L. David, Développement de la microscopie thermique à sonde locale pour la détermination de la conductivité thermique de lms minces, Application aux céramique pour le nucléaire, Thèse de doctorat, 2006.

A. Hammiche, M. Reading, H. M. Pollock, M. Song, and D. J. Hourston, Localized thermal analysis using a miniaturized resistive probe, Review of Scientific Instruments, vol.67, issue.12, pp.4268-4274, 1996.
DOI : 10.1063/1.1147525

D. M. Price, M. Reading, A. Hammiche, and H. M. Pollock, Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis, International Journal of Pharmaceutics, vol.192, issue.1, pp.85-96, 1999.
DOI : 10.1016/S0378-5173(99)00275-6

S. Lefevre and S. Volz, 3??-scanning thermal microscope, Review of Scientific Instruments, vol.76, issue.3, pp.33701-33707, 2005.
DOI : 10.1063/1.1857151

URL : https://hal.archives-ouvertes.fr/hal-00361794

C. G. Shirley, Steady???state temperature profiles in narrow thin???film conductors, Journal of Applied Physics, vol.57, issue.3, pp.777-784, 1985.
DOI : 10.1063/1.334726

D. G. Cahill and T. H. Allen, optical coatings, Applied Physics Letters, vol.65, issue.3, pp.309-311, 1994.
DOI : 10.1063/1.112355

Y. S. Ju, Phonon heat transport in silicon nanostructures, Applied Physics Letters, vol.87, issue.15, pp.153106-153109, 2005.
DOI : 10.1063/1.2089178

T. Yamane, N. Nagai, S. Katayama, and M. Todoki, Measurement of thermal conductivity of silicon dioxide thin films using a 3?? method, Journal of Applied Physics, vol.91, issue.12, pp.9772-9776, 2002.
DOI : 10.1063/1.1481958

C. Durkan, M. A. Schneider, and M. E. Welland, Analysis of failure mechanisms in electrically stressed Au nanowires, Journal of Applied Physics, vol.86, issue.3, pp.1280-1286, 1999.
DOI : 10.1063/1.370882

C. B. Saint-blanquet and . Fourcher, Cours : Conduction de la chaleur, 2001.

M. W. Frank, Heat and Mass transfer, 1988.

L. Shi, Mesoscopic Thermophysical Measurements of Microstructures and Carbon Nanotubes, 2001.

B. Dong, T. Yang, and M. K. Lei, Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3, Sensors and Actuators B: Chemical, vol.123, issue.2, pp.667-670, 2007.
DOI : 10.1016/j.snb.2006.10.002

D. Santos, P. V. , M. T. De-araujo, A. S. Gouveia-neto, J. A. Neto et al., Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass, Applied Physics Letters, vol.73, issue.5, pp.578-580, 1998.
DOI : 10.1063/1.121861

E. Maurice, G. Monnom, B. Dussardier, A. Saissy, D. B. Ostrowsky et al., Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors, Applied Optics, vol.34, issue.34, p.8019, 1995.
DOI : 10.1364/AO.34.008019

C. You, I. M. Sung, and B. Joe, Analytic expression for the temperature of the current-heated nanowire for the current-induced domain wall motion, Applied Physics Letters, vol.89, issue.22, pp.222513-222516, 2006.
DOI : 10.1063/1.2399441

C. You and S. Ha, Temperature increment in a current-heated nanowire for current-induced domain wall motion with finite thickness insulator layer, Applied Physics Letters, vol.91, issue.2, pp.22507-22510, 2007.
DOI : 10.1063/1.2754351

D. L. Balageas, J. C. Krapez, and P. Cielo, Pulsed photothermal modeling of layered materials, Journal of Applied Physics, vol.59, issue.2, pp.348-357, 1986.
DOI : 10.1063/1.336690

J. Greet and R. Carminati, Image formation in near-eld optics, Progress in Surface Science, vol.56, issue.3, pp.133-237, 1997.

L. Aigouy and Y. De-wilde, Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe, Applied Physics Letters, vol.83, issue.1, pp.147-149, 2003.
DOI : 10.1063/1.1589193

L. Shi and A. Majumdar, Thermal Transport Mechanisms at Nanoscale Point Contacts, Journal of Heat Transfer, vol.124, issue.2, pp.329-337, 2002.
DOI : 10.1115/1.1447939

B. Samson, Ac thermal imaging of nanoheaters using a scanning uorescent probe Scanning thermal imaging of an electrically excited al. micro-stripe B. Samson & al. Thermal imaging of nickel wires with a uorescent nanoprobe, APL JAP, vol.92, issue.102, pp.23101-024305, 2007.

. Aigouy, Scanning near-eld optical microscope working with a CdSe/ZnS quantum dot based optical detector, J. of Physics : Conference Series RSI, vol.92, issue.776, pp.12089-063702, 2006.

J. Pylkki, P. J. Moyer, and P. E. West, Part 1 33, FIG. 9. Color online a FIR image of the wire excited by an electrical current of 9.8 mA. The black line indicates the approximate tip position during the scan when the failure occurred; b corresponding AFM image of the stripe; c and d SEM image of the wire after failure. The presumed failure zone is, Jpn. J. Appl. Phys, vol.5, pp.24305-24312

D. Huang, M. Mortier, and F. Auzel, 36 To understand this last dependence, one has to simply consider the excitation light as the sum of the incident and of the reflected field on the surface. Since the reflected field depends on the material considered, the excitation field is different according to the material located underneath the tip, Opt. Mater. J. Appl. Phys, vol.17, issue.777, 1985.

N. Gomès, P. Trannoy, and . Grossel, DC thermal microscopy: study of the thermal exchange between a probe and a sample, Measurement Science and Technology, vol.10, issue.9, p.805, 1999.
DOI : 10.1088/0957-0233/10/9/307

N. Gomès, P. Trannoy, and . Grossel, DC thermal microscopy: study of the thermal exchange between a probe and a sample, Measurement Science and Technology, vol.10, issue.9, pp.805-1999
DOI : 10.1088/0957-0233/10/9/307

K. Luo, Z. Shi, J. Lai, and A. Majumdar, Nanofabrication of sensors on cantilever probe tips for scanning multiprobe microscopy, Applied Physics Letters, vol.68, issue.3, p.325, 1996.
DOI : 10.1063/1.116074