may returnfalse when executed byhread 2.

3.2 The Happens-Before Memory Model

In the recent literature, memory models have been aimed at formalizing the behaviors that
are allowed during the execution of a multithreaded program.

The Java Memory Model was presented in [113]. Its formalization involves many dif-
ferent run-time components. In the same paper the happens-before memory model is
formalized as an over-approximation of theva memory model without considering
out-of-thin-air values. It allows a larger number of runtime behaviors. Its formalization

is simpler, and it allows us to reason in terms of static analysis. In addition, an abstract
analysis on this model will allow us to obtain results sound but more approximate with
respect to thdava memory model.

The main components of this model are (we denote some rules with a speci ¢ name which
will be used during the formalization):

the program order, that, for each thread, totally orders the actions performed during
its execution;

a synchronizes-with relation that relates two synchronized actions. For instance,
the acquisition of a monitor synchronizes-with all the previous releases of the same
monitor. Moreover the rst action of the execution of a thread is synchronized-with
the action that launched it (rule IN);

the happens-before order initially introduced in [82]. An actimrhappens-before
another actiora, (rule HB) if
— a; appears befora, in the program order;
— a, synchronizes-witlag;
— if you can reacha, by following happens-before edges starting frami.e.
the happens-before order is transitive.

Through the happens-before order, a consistency rule is de ned. In particular, it states
that a reaa of a variablev is allowed to see a writ& onv if:
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Thread 1 Thread 2
lock(o) lock(o)
var=vl temp = var
var = v2  unlock(o)
unlock(o)

Figure 3.2: An example

ris not in happens-before relation with i.e. a read can not see a write that has to
be executed after it,

there is not a writev’ onv that happens-beforeandw happens-before it, i.e. there
is no write on the same variable that is executed between the observed write and the
read, thereby overwriting it (rule OW).

The happens-before memory model says nothing about what a variable is and its granu-
larity (an object, a eld, an array, a primitive value, ...) is.

3.2.1 Reasoning Statically

One pointis not clear in these de nitions: on one hand the de nition of the happens-before
consistency appears to be a static rule. On the other hand, the program order talks about a
total order covering all the actions of an execution: this concept is clearly dynamic. Our
approach is parameterized by the abstract intra-thread transition relation. So we suppose
that it approximates this program order. In this way if a state is before another one in the
trace produced through this relation, it means that it will always be executed before it.
With respect to the synchronizes-with relation, threads generally synchronize on some
elements (for instance ifava they synchronize on monitors de ned on objects), and the
mutual exclusion during the execution of some parts of the code is guaranteed. In this
way, they acquire a synchronizable element, perform some actions, and nally release
it. In a static context, we do not know which thread acquires the synchronizable element
rst. For instance, consider the multithreaded program of Figure 3.2.

Which values may thread two read? Before the read action, we acquire the same
monitor owned when executing both the writes of thread one. It may read the initial
value stored invar, or v2, but notvl, as the acquisition of the monitor of thread two
synchronizes-with the release of thread one or, vice versa, its release synchronizes-with
the acquisition of thread one.

This consideration leads us to the following conclusion. A nesghchronized on a s&
of synchronizable elements can see a value written by an astferformed by another
thread if it is not:

overwritten by a following actiom®

such that all the actions betweenandw are synchronized at least on a common
element inS, e.g. a monitor.
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This is a consequence of the mutual exclusion principle, i.e. that some instructions of two
parallel threads cannot be executed in parallel if they are synchronized.
The formalization of the concrete semantics takes into account these considerations.

3.2.2 The Example

Let us apply these concepts to the example depicted in Section 3.1.1, and in particular to
the question if methodValid() may returnfalse. To answer this question, we evaluate
which values may be read by the condition of thetatement ofsValid() method when
executed byrhread 2.

First of all, since there is no synchronization, the synchronize-with order is empty, and
all the actions offThread 1 do not happen-before the evaluation of the condition. Then
this instruction is allowed to see the initial value of eldis:amount which is equal to
1.000 and the value written by methaéthdraw to the eld account which assignsull to

it. Therefore, it is consistent to evaluate this conditiort@. SoisValid() method may
returnfalse.

For instance, suppose that the two statements that assign values taretdst and
account of methodwithdraw are switched by the compiler. Then a single-core processor
may execut@account = null, before the control switches Tdhread 2, where the condition

of theif statement evaluates twe.

3.3 Multithreaded Concrete Semantics

In this section we present the multithreaded concrete semantics. This semantics is aimed
at formalizing the happens-before memory model in a xpoint form. It is parameterized
by the concrete operational semantics that de nes the behaviors of intra-thread compu-
tational steps and on some functions that return a part of a given state. In this way we
separate the semantics of the language from its memory model.

Since the happens-before memory model only refers to nite executions, we consider -
nite traces. Our multithreaded concrete semantics produces all complete executions, i.e.
executions in which all the threads end in a blocking state.

3.3.1 Assumptions

In order to de ne the happens-before memory model on the concrete semantics, we need
to introduce some sets and functions that extract information from states.

For the sets, we denote [yd the set of the thread identi ers, b$h the set of shared
memories, by oc the locations, byal the values (e.g. numerical values and references),

by Sync all the shared elements on which a thread can synchronize, aBtlthg states
containing both memory and control state of a single thread.

We suppose that a transition functibn: [St St ! f true;falsed is provided, and that

de nes the single step behavior of the program. We require that these steps are atomic at
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thread level, i.e. it is not possible for another thread to see an intermediate state during a
single intra-thread transition.
We also require that the following functions are provided:

shared: [St! Sh]. Given a statesharedreturns the shared memory contained in
it;

action: [St!? [ (fr;wg Loc (Val[? ,))]. Given a stateactionreturns the
operation it is going to perform (reading from or writing on the shared memory),
the shared location on which it operates and the written valu&, gk it is a read
action, or? , if it has performed another type of operation;

synchronized [St ! } (Sync)]. Given a statesynchronizedeturns all the ele-
ments on which it is synchronized, e.g. the set of all the monitors previously locked
and not yet released,;

assign: [Sh Loc Val! Sh]. Given a state of the shared memory, a location
and a value to be writtemssignreturns the shared memory obtained by assigning
the given value to the given location in the given shared memory;

setshared St Sh! St Given a state and a shared memastsharedeturns
a state equal to the given one but in which the shared memory is replaced by the
given one.

3.3.2 Thread-Partitioning Concrete Domain

The concrete domain is aimed at collecting information about the parallel execution of
di erentthreads. To this end, we partition the trace, which represents one interleaving of
the global execution of dierent threads, relating each active thread to the trace containing
only its execution.

In current programming languages, threads are created and launched (i.e. their parallel
execution is started) by other threads during their execution. Then for each thread we
track also the thread that has launched it, and the index in its trace of the state that is
produced after the launch. For the main thread, that is launched by the system, we use a
special valu& . We collect the number of the state in order to restrict the execution trace
to the states after the launch of the thread, and so to respect the rule IN. Thus, our concrete
domain is composed of two functions where the second one is aimed at maintaining some
information on the launches of threads:

S [Tid ! St']
[Tid ! (Tid N)[? )]

Our thread-partitioning domain is aimed at formalizing the executions of multithreaded
programs. In particular, it is generic with respect to the hardware architecture on which
the programs are executed. In this way, it abstracts away some information with respect
to real executions.
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Single-core architectures

When executing multithreaded programs on a single-core architecture, we have a total
order on the actions executed by all the threads. Ni8t be the set of multithreaded
states. Then a trace MSt™ represents an execution on a single-code architecture. Let
projectMSt: [MSt TIid ! St] be the function that given a multithreaded state and a
thread identi er returns the local state of this thread. WwétichThread: [MSt ! TIid]

be the function that, given a multithreaded state, returns the thread that has executed the
last computational step. The abstraction function that, given a single-core architecture,
returns a state of our thread-partitioning concrete domain, is de ned as follows.

MSt - [MSt+ ! ]

wst( 0! ! D= flt7if 9 J.Oq;

(i) 3= projectMS{ o;1);

@i)8k2[1:) 1;9w2[1:i]: {2: projectMSt ,;t); whichThread ) =t;

(i)9z2[1xw 1]: ., = projectMS{ ,;t) : whichThread ) = t;
8i°2[z+ 1w 1] :whichThread ), t

(iv)9h2 [w+ 1] : 2, = projectMS{ ;1) : whichThread ) = t;

8i%2 [w+ 1:h 1] : whichThread o9 , t
g

Note that two di erent single-core executions may be abstracted into the same ele-
ment of the thread-partitioning concrete domain. For instance, consider the two following

executions (WhereT means that the transition is executed by thréad

The two executions start with the same state and the two threads execute the same
statements. If the threads do not communicate, their intra-thread state is not in uenced
by the order of execution and we will obtain that

projectMS{ ; T2) = projectMS{ $;T2)
projectMS{ 1;T1) = projectMS{ 9;T1)

and so they will be abstracted into the same element of our thread-partitioning domain.

In the case of dual core architectures we have no longer a total order on the executions
of all the threads, as the two cores may executedint threads in parallel. Intuitively,
we obtain two traces of executions (one for each core) and a partial (temporal) order
between statements executed byatent cores. Without going into formal details deeply,
we abstract these executions in a similar way as for a single-core architecture, collecting
a trace of execution for each active thread. As above, twereént executions may be
abstracted into the same element in our thread-partitioning concrete domain.
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Discussion

We can deal with architectures with more than two cores in a similar way. As we pointed
out, our thread-partitioning concrete domain is already an abstraction of real executions.
Since we want to build up a static analysis that is generic with respect to hardware ar-
chitectures, this abstraction is mandatory. In particular, we abstract away the inter-thread
order of execution. On the other hand, this is exactly what developers do when writing
multithreaded applications: they think about threads separately, and they do not take the
inter-thread order of execution into account. Then they add some synchronization ac-
tions in order to avoid that some part of drent threads are executed in parallel. The

de nition of our xpoint semantics will consider these actions, in order to discard the
computational steps that cannot be executed in parallel and whes¢seare not visible

by another thread in a given point of its execution. Note that our approach is focused
only on synchronizations on monitors, and so we do not consider other synchronization
patterns likewait() andnotify() in Java. With respect to these primitives our analysis is
sound but imprecise, as it abstracts away the fact that the two threads are synchronized
using them, and so that some parts of the code may be not executed in parallel.

3.3.3 Single Step Function

We de ne astepfunction that performs a single intra-thread step, that is consistent with
the happens-before memory model, and which returns the set of the possible states that
results from executing the step.

Definition 3.3.1 gtepfunction) Given the identi er of the active thread, a multithreaded
state containing the traces of the executions of all the threads, and an elementhef

step function returns the set of all the possible resulting states.

If the thread does not read from the shared memory, it computes the step given by the
intra-thread semantics (point (1)). Otherwise it may either

perform the step given by the intra-thread semantics (point (1)),

or select one visible value following the happens-before consistency rule and per-
form the step assigning this value in the shared memory (point (2)).

Formally,
step: [TId St! }(St)]
steft;f;s; ) =f gsuch that

@

(2)if action( ) = (;1:?4) :
9v 2 vig(t; I; synchronizef )); f; s(t)) :
0= setshared ;;assigrishared ));l;v)); @
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Definition 3.3.2 {iisfunction) The vis function returns the values written in parallel to

a given location following the happens-before memory model. This set is built up by the
values produced by the thread that launched the one that is reading, restricting it only on
the part of the trace executed after the launch (point (1), rule IN), and the values produced
by other threads (point (2)).

vis: [Tld Loc }(Sync) (mid N)[? )! }(val)]
vis(t; I; S; f; (1% 19) =
project(l; su x(f(t%);i); S)[ 1)
fv : v 2 project(l; f(t°Y; S) : t°°2 don(f) n ft; t%g (2)

Definition 3.3.3 6u xfunction) The su x function, given a trace and an index, cuts the
trace at the i-th element and returns the suof the trace.

su x:[St" N! St (
U i ifi 0N
suXx( o! ! pi) = J otherwise

Definition 3.3.4 projectfunction) The project function, given a location, a trace, a set

of synchronizable elements locked previously and not yet released, and the thread that
is currently analyzed, returns the set of visible values in the given trace following the
happens-before consistency.

project: [Loc St™ }(Sync)! 1} (val)]
projeci(l; o! ! i, S) = fv:9j2[0:]: action j) = (w;l;v)
notsynchronized ;! ! i S)g

The rst part of the conditiongction( ;) = (w;l;v)) excludes the transitions that do
not write to shared memory. The second part the ones whose values are overwritten by a
successive action following the happens-before order (rule OW).

Definition 3.3.5 iotsynchronizedunction) Given a trace and a set of synchronizable
elements, the notsynchronized function returas if and only if

the rst state of the trace does not own one of the given synchronizable elements
(case (1)),

or if there is not a write action that writes on the same location of the rst action of
the given trace and that is synchronized-with it (case (2)).

notsynchronized [St* } (Sync) ! f true;falsed

notsynchronized o ! ! i S) = true if and only if
(2)S\ synchronizef o) =; _
Q@;2cut( o! ! i, S) »action( ;) = (w;l;v);

action( o) = (W;lo;vo); 1= 1o
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Definition 3.3.6 cutfunction) Given a trace and a set of synchronizable elements, the
cut function project the given trace on thénitial states that own at least one of the given
synchronizable elements.

cut: [St™  }(Sync)! S(t*]
cut( o! ! S) = if synchronize@ o)\ S =

ol cut( ! ! i; S) otherwise

3.3.4 Fixpoint Semantics

By using thestepfunction we de ne the xpoint concrete semantics in order to compute
all the possible nite traces of a given multithreaded program.

Single-thread Semantics

Given a thread and an element of the thread-partitioning domain, the single-thread seman-
tics returns the traces of all possible partial nite executions, following the happens-before
memory model, when the parallel executions of other threads are the ones represented by
the given element of the thread-partitioning domain. It is the basic step that will be used
to de ne the multithread semantics. This approach is classic in literature, see for instance
the example 7.2.0.6.3 of [27].

Definition 3.3.7 (Sngle-thread semantic$S ) Let ¢ be the initial state of computation.

S :[( Tid) !} (Sth)]
S X:r; tK= pr; F
where
F :[}(St)! }(StY)]
F = Tf og[f o! ! i1 ! il o! ! 12T 2stegtfir i1)g

Multithread Semantics

The multithreaded xpoint semantics computes all the possible executions of a multi-
threaded program following the happens-before memory model.

It starts from an element of the thread-partitioning domain that relates each thread that is
active at the beginning of the computation to a trace containing only its initial state
(fo=f[t7'f[0O! (] : tisthe identi er of an active thread), and in the second compo-

nent each active thread? (ro = f[t 7! ? : tis the identi er of an active thread and,

is its initial state). At each iteration it computes the semantics using the multithreaded
element obtained at the previous step. In particular we have to discard all the elements that
are overwritten during a set of transitions that are synchronized-with the analyzed read ac-
tion. To do that, we need to consider only the traces that are complete, i.e. restricting the
traces only on the ones belonging to Sej‘t.
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Definition 3.3.8 (Multithread semanticsSY)

S| bo3( )]
S<fo; roK= Ifp. F¥

where

)b X( )]
f(fo;ro)g [f(fiiri 1) 1 9(fi 1;ri 1) 2 2 8t2dond(f; 1) :
2S X 1;1 ;1K 25’[? fih= g

Fe 3 (
Fk =

The intuition behind this xpoint de nition is as follows:

atthe rstiteration it computes the complete semantics of each thread “in isolation”
since the trace of the other threads is empty, and thestdpgunction performs a
step using the last state of the given thread following

at the second (or i-th) iteration it computes the complete semantics of each thread in
which the visible values have been modi ed at most one (or i-1) times bgrent
threads.

Discussion

Computing this xpoint may seem to be useless. A common (but unsound) intuition is
that as all the active threads are exposed, we can check which values they write to the
shared memory, then compute the semantics using this information, obtaining the result
of the analysis. The problem is that the values written by one thread may cause other
threads to write new values, and so on. Consider for instance the following example:

Thread 1 Thread 2
if(a==0)f |if(a== 1)f
a=1; a=2;
if(a== 2)f | if(a == 3)f
a=3 a=4
if(a== 4)f | if(a==5)f

Even if we are considering a multithreaded program without loops and which is com-
posed only of two threads, there is not a clear number of iterations after which all the
possible behaviors would be exposed. In fact, at the rst iteration thread 1 would expose
the value 1, at the second iteration thread 2 would expose 2, and so on. The number of
iterations required in order to expose all the possible behaviors relies on the structure of
the program, and so we need to compute a xpoint in order to be sound.
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Context bound analysis

Context bound analysis [114] is a novel approach that obtained a huge amount of both
theoretical and practical results during the last years. Starting from the premise that veri-
fying a concurrent program (with a context and synchronization sensitive analysis, when
dealing with rendezvous style synchronization primitives) is undecidable [118], a mul-
tithreaded program is analyzed until a given context bound, i.e. the number of context
switches is limited tan. A context switch happens when the control passes from one
thread to another. In this way, these analyses are not sound for all possible executions, but
only to those with at most context switches. During the last years many analyses in this
eld have been proposed, e.g. [102, 80, 16, 115].

Our approach relies on the idea of abstraction. We are able to build up an analysis sound
with respect to all the possible multithreaded executions, with an unbounded number of
context switches, executing on all the possible multi-core architectures, and considering
also compiler optimizations. This requires two nested xpoints computation. Intuitively,

at then-th iteration our multithread semantics computes all the executions with atmost
context switches. Iterating this process until a xpoint is reached accumulates all possible
multithreaded executions. We will be able to build up a computable approximation of this
semantics using an abstraction.

3.3.5 Launching a Thread

Thesstepfunction is not in the position to launch a new thread, as it concerns intra-thread
steps only. Thus, the multithread semantics must be extended to support the dynamic
creation and launching of threads. Since we are generic with respect to the programming
language, we do not present the details. On the other hand, it is important to de ne the
launching of threads in order to explain how the relations between threads are traced by
the thread-partitioning concrete domain.

In this context, we suppose that a functi@unch: [St! (Tid St St)[? |]is
provided. Given a state, if its next action is the launch of a thread, it returns the identi er
of the new thread, its initial state and the next state of the execution. The computational
multithreaded step may be de ned in the following way, wheye (s the previous state:

(9 : t2donm(f);f()= o! ! slaunch( ) = (t% 3; i)
P=ft71 (0! ! 1 wa)it70 ( OLr0= 7! ()]

3.3.6 The Example

We apply these de nitions to the example presented in Section 3.1.1. We focus only on
the analysis of the condition ifhread 2.

The result obtained by the rst iteration of the computationSbiis depicted by Figure

3.3. We only represent the state of shared memory elds of cheque, ignoring the control
state and the private memory.
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Thread 1 7! amount=100 amount=0 amount=0
' account=#al account=#al account=null
Thread 2 71 amount=100 amount=100

account=#al

account=#al

Figure 3.3: The result of the rst iteration of the multithread semantics computation

Which are the values returned by tisfunction when we are evaluating the condition
of Thread?2 at the second iteration? In order to compute them, we need to consider which
values are returned by tipgojectfunction. We ignore the rst use of this function, as we
suppose there are two parallel threads at the beginning of the execution, such that both
are launched by the system. In the second case, we upedjeetfunction only with the
execution trace ofhreadl, as it is the only thread in the domain of our multithreaded
state that is not the current thread. Note that there is no synchronization action. In this
situation, the read of the eldmount may retrieve botl®d and100, while readingaccount
may return both &1 andnull.

Finally, we are in position to check if, in this situation, the condition may be evaluated
to true. The condition to be evaluatedtisis:amount > 0&& this:account == null. If the
read action ommount seesl00, and it sees the value written by the second instruction of
Threadl and returned by theis function onaccount, the condition would be evaluated
to true. SoisValid() method may returfalse. This behavior is sound with respect to the
happens-before memory model, as pointed out in Section 3.2.2.

3.4 Multithreaded Abstract Semantics

In order to develop a static analysis via abstract interpretation, we de ne an abstract se-
mantics aimed at computing an approximation of the concrete one. We also prove the
soundness of our approach.

3.4.1 Assumptions

As we did for the concrete semantics, in order to be generic with respect to the program-
ming language we need that some sets and functions are provided.
In particular, the required sets are the following, with the same semantics of the ones in-

troduced by the concrete semantigs, Loc, Sync, andst.

In the same way the functidn : [St St!f true;falsed de nes the abstract single step
relation.
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We require the following functions are provided, with the same meaning as the concrete
semantics:shared : [St | Sh], action : [St ! ?.[ (frwg Loc (Val[? )],
synchronized: [St ! }(Sync)], assign: [Sh Loc Val ! Sh], and setshared:

[St Sh ! St]. We suppose that all these functions are sound with respect to their
concrete counterparts.

Abstract Values

While in the concrete context it is quite easy to understand what values are (usually ref-
erences and numerical values), we need to go into more detail for abstract values. In
particular, we need to understand what may be an abstract numerical value when we as-
sign it.
Nonrelational domains: A rsttype of numerical domains are the nonrelational ones,
as for instance boxed intervals [25], i.e. a domain that relates each variable to an interval,
that approximates all the possible numerical values that variable may have in the concrete
executions. This approach is well-known [24]: a value is nothing more than the interval
assigned to a variable in the boxed domain or the one obtained evaluating an expression.
For instance, the abstract value of the expressienl in the boxed intervals domain
fly 7! [0::2];x 7! [3::5];z 7! [ 1 :0]]gis the interval [35] [1::1] = [4::6] (where is
the sum operator on intervals). This value can be assigned to a variable or a location.
Relational domains: Usually, relational domains such as polyhedra [31], octagons
[101], pentagons [93], and stripes [47] de ne the semantics of assignments, evaluating the
assigned expression, i.e. the right part of the statement, together with the assignment of its
value to the variable. This is an obvious consequence of the fact that they trace relations
between variables, and so they cannot deal separately with values but they must deal
with variables directly. On the other hand, we can de ne a value as the set of relational
constraints that holds for an expression.
For instance, imagine using the octagon domain (i.e. a domain that trace relations of type
X 'y k) when evaluating = j+ 1 when the following constraints holeij 10; j
0;j+x 0. Inthis context, we can infer the set of constraints that holds for the expression
j+ 1 (introducing a special variablke representing the abstract value of the expression),
and assign this value o So we obtain the constraimt® 11, e l;e+x 1, and
the nalresultis+i 11, i 1;i+x 1 (note that we only need to replaeavith i).
In a sequential context, these two steps has to be performed together, as in this way we can
infer the constraints on the assigned variable directly. Instead, in a multithreaded program
we have that a variable may be assigned in parallel by multiple threads, we need to take
the upper bound between all the possibly assigned values (i.e. the approximation of the
constraints that hold for all the values), and so we have to distinguish the value obtained
from evaluating the expression and the assignment of that value.
Note that classical relational domains are de ned on a nite set of variables. Since we
deal with location of shared memory, we may be in a context in which locations are
dynamically created (which is the case ftava multithreading). Logozzo [91] already
applied the octagon domain in such a context, and other relational domains may work
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adopting a similar approach.

3.4.2 Thread-partitioning Abstract Domain

The abstract domain is similar to the concrete one: the onlgréince is that it deals with
abstract elements, while the meaning is exactly the same.

T[T St
S o[Tid! (Tid N)[ 7 )]
3.4.3 Upper Bound Operators

We require that the upper bound operator between two single-thread $tadesnd be-
tween two valuest(y,) are provided.

Proposition 3.4.1 We assume théBt; Vst s Usi iS acomplete lattice. Let : [} (St) !
St] be the abstraction function on set of concrete states such that:

G 0
si(S) = st )
St

2S
where 2 :[St! St] is the abstraction of a single concreée state. E
We suppose that . function is a join-morphism, i.e. t( S) St gt(Si) for any

i21

intervall N.

Definition 3.4.2 (Upper bound operator o§+) The upper bound on traces is de ned as

t :[St St ! St]
(0! ! TH LYt )=
=(ots _o) ! ! (_J t st _Q) J+1 _iO

supposing thaj i.
Definition 3.4.3 (Upper bound operator on )

t: [ ! ]
fit i f, = flt7y 7] t 2 dom(f,) [ dom(f,);
%fl(t)t fo(t) if t 2 dom()\ dom(f,)
1 (t) if t 2 dom(f,) ndon(f,) @
T (1) if t 2 don(f,) ndom(f,)
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3.4.4 Partial Order Operators

Definition 3.4.4 (Fartial order on St )

v i [St St !f true;falsed

1V 2, 1t 2=
Lemm&.4.5t is well de ned

Proof. Since we suppose thest; vt i is a complete lattice, theng, is well-de ned.
By de nition of t :

(To! ! Tt (—_80! L= L
=(otst 0! ! (Titst ?)! !

supposing thaj i (sincet s is commutative this supposition is not restrictive). In this
way each state of the trace is well-de ned (as or it is composed by an element of the
second trace, or it is the resultb§;), and so alsd is well de ned. [

Lemma&.4.6t ¢ is well-de ned

Proof. By de nition of t 1 we have that:

fit 1 f= f[t Nk t 2 don(f,) [ dom(,);
g f)t f(t) if t 2 dom(fy)\ don(f,)
=3 h() if t 2 dom(fy) ndon(f,) g
f,(t) if t 2 dom(f,) ndontf,)

So for each thread identi er imlorp(fl) [ dqn(fz) we have exactly one of the three
cases, as the three set®i(f;) \ dom(f,), don(f;) ndonm(f,), anddom(f,) ndon{f;)) are
a partition of the setlom(f;) [ dom(f,) by basic set properties. Each of these cases is
well-de ned, as it keeps the thread related to thread in one of the two functions (and by
hypothesis of the case the function is de ned on it), or it apgliebetween the two traces
contained by the two given function (and by hypothesis of the case the two functions are
de ned onit, andt is well-de ned as proved by lemma 3.4.5).

Sot ; is well-de ned.

Lemm&.4.7 16t ;v :t i is a complete lattice

Proof. First of all we prove thaI§+;v i is a partially ordered set. To do it, we need to
prove thatv is a partial order operator, i.e. that it is:
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re exive: ~v ~

By de nition of v , we have thal v~

-} _

- -
(supp. ="o! ! )

(by de nitionof t )
( by idempotence dof )

( by de nition of )

We proved that t

antisymmetric ;v ™ oV Tp)

By de nition of v , we have that; v

ot 1=

(To!
(_0t st

~, and so, by de nition ofv

T2,

~1(2). Supposing that; = " !

“t = 7, so we need to prove that

LTt D)
o)! !

(o! !
Cits )

,that™ v

-t
| —

2(1) and™, v

I!_2_ 0! !

1 ’

j, and

I ] (the proof is similar ift > j), we have that:

(by (1))

(by de nitionoft ) = (_ot st 0) rool
—0

J
(by commutative property dfs) = (Tots o)! !
| —0

(by de nition of t )
(by (2))

So we proved that, = 7.

transitive: ", v 5" LV T3) 1V

2

By de nition of v , we have that; v

T2t T3=73(2).
Supposing that; = ¢! !

_3.

ih 2=

by (1) and (2) we have thgt " k
it 2= (otst o) ! (Cits )!
and,t 3= _8t St _8(3 ! ! (_

)

(Cits D!

(Ptse)!

i+t

—0 I :
i+ : j

ot 1
1

= 2(l)and2 v 73)

| —00

j? 3~ . Kk

j, and by de nition oft we have that

—0 I 0==0r (3)
IJriO —00 J 0 —00 _

3 ! j+1 ! ! k —

-t

=0y 0 -, =0
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W 4).
R 0 -0 00 —00
(by def. oft ) =(—otsr83! L Cits % 1 L
(by (@) =(Cots _ot St__ooo(j Pt (__i(;[ st _oot st )]
(0|0+1t3t i+1 !00 ! ( i Ust
| —00 T
j*i : k
(by (2)) =(Cots ot St _83 ! ! (_iiosot ol st _03 "
I =00 |
: i+ : k
(by (3)) = (__O?())t s ) ) _50_0 ! 1_00—?3! 1 X
(by (4)) - ! ! i ! |+|! ! k

0
(by def. of 3) =73
We proved that;t “3="3,andso ;v “3bydenitionofv .

The fact that every subset & has a least upper bound is a trivial consequence
of the hypothesis that every subsetSifhas a least upper bound , as we suppose that
hSt; vt s is a complete lattice, and of the de nition of .

We proved thatSt ;v i is a partial ordered set and, that every subséstofhas a
least upper bound, so thlﬁ+;v ;t i is acomplete lattice. [ ]

Definition 3.4.8 (Ordering operator on )

vi:[  !f true;falsed
fivif, fhitih="%

Lemm&.4.9 (¢ is reflexive) v is re exive

Proof. viisreexivei fv;f. Bydenitionofv¢, fv;f) ft f=f

]_ct f]_c =
(by def. of t ; and set properties)= f[t 7! 7] : t2 dom(f); "= f(t)t f(t)g
( by idempotence property of ) = f[t 7! 7] : t 2 dom(f); ™ = f(t)g
= f

We proved thatt ¢ f = f, and so thav ; is re exive n

Lemma.4.10 ¢ ¢ is antisymmetrig v ¢ is antisymmetric

Proof. We have to prove thdt v f,» fvi f1) f = fo.
By de nition of v we have thaf, v¢ f,) fitsfh=f, (1) andf,vif,) fLtifi =1
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2).
By de nition of t s and (1) we have that:
f, = f[t 7! glit2 don(f,) [ dom(,);
g f)t fo(t) if t2dom(f,)\ don(f,)
=3 f1(t) if t 2 dom(f;) ndom(f,) d3)
T f,(t) if t 2 don(f,) ndon(f,)

By de nition of t s and (2) we have that:

f=f[t 7! glit2 dom(f,) [ dom(fy);

g f,)t fi(t) if t 2 dom(f,)\ dom(f,)
=3 fo() if t 2 dom(f,) ndom(f,) d4)
~ () if t 2 dom(f;) ndon{(f,)

By commutative property df,t , and\ we can rewrite (4) in the following way:

fe717]: g2 dom(f,) [ don(f,);
g%l(t)t f,(t) if t 2 dom(f,)\ dom,)
T3 fa(t) if t 2 dom(f,) ndom(h) g
T (b if t 2 dornr(f,) ndom(f,)

that is exactly the same results obtained in (3). Thenf,.
We proved that if, v f, A f, v f; thenf; = f,, and so thav ¢ is antisymmetric.

Lemmd&.4.11 { ; is transitive) v is transitive

Proof. We have to prove thdt v f,~ f, v fs) f1 vy fa.
By de nition of v we have thaf; v f,) fit ¢f, =f, (1) andf, v fz) fot sf3 =13

).

By de nition of t + and (1) we have that:

f,=f[t 7! glit2 don(f,) [ dom(f,);

E f()t (1) if t 2 dom(fy)\ don(f,)
=3 f1(t) if t 2 don(f,) ndom(f,) d3)
fo(t) if t 2 don(f,) ndom(,)

By de nition of t s and (2) we have that:

fa=f[t 7! glit2 do_nﬁz)[ dom(f); ] ]
g (Mt f(t) ift2don(f,)\ donth)
“=g RO if t 2 dorr(fz) ndont(fs) d4)
~ f5(t) if t 2 dom(fs) ndom(f,)
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Note that in (3) we have thaton(f;)  don(f,) and in (4)don(;)  dontfs); so by
transitive property of we have thaton(f;) don{fs).

By (3) we have that it 2 dont(f,) thenf,(t) = fi(t) t fa(t) (5). By (4) we have that if
t 2 dom(f,) thenfs(t) = ()t f5(t) (6).

If t 2 don(f;)  dom(f,) then by (5) and (6) we obtain thé(t) = fi() t f()t fa(t) =
fi®t (0 (7).

So by (7) and (4) we obtain that:

8
- . - BHMt Tt if t2don(f)\ dom(fs)
fo=flt7t]ot2domfs)i = » f2(t) if t <dom(fy)\ dom(fs) q8)

Sincedon(f;)  don(fs), by basic set properties we have tiat(fs) = don{(fy) [
dom(fz), don(fy) ndom(fz) = ;, andt < dont(f;) \ domn(fz) is equivalent ta 2 dom(fz) n
dom(f;). So (8) can be rewritten as:

fa = f[t 7! glit2 don(f,) [ dom(fs);

E f(t)t fa(t) if t 2 dom(fy)\ don(fs)
=3 f1(t) if t 2 don(f,) ndon{f;) d9)
T f5(t) if t 2 don{fs) ndont(f,)

By (9) and by de nition oft ; follows thatf; = f; t ¢ f3, and by de nition ofv ; we
obtain thaff; v ¢ fs.
We proved thaf, v f, M f v f3) f1 v f3, and so that ¢ is transitive. [

Lemm®.4.12h ;v«:t ;i is a complete lattice

Proof. First of all we prove thah :vii is a partially ordered set. To do it, we proved
thatv ¢ is a partial order operator, alias that is:

re exive by lemma 3.4.9;
antisymmetric by lemma 3.4.10;
transitive by lemma 3.4.11.

The fact that every subset of has a least upper bound is a trivial consequence of the

fact that every subset &t has a least upper bound as guaranteed by lemma 3.4.7, and
by de nition of t ;.

We proved thah Vi is a partially ordered set and that every subset dfas a least
upper bound, sb ;v;t (i is a complete lattice. [ ]
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3.4.5 Abstraction Functions

Note that in the following de nitions and in the soundness proofs we focus only on the
rst component of the domain , as the second component just traces some relations
between threads.

Definition 3.4.13 (Abstraction function of } (St"))

[HSE)! St

(T) = °()
2T
where
0.[st"! St]
o ! ! D= 2( 0! ! 904
Definition 3.4.14 (Abstraction function of } ( ))
HIC I
()= ¢ %0
f2
where .
it
%) =f[t 7! T]:9t2dom() : T = O(f(t))g
Lemma&.4.15 is a join-morphism
!
Proof. is ajoin-morphismi S T = F (T;) for any intervall  N.
i21 i21
!
S
Ti =
i2l F
(by def. of ) = S o o! ! )
o! !F i2 2T =
(by dEf Of O) = Stg cs)t( 0)| Stg gt( 1)'
p!!t B T o g! iFal 0
(by prop. 34:1) = st st ol 0)! st st ol !
Fr2| 0!¢ 12T i2l ol ! i2T;
(by def. oft ) = 2ot ! 20 ))
ri_'Zl o! F 12T
(by def. of 9) = O o1 1 )
2| o! ! iZTi
(by def. of ) = (Th)
i21
!
We prove that STi = ( (T)), and sothat is ajoin-morphism. [ ]

i2l i2l
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Lemm&.4.16 ; is ajoin-morphism
!

F
Proof. ¢ is ajoin-morphism i fS i = ¢( ¢( ;) foranyinterval N.
i21 2l
!
S —
f i -
i2l E
(by def. of ) = of 2f)
f2 i
(by def. of ?) = zf flt 7! 7]:9t2dom(f) : T = O(f(t))g

2
i2l

t + by de nition makes the least upper bound (through of the traces of all the
abstract functions de ned on the same thread identi er. rs_s*;v ;t i is a complete

lattice by lemma 3.4.7 and is a join-morphism by lemma 3.4.15, foreachwithi 2 |

we obtain that the least upper bound between all its functions is equaf t§, that, by
f2
de nition of ¢ is equal to f(F i)-
Sowe obtainthat:(~ )= ¢( ¢( i), i.e.that ¢ isajoin-morphism. [ ]
i21 i2l

3.4.6 stepFunction

The stepfunction is quite similar to the concrete one. If the action is not a read it just

performs the step through the function. Otherwise it computes the next step injecting
the least upper bound of all the values returned byvisdunction into the read value
and considering also the sequentially consistent caseviglienction is obtained as the
canonical abstraction of thes function.

Definition 3.4.17 gtepfunction)

step: [Tld ~ St! Si
steft; f;T; ) = ~ such that
- if qi(action()), r

94—, if action( ) = (r;1;2.)

sh = shared—); sh_= assigrsh: I: V)
—0— Setshare@ sh)t —
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Definition 3.4.18 {is function)

vis:[Tld Loc }(Sync)  (Tid N)! }(val)
vis(t;1; S; ; (%19) =

= projeci(i; su_ x(f(t%;19; S)I

fv : v 2 project(; f(t°9; S) : t°°2 dom(f) n ft; t%g

Definition 3.4.19 éu x function)

su x:[St N! St] (

_ N N T (LA
sux(o! ph= - otherwise
Definition 3.4.20 projectfunction)
project: [Loc St }(Sync)! }(Val)]
project; 5! ! —;S)=1fv:9j2][0:]: action( ;) = (wl; V)

notsynchronize@;! ! ;S)g

Definition 3.4.21 @otsynchronizedunction)

notsynchronized[St  } (Sync) ! f true: falsed

notsynchronize@™! |  —i;S) = true if and only if
S\ synchronizef o) =;
@;2cut( ! ~i;S) : action("j 1) = (wl;V);

action o) = (Wlo; Vo):1 = I
Definition 3.4.22 Eut function)

cut: [St }(Sync)! St

. _ = if synchronize@ )\ S =;
. nS)=  _ — _ = :
cuto iS) o! cuf(—y! ! i S) otherwise

3.4.7 Fixpoint Semantics

We proceed as in Section 3.3.4: we de ne the single-thread semantics in xpoint form
based on thstepfunction just presented. Then we present the multithread semantics.

Definition 3.4.23 8)
S T Td)! St]
S ¥ htK=Ifp* F
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where
F:[St! St]
E = __Ogt f—0| | b T T o! ! =N
_I = gﬂtlfifl_| 1)9
Definition 3.4.24 §<)
s ]

Skfo; ToK= Ifp! ' FX
where

S O
Fk= (510 To)g t+ f(F;7) : 8t 2 dom(f) : fi(t) = S KT thy

The intuition of these de nitions is exactly the same of the concrete semar8ics:
computes the semantics of a single thread given a multithreaded state (from whstgpthe
function extrapolates the visible values of the shared memory throughstfienction),
while S¢ iterates this computation using the previous multithreaded state for each thread
until a xpoint is reached.

The de nition of the multithread semantics may be straightforwardly extended in order

to support widening and narrowing operators [25], which are required to guarantee the
convergence of the analysis and re ne the results when the abstract domain is of in nite
height.

Lemma.4.25 ($undness afte Supposing that is sound, the®t 2 Tid; (f;r) 2
, 2St: w(stedt;fir; ) vsestedt; «(); () s 1)

Proof. We reason by case:

if i(action( ;)) , r, then, by de nition ofstep stegt;f;r; )= : ! . By
de nition of step stedt; (f); ((1); s ) = 1 s i)!__. As by hypothesis
s sound, theng( ) vs — . Finally, we proved that in this cag 2 TId; (f;s) 2
, 12St: g(stedt:fr ) v Steft; ((f); ((); s( ) where Pr 7!
is the abstraction function on the concrete set of functions

if 1(action ;)) = r, then, by de nition ofstep we can have two cases:

— stedt;f;r; ) = : ! . Itis the same situation of the rst case. The
stepfunction makes the least upper bound between all the visible values, and
it considers also the value exposed at single-thread level. In this way the
soundness is preserved
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— otherwise thestepfunction takes a value returned by this function, injects
it in the state, executes the step through 'thdéunction, and returns the ob-
tained state. Indeed, tlséepfunction makes the least upper bound between all
the values returned by the abstractionvi@function. Since we suppose that
the functions that operates on abstract states are a sound approximation of the
concrete ones, argtepperforms the same operations of its concrete counter-
part, it soundly approximatestepfor all the possible values provided bis.
As stepmakes the least upper bound between all the values, it is sound with
respect to any value that may be returnedsifunction, and so the result of
stepis sound.

We proved that in all the possible cas#spis sound with respect tstep

Lemm&.4.268T2}(StY): (F(T)v F ( (1)

Proof.

(F (M) =

(by de nition of F )

( T:f 09 [f 0 ! ! iq ! i -
ol ! i1 2THN  2stedt;f;r; )9
(by functional lifting)

(M: (f og[f o! ! in!
ol ! i12T"N 2stedt;f;r; )O
(as is ajoin-morphism as proved in Sectio35)
(M: f 9t (fo! ! in! o
0! ! i1 2THN  2stedt;f;r; )9
(by de nition of )
(M: °C o)t O ol ! in! )
o! ! i12T"N 2stedt;f;r; )9
(by lemma 34:25 and de nition of v )
(T): °C o)t f5! ! 757! —5:
! Ta= (O
Ti2stedt; (M) () s )9
(by de nition of F )
F(C (M)

Lemmd&.4.27 Letbef 2,72 , andt 2 Tid. Supposing thaSt. is the set of all the
pre xpoints of F , then8 5 2 Stye:  (S)I;TtKv S J;T;tK

Proof. Note that:

F is monotonic for as trivial consequence of its de nition
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F is monotonic forv as trivial consequence of its de nition

i (St); ;[i is a complete lattice by properties of set union operator and subset

ordering
ISt:v :t i is a complete lattice as proved by lemma 3.4.7
—is a pre xpoint of F by hypothesis

is a join-morphism as proved by lemma 3.4.15

(F)v F ( )asproved by lemma 3.4.26

Then, by theorem 2.2.87 2 Sty - (S)JFtKv S JFtK

Lemm&.4.288 2}( ): «(FY )V F& +( ))

Proof.

t(FKC ) = (by de nition of F¥
f( f(osro)a [F(fiiri 1) 9(fi 1,1 1) 2
8t2don(fi1): 2SJi i ;tK 2SSt ;fi()= 9
= (by functional lifting)
t( ) 1(f(fosro)g [f(fisri 1) 1 O(fi 151 1) 2
8t2don(fi1): 2SJii;n ;tK 2SSt ;fi()= 9
= (as ¢ isajoin-morphism by lemma:&.16)
t( ) (f(osro)dt ¢ ¢(f(fi;ri 1) 1 O(fi 151 1) 2
8t2don(fi1): 2SJXi;n ytK 2SSt ;fi()= 9
= (byde nition of ¢)
() Yoro)t ¢ f 9(fisri 1) 1 9(F 11 1) 2
8t2don(fi1): 2SJXin ytK 2St;fi)= g
v¢ (bylemma 34:27)
() Yorro)t ¢ (T 1) 1 9 T )= ()
8t 2 dontf 1) : fi(t) = S I ;i 1;tkg
= (by de nition of E‘)
FC ()

Theorem3.4.29 Supposing that_Iore _pre is the set of all the pre xpoints gk
then8(F;,N 2 e pre: 1(S)IFTKV; SFTK

Proof. Note that:

FKis monotonic for as trivial consequence of its de nition
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Fkis monotonic fowv ¢ as trivial consequence of its de nition

R( ), ;[i isacomplete lattice by properties of set union operator and subset
ordering

h ;vi:t ;i is a complete lattice as proved by lemma 3.4.12
fis a pre xpoint of Fk by hypothesis
¢ Is a join-morphism as proved by lemma 3.4.16
t(FY vy E‘( ¢) as proved by lemma 3.4.28
Then, by theorem 2.2.8( 1) 2 pe  pre: (S TKv ¢ SFTK n

3.4.8 Launching a Thread

The launch of a thread can be directly abstracted from the concrete de nition presented
in Section 3.3.5.

3.4.9 The Example

We analyze the example presented in Section 3.1.1 using the Interval domain in order to
infer information about numerical values.

For the rstiteration we obtain the same results as the concrete semantics, completely de-
scribed in Section 3.3.6. The only dirence is that now we deal with abstract values, and

so we relate each numerical variable to an interval instead of an integer, and the concrete
reference would be abstracted into an abstract one. Note that Chapter 5 will introduce an
ad-hoc analysis in order to abstract references.

We analyze which abstract values are returned bywvikible function when reading
amount andaccount during the second iteration of the xpoint computation. In partic-
ular, both the initial valuesafmount = [100::100] andaccount = #abal) and the values
written by Thread 1 (amount = [0::0] and account = null) are visible. The least upper
bound of these elements returasount = [0::100] and account = f#abal;nullg Then

we check the condition ofhread 2 this:amount > 0&& this:account == null may be
evaluated tarue, and we conclude that methasValid() when executed byhread 2

may returnfalse. This result is sound with respect to the concrete semantics, and so to
the happens-before memory model.

3.5 Related work

Many approaches have been developed in order to statically analyze multithreaded pro-
grams. Most of them deal with deadlock and data race detection [121]. In the last few
years other approaches, analyzing other and more generic properties, have been proposed
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[125, 20, 141, 41]. Usually these approaches suppose that the execution is sequentially
consistent, but this assumption is not legal under, for instancéatleeMemory Model.

On the other hand, many de nitions and some static analyses with respect to a memory
model have been proposed.

Roychoudhury and Mitra [122] present a semantica)éva multithreaded programs that
respects on an earlier version of theva Memory Model. In particular, it presents an ex-
ecutable semantics that is sound and complete with respect dathdviemory Model,

and it veri es programs on it using model checking techniques. It is speci ¢ tddke
programming language, and it isected by the state space explosion problem.

In a similar way, Huynh et al. [71] develop a model checker for:NMETmemory model

[36]. Itis speci c to theC# language, and it sters from the state explosion problem.
Cenciarelli, Knapp and Sibilio [19] propose a formalization of daga Memory Model
through a semantics that combines operational, denotational, and axiomatic approaches.
The authors build up a subset of the legal executions undgatlaeMemory Model. This
approach is dierent from ours, since we compute a superset of these executions. How-
ever this approach is speci c to tlBava programming language, and it does not introduce
any static analysis.

Boudol and Petri [17] propose an operational approach to the de nition of a relaxed mem-
ory model. In particular, this work is focused on the formalization of the behaviors of
bu ers and how communications through shared memory use them.

Steinke and Nutt [133] propose an unifying approach to the de nition of consistency rules
on multithreaded executions. All consistency rules previously proposed can be de ned in
this framework. We think that this generality may be achieved also in our framework
tuning on di erent memory models thas function.

Rakamaric and Hu [116] propose a new memory model for low-level code. In particular,
previous memory models require some checks before each memory access at runtime.
This approach is not scalable. So the authors propose a static analysis to validate some
properties of interest. So many runtime checks can be safely removed, and the resulted
memory model is scalable. On the other hand, this static analysis is focused on some par-
ticular properties, and so it is not a generic static analysis sound with respect to a memory
model.

Given this context, our work appears to be

the rst de nition in a xpoint form of a memory model,

the rst static analysis sound with respect to the happens-before memory model,

the rst static analysis of a memory model based on abstract interpretation theory,

the rst work that combines together a generic de nition of a memory model and
its static analysis.
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3.6 Discussion

In this chapter we presented a whole-program analysis of multithreaded programs. Our
analysis is as generic as possible with respect to the programming language. It requires
only that some functions and a small step semantic atomic at multithreaded level are
provided. In addition, it is generic with respect to the abstract numerical domain, and the
property of interest. In order to apply it to a real programming language, and in particular
Java, we need to study in the details some issues related with this approach.

3.6.1 Thread Identi ers

In Java threads are objects. In order to create and launch a thread, developers have to
create a class that exten@sa:lang:Thread, override the methodun() with the code

that has to be executed in parallel, instantiate an object of this class, and then invoke the
methodstart() on it. In this context, threads are objects. In tlawa virtual machine
objects are stored in the heap, and thus they are identi ed by reference.

In our approach, we considered that the set of thread identi ers is the same in our concrete
and abstract domain. This means that the set of active threads is statically determined at
the beginning of the computation, and itis nite. This is not the case when analyavag
programs, as in the concrete context we may have an unbounded allocation of references,
and we need to approximate it in the abstract. Chapter 5 will present an ad-hoc may-alias
analysis in order to soundly abstract concrete references.

3.6.2 Monitors

In a similar way,Java bytecode has two primitives fhonitorenter and monitorexit) in

order to lock and unlock monitors. Each object is related to a monitor: in order to manage
it, the Java Virtual Machine uses the reference that identi es the object.

In our approach, the abstract semantics supposes that if two threads own a common ab-
stract synchronizable element then they are synchronized in all the possible executions.
As in Java monitors are identi ed by reference, we need to develop a must-alias analysis.
Chapter 5 will present it.

3.6.3 Modular Analysis of Multithreaded Programs

When developing programs, we often want to reason modularly, i.e. to partition an ap-
plication into di erent tasks, reason on and develop separately each of them, and nally
compose them through some well-de ned interfaces. Modularity is a key objective of
many programming languages, and indeed it is one of the main motivations of object
oriented languages [100]. One of the consequences of modular programming is that a
practical analysis must t the toolchain the developer uses, that is, an analysisvéor

must be modular. For instance, Logozzo [90] analyzes each class separately from the
others, inferring properties that are valid in all possible environments of execution.
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However, modular reasoning on multithreaded programs is not possible. For instance,
when we develop the code of a thread we cannot specify some constraints on how other
threads would access shared data in parallel, and they may read and write them freely.
Comparing multithreading to object oriented languages, while in the second case we have
public, protected, andprivate elds, and through these modi ers we may avoid other
classes to access them, in multithreading there is no way to locally forbid parallel ac-
cesses or put some constraints on them. In addition in object oriented programs other
constraints may be speci ed at runtime, for instance using contracts. Instead, usually
there is no way to check at runtime what other threads are doing (e.g. if they have written
a shared variables without owning a given monitor).

Some extensions of contracts to multithreaded programs have been proposed recently
[108, 87]. On one hand, the authors propose some restrictions (e.g. through ownership
types) on how threads interacts to avoid data races and deadlocks [107]. On the other
hand, they propose some automatic synchronization actions, called wait-semantics, to
enforce assertions, class invariants, pre- and post-conditions also in multithreaded pro-
grams. Finally, monitor invariants hold when no thread is executing within the monitor,
that is, between acquire and release operations [11]. Our approach is sligrehemti

with respect to this one, as we want to

analyze all Java multithreaded programs, and not to restrict programs in order to
avoid data races and deadlocks,

check properties for all the possible executions without requiring additional auto-
matic synchronizations.

In this context, we had to develop a whole-program analysis. On the other hand, it seems
evident that something more is required semantically in order to put developers in position

to modularly think about threads. For instance, aedent approach has been adopted

by the Software Transactional Memory [127]. However, STM has not been adopted by

common programming languages (eJava and C#) which, so far, oer threads rather

than transactions.



Determinism of Multithreaded
Programs

In this chapter, we will de ne and abstract a deterministic property focused on multi-
threaded programs. Our property is aimed at checking the nondeterministic behavior that
is due to the arbitrary interleaving during the execution ofedéent threads. We de ne it

as di erence among concrete traces. Then we abstract it in two separate steps in order to
statically analyze it. At the intermediate level of abstraction, we propose the new idea of
weak determinism. We discuss how nondeterminism may ow. We relax the deterministic
property projecting it on a part of traces and states. We introduce how data races and SQL
phenomena aect the determinism of multithreaded programs. Finally, we sketch how
the proposed property may be used in order to semi-automatically parallelize sequential
programs.

This chapter is based on previously published work [44].

4.1 Analyzing Multithreaded Programs

A topic thoroughly studied has been how parallel threads can communicate in order to
limit nondeterministic behavior. In this context, many eient approaches have been
developed.

4.1.1 Data Races

The rst way is the static or dynamic checking on threads' actions like general and data
races [106]. When two threads access the shared memory, and at least one performs a
write operation, they form a general race. The data race requires also that the concurrent
accesses are not synchronized. The idea is that races cause nondeterminism and that are a
symptom of bugs. The erts in the static analysis of races have been huge: Rinard [121]

has presented a complete overview until some years ago. Many other approaches have
been proposed during the last few years, e.g. [1, 21, 41, 49, 61, 63, 81, 104, 137, 141].
Nevertheless, it seems that the data race condition is not expressive and exible enough. In
fact, the absence of general races is a too restrictive condition for multithreaded programs
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Thread 1 System Thread 2
Account a = new Account();

a.amount = 1:000;

) qbbbbbbbbbbbbb o \\\\\\\\\\\\\\_

a:deposit(100 a:withdraw(100)

Figure 4.1: Depositing and withdrawing in parallel

that communicate asynchronously through shared memory. On the other hand, avoiding
data races does not guarantee the determinism of a program.
In addition, a race does not take into account

which statements and threads cause it,
which area of the shared memory it deals with,

if the informations written in parallel are derent and how much.

Our idea is to directly study determinism. The aim is to relax the deterministic property
on a critical subset of the shared memory, considering only some statements and threads,
looking also at the (abstract) values written and read in parallel. Our approach is thus
more exible than general and data races.

4.1.2 Model of Execution

Another large amount of work has focused on consistency conditions that multithreaded
programs have to provide. The best known model is sequential consistency [83], that has
been shown to be too restrictive for modern programming languages. For instance, the
Java memory model [95] is more relaxed than it. Our approach is orthogonal with respect
to these consistency conditions that de ne which states of shared memory are visible dur-
ing the execution of dierent threads.

A similar approach is the de nition of a speci ¢ programming model that restricts the
non-determinism of multithreaded programs by allowing certain interactions between th-
reads. The Software Transactional Memory (STM) [127, 60] allows to specify that the
execution of a given part of a program is atomic, i.e. it is viewed as a unique operation
by other threads. A large work on the semantics of parallel languages has been devel-
oped by trace theory [98], e.g. [51]. In this case, we distinguish the model of execution
from the determinism of a program. Our deterministic property may be applied to anal-
yses sound with respect to sequential consistency, happens-before memoryJaadel,
memory model, software transactional memory, etc..

4.1.3 An Example

In order to illustrate the concepts presented throughout this chapter, we will always refer
to the following example.
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Figure 4.1 depicts a multithreaded execution that uses the Atasaint introduced in
Section 2.3. The system is going to execute in parallel a deposit of 100 and a withdrawal
of the same amount of money. At the beginning, the value containgctount is 1.000.

4.2 Syntax and Concrete Semantics

In this section, we present
a syntax focused on write and read operations on shared memory,

the concrete domain and semantics. They are augmented in order to trace, for each
value, the thread that wrote it in the shared memory.

4.2.1 Syntax

For the sake of readability, we consider a very restricted syntax. It is focused on the
interactions with the shared memory, i.e. read and write actions. In this way we consider
only statements of the forsh_var = value andread(sh_var).

Statemensh_var = value writes on a shared variab$h_var a given valueread(sh_var)

reads a shared variabdd_var and returns its value. Note that this syntax can be easily
extended with other statemenifs While, etc..).

4.2.2 Concrete Domain

The concrete domain we consider is strictly focused on the shared memory. For each
value, we trace the thread that wrote it. As we are in the concrete context, we know ex-
actly which thread wrote a value at each point of the computation. Thus, we relate each
shared variable to a pair composed of its value and an identi er of the thread that has
written the values.

Formally, letTld be the set of the identi ers of threadgar be the set of shared vari-
ables, and/ be the set of concrete values. The shared memory is a function that relates
each variable to a pair composed by its value and the identi er of the thread that wrote it
(S:[var! (V TId)]). Note that this representation of shared memory is quitedi

ent with respect to the approach usually adopted by current programming languages. For
instance, inJava the shared memory is the heap, and values are accessed by reference.
At the static level this approach would lead to multiple issues that are orthogonal with
respect to our goal, e.g. alias analysis. These will be considered in Chapter 5.

The concrete domain is the thread-partitioning one introduced in Section 3.3.2. In partic-
ular, the states are the shared memories [TId ! S*]).
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4.2.3 Transfer Function

In order to de ne the concrete semantics of write actions on shared memory, we introduce
W :[(S TId)! S]appliedtosh_var = value. Itis de ned aswJsh_var = valueKs;t) =
s[sh_var 7! (value;1)].

The value read from a shared memaris given by the functiorR : [S! V] applied

to eval(sh_var). It is de ned asRJeval(sh_var)Ks) = i(s(sh_var)), where ; is the
projection on the rst component.

4.2.4 An Example

Thread 1 : [a:amount 7! (1:000; System)] ! [a:amount 7! (1:100; Thread 1)]

Thread 2 : [a:amount 7! (1:100; Thread 1)] ! [a:amount 7! (1:000; Thread 2)]

Thread 1 : [a:amount 7! (900; Thread 2)] ! [a:amount 7! (1:000; Thread 1)]

Thread 2 : [a:amount 7! (1:000; System)] ! [a:amount 7! (900; Thread 2)]

Figure 4.2: The concrete semantics

Figure 4.2 presents the two multithreaded concrete executions obtained using the do-
main and the semantics just introduced. The rst element represents the case in which
Thread 1 is executed befor&hread 2. The second element depicts the opposite situa-
tion. Note that other executions are not possible as both the methods are synchronized on
the same monitor.

4.3 A Value for Each Thread (Abstraction 1)

In this section, we present the rst level of abstraction where each shared variable is
related to an abstract value for each thread that may write on that. Our analysis is param-
eterized by the abstract non-relational domain that approximates numerical values.

4.3.1 Abstract Domain (First Level)

We consider the following Galois connection between the concrete domain of values and
its abstract counterpart.

BV); 5Vl V HY; Vi 21: >4t s Uy

As we work pointwisely on values, this means that the non-relational abstract domain has
to soundly approximate the concrete values. In the concrete contegtedi executions
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may contain values written by derent threads because of their arbitrary interleavings.
The rst level of abstraction approximates all the concrete executions with a unique ab-
stract trace. For each shared variable it gathers all the values written by the same thread
on the same shared variable. So it collects an abstract value for each thread.

Formally, a shared memobyrelates each variable to a function that maps a thread to the
abstraction of the values that it may have Written,he.[Var I [Tid! li?]].

As in the concrete semantics, we adopt the thread-partitioning trace doanai[T(d !

B*1).

4.3.2 Upper Bound Operator

The upper bound operator on shared memories keeps all the values writtenelpgdi
threads. It relies on the join operator of the abstract numerical domain.

Bty =l :88var 2 don(s,) [ domn(B,); 8t 2 dom(B;(var)) [ don(e,(var));
g Bi(var)(t) if var <dom(8,) _t < don(8,(var))
B(var)(t) = 3 B,(var)(t) if var <dom(8;) _ t < domn(s;(var))
© lgy(var)(t) t o By(var)(t) otherwise

The upper bound operator on traces simply applies the upper bound operator of shared
memories on all traces' states.

bitg.Bg=bo! ! b;:i=max(enb,);lenlby));8j2[0:i]:
g () tgha(j) if j<leny)” j<len)
b; = 3 ba()) it | len(oy)
© ba(j) if j len(oz)

The upper bound operator on the multithreaded state is the pointwise extension of the
upper bound of traces on all the elements of the codomain.

bt B, §l?: 8t 2 domlt) [ donf,) :
§l?1(t)t g o(t)  if t 2 domi®;)\ dontl)
Bt) = gtfl(t) if t 2 domf®y) ~ t < dorl®,)
“ By if t 2 donl,) ~ t < domty)

4.3.3 Abstraction Function

The abstraction function maps a set of concrete shared memories into an abstract memory.
s:HE)! 8 S
s(S)=B:8var2~ o dont(s);8t 2 ~ ., don(s(var)) :
Bvar)(t) = (fv:9s 2 S : s(var) = (v;1)g

The abstraction of a set of traces produces an abstract trace such that its i-th element
is the abstraction of the i-th elements of all the given concrete traces.
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11! B
s+(M=Dbe! I Dby Si = max(S srlen());
8j2[0zi]:bj= s 2rien > ()
When considering traces, the abstraction function returns a unique function. This

abstracts together all the traces produced by the same thread in #rerdi concrete
executions.

By b <
()=0:8t27, dom() O = (2 c200m D)

Proposition4.3.1 ( v is a join preserving mapWe suppose thaty is a join preserving
map, i.e.8Vy; Vo Vi y(Vi[ Vo) = p(Vi)ty v(V2)

Lemma.3.2 ( s is ajoin preserving map s is a join preserving map, i.68S,;S, 2 S :
s(S1[ S2) = s(S1)te s(S2)

Proof.

s(S1[ S2)
(by de nitign of <) S
=B 8var 2 7 5, donT(s); 8t 2 7 o5, 5, dOMT(s(var)) :
Bvar)(t) = v(fv2V:9s2S.[ S, :s(var) = (v;t)g
(by basic get properties)S
=l : 8var 2 7 5, dom(s) [ . «s, dong(s);
8t2 s, don(s(var)) [ s, dom(s(var)) :l?(var)(t) =
= v(fv2V:9s2S;:s(var) = (v;t)g[fv2V:952S,: s(var) = (v;1)0
(by propogition 4.3.1)
=1 8yar 27 g, dom(s) [ ¢ sz, dom(s);
Bt2 s, don(s(var)) [ s, don(s(var)) :l?(var)(t) =
= v(fv2V:9s2S;:s(var)=(v;t)gty v(fv2V:9s2S,:s(var) = (v;t)9
(by de nition of g the abstract result is de ned on the union of all the domains)
(of all the concrete elements)

= 8var 2 dom( s(Sy) [ don( s(S2));
8t 2 don( s(Sy)(var)) [ don( s(Si)(var)) :
bvar)(t) = v(fv2V:9s2 S, : s(var) = (v;t)dt
v(fv2V:9s 2 S, : s(var) = (v;t)9

We reason by case:

if var <dom( 5(S,)) _ @ 2 S, : s(var) = (val;t), therﬁ(var)(t) = y(fval : 9s 2
S; : s(var) = (val;t)g. By de nition of s we have that \(fval : 9s 2 S; :
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s(var) = (val;t)g = s(Si)(var)(t) and that@ 2 S, : s(var) = (val;t) ) t <
dom( s(Sz)(var)). Combining them, we obtain that

var < dom( s(Sz)) _ @<don( s(S)(var)) Mvar)(t) = s(Sy)(var(®) (4.3.1)
in the same way but inverting; andS, we obtain that
var <dom( s(Sy)) _ @<don( s(Sy)(var)) Bvar)(t) = s(Sy)(van() (4.3.2)

otherwise, the value would be the least upper bound between the values contained
in S; andS,, and so we obtain that

Bvan)() = s(S))van®) ty s(S2)(van)(t) (4.3.3)

Combining 4.3.1, 4.3.2, and 4.3.3 we obtain that

B 8var 2 don( s(S1)) [ don(' s(S7)); 8t 2 don( s(Ss)(var)) [ don( s(Sz)(var));
s(S1)(van)(t) if var <don( s(Sz)) _ @< don( s(Sz)(var))
Bvan)(t) = 5 s(S2)(var)(t) if var <dom( s(S1)) _ @<don( s(Sy)(var))
" s(Sy)(van)(t) ty  s(S2)(var)(t) otherwise

and so by de nition oft , thatt = s(Sy)ty s(So).

We proved thdl = (S1[ Sy)andthall= ¢(S1)ty s(S2). So, by transitive property
of equivalence, we proved that(S:[ Sz) = s(Si)tg s(S2).
|

Lemma.3.3 ( - IS @ join preserving map ¢« IS a join preserving map, i.e8Ty; T, 2
SH s*(Tl[ TZ) = S*(Tl)t B+ s*(TZ)
Proof.

+(Te[ T2)

(by de nition of &.)
=bo! !S bi:i= max(S ot T, 1€Nn( )); 8] 2 [0:1]

bi= sC onmen)>j ()
(by basic set properties)

=bo! 1 byri=@axC g len( ) g ar, len )
8j2[0:i]:bj= sC 2ruen)>j (DI 2Tolen( )>j (1))
(by Lemma 43:2) S

=bo! ! bj:i= gl&X(S ar,1en( ), or, len());

8j2[0ui]:bj= s 2rpen()>j Mty sC 2rmen)>j (1)
(by de nition of t y.)

= (Tt g+ s* (T2)
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Lemma&.3.4 ( isajoin preserving mgp is a join preserving map, i.e8 ; , 2
(1 2= (Jte (2

Proof.

(1[ 2
(by de nition of )

S
=b:8t27 | ,domD) )= &2y edomy f(D)
(by basic set properties) S s
=b.gt2 ., dontf) :t?(t) = (2 yredomn TO [ 12 ,t2doms f(1)
(by Lemma 43:3)

S S
=R:8t27 | ,domf): B0 = (T seann )t (2 pdon ()
(by de nition of t g.)

= (oJte (2
[ ]
Theorem4.3.5 Let |, be the partial order induced by, , and  be de ned as
[
=k fz: (v g
Then
R( ) 5 LN WPV 2p;>0;t biUpl
Proof. Lemma 4.3.4 proved that is a join preserving map.
Then by Theorem 2.2.2 we proved that
R( ) 5 LN WPV 2p;>0;t biUpl
[ ]

4.3.4 Transfer Function

In correspondence to the semantic functitiandR, we introduce their abstract coun-
terpart\W andR as follows.
W:[(® Tid)! B]of sh.var = value is de ned as

B/ Jsh_var = valueK®;t) =B[sh_var 7! [t 7! y(value)]]
R:[B1 R]of eval(sh_var) is de ned as

G
RJeval(sh_var)K8) = B(sh_var)(t)

t2dom(s(sh_var))

Lemmal.3.6 (Sundness o) W is the abstraction ofV, i.e.
8s2S;8t2TIld: s(WJsh_var = valueKs;t)) = B/ Jsh_var = valueK s(fsg;t)
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Proof.
s(WJsh_var = valueKfsg t))

(by de nition of WJsh_var = valueK)
= s(fs[sh_var 7! (value;t)]9

(by de nition of &)
= s(fsg[sh_var 7! ( y(value);1)]

(by de nition of WJsh_var = valueK)

= WJsh_var = valueK s(fsg;t)

Lemma.3.7 (undness dR) R is the abstraction oR, i.e.
8s2S: y(fRJeval(sh_var)Ks)g = hJevaI(sh,var)l( s(fsQ)

Proof.
v(fRJeval(sh_var)Ks)9

(by de nition of fRJeval(sh_var)K

= v(f 1(s(sh.var))g
(by de nition of )

= 1( s(fsg(sh-var))
(by de nition of RJeval(sh_var)K

= RJeval(sh_var)K s(fsg)

4.3.5 The Example

#
( System 7! [1:000::1:000] )
Thread2 7! [900::1:000]
#
[a:amount 7! fThread 1 7! [1:000::1:100]d

a:amount 7!
Thread 1:

( - #
System 7! [1:000::1:000]

Thread1 7! [1:000::1:100]
#
[a:amount 7! fThread 2 7! [900::1:000]d

a:amount 7!
Thread 2 :

Figure 4.3: The abstract semantics

Figure 4.3 depicts the results of the abstract semantics. In order to capture numerical
information we use the Interval domain.
From these results, we discover that the value read from theamlishount by Thread 1
may have been written b$ystem or Thread 2. The value read bfhread 2 may have
been written bySystem or Thread 1. This makes evidence that some nondeterministic
behaviors due to arbitrary interleaving of threads arise.
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4.4 Just one Value (Abstraction 2)

In this section we present the second level of abstraction: all values written byedit
threads collapse into the same abstract element.

4.4.1 Abstract Domain (Second Level)

A shared memorg 2 S relates each variabler to a pair composed by a value and the
set of threads that may have written it. Formaly [Var! (& } (T1d))].

Then our abstract domain is represented as a function:ifiTld ! §+].

4.4.2 Upper Bound Operator

The upper bound operator on shared memories produces for each variable a pair composed
by

the upper bound between the abstract numerical values assigner to the given vari-
able,

and the set union of all the threads that may have written on it.

S1t55,55: 8var 2 don(sy) [ don(s,) :
( a(sa(van)ty i(sa(var)); a(si(var)) [ 2(sz(var)))
if var 2 don(s;)\ don(s,)
§ 5, (var) if var 2 dom(s;) * var < don(s,)
- sp(var) if var 2 don{s;) * var < donfs;)

s(var) =

The upper bound operator on traces is the pointwise application of the upper bound
operator of shared memories.

it < =" ! ::E!B i i = max(en(Ty); len(7y));
g 1(Dts2()if j<len("y) " j<len(Ty)
8j2[0z]: 7= 3 (Difj<len)N | len(T,)

S (ifj<len(2)™ ] len(Ty)

The upper bound operator on the multithreaded state is the pointwise application of
the upper bound of traces on all the elements of the codomain.

flt—fg
%(t)é

1
—h1

: 8t 2 dont(f,) [ dom(f,) :

1Ot o fo(t) i t2 don(f,)\ dontf,)
1(1) if t 2 don(f,) ~ t < dom(f,)
5(1) if t 2 dom(f,) ~ t < don(f,)

—h!l —h| =—hlI
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4.4.3 Abstraction Function

For each variable the abstraction of shared memories takes the join all the values written
by di erent threads.

o:[8! S ) .
5(8) =5 : 8var 2 dons) : 5(var) = (* 2donte(van) B(1); domB(var)))

The abstraction of traces is the pointwise application of the abstraction of the shared
memory.

B - [Q* ! §+]

g»,(bo! nl bi): g(bo)! ol b,(bi)
The abstraction on the multithreaded state is the pointwise application of the abstraction
of traces.

b 1[b_! ] )
b@ =F:8t2dontd) : f(t) = . B(1))

Lemma.4.1 ( g is @ join preserving map g is a join preserving map, i.e88;;8, 2 B :

@1t pB2) = g®1)ts 62)

Proof.

g1t 5 82)
(by de nition of )
=S : 8var 2|5:ion‘(91t 882) :
s(var) = ( tzdom(eat w82)(var) 81 t ¢ B,(t); dom((B: t g B2)(var)))
(by de nition of t 3 we have that )
(don(e; t xB8;) = don(s,) [ dons,) and8var 2 don(,) [ donts,) :)
(domm((8: t u8)(var)) = dom(s,(var)) [ domn(B,(var)))
=5S: 8var 2|._don'(l§1)[ donts,) :
s(var) = ( t2donfs(var)[ dorrz(var)) B, t gbz(t); don(8;(var)) [ don(8;(var)))

We reason by case:
if var < dom(s,) we have thag(var) = (F 12dons; (var) B1(t); dorr(y (var))). By de ni-

tion  we have that ( pgonfs,vary) 81(t); don8i(var))) = (1), and, by transitive
property of the equivalence operatsfvar) = (8:). So we obtain that

var <don(8,) ) S(var) = g(81) (4.4.1)

in the same way but invertirgy ands, we obtain that

var <donB;) ) S(var) = g(8) (4.4.2)
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otherwise, we have that

_ F
s(var) _-|:( t2dorr(sy (var))[ donfsz(zar)) 81t 5 B,(t); domr(e(var)) [ dom(8;(var)))
= ( 2dontesvar)B1() Ty t2done,(vary) B2(t); dom8y(var)) [ don(By(var)))

by de nition of t . By de nition of g we have that

F F
( t2don(b1(var))bl(t)t b t2d0rr(sz(var))b2(t);dorr(bl(var))[ dom(s,(var))) =

= (1( gB)(van))ty 1( g)(var); 2Mi(var))[ 282(var)))
So we obtain that

var 2 dom(8;)\ dom(s,)
+
s(var) = (1( g@)(van) ty 1( gB2)(var); 2M@i(van)[ (var))

Combining 4.4.1, 4.4.2, and 4.4.3 we obtain that

(4.4.3)

s : 8var Zdont(s,) [ donts,) :
g(bl) if var < don(bz)
B(var) = k(82) if var < dom(s,)
§ (1( gl)(van) ty 1( gl)(var)); 2@i(van))[ 2(82(var)))
- if var 2 don(s,)\ donts,)

and so by de nition ot sthats = g([81)t 5 g(82).

We proved that y(81 t x8;) = sandthaE = ¢(8:)t 5 g(®2). So, by transitive property

of equivalence, we gety(8:t s 8,) = g(B1)t 5 (B2).
n

Lemma.4.2 (. is ajoin preserving map . is a join preserving map, i.e8bs;b, 2

§+ : g-,(blt B+ b,) = §+(b1)t§+ g*(bZ)

Proof. Supposing that; = bo! ! bi,b,=bJ! ! 7 andi> jwe obtain
that:
e-(Do! ! bt (0! ! D)
(by de nition of t y.)
= g(botg 0! ! (bjtg D! bl 1 by
(by de nition of .)
= gbotg g ! ! sits D! glbj)! ! g(D1)
(by Lemma 44:1)
= gbots s(o)! ! sONts s(D! glp)! ! g(01)

(by de nition of t y.)
= s*(bl)t B+ s*(bz)

The proof is the same when the situation is opposite, i.e. when [ ]
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Lemma.4.3 ( , is ajoin preserving map , IS a join preserving map, g, 2 b

bt = pl)t— o)

Proof.
b @1t u 1)
(by de nition of )
=f:8t2doml t p 1) : (1) = §+(@1t b %2)()
(by de nition of t )

=f:8t2 domth) [ dontd) : f(t) = g Bu(t) t o B(t))
(by Lemma 44:2)

=f:8t2doml) [ domlt) :f() = &)t g b))
(by de nition of t §*)

= pl)t— L&)
|
Theorem4.4.4 Let — be the partial order induced by—, and , be de ned as
f— G f—
b=y f: @ v-yg
b
Then L
ho s vpiy h v—i
b
Proof. Lemma 4.4.3 proved that, is a join preserving map.
So by Theorem 2.2.2 we proved that
hD ;v "R v
b
|

4.4.4 Transfer Function

The transfer functio®W : [(S Tid)! S] of sh_var = value is de ned as
WJsh_var = valueKs;t) = s[sh_var 7! (lalue;ftg]
The functionR : [S! ] of eval(sh_var) is de ned as
RJeval(sh_var)Ks) = (s(sh_var))
Lemma.4.5 (Dundness ofV) W is the abstraction o/, i.e.

8s2B:8t2TId: g(\h/Jsh,var = valueK®; 1)) = WJsh var = valueK g(8);1)
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Proof.
g(\WJsh,var = valueK(; t))

(by de nition of WJsh_var = valueK)
= g@®[shvar 71 [t 7! y(value)]])
(by de nition of )
= g@®)[shvar 7! ( y(value);ftg]
(by de nition of WJsh_var = valueK)

= WJsh_var = valueK g(®);1)

Lemmat.4.6 (Sundness oR) Ris equaltoR 4, i.e.
8828 : ,(RJeval(sh var)Ki)g = Rleval(sh var)K (fsg)

Proof. By de nition of RJeval(sh_var)Kwe have that
G

88 2 B : RJeval(sh_var)KB) = B(sh_var)(t)
t2don(s(sh_var))
In the same way, by de nition oRJeval(sh_var)Kwe have that

88 2B : Reval(sh var)K x(®)) = 1( g)(sh var))

By de nition of (8) we have that

G
8var 2 don(8) : () (var) = ( B(t); don{s(var)))
t2dom(g(var))
Combining 4.4.5 and 4.4.6, we obtain that
G
RJeval(sh_var)K 8®) = 1(( B(t); done(sh_var))))

t2dons(sh_var))

So by de nition of the projection function, we nally obtain that

G
RJeval(sh van)K ,(8)) = B(t)

t2dons(sh_var))

Combining 4.4.4 and 4.4.7, we prove that
RJeval(sh_var)K g(®)) = RJeval(sh_var)K8)

by transitive property of equivalence.

(4.4.4)

(4.4.5)

(4.4.6)

(4.4.7)
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Thread 1 : [a:amount 7! ([900::1:000]; fSystem; Thread 29] ! [a:amount 7! ([1:000::1:100];fThread 19]

Thread 2 : [a:amount 7! ([1:000::1:100]; fSystem; Thread 1g] ! [a:amount 7! ([900::1:000]; fThread 29]

Figure 4.4: The abstract semantics on the example

4.45 The Example

Figure 4.4 presents the results of the abstract semantics. Also in this case we use the
Interval domain in order to capture numerical information.

This level of abstraction infers that the value readTbyead 1 in a:zamount may have

been previously written by botBystem andThread 2. The value read b¥hread 2 may

have been written bgystem or Thread 1.

4.5 The Deterministic Property

In the last three sections we presented the concrete domain and semantics, and the two
levels of abstraction. In this section, we de ne the deterministic property on them.

45.1 Determinism

A program is said to be deterministic “if given an input it returns always the same out-
put” [38]. This de nition does not specify what the input and the output of a program is.
Someone may think that the output is what is written on the screen, by it may also be the
state of the memory at the end of the execution, or during it.

A too restrictive application of the concept of determinism may lead to a de nition where

a multithreaded program is deterministic if all the statements are always executed in the
same total order. We face this problem through the thread-partitioning domain that ab-
stracts away the inter-thread order in which the statements are executed.

Moreover we focus on the non-determinism induced by the arbitrary interleavings of the
execution of di erent threads. As we do not make any supposition or restriction on the
programming language and its semantics, mangint forms of non-determinism may
exist, e.g. a random number produced by the system, or the inputs received by a user.
We want to catch and analyze only the non-deterministic behaviors due to the parallel
execution of threads.

This goal can be reached by using the information collected by our analysis. We trace for
each value on the shared memory which thread may have written it. Then it Sent

to check if a value could have been written by two @lient threads at a given point, i.e.

for a given state of execution of a given thread.
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45.2 Formal De nition of Determinism on the Concrete Domain

We rst de ne the determinism as derence between two shared memories, and then we
apply it to a set of elements of the concrete multithread semantics.

Definition 4.5.1 (Determinism on shared memprgiven two shared memories, they un-
derline a nondeterministic behavior due to the multithreaded execution if they relate the
same variable to values written by @irent threads.

ds:[S S!f true;falsed
dg(sy;s) = false
m
9var 2 domm(s;) \ don(s,) : si(var) = (valy;ty); so(var) = (valp;to);t;, to

Definition 4.5.2 (Determinism on multithreaded stafe

d:[}( )!f true;falsed
d( ) = false
m
Of;f2 :9t2 don(fl)\ don'(fz) 1= fl(t), 2= fz(t),
9i 2 [0::min(len( 1);len( 2))] : dH 1(i); 2(i)) = false

4.5.3 First Level of Abstraction
Definition 4.5.3 @s)

8s: ['E'; I'f true;falsed
@S(b) = false

m
9var 2 don(®) : jdon(s(var))j > 1

Definition 4.5.4 @)
R [b I'f true;falsed
G@) = false

m

9t 2 domt) : b =R(t); 9i 2 [0::len()] : 8Db(i)) = false

Lemma.5.5 (Dundness dd) .

8 2}( ):d()=false) B( ()) =false
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Proof. We have to prove th&( ( )) = false. By de nition of 8, this implies that;

9t2dom( ()):b= ());
9i 2 [0::len(b)] : B = b(i); 9var 2 dom(8) : jdon((var))j > 1

By de nition of , we have that

9f1; fo 2 :9t2 don'(fl)\ don'(fz) ‘b= St (ffl(t), fz(t)g,
9i 2 [0:len()] : & = b(i); 9var 2 dons) : jdors(var))j > 1

By de nition of <. itimplies that

Ofy:f, 2 :9t 2 dom(fy)\ don(fy) : 1 =fi(t): 2= fat):
9i 2 [0::min(en( 1):len( )] :B = sf 2(); 23)9:;
9var 2 don(®) : jdonm(8(var))j > 1

By de nition of s we obtain that

9f;;f22 ;9t2don(f)\ don(fz) : 1 ="fi(t); 2= fa(t);
9i 2 [0::min(len( 1);len( 2)]:s1= 1(i);s2= 2();
9var 2 dom(s;) \ donts,) : sy(var) = (valy;ty); sp(var) = (valp; to);ty, to

By de nition of d it implies thatd( ) = false. This condition is true by hypothesis.
So we proved that

8 2}( ):d()=false) B( () =false

45.4 Second Level of Abstraction
Definition 4.5.6 @s)

ds:[S!f true;falsed
ds(s) = false , 9 var 2 don(s) : j »(S(var))j > 1

Definition 4.5.7 @)

d:[ !f true;falsed
d(f) = false
m
9t 2 dont(f) : ~ = f(t); 9i 2 [0::len(7)] : (i) = false

Lemma.5.8 (9undness of)) .
g2b Bf) =rtase) d( ,8) = false
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Proof. We want to prove thad( , ) = false. By de nition of d, this implies that;

ot2dom v @) : "= LB)();9i 2[0:len())] :
5 ="(i);9var 2 don(s) : j »(S(var))j > 1
By de nition of , it implies that
ot2doml®) : = . B();9i 2 [0:len(T)] :
5 ="(i);9var 2 don(s) : j »(S(var))j > 1
By de nition of ., this implies that
9t 2 domt) : b =B(t); 9i 2 [0::lenp)] ;
s= g(7(i));9var 2 donT(s) : j »(5(var))j> 1
By de nition of , this implies that
9t 2 don®) : b =R(t); 9i 2 [0:1enp)] :
8 = ~(i); 9var 2 dom(®) : jdom(e(var))j > 1

By de nition of @ it implies thatd®f) = false. This condition is true by hypothesis.
So we proved that

g2b 8P =tase) d( ,8) = false

4.5.5 The Example

Thread 1 : [a:amount 7! (1:000; System)]! [a:amount 7! (1:100; Thread 1)]

Thread 2 : [a:amount 7! (1:100; Thread 1)] ! [a:amount 7! (1:000; Thread 2)]

Thread 1 : [a:amount 7! (900; Thread 2)] ! [a:amount 7! (1:000; Thread 1)]

Thread 2 : [a:amount 7! (1:000; System)] ! [a:amount 7! (900; Thread 2)]

Figure 4.5: The non-deterministic behaviors in the concrete semantics

The deterministic property on the concrete semantics discovers that the example in-
troduced in Section 4.1.3 does not respect it. In particular, the two executioasafh
the read values. In the rst ca3éread 1 reads a value written b$ystem andThread 2
the one written byThread 1. In the second casEhread 1 reads the value ofhread 2
andThread 2 the one ofSystem. In Figure 4.5 we underlines the identi ers of threads in
the cases in which a non-deterministic behavior arises.
The deterministic property is not validated in the two level of abstractions as they are
sound.



4.6. Weak Determinism 69

4.6 Weak Determinism

In this section we introduce a new concept of determinism which is weaker than the
previous de nitions. Itis de ned on the rst level of abstraction.

4.6.1 Approximating Numerical Values

The rst level of abstraction is parameterized by a non-relational abstract domain that ap-
proximates the numerical values. Moreover, we collect an abstract value for each thread
that approximates all the concrete values it may have written at that point on a given
shared variable. We are in position to de ne a new idea through these observations: the
weak determinism.

The idea is that two dierent concrete values do not produceatent observable behav-

iors if their abstraction is the same. This concept has to be tuned on an abstract domain.
For instance, with the Sign domain it would mean that at a given point all the values
written in parallel on a given variable have the same sign.

4.6.2 Formal De nition

Definition 4.6.1 (Weak determinism on shared menjory

flds: [B1f true;falsed
Wdgs) = false

m
9var 2 don(®) : jdom(B(var))j > 1~ 9t;t, 2 dom(B(var)) : B(var)(ty) , B(var)(t,)

Definition 4.6.2 (Weak determinism on multithreaded state

®d: [0 If true;falsed
#wd@) = false

m
ot 2 doml) : b =R(t); 9i 2 [0::len)] : Wdgb(i)) = false

Note that even if a program is not deterministic the weak determinism may validate it.
In fact the values written by derent threads may produce the same abstract element. On
the other hand, if the weak deterministic property is not respected also the deterministic
one will not be.

Lemma.6.3 @dld) = false ) 88) = false) If wdfd) = false thenBl) = false.

Proof. The proof follows immediately from the de nitions dhdsand &8s asfd and@l
performs exactly the same checks, the rst one relyingloiswhile the second one uses

8s n
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Figure 4.6: The abstract semantics

4.6.3 Example 2

Suppose to modify the multithreaded program introduced in Section 4.1.3 executing me-
thodwithdrawNoDebts of classAccount (de ned in Section 2.3) instead of methadth-

draw. This method allows the withdrawing only if there is enough money in the bank
account. We use the Sign domain to capture numerical information. In this way we cap-
ture for each numerical value if it is positive ), negative () or equal to zerod). The
results of the analysis at the rst level of abstraction are depicted by Figure 4.6.

Applying the weak deterministic property we obtain that it is validated. In fact the value
stored in the eldamount is always positive in all the possible executions. On the other
hand, the full determinism is not guaranteed as the amount of money may have been
written in parallel by di erent threads.

4.7 Tracing Nondeterminism

Until now, we studied the non-deterministic behaviors when accessing the shared mem-
ory. In this section we sketch some drent approaches in order to

trace how non-determinism may in uence the execution of a thread,

trace how it may ow starting from the read and write operations on the shared
memory,

abstract it.

4.7.1 Modifying a Value

At the rst level of abstraction we collected the value that each thread may have written
on a shared variable. When the information ows from the shared to the private memory,
we can distinguish three approaches. For instance, consider the case in which

1. avalue is read from the shared memory,
2. an arithmetic operation is performed on that,

3. and nally the result is stored on the shared memory.
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In this context we may have:

rst approach: we extract the abstract value making the least upper bound between
all the values written by dierent threads. Then we perform the arithmetic op-
eration. Finally we relate the result to the thread that is writing it on the shared
memory. In this way, the only complexity added by our approach is the computa-
tion of the least upper bound. Note that we trace only the non determinism induced
on read and write actions on the shared heap, but not how it is propagated during
the computation. This is the approach adopted until here.

second approach: we perform on each value the arithmetical operation relating the
result to the initial thread. In this way we obtain precise information about

— which thread induces nondeterministic behavior,
— on which variables,
— and which are the dierent abstract values.

This approach is the most complex one.

third approach: we perform the operation using the least upper bound of values, and
we relate the result to the set of threads that may in uence it. So the set of abstract
values isval } (TId). In this way, we trace which thread induces nondeterministic
behaviors and on which variables, but not which are theint abstract values.

4.7.2 An Example

Thread 1 Main Thread Thread 2
o0 = new Account(1:000e ; sign);
threadl:start();
99999 thread2:start(); [[[[[[[[[[[

[[[-
0.deposit(100e); o:calculatelnterests();

Figure 4.7: Using dierent approaches

Consider the example presented by Figure 4.7. The main thread instantiates an ac-
count with 1.00Ce, and it launches in parallel two threads. The rst one depositse,00
while the second one calculates the interests.

Using the three approaches just presented we obtain the following results:

rst approach: we are able to check that the value readimgad 2 may be non-
deterministic. In fact, it may have been written by the main thread drtiogad 1.
Since this information does not propagate when a value is modi ed, we do not ar-
rive to check that at the end of the executioriTéfead 2 also the eldo:amount

may be in uenced by it;
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third approach: in this case we propagate the information that the value read by
Thread 2 may be nondeterministic. So we arrive to conclude that the value written
in the eld o:amount may be in uenced by both the other threads at the end of the
execution ofThread 2;

second approach: applying the Sign domain we trace that both the written values are
positive. We discover that the value written Blread 2 is positive. For instance,

we can conclude that they do not expose non-deterministic behaviors on the sign of
the variables through the weak deterministic property. Instead, using the Interval
domain we check that the two values are etfient. Using the value written by
Thread 1 we obtain a bigger amount of money as the interests are calculated after
that the deposit has been registered.

4.7.3 Writing on the Shared Memory

When a value is written on the shared memory we relate it to the identi er of the thread
that performs this operation. In this way we trace the origin of the values. Also in this
case, other approaches are possible.

During the analysis we may have to perform the least upper bound of many values orig-
inated by the same thread but at dient points of the program. At abstract level, our
approach approximates together all the values written ardnt points. We can obtain

a more precise analysis tracing also the program point. In this way, we would collect for
each variable an abstract value for each pair composed by

a thread identi er,
a program counter that points to the statement that writes in parallel.

Note that in this case the complexity of the analysis increases noticeably in particular
when combining it with the second approach presented in Section 4.7.1.

4.7.4 Discussion

In this section we sketched some ideas on how tuning the analysis extedt levels.

These approaches allow to obtain a more precise and complex or a faster but less precise
analysis. It is necessary to further investigate which approaches are more appropriate and
in which contexts. We do not think that a unique nal solution exists: it depends on what
we are interested to analyze. Moreover it is necessary to perform some practical tests in
order to understand how the computational times of the analysis change adoparendi
approaches.
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4.8 Projecting Traces and States

Usually, we are interested in proving the determinism of a program only on a part of the
memory or of the performed actions. In this section, we formalize this intuition. In this
way we are able to build up a hierarchy of drent levels of determinism. We will use
these projections in order to formally link the deterministic property with data races and
SQL phenomena in the next two sections.

4.8.1 Concrete States

The rst way adopted to project the analysis of the determinism is to check it only on a
part of the shared memory. We represent it as an abstraction parameterized by a selector
that given a variable in the shared memory returas or false.

Definition 4.8.1 ( 2"") LetstPrj: [Var ! f true;falsed be a function that given a vari-
able returnstrue or false. Through this function we de ne the projection of states as an
abstraction: i
. |
gtp”(.sgszlfsos']don(so) dont(s); 8var 2 don{(s?) :
. ; ; .
sYvar) = s(var) ~ stPrj(var) = trueg

We can build up a deterministic property parameterized by this abstraction in order to
check it only on the selected variables.

Definition 4.8.2 @siprj) dssierj checks the deterministic property only on the shared vari-
ables such that stPr true.

dsie  [S S!f true;falsed
dssipri(s1; S2) = false
m
9var 2 dom( 37(s1))\ dor( 27(s2)) : si(var) = (vali; ty); sa(var) = (valy to)ity,

Lemma.8.3 dsspij(s1;S2) = false ) dg(s;;sy) = false) If dsyp,j detects a non-deterministic
behavior, then also ds will detect it.

Proof. The proof follows immediately from the fact thesp;; checks the determinism
on a subset of the shared variables with respedsto [ ]

Lemma&.8.4 Ospij( ) = false ) d( ) = false) Let dypy be the deterministic property as
de ned by De nition 4.5.2, in which ds is replaced bysgsg.
If dsiprj( ) = false then d ) = false.

Proof. The proof follows immediately from Lemma 4.8.3. ]
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Lemma&.8.5 Qsipri( ) = false ) d( ) = false) Let dip,; be the deterministic property as
de ned by De nition 4.5.2, in which ds is replaced bysgsg.
If dsiprj( ) = false then d ) = false.

Proof. The proof follows immediately from Lemma 4.8.3. [ ]
Lemma.8.6 (Herarchy of shared memong projectiong Given two functions stPyjand

stPrj, such thatfvar : stPrj,(var) = trueg fvar : stPrj(var) = trueg then dpy;, () =
false ) dspy,( ) = false.

Proof. Also this proof follows immediately from Lemma 4.8.3. [ ]

In this context, Lemma 4.8.5 can be seen as a particular case of Lemma 4.8.6 in which
d = dsP : 8var 2 Var : stPrj(var) = true.

4.8.2 Abstract States

All these de nitions can be canonically extended to the deterministic properties of the rst
and second level of abstraction, and they can be applied also on the weak determinism. In
particular, we denote by:

;tprj the abstraction function that projects the shared memories of the rst level of
abstraction only on the variables such tetrj = true;

gp’j this function on the second level of abstraction;

@gtprj the deterministic property at the rst level of abstraction projecting shared
memories followingstPrj;

dsypy this function on the second level of abstraction;

'astprj the deterministic property on the traces of the rst level of abstraction project-
ing shared memories followingtPrj;

dsipij this function at the second level of abstraction;

\Q/d&‘stpq the weak deterministic property on states projecting shared memory follow-
ing stPrj;

Wdspy this function applied to traces.

As in the previous subsection, some lemmas de ne links between deterministic prop-
erties on full memories or on their projection. Without entering in formal details, the most
interesting relations are the following ones.

Lemma.8.7 Bpfd) = false ) B) = false



4.8. Projecting Traces and States 75

Lemma.8.8 dspy(f) = false )  d(f) = false
Lemmat.8.9 Wdsp,tf) = false ) ®df) = false

Following Lemma 4.8.6 we obtain the following results (whst@rj, andstPrj, are
such thafvar : stPrj,(var) = trueg fvar : stPrj,(var) = trueg.

Lemma.8.10 Bypy, @) = false ) Bypy, ) = false
Lemma-.8.11 dgpy, (f) = false )  dspr, () = false
Lemma.8.12 Wdspy, @) = false ) Wy, ®) = false

Finally, following the results of Lemma 4.6.3 we obtain that if the projected weak
determinism is not validated then the same will be done by the projected determinism.

Lemmat.8.13 Wdsp,ff) = false ) Byp,lf) = false

Thanks to all these lemmas, we will be in position to provide a global hierarchy of
deterministic properties using dérent projections.

4.8.3 Concrete Traces

We follow an approach quite similar to the one adopted for concrete states. In particular,
we de ne the deterministic property projected following a selector. Given an index it
returnstrue i the deterministic property has to be checked on the states at that index
in the traces. Then we prove some relations between the deterministic property and its
projected versions.

Definition 4.8.14 hp) LettrPrj: [N ! f true;falsed be a function that, given an nat-
ural number, returngrue or false. dyp; checks the deterministic property only on the
indexes of traces such that trPjtrue.

Aypij i [} () !f true;falsed
reri( ) = false
m
of;;f, 2 1 9t2donm(f))\ dom(fy) @ 1 = fi(t); 2= fao(b);
9i 2 [0::min(len( 1);len( 2))] : trPrj(i) = true ™ dY ((i); »(i)) = false

Lemma&.8.15 Qypij( ) = false ) d( ) = false) If dsipij( ) = false then d ) = false.

Proof. The proof follows immediately from the fact thegp; controls the determinism
on a subset of the states checkedlby [ ]

Lemma&.8.16 (Herarchy of traces' projections) Given two functions trPgjand trPrj,
such thaffi : trPrj (i) = trueg fi: trPrj,(i) = trueg then dp;j,( ) = false ) dypy,( ) =
false.

Proof. The proof follows immediately from the fact that by hypothesis;, controls the
determinism on a subset of the states checked,by,. [ ]
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4.8.4 Abstract States

In parallel with the approach adopted in previous subsections we brie y introduce the
same concepts in the rst and second level of abstraction. So we denote by:

Gtrprj the deterministic property on the traces of the rst level of abstraction project-
ing traces followingrPrj;

dypy this function at the second level of abstraction;
\ﬁ'/dSrPrj the weak deterministic property on states projecting traces followirg;
Wdypy this function applied to traces.

Lemma.8.17 B,p;@) = false ) B6) = false

Lemma-.8.18 dyp,i(f) = false ) d(f) = false

Lemma.8.19 Wdp; @) = false ) Wdl) = false

Following Lemma 4.8.16 we obtain the following results (wheRyj, andtrPrj, are
such thafi : trPrj,(i) = trueg fi : trPrj,(i) = trueg.

Lemma.8.20 Bp &) = false ) Bp;,0) = false
Lemma-.8.21 dypy, () = false )  dypr,(f) = false
Lemma.8.22 fidyp,, B) = false ) Wop,,8) = false

Lemmat.8.23 Wdp; @) = false ) Blp, ) = false

4.8.5 Projecting both States and Traces

We can combine together the projections on states and traces. We dest®e] bytrPrj
the composition of these two projections, and sadlyy werj, Gstprj P » astprj wprj, and
Wdsip «py the determinism projected both on traces and state applied respectively to
the concrete domain, to the rst and second level of abstraction, and the projected weak
determinism.

Intuitively, all the lemmas de ned on the projections on states and traces hold also
on these composed projections. So the following lemmas relates this combination to the
projections on states and traces.

Lemmat.8.24 dypy up( ) = false )  dypy @) = false

Lemma.8.25 dpyj up( ) = false )  dgpyl?) = false
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Lemmat.8.26 Bp; v ) = false ) Bp;@) = false
Lemmat.8.27 By v ) = false ) Byp @) = false
Lemmat.8.28 dyprj upq ) = false ) dypy @) = false
Lemma.8.29 dsprj up,lf) = false ) dgpyld) = false
Lemma.8.30 Wdsiprj «rpr @) = false ) Wdypij @) = false
Lemmat.8.31 Wdsip; «pi@) = false ) Wdp,f) = false

Lemma.8.32 Wdspj e @) = false ) Gstprj wprj () = false

4.8.6 Hierarchy

Figure 4.8: A global hierarchy of deterministic properties

Figure 4.8 depicts a global hierarchy on the rst level of abstraction of the determin-
istic and the weak deterministic property. Similar hierarchies can be de ned at concrete
level and on the second level of abstraction. We focused on the rst level as weak deter-
minism is de ned at this level. The upper a property is in the diagram, more relaxed it is.
This means that it may validate programs that are not validated at lower levels. The num-
ber depicted on the links between drent deterministic properties reports the Lemma
that proves the connection.
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Thread 1 Thread 2
a:deposit(100) a:printAmount()

Figure 4.9: Depositing and printing the amount in parallel

In addition each projection can be expanded into a similar hierarchy following for the

rst level of abstraction Lemmas 4.8.10 and 4.8.20.

In particular, we can build up a lattice on the functions used to project states and traces.

The ordering operator ostPrj is de ned as follows:

sterjs [([Var ! f true;falsed [Var!f true;falsed) ! f true;falsed
ster (StPrjy; stPrj,) = true i
fvar : stPrj,(var) = trueg fvar : stPrj,(var) = trueg

As the ordering operator relies on the superset operstlrj; ;i is a poset. Following
this ordering we can de ne a hierarchy using drentstPrj functions.
The same result can be obtainedtd?rj, de ning the partial ordering as follows:

wp: [([N!f true;falsed [N!f true;falsed) ! f true;falsed
wprj (IrPrj4;trPrj,) = true i
fi : stPrj,(i) = trueg fi : stPrj,(i) = trueg

Finally we obtain a similar result astPrj trPrj simply de ning the partially ordered
set as the Cartesian product betwestirj; spiji andhrPrj; gpyi.

Each of these results allows us to de ne a local hierarchy oemint types of projec-
tion.

4.8.7 Anexample

Consider the example depicted by Figure 4.9. Two threads are executed in parallel and
they work on the same bank account. The rst thread withdraws 100. The second one
prints the amount of money in the account. A non-deterministic behavior may arise when
executingThread 2 on the screen of the ATM, and so the full deterministic property is
not validated. Instead, we may be not interested to detect this behavior. For instance, it

may be the case that:

printAmount() is not a critical operation, and so we are not interested to prove its
determinism. We can project the trace not to check the deterministic property when
analyzing the traces produced by this method;

the screen of the ATM can tolerate non-deterministic behaviors as it is not a critical
area of memory, and so we can project the states of execution ignoring this area.
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4.8.8 Discussion

In this section we formalized some ways of relaxing the deterministic property projecting
traces and states. Other solutions can be adopted, as for instance the weak determinism
introduced in Section 4.6. All these solutions can be combined together in order to obtain
multiple levels of determinism.

These results make evidence of the exibility of the deterministic property. Focusing
on particular properties like data and general races obliges to develop programs respecting
some rigid rules. Instead, we can tune the property to the program we want to analyze
with our approach, and in particular to the level of determinism we want to achieve.

In this context, we think that the deterministic property we proposed can get over the
actual limits of static analysis applied to multithreaded programs. In the next sections we
will sketch which level of determinism two well-known properties, i.e. SQL phenomena
and data races, correspond to.

4.9 SQL Phenomena

In this section we link the phenomena de ned on SQL language by the ANSI SQL stan-
dard [4] to our deterministic property.

4.9.1 The SQL Approach

In the SQL approach a program is composed by a set of transactions that may be executed
in parallel. A transaction is composed by a sequence of SQL queries, and it is seen
as a sequence of actions executed by the same process. The execution of a program is
represented by a sequence of actiat{g;]a,[x,]:::end;. An actiona;[X] is performed by
process on the memory locatior. A read action is denoted mfx], while a write one
by wi[x]. end; denotes the end of the execution of prodedshe three dots: means that
there may be an unde ned number of actions. Since all the executions end we consider
only nite traces.
The DBMS is aimed at guaranteeing that the execution of a program is serializable (i.e. its
result can be obtained with a serial execution) or it respects one of the relaxed versions of
this property. As the DBMS works checking at run-time the actions, this goal is obtained
through the de nition of 4 phenomena that must be avoided during the execution. The
relaxed versions are obtained allowing one or more of them.

Berenson et al. [15] de ned 4 types of phenomena:

dirty read -:::wy[x]::ro[x]:lend;
non-repeatable read:ry[x]:::w;[x]:::end;y

phantom -:rry[P]::w,[y 2 P]:::end;, wherew,[y 2 P] means that transaction two
writes a value that would have been read§§¥] if it had been executed before it
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lost update :::.wq[x]:::w5[x]:::end;.

4.9.2 SQL Phenomena in our Framework

Since in our framework we can read and write on a memory location and not on a set, the
phantom phenomenon collapses in the non-repeatable read one.

The model of execution in SQL is to partition the application into many tasks (i.e. trans-
actions) to be executed in parallel. It is exactly the same approach of multithreaded pro-
grams that de ne an application as composed by many threads. Each transaction is an
ordered sequence of actions. This corresponds exactly to representing an execution of a
multithreaded program as a trace. In this way our thread-partitioning domain is well- tted

in order to represent also transactions. A transaction can be seen as a trace related to a
thread in this domain. In addition SQL phenomena read and write in the database that is
shared among all the transactions: this corresponds to the concept of shared memory.

In our thread-partitioning domaiw;[x] is equivalent to a state belonging to a trace
related to thread This chapter studies the determinism and so we represent states col-
lecting only the state of the shared memory. On the other hand, in Chapter 3 we have
de ned the same domain, and we can obtain some information on that through few func-
tions. In this way, if we collect states instead of shared memories only, we can check
throughaction( ) (this function was de ned in Section 3.3.1) if the performed action is a
write one.

In the same wayri[x] is equivalent to a state related to the threadin our thread-
partitioning domain and such thaf(action( )) =r.

Phenomena work analyzing the arbitrary interleaving during the execution efedit
transactions. In the SQL environment we have that actions are totally ordered during the
execution, as the DBMS does not execute actions in parallel. We can see it similar to a
mono-core processor. The order of execution is abstracted away by our thread-partitioning
domain. On the other hand, we may analyze theots of the execution in derent order
of the actions on the shared memory. Note that the actions interesting for SQL phenomena
are only reads and writes on the database.

4.9.3 E ects of Phenomena on the Determinism

DBMS does not provide any synchronization primitive. Then if a phenomenon happens
there would be another execution (in which the two transactions are serially executed)
without it. The following proposition explains this concept formally:

Proposition4.9.1 Let T be the set of all the nite executions of a SQL program. Let
t = ay[x]::a%[x]:end; 2 T be a trace representing an execution, wharand a°
are two actions, performed respectively by thrdaand 2, that work on a same area of
memoryx, and such that at least one is a write action. Tteh= ::a;[x%:end 2 T :

a[xY < ay[x%:::end;.
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In our framework, if two actions represented by statgsand ; are executed by
two di erent threads, then our thread-partitioning domain relates it terent threads.
Formally, it means that a given concrete stdteSour multithreaded domain is such that

i2 1, j2 2:9%;,2TId:f(ty) = 17 f(tp) = 2™ t1, t. The type of action and the
location on which it works are obtained through the functotion
Applying these considerations we de ne tpeenomendunction. Given two types of
action and the set of all the executions, it retunag if the phenomenon represented by
the given two types happens at least in one execution.

Definition 4.9.2 phenomendunction)

phenomena [fread; write g fread;write g }( )!f true ;false g
phenomen@i;ay;, ) = true
m
9f2 :9t2don(f):9 2f(t):action i) = (as;x);
9t 2dom(f) : t;, ;9  2f(ty) : action( ) = (az;x)

Let 2 be the set of all possible executions of a transaction. As our multithreaded
domain abstracts away the order of execution okdent threads, the dirty read and the
non-repeatable read phenomena correspond to the same pasmomenéunction. So a
dirty or non-repeatable read phenomenon happens if and guthgifomen@vrite ;read;

) = true . A lost update phenomenon happens if and onphignomen@vrite ;write ;
) = true .

4.9.4 Phenomena and Deterministic Property

As SQL transitions have no synchronization primitives, all the transitions are executed in
parallel. So if a phenomenon happens, our concrete semantics will contain two executions
in which the two actions are executed in the opposite order. In this context, they expose a
non-deterministic behavior and we can relate them to our deterministic property.

Since all the phenomena deal only with read and write actions, we can project the
traces on the read and write transitions following the approach described in Section 4.8.3.
For each phenomenon we check which version of the deterministic property checks it
surely, i.e. such that if the phenomenon happens it discovers that the program is not
deterministic.

Dirty read or non-repeatable read: By de nition of dirty read phenomenon on
traces the dierence between the two traces is on a read action. Since a read action
modi es the private memory of the thread that executes the action we can project also the
states on the private memory of thread.

Lost update: In the same way, by de nition of dirty read phenomenon on traces the
di erence between the two traces is on a write action. Thus we can project the states on
the shared memory.

Absence of phenomena: If phenomena do not happen during the execution of a
program, this means that there will not be two parallel actions (and at least a write) on
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the shared memory executed in parallel byatent threads. Supposing that the only way
that threads have to communicate is through the shared memory, this guarantees that the
program is deterministic as

two reads do not expose non-deterministic behavior since they do not modify the
state of the shared memory

there is no other way to produce a non-deterministic behavior through the arbitrary
interleaving of threads' execution.

495 Inthe Abstract

Thanks to the soundness of our approach, all the results obtained on the concrete exe-
cutions can be applied to the abstract semantics. In this way, we can check at compile
time if a phenomenon may happen in any execution of a program. In addition, if our
deterministic property is validated we are sure that phenomena do not happen.

4.10 Data Race Condition

A data race occurs when “multiple threads access the same data without any intervening
synchronization operation, and one of the accesses is a write”[121]. Data races have been
widely studied in the eld of static analysis. The intuition is that a data race may be the
symptom of a bug. The absence of data races does not guarantee the determinism of the
program. In fact, even if two accesses to the same shared location are synchronized, we
may not be sure that they will be executed always in the same order.

4.10.1 Synchronization

A new concept is introduced by the de nition of data race with respect to the database
approach: the synchronized accesses. While the SQL language does not provide any
primitive to synchronize dierent transactions, usually a multithreaded programming lan-
guage does it.

In Chapter 3 we suppose that a functgymchronizeds provided. Given a state, it returns

the set of synchronizable elements owned at that point of the execution. These synchro-
nizable elements may be monitors, objects, etc.. In this way, two states 2 are
respectively synchronized siynchronizefl ;)\ synchronizef ;) , ;.

Definition 4.10.1 ([ata races Given a set of trace-partitioning domain elements repre-
senting all the executions of a program, the datarace function rettrues if and only if
at least one of these executions contains a data race.

datarace: [} ( ) !f true ;false ¢
dataracé )=true ,9 f2 :dataracesingleexecuti¢i = true
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where

dataracesingleexecutionf !f true ;false ¢
dataracesingleexecutif) = true ,9 ty;t, 2 dom(f) ity , ty;

9 ;21(ty) : action 1) = (as;ly);

9 ,2 f(tz) . aCtior( 2) = (az; |2) =N

(ap = write _ a, = write )™ synchronize@ ;)\ synchronizefl ;) = ;

This function will be used to formally compare the data race condition with the phe-
nomena.

4.10.2 Data Races and SQL Phenomena

The last de nition is quite similar to the SQL phenomena one presented in Section 4.9.
Since the SQL language does not provide any synchronization primitive, we analyze the
de nition of data races without any synchronization constraint. Formally, it means that
8 2 : synchronizefl ) = ;. In this way the dierence between the de nitions of
dataraceandphenomendunctions is only on the actions checked. While gienomena
function is generic on them, thaataraceone checks that at least one of the two actions

IS a write one.

The phenomendunction is a generalization of the SQL phenomena, and we instantiated
it in two ways. Through the instances that check the dirty or non-repeatable read phe-
nomenon and the lost update one, we obtain exactly the resultgaracefunction. This
consideration leads to the following proposition.

Proposition4.10.2 Let be the set of all the executions of a program.8If 2

: synchronize@l ) = ; (where is the set of all the states that can compose traces of
elements in ), then dataracé ) = true , phenomen@write ;read; ) = true _
phenomen@write ;write ; ) = true .

4.10.3 Deterministic Property

In the previous section we proved that the absence of phenomena implies a well-de ned
level of determinism. In this section we proved that the absence of data races corresponds
to the absence of SQL phenomena if we do not consider the synchronization actions.

In this way we also prove a relation between the absence of data races and the determin-
istic property. Note that it does not mean that the data race condition assures the full
determinism of a program: if two parallel accesses are synchronized they still may cause
non-deterministic behaviors, but they do not form a data race. This idea is quite similar to
the one introduced by weak determinism. While this property relaxes determinism check-
ing only if at abstract level the values written are elient, data race condition restricts it

only on values accessed by threads while they were not reciprocally synchronized.
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4.10.4 Abstract States

As our abstract semantics are sound all the results obtained on the concrete executions
can be applied in the abstract. In this way, we can check at compile time if a data race
may happen. In particular, if our deterministic property is validated on a given program,
we are sure that it does not contain any data race.

4.11 From Determinism to Semi-Automatic Paralleliza-
tion

In this section we sketch how the determinism may be useful in order to semi-automatically
parallelize sequential programs.

4.11.1 Motivation

As already pointed out, multi-core architectures appeared recently in a broad market.
The only way for a single application to take advantage from this technology is to be
partitioned in many subtasks that may be run in parallel. On the other hand reasoning on
parallel applications is strictly more dcult than on sequential programs. A consequence

is that (semi-) automatic tools in order to nd and detect possible parallelizable fragments
of sequential code are particularly useful.

4.11.2 Determinism and Parallelism

A sequential program performs an ordered set of operations. An operation may read some
data written or modi ed by previous statements, and it may write values that will be used
during the rest of the computation. When each sequential operation deals with a disjointed
set of variables the program is trivially parallelizable. However this condition does not
apply to the majority of sequential programs.

Given two parts of a sequential program we can analyze them as if they were executed
in parallel, and check if there are some non-deterministic behaviors due to the parallel
execution. If it is not the case, the two parts of the sequential program can run in parallel
without inducing any new behavior because of the parallel execution.

4.11.3 Relaxing the Deterministic Property

In order to nd parallelizable blocks in a program, we may relax the deterministic property
in order to focus only on the critical parts of the program. Section 4.6 presented the weak
determinism that is a relaxation of the deterministic property. Section 4.8 sketched some
di erent ways in order to project traces and states with the nal goal of relaxing the
deterministic property.

All these approaches require the developer to give an input to the analysis. In particular,
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he has to specify which type of abstract information we have to infer and how to project
states and traces. Given this input we can check if two sequential blocks cause non-
deterministic behaviors if executed in parallel. If it is not the case we can automatically
parallelize a sequential program.

4.11.4 Anexample

Consider the following sequential program:

Account account=new Account(1000, mysignature);
account.deposit(100);
account.printAmount();

We might be not interested that the print of the amount reports exactly the last updated

value. So we may accept that the deposit of money and this action are executed in parallel.
Eventually they may produce a non-deterministic behavior. We can relax our determinis-

tic property projecting traces or states as described in Section 4.8.7. Then we can prove
that this program respect it, and so we can parallelize this sequential program.

4.12 Related Work

Data race: We introduced the e=cts of data races on determinism in Section 4.10. Data
race condition allows some nondeterministic behaviors, e.g. when the communications
through shared memory are synchronized on a monitor. This may be represented in our
framework as a way of relaxing our deterministic property. In addition, if a program
respects the full deterministic property, it does not contain data races. Our framework
appears to be more expressive and exible than data race condition.

Software transactional memory: Using the Software Transactional Memory (STM)
[127] a developer can tag a piece of code called transactiatoasc. The execution of

a transaction will be seen as performed completely in a unique step by other transactions.
This idea is the extension of database transactions [117] to programming languages. The
DBMS checks that some interactions, i.e. SQL phenomena [4], do not happen during the
execution of a transaction, and in this way it enforces the atomicity (i.e. that the execution
of a transaction can be seen as executed in one unique step) at runtime. SQL phenomena
have been introduced in our framework in Section 4.9, and they have been related to data
race condition in Section 4.10. In this context, atomicity and the data race condition seem
to be two close ideas with respect to the determinism of multithreaded programs. Even if
we did not investigate deeply this relation, we think that

the deterministic property may be used to check if two transactions are atomic in
all the possible executions, and so we have not to perform runtime checks on them.
The intuition is that if a multithreaded program is deterministic, then the execution
of threads can be seen as atomic;
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as for the data race condition, our approach seems to be more exible and expressive
than atomic transactions. In particular, the relaxed versions of the deterministic
property have no counterpart in STM.

Automatic parallelization: The automatic parallelization of programs has been studied
by optimizing compilers [6]. These techniques have been applied to many languages, and
in particular they obtain signi cant results for logic and constraint programming [62].
When applied to imperative languages, thees are focused on the parallelization of
computations involving arrays and loops.

The basic idea of optimizing compilers is to perform a program transformation if the trans-
formed program produces the same output of the original one when applied to the same
input. Usually these techniques relies on an independence analysis [119, 58, 70, 67]. The
idea is that if two sets of sequential statements are independent, then they may be executed
in parallel as they access disjointed areas of memory. Intuitively, this corresponds to us-
ing full determinism in order to parallelize sequential programs. In fact, if two partitions
of a sequential program respect the full deterministic property when executed in parallel,
they will produce the same output when applied to the same input. The idea sketched in
Section 4.11 is a little bit dierent, as we talked about semi-automatic parallelization of
programs. This process requires the developer to provide an input in order to know which
nondeterministic behaviors may be tolerated. Finally, our approach is slightyatit,

even if a comparison is possible.

We can apply the full deterministic property in order to automatically parallelize pro-
grams. In this context, the resulted multithreaded program would usually be less opti-
mized than the ones obtained applying speci ¢ techniques of optimizing compilers on
arrays and loops. On the other hand, the semi-automatic parallelization using relaxed ver-
sions of the deterministic property may gain more parallelism than optimizing compilers,
but it requires an input from developers.

4.13 Discussion

In this chapter we presented a generic approach to the study of the determinism of mul-
tithreaded programs. In order to apply it to a real programming language and to a more
generic context, we need to analyze deeply some details of our approach.

4.13.1 Relational Domains

In the de nition of the abstract domain, we supposed that our analysis is parameterized
by a non-relational numerical domain. We built up a boxed representation (i.e. a domain
that is a function that relates each variable to its abstract value) on this, we de ned the
semantics of read and write statements on the shared memory and the determinism, and
we proved the soundness of our approach. On the other hand, our approach has to be
extended in order to support also relational domains.
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In order to achieve this goal, we have to rede ne only the part of the analysis that concerns
the read and write operations on the shared memory. These have to be expressed in terms
of evaluation of expressions (read) and value assignments (value). The soundness of this
approach would follow directly from the soundness of these primitives of the relational
abstract domain.

Onthe rstlevel of abstraction for each variable the relational domain is required to trace
an abstract value for each thread. This means that the set of variables on which relations
are inferred will be the Cartesian product of the set of the program'’s variables and the one
of threads' identi ers.

On the second level of abstraction, we gathered together all the values writte nelogrti
threads. In this context, the relational domain infers relations on the set of program'’s
variables. Then we make the Cartesian product of this domain with a domain that traces
for each shared variable the set of threads that may have written concurrently on it.

4.13.2 Statesin Traces

In order to check the determinism of multithreaded programs we compared states of dif-
ferent executions that appear in the same position in the trace. This simplistic approach
hides some important issues on how executions are represented. For instance, we may
have that the number of iterations of a loop depends on an input of the user. So we obtain
traces with di erent lengths and in which states at the same position are the results of the
executions of dierent statements. Usually, when reasoning on the determinism we want
to compare the results of the execution of the same statements. In this context, we have
to represent the executions of a program with a control ow graph. This approach will be
formalized by the next Chapter, and in particular in Section 5.6.

4.13.3 Thread Identi ers

When dealing with multithreading, we assumed that the sets of threads' identi ers in the
concrete and in the abstract are the same. However, this condition does not apply to mod-
ern programming languages. For instanceJama threads are objects and so they are
identi ed by reference. In this context, the number of threads is potentially unbounded,
as references are created at runtime. This issue will be considered in Chapter 5, where we
will introduce an ad-hoc alias analysis in order to abstract the concrete references. This
abstraction will allow us to keep the initial assumption on threads' identi er, approximat-
ing the concrete threads in a nite way.
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Concrete and Abstract Domain and
Semantics of Java Bytecode

In this chapter, we de ne and abstract a low-level domain and semantiesabytecode.

First of all, we de ne the concrete domain and semantics and then we abstract it proving
the correctness of our approach. These de nitions formalize the speci cation datlae
Virtual Machine [89]. Finally, we instantiate all the functions (as stated in previous chap-
ters) in order to apply the happens-before memory model and the deterministic property
on the analysis ofava multithreaded programs. In this way, we apply the theoretical
results introduced in Chapters 3 and 4 to a real-world programming language.

This chapter is partly based on the published work [43].

5.1 Notation

In order to formalize the behaviors of tllava virtual machine we need to deal formally
with arrays and stacks. An array is a partial function that relates natural numbers to
elements. Formally, led be a generic set. An array on this set is de nedA&s(A) :

[N! A]

We de ne a staclST(A) : [N! A] as an array on which two functions are de ned.

Definition 5.1.1 pop: [ST(A)! ST(A) (A[f?g )] returns the element at the top of the
stack (i.e. the element related with the greatest integer value in the domain) and the stack
without that element. It return® if the stack is empty.

( .
e if dom(s) = ;
PORS) = (s n[i 71 s(i)];s(i)) : i 2 don(s)A8j 2 don(s) ;i | otherwise

Definition 5.1.2 push: [(ST(A) A)! ST(A)] pushes the given element on the top of
the stack and returns the stack containing this element.

( if dom(s) = ;

m+1:m2domis)*"8j2doms): m | otherwise ]

pushs;v) =s[i 7! v:i=

Finally, we denote by
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C the set oflava classes' names,
M the set of methods' names,
F the set of elds'identi ers,

MSig the set of methods' signatures, i.e. the name of the method and the list of
parameters.

5.2 Supported Language

Our analysis supports all thiava bytecode language. Most of thbytecode statements

are speci c for a given type (e.@load, iload, ...), a particular context (e.gvokevirtual,
invokespecial, invokestatic, ...), etc.. So many of them have almost the same semantics.
This is why we formalize the semantics on a representatialad bytecode language.

This approach is common when dealing with bytecode [131]. The language on which we
formalize our semantics is as follows:

puteld <class><id> andgeteld < class><id> (read and write on ob-
ject's elds), where< class > < id > identies a eld

load i andstore i (load and store of local variables), wheiie an index in the local
variables array

const < val > (creation of numerical or string constants), whergal > may be
null, a numerical (both integer or oat) value, or a constant string

arith < op > (arithmetic operations), whereop > is an arithmetical binary oper-
ator (e.g.t+)

new < class >, andnewarray (instantiation of objects and arrays), wherelass >
is a class of the curredava program

aload andastore (loads and stores on arrays)

goto #

if <op > # (conditional jumps), wherg op > is a conditional operator (e.&.);
monitorenter andmonitorexit (lock and release of monitors)

invoke < method >, where< method > is the signature of a method MSig

return (end the execution of a method) am@turn (return a value ending the exe-
cution of a method)
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public void withdraw(int money) f
synchronized (this) f
account.amount =money;

g

Figure 5.1:withdraw method

5.3 An Example

In order to show how our concrete and abstract domains and semantics work, we will
apply them to the methodithdraw of classAccount introduced in Section 2.3. The code
is reported by Figure 5.1.

Once compiled withavac, the resultinglava bytecode is represented in our syntax
by following program

lload O

2 monitorenter

3load 0

4load 0

5 geteld <Account> <amount>
6load 1

7 arith <sub>

8 puteld <Account> <amount>
9load 0
10 monitorexit
11return

In the following of this chapter, we will suppose that, when this method is called,
this:amount is equal to 1.000 and the paramederount is equal to100.

5.4 Concrete Domain

This section formalizes the structure of the computation ofJénea Virtual Machine
presented in Chapter 3 of its speci cation[89].

For the sake of simplicity we consider as values only integers and references. Other
types can be added to our formalization.

Definition 5.4.1 (\alues LetRef be the set of addresses. A value may be an address or
a numerical valueVal = Ref[ Z

The operand stack is used to pass values and to perform arithmetical operations on
them.
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Definition 5.4.2 (Qperand stack The operand stack is a stack of valu€p = ST(Val)

Local variables store the values of variables that are accessible only from the current
method.

Definition 5.4.3 (Local variables) The local variables are represented as an array of
values:LV = AR (Val)

A monitor is de ned on each object. Objects are identi ed by reference and it is
possible to lock more than once on the same monitor.

Definition 5.4.4 (Monitors) The owned monitors are represented by functions that relate
references to integers. The integers represent the number of times which the current thread
has locked (and not yet released) on the given monitorfRef ! N]

The state of an object relates its elds to values. A eld is identi ed by a name and a
class. Notice that is not swient considering the name only, as through polymorphism a
class may contain a eld with the same name of one of its superclass.

Definition 5.4.5 ((hjects) We represent the state of objects as functions that relate elds
to numerical values or referenceSbj : [(C F)! Val]

Definition 5.4.6 (Arrays) An array is a function that relates integer indexes to concrete
values, and an integer value that contains the length of the arkay= AR (Val) N

Definition 5.4.7 (Srings) Strings are a particular case of an array, i.e. an array of char-
acters. At bytecode level characters are represented by integer v&8tres:AR (N) N

Definition 5.4.8 (Heap) The heap relates each address to an object, an array, or a string:
H:[Ref! (Obj[ Arr[ Str)]

The single thread state contains also the control of the program.

Definition 5.4.9 (Rogram counterg A program counter identi es a statement. Itis rep-
resented as a triple composed byava class, a method in it, and an integer value repre-
senting the index of the statement inside the metkh@=C M NJ[f 1g

We suppose to have a functioext: [PC ! PC] that given a program counter returns
the next one following the sequential order. Given a ctaasd a methodh, the program
counter ¢;m; 1) means that we are at an exit point of the method.

Definition 5.4.10 ($ngle-thread state) A single-thread state is a tuple composed by
the operand stack,

the array of local variables,
the heap,
the owned monitors,

the program counter pointing to the next statement to be executed
Formally, =Op LV H L PC
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5.5 Concrete Operational Semantics

This section is based on the speci cation of theva Virtual Machine instruction set
presented in [89], namely on Chapter 6.

5.5.1 Load and Store

Statementoad # pushes on the top of the operand stack the value at inishethe local
variables. Statemestore #i pops the operand stack, and it stores this value at inolex
the local variables. These descriptions can be formalized by the following rules.

0s® = pusHos; Iv(i))
Hoad #i; (0s; Iv; h; I; pc)ith 0s Iv; h; I; nex{(pc)i
(0s%v) = pop(os); IV° = IV[i 7! v]
tstore #i; (os; Iv; h; I; pc)ith  0s% V% h; I; nex{pc)i

5.5.2 Monitors

Statementonitorenter pops a reference from the operand stack and it acquires this mon-
itor. Statementnonitorexit pops a reference from the operand stack and it releases this
monitor. As monitor re-entrance is allowed, we count the number of times a monitor has
been already locked without being released yet.

(0s%1) = pop(os); I°=I[r 7! I(r) + 1] if r 2 don{l)
tmonitorenter; (os; Iv; h; I; pc)ith 0s% Iv; h; 1% nex{(pc)i
(0s%r) = pop(os); 1°= I[r 7! 1]if r < don{l)
tmonitorenter; (os; Iv; h; I; pc)ith  0s% Iv; h; 1% nex(pc)i
(0s% 1) = pop(os):I(n) = n:I°=1[r7' n 1]ifn>1
tmonitorexit; (os; Iv; h; I; pc)ith  0s® Iv: h; 1% nex{(pc)i
(0s%1) = pop(os);I(r) = n;I°=Infr 7! 1gif n=1
tmonitorexit; (os; Iv; h; I; pc)ith 0s% Iv; h; 1% nex(pc)i

5.5.3 Objects

Statementew < class > creates a new object of typeclass > in the heap, and it
pushes the allocated reference on the operand stack. Statgeheltt < class > < id >

pops a reference from the operand stack, and it pushes the value contained by eld
(< class >,< id >) of the objects pointed by this reference. Finally, statenpeneld

< class > < id > pops a value and a reference from the operand stack, and it assigns the
given value to the eld € class >,< id >) of the object pointed by this reference.

(r;h% = alloc(< class >; h); 0s® = pusHos;r)
mew < class >; (os; Iv; h;I; pc)ith os® Iv; h%I; nex{pc)i
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(0s1;1) = pop(os); v = h(r)(< class >; < id >); 0s’ = pusHkos:; V)
hgeteld < class > < id >; (os;Iv; h; I; pc)ith 0s% Iv; h; I; nex{pc)i

(0s1; V) = pop(os); (0s% r) = pop(0s;); obj = h(r);
0bj® = obj[(< class >;< id >) 7! v];h®= h[r 7! ob]9

lputeld < class > < id >; (os; Iv; h;I; pc)ith 0s% Iv; h% I; nex{(pc)i

alloc: [(C H)! (Ref H)]creates a location containing the default values (.e.
or null) for all the elds of the given class. It returns a fresh reference that points to this
location.

5.5.4 Arrays

Statemenhewarray creates a new array in the heap, and it pushes the allocated address
on the operand stack. Statemaidad pops an index and a reference, and it pushes the
value contained at the given index by the array pointed by the given reference. Statement
astore pops a value, an index, and a reference, and it assigns the value to the array pointed
by the given reference at the given index.

(0s1;i) = pop(os); (r; h%) = allocArray(i; h); 0s® = pushos;;r)
mewarray: (os; Iv; h; I; pc)ith 0s% Iv; h% I; nex{pc)i

(0s1;i) = pop(0s); (0S; 1) = pop(0s1); v = h(r)(i); 0s® = push{os;; V)
haload; (op; Iv; h; I; pc)ith  op® Iv; h; I; nex{pc)i

(0s1;V) = pop(0s); (0s,;i) = pop(0s,); (0s% r) = pop(os,); ar = h(r);
ar®=ar[i 7! v];h%= h[r 7! arq

hastore; (os; Iv; h; I; pc)ith 0s% Iv; h%I; nex{pc)i

allocArray: [(N H)! (Ref H)]receives anumerical value representing a length and

a heap. It returns a fresh reference and a heap. This relates the returned reference to an
array of the given length in which all the elements have been set to default value, and the
updated state of the heap.

5.5.5 Arithmetic Expressions

Statemenarith < op > pops two numerical values from the operand stack, and it pushes
the result of the arithmetical operatienop > applied on them.

(0sy; (i1)) = pop(0s); (0s,;ip) = pop(osl);osoz pushos,;i,< op >i;)
harith < op >: (os;Iv; h;I: pc)ith os® Iv: h;I; nex{pc)i
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5.5.6 Constants

Statementonst < val > pushes on the operand stack the vatueal >. This can be an
integer or a string.

0s®= pushos; < val >); if < val > is a numerical value, or it is equal twll

feonst < val >; (os; Iv; h;I;pc)ith 0s® Iv; h; I; nex{(pc)i

(r;h9 = allocString< val >; h); 0s® = puskos;r); if < val > is a string
fconst < val >; (os; Iv; h; I; pc)ith 0s% Iv; h% I; nex{(pc)i

allocString: [(Str H) ! (Ref H)]receives as parameters a string and a heap. It returns
a fresh reference and the heap that relates it to the given string.

5.5.7 Jumps

Statemengoto # jumps the control to the instruction at indekaf the current method.
Statemenif < op > #i jumps to the given index if the boolean conditiorop > applied
to the two elements at the top of the operand stack is evaluatadetaOtherwise it goes
on with the next instruction.

pc = (c; m;n); pc® = (c; m; #)
hgoto #; (os; Iv; h; I; pe)ith os; Iv; h; I; pcY

if evalConditiori< cond >; 0s) = (false; 0s?)
hf < op > #i;(os;Iv;h;l;pc)ith 0s% Iv; h;l; nex{(pc)i

pc = (c;m;n); pc® = (c; m;#) if evalConditiorf< cond >; os) = (true; 0s®)
hf < op > #i; (os;Iv;h;l:pc)ith os%Iv;h;l; pcY

evalConditiorreceives as parameters a boolean condition and an operand stack. It returns
the result of the condition's evaluation and the resulting operand stack.

5.5.8 Method Invocation

We suppose to have a global staakStack. It contains the stack of thevoke statements
and the local states. These states are represented as triples composed by

the program counter that invokes the method,
the local state of the operand stack,

the local state of the local variables.
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Statementeturn ends the execution of the current method, getting the control back to the
caller or ending the computation possibly. Statemeeturn passes the value at the top

of the operand stack to the caller, pushing it on the operand stack of the caller. Statement
invoke < method > invokes the method identi ed by a given method signature, accord-
ing to the type of the reference on which it is invoked.

(r; V% 0s;) = extractLMos; < method >); callStack = pusk{callStack; (pc; 0s:; IV));
(c; m) = solveDynamicClagg < method >); pc® = (c; m; 0)

hinvoke < method >; (os; Iv; h:I;pc)ith; :Iv%h;1; pcY

(callStack; (pcy; 0s% Iv9) = pop(callStack) if callStack , ;
treturn; (os; Iv; h: I; pc)ith 0s% V% h: I: nex{pc,)i

(callStack; (pcy; 0s:1; IV9) = pop(callStack);
v = pop(os); 0s® = pusKos; V) if callStack , ;

hvreturn; (os; Iv; h: I; pe)ith  0s® Iv® h; I: nex{(pc, )i

pc = (c;m;i); pc®= (c;m; 1) if callStack = ;

treturn; (os; Iv; h; I; pe)ith os; Iv; h; 1; pc

pc = (c;m;i); pc®= (c;m; 1);(0s%v) = pop(os) if callStack = ;

hvreturn; (os; Iv; h; I: pc)ith 0s% Iv; h: I: pcY

extractLV: [(Op MSig)! (Ref LV Op)]receives as parameters an operand stack
and the signature of a method. It returns

the reference on which the method is called,

the local variables at the beginning of the called method, i.e. with the reference to
this at indexO0, followed by the arguments of the method,

the operand stack obtained after the extraction of the arguments.

solveDynamicClass[(Ref MSig)! (C M)]receives as parameters a reference and
its signature. It returns the called method and the class to which it belongs.

5.5.9 Applying it to the Example

Table 5.1 depicts the complete execution of the example introduced in Section 5.3 graph-
ically. For each state, we show its four components: on the left there is the operand stack,
then the local variables, the heap, and nally the function that traces the owned monitors.
We do not trace the program counters, as it is a sequential piece of code without nor jumps
neitherif statements. In this representation, we suppose that the addtess wfhich is

stored at indexX of local variables according to thiava Virtual Machine Speci cation,

is #0. Note that the value of the parametenount is passed through indek of local
variables.
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0 1
’ #0 ‘ (Account, amount) 7! 1.000 ‘ I:|
#0 100
#load 0
0 1
’ #0 ‘ (Account, amount) 7! 1.000 ‘ I:|
#0 #0 | 100
# monitorenter
0 1
’ #0 ‘ (Account, amount) 7! 1.000 ‘
#0 100
#load 0
0 1
’ #0 ‘ (Account, amount) 7! 1.000 ‘
#0 #0 | 100
#load O
0 1
#0 ’ #0 ‘ (Account, amount) 7! 1.000 ‘
#0 100
#0
#geteld < Account> < amount >
0 1
1.000 ’ #0 ‘ (Account, amount) 7! 1.000 ‘
#0 100
#0
#load 1
100 0 1
’ #0 ‘ (Account, amount) 7! 1.000
1.000 #0 100
#0
#arith < sub >
0 1
900 ’ #0 ‘ (Account, amount) 7! 1.000 ‘ #07! 1
#0 100
#0
#puteld < Account>< amount >
0 1
’ #0 ‘ (Account, amount) 7! 900 ‘
#0 100
#load 0
0 1
’ #0 ‘ (Account, amount) 7! 900 ‘
#0 #0 | 100
# monitorexit
0 1
’ #0 ‘ (Account, amount) 7! 900 ‘ I:|
#0 #0 | 100
#return
0 1
’ #0 ‘ (Account, amount) 7! 900 ‘ I:|
#0 #0 | 100

Table 5.1: The concrete execution of the example
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5.6 Control Flow Graph

So far, we described executions as traces of states. $Byteeode programs are not
structured, we have to build up a structured representation of their execution. The aim of
this section is to formalize the construction of executions on the control ow graph as an
abstraction of the trace of execution. Note that all the targets of branch instructions can
be statically determined. So we do not need to take into account indirect branches. Oth-
erwise, if the target of jump and conditionals statements were not statically determined,
we would require an ad-hoc static analysis in order to reconstruct the control ow graph
[78]. This is not necessary on the language de ned in Section 5.2.

5.6.1 Formal De nition

Let St be the set obytecode statements. A program is represented as a trace of state-
ments, i.eP = St*. The control ow graph is composed by an array of blocks (i.e. traces
of statements) and by a set of edges that relate blocks.

Definition 5.6.1 (Gntrol Flow Graph) A control ow graph is composed by
an array of sequential blocks/(= AR (St")),
a set of edges linking derent blocksE =N N < cond >).

Each block is identi ed by its position in the array. The third component of edges stores
the condition required in order to cross this edge.

CFG=V E

Since the outgoing edges can be de ned only by jump statements, we need to consider
three cases:

the last statement of the blockristurn or vreturn. In this case there is no outgoing
edge;

the last statement of the blockgsto. In this case we have only one outgoing edge
in which the condition igrue;

the last statement of the blockifs< cond >. In this case we have two outgoing
edges. One of them points to the next block (in the case the condition is evaluated
to false), while the other one points to a given index (if the condition is evaluated
to true).

As the indexes oif andgoto instructions are statically known, we can build up this
graph before analyzing the program. This information is provided by funetitactCFG:
St* I CFG. Then, we may disregaiflandgoto statements, as they are represented by
edges in the control ow graph.
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An execution on a control ow graph is represented as an array of set of traces. Since
the program may contain loops, the same block may be executed more than once. This is
why each block is related to a set of its executions.

Definition 5.6.2 (Gntrol Flow Graph execution An execution on a control ow graph
is represented by the control ow graph itself and an array of set of traces of executions.

exCFG=CFG AR(}( ")

5.6.2 Soundness with respecttd ( *); i

The partial order operator simply applies the subset ordering on all the elements of the
two executions of the control ow graph.

Definition 5.6.3 (Ordering operator v cgg)

(cfgy; exy) Veres (cfga; exp) = true i
8i 2 dom(exy) : i 2 dom(exy) ™ exi(i)  exy(i)

Lemm&.6.4 lexCFG; Vv cegi forms a complete lattice
Proof. The proof follows trivially from the fact that ¢ is the pointwise application of
]

Lemm&.6.5H ( *); i formsacomplete lattice

Starting from an execution of a control ow graph we can build up the set of all the
possible executions represented by it.

Definition 5.6.6 (Qncretization ¢rg)

cre | [BXCFG ! }( )]
cra((bjv);ex) =f ot it
(1) o 2ex(0);
(2) n2ex(k):k?2domex); @ii;ip) 2V iy = k;
(3) 8i2[1:n 1]:9j2domex): i2ex(j);9i;j. 2 domex) :
i 12exX(i1); i+1 2ex(j2); (130) 2Vv; (32) 2 v
g

(1) formalizes that the blod& is the entry point of the control ow graph.
(2) means that the last part of the trace is the execution of an exit-point block.

(3) formalizes that all the intermediate traces must be obtained as the concretization
of a block such that there is
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— an edge from the previous block to the current one,

— an edge from the current one to the next one.

Lemm®.6.7 crcisacompletelcrg-morphism, where cr¢ is the lower bound operator
induced bWCFG

CFG

Theoremb.6.8 1 ( *); i 1 FexCFG; V cegl Where

CFG

cre 1 [} ( a) ! exCFG]
cre = T efex: T (ex)g

Proof. By Lemma 5.6.7 g is a completeucrg-morphism. Therefore, by applying
Theorem 2.2.3we getthBt( *); i1 " 1eXCFG;Verai - |

CFG

In this way, we provide a sound abstraction of the possible executions of a program as
executions on a control ow graph.

5.7 Method Calls

Another level of abstraction is the representation of method calls as control ow graph
executions. When we represent the executions as traces, method calls are represented in

this way too. For instance, suppose to have executed a trate ! i. Then the
analysis of a method call produces a tragg! ! 9 Finally, we go on with the
execution with | ! . This execution is represented by the trage! I i

0 I 0] |

0" . P K -

When we dea{I with a control ow graph of a program (and so also the body of a method)
we represent the invocation of a method as a control ow graph and an array of set of
traces, i.e. with an element exCFG.

Given a trace representing an execution, we can build up a furtciinslateMethodCall
(! }((exCFG[ )%)]. This represents each method call as an elemest@FG.
Intuitively, once this function detects one method call, it can extract the trace that repre-
sents its execution, and it can abstract the execution throgigh

5.8 Abstract Domain

While abstracting the concrete domain presented in Section 5.4, the most important issue
is the analysis of addresses through an ad-hoc alias analysis. For other components, the
abstract domain is the simple approximation of its concrete counterpart.
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5.8.1 Alias Analysis

In order to obtain an eective analysis oflava multithreaded programs we need to pre-
cisely trace

when two accesses on the shared memory may be on the same location,

when two threads are always synchronized on the same monitors.

In Java the shared memory is the heap. It relates references to objects, arrays, or strings.
Monitors are de ned on objects, and threads are objects. So they are both identi ed by
reference.

In this context alias analysis (i.e. the way in which we abstract references) is the critical
point of our analysis. We need to precisely check

when two references always point to the same location (must-aliasing),

when two references may point to the same location (may-aliasing).

Must-Aliasing

In order to check when two references point to the same location, we link each abstract
reference to an equivalence class. Two values related to the same equivalence class con-
tain the same value at that point in all possible executions of the program. Each time we
analyze anew statement we create a new equivalence class. When we make the join, if
a variable points to two dierent equivalence classes in the two branches we instantiate a
new equivalence class. Note that in this way we have a loss of precision: two variables
may be equal in both branches but throughedent equivalence classes. When we join
them, we lose this relation. We may re ne our operator but this would increase its com-
plexity. In fact, for each variable we would have to check all the variables that point to
the same equivalence class. On the other hand this operator may be easily optimized. On
the examples on which we tested our analysis we did not need to re ne and optimize the
join operator.

Formally, we denote b¥ the set of the equivalence classes on references. The function
fresH) returns a new equivalence class. The join operiaais de ned as:

st-8 él [ 51 = éz
ejt-e, = — .
1hE™2 fresh) otherwise

In order to de ne the ordering operator, we need to work on a boxed domain in which
each variable is related to an equivalence class. L&t be2 [Var ! E], whereVar is the
set of the variables of the program. Thien ¢ f2 1 8vy; v, 2 don(fy) : fa(va) = fo(v2) )

Vi;Vp 2 donﬁl) " fl(Vl) = %1(V2)- _
The concretization function must be de ned ofaf !  E] too.

£(h) = 12 8vi;v, 2 dom(f) : f(va) = T(v) ) f(va) = f(v)g

A special equivalence class is reservedut pointers.
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May-Aliasing

The basic idea of our may-alias analysis is to represent all the possible concrete references
with a nite set of abstract references. Then we link them to the point of the program that
instantiated them. This approach is similar to the one adopted in [42].

Definition 5.8.1 (May-aliasing) The may-aliasing represents references as triples com-
posed by

the program counter that created the reference,;

the stack of the called methods. Each method call is represented by the program
counter of theinvoke statement. The stack is reduced in order to approximate
recursive calls with the same abstract reference. Intuitively, each time we found
twice the same program counter in the stack, this means that we are analyzing a
recursive method. So we project the stack to the rst method call, tracing that we
are analyzing a recursive method;

the abstract reference of the thread that instantiated the reference.

Formally,D = (PC ST(PC) D)[f #mainthreadg

This de nition is recursive as each abstract reference contains another abstract refer-
ence representing the thread that instantiated it. The set of abstract references contains
also the special elementrfainthread that represents the main thread. We need this el-
ement as the main thread is instantiated by the system and not by another thread. In
addition all the threads are started directly or indirectly from it, and this guarantees that
recursion is not possible. Intuitively, the creation of threads can be represented as a tree.
In fact, each thread is created by another one (except the main thread, that is the root of the
tree), and it can create a set of threads. In addition, loops are not possible, as you cannot
have that a thread creates a threaid which creates,. So recursion is not possible.

A value may contain references created atdent program points, e.g. because of a non
deterministic if statement. Then the may-alias analysis represents an abstract reference
as a set of these triples. In this way the ordering, join and meet operators are the ones of
sets. The set of program counters is nite and the stack of the called methods is reduced
in order to avoid recursive calls. So the set of abstract references is nite. Finally the
lattice satis es the ascending chain condition, and so we do not need to de ne a widening
operator.

The concretization function returns all the possible concrete addresses that may be created
by the given program counter following the given call stack (and all its possible recursive
extensions).

Static references: This aliasing domain has to be extended in order to support static
references. Since static elds are initialized by the system before the launch of the ap-
plication calling the static constructors of the classes, we need to de ne speci ¢ abstract



5.8. Abstract Domain 103

references for them. In this context, we augment our may aliasing domain adding an ab-
stract address for each class identi ed by the class itself. This address is used to store the
information on static elds and when static methods are invoked.

Definition 5.8.2 (May-aliasing of static references The set of abstract static references
S is represented by the set of class8s: C.

The concretization functiong simply returns the concrete references pointing to the
static object of the given class.

Definition 5.8.3 (May-aliasing) The may-aliasing domain is the union between the may-
aliasing of dynamic and static referencés= D[ S| null. null element is used in order
to represent null pointers.

Definition 5.8.4 (May-aliasing lattice ) The may-aliasing lattice is the one composed by
a set of elements of the may-aliasing domain using the common set opetat(®:
PN

Abstract References

The abstract domain represents references as the Cartesian product of may- and must-
aliasing domains.

Definition 5.8.5 (Abstract Reference Ref=E P

5.8.2 Domain

Our analysis is parameterized by a non-relational numerical domain.

Proposition 5.8.6 (Abstract numerical domaip We suppose that a non-relational numer-
ical domainNum is given. It has to approximate concrete numerical values soundly.

RN i " ENom; v

Num

Definition 5.8.7 (\alues Val = Ref[ Num
Definition 5.8.8 (Qperand stack Op = ST(Val)
Definition 5.8.9 (Local variables) LV = AR (Val)
Definition 5.8.10 (Monitors) L : [Ref! N]

Definition 5.8.11 ((bjects) Obj : [(C F)! Val]
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Analyzing precisely arrays is an orthogonal issue with respect to our goal. It deserves
to be considered separately. Nevertheless, we implement a simple analysis of arrays in
which all the cells are abstracted into a unique abstract value. In addition we trace also
the abstract length of the array. This minimal approach allows us to deal with programs
that contain arrays. For the properties on which we are interested, it seems natto a
the precision of the analysis.

Definition 5.8.12 (Arays' state) The abstract state of an array is a pair composed by
an abstract value (approximating the values of all the cells of the array) and an abstract
numerical value (approximating the length of the arrayrr = Val Num.

Definition 5.8.13 ($rings) Str = AR (Num) Num

Definition 5.8.14 (Heap) The abstract heap relates elements of may-alias domain to ob-
jectsorarrays:H:[P! (Obj[ Arr[ Str)]

Definition 5.8.15 ($ngle-thread state) =Op LV H L PC

5.9 Abstract Operational Semantics

The abstract operational semantics is mostly the abstraction of the concrete de nition
presented in Section 5.5.

5.9.1 Load and Store

0s® = push(os; Iv(i))
Hoad #i; (0S; Iv; h; I; pc)i TR 0s? Iv; h; I; nex{pc)i
(0% V) = pop(0s); V0= Iv[i 7! V]
tstore #i; (0s; Iv; h; I; pc)iTh 0s% V%, h; I; nex{(pc)i

5.9.2 Monitors

(0s%T) = pop(os); 19= I[f 7! I(F) + 1] if T 2 don(l)
tmonitorenter; (0s; Iv; h; I; pc)iTh 0s% Iv; h: % nex{pc)i
(0s%T) = pop(0s); I°= I[r 7! 1] if T < dom(l)

tmonitorenter; (0s; Iv; h; I; pc)iTh 0s% Iv; h: % nex{pc)i
(0s% 1) = popos);I() = n;I°=1[r 7' n 1]ifn>1

hmonitorexit; (0s; Iv; h; I; pc)iTh 0s Iv; h; I% nex(pc)i
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(0s% 1) = pop(0s);I() = n;I°=Infr 7! ngif n=1
tmonitorexit; (0s; Iv; h; I; pc)i TR 0s® Iv; h; I% nex(pc)i

Note that since our abstract references are an approximation of the concrete ones, we may
be not able to unlock monitors precisely. For instance, consider the following piece of
code:
if (i>0)

lock(a)
else lock(b);
//do something without modifying i, a, and b
if (i>0)

unlock(a)
else unlock(b);

If at the abstract level we would not be able to precisely check the conditidnwe may

be not able to check that we always release a monitor previously locked. In this case, we
should release all the owned monitors in order to preserve the soundness of the approach.
On the other hand, we never found such a case when analytyg@de obtained by
compiling Java code throughavacc. At bytecode level monitorexit always deals with
monitors that can be trivially proved to be acquired by a previnositorenter statement.

5.9.3 Objects

(r: h9 = alloc(< class >; h; pc); 0s® = pushos;T)

mew < class >; (O_%;W; h;1; pe)iTh 0s% Iv; ho: I: nex(pc)i

(0s1; (R;€)) = pop0s);v =  h(r)(< class >; < id >); 0s° = pusi{os;;V)

2R

tgeteld < class > < id >; (op; Iv; h;I; pc)iTh op% Iv; h; I; nex{pc)i
(0s1; V) = pop(0s); (0s% (€; R)) = pop(0s;); obj = h(7);
ho= h[ff 7! obj°: T 2 R;0bj°= h()[(< class >;< id >) 7! V]d
if R = frg " isSingl€r) = true
tputeld < class > < id >; (0s; Iv; h: I; pc)iTh 0s% Iv; h I: nex{(pc)i
(051;V) = pop(0s); (0%, (€; R)) = pop(0sy); obj = h(7); h0= h[ff 7! ob: T 2 R;
objo = h([(< class >; < id >) 7! h(f)(< class >;< id >) t o= vId
if R, frg_isSinglgr) = false

tputeld < class > < id >; (0s; Iv; h: I; pc)iTA” 05 Iv; h I: nex{(pc)i

alloc:[(C H PC)! (Ref H)]receives as parameters a class, a state of the heap,
and a program counter. It allocates an abstract location containing the abstraction of the
default values for all the elds of the given class. Finally it returns a fresh reference that
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points to this location in the returned heap.

isSingle: [P ! f true;falseq is a function that, given an abstract element of our may
aliasing domain, returnsue i it represents exactly one concrete reference. Since each
abstract element is related to a speci ¢ program counter and to the stack of method called,
we can check if this allocation may be inside a loop or if it is inside a recursive context. If
both these condition are false, we prove statically that the abstract reference approximates
exactly one concrete address, andsSinglereturnstrue.

5.9.4 Arrays

(051:1) = pop(os); (F; h9 = allocArray(i; h); 0s° = pust(osy; )
mewarray; (0s; Iv; h; I; pc)i Th @;GW; ho: I; nex(pc)i
(0s1;1) = pop(0s); (0sz; (R; €)) = pop(0s1); V=" ( 1(N(r))); 0s®= push{os;;V)
2R

haload; (Op; Iv; h; I; pc)iTh op? Iv; h; I; nex{pc)i

(051;V) = pop(0s); (0S;1) = pop(0s;); (0s% (R; €)) = pop(osy);

ho=h[fr 7! ar’: T 2 R;ar’= ( 1(arqn) t v; 2(arqr)))]
hastore; (0s; Iv; h; I; pc)iTA 0s® Iv; ho: I: nex{pc)i
allocArray: [(Num H)! (Ref H)]receives as parameters an abstract numerical value

representing a length and a heap. It returns an abstract reference and the heap that relates
this reference to an array of the given length.

5.9.5 Arithmetic Expressions

(051; (i1)) = pPop(os); (0Sz; iz) = POP(OSy);
0s? = pushos;; evalExprA(i;i,; < op >))

harith < op >; (©s;Iv; h; I; pc)iTh 0s® Iv; h; I; nex{(pc)i
evalExprArreceives as parameters two abstract numerical values and a binary arithmetic

operator. It returns the result of the abstract execution of this arithmetic operation. We
suppose that this evaluation is sound, i.e.

Nam(iL < 0P > i2) Vg eValEXPrA( gm(ia); jgm(iz); < op >)

5.9.6 Constants

0s? = pusk(os; evalCongt< val >)); if < val > is a numerical value

feonst < val >; (©s;Iv; h; I; pc)iTH 0s® Iv; h; I; nex{pc)i
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0s0 = push{os; null); if < val > = null

feonst < val >; (0s; Iv; h; I; pc)iTA 0s? Iv; h; I; nex{pc)i

(t; h9 = allocString< val >; h); 0s? = pushos;7); if < val > is a string

feonst < val >; (0s; Iv; h;I; pc)iTh 0s® Iv; h% I; nex{pc)i

allocString: [(Str H) ! (Ref H)]receives as parameters a string and an abstract heap.

It returns an abstract reference and the heap that relates it to the abstract representation of
the given string.

evalCondition: [N ! Num] is a function that given a numerical value returns its abstract
representation.

5.9.7 Jumps, If and Method Calls

Our abstract semantics is de ned on the control ow graph depicted in Sections 5.6 and
5.7. In this way we do not need to deal wdhbto, if statements, and method calls.

5.9.8 Applying it to the Example

Table 5.2 depicts the results of the abstract analysis of the example presented in Section
5.3 using the Interval domain. Since we are analyzing this method when the current object
has been already allocated, we represent its abstract refererftg ®y (Ve suppose that
isSingldr) = false, e.g. because the program counter ofrtbe statement that allocated

is inside a loop. So when we analygzet eld we perform a weak assignment. At the end

of the computation in the abstract the elddcount;amount) is related to the interval
[900::1:000]. So we obtain a nal result approximated with respect to the concrete result
because of this weak assignment.

5.10 Soundness

5.10.1 Domain

Thanks to our low-level approach, the abstraction function can be de ned as the pointwise
applications of the abstraction of numerical values and of references. In general we de ne
by s this function when applied to elements3n

Theorem5.10.1 (Sundness o ;v i) h ;v iisasound approximation &f ( ); i ,i.e.
R() i hivi

Proof. For numerical values, Proposition 5.8.6 guarantees that our non-relational numer-
ical domain is sound. For references, the abstraction of may-aliasing domain can be easily
built up by tracing for each concrete address, which threads and statements create it, and
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0 1
— T ‘ (Account, amount) 7! [1.0004.1.000]‘ I:|
(frg 0) [100..100]
#load O
0 1
 _ — T ‘ (Account, amount) 7! [1.000..1.000]‘ I:|
(frg 0) (flg 0) | [100..100]
# monitorenter
0 1
— T ‘ (Account, amount) 7! [1.000..1.000] ‘ (fig0) 7! 1
(frg 0) [100..100]
#load 0
0 1
— — T ‘ (Account, amount) 7! [1.000..1.000] ‘ (fig0) 7! 1
(frg 0) (fig 0) | [100..100]
#load 0
— 0 1
(frg 0) ¥ ‘ (Account, amount) 7! [1.000..1.000] ‘ (fig0) 7! 1
(a0 (frg 0) [100..100]
rg 0
#geteld < Account>< amount >
0 1
[1.000..1.000] — P ‘ (Account, amount) 7! [1.000..1.000] ‘ (ffg0) 7! 1
(3 0) (frg 0) [100..100]
#load 1
[100..100] 0 1
T ‘ (Account, amount) 7! [1.000..1.000] ‘ (flg0) 7! 1
[1.000..1.000] (fig 0) [100..100]
(frg 0)
#arith < sub >
0 1
[900..900] — P ‘ (Account, amount) 7! [1.000..1.000] ‘ (ffig0) 71 1
(g 0) (frg 0) [100..100]
#puteld < Account>< amount >
0 1
— T ‘ (Account, amount) 7! [900..1.000] ‘ (fr)g0) 7! 1
(frg 0) [100..100]
#load O
0 1
—_ — T ‘ (Account, amount) 7! [900..1.000] ‘ (frg0) 7! 1
(frg 0) (frg0) | [100..100]
# monitorexit
0 1
— T ‘ (Account, amount) 7! [900..1.000] ‘ I:|
(frg 0) [100..100]
#return
0 1
— T ‘ (Account, amount) 7! [900..1.000] ‘ I:|
(frg 0) [100..100]

Table 5.2: The abstract analysis of the example
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which was the call stack at that point of the computation (possibly projecting it in order
to avoid recursion). s represents this abstraction function. Equivalence classes of the
must-aliasing domain can be abstracted checking which concrete references are equal.
The abstraction function on operand stacks, local variables, heaps, etc.. are the pointwise
application of these two abstraction functions.

The same situation occurs for the upper bound operator, that can be obtained as the
pointwise application of upper bound operators of numerical values and references. As
for abstraction functions;s andt s represents respectively the partial order and the upper
bound operators on elements of the Set

As abstraction functions and upper bound operators rely on sound operators on refer-
ences and numerical values, we get that our abstract domain forms a Galois connection
with respect to its concrete counterpart.

|

5.10.2 Semantics

We need to prove the soundness of our abstract semantics when reading from and writing
on objects. The other cases can be trivially proved as they are obtained as the abstraction
of the concrete de nition, or rely on the soundness of the numerical domain.

5.10.3 Obijects

Lemm&.10.2 (Sundness ofeteld ) T is sound with respect tb when applied to
geteld, i.e.
8 2 : (F°% 1t Qv O (gr °

Proof. By de nition of ! when applied tget eld (Section 5.5.3) the local variables, the
heap, and the locked monitors are not modi ed. So we need to focus only on the operand
stack.
I pops from the operand stack a referemcand it pushes the valug(r)(< class >;
<id >). Finally, the abstraction of this state will approximate the top of the stack with

val(n(r)(< class >; < id >))
When applying"  to the abstraction of the initial state (Section 5.9.3), we would have
at the top of the operand stack the valug B(frg,( n(h)(N)(< class >; < id >)), where 3
is the abstraction function of our may-aliasing domains and , are the pointwise
application of sound abstractions of numerical values and references. As we take the

upper bound of all the possible abstract references, we have that
G
val(h(r)(< class >; < id >)) Vg ( H(h)(N(< class >; < id >))

2 5(frg

Asv is the pointwise application of the ordering of numerical values and references, and
the other components of the state are not modi ed, we proved that

8 2 : (% 1 %v 0 (fgr
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when working orget eld . [ ]

Lemm&.10.3 (Sundness obuteld) T is sound with respect tb when applied to
puteld, i.e.

8 2 : (F°% ' Qv O (Ff gr °
Proof. By de nition of ! when applied tgut eld (Section 5.5.3) the local variables,
and the locked monitors are not modi ed. So we need to focus only on the operand stack
and the heap.
I pops from the operand stack a valuand a reference and it assigns the value to the
given eld of the given reference, i.eobj® = obj[(< class >;< id >) 7! v];h® = h[r 7!
obj9. Finally, the abstraction of this state will contain the abstraction of the popped value
assigned the given eld of the object pointed by the abstraction of the given reference.
When applying— to the abstraction of the initial state (Section 5.9.3), we need to distin-
guish two cases:

5(r) = frg 7 isSinglér) = true: in this case the may-aliasing abstraction of the
concrete reference represents exactly one reference. In this way, assigh{ng to
the object that relates the given eld to the abstraction of the concrete value is
sound.

5(r) , frg _isSinglér) = false: in this case the may-aliasing abstraction of the
concrete reference may represent more than one concrete references. Then we are
not sure on which concrete reference we are assigning. In order to be sound we
need to assign to each possible abstract reference the upper bound between the old
value and the abstraction of the assigned one, and this is perfornied by

Asv is the pointwise application of the ordering of numerical values and references,
and the other components of the state are not modi ed, we proved that

8 2 : (fF°% 1t %Qv = (fgr °
when working orput eld . ]
Theoremb.10.4 (®undness of  with respectto! ) T is sound with respectto , i.e.
8 2 : (F°% 1 Qv = (fgr °

Proof. Lemma 5.10.2 and 5.10.3 prove the soundness oéspectively orget eld and

put eld . When it is applied to load and store statements (Section 5.9.1), it is de ned as
the application of the abstraction function on its concrete counterpart (Section 5.5.1 and
5.5.2). The soundness of lock and release of monitors (Section 5.9.2) relies on the sound-
ness off domain. About arithmetic expressions (Section 5.9.5) and constants' evaluation
(Section 5.9.6), the soundness is guaranteed as we suppose that the abstract numerical
domain correctly approximates the concrete one. Finally, when it is applied to arrays
(Section 5.9.4) itis sound as it approximates all the concrete cells with one abstract value,
and we consider the upper bound between old and new values when assigning.

So in all the possible cases we have thais sound with respect to . [ ]
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5.11 Related Work

Many generic analyses dava programs have been proposed recently.

Some of them have been applied at source code level. It is the ca&&banf[91]. Its
aliasing analysis is quite similar to our: eaobw statement can allocate at mdsab-

stract references (whekas a parameter of the analysis). This alias domain is sometimes
more precise than our may-aliasing, e.g. inside a loop it treekstract addresses for the
samenew statement, while our analysis tracks just one reference. In other cases our may
aliasing domain is more precise, e.g. in case of several method calls. In addition, there
is no must alias analysi€ibai is parameterized on a numerical domain, it supports also
relational domains, and octagons were implemented in it. Its domain is composed by an
environment and a store. Intuitively, these concepts are translated at bytecode level into
local variables and heapSibai is applied to the modular analysis of veri cation ddva
classes.

Another analysis at source code level is the one presented by Pollet [111, 112]. It can
be tuned with three dierent alias analyses. It performs an inter-procedural analysis. It
abstracts away numerical values. The structure of the domain is similar to our one and to
the one ofCibai, but it is more generic as it can be plugged withetient abstractions of

the store. On the other hand, in our case it is not possible to be generic on it, as we need to
deal with the structure of the store and its abstraction in order to develop a static analysis
of multithreaded programs.

Clousot is a generic static analyzer that worksM$IL bytecode level. It is parame-
terized on an abstract numerical domain and on a property, and it has been successfully
applied to the analysis of array out-of-bounds accesses [92], @rtmverrun [47], and to

a new relational domain [84]. It performs three transformations of the bytecode (i.e. stack
elimination, heap abstraction, and expression recovery) [93] in order to obtain a precise
analysis. In this way, it results to be more precise than our approach. On the other hand,
we cannot abstract the heap, as in this way we would not be able to check when two th-
reads communicate through the shared memory. In addition, it performs an intra-method
analysis, relying on the Design by Contract methodology [100] in order to gain precision
on method calls, while our analysis is whole-program.

Julia [131] is another generic analyzer &va bytecode level. It can be plugged with

di erent abstract domains. In this way, the level of parameterization is higher than in our
approach: the user can de ne his domain freely. On the other hand, this requires the user
to de ne it fully, and he cannot focus only on the numerical domain and on the property of
interest. In particular, no alias analysis is implementeduiia, and the plugged domain

has to care about referencdslia has been applied to a wide set of properties: informa-
tion ow analysis [53], escape analysis [64], magic-sets transformation [110], constancy
analysis [54], and nullness analysis [132].

Navas, Mendez-Lojo and Hermenegildo propose a language independent analysis [105].
They represent a program through a control ow graph, and they are parameterized both
on the semantics of statements and on the abstract domain.
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5.12 Application to the Happens-Before Memory Model

In order to apply the static analysis of the happens before memory model introduced in
Chapter 3 we need to de ne on our domain some elements and functions as required by
Sections 3.3.1 and 3.4.1.

5.12.1 Concrete Domain

In Java threads are objects and so identi ed by reference, Tiel. = Ref. In the same

way, the shared memory is the heap, &8.= H, and locations are identi ed by reference,

l.e. Loc = Ref. Threads can synchronized on monitors that are de ned on objects and so
identi ed by reference, i.eSync = Ref. The set of states of the concrete domain,ise.

St= .

The transition function : [St St!f true;falsedis! as de ned in Section 5.5.

About the functions, they are de ned as follows.

Definition 5.12.1 ghared
shared(op; Iv; h;I;pc)) = h

Definition 5.12.2 @ction)

action((op;Iv; h;1l;pc)) = ?41 n9pc) <fputeld;geteldg

action((op; Iv; h;1;pc)) = (r;1;?,) i ngpc) = get eld where(op%1) = pop(op)

action((op; Iv; h;1;pc)) = (w;1;v) i ngpc) = put eld where(op®v) = pop(op);
(op%1) = pop(op®)

where ns: [PC ! S] is the function that returns the statement pointed by the given
program counter.

Definition 5.12.3 éynchronizejl
synchronizef{op; Iv; h; I; pc)) = don(l)
Definition 5.12.4 @ssign
assigrgh;r;v) = h[r 7! v]

Definition 5.12.5 6etsharell

setshare(op; Iv; h; I; pc); h% = (op; Iv; h%I; pc)
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5.12.2 Abstract Thread ldenti ers

At abstract level we identify threads through the may-alias domain. In Chapter 3 we sup-
posed that the set of threads is exactly the same both in the abstract and in the concrete
domains. This is not true idava, as threads are objects, and they can be dynamically cre-
ated and launched. An abstract element of our may-aliasing can represent many concrete
references, i.e. when we haveew statement inside a loop or a recursive method.

In particular,vis function is de ned as follows:

vis:[Tld Loc }(Sync)  (Tid N)! }(val)
vis(t; 1; S; £, (t%19) =

= project(l;su x(f(t9;i9; S)[

fv : v 2 project(; f(t°9; S) : t°°2 dom(f) n ft; t%g

Intuitively,

in the rst part of the de nition ofvis (project(; su x(f(t%;i9:S)) if the abstract

identi er (i.e. an element of our may-alias domain) that correspond'saoprox-
imates many concrete references, we cannot discard the values written in parallel
by this thread before the launch of the current thread. In fact, these values may be
written in parallel by another thread represented by the same abstract identi er, but
that does not launch the current thread,;

in the second part of the de nition afis (fv : v 2 project(l; f(t°); S) : t°°2 don{f) n

ft; t%Q if the abstract identi er of the current threadpproximates many concrete
references, we cannot discard the values written in parallgl by fact, these
values may be written in parallel by another concrete thread represented by the
same abstract identi er, but that is dérent from the current one.

Applying these considerations, we preserve the soundness of the analysis.
Thevis can be rede ned as follows when applied to this context and using the may-alias
abstract domain to identify threads:

vis:[P Loc }(Sync) (P N)! }(Val]

Vst S;F (59) =

v : v 2 projeci; f(t );S) : T2 dom(f) n f00: 102 ft;i'g A j (1Y) = 1g

where 5 is the concretization function of the may-alias domain.

5.12.3 Abstract Domain

We use the may-alias domain in order to trace on which locations of the heap threads
access, i.eLoc = P. We use the must-alias domain in order to infer on which monitors
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threads synchronize, i.8ync = E. The other sets are obtained as the pointwise abstrac-
tion,i.e.Sh=HandSt=".

The abstract transfer function : [St St!f true;falsedis T~ as de ned in Section 5.9.

The other functions can be obtained as the pointwise application of the abstraction func-
tion on the concrete functions just de ned.

5.13 Application to the Deterministic Property

In Chapter 4 we stated a few assumptions on how concrete and abstract shared memo-
ries are de ned. We need to discuss these issues in order to apply the analysis of the
determinism of multithreaded programs to the analysis presented right now.

5.13.1 Concrete Domain

In the concrete domain we de ned the shared memory as a function that given a shared
variable returns the value contained in it and the thread that wrote itSi.e[Var !

(Vv TId)]. In this chapter the shared memory, i.e. the heap, has been de ndd: as
[Ref! (Obj[ Arr[ Str)].

The set of shared variables is

a reference when we are accessing an array or a string,

a triple composed by a reference, a class, and a eld's identi er when we are ac-
cessing an object, as object are de neddg: [(C F)! Vall.

The codomain of the shared memory relates values to threads. The heap traces only
values. The thread that has written it can be easily inferred. In particular we have simply
to augment thevis function when reading through the shared memory values written in
parallel by other threads following the approach de ned in Chapter 3.

5.13.2 Abstract Domain

The rst level of abstraction relates each shared variable to a function. This infers for
each thread the abstract value it may have written in paralleBi:gvar! [Tid! R]].

The domain of the heap introduced by this Chapter is composed by elements of the may-
aliasing domain. So the abstract domain soundly approximates the concrete heap with
these elements. We combine with class and elds' identi ers that are statically de ned in
theJava bytecode each time heaps are accessed.

When reading a value through the shared memory, the abstract value is obtained making
the upper bound of all the values written in parallel. In order to infer the information
required by the rst level of abstraction, we need to track one abstract value for each
thread, that can be easily inferred thanks to the structure of the thread-partitioning domain
(as it relates each thread identi er to the abstract trace approximation its executions).
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5.13.3 Second Level of Abstraction

At the second level of abstraction we relate each shared variable to a pair composed by an
abstract value and a set containing threads' identi ers 3.e[Var ! (IV } (TId))].

This level of abstraction can be directly obtained from the previous one. In it we traced a
value for each thread. So we need only to collapse all these values considering their upper
bound, and the set of threads' identi ers as the second component of the pair.

5.14 Discussion

In this chapter we presented the concrete and abstract domains and semaddics of
bytecode. These are aimed at applying the theoretical frameworks de ned in Chapters

3 and 4 to the analysis afava multithreaded programs. Our domains and semantics
are tuned at low-level in order to soundly and precisely infer how threads access the
shared memory and synchronize. We proved the soundness of our approach. This chapter
represents the bridge between the theoretical approaches developed until here and their
application to a real language.

In this way, we are now in position to

implement a static analyzer generic with respect to an abstract numerical domain, a
memory model, and a property of interest,

extend it in order to soundly analyze a program with respect to the happens before
memory model,

analyze the determinism of multithreaded programs.

In addition we may instantiate this analyzer to other properties (like the data race con-
dition, presence of deadlocks, access to null pointers). We can also apply it to some
well-known non-relational domains.

This analyzer will be presented in the next Chapter.
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f heckmate: a Generic Static Analyzer
of Java Multithreaded Programs

In this chapter we present the implementatiorf béckmate, a generic static analyzer of

Java multithreaded programs aytecode level. This analyzer is generic with respect to

a non-relational numerical domain, the property of interest, and a memory model. In this
context, we implemented the happens-before memory model, the deterministic and weak
deterministic properties. We adopt the domain and semantics introduced in Chapter 5.
After an overview of the structure ¢fheckmate, we will study the experimental results
deeply in order to investigate both the precision and the complexity of our approach.

f heckmate can be freely downloaded at URittp : =swvww:pietro:ferrara:name=check

mate.

This chapter is based on the published work [46].

6.1 Generic Analyzers

Many authors proposed and developed generic analyzers relying on the abstract inter-
pretation theory. We have already introduced some of them in Section 5.11. There we
studied the theoretical approach of such analyzers mostly. We recall them here fusing on
the practical and implementation details.

JULIA [131, 130] is a free tool that implements a generic static analysiavafbytecode

based on the abstract interpretation theory. It analyzes sequential program. In addition,
when some particular conditions are satis ed it may obtain sound results for multithreaded
programs. Moreover the author argues that there was a theoretical lack about the static
analysis of multithreaded, imperative, and object-oriented programs. Our work is aimed
exactly to Il this lack.

Clousot [93, 47, 92, 84] analyzes MSIL bytecode. It is parameterized by the property
and the numerical domain. It is sound only with respect to single thread executions. It
has been already successfully applied to the veri cation of some properties on industrial
software.

Cibai [91] is a generic static analyzer for modular analysis and veri catiolavé classes.

It is not sound with respect to multithreaded executions.
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Pollet et al. [112] developed a generic static analyzedéva code. It does not support
concurrency a€ibai, and so it is not sound with respect to multithreaded executions.
Méndez-Lojo et al.[105] presents a generic framework based on a representation of a pro-
gram as a control ow graph. The overall framework is generic also with respect to the
programming language, and it has been implemented in order to ardalya@rograms

at bytecode level. In particular, a greatogt has been made in order to optimize the x-
point computation [99]. It is sound only on single-thread executions.

JAIL [42] is a generic static analyzer of JavaCard programs at source code level. It has
been successfully applied to the rewall analysis. It can be plugged witkrdnt nu-
merical domains and in order to analyze elient properties. As JavaCard supports only
mono-thread programs, it does not deal with concurrency.

Contribution: In this context,f heckmate is the rst generic static analyzer dava
multithreaded programs. In particular, it is generic with respect to the numerical domain,
the analyzed property, and the memory modgheckmate comprehends some well-
known numerical domains (e.g. Intervals), some properties (e.g. null pointer accesses
and deadlocks on monitors), and some memory models. It supports the main features of
Java multithreading system, and in particular

dynamic unbounded threads creation,

runtime creation and management of monitors,

method-calls in presence of overloading, overriding and recursion,
dynamic allocation of shared memory.

In addition, it supports all the common featuresava as strings, arrays, static elds and
methods, etc..

f heckmate supports onlyJava bytecode language, and so it does not support all the
features implemented througlative methods, e.g. re ection andait/notify on objects.

6.2 On Native Methods

Native methods are piece of code written in language®mint fromJava. They are
interfaced withJava programs through the “Java Native Interface”[88]. They are used
when developers need to go over the limits imposeddwa language, e.g. to use direct
pointers to the memory. These functionalities are required in order to develop some spe-
ci c applications, e.g. to interface with the operating systems or with memory-mapped
devices.

Native methods cannot be automatically analyzed bgckmate as we de ned the se-
mantics ofJava bytecode statements only. In addition, they may depend on the operating
system on which we are executing the applications or on its hardware architecture. Then
it is not su cient to analyze one implementation, but we should take into account all the
versions of thelava virtual machine.
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System MyThread
public static Account a = new Account(); private Account a;

public static int main(String[] args)f
MyThread th = new MyThread();
System:a:amount = 1:000;

th:start(); NI,
synchronized(System:a)

public void run()f

f]]]]]]]]]]]]]]]]]]]]]]]. synchronized(System:a) f

System:a:printAmount(); int temp = System:a:getAmount();
g if(temp < 100)
g System:a = null;
else System:a:withdraw(100);
g
g
g

Figure 6.1: A multithreaded application

We adopt a minimal approach to the analysis of native methods. We de ne and imple-
ment by hand the semantics of a restricted number of native methods, e.g. the ones of
java:lang:StrictMath.

6.3 An Example

Figure 6.1 depicts a program composed by 2 thre8gistem creates amccount object

that instances the class presented in Section 2.3. The initial value is 560 The
object is stored on a public static eld, and thelyThread is launched. The two threads
are both synchronized on the same monit8ystem prints the amount contained by
the account.MyThread sets tonull the amount if there is less tha®0. Otherwise it
withdraws100 from that.

On this example we may be interested to analyzent properties and in particular the
presence of data races and of accesses to a null pointer. In order to check them precisely,
we would need speci ¢ numerical domains and memory models. We will show in Section
6.5 how using dierent parameters ifiheckmate to analyze it successfully. Note that the
example is written idava style code, but the analysis works on thgecode obtained
compiling it with javac.
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JAVA class
Source tload 1 Control
static Flow
Graph Result

th1: 00—..>ai
th2: 0'0—..>0'i

Analyzer —»

Numerical Domain - Output
{L,0,+ - T}
|A data race may
happen at line 5
Pro perty »of class Temp when
Memory Model Checker lexecuted by thread
> th1.
Happens-before The value may be
written in parallel
by thread th2 when
lexecuting line 16 of
Property | class MyThread
D Input of the analysis Data race

D Analyzer
D Result

Figure 6.2: Overall structure gtheckmate

6.4 Structure

Figure 6.2 depicts the overall structurefdieckmate. The rst step of the analysis is to
receive the source code oflava program, compile it withavac, and build up the control

ow graph. Thenf heckmate builds up an approximation of the program's semantics, i.e.
an element of the thread-partitioning trace semantics. The inputs are a memory model
and an abstract numerical domain. Finally it checks if a given property received as input
is respected by the given abstraction. If it is not the case, a list of warnings is displayed
following one of the two user interfaces introduced in Section 6.6.

In the following of this section we present the interfaces of the three inputs of the analysis,
I.e. memory models, numerical domains, and properties.

6.4.1 Property

Figure 6.3 depicts the UML object diagram of the implementation of propeRregerty
Interface requires to de ne a methaoteck that given a state of thread-partitioning trace
domain returns an object of typdert. This contains all the warnings produced checking
the property.

Property interface is implemented by two classes:

DeadlockProperty: it checks if a program may contain a deadlock on monitors.
When a monitor is locked, the reference representing this monitor is passed to
monitorenter. Through our may-aliasing domain we have an over-approximation
of all the possible concrete references that may be locked by reanhorenter
statement. So we can build up an abstract waiting graph that over-approximates all
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Figure 6.3: The UML object diagram of Property class
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Figure 6.4: The UML object diagram of NumericalDomain class

the concrete waiting graphs. We check on it if a loop may appear. If it is the case,
it means that the program may contain a deadlock on monitors;

SingleStatementProperty: it is a generic class that allows to instantiate etient
properties. These have to work checking each state of computation separately. In
particular, the constructor of this class receives an object of Wgtor. This in-
terface requires to implement a methdteckSingleStatement. It receives as pa-
rameters a state, an objedert, a thread identi er, the analyzed statement, and the
call stack. It checks if the property is validated, and eventually it adds warnings on
the givenAlert object. All the properties except deadlock are implemented through
these visitors.

6.4.2 Numerical Domain

Figure 6.4 depicts the UML object diagram of the implementation of numerical domains.
InterfaceNumericalValue requires to implement all the abstract arithmetical operators
(add, multiply, ...), the evaluation of conditionse6tTrue andtestFalse), and the com-
mon operators on latticete6sEqual, lub, andwidening). This interface is directly im-
plemented by all our numerical domains.

6.4.3 Memory Model

Figure 6.5 depicts the object diagram of the interface of the memory model following the
standard UML. The core of the diagram is the description of the inteN&reoryModel.
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Figure 6.5: The UML object diagram of MemoryModel class

Two methods are de ned on it;

get: itreceives as parameters a reference, a string identifying the eld to be read, the
current state (containing also the call stack and the thread that executes the current
read), and the statement that is used to read the value. It returns the value read on
that locations. It takes the upper bound of all the values written in parallel by other
threads and that can be seen following a memory model.

factory: it receives as parameters an object of tipdtiThreadResult (that is the

class that represents elements of our abstract thread-partitioning trace semantics)
and the number of iteration of the multithreaded xpoint semantics. It returns an
object of typeMemoryModel. This has to provide the values written in parallel
following the given abstract element. It chooses to apply the lub or the widening
operators relying on the number of iterations already performed.

In f heckmate this interface is implemented only by the cl&#8MemoryModel. The
three memory models implemented filneckmate are obtained instantiating this class
passing dierent parameters to the constructor. The implementation is based on the theo-
retical approach developed in Chapter 3.

6.4.4 An Example of Interaction

Figure 6.6 depicts an UML sequence diagram that represents one possible execution of
f heckmate. The analyzer requires a memory model and a numerical domain when the
analysis is launched. During the analysifieckmate uses the memory model in order

to know which values written in parallel are visible at a given point of execution, and the
numerical domain in order to approximate numerical values. Once a xpoint is reached,
the analysis obtains an object representing the abstraction of all the possible executions
of the program. Then this abstract result is passedimperty object that checks if the
property is respected. Also in this context, the memory model and the numerical domain
are used in order to have information on the execution as during the analysis. Finally,
f heckmate obtains an object of typalert: it contains all the warnings produced while
checking the property. So it shows the warnings and it ends the analysis.
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Figure 6.6: An example of interaction during the analysis



6.5. Parameters 125

(a) Sign lattice (b) Parity lattice

Figure 6.7: Numerical domains

6.5 Parameters

In this section we introduce the main parameter§ ledckmate.

6.5.1 Properties

Many di erent properties of multithreaded programs may be interesting. A rst set is
composed by the ones interesting also at single-thread level, e.g. division by zero. In
addition there are other properties speci c of parallel programs, e.g. data race condition.
In f heckmate we implemented a representative set of properties of both groups:

division by zero,

null pointer accesses,

over ow,

data races,

deadlock on monitors,

determinism and weak determinism, as de ned in Chapter 4.

Other properties may be easily added teeckmate.

Example: On the example presented in Section 6.3 we are interested in checking if
a data race may happen, and iNallPointerException may be thrown. Ag heckmate
is parameterized by the property, we can build up an abstraction of its multithreaded
executions, and we can check on that both the properties.

6.5.2 Numerical Domain

We implemented some well-known non-relational abstract domains: Sign [25] (Figure
6.7a), Interval [25] (Figure 6.8), Parity [27] (Figure 6.7b), and Congruence [56] (Figure

6.9).

Example: Suppose to analyze the example introduced in Section 6.3 using Sign domain.
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Figure 6.8: Interval lattice

Figure 6.9: Congruence lattice

We check that the amount of the bank account is positije jut we cannot precisely
analyze the conditioiif(temp < 100) of MyThread. In fact, + may be< 100. So we
conclude thabull may be assigned t®ystem:a. After that this write action is propagated,
System:a:printAmount() in System may cause alullPointerException asSystem:a may
benull. This happens because the numerical domain is too approximated. If we use the
Interval domain, we check that the value written ®ystem is [1000::1000]. So the
conditionif(temp < 100) cannot be evaluated to trusyll cannot be assigned to eld
System:a, and nally the NullPointerException cannot be thrown.

6.5.3 Memory Models

Memory models specify which values written in parallel may be seen by a read action.
Intuitively, it may be implemented as a method that given a point of the computation, a
shared variable, and a state of the multithreaded execution, returns a set of visible values,
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i.e. values written in parallel by other threads. This approach has been formalized in
Chapter 3. In this way, we are in position to parameterjzbeickmate on it, and we may
develop many memory models.

First of all, we implement the happens-before memory model. In addifibackmate
contains other two memory models that are more approximated. The goal of their im-
plementation is to compare the computational overhead induced by more precise memory
models. A rst abstraction ignores the synchronize-with relation on monitors. The second
one abstracts away also the relation that traces when and by whom a thread is launched.
Example: Suppose now to analyze the data race condition on the example introduced
in Section 6.3. If we use the most approximated memory model, we suppose that all the
values might be written in parallel. This means that the synchronize-with relation is not
traced when a thread is launched. So the values written before this action would be seen
as written in parallel with the statements executed by the started thread System:a:

amount = 1:000 of System would be seen as written in parallel with all the statements of
MyThread. As the rst action is not synchronized on any monitpheckmate produces

a false alarm signaling that there may be a data race. Using a more re ned memory model
(both the happens-before one and the intermediate version, that traces the synchronize-
with relation when a thread is launched) we check thgdtem:a:amount = 1:000 of
System cannot be executed in parallel with statementsigthread. So that they do not

form a data race.

Thanks to our must-aliasing domain we precisely discover that the accesses performed
inside the twosynchronized blocks are synchronized on the same monitor, and so that
they cannot produce a data race.

6.6 User Interfaces

We implemented two user interfaces:
a command line tool,

anEclipse plugin, that can be installed in this development tool and used through a
graphic interface.

6.6.1 Command Line

The command line tool is composed by one le. It can be executed laungnmag-jar
checkmate.jar [...]
[...] contains the parameters of the analysis as follows:

<mainclass > -p: <prop> [-d: <dir >] [-n: <nunm»] [-m: <mm] where:

<mainclass > is the name of the class to be analyzed. It has to contaimtie
method of the multithreaded application.
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-p: <pro> sets the property to be analyzed.
<pro>:
— d: Datarace
— | : Deadlock
— n: Null pointer access
— 0: Over ow
— z : Division by zero
— p: Determinism

— w : Weak determinism
-d: <dir > sets the directory containing the .class les to be analyzed.

-n: <nun? sets the numerical domain, where
<nun:

— t: Top (don't collect numerical information )

— s: Signs

— p: Parity

— i : Intervals (default)

— ¢ : Congruence
-m:<mm sets the memory model, where
<mm>:

— a: All values in parallel

— t: Launch of threads

— h: Happens-before (default)

The name of the class and the property must be speci ed. The other parameters are
optional.

Typically during the analysis some informations are printed on the standard output.

“Iteration n ”: it reports which iteration of xpoint computation is going to be
computed. A priori we do not know after how many iterations the computations
will end. Usually it requires no more than 5 iterations, but this value may change
considerably from a program to another, and it also relies on the numerical domain.

“Class <class > not found in the provided directory. Read from

the local repository of JVM. Static variables not initialized

it means that a class has not been found in the directory passed to the analyzer and
it was read by the repository of the current virtual machine. In this way we cannot
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Figure 6.11: Choosing
the property

Figure 6.12: Output

Figure 6.10: Launching the analysis

analyze the static elds at the beginning of the computation. Accessing one of these
elds would produce an error. Usually we need to read classes from the current
repository because all thrava applications refer to libraries. For instance all the
classes when are instantiated call the constructor of aadang.Object

The warnings will be display on the standard output at the end of the analysis. If the
property is validated a speci ¢ message will con rm it.

6.6.2 Eclipse Plugin
Installation

As common forEclipse plugins, the application is composed byjar le. This le has
to be copied insidglugins directory ofEclipse main directory. Then it is necessary to
launchEclipse with -clean option.

Running the Analysis

In order to start the analysis, the class to be analyzed has to be opened in the package
explorer window. Then the user has to click on “Checkmate”. Figure 6.10 shows it.

Once he clicks on it, a dialog will appear (Figure 6.11). This requires to select which
property we want to analyze. Finally, the results of the analysis will be displayed in a
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view (Figure 6.12).

In addition, the user can set which memory model and numerical domain apply during
the analysis. The default values are the happens-before memory model and the Interval
domain.

6.7 Experimental Results

We testf heckmate on some multithreaded programs presented in [138, 94, 85, 73]. We
investigate both the precision and the performances of the analysis.

We execute it on an Intel Pentium D 3.0 Ghz with 2 GB of RAM running a Windows
Server 2003 witllava virtual machine version 1.6.06.

6.7.1 Common Patterns of Multithreaded Programs

Lea [85] presented an overview of common patterns when developing concurrent pro-
grams inJava. In particular, he introduced some representative examples in order to
explain in practice the concepts presented throughout the book. He showed which er-
rors may arise on these examples and how these can be xed. We fapgtkmate to

some examples in order to discover such errors. Usually Lea presents some classes, and
then explains by words why this class has to be considered correct, or which undesirable
behaviors may expose. Singdeckmate performs a whole-program analysis, for each
example we developmain method that exposes the behavior of interest.
ExpandableArray (Appendix A.1): This class implements an array that is automatically
expanded if the user want to append an object when the array is full. All the methods are
synchronized. If an user performs in parallel two writes or a read and a write, a con ict
arises. In fact, even if all the methods are synchronized, the position of the elements in
the array and the read element may be non deterministic becausesoéli interleavings

of threads' executions.

This program does not contain data races, fheckmate precisely discovers it. Instead

the con icts are exposed by the deterministic property, that precisely signals the non de-
terministic behaviors of the two accesses.

LinkedCell (Appendix A.2): This class implements a list @buble values. The meth-

ods that read the value contained in the current cell and write a new value are both
synchronized. The method that returns the sum of all the cells is not synchronized but it
relies on synchronized methods, and so it does not expose any data race. Finally, a method
perform an incorrect sum, reading without synchronized methods the value contained by
the rst element of the list, thus potentially causing a data race.

f heckmate precisely discovers that the well-synchronized sum method does not expose
any data race if executed in parallel with writes on the list. In the same way, it discovers
that the ine ectively synchronized sum causes a data race. If we apply the deterministic
property we discover that a non deterministic behavior happens even if the program is
well-synchronized.
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Document (Appendix A.3): This class implements a document that contains an enclo-
sure. A synchronizegrint method that prints the content of the document is provided.
Another synchronizegdrintAll method prints all the content using the synchronigeuat
method of the current object, and then invokes the same method on the enclosure. Sup-
pose now to have two documernts andd2 whose enclosure is the other document, e.g.
the enclosure of documedti is d2. If we print concurrently these two documents, this
may cause a deadlock. For instance the rst thread may start the execupiontafl and
acquire the monitor odi1 starting the execution gdrintAll. Then the control may switch

to the second thread, that acquires the monitat2oénd it yields on the monitor af1.

Finally, the control switches to the rst thread, that start yielding on the monitai2of
causing a deadlock.

f heckmate precisely discovers that this program may contain a deadlock.

Dot (Appendix A.4): This class implements a dot in a Cartesian plane. Its coordinates
are stored in @oint object. The methods provided IBpint class in order to access the
information are not synchronized, but all the methods of diastsare synchronized. On

the other hand, if we move a point and shift its x axis value concurrently we may obtain
nondeterministic executions.

f heckmate validates this program applying the data race condition, as in fact this pro-
gram is data race free. In addition, it discovers the nondeterministic behaviors precisely
applying the deterministic property.

Cell (Appendix A.5): This class implements a cell containing an integer value.géhe
andset methods are both synchronized. In addition, anatliechronized method allows

to swap the content of the current object with the one of the object passed to the method
as parameter, using the getter and setter methods. If we swap the content of two cells
twice in parallel, we may obtain a deadlock.

f heckmate detects this behavior precisely applying the deadlock property.
TwolLockQueue (Appendix A.6): This class implements a queue on which we can take
and put objects. If we execute a take and a put action in parallel when the queue is empty,
the take action may returnraull value, as it may be executed before the put action.

f heckmate precisely discovers it. In particular, if the queue is empty when the two th-
reads are executed in parallel, it signals that the value returned by the take action may be
null. In order to obtain this result, we add an access to a eld of the object returned by
the take action, and then we analyze this program with\imkéPointerException prop-

erty, that discovers thatMullPointerException may happen. If we add an element before
launching the two actions in parallegiheckmate precisely discovers that the value re-
turned by the take action cannot be null.

Account (Appendix A.7): This example is quite complex and involves many classes. In
particular, it implements an immutable and an updatable account, an account holder, and
two account recorders, one correct and the other one evil. We refer the interested reader
to [85] for more details about the implementation of this classes. The potential problem
is that if the account holder accepts money without using an immutable instance of the
recorder, an evil recorder may cause a non-deterministic behavior.

f heckmate precisely signals it. In particular, if the account recorder is not evil or the
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account holder use an immutable instance of the recorder, it proves that the program is
deterministic. On the other hand, if the account recorder is evil and the account holder
does not oblige the use of an immutable instance of the recorder, it signals that a non-
deterministic behavior may happen.

Discussion

f heckmate performs a precise and correct analysis of the representative set of examples
we chose from [85]. In particular, in each case it discovers the bug or proves that the
program is correct with respect to the behavior of interest. This result is achieved through
the high level of exibility of f heckmate. Using di erent properties allows us to tune

the analysis in order to catch all the bugs. In addition, we found out that the deterministic
property is often the only way to discover the behavior of interest. This con rms our
impression that this property is in position to break the limits of existing properties applied
to multithreaded programs, e.g. the data race condition.

6.7.2 Weak Memory Model

We take some challenging examples presented in [94] (journal version of the paper that
introduced thelava memory model [95]) in order to test the precision fdieckmate.

We write them inJava style (i.e. adding a method main that instantiates and launches the
threads), we compile them wifavacc, and we analyze thieytecode with f heckmate

using the happens-before memory model and the Interval domain.

Figure 6.13a: This example is quite similar to the one presented in Section 3.1.1. A
compiler may switch the statements of each thread. In fact they work on disjoint sets of
variables, and so they are independent. Our analysis correctly traces this behavior, and it
checks thatl, r2, andr3 may be equal to zero at the end of the execution.

Figure 6.13b: In order to obtain the required behavior, it seems that a thread may write
a variable before it reads it. Instead, this behavior may be exposed by some compiler
optimizations as pointed out in Section 2.2.2 of [94]. Our analysis soundly approximates
it. This behavior is exposed after the third iteration of the multithread semantics as

at the rstiteration value 1 is written o,
at the second iteration this value is writtenTdyread1 onrl and then oty,
at the this iteration 1 is read Byhread2 throughy and written inr2,

during the fourth and last iteration the analysis does not expose any new behavior
and so it converges.

Figure 6.13c: Thanks to the Interval domaiifiheckmate precisely traces that onlp{:0]

can be assigned td andr2. As our analysis is context-sensitive, it checks that the con-
ditions of both threads cannot be evaluatedrt®, and so that value 42 will never be
assigned.
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Threadl | Thread2
rl1=x; X =1;
y=1 3=y,
r2 = x;
(&) Figure 1. Ini-
tially, x==y==0.

rl==r2==r3==0 is
legal behavior

Threadl ‘ Thread?2

rl=x; 2=y,

if(rl! = 0) | if(r2! = 0)

y = 42; X =42;
(c) Figure 4. Initially,
x==y==0. Correctly syn-

chronized, sal==r2==0is
the only legal behavior.

Threadl | Thread2
r1=x; 2=y,
y=rl;, |r3=r2j;
X =1r3;
(b) Figure 3. Ini-
tially, x==y==0.
rl==r2==r3==1 is
legal behavior.
Threadl Thread2
rl1=x; 2=y,
ifrl == 1) | if(r2 == 1)
y=1, Xx=1;
if(r2 == 0)
X =1;
(d) Figure 7. Initially,
Xx==y==0. rl==r2==1s

legal behavior.

Threadl Thread2
r3=x; r2=y; Thread1 ‘ Thread?2 ‘ Thread3 ‘ Thread4
n;(rf 4=12= 0) | x=r2 rl=x; 2=y, z=42; | r0=z
I‘1_=X', y=rl; |[x=r2 X = 10;
y= rlf () Figure 12. Initially, x==y==2z==0.
) ' r0 == 0;rl1 == r2 == 42 is legal behavior.
e) Figure 11. Ini-
tially, x==y==2z==0.

rl==r2==r3==42 is a

legal behavior.

Threadl Thread2 Thread1 Thread?
rl1=x; r3=y;
C:?.f: X, O:Zf: Vi if(rl = 0) X =13,
guhile(rl == 0); | guhile(r2 == 0); ol i
y = 42; X =42; y —_r2z
(9) Figure 25. Initiallyx == y == 0. Correctly 7 .
synchronized, so non-termination is the only le- (hz_ F'g‘ire 217. Initially,
gal behavior X==y== Compiler

transformations can result in
rl==r2==r3==1.

Figure 6.13: Some examples taken from [94]
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Figure 6.13d: We need three iterations in order to propagate the value 1. The rst iter-
ation writes it on variable, the second propagates it chandy, and nally the third
iteration assigns it te2. In this way we obtain the result required by the example.

Figure 6.13e: Value 42 is assigned te andy by Threadl. Then it is assigned by
Thread2. Finally it comes back to the rst statement dhreadl that assigns te3 the
value contained by. In this way we capture the behavior of interest.

Figure 6.13f: As this example involves 4 threads, it requires some more iterations of
multithread semantics in order to reach a xpoirftheckmate soundly discovers that a
possible behavior igl == 0;rl == r2 == 42.

Figure 6.13g: This example is similar to the one contained by Figure 6.13c. Interval
domain precisely nds out that the condition of while loops cannot be evaluatiadsto
Then value 42 is never assigned neithex taor toy, and so the threads never exit the
loops. f heckmate discovers it.

Figure 6.13h: The situation is quite similar to the one depicted by Figure 6.fBeckmate

is precise with respect to the expected behavior.

Discussion

In all the exampleg heckmate analyzes them successfully producing a sound and precise
abstraction of the behavior of interest. As the gures depict toy examples (usually no more
than 200bytecode statements and 4 threadgheckmate requires always less than one
second in order to execute the analysis.

These results are quite encouraging. We deal with examples aimed at explaining the main
features of thdava memory model, and this is more re ned than the happens-before one.
Nevertheless, we precisely analyze them. In general, our analysis is able to catch the
behaviors presented by the examples in [94] in all the cases in which they do not involve
volatile variables. In other cases, our analysis does not take into account the fact that a
variable isvolatile. So we obtain results that are still sound but too much approximated.
On the other hand, we think that our framework is extensible and exible enough in order
to take into account alselatile variables.

In addition, note that our analysis provides an approximation of all the possible behaviors
of a multithreaded programs, and not only on a subset (e.g. with atmiotgrieavings)

of them. Nevertheless, the analysis is really fast, as it is able to obtain an immediate
output when analyzing small programs, i.e. with a couple of threads and less than 200
bytecode statements.

6.7.3 Incremental Example

We applyf heckmate to an incremental example that simulates the operations performed
by a bank. Thdava code used in these examples is reported by Appendptigckmate
analyzes théytecode obtained compiling it withavac.

Table 6.1 reports the number of abstract threads and statements of each program. Table
6.2 reports the time of execution in milliseconds required to build up the abstraction of the
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Program | # ab. th. | # st.
Testl 3 452
Test2 5 684
Test3 7 807
Test4 11 1049
Test5 13 1173
Test6 15 1405
Test7 17 1526
Test8 19 1758
Test9 20 1878
Test10 24 2294

Table 6.1: Number of abstract threads and statements

Top Sign Intervals Parity Congruence

1 814 361 217 404 294

2 409 391 356 620 545

3 712 595 925 521 642

4 799 823 3806 703 642

5 (1090 919 5887 779 616

6 |1382 824 7161 900 986

7 | 1071 1647 9289 1340 863

8 | 1018 1269 10999 1263 1221

9 | 1421 2212 11691 1274 1623

10| 1466 2432 17016 863 1906

Table 6.2: Times of analysis (msec)
Weak det. Det. Data race Null Overflow Div. by 0 Deadlock

1 31 32 47 31 15 16 16
2 78 78 125 a7 47 47 15
3 125 125 172 187 63 62 16
4 250 250 359 125 94 94 6pR
5 359 360 484 172 125 125 78
6 547 562 828 266 219 203 125
7 719 734 1047 313 250 250 156
8 1000 1047 1609 438 359 360 250
9 1203 1234 1938 516 406 422 265
10 2031 2094 3609 828 688 687 500

Table 6.3: Times of properties’ analysis (msec)
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Program #st. | #ab. th.
philo 213 2
forkjoin 170 2
barrier 363 3
sync 320 3
crypt 2636 | 3
sor 1121 | 2
elevator 1829 | 2
lufact 3732 | 2
montecarlo | 3864 | 2
total 14248 21

Table 6.4: The analyzed programs

program using dierent numerical domains. The analyzer is quite fast: rarely it requires
more than a couple of seconds in order to converge. Only Interval domain requires more
time (about 17” in the worst case), as it is the more complex domain that we implemented.
In particular we are interested in studying the complexity of the analysis with respect to
the number of statements and abstract threads analyzed. So we draw a plot for each nu-
merical domain with the number of abstract threads in x-axis, and the time of execution
in y-axis.

The behavior of the Top domain (Figure 6.14a) is not regular. The time of executions
increases but, as the analysis is quite fast, it is hard to conclude which is exactly the be-
havior of the analysis. More regular results are obtained with Parity (Figure 6.14d), Sign
(Figure 6.14b), and Congruence (Figure 6.14e). The complexity is linear with respect to
the number of abstract threads in all the cases. Finally, Interval domain (Figure 6.14c)
seems to expose a quadratic complexity.

We study how the time of the analysis changes with respect to the number of abstract
threads analyzed. Figure 6.14f plots the times of execution per thread. All the domains
except Intervals require a constant time per thread. Instead, analyzing the application with
Intervals the times per thread augment with respect to the number of abstract threads. This
increase seems to be linear, and this con rms that the overall time required by the analysis
is quadratic with respect to the number of abstract threads.

Starting from these experimental results, we can conclude that in practice the com-
plexity of f heckmate is quadratic with respect to the number of threads and statements.
This result is promising, but we think that the analysis must be optimized. In particular the
Xpoint computation of single-thread semantics is sometimes slow as it works at really
low level, i.e. simulating step by step the actions of lhea virtual machine.
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6.7.4 Benchmarks

We apply f heckmate to the analysis of some well-known examples and benchmarks
taken from the literature. Two applicationgh{lo, andelevator) are taken from [138],

while the othersH{arrier, forkjoin, sync, sor, crypt, lufact, andmontecarlo) are taken from

the Java Grande Forum Benchmark Suite [73]. We remove from the original programs
only the calls to system functions (e.§ystem:out:printin) as sometimes they deal with
native methods or re ection that are not supportedfiineckmate. Table 6.4 reports the
analyzed programs, the number of statements and the number of abstract threads. Note
that in all the cases the abstract threads approximate a potentially unbounded number of
concrete threads.

We apply the analysis to all the benchmarks with all the possible combinations of memory
models and abstract numerical domains. Table 6.5 reports the computational times. For
each numerical domains we report the times of execution

using the more relaxed memory model (coluAmR),

using the memory model that traces only when a thread is launched (calun
using the happens-before memory model (colui),

required to compute the semantics of each thread in isolation (cdBufn

For each numerical domain, we plot the times of the analysis using the three memory
models with respect to the overall number of analyzed statements. Figure 6.15a reports
the result obtained applying the top domain, Figure 6.15b with Sign domain, Figure 6.15c¢
with Interval domain, Figure 6.15d with Parity domain, and Figure 6.15e with Congru-
ence domain. In all the cases, for programs with less than 500 statements the analysis
is quite fast. In addition, the computational times of the same program are comparable
using di erent numerical domains. The analysiscofpt is always quite faster than the
one ofelevator, even if it is bigger. This happens because of the internal structure of the
program. With the exception of Interval and in part of Sign domains, the time of the anal-
ysis does not grow too much with respect to the number of statements. The complexity
seems to be almost linear with respect to it.

Intervals and in part Signs do not respect this rule. In particular, the analysmntdcarlo

is quite slower. We want to check if this slowness is due to our approach or to the xpoint
computation of a single thread, i.e. to the structure of the program. Table 6.6 reports
the overhead due to the multithread xpoint computation with respect to the single-thread
Xpoint semantics. In this way, we can check if the slowness depends only on the single-
thread semantics, or on our global approach, i.e. the computation of two nested xpoints.
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Figure 6.15f depicts the overhead of the multithread xpoint computation using Inter-
vals and the happens-before memory model. It makes clear that this overhead does not
depend on the number of threads or statements analyzed. Its values are between 250%
and 450% (with the exception ofypt), they do not depend on the length of the program.

In fact, we often obtain the biggest overhead for the smallest application. In addition,
for bigger applicationdor, elevator, lufact, andmontecarlo) the overhead is almost sta-

ble (300% in average). This result is quite encouraging: it means that in average we need
about 3 iterations of single-thread semantics in order to reach a xpoint in our multithread
semantics. In addition, we think that we can improve this result as our implementation
is not optimized at all. For instance, we may parallelize the analysis @frdnt threads
during the same iteration of the multithread semantics.

Finally we compare the computational times usingedtent memory models. For
programs with less than 500 statements, the analysis is too fast to obtain signi cant com-
parisons. So we consider only the analysisrgpt, sor, elevator, lufact, andmontecarlo.

Figure 6.16a depicts the overhead of the analysis of happens-before memory model with
respect toAP memory model. Figure 6.16b depicts it with respecTtomemory model.

The overhead ofB with respect toAP is rarely more than 10%. In average it is about
5%. It is in average about 2% with respectTio and rarely more than 5%. Also these
results are quite encouraging: the overhead of more re ned memory models is quite lim-
ited. This means tracing more and more relations between threads seems nattto a
dramatically the performances of the analysis.

6.8 Related Work

In the literature, some generic analyzers applied to sequential programs, and some anal-
yses particular for a speci ¢ property have been proposed. We related our work with the
existing generic analyzer in Section 6.1. Here we refdteckmate with other analyses

speci c for a given property that is implementedfimeckmate.

6.8.1 Concurrency Properties

Many approaches have been developed in order to statically analyze multithreaded pro-
grams. Most of them deal with deadlock and data race detection [121]. First of all,
usually these approaches suppose that the execution is sequentially consistent, but this
assumption is not legal under, for instance, Jaea Memory Model. In addition, these
analyses are particular for this property, and they cannot be applied to other properties,
while f heckmate has been already applied successfully to a wide set of properties.

Data Race Analysis

The (maybe) most known work of last years has been the type system developed by Abadi,
Flanagan and Freund [1]. This work is modular, and it is proved to scale as it was suc-
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cessfully applied to programs of a couple of hundreds of thousands of code lines. On
the other hand, it requires manual annotation, and it does not provide any information on
possible missing locks when a data race is detected.

Naik and Aiken [103] apply a must not alias analysis through a speci ¢ type system in
order to check the absence of data races. Race freedom is proved by checking that if two
locks must not alias the same monitor, then the accesses to the shared memory must not
be on the same location. The experimental results seem to underline that the approach
can not scale up and they are worse than our results, as this analysis requires more than 3
minutes to analyze only 2 classes.

Kahlon et al. [75] presents a model-checking based analysis in order to statically detect
data races. The work has been divided into threeiint steps: (i) discovering which
variables share information (ii) checking through a must alias analysis the owned moni-
tors when shared variables are accessed (iii) reducing the false warnings. The proposed
must-alias analysis is quite similar to ours. This approach does not provide any informa-
tion about possible missing locking actions.

Another data race detector based on model checking has been proposed by Henzinger
et al. [61]. The analyzed programming language synchronizes through atomic sections,
and so it is quite dierent from the lock-based synchronization of Java. Moreover the
experimental results are acted by the well-known state explosion problem.

Deadlock Detection

Many works are focused on the dynamic detection of deadlocks [13, 14, 39]. These tools
are able at runtime to detect if a deadlock happens at runtime. On the other hand, if a
program may expose a deadlock but we test it only on deadlock-free executions, these
tools do not discover the deadlock.

About static analyses, Williams et al. [140] propose an analysis that detects deadlock
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on synchronized statements andait invocations. This analysis was implemented and
applied to many libraries, and it discovered 14 distinct deadlocks. This analysis makes
some assumptions on how an user interacts with the libraries. In order to analyze a library
it supposes that the client code “well-behaved”. In this way, even if a library is validated
by this analysis, there may be a deadlock when using it without respecting these assump-
tions.

Awargal et al. [3] present a type system in order to detect at compile time potential dead-
locks onsynchronized statements. The information inferred by this static analysis is
used in order to restrict the runtime checks of possible deadlocks only on locks that are
not proved to be deadlock free at compile time. The analysis has not been implemented
but only applied by hand. The authors studied in the details the speedup of the runtime
that uses this information.

6.8.2 Other properties

Many static analyses and tools have been proposed in order to detect accesses to null
pointers [132, 40, 68, 69], divisions by zero [30, 48], and over ows [74]. Without entering

in the details, usually these approaches are sound only for sequential programs and they
do not support concurrency. On the other hand, they are often more precise than the
ones obtained applyinfheckmate to these properties, as we applied our analyzer to this
property without developing a speci ¢ analysis, e.g. a speci ¢ numerical domain.

6.9 Discussion

In this chapter we presentgdeckmate, a generic static analyzer ¢dva multithreaded
programs. We implemented some well-known non-relational numerical domains, some
properties, and some memory models. We applied it to some interesting case studies, to
an incremental application, and to a set of well-known benchmarks. These experimental
results show both its precision and eiency. In this way we applied the theoretical frame-
works developed in Chapter 3 and 4 through the semantidavaf bytecode statements
introduced in Chapter 5.
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Static Analysis of Unsafe Code

The last step of our work will be to prove the industrial interest of generic analyzers,
and to show the eorts required in order to instantiate such analyzers on a speci ¢ prop-
erty. In this context, we extend an industrial product to the analysis of a speci c property.
Clousot is a generic static analyzer based on abstract interpretation developed at Mi-
crosoft Research. Even if it is sound only at single-thread level, it allows us to investigate
generic techniques of static analysis and to show thats required in order to apply a
generic analyzer to a property of interest. In the future, the same analysis might be intro-
duced inf heckmate. This opens the way in order to apply our prototype to the analysis
of industrial programs.

In particular, in this Chapter we appousot to the analysis of unsafe code, i:&lET

code containing direct pointers. We develop a new focused relational doStgi), @nd

we combine it with some other well-known numerical domain improving its precision.
We implement the analysis, and we study the experimental results. The analysis results
to be both precise and scalable. It is in position to analyze more than 20.000 methods in
a couple of minutes, and we nd bugs on shipped code analyzing just a small case study.
This chapter is based on the published work [47].

7.1 Whatis Unsafe Code

The :NETframework provides a multi-language execution environment which promotes
the safe execution of code. For instance, in (safe) C# it is not possible to have un-
initialized variables, unchecked out-of-bounds runtime accesses to arrays or dangling
pointers. Memory safety is enforced by the type system and the runtime: it is not possible
to access arbitrary memory locations. Object creation and references are allowed freely,
but object life-time is managed by a garbage collector and it is not possible to get the
address of an object; pointers' arithmetic is not allowed. Many other current program-
ming languages a¥va apply the same type of restrictions. As a consequence, safe C#
provides a safer execution environment than C &+C

Nevertheless, there are situations where direct pointer manipulations and direct mem-
ory accesses become a necessity. This is the case when interfacing with the underlying op-
erating system, when implementing time-critical algorithms or when accessing memory-
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mapped devices. For this purpose, C# provides the ability to write unsafe code (unsafe
C#). In unsafe code, it is possible to declare and operate on pointers, to perform arbitrary
casts, to take the address of variables or elds. C# provides syntactic sugar to denote
blocks of unsafe code, which avoids the accidental use of unsafe features. Unsafe code
cannot run in untrusted environments. This is the solution providetlBjfframework;
insteadJava does not allow at all the free management of pointers. Nevertheless, also
Java programs need sometimes to use pointers; in order to do that, the solution provided
by this language is to de ne native methods.

7.2 Design by Contracts

Our work can be seen also as a contribution in the context of the ongoargte improve

the reliability of the:NETplatform by systematic use of the Design by Contracts (DbC)
methodology [100] supported by static checking tools.

The basic idea of DbC approach is to de ne some constraints on how software elements
interact. Through these constraints the software reliability is improved, and developers
can reason modularly when writing programs.

A huge application of this methodology has been in object-oriented programs. In this
context, contracts are commonly used to specify:

preconditions of methods, i.e. contracts that have to be satis ed each time the
method is called;

postconditions of methods, i.e. contracts that have to be satis ed at the end of the
method;

class invariants, i.e. contracts on class elds that have to be always satis ed.

For instance, consider the following method:

int div(int a, int b)
f
int res=a;
for (int i=0; i<=Db; i++)
res/=b;
if (res<0) return res;
else return res;

A precondition of this method is thatmust not be equal to zero; indeed, an implicit
precondition is thab has to be positive. A valid postcondition is that the result is always
0.
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7.2.1 Foxtrot

FoxTrot is a language independent solution for contract speci cationBSlET It does

not require any source language support or compiler modi cation. Preconditions and
postconditions are expressed by invocations of static meth@alstract:Requires and
Contract:Ensures) at the start of methods. Class invariants are contained in a method with
an opportune namépjectinvariant) or tagged by a special attributehjectinvariant]).
Dummy static methods are used to express meta-variables such aSantrgct:Old(x)

for the value in the pre-state vfor Contract:WritableBytes(p) for the length of the mem-

ory region associated with. These contracts are translated to MSIL using the standard
source language compiler.

Contracts in thd=oxTrot notation (using static method calls) can express arbitrary
boolean expressions as pre-conditions and post-conditions. We expect the expressions
to be side eect free (and only call side-ect free methods). We use a separate purity
checker to optionally enforce this.

A binary rewriter tool enables dynamic checking. It extracts the speci cations and
instruments the binary with the appropriate runtime checks at the applicable program
points, taking contract inheritance into account. MeskTrot contracts can be enforced
at runtime.

For static checkingroxTrot contracts are presented@ousot as simpleassert or
assume statements. E.g., a pre-condition of a method appears as an assumption at the
method entry, whereas it appears as an assertion at every call-site.

7.3 Our Contribution

Most of the checks commonly enforced by the runtime, such as bounds checking, are
not present on pointer manipulating code. As a consequence the programmer is exposed
when developing unsafe code to all the vagaries /6+G programming, such as ber
and array over ows, reading of un-initialized memory, type safety violations, etc.. Those
errors are di cult to detect and track down, as no runtime exception is thrown at the error
source. For instance, an application cannot immediately detect that soraeduer ow
compromising its data consistency has occurred. Instead, it continues its execution in a
bad state, only to fail (much) later due to a corrupted state. Tracing back the cause of such
bugs to the original memory corruption is often very complicated and time consuming.

In this context, applying static analysis to check the respects of the bounds of allocated
memory is particularly appealing. In order to gain this goal, we ext@odsot with a
speci ¢ numerical domain in order to develop a precise and fast analysis of unsafe code.

7.3.1 Clousot

Clousot is a generic, language agnostic static analyzer based on abstract interpretation
for :NET It is generic in that it presents a pluggable architecture: analyses can be easily
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Figure 7.1: Clousot architecture

ldstack.i |duplicate i-th value on evaluation stack
Idresult |load the current result value

assert |assert top of stack is true

assume |assume top of stack is true

beginold|evaluate next instructions in method pre-state
endold |switch back to state at matching begtd

Table 7.1: MSIl+ synthetic instructions

added by providing an implementation of a suitable abstract domain interface. In partic-
ular, it can be plugged with derent numerical domains and in order to analyzesdent
properties. Itis language agnostic as it analyzes MSIL. All the programming languages in
:NETemit MSIL: using the debug information we can trace back the results of the analysis
to the source program.

Clousot has a layered structure as shown in Fig. 7.1. Each layer on the left presents
an increasingly abstract view of the code. An MSIL reader sits at the lowest level,
which presents a stack-based view of the code. Above that sitSaki€rot extractor,
which turns the dummy method calls expressing pre- and post-conditions into actual rep-
resentations of these, separating them from the method body. The analysis performed
by Clousot is intra-procedural. When a method is called, contracts written through
FoxTrot are extracted; the@lousot checks if preconditions are respected, and assumes
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postconditions in order to go on with the analysis after the method call.

The layer labeled MSIt represents an extension of MSIL with a number of syn-
thetic instructions that allow us to express all contract code as simple stack instructions,
similar to MSIL. The extensions used are listed in Table 7.1. Instrudtistack:i is a
generalization of a typicadup instruction that allows one to access values on the eval-
uation stack that are not at the top. This instruction is useful for example to access the
parameters inside a pre-condition inserted at a call-siteldFesult instruction is used in
post-conditions to refer to the result of the method. The meanirgsErt andassume
is equivalent for run-time checking: they both result in failure if the condition is false.
For static checking, they der in that the checker tries to validate assert condition
and issues an error if it cannot be proven. However, the static checker simply adds the
condition of anassume to its knowledge base without trying to validate it.

The next layers in th€lousot infrastructure (1) get rid of the stack by providing a
view of the code in the 3-address form (the direct analysis of a stack-based language is
hard and error-prone, [66]); (2) abstract away the heap by providing a view of the code as
a scalar program, where aliasing has been resolved (a common approach to separate heap-
analysis and value analysis, e. g. [18, 91]); and (3) reconstruct (most of the) expressions
that have been lost during the compilation (large chunks of expressions are vital for a
precise static analysis [92]).

On top of this infrastructure we build particular analyses, such as the one presented
in this paper regarding unsafe memory accesses. Such analyses are built out of atomic
abstract domains (e. dntv, LinEq, Pntg[93]), a set of generic domains (e. g. set of
constraints), and a set of operators on abstract domains (e. g. the reduced cartesian
product [27], the functional lifting). As a consequer@eusot allows building new and
powerful abstract domains by re nement and composition of existing ones.

7.3.2 Applying Clousot to the Analysis of Unsafe Code

Our analysis infers and checks the memory regions accessed by read and write operations.
A region of memory is denoted by a pdw; WB(p)i, wherep is a pointer andVB(p)
stands for the WritableBytes ¢, i.e., the size of the region in bytes accessible fjam
We only allow positive osets of pointers, thu&/B(p) is always non-negative.

Di erently stated, the pair stands for the range of addrepspst[WB(p) 1]. For
instance, ifx is anIint32 andp is anint32 , then the read operation= (p + 2) is safe in
the regionp; 12 : It reads 4 bytes (the size of &m32 in :NEY starting from the address
p + 8 (asp is a pointer tdnt32).

We use a combination of three domains to infer bounds on memory-accessing expres-
sions. The core is the new abstract domain of Stri@gp) which captures properties
of the form ofx a (y[+z]) b, wherea andb are integer constants, andy are
variables and is an optional variable {{z] means that may be part of the constraint
or not). Intuitively, a stripe constraint is used to validate the upper bound on memory
accesses. Intervalgv) [25] are used to validate the lower bound of accesses. We use (a
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modi ed version of) the Linear equalities domainfEq) [76] to track equalities between
variables.

We implemented our analysis fDlousot , a generic, intraprocedural and language-
agnostic static analyzer foNET9, 93]. It usesFoxTrot contracts to re ne the analysis
and to support assurfggiarantee reasoning for method calexTrot allows specifying
contracts inNETwithout requiring any language support. Contracts are expressed directly
in the language as method calls and are persisted to MSIL using the normal compilation
process of the source language. We tried our analysis on all the assembliesNEThe
framework, validating on average about 57% of unsafe memory accesses automatically in
a few minutes. In practice, the false alarms that we get are due to missing contracts: the
use of contracts will allow us to improve the precision. The analysis is fast enough to be
used in test builds.

The main contributions of the present work can be summarized as follows:

We introduce the rst static analysis to check memory safety in unsafe managed
code. Our analysis handles the entire MSIL instruction set and is fully implemented
in Clousot . This analyzer statically checks contracts, and can use them to re ne
the precision of the analysis, e. g. by exploiting preconditions. We tested it on all
the assemblies of th&lETiramework.

We de ne the concrete and abstract semantics for an idealized MSIL-like bytecode.
We prove soundness by using the abstract interpretation framework to relate the
abstract semantics with the concrete semantics.

We present a new abstract domain for the analysis of memory bounds. It is based
on the co-operation of several specialized domains. We prove its soundness, and
we show how it is eective in practice, by enabling a fast, yet precise analysis.

We discuss some implementation issues necessary to avoid loss of precision, as e.
g. the special handling that is required for the &#d statements xed is used

to set a pointer to the address of an allocated area of memory, and to pin this area
during the execution of the following sequence of instructions in order to prevent
the garbage collector from moving it).

7.4 Examples

In order to develop a speci ¢ analysis for unsafe code, we need to look deeply into the
peculiarities of this code. So our work starts analyzing the methodsEiframework

that deals with pointers. In this section, we report some representative examples taken
from or inspired by this framework.
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public virtual unsafe int GetByteCount(char chars, int count, bool ush)
f

// ... rest of the method omitted

char[] chArray = new char [count];

for (int i =0; i <count; i++)

f

chArray[i] = chars[i];
g
// ... rest of the method omitted

Figure 7.2: A method that copyount chars starting from a given pointer

7.4.1 From Source Code to MSIL

When unsafe code is compiled inWSIL, some transformations are automatically done,
following the type of pointers. When we access il element starting from a pointer
ptr of typetype, we are accessingjzeof(type) bytes starting from theizeof(type) i-th
byte ofpptr. This operation is made explicit &SIL level.

For instance consider the method depicted by Figure 7.2. The acdwassi] performed
inside thefor loop is compiled into the following bytecode:

Idarg.1
Idloc.1
conv.i
Idc.i4.2
mul

add
Idind .u2

Without entering too much into details of bytecode semantics, we have that
Idarg:1 loads the argumermhars,
Idloc:1 loads the local variable
it is converted tant, it is multiplied with the integer constant 2 (i.sizeof(char)),
nally, the value is read.

This piece ofMSIL code can be decompiled into the arithmetical express{ohars+

2 i). The unsafe access respects the bound of the allocated memory if and dvaysif
isde ned atleaston(chars + 2 i+ 1) bytes (as(chars + 2 i) reads two bytes starting
fromindex2 i),i.e.WB(chars) 2 i+ 1.
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static unsafe void InitToZero(int a, uint len)
f
Contract.Requires(Contract.WritableBytes(a) >= len sizeof(int ));

for (int i =0; i <len; i++)
f
@+i)=0; / (1)

Figure 7.3: A method that zeros a region of memory

7.4.2 Array Initialization

Consider thénitToZero method in Fig. 7.3. Itinitializes the memory regian §+4 len

1] to zero. The precondition requires that at ldest sizeof(int) bytes starting frona are
allocated. We express it usifi@xTrot notation: contracts are speci ed by static method
calls (e. gContract:Requires(: : :) for preconditions), and lengths of memory regions are
denoted byContract: WritableBytes(: ::). Section 7.2.1 contains more information about
contracts.

The write operation atl() is correct provided that: (a) 0, and that (b)VB(a) 4 i

4. We prove (a) using thintv abstract domain, which infers the loop invariantO.
We prove (b) using th&trp abstract domain, which propagates the entry stés€a)

4 len 0 tothe loop entry point, discovering the loop invarisvB(a) 4 (i+1) O.

7.4.3 Callee Checking

Methods such aiitToZero that use unsafe pointers are typically internal to the .NET
framework and accessible only through safe wrappers su€asiBitToZero shown in

Fig. 7.4. This code casts the parameter arrainofo a pointer taint, and then invokes
InitToZero. This pattern of a safe wrapper around unsafe pointer manipulating code is
pervasive in the .NET framework. Using our analysis together with method pre-conditions
allows us to validate that callers into the framework cannot cause unintended memory
access via the internal pointer operations.

In this exampleClousot gures out that at line 4 of Figure 7.4 the invarianB(a) =
4 arr:Length holds, which is enough to prove the pre-conditionrifToZero. In order
to track a ne linear equalities as above, we use the abstract domain®d. The com-
bination ofStrp, Intv andLinEq allows us to precisely analyze memory accesses in unsafe
code without turning to expensive (exponential) abstract domains.
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1static public unsafe void FastinitToZero(int [] arr)
2f

3 xed (int a=arr)

4 f

5 InitToZero(a, (uint) arr.Length);

6 ¢

79

Figure 7.4: Passing to functions pointers to arrays

7.4.4 Interaction with the Operating System

Unsafe code is also necessary for interfacing with the underlying operating system. Con-
sider the code in Fig. 7.5FastCopy uses theCopyMemory method from the Win32
API to copy the values of the arrayinto the arrayp. FoxTrot allows attaching exter-
nal contracts to assemblies, and in particular to annotate external calls. For the sake of
presentation, we made these contracts explicit in a proxy method.

The precondition folCopyMemory, informally stated in the Win32 documentation,
is formalized inCopyMemoryProxy. It requires that (a) the destination ker is large
enough to holazsrc bytes; (b) the two buers are de ned at least on the memory regions
accessed bZopyMemory.

Clousot can then statically check the right usage of the API. For instance, it checks
thatFastCopy satis es the precondition, provided that the length of the destination array
is not strictly smaller than the source.

Discussion: Application to security. The example shows the relevance of our analysis

to enforce security. Unsafe code in tiNETframework is a potential security risk if it is
exploitable from safe managed code. Analyses su€l@ssot provide more con dence

that the managed to unmanaged transition does not expose the framework to such attacks.
The same technique could be applied atihea to native boundary which exhibits the
same problems.

7.5 Syntax and Concrete Semantics

We present an idealized and simpli ed subset of MSIMSIL. We de ne its transi-
tion semantics. The concrete semantics is instrumented to trace the region of allocated
memory associated with a pointer. We treat out-of-region memory accesses as errors.

In f heckmate, this part corresponds to

Section 5.2, in which we de ned a representation of laea bytecode language,

Section 5.4, in which we de ned the concrete domain,
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[Dlllmport(”kernel32.dll )]
unsafe static extern void CopyMemory(char pdst, char psrc, int size);

static unsafe private void CopyMemoryProxy(char pdst, char psrc, int szdst, int szsrc)
f
Contract.Requires(szdst >= 0 && szsrc >= 0);
Contract.Requires(szdst >= szsrc);
Contract.Requires(Contract.WritableBytes(pdst) >= szdst sizeof(char));
Contract.Requires(Contract.WritableBytes(psrc) >= szsrc sizeof(char));

CopyMemory(pdst, psrc, szsrc);
g

public unsafe static void FastCopy(char[] d, char][] s)
f
Contract.Requires(d.Length >= s.Length);

xed (char pdst=d, psrc =5s)
f
CopyMemoryProxy(pdst, psrc, d.Length, s.Length);

g
g
Figure 7.5: An example illustrating the invocation of the Win32 API
Section 5.5, in which we de ned the transition semantics.
7.5.1 Syntax

We focus our attention on the MSIL instructions that are particular to our unsafe analysis.
Thus, we do not discuss: (a) instructions that are “standard” such as jumps, assignments,
method invocations, etc. (b) issues that are orthogonal to the unsafe code analysis, such
as the precise handling of tests, expressions re nement, etc. We refer the interested reader
to [92] that debates these topics and depicts the solution implemen@tdugot .

The instruction set we considenVSIL, is shown in Tab. 7.2T p = stackalloc T[exp]
allocatesexp elements of typd on the stack. INNET memory can be allocated in the

heap in two ways : (a) use theew keyword to allocate an object or (b) directly call

the underlying operating system (e. g. by using HeapAlloc Win32 API). In gen-

eral, the garbage collector is free to move heap allocated objects. However, the construct
xed (T p = &x+ exp)fistrg(a) sets a pointep to the address &+ exp; and (b) pins

the variablep during the execution of the sequence of instructi@mts to prevent the
garbage collector from moving it. The instructiars (p + exp) reads the value at ad-
dres9 + exp and stores its value xwhereas (p + exp) = x stores at the addrepst exp
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istr::= T p = stackalloc T[exp]
j xed (T p=&x+exp)fistrg
jx= (p+exp)
J (p+exp)=x
] istr; istr

Table 7.2:uMSIL: an idealized version of the MSIL instructions

the value ofk. Finally, we have instruction sequencing.

7.5.2 Concrete Domain

Let Var be a set of variables, l&tdd be a set of addresseg,be the set of nhumerical
values (note thahdd Z) and a special state standing for a program error. For each
variablev 2 Var we express byVB(v) the number of bytes on which it is de ned (if
it is not a pointer, the domain would not trace information about it). WeAB{(Var)
= fWB(v) j v 2 VargandVaryg = Var [ WB(Var).

The domain of concrete execution states is

C=([Varwg! Z] [Add! Byte] Add)[f g
A concrete state is either: (a) a tuple consisting of an environfmaapping variables to

values, a memoryg mapping addresses to bytes, and a séaddresses of objects pinned
for the garbage collector, or (b) the special valudenoting that an error has occurred.

7.5.3 Concrete Transition Semantics

Figure 7.6 formally de nes the concrete transition semantics. We use some auxiliary
functions:

evalexp; (f; g)) evaluates a side-ect free expressioexp in state {; g);

alloc(T; n; g) returns a paita; g% wherea is the starting address of a freshly allo-
cated region ofj containingn elements of typd, andg®is the modi ed memory;

write(g; &; n; v) returns the updated memogya + i 7! v j i 2 [0;n)], vy denotes
thek-th signi cant byte ofyv;

read(g; a; n) readsn bytes from memoryg and returns them packed as an integer;

sizeof(T) and sizeof(x) return the length, expressed in bytes, respectively of an
element of typd and of the variable.
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evalexp; (f;9)) < 0
CJT p = stackalloc T[exp]Kf; g;t) !

n= evalexp:; (f;g));n 0;h;g% = alloc(T;n;g);°=f[p! a][WB(p)! n sizeof(T)]
CJT p = stackalloc T[exp]Kf;g;t) ! (% g"t)

WB(p) < donf) _ evalexp; (f;g)) < 0 _
f(WB(p)) < sizeof(x) + evalexp; (f;g)) sizeof( p)
CJ (p + exp) = xKf; g;t) !

WB(p) 2 don(f); n = evalexp; (f;9));n  0;f(WB(p)) sizeof(x) + n sizeof( p)
g° = write(g; f(p) + n  sizeof( p);sizeof( p);f(x))
CJ (p+exp) = xKf;g;) ! (051

WB(p) < don(f) _ f(evalexp; (f;9))) < 0_
f(WB(p)) < sizeof(x) + evalexp; (f;g)) sizeof( p)
Clx= (p+exp)Kfig;t)!

WB(p) 2 dom(f) n = evalexp; (f;g));n 0;f(WB(p)) sizeof(x) + n sizeof( p)
v = read(g; f(p) + n sizeof( p);sizeof(x)); = f[x ! V]
Cx= (p+expKfg)! (g1

var is a T array ;t°=t[f f(var)g CJistr Kf%g;t9)! (f%g°t%
=1 [p! f(var)+ (evalexp;(f;g))) sizeof(T)]
[WB(p) ! (evalvar:length; )exp(f;g)) sizeof(T)]
Clxed (T p= &var+ exp)fistrgqf;g;t) ! (f*5g”1t)

Clistr Kf; g; 1) !
Clistry; istroKf; g; t) !

var is a string ;t°=t[f f(var)g Clistr Ki%g;t9)! (f%9g%t%
=1 [p! f(var)+ (evalexp;(f;g))) 2]
[WB(p)! (evalvariLength exp(f;9)); )2]
Clxed (T p = &var+ exp)fistrgdf;g;t) ! (5 g"5t9

ClistriKf; g;t) ! (fO; go; to)
Clistry; istrs,Kf; g;t) ! Clistr,Kf"; g” 19

Figure 7.6: The concrete transition semantics
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The description of the transitions in Fig. 7.6 follows. The semanticstimkalloc
rst evaluatesexp. If it is negative, it fails. Otherwise, it allocates a new region, sets a
pointer for it top and records the length of the region, expressed in byt&SB(p).

A write operation (p + exp) = x stores a number of bytes equal to the size of the type
of x in the memory locatiop + exp sizeof( p). If the region forp does not contain at
leastsizeof(x) + exp sizeof( p) bytes, a buer overrun occurs, denoted by the error state

. The read operation is analogous.

The semantics foxed is de ned according to the type ofr. In the two cases, (9
will point to a memory address that is obtained by combining the addressf{zddeand
the 0 setexp s, wheresis the size of the elements; (b) the address of the pinned object
f(var) is added to the set of pinned objects during the executimi. oAs for the length
of the memory regions associated wighwhenvar is (a) an array, then the size of the
memory region associated wiphis given by the length of the array minus theset of the
rst element times the size of an element; (b) a string, themll point to an element to
the internal representation of the string as an arraghaf, and the length of the memory
regions is computed accordingly.

The semantics of a sequence of instructions is the compositions of the semantics,
unless the resultis. In this case, the error state is propagated.

7.6 Abstract Semantics

We derive our analysis by stepwise abstraction, [24]. First, we abstract away the values
read and written through pointers and the aliasing introduced byx#ae instruction.
Then, we derive a generic analysis for checkingdiuoverruns. The analysis is parame-
terized by the numerical abstract domain used to evaluate region indices.

In f heckmate, this part corresponds to

Section 5.8, in which we de ned the abstract domain,
Section 5.9, in which we de ned the abstract transition semantics,

Section 5.10, in which we proved the soundness of our approach.

7.6.1 Abstracting Away the Values
The Domain

We preserve just the information on memory regions. We abstract away the second and
the third component of, and we project the rst component onto the memory regions,
i.e. WB(Var). The abstract domain & = ((WB(Var) ! Z[f>g])[f -g We add (a)

to model values that are abstracted away, (bdo model a set of concrete states that may
contain the error state.



158 7. Static Analysis of Unsafe Code

I(evalexp;f) 0)
AJT p = stackalloc T[exp]K) ! -

evalexp;f) 0;f0=f{[WB(p)! evalexp;f) sizeof(T)]
AJT p = stackalloc T[exp]Kf) ! f°

I(evalexp;f) 0) _ WB(p) < dom(®)_!(f(WB(p)) sizeof(x) + evalexp sizeof( p);f))
AJ (p+exp) =xKf) !

WB(p) 2 dontf); evalexp;f) O;f(WB(p)) sizeof(x) + evalexp sizeof( p);f)
AJ (p+exp) = xKf) ! f

I(evalexp;f) 0) _ WB(p) < dom()_!(f(WB(p)) sizeof(x) + evalexp sizeof( p);f))
A= (p+exp)h)! -

WB(p) 2 dontf); evalexp;f) O;f(WB(p)) sizeof(x) + evalexp sizeof( p);f)
A= (p+exp)Kf)! f

var is T array
P =fWB(p)! evalvarlength exp:f) sizeof(M)]:f = Adistr KF)
AJxed (T p = &var + exp)fistrg(f) ! £

Aldistr,Kf) ! 5
Adistr;;istoKP | 5

var is a string
0 - - - -00 )
f = f[WB(p)! (evalvariLength exp;f) 2];f = Adistr Kf)
Adxed (T p = &var + exp)fistrgqH) = T

Adistr, KR 1 T
Adistry; istr,KF) | Adistr,KF)

Figure 7.7: The abstract transition semanticsufdiSIL
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The Abstract Transition Semantics

The abstract semantics is in Fig. 7.7. The abstract funetailifts its concrete counter-
part to handle>. > values occur for instance wherp contains a variable whose value
is read through a pointer and we do not trace the value.f@val simply propagates
through all strict operator positions, e.gval5 + >; f) = eval>; f) = >.

The semantics is a little bit more than the projection of the concrete semantics on its
rst component: ifevalexp; f) = >, then we cannot decide ép 0 and hence if a
bu er overrun has occured. In this case, we force the transition to flstate, which
means that a buter overrun may occur.

For the xed instruction, we abstract away (a) the fact that the object is pinned: in our
abstract semantics we do not need to model the garbage collector; (b) the aliasing between
p and &var + exp: we are interested just in checking that memory accesses are valid.

Abstraction and Concretization Function

The concretization function returns the set of all the concrete states such that the rst
component is compatible with one of the abstract states. If the abstract state contains the
unknown state », then all the concrete states are returned, included the error state
As a consequence, in order to show that a program has no memory access violations, it
su ces to prove that its abstract semantics in Fig. 7.7 never reduces to

The next two theorems guarantee the soundness of the approach. The rst states that
the abstract elements are a correct approximation of the abstract ones. The second one
states that no concrete behavior is forgotten in the abstract semantics.

Theorem?.6.1 Soundness of the abstraction. Let [} (C) ! } (C)] be the concretiza-
tion function de ned as

(F) = T et (f,9;1) j 8WB(p) 2_d0n(f): f(WB(p)) , >
=) f(WB(p)) = f(WB(p)) " p 2 dom(f)g
[f (9;0)] -2Fg

Then is a completd -morphism, so that it exists an abstraction function [} (C) !
} (C)] such thag (C)1  }(C) as proved by Theorem 2.2.3.

Theorem7.6.2 Soundness of the abstract semantics. fL2tC, (f; g t) 2 (O) andist 2
uMSIL. If Adist Kf) ! # andCJist Kf;g;t) ! (1%g%19, then(f® g%t9) 2 (f).

7.6.2 Generic Memory Access Analysis

If we extenduMSIL with (conditional) jumps, e. g. to enable loops, then the abstract
semantics in Fig. 7.7 will no longer be computable. In particular, the expressions used for
memory accesses may evaluate to in nitely many values. As a consequence, in order to
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checkexp 0;s)=>
FJT p = stackalloc T[exp]Kf)! -

checkexp 0;s) = true;s° = assigifwB(p); size sizeof(T);s)
FJT p = stackalloc T[exp]Ks)! s

checkWB(p) sizeof(x) + exp sizeof( p);s) =>_checKexp 0;s)=>
FJ(p+exp)=xKs)! -

checKkWB(p) sizeof(x) + exp sizeof( p);s) = true;checKexp 0;s) = true
FJ (p+exp)=xKs)! s

checkWB(p) sizeof(x) + exp sizeof( p);s) =>_ checKexp 0;s)=>
Fix= (p+expKs)! -

checkKkWB(p) sizeof(x) + exp sizeof( p);s) = true;checKexp 0;s) = true
Fix= (p+exp)Ks)! s

var is a T array
5= assigrfwB(p); (var:length  exp) sizeof(T);s); FJistr l(§0) 1 5%
Flxed (T p = &var+ exp)fistrg{s)! s

FlistriKs) ! -
Flistry;istroKs) ! 5

var is a string
= assigifWB(p); (var:length  exp) 2;s); FJistr KEO)! 5%
Fixed (T p = &var + exp)fistrgqs) ! s

Flistr;K5) ! §°
FJistry;istr,Ks) | Flistr,KS )

Figure 7.8: The generic abstract semantics for memory access validity checking



7.7. The Right Numerical Abstract Domain 161

cope with a more realistic scenario, we need to perform a further abstraction, to capture
the values of index expressions.

We assume a numerical domainwhich correctly approximatés(C) (i (C); i
hN; vi ) and with two primitives: (apssigrix; exp;s) 2 N which is (an overapproximation
of) the assignment := exp in the abstract state (2 N); (b) checKexp:s) 2 ftrue;>g
which checks whether, in the abstract s&{(@ N), the expressioexp holds rue) or it
cannot be decided().

The generic abstract semantics for checking memory safety, parameteri2eisby
reported in Fig. 7.8.

7.7 The Right Numerical Abstract Domain

Figure 7.9: The concrete points, and the property of interest

The generic abstract semantics in Fig. 7.8 can be instantiated with any numerical ab-
stract domain containing the primitivassign andcheck. As a consequence the problem
of checking the validity of memory accesses boils down to the problem of choosing the
right abstract domain. In particular, we want to obtain a scalable and precise analysis. In
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Figure 7.10: The abstraction bftv

this way, we need to use a domain that is not expensive but enough accurate in order to
capture the property of interest.

First of all, we investigate if any existing domain Il these requirements when analyzing
unsafe code.

Let us consider the set of poims of Fig. 7.9 corresponding to all the possible values
that WB(ptr) andindex assume at some memory access (ptr+ index). Supposing
that the type ofVB(ptr) is char, we want thatWB(ptr) 2 index holdsalways. This is
the property of interest: if we access the memory throptghvith anindex that does not
respect this constraint, the bounds are not respected. So in this gure we color in grey the
area in which the property is respected.

Fig. 7.10 shows thanhtv alone is not precise enough for our purposes: the best ap-
proximation forA with Intv goes outside the grey area, and so false alarms are produced
by this domain. Intuitively, this is becaus®v does not keep relational information, e. g.,
any relation betweewB(p) andindex is abstracted away.

Weakly-relational numerical abstract domains such as Octagons [101] (that captures
relations in the form x 'y @) or Pentagons [93]4 x b " x < y) have been
introduced as lightweight solutions for array bounds checking. Fig. 7.11 shows that
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Figure 7.11: The abstraction Ofct

Octagons are more precise thimtv, but they are still not precise enough to validate
memory accesses due to the multiplicative faciaeof( p) which makes the slopes in
Fig.7.9 possibly non-45

Fig. 7.12 shows thaoly ( ja X; b) is precise enough, as approximates correctly
the concrete points. The main drawback of udhaly is its worst case cost, which for
the most common operations is exponential in time and space (and this is a lower-bound
[77]). But is the worst case common when analyzing unsafe code or it never happens in
this context?
We apply the implementation ¢foly in Boogie [8] to the analysis of unsafe code. Al-
though this implementation of Polyhedra is not as optimized as for example [7], it has
been well debugged and in use for a number of years. The results are shown in Table
7.3 (the experiments were conducted on a 2.4Ghz Intel Core Duo laptop, with 4Gbytes of
RAM, running Windows Vista).

In our runs, we used a 2 minute timeout per method. The timeout was reached 23
times onmscorlib:dll and 13 times or8ystem:dll. In all fairness, the Parma library [7]
is likely to be much faster than the implementation of Polyhedra we used. However, it is
unlikely to consistently improve the execution by two orders of magnitude and it would
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Figure 7.12: The abstraction Bbly

still su er from exponential behavior on some methods where the 2 minute timeout was
reached. When removing the timeout, one methodhstorlib:dll took 49 minutes to
reach a xpoint using Polyhedra.

Finally, Poly do not scale to the code that we want analyze. So we chosecaedit
approach: (a) to design abstract domains focused on a particular property; and (b) to
combine domains using well-known techniques such as the reduced product. For our
analysis, we designed a new numerical abstract donsaip, and we combined it with
Intv andLinEq to achieve precision without giving up on performance.

In the next sections we present the detail$wp, its reduction withintv andLinEq,
and the results of our practical experiments.

# Accesses
Assembly Time Checked Validated %
mscorlib:dll|125m52s 3 070 1610 52.46
System:dll |257m27s 1576 744 4494

Table 7.3: Unsafe code analysis using the Polyhedra domain
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7.8 The Stripes Abstract Domain

We introduce a novel, weakly-relational domain Stripgsp, focused on the inference
and checking of (upper bounds on) memory accesses that use a base, an index, and a
multiplicative factor. We de ne the order, the join, the meet and the widening operators.

7.8.1 Constraints

As a rst approximation,Strp captures constraints of the forilwB(p) sizeof(T)
(count[+base]) > k whereWB(p), count, and optionallybase are variablesT is a type,
andk is an integer constant. The intuition behind it is that the poipterde ned at least
on count[+base] elements of its type, and doadditional bytes.

In practice, these constraints are used in a more generic way: the rst element may
be any variable (and not only the writable bytes of a pointer) anditteaf(T) may be
any numerical value (and not only the size of the type of the pointer target). Then the
constraints captured by the Stripe domainarek; (x[+y]) > ky, wherez, x, andy are
variables, and, andk; are integer values.

7.8.2 Abstract Domain Structure
Abstract Elements
We represenstrp elements as maps from variables to constraints. We chose maps as they
allow e cient manipulation of directional constraints:
Strp=[Varyg ! } (Varwg (Varwe[? ) Z 2Z)]:

Intuitively, the domain of the map contains the variahléhe rst and second component
of the 4-tuple represent the two variableandy (? if it is not present), the third compo-
nent isk; and the last one ik;.

Example (Representation of stripes constraints)

The two constraintg 4 y>0andz 2 (x+u) 5 arerepresented @trp by the
map ! f (y;?;4,0);(x;u;2;4)d.

Order

An abstract state; in Strp is more precise thasy i for each constraint is,, s; contains
a constraint such that (a) the three variables and the integer cokstaetthe same; and
(b) k> is less or equal than tHe of s; since ifx > y andy > z thenx > z by transitivity
of >. Formally:

S1VS, ()08 z2dont(sy); 8(y;x;ki; k5) 2'5,(2) :
z2don(sy) M9 (y;x ki Kb) 251(2)ks Kb
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Top and Bottom

The largest element @trp is a map with no information: z: ;. An abstract state is
bottom i it contains a contradiction: e. gz [! f(y;?;1;0)gy 7! f(z;?;1;0)g.

Join

The upper bound operator (a) keeps the constraints that are de ned in both operands; (b)
takes the smallest lower boukglif it is di erent in the two constraints sinceeitp > a,
exp > banda bthenexp > bis an upper bound for both constraints. Formally:

sit 52= zif(y;x ke ko) j (s X kas kB) 2 51(2); (y; x; ka; K3) 2 52(2); ke = min(kg; ko)g

Meet

The lower bound operator traces the constraints of both operands. If both contain a con-
straint with the same variables y, andz, and the same integer vallg, the operator
keeps the largest integer value for the numerical lower bound.

% (v; % kes ko) j (v X Ka K3) 2 84(2);
S1US = 23 (v: X; ke; K3) 2 52(2);
3 ko = max(<; k3)
% (v: X; Ka; K2)  ((ys x; ks ko) 2 S1(2)™

[

A /A /(e

(y; x; ka; ) <52(2))
_ ((ysx; ke ko) 2 52(2)™
(v; x; ka; ) <51(2))

z

= 0000/ 1100000/ <O

Widening

Strp does not satisfy the ACC condition. As a consequence, we need to de ne a widening
operator to ensure convergence. Our widening simply drops the constraints that are not
stable between two iterations:

§1|' §2 = Z:gl(Z)\ 52(2):

Concretization

The concretization functionsy, : [Strp !} (C)] returns all the possible states that
satisfy the constraints represented by the abstract state:

sup(S) = ff] 82 2 don(3)8(y; x; ki ko) 25(2):f(2)  ka  (f(y) + (X)) > kog

It is immediate to see thats,, is monotonic, and furthermore that it is a complete
\ -morphism. Therefore, as the composition of monotonic functions is monotonic, the
following theorem stating thatrp is a sound approximation holds:
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Theorem7.8.1 Abstraction gy, as de ned above is a completemorphism. Therefore,

it exists an syp such thath} (C)i 1 o hStrp; vi as proved by Theorem 2.2.3. As a
Strp
consequencd} (C); i 1 o hStrp; vi as proved by Theorem 2.2.4.
Strp

7.8.3 Re nement of the Abstract State

A state of the Stripe domain may be internally re ned, by carefully propagating informa-
tion between constraints.

Example (Re nement of constraints)

Consider the two stripes constraints 2 (y +u) > 4andy z > 0. From the rst
constraint we derive:

X 2 (y+tu)>4() x 2 u 4>2 y() x=2 u 2>y:

From the second constraint we derivethat z() y z+ 1. Combining the two, we
derive a new stripe constraik=2 u 2>z+1() x 2 (u+z)>6.
The above example can be easily generalized:

Lemma&.8.2 Saturation If an abstract state contains the two constraints

x ki (y[+u]) > ko
y 1 z>Kks

then we can infer the constrairt k; (z[+u]) > k, + k; (ks + 1).

The re nement enabled by this Lemma above is important in practice. It allows adding
new constraints to the abstract state, without requiring an expensive closure to propagate
the information. O course, Lemma 7.8.2 does not guarantee the completeness of the
saturation, but it is sucient for our purposes, as illustrated by the next example. In
addition, when we need to apply widening in order to make convergent the analysis, we
do not apply re nement in order to assure that the analyses ends.

Example (Saturation)

Let us consider the example in Fig. 7.3. Inside the loop, we have the abstract state
s=fwB(a) 4 len> 1;len i> 0gl. We have to check wheth&¥B(a) 4 i+4. We
cannot do it directly by inspectingjas there is no direct relation betwewB(a) andi.
Applying the re nement of Lemma 7.8.2, we infer the constraifid(a) 4 i> 3 which
su cestovalidatetheaccess/B(a) 4 i>3() WB(a)>4i+3() WB(a) 4 i+4

In our implementation we perform this re nement only on-demand when we need to
check the proof obligations.

To simplify the reading, we present a stripe abstract state as a set of constraints.
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7.8.4 Transfer Functions
Assignment

When an expression is assigned to a variable, we rst drop all the constants that are
de ned on the assigned variable, and then we add some inferred constraints. Formally:

assigrtx; exp; 5) = lets° = drop(x;5) in §°[ C (x; exp; ")
where
drop(x;s) = yf(z;u;ki; ko) jy, X;(z;uikej ko) 25(y) =) z, x™u, xg

andC infers new constraints from an assignment and an abstract state. Few representative
cases forC follow. In our implementation we consider a richer structure of expressions
and cases.

Cxy:8) =[x ! SMWIL [vi 71 F(x;vai ki Ko) (v va; ki kz) 2 5(va)d
Clx;u+v;s) =[vy 7H(u;w; ke ko) j (X ? 5K ko) 2 s(va)g

Abstract Checking

To check a boolean expression, we rst try to normalize it into a formiké; (y[+z]) >
ko, and then we check if the abstract state contains a constraint which implies it. Formally:

check(exp;s) = let(x k; (y+z) > kj;b) = normalizeexp) in
if (029 (y;z;ki; K3) 25(x):ki  k2) thentrue else>

We skip the details afiormalize. Roughly, it applies basic arithmetic identities to rewrite
the expression. If it fails to put the expression into a stripe constraint form, it returns a
boolean value signaling the failure.

7.8.5 Representation ofStrp

Figure 7.13 depicts the area captured3iyp when applying it to the set of concrete
points depicted by Figure 7.9. The relational information between variaideg and
WB(ptr) is su cient in order to prove that, when accessing the memory, the upper bound
is respected. Indee&trp are not enough in order to prove the lower bound (i.e. that the
index used to access memory is positive), and so we need to re ne it.

7.9 Re ned Abstract Semantics

We re ne the information captured by tt&trp domain withintv and theLinEq domain.
Intv is needed to check lower bounds of acceska®q is needed to track linear equali-
ties, and in particular to handle the compilation schemaxtad in C#.
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Figure 7.13: The abstraction 8trp

7.9.1 Checking Lower Bounds of Accesses

Strp allows representing just partial numerical bounds on variables. In fact, khe®,

a stripe constraint boils down to a numerical lower bound:k,. Nevertheless, in general

we need to track numerical upper bounds on variables: Those may appear in expressions
that must be evaluated to check under- ow accesses. Wéntiseo track the numerical
bounds on variables. Figure 7.14 depicts the are captured by the Cartesian product of
Strp andintv. It makes evidence graphically that this domain is sient enough in order

to precisely analyze both lower and upper bound of memory accesses, as the area that
approximates the concrete values is inside the one that proves the property is respected.

Example (Need for numerical bounds)

Let us consider the following code snippet{“denotes an arbitrary boolean expression):

int p;

// suppose that WB(p) =12, a=5
if (..) f
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Figure 7.14: The abstraction 8trp Intv

b=3;
g
else f

b = 4;
g

(p+(ab)=0;7()

If we track just lower bounds, at) we havea > 4;b > 2, so that we cannot prove the
memory access correct. If we track both numerical bounds) at€ have thaa = 5;b 2
[3;4], sothatb a2 [1;2] which su ces to prove the access correct.

The numerical abstract domain for the analysis is the product dom&in Strp.
All the domain operations are lifted pair-wise to the product domain. Sometimes we
may want to use the information containedmitv to re ne the information inStrp. For
instance, to improve the precision of the join operator, as shown by the next example.

Example (Re nement of Strp with Intv)

Consider the following piece of code:
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if (arr ==null)
p =null;

else if (arr.Length ==0)
p=null;

else
p = &arr[0];

Figure 7.15: The code generated by the C# compiler for the statement
xed (T p=armr):::

int [] array;

// suppose that array.Length  count> 0

if (count==0)
array = new int [1];
else

/ do nothing / ;

Using justStrp, at the join point we cannot conclude tlaatay:Length count > O: inside
the conditionalarray is assigned a new value, so that the entry constraint is dropped.

Using Intv  Strp, the abstract state after array creatiorpjs= hteount 2 [0;O];
array:Length 2 [1;1]i; z:;i; the abstract state at the end of the false brangh is
h;;[array:Length ! (count;1;0)]i. The join ish;;[array:Length ! (count;1;0)]i, as
the interval component g, implies thatarray:Length  count > O.

7.9.2 Compilation of xed

When the C# compiler compiles ed statement which assigns an araay of type T[]

to a pointep, it generates code to check whether &neis null or if its length is O. If itis

the case, then it assignsll to p. Otherwise it assigns the address of the rst element of
arr to p. Fig. 7.15 depicts this compilation schema.

Without any re nement, the analysis performed®pusot cannot capture thaV/B(p) =
sizeof(T) array:length. There are two main reasons for that: (1) it is not possible to rep-
resent a constraint in the formef a y=0inlIntv Strp; (2) At the join point, a state
wherep is null is merged with one whe/B(p) = sizeof(T) array:length.

For (1), we re ne the abstract domain to usiEq, to retain linear equalities: the
abstract domain used in the analysis becobmeSq Intv  Strp.

For (2), if arr = null or arr: Length = 0, then0 = sizeof(T) array:Length = WB(p)
trivially holds. As we are performing an over-approximation of the reachable states, we
can safely ad@vB(p) = sizeof(T) array:length to our abstract state.
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# Accesses

Assembly # Methods Time Checked Validated %
mscorlib:dll 18084 3m43s 3069 1835 59.79
System:dll 13776 3ml8s 1720 1048 60.93
System:Data:dll 11333 3m45s 138 59 42.75
System:Design:dl| 11419 2m42s 16 10 62.50
System:Drawing:dll 3120 19s 48 29 60.42
System:Web:dll 22076 3ml9s 88 44  50.00
System:Windows:Forms:dll 23180 4m31s 364 266 73.08
System:XML:dIl 10046 2m4ls 772 311 40.28

Average 57.96

Table 7.4: Experimental results

7.10 Experiments

We implemented the analysis for unsafe memory accesses using the Stripes domain in
Clousot . We tested extensively our analysis on all the libraries of.W€Tlframework.

Our experiments were conducted on a 2.4Ghz Intel Core Duo laptop, with 4Gbytes of
RAM, running Windows Vista (Windows processor score 5.3). The target assemblies are
taken from the %INDIR%n Microsoftn Frameworkn v2:0:50727 directory of the test
laptop. No pre-processing, manipulation or Itering of the assemblies has been conducted.

A primary goal forClousot is its use at development time during compilation or even
within the integrated development environment. Thus, the performance of the analysis is
crucial. Our specialized domains provide us with excellent performance as reported in
Tab. 7.4.

The analysis is fast: the average analysis time per method is 12ms. We validate on
average 5B6% of the unsafe memory accesses. This may not seem high at rst glance.
However, consider the burden of human code reviews for unsafe code which is currently
a necessary practice. Our analysis cuts down the work load in half, focusing the reviews
on accesses that seem non-obvious to prove correct. Nevertheless, we feel that we can
improve the precision of the unsafe analysis in two ways:

1. We intend to remove short-comings in the current implementation of the domains,
resulting in unnecessary precision loss or inability to prove facts that are implied.
We intend to improve the domains as described e.g. in Section 7.8.3.

2. The code we analyzed does not contain contracts. This leads to loss of precision
when the proof obligation required in one method is established by the caller of the
method, or sometimes several call frames higher on the stack. As a consequence,
without contracts on the intermediate meth@lsusot reports warnings on those
memory accesses.
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7.10.1 System.Drawing Case Study

We analyzed the 19 warnings 8ystem:Drawing:dll to determine what contracts need to
be written to avoid them, or whether they represent true vulnerabilities.
First, we found the use of two helper methods that required pre-conditions:

short GetShort(byte ptr) fContract.Requires(Contract.WritableBytes(ptr) >= sizeof(short ));

g
int GetInt(byte ptr) fContract.Requires(Contract.WritableBytes(ptr) >= sizeof(int ));

g

These helper methods simply load 16 bits or 32 bits from the given pointer location using
little-endian encoding and avoiding unaligned accesses.
With the pre-conditions written as abov@pusot no longer reports warnings within

these helper methods. Instead, it reports warnings at 26 call-sites to these methods. The

remaining warnings are all located within 5 distinct methods.

1. One method uses an unmanaged heap allocation routine to obtain memory from the

marshal heap. Writing an appropriate post-condition for this allocator eliminates
the warnings in that method.

public static  IntPtr AllocHGlobal(int cb) f
Contract.Ensures(Contract.WritableBytes(Contract.Result<IntPtr>()) == cb);

2. The next method we examined actually contained an error leading &r lowerruns
on read accesses.

3. The third method uses a complicated invariant on a data structure that involves
indexing using a product expression of two variables. Our domains cannot currently
track such products (only variables multiplied with constants). However, the code
appears to be safe.

4. The fourth method extractstayte[] from an auxiliary data structure and indexes
it assuming the array contains 1K elements. Examining the data structure and all
its construction sites, we determined that it is built via marshalling from an un-
managed Windows API call and the marshal annotation speci es that ther s
to be allocated with the xed size of 1K. Although we can specify this size as an
object invariant on the auxiliary structure leading to the removal of the warning
by Clousot , our tool chain does not yet understand the marshalling constraints
establishing the invariant.

5. Finally, the last function containing most of the accesses and calls to the helper
functionsGetShort and GetInt, whose pre-conditions must be validated, exposed
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a shortcoming in our implementation. Upon examination, we determined that the
analyzer infers a suciently strong loop invariant which implies the safety of the
memory accesses and pre-conditions. However, our implementation was not able
to show this implication automatically.

With the above contracts and xe§lousot would validate 3 additional methods, but
report false warnings in one method due to an index expression we cannot handle, and
another false warning in a new method due to the lack of support for marshal annotations.

7.10.2 Summary

Overall, the analysis is fast enough to use in integrated development environments. It
achieves a higher level of automation and scalability than existing tools. In fact, we found
that the tool rarely fails to infer the necessary loop invariants to validate the memory
accesses. More often, it is the lack of contracts that limits our modular intra-procedural
analysis. The use of contracts not only allows reducing the false positive rate, the contracts
furthermore serve as checked documentation on important safety invarialaissot

can catch code changes or additions that fail to live up to the existing speci cations and
thereby provide excellent static regression checking.

7.11 Related Work

We developed a sound and scalable analysis to statically check memory safety in unsafe
code. Scalability, without giving up precision, was a main goal for the analysis. Similar
work for C does not ful ll these two requirements. For instance the analysis introduced
by Wagner et al. [139] is not precise enough to check memory accesses that involve a
pointer, a base and an set, which we found to be pervasive nmscorlib:dll, the main

library of the :NETframework. On the other hand, the analysis of Dor et al. [33, 34]

is precise enough to capture these relations, but it is based on the use of the Polyhedra
(Poly) abstract domain [31] which is known to have severe scalability proBleifise

work of Simon and King [128, 129] improved on that by using an abstractidPotyf,

where linear inequalities were restricted to buckets of two variables. However, we did not
nd it precise enough to match the programming style adopted in the code we analyzed.
In particular, we found that a common pattern in unsafe codblBflibraries uses both

a base and a number of element to be accessed starting from a pointer. This requires
to deal with constraints with three variables, and this is not supported by the domain
developed by Simon and King. Our approacheis from earlier work in that it is based

on the combination of lightweight and focused abstract domains, instead of a monolithic,
precise domain. Each abstract domain is specialized (and optimized) toward a particular

2The worst case complexity dfoly is exponential. To the best of our knowledge, at the moment of
writing, the most optimized implementations do not scale to more than 40 variables [7, 8]. In the analysis
of :NETassemblies, we need to capture up to 965 variables.
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program property, and their combination provides a powerful analysis without sacri cing
performance.

Bounds Analysis for C

Rinard and Rugina published a powerful analysis of C programs to determine aliasing,
bounds, and sharing of memory, enabling bounds optimizations, and parallelization [123,
124]. Their analysis infers a set of polynomial bounds on variables that are solved using a
linear programming problem to minimize the spread of the bound. The reported analysis
times are fast (in the same range as ours), but they only report results for small examples.
Their technique based on solving a linear programming problem is quitrett from

using symbolic abstract domains, but equally promising. A bene t of their approach is
that it performs inter-procedural analysis by inferring relations for function inputs and
outputs using a bottom up call graph approach. However, this is also a major drawback,
as for strongly connected components of functions (recursively calling each other), their
analysis needs to compute a xpoint. It is well known that call-graphs built for very large
applications (in particular object-oriented programs) are imprecise, leading to very large
components [32], making such an approach unlikely to scale.

Das et. al. describe ber over ow checking and annotation inference on large Mi-
crosoft @C++ code bases [59]. Few details of the used numerical domains are public,
but from the paper it is apparent that for precision, their analysis performs path splitting,
meaning it analyzes paths separately through a function whenever the abstract state at join
points disagrees. The Stripes domain described in this paper and the associated transfer
functions and join operations are geared towards providing precision without path split-
ting (our analyzer does not perform path splitting).

Analysis of INI

A few analyses foldava handle programs using thiava Native Interface (JNI) [88].

Furr and Foster in [50] present a restricted form of dependent types used to infer and
type-check the types passed to foreign functions via the JNI. Tan et al proposed a mixed
dynamidstatic approach to guarantee type safetyava programs that interface with C.

We are not interested in type safety: in unsafe C#, type errors are less common than with
the JNI, since the unsafe context is integrated in C#, so that (a) the compiler can still
perform most type checking and (b) types do not need to be serialized as strings (the most
common type error in using the JNI). Instead our analysis focuses directly on memory
usage via pointers, whereas previous work did not.

Interoperability of Languages

Recent work focuses on language interoperability. Tan and Morrisett, [135], advocate an
approach in which the Java bytecode language is extended with a few instructions useful
to model C code. Hirzel and Grimm, [65], take an alternative approach with Jeannie,
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which is a language which subsumes Java and C, and the burden of creating the “right”
JNI for interfacing the two languages is left to the compiler. Matthews and Findler, [97],
give an operational semantics for multi-language programs which uses contracts as glue
for the inter-operating languages. TNESIL instruction set is rich enough to allow an
agile compilation of several languages: our analysis, working avi®ik: level does not

need to take into account inter-operability issues.

Static Analyzers

ESQJava 2 [22] and Spec# [10] use automatic theorem provers to check programs. Au-
tomatic theorem provers provide a strong engine for symbolic reasoning (e. g. quanti ers
handling). The drawbacks are that: (a) they require the programmer to provide loop in-
variants and (b) they present scalability problems. Analysis times close to the one we
obtain inClousot on shipped code are well beyond the state-of-the art in automatic the-
orem proving.

7.12 Discussion

We presented a new static analysis for checking memory accesses in unsafe:BlE in

The core of the analysis is a new abstract dom&trp, which combined withntv and

LinEq, allows the analysis to scale to hundreds of thousands of lines of code. We proved
the soundness of the approach by designing the static analysis using stepwise abstraction
of a concrete transition semantics.

In this way we appliecClousot , an industrial generic static analyzer, to the study of a
property of practical interest. The analysis is both scalable (we are in position to analyze
:NETlibraries in a couple of minutes) and precise (we found bugs on shipped code ana-
lyzing only a small case study). This chapter makes evidence that generic analyzers seem
to be a promising way to build up tools to debug real applications: the idea of re-using
the most part of the analysis and of focusing only on the property of interest and on the
numerical domain puts us in position to precisely anadently analyze industrial code.
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In this thesis we presented a generic approach to the analysis of multithreaded programs,
we applied it taJava programs, we implemented it, and we extended an industrial generic
analyzer proving the practical and industrial interest of this type of analyzers.

The rst contribution is the development of a generic theoretical framework in order
to de ne a static analysis sound with respect to the happens-before memory model. Mem-
ory models de ne which behaviors are allowed during the execution of a multithreaded
program. In particular they de ne at a given point of the execution which values can be
seen through shared memory. We de ned the concrete semantics of the happens-before
memory model in a xpoint form, and then we abstracted it with a computable semantics
proving formally the soundness of our approach.

A second contribution is the de nition of a new deterministic property. The most part
of static analyses of multithreaded programs is focused on particular properties like data
races and deadlocks. Proving the absence of data races and deadlocks isonentsior
developers to prove the correctness of a multithreaded program. In fact, even if a program
is data races and deadlocks free, it may still expose nondeterministic behaviors because
of arbitrary interleaving of threads. Starting from these considerations we developed a
deterministic property aimed at checking directly the nondeterministic behaviors because
of unordered communications of threads through shared memory. We de ned it on a
concrete semantics, we abstracted it in two steps proving formally the correctness, we
proposed the new idea of weak determinism, we proposed other two ways of projecting
this property (on states and on traces) de ning a global hierarchy, we related the data race
condition to the deterministic property, and nally we sketched how this property may be
used in order to semi-automatically parallelize sequential programs. We believe that the
deterministic property, dealing with the ects of unordered communications through the
shared memory instead of its causes (as data races do), provides a more expressive and
exible instrument in order to debug multithreaded programs.

In order to apply this generic framework Sava, we de ned a domain particularly
focused on the main features of multithreading and an operational semartiitscufde
statements. Our approach supports all the main featur@svafprograms, e.g. arrays,
strings, overloading and overriding of methods, and dynamic creation of threads, shared
locations, and monitors. In this context, we proposed a speci c alias analysis that pre-
cisely approximates threads' identi ers, monitors, and accesses to the shared memory.
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All these features were implementedfiheckmate, a new generic static analyzer of
Java multithreaded programs. We developed some well-known non-relational numerical
domains, some properties of interest (included determinism and weak determinism), and
some memory models (included the happens-before one). The experimental results were
deeply studied both in term of precision and@ency obtaining encouraging conclusions.

Finally, we extended an industrial generic analyZ&lo(isot ) to the study of a prop-
erty of interest, i.e. the detection of ber overruns. In order to obtain a precise and
scalable analysis, we developed a new relational donsaip, and we combined it with
Intervals, and Linear Equalities. The analysis was proved to be scalable and precise:
we are able to analyze about twenty thousands of methods in a couple of minutes, and
we found bugs on shipped code analyzing a really small case study only. In this way, we
showed the industrial interest of generic analyzers in order to develop powerful and useful
tools to debug programs.

Future work: The main challenge is the application of the overall approach devel-
oped by this thesis to the analysis of industrial software. In this context, we will need to
deeply study in which way our analysis has to be re ned in order to keep precise results
also when dealing with large size programs and commercial software.

First of all, we would check if the happens-before memory model is precise enough,
or if we need to take into account other features oflédna one. In addition, our approach
considers as synchronization primitives only launchings of threads and mutual exclusion
on threads. It is clear that we will need to consider more synchronization actions, but we
believe that our framework can be easily extended to support the most part of them. Then
we want to investigate the relaxations of the deterministic property that may be interest-
ing in order to nd bugs on real software and in order to semi-automatically parallelize
sequential programs. It is clear that both these two issues will require to re ne our do-
main and semantics dfva bytecode. In particular, we will need to eliminate the stack
representing the code in the 3-address form, and to reconstruct expressions.

It is important to notice that modularity remains an issue that cannot be dealt with at
the moment for the analysis of multithreaded programs, because of actual limits in the
semantics of modern programming languages supporting multithreading as pointed out in
Section 3.6.3. In the last decade modularity has been the most appealing feature of object-
oriented languages. We think that in order to correctly develop large multithreaded ap-
plications, it is necessary to provide additional primitives that allow developers to reason
in a modular way. In order to achieve this goal, it will be necessary to deeply investigate
what developers may be interested to specify, and the best way they can express it.
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A.1 ExpandableArray

public class ExpandableArray f
private Object[] data_;
private int size_;

public ExpandableArray(int cap) f
data_=new Object[cap];

size_=0;

g

public synchronized int  size() f
return size_;

g

public synchronized Object at(int i) throws Exception f
if (i<0 jj i>=size)
throw new Exception();

else return data_[i];

g

public synchronized void  append(Object x) f
if (size_ >= data_.length) f
Object[] olddata=data_;
data_=new Object[3 (size_ + 1)/2];
for (int i=0; i < size_; ++i)
data_[i]=olddata[i ];
g
data_[size_++]=X;
g



180 A. Source Code of Examples Taken from [85]

public synchronized void removelLast() throws Exception f

if (size_==0)

throw new Exception();
else

data| size]=null;
g

private static class RemovelastThread extends Thread f
ExpandableArray array;

public RemovelastThread(ExpandableArray array) f
this .array=array;

g

public void run() f
try farray.removelast();g
catch (Exception e) fg
g
g

private static class AppendThread extends Threadf
ExpandableArray array;

public AppendThread(ExpandableArray array) f
this .array=array;

g

public void run() f
try farray.append(new Object());g
catch (Exception e) fg

g
g

static class ReadWriteConict f
public static void main(String[] args) f
ExpandableArray array=new ExpandableArray(10);
array.append(new Object());
array .append(new Object());
array.append(new Object());
new RemovelastThread(array).start();
try farray. at (1);9
catch (Exception e) fg
g
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static class WriteWriteCon ict f
public static void main(String[] args) f

ExpandableArray array=new ExpandableArray(10);
array.append(new Obiject());
array .append(new Object());
array.append(new Obiject());
new AppendThread(array).start();
try farray.append(new Object());g
catch (Exception €) fg

g

A.2 LinkedCell

public class LinkedCell f
protected double value_;
protected LinkedCell next_;

public LinkedCell(double v, LinkedCell t) f
value_=v;

next_=t;

g

public synchronized double  value() f
return value_;

g

public synchronized void  setValue(double v) f
value_=v;

g

public LinkedCell next() f
return next_;

g

public double sum() f
double v=value();

if (next() ! =null’)
v+=next().sum();
return v;
g
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public boolean includes(double x) f
synchronized (this) f
if (value_==x)
return true ;
g
if (next()==null)
return false ;
else return next().includes(x);

g

double ineffectivelyUnsynchedSum() f
double v=value_;
return v+nextSum();

g

double nextSum() f
return (next()==null) ? 0 : next(). sum();

g

private static class SynchronizedSumThread
extends Threadf
LinkedCell list ;

public SynchronizedSumThread(LinkedCell list) f

this . list = list ;

g

public void run() f
list .sum();

g

g

static class SynchronizedSum f

public static void main(String[] args) f
LinkedCell list =new LinkedCell(1.0, null );
LinkedCell listl =new LinkedCell(2.0, list);
LinkedCell list2 =new LinkedCell(3.0, listl);
LinkedCell list3 =new LinkedCell(4.0, list2 );
new SynchronizedSumThread(list3).start();
listl .setValue(5.0);

g
g

private static class NotSynchronizedSumThread
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extends Threadf
LinkedCell list ;

public NotSynchronizedSumThread(LinkedCell list) f
this . list =list ;
g

public void run() f
list .ineffectivelyUnsynchedSum();

g
g

static class NotSynchronizedSum f

public static void main(String[] args) f
LinkedCell list =new LinkedCell(1.0, null);
LinkedCell listl =new LinkedCell(2.0, list);
LinkedCell list2 =new LinkedCell(3.0, listl);
LinkedCell list3 =new LinkedCell(4.0, list2);
new NotSynchronizedSumThread(list3).start();
list3 .setValue(5.0);

g

g
g

A.3 Document

public class Document f
Document otherPart_;

synchronized void print() f
// print something

g

synchronized void printAll() f
otherPart_. print ();
this . print ();

g

private static class PrintThread extends Threadf
Document doc;

public PrintThread(Document doc) f
this .doc=doc;
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g

public void run() f
doc. printAll ();

g

g

public static void main(String[] args) f
Document letter=new Document();
Document enclosure=new Document();
letter . otherPart_=enclosure;
enclosure.otherPart_=letter ;
new PrintThread(letter). start ();
enclosure. printAll ();

g

g

A.4 Dot

public class Dot f

class Point f
private int x_, y_;

public Point(int x, int y) f

X_=X;
y-=y;

g

public int x() f
return x_;

g

public int y() f
return y_;

g

g

protected Point loc_;

public Dot(int x, int y) f
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loc_=new Point(x,y);

g

public Point location () f
return loc_;

g

protected synchronized void  updateLoc(Point newLoc) f
loc_=newLoc;

g

public synchronized void  moveTo(int x, int y) f
updateLoc(new Point(x, y));

g

public synchronized void  shiftX(int deltaX) f
Point currentLoc=location();
updateLoc(new Point(currentLoc.x()+deltaX, currentLoc.y()));

g

private static class ShiftXThread extends Threadf
Dot dot;

public ShiftXThread(Dot dot) f
this .dot=dot;

g

public void run() f
dot. shiftX (1);

g

g

public static void main(String[] args) f
Dot dot=new Dot(0, 0);

new ShiftXThread(dot).start();
dot.moveTo(1, 1);

g
g

A5 Cell

public class Cell f
private int value_;
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public synchronized int  getValue() f
return value_;

g

public synchronized void  setValue(int v) f
value_=v;

g

public synchronized void  swapContents(Cell other) f
int newValue=other.getValue();

other.setValue(this .getValue ());

this .setValue(newValue);

g

private static class SwapThread extends Threadf
Cell x, vy;

public SwapThread(Cell x, Cell y) f
this .x=x;

this .y=y;

g

public void run() f
x.swapContents(y);
g

g

public static void main(String[] args) f
Cell x=new Cell(), y=new Cell();

new SwapThread(x, y).start();
y.swapContents(x);

g

g

A.6 TwolLockQueue

public class TwolLockQueue f
private TLQNode head;
private TLOQNode last_;
private Object lastLock_;
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public TwoLockQueue() f
head_=last =new TLQNode(null, null);
lastLock_=new Object();

g

public void put(Object x) f
TLQNode node=new TLQNode(x, null);
synchronized (lastLock.) f

last_ .next=node;

last_=node;

g
g

public synchronized Obiject take() f
Object x=null ;

TLQNode rst=head _.next;

if ( rst !'=null) f

x= rst .value;

head_=rst;

g
return Xx;

g

private nal class TLQNode f
Object value;
TLQNode next;

TLQNode(Object x, TLQNode n) f
value=x;
next=n;
g
g

private static class TakeThread extends Threadf

TwoLockQueue queue;

public TakeThread(TwoLockQueue queue) f

this .queue=queue;
g

public void run() f
((IntWrapper) queue.take()).val++;

g
g
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static class IntWrapper f
int val;
IntWrapper(int val) fthis .val=val;g

g

public static void main(String[] args) f
TwolLockQueue queue=new TwoLockQueue();
new TakeThread(queue).start();
gueue.put(new IntWrapper(1));
queue.put(new IntWrapper(2));
gueue.put(new IntWrapper(3));

g
g

A.7 Account package

Account

package Account;

public interface Account f
public long balance();

g

AccountHolder

package Account;

public class AccountHolder f
private UpdatableAccount acct_=

= new UpdatableAccountObiject(0);
private AccountRecorder recorder_;

public AccountHolder(AccountRecorder r) f
recorder_=r;

g

public void acceptMoney(long amount) f
try f
acct_. credit (amount);
recorder_.recordBalance(new ImmutableAccount(acct.));

g
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catch (Insuf cientFunds ex) fg
g

public void acceptMoneyWithoutimmutable(long amount) f
try f
acct_. credit (amount);
recorder_.recordBalance(acct.);
g
catch (Insuf cientFunds ex) fg
g
g

AccountRecorder

package Account;

public class AccountRecorder f
public void recordBalance(Account a) f
a.balance();

g
g

EvilAccountRecorder

package Account;

public class EvilAccountRecorder extends AccountRecorder f
private long embezzlement_;

public void recordBalance(Account a) f
if (a instanceof UpdatableAccount) f
UpdatableAccount u=(UpdatableAccount) a;
try f
u.debit (10);
embezzlement_+=10;

g
catch (Insuf cientFunds e) fg

g
super .recordBalance(a);

g

g
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Immutable

package Account;

public interface Immutable fg

ImmutableAccount

package Account;

public class ImmutableAccount
implements Account, Immutable f
private Account delegate_;

public ImmutableAccount(long initialBalance) f
delegate_=new UpdatableAccountObject(initialBalance);

g

ImmutableAccount(Account delegate) f
delegate_=delegate;
g

public long balance() f
return delegate_.balance();

g

g

Insuf cientFunds

package Account;

public class Insuf cientFunds extends Exception f
public Insuf cientFunds() fg

g

UpdatableAccount

package Account;

public interface UpdatableAccount extends Account f
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public void credit(long amount) throws Insuf cientFunds;
public void debit(long amount) throws Insuf cientFunds;

g

UpdatableAccountObject

package Account;

public class UpdatableAccountObject
implements UpdatableAccount f
private long currentBalance_;

public UpdatableAccountObject(long initialBalance) f
currentBalance_=initialBalance;

g

public long balance() f
return currentBalance_;

g

public void credit(long amount) throws Insuf cientFunds f
if (amount >=0 jj currentBalance_>= amount)
currentBalance_+=amount;
else throw new Insuf cientFunds();

g

public void debit(long amount) throws Insuf cientFunds f
credit( amount);

g

g

MainClass

package Account;
public class MainClass f

private static class Balance extends Thread f
AccountRecorder recorder;

public Balance(AccountRecorder recorder) f
this .recorder=recorder;
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g

public void run() f
recorder.recordBalance(new UpdatableAccountObject(100));

g
g

static class CorrectExample extends Thread f

public static void main(String[] args) f
AccountRecorder recorder=new AccountRecorder();
AccountHolder holder=new AccountHolder(recorder);
new Balance(recorder).start();
holder.acceptMoney(100);

g
g

static class FirstBadExample extends Thread f
public static void main(String[] args) f
AccountRecorder recorder=new AccountRecorder();
AccountHolder holder=new AccountHolder(recorder);
new Balance(recorder).start();
holder.acceptMoneyWithoutimmutable(100);

g
g

static class SecondBadExample extends Thread f
public static void main(String[] args) f
AccountRecorder recorder=new EvilAccountRecorder();
AccountHolder holder=new AccountHolder(recorder);
new Balance(recorder).start();
holder.acceptMoney(100);

g
g

static class WrongExample extends Thread f
public static void main(String[] args) f
AccountRecorder evilrecorder=new EvilAccountRecorder();
AccountHolder holder=new AccountHolder(evilrecorder);
new Balance(evilrecorder).start ();
holder.acceptMoneyWithoutimmutable(100);

g
g

g
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B.1 Account

package name.ferrara.pietro.checkmate.bankapplication;

public class Account f
protected int creditRate;
protected int debitRate;
protected int amount;

public Account() f
synchronized (this) f
creditRate=2;
debitRate=10;
amount=0;

B.2 ATM

package name.ferrara.pietro.checkmate.bankapplication;
public class ATM f

protected void perform(Card c, int pin, int action, int amount) f
new ThreadATM(c, pin, action, amount).start();

g
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B.3 Bank

package name.ferrara.pietro.checkmate.bankapplication;

public class Bank f

public Person openAccount(int money) f
BankAccount accountl=new BankAccount(1000);
Card cardl=new Card(accountl, 1234);
return new Person(cardl, accountl);

g
B.4 BankAccount

package name.ferrara.pietro.checkmate.bankapplication;
public class BankAccount f
private Account account;

public BankAccount(int money) f
account=new Account();

synchronized (account) f
account.amount=money;

g
g

protected void withdraw(int money) f
synchronized (account) f
account.amount =money;

g
g

protected int getBalance() f
synchronized (account) f
return account.amount;

g
g

protected void deposit(int money) f
synchronized (account) f
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account.amount+=money;

g

protected void deposit(Money money) f
synchronized (account) f
account.amount+=money.getValue();
money.destroy();

g

protected void action(int choice) f
if (choice==1) this .withdraw(100);
if (choice==2) this .deposit(100);
g

protected void calculatelnterests() f
synchronized (account) f
int temp=account.amount;
if (temp>=0)
temp=temp-+temp account.creditRate;
else temp=temp temp account.debitRate;
account.amount=temp;

g
protected boolean thereAreMoney() f

synchronized (account) f
return account.amount>O0;

g

g

B.5 Card

package name.ferrara.pietro.checkmate.bankapplication;
public class Card f

private int code;
private BankAccount account;

protected Card(BankAccount b, int pin) f
synchronized (this) f
code=pin;
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account=b;

g

protected Money action(int pin, int action, int amount) f
synchronized (this) f
if (pin==code) f
if (action==0) f
this .show();
return new Money(0);
g
if (action==1) f
this .withdraw(amount);
return new Money(amount);
g
return new Money(0);
g
g
return new Money(0);

g

protected void show() f
account.getBalance();

g

protected void withdraw(int amount) f
new ThreadWithdraw(account, amount).start();

g
g
B.6 Cheque

package name.ferrara.pietro.checkmate.bankapplication;

public class Cheque f
BankAccount account;
int amount;

protected Cheque(BankAccount account, int amount) f
this .account=account;
this .amount=amount;

g

protected void executes(BankAccount to) f
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new ThreadWithdraw(account, amount).start();
new ThreadDeposit(to, amount).start();
amount=0;

g

protected Money executes() f
new ThreadWithdraw(account, amount).start();
int temp=amount;
amount=0;
return new Money(temp);

g
B.7 Money

package name.ferrara.pietro.checkmate.bankapplication;

public class Money f
protected int amount;

protected Money(int amount) f
this .amount=amount;

g

protected void destroy() f
amount=0;

g

protected int getValue() f
return amount;

g
g

B.8 Person

package name.ferrara.pietro.checkmate.bankapplication;
public class Person f

Card card;

BankAccount account;

Money cash;

public Person(Card ¢, BankAccount acc) f
this .account=acc;
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card=c;
cash=new Money(0);
g

public void withdraw(int amount, int pin) f
new ATM().perform(card, pin, 1, amount);
cash=new Money(cash.getValue()+amount);

g

public void checkMoney(int pin) f
new ATM().perform(card, pin, 0, 0);
g

public void closeYear() f
new ThreadInterests(account).start();

g

public void pay(int amount) f
cash=new Money(cash.getValue() amount);

g

public void transferFound(Person receiver, int amount) f
new TransferFunds(this .account, receiver.account, amount).executes();

g

public void receiveFound(Person receiver, int amount) f
new TransferFunds(receiver.account, this .account, amount).executes();

g

public void withdrawCheque(Cheque c) f
cash=new Money(cash.getValue()+c.executes().getValue());

g

public void depositCheque(Cheque c) f
c.executes(account);

g

public Cheque giveCheque(int amount) f
return new Cheque(account, amount);

g
g

B.9 ThreadATM

package name.ferrara.pietro.checkmate.bankapplication;
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public class ThreadATM extends Thread f

Card c;
int pin;
int action;
int amount;

public ThreadATM(Card c, int pin, int action, int amount) f
this .c=c;
this . pin=pin;
this . action=action;
this .amount=amount;

public void run() f
c.action(pin, action, amount);

g
g

B.10 ThreadDeposit

package name.ferrara.pietro.checkmate.bankapplication;

public class ThreadDeposit extends Thread f
BankAccount bank;
int amount;

public ThreadDeposit(BankAccount b, int amount) f
bank=b;
this .amount=amount;

public void run() f
bank.deposit(amount);
g
g

B.11 Threadinterests

package name.ferrara.pietro.checkmate.bankapplication;

public class Threadinterests extends Thread f
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BankAccount bank;

public ThreadInterests(BankAccount b) f
bank=b;
g

public void run() f
bank.calculatelnterests ();
g
g

B.12 ThreadWithdraw

package name.ferrara.pietro.checkmate.bankapplication;

public class ThreadWithdraw extends Thread f
BankAccount bank;
int amount;

public ThreadWithdraw(BankAccount b, int amount) f
bank=b;
this .amount=amount;

public void run() f
bank.withdraw(amount);
g
g

B.13 TransferFunds

package name.ferrara.pietro.checkmate.bankapplication;

public class TransferFunds f
BankAccount sending, receiving;
int amount;

public TransferFunds(BankAccount sending, BankAccount receiving, int amount) f
this .sending=sending;
this .receiving=receiving;
this .amount=amount;
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public void executes() f
new ThreadWithdraw(sending, amount).start();
new ThreadDeposit(receiving, amount).start();
amount=0;

g
B.14 Test

package name.ferrara.pietro.checkmate.bankapplication;

public class Test f
public static void main(String[] args) f
Bank bank=new Bank();
Person personl=bank.openAccount(1000);
Person person2=bank.openAccount(100);

personl.checkMoney(1234);

//end of 1st test

person2.withdraw(100, 1234);

//end of 2nd test

Cheque cheque=personl.giveCheque(100);
person2.depositCheque(cheque);

//end of 3rd test
personl.transferFound(person2, 100);
person2.receiveFound(personl, 100);
//end of 4th test

personl.closeYear();

person2.closeYear();

//end of 5th test

personl.withdraw(100, 1234);

//end of 6th test
person2.depositCheque(personl.giveCheque(100));
//end of 7th test

person2.withdraw(200, 1234);

//end of 8th test
personl.withdrawCheque(personl.giveCheque(200));
//end of 9th test
personl.checkMoney(1234);
person2.checkMoney(1234);

//end of 10th test
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