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Abstract

The development of efficient methods to understand simulate conjugate heat
transfer for multi-components systems appears meanaus engineering applications and still
a need for industrials, especially in the casehef lteat treatment of high-alloy steel by a
continuously heating process inside industrial &ges. The thermal history of the load and
the temperature distribution in the furnace ardéioaii for the final microstructure and the
mechanical properties of the treated workpiecescanddirectly determined their final quality
in terms of hardness, toughness and resistancemgine objectives of this thesis is then to
understand and better model the heat treatmentegsoat the same time in the furnace
chamber and within the workpieces under specifieddce geometry, thermal schedule, parts
loading design, initial operation conditions, anderfprmance requirements. The
Computational Fluid Dynamics (CFD) simulation paes a useful tool to predict the
temperature evolution and such processes. In tee dart of this work, various stabilized
finite element methods required for computing thenjegate heat transfer and the
incompressible flows are proposed and analyzed. fimmulence models, the k-epsilon and
the Large Eddy Simulations (LES) models were iniiztl and used to simulate and take into
account the complex turbulent flows inside the &wa chamber. The effect of thermal
radiation was appropriately accounted for by mesHrs volumetric model known as the P1-
model. In the latter part of this work, a multidamapproach referred as the immersed
volume method (IVM) is introduced and applied teatr the fluid-solid interactions. It is
based on the use of an adaptive anisotropic logdlrgfinement by means of the level-set
function to well capture the sharp discontinuitggsthe fluid-solid interface. The proposed
method showed that it is well suited to treat stamgously the three modes, convective,
conductive and radiative heat transfer that magriate in both the fluid part and the solid
part using anisotropic finite element meshes.
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Résumé

La connaissance du comportement thermique des é&iudss pieces est un probleme
difficile et cependant essentiel dans les thématigde recherche industrielles actuelles.
L'industrie cherche a se doter de moyens numérigieeplus en plus efficaces tout en
réduisant sans cesse le temps de calcul afin delireddes piéces et des assemblages de
plus en plus réalistes. Les cinétiques de chaduffsl gue la distribution de la température
dans I'enceinte et dans les pieces traitées doiggaliement étre maitrisées, afin d’améliorer
la qualité des produits chauffées en terme detagsis et duretée.

Le travail présenté dans cette thése porte dontesigveloppement de méthodes de
résolution numeérique pour la simulation du trartsfieermique. Ces méthodes permettent le
calcul couplé de la température des pieces avagitanement du four afin d’optimiser la
géomeétrie de ces piéces, leur position dans lerfis également les conditions initiales de
chauffe. Le calcul de dynamique des fluides (CFB)tpétre considéré comme un puissant
outil technique de prédiction de I'écoulement delés et du transfert thermique dans des
cas industriels réalistes.

La premiére partie de la thése porte sur I'étudeciémas numériques avances relatifs
aux méthodes éléments finis stabilisés. Ces méshdeealculs efficaces ont étaient utilisées
pour simuler des écoulements instationnaires ettrd@sferts thermiques conjugués. Par la
suite, deux modeles de turbulence (modéle k-epsgitanodéle Large Eddy Simulation) sont
introduits et utilisés pour prendre en compte lesuéements complexes et turbulents dans
I'enceinte du four. Le transfert radiatif est agspar la résolution du modele P1 tout en
calculant un terme source volumique qui sera idtéigns I'équation de la chaleur.

La deuxiéme partie de cette these se consacrengséaen place d’'une méthodologie
de discrétisation robuste qui permet aux utilisatede générer de facon entierement
automatique un seul maillage. Ce maillage contéent fois des domaines axés sur la
résolution d’'un probléme fluide (air, eau, ...) maigalement solides spécifigues aux
structures, et ce quel que soit le niveau de détaillonc de complexité du cas étudié. Cette
approche, connue sous le nom d’ « immersion denwely, garantit un maillage anisotrope
précis aux interfaces fluide-solide afin de captyres précisément les gradients thermiques
et la forte discontinuité des propriétés physiquéstte méthode offre donc une grande
flexibilité dans la mise en données du problémeeniixiide-structure et aussi dans la prise en
compte de plusieurs géométries (four, pieces, stgpet elle est également bien adaptée aux
solveurs thermomécaniques développés.
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12 General introduction

1.1 Introduction to heat treatment furnaces

Heat transfer is involved in several physical psses, and in actual fact it can be the
limiting factor for many processes. The modelinghefat transfer effects inside industrial
furnaces has started drawing attention of many rorestigators as a result of the demand
for energy conservation through efficiency improestn and for reduction of pollutant
emissions. It also has become ever more impomatiitel design of the products itself in many
areas such as the electronics, automotive, maghamet equipment manufacturing industries.
Research in both experimental and numerical aradstt@ough mathematical models has
proven to be effective in accelerating the undeditey of complex problems as well as
helping decrease the development costs for newepses. In the past, the optimizations and
savings in large productions was made by only lamapanies that could support and afford
the cost of sophisticated heat transfer modeliraistospecialized engineers and computer
software. Nowadays, modeling has become an eskel@iment of research and development
for many industrial; and realistic models of compliéaree dimensional structure of the
furnace can be feasible on a personal computer.

A heat treatment furnace is a manufacturing protessontrol the mechanical and
physical properties of metallic components. It iwes furnace control, turbulent flows,
conduction within the load, convection and thermaiation simultaneously. The thermal
history of each part and the temperature distributin the whole load are critical for the final
microstructure and the mechanical properties ofkpieces and can directly determined the
final quality of parts in terms of hardness, tougds and resistance. To achieve higher
treatment efficiency, the major influencing factasch as the design of the furnace, the
location of the workpieces, thermal schedule argitiom of the burners should be understood

thoroughly.

Thermocouples on a heated pieces Large hollow metal ingot outside the furnace

Figure 1. Heat treatment study on industrial parts
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The damage to the global environment and the potispedepletion of essential
resources caused by growing human activity constiu dual challenge that calls for
coordinated measures by multilateral organizatismsh as ADEME, French Environment
and Energy Management Agency. This is an indusanal commercial public agency, under
the joint supervision of French Ministries for Eogy, Sustainable Development and Spatial
Planning (MEDAD) and for Higher Education and Reskavith a mission to encourage, to
supervise, to coordinate, to facilitate and to utad® operations aiming in protecting the
environment and managing energy.

Since simulation of the heating up process of wigdgs in heat treatment furnaces is
of great importance for the prediction and contblthe ultimate microstructure of the
workpieces but specially the reduction of both ggezonsumption and pollutant emissions,
this agency supports our research program and eages all players and partners in this
project to save energy, particularly sectors tlmatsame high quantities of energy on daily
basis.

Figure 2. Continuous heating inside a furnace.

1.2 Role of computational modeling in heat furnace degn

As mentioned previously, the major factor to be sidered in the working of a
furnace is the heat transfer by all the modes, wbiccur simultaneously. To either study a
new furnace or to optimize the heating processxistieg ones, the heat transfer in the
furnace has to be modeled in the same way of asite@tion as closely as possible. Given the
geometry of the furnace, different boundary coodgi along the furnace length, gas
composition and properties and other complexitsanalytical solution in not feasible and
computational modeling has to be resorted to. Ghestast 20 years, the CFD (Computational
Fluid Dynamics) has gained its reputation of bangefficient tool in identifying and solving
such problems.

Modeling the heating process involves solving cedpheat transfer equations. By
solving them computationally, the method shouldchpable of doing so in an accurate way
and within a reasonable time. In the heat transfeheat treatment furnace, there are
conduction, convection, radiation, turbulent flowdafurnace control. Conduction mainly
occurs in all solids materials. Turbulent conveattexists between the atmosphere and solid
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materials exposed to it, and furnace walls to timbiant air. Radiation exists between solid
materials exposed to each other and to all walke tbols used in this thesis are the Finite
Element Method (FEM) and Computational Fluid Dynesn(CFD). This method is shown as
an attractive way to solve the turbulent flow amdttransfer in the furnace chamber and it
can be applied for a variety of furnace geometrgt baundary conditions. The entire heat
transfer process is a transient one, and iteraiomsecessary. The main process is detailed in

the following flowchart:

Workpieces input: materials properties, positigns

A 4

Furnace input: gas properties, burners and outlet

A

A4

Thermal schedule input: time and models

v

Initial and Boundary conditions

A 4

Furnace and workpieces temperatu
calculation at fi time step

A 4

Numerical models: convection,
conduction, radiation and turbulenc

nAt >=t final

Y

Results and reports: temperature and velocity
profiles

Optimizatior

Figure 3. General flowchart for a heat treatmenbpess
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1.3 Brief literature on heat transfer modeling

In order to give an idea of the evolution of thed®aling process for transient heating
in heat furnaces, a brief review will be preserftede. Different methods and models have
been used and each model can be characterized thpoassumptions made. Numerous
practical methods and models for the predictiontlt@drmal heating process have been
developed and applied to various different furngeemetries. For a complete description
about computational modelling of heat transfereheat furnaces, the readers may refer to
Harish J. in [1]. Patankar and Spalding (1973) f@&delled combustions chambers and
furnaces using the composite-flux radiation modete steady state heat transfer was
modelled by Krivandin and Markov (1980) [3] usingnse empirical relations in both the
pusher-type and walking beam furnaces. Only ramhatvas considered and convection was
neglected.

Minaev et. al. (1983) in [4] showed by studying kiaff beam furnaces that the
convective heat transfer coefficient changes vitie lalong the furnace. In [5], Tucker and
Lorton (1984) investigated the effects of non-g@mbustion products using the zone
method proposed by Hottel and Cohen (1958) [6].s Thethod was used for absorbing,
emitting and non-scattering homogeneous gas tagireatliative heat transfer in a reheating
furnace. The zonal energy balance method was usedompute the gas temperature.
However, it was stated that the coupling of the perature distribution in the load and
refractories with heat transfer from the combustgiases was not completely accurate.

In the work of Gerasimov et. al. (1984) [7], passexperiments were conducted as an
addition to a statistical mathematical model, manmig the dimensions of the load, speed of
movement and thermocouple readings. They foundttait by considering only a uniform
continuous entry of workpieces in to the furnacd by assuming that the temperature of the
furnace atmosphere was constant in a zone, goallsean be obtained.

Kohlgriiber (1985) in [8] developed a simplified oel capable of determining
detailed temperatures profiles in the load for atiomous reheating furnace. This model
consists in computing the gas temperature as difumof the distance though the furnace.
The mean-beam length technique was used to contipeiteadiation effects using the gray
model assumption for gases.

Figure 4. Automotive, machinery and equipment nmestufing industries

Li et al (1988) [9] developed a mathematical moidel predicting steady state heat
transfer. The radiation effects were computed ushreg zone method while transient 2D
conduction equation was solved to compute the teatye profiles in the slab. They pointed
out that the computing cost of the zone-methodasetxpensive and should be replaced.



16 General introduction

In [10], Ramamurthy et al. (1991) developed a madeln indirectly fired continuous
furnace capable of predicting the fuel consumptidre radiation heat transfer was calculated
using the radiosity method assuming that the gasesa nonparticipating medium. A 1D
model was used for the conduction in the solid.

A mathematical system model for modelling direcedi continuous reheat furnaces
was developed in [11] by Chapman et al (1991).cmective heat-transfer rate to the load
and refractory surfaces was calculated using egstorrelations from the literature. The zone
method was applied for computing the radiation heathange between the load, the
combustion gases, and the refractory. A paramigiviestigation was also conducted to study
the effects of the load and refractory emissiviiasl the height of the combustion space on
the thermal performance of the continuous rehedtintace.

Barr (1995) [12], developed an interesting simeptifiapproach for on-line temperature
control of a pusher type furnace. The temperatae eomputed in the longitudinal section of
each bloom inside a long-furnace type. An impliiciite-difference method was used to solve
the convection heat transfer and a zonal methodappked to calculate the radiation effects.

Marino (2000) developed in [13] a simplified ondimodel for controlling a rotating
reheat furnace. The radiation effects between iddal load segments and between the
burners and the load as well as the convection negécted.

Altschuler et. al. (2000) [14] developed both offiand online models of the pusher-
type and walking beam furnaces. The problem wagl@ivinto the load problem and the
radiation problem for the purpose of analysis. Zheal method was used to calculate the
radiation heat transfer and a finite volume apphoaas used to calculate the conduction heat
transfer in the load.

Harish and Dutta (2005) [15] developed a computationodel to predict the heat
transfer in a direct-fired pusher type reheat foenaThe finite volume method was used to
compute the gas radiative heat transfer.

Recently, Man Y. Kim (2007) [16] developed a matl#ical model to predict the
radiative heat flux impinging on the slab surfacd é&emperature distribution inside the slab.
The furnace is modelled as radiating medium withtigfly varying temperature and constant
absorption coefficient.

1.4 Objectives of the thesis

As explained previously, heat treatment represamistical step within the steelmaking
process. It can be defined as a combination ofifgea@nd cooling operations applied to a
metal alloy in solid state which controls its metieal properties, therefore contributes to the
product quality in terms of hardness, resistancetanghness. Therefore, the objective of the
proposed project is to develop a computational oulogy able to predict the furnace
atmosphere as well as the transient heat transfévet load in a continuous heat treatment

process.
Due to the complexities of the physics that mayuodor such applications, many
mathematical models have been proposed over theypas. Of course this complexity has
decreased with the available computing power bugtrabthe time, the general idea of these
models was to solve only for heat conduction withive load and employ different
assumption and simplification about the surroundjag temperature within the furnace using
different heat transfer coefficients derived fromotvn furnaces or previous experimental
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works [17-18-19]. Additionally, in recent yearsffdrent environmental constrained pushed
the industrials to change their previous regulaiddonsequently, many experimental tests
must be made to deduce such transfer coefficidrds énsure both the convective and
radiation effects on and from the treated solidwkleer, when dealing with a large diversity

of shapes, dimensions and physical properties @§ethmetals to heat or to quench, such
operations can become rapidly very costly and toresuming.

The development of efficient methods to understand simulate conjugate heat
transfer for multi-components systems (fluid-soislfthen highly demanded. In recent years,
there has been increasing interest in studying noaly a variety of engineering
applications that involve such coupling (fluidside) [20-21-22]. Typically, the general idea
of these techniques consists in dividing the glamahain and solving on each subdomain the
corresponding equation independently. The globdlitism can then be constructed by
suitably constructing local solutions from indivally modeled subdomains. However, during
the assembly, the coordination between the meshes become complicated or even
sometimes not feasible.

Other alternative approaches have been appliedhtdti-phase flows problems and
are available in the literature, such as the gflagl method introduced by Fedkiw et al.
(1999) in [23], the immersed boundary method [24¢ domain decomposition [25], the X-
FEM [26]. They introduced and improved enrichmamtdtions for material interfaces and
voids by means of the level set representatiossigaces.

Nevertheless, in general when using all these tqaks, one still needs to know the
value of the heat transfer coefficients between tive domains which ensures, as a
Neumann/Dirichlet boundary conditions, the heabexgye at the air/solid interface.

The main objective of this work aims to overcomss ttirawback and to present a
multidomain approach to solve the conjugate heansfer for which the three modes,
convective, conductive and radiative heat transfrfere simultaneously and in both the
fluid part and the solid part. The proposed nuna¢meethod for modeling such multimaterial
flows (fluid/solid) will be referred as the immedserolume method (IVM). It allows an
improved, simple and accurate resolution; in palaidy at the interface between the fluid and
solid. A full description and details about thisthw will be given. To complete, the three-
dimensional finite-element (FEM) methods neededsfiving the transient heat transfer and
turbulent flows inside the furnaces must be capabl@king into account also the proposed

thermal coupling.

Therefore, the first part of the thesis consistsdeveloping different numerical
methods for modeling the heat transfer and turtidlew. At the burner’s level and inside the
domain, it is well known that for convection-donmiea problems, spurious oscillations may
appear in the standard finite element resolutiothefadvection-diffusion equations. In order
to overcome this numerical difficulty, differentabilized finite element methods will be
presented, such as SUPG (Streamline Upwind Petederkdn) and SCPG (Shock Capturing
Petrov-Galerkin). At ingot’'s level, where diffusiae the sole mechanism for heat mass
transfer, there are still some conditions for whtble Galerkin method fails to solve the
transient conduction problem. A new approach wdl gresented to obtain stabilized finite
element formulation that ensures an oscillatioe-fselution and treats the thermal shocks.
The velocity and the pressure fields are computeddiving the Navier-Stokes equations
coupled to heat equations. This finite elementesols already implemented in our library



18 General introduction

CIMLIB”. It uses the so called P1+/P1 or “MINI-elementtrfnilation as a stabilization
method. An extension of this solver will be studiadalyzed and added to take into account
the convection dominated terms for simulating higgynolds numbers. The work mainly
involves the implementation of turbulence modelsoTmodels will be added to this project,
the k-epsilon model and the Large Eddy SimulatiogS) method (Smagorinsky model). In
addition, it has been reported in the literaturat ttadiation is the dominant mode of heat
transfer inside the furnace or in quenching prac@seerefore to capture accurately the
temperature evolution, different thermal radiatiovodels are discussed, only two are
implemented and adapted to the proposed immerdacheanethod. All the numerical results
obtained for benchmark problems are compared wlieronumerical models and analytical
solutions for validation purposes. This will be thebject of the last part where also several
industrial applications will be presented.

To summarize, the originality of this work is thengbination of stabilization methods,
unstructured grids, anisotropic mesh adaptaticamsient flows, heat transfer, turbulence
models and radiation models in a multidomain apgmodll those elements represent the
features dedicated to industrial abilities of thetimod.

This work was done within the THOST, “THermal Optzation SysTem” project
context, which includes the following industrial mieers:

= ADEME (www.ademe.jr industrial and commercial public agency

=  SnecmawWww.snecma.jr. aeronautic equipment

= ArcelorMittal — IndusteelWww.arcelormittal.com: steelmaker company

= EDF (www.edf.f} : Electricity of France

= Aubert & Duval (www.aubertduval.cojn: world leader in alloys, manganese and nickel
activities

= Terreal (www.terreal.com: producer of terra-cotta

= Manoir Industriesyww.manoir-industries.comcast and forged metal components

= Creusot Forge, group Arevenfw.sfarsteel.cojnheavy steel fabrication and mechanised
welding of complex assemblies

= SCC, Sciences Computers Consultarwsvw.scconsultants.cgmndustrialization and
commercialization of material forming software (r) THOST, Ludovic, Fakuma)

The main tasks within this project were:

— The establishment of physics-mathematical models téonperature and heat
transfer analysis during a continuous heating et furnace. This will mainly
include a turbulent flow model, a heat radiationdelp a heat convection-
conduction model in a multi-domain approach.

— The development of a numerical calculation metlwydeftimating the temperature
distributions in the furnace and workpieces by gsstabilized finite element
methods, under a specified furnace geometry, tHesolaedule, part loading
design, initial operation conditions, and perfore@nequirements.
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- Finally, the development of knowledge-based CADI tedchich will provide a
CAD user interface for the information input of thenace, workpieces, thermal
and physical properties, and initial operation d¢tbods that are used in the
simulation.

The first two points can resume the present wohle l&st point was conducted and managed
by SCC. Another encouraging point for the industo@rtners is the establishment of such

user friendly interface. The project is built natlyon the idea of offering accurate results

for the heat furnace treatment but also in answeaalhour partner’s needs in a custom-made
software. Here is a list of some industrial demands

1. Accurate prediction of temperature profiles in tinnace chamber.

a. Temperature capturing at different positions (walteners...).

b. Temperature capturing at the surface or core afydeaded parts.

c. Capable of handling multiple parts in three-dimenai simulations.
2. Ability to simulate various configurations

a. Ability to arrange or randomly distribute loadedtsa

b. Simulating different thermal schedule.

c. Ability to insert or remove ingots at anytime dyyithe simulation
3. Facility to calculate important terms such as:

a. The heat losses from the furnace.

b. The heat and energy required for the load undézréifiit conditions.

c. The heat stored in the furnace or in the loadfasetion of time.
4. Ability to change the environment

a. Opening or closing the doors

b. Turning on or cutting off some burners during thewation

Figure 5. Large heated industrial workpieces
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1.5 Work environment

In this thesis, all the numerical implementatiofshe developed methods are carried
out using the finite element library CIMLIB. CIMLIBwhich stands for CIM as Advanced
Computing in Material forming research group an8 fdr library, is developed by the team
of T. Coupez and H. Digonnet [27]. It is the base different numerical applications
developed at CEMEFwWww.cemef.mines-paristech),fin collaboration with other research
team and industrial partners. This scientific Ifigraepresents an Object Oriented Program
and a fully parallel code, written in C++, gathéne numerical development of the group
(Ph.D. students, researcher, associate profegso€CIMLIB aims at providing a set of
components that can be organized to build numesicalilation of a certain process, such as
REMS3D, XIMEX, Forge3 and the present project THOST.

1.6 Layout of the thesis

The thesis is divided into seven chapters. Chapter an introduction to the topic
considered in this thesis. Chapter 2 summarizesh#isgc governing equation for the heat
transfer equation which leads to the common comwediffusion-reaction equation. The
mathematical modelling with emphasis on stabilifade element in industrial applications
is presented. Chapter 3 gives a detailed desamigtidhe computational procedure needed to
solve the flow problem. Special attention is giverthe use of different stabilization methods
for solving the Navier-Stokes equation at high Réga number. The computation of
different benchmarks tests has been also carriedGhapter 4 is devoted to the numerical
approach of two turbulence models, k-epsilon ands LEarge Eddy Simulation). The
Immersed Volume Method (IVM) coupled to the meshamdtion for solving thermal
coupling of fluids and solids and for the repreagoh of the loads inside the furnace is
presented and discussed in chapter 5. The radib&aé transfer models are detailed in the
second part of this chapter. Chapter 6 summarieesesults obtained computationally along
with the validation of the code on some industagplications. Several comparisons with
experimental works will be also presented in fotgppints for publications. In chapter 7,
conclusion and the possible extension of the ptesemk to include more features is
explored.
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Chapter 2

Stabilized finite element method of convection-

diffusion-reaction equations

The present chapter is dedicated to the modellingeoheat transfer equation in fluid
mechanics which leads to the common convectionusiifih-reaction equation. The need for
stabilisation of the discrete equation is explaiaad a review on the stabilisation methods is
discussed. After briefly reviewing the reason fog bbserved non-physical oscillations in the
numerical solutions due to the presence of shagdignts of temperature or in highly
convected schemes, some methods to circumvent dsediations are considered. The main
part of the chapter is devoted to the family ofdeal based stabilisations methods which are
discussed, implemented and validated on severaknoah examples. Our motivation and our
future goal are to resolve the transient heat tesrequation by a continuous finite element
approximation using the above mentioned stabilimethods.
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2.1 The need of stabilization methods

The finite element method has been used widelynmulating many physical situations
due to its flexibility to represent complex geontetdomains especially for mechanical
applications: airplanes, industrial furnaces anaynathers. Since in most cases analytical
solutions are difficult or impossible to obtainetlinite element method can provide an
interesting alternative way to solve and simulate/sical situations governed by well
established mathematical equations. Although it haen used extensively in structural
mechanics, it was noticed that during recent yeae advanced development are still being
continued to extend its application in complexdlanechanics.

The solution of the transient convection-diffusi@action problem represents a very
important subject in numerical modelling for a wicdlass of problems in fluid mechanics in
particularly the heat transfer equation. Usually @alerkin Finite Element (FE) method is the
first mentioned among the various numerical tecesgavailable to solve these problems.
This can be explained due to its simplicity andceeatsmplementation in different codes.

This method is usually based on the Eulerian foatnoh in which a fixed position
control volume is used to derive the governing #&qna. Consequently, the resulting
governing equation contains a convective term thas$ first order spatial derivatives.
However, when using the standard Galerkin finitemednt procedure on this governing
equation, the convective term creates a skew mathich is the source of non-physical
oscillations. These non-physical oscillations tfene are a result of the discretization of the
first order spatial derivative in the convectiventewhen dominating the other terms, like
diffusion or reaction terms, in the same goverra@ggation.

We can find in the literature many papers with etiéht methods proposed to avoid
these numerical oscillations. These methods arevikras the upwinding techniques. The idea
in upwinding is that the node in the upstream dioecgives more weight to the solution than
the node in the downstream direction.

Since 1950, many upwinding techniques have been dhgct of extensive
investigations in the literature. This idea wastfgroposed by Courast al.[1] in 1952 then
outlined by [2] and [3]. The very first procedutesve been proposed by Hugletsal[4, 5,

6], Doneaet al. [7], Patankar [8], etc. For a review of literatusdating to this subject, the
readers are referred to a complete summary report®] and [15]. These methods are quite
efficient and stable in certain applications, witte use of specific discretization, but
improvements and generalizations for finite elemamalysis with optimal accuracy
characteristics are still under active developmbnthis chapter, we will discuss the need of
such upwinding methods specifically for the conimttdominated heat transfer equation
inside the furnace.

Other instabilities may occur where transient cation is the sole mechanism for heat
mass transfer in particularly at ingot's level. Tdare still some conditions for which the
Galerkin method fails to solve unsteady diffusialmlpem. A new approach based on the
variational multiscale method will be presentedehén obtain stabilized finite element
formulation that ensures an oscillation-free solutand treats the thermal shocks. Many
related ideas was proposed like, mesh refinemdlji M-matrix theory [11], finite volume
method [12], discontinuous Galerkin models [13] atf diffusion-split method [14].
Compared to all these methods, the new approackswor general meshes, can use any time
step and has not only a good accuracy order, bateasmaller computational cost.
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2.2 Standard Galerkin solution

In this section the general equation of convectdfusion-reaction is described and
solved. The main interest is then to highlight tleason of the occurring unphysical
oscillations. This can be easily done by analyzingne dimension discrete equation as
proposed by Donea and Heurta [16].

2.2.1 Problem setting

The convection-diffusion-reaction equation over auided and polyhedral domain
o ¢ (d being the space dimension) consists in findingadasu(x,t) such that:

ou+Lu=1f inQx(0,T)
u=0 ondQx(0,T) (2.1)
uCO)=u, InQ

Wherer. is the convection-diffusion-reaction operator:
Lu=allu-0QkKIyY +oL (2.2)

Here,ais a given divergence-free velocity field> O is the diffusion coefficient ami> O is
the reaction coefficient, is a source function angh the initial data. First let us introduce
some notation [15]. For a give ¢, the space of functions whose distributional

derivatives of order up ton > 0 belong to L*(Q) is denoted byH ™(Q). The subspace of
H(Q) consisting of functions vanishing on the boundargienoted byH;(Q) . The norm of

H™(Q) is denoted byl .. The L* norm is denoted bl , and its inner product b{L.L).

The topological dual oH}(Q) is denoted byH *(Q) and (L), is used to denote the duality
pairing between them.

The Galerkin variational formulation corresponditog(2.1) is obtained by multiplying this
equation by test functions and integrating overcivaputational domain. The problem can be

written in a weak form as follows: giveh OH™(Q) and all L”(Q), find udV:= Hy(Q)
such that :

(Qu.v)+b(u Y=y OVI V
b(u,v):=(ally Y+ yd y+ (o u ¥ (2.3)
I(v)=(f,v)
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2.2.2 Space discretization

For the spatial discretization, we consider thédielement partitiorZ, of Q into

set 0fNg elementK such that they cover the domain and there arerettis@int or share a
complete edge (face). Using this partition, thevabdefined functional spadéis approached
by a finite dimensional spa&& spanned by continuous piecewise polynomials.

V, ={ v, 0 HA(Q), Vi, islinear for KO, } (2.4)

The Galerkin discrete problem consists now in fagdi, [V, such that:

(0O.u,, Vi) + b(U, )= Kv) O vOV (2.5)
Finally, the matrix systems follow from introduati@f linear shape functions into the
variational formulations (2.5). The linear matrigggem for the convection-diffusion-reaction

equation reads after assembly of the element reatric system of first order differential
eguations:

MU +K U +K U +K U=F (2.6)

whereU is the vector of nodal unknown temperatuidsis the mass matriX. the stiffness
matrix from the conductive ternky the stiffness matrix from the diffusion ternK; the
stiffness matrix from the reaction term ards the internal source. The finite element matrix
equation must be solved to obtain the numericaitswl for the convection-diffusion-reaction
problem with specified boundary conditions. Theffioent matrices and load vectors are
defined as follows:

M=a% [ NN dK

K=k alIN N dK

Kq=a% [ KON DN dK (2.7)
K=a% [ oN N, dK

o NeI
F=aM jKi f N, dK

beingN; the linear interpolation function at nodexnd is the matrix assembly operator
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2.2.3 Temporal discretization

The system of ordinary differential equations (ZW@s to be integrated in time. Using the
finite difference family of approximations, the derivative of the fgnature with respect to
time can be approximated at tinvan 4t by:

MU -U
At

Here, 4t denotes the chosen time stegl, the previous time level subjectneO,...,( T4t )-1,

T the simulation time andé the parameter of the method, taken to be in tteval [0,1]. We
remind that this family includes the backward Eusmheme @=1), the Crank-Nicolson
scheme(f=1/2) and the forward Euler schenfé=0). The forward and backward Euler
schemes have first-order accuracy. However, thenkGiacolson scheme it is the only
scheme bearing second-order accuracy. The crifisadvantage of last mentioned method
lies in the potential occurrence of oscillationgidg the development of the solution. The
reason is usually due to a chosen time step bemtatge for the underlying problem. Using,
for example, the backward Euler scheme such amriact’ time step may be overcome by
the strong damping feature which comes into plaglyosingd>1/2. For a general analysis
of these methods with regard to the damping featome may consult e.g. Hughes (2000)
[17].

K (U +A-OU ™) ="+ (1-OF " (2.8)

The explicit forward Euler method is subject to teke-called CFL (4t | a| /h)
(Courant-Friedrich-Levy)-condition governing thezesiof the time step depending on the
velocity and the chosen spatial discretizatorwhen using extremely small time steps, the
CFL-condition may become very restrictive. Despite simplicity of this scheme, implicit
scheme whose parameter lies between 1/2 and eoereéd here. Another alternative was
suggested by [18] to increase slightlyabovel/2 in order to cure the oscillations, but at the
same time it sacrifices the second-order accuracy.

2.2.4 Introduction to stabilized method

In this section, the one dimensional convectiofiudibn equation is considered to
highlight the numerical problem when using the déad Galerkin finite element method.
Although the following example is simple, it refted¢he real situations even when simulating
an industrial application. Assuming a steady statadition, a zero source term and without a
reaction term, the problem will reduce as follow:

du ., d*u .
a—-k—=0 inQ 2.9
dx  d¥ (2.9)

A uniform mesh domainQ[L] to be considered with the element lengthand its linear
interpolation functions is shown in Figure 1:
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0 i-1 [ i+1 L
Figure 1. Interpolation function for the node i

By applying the Galerkin method to equation (2.8)abtain the following equation,

du . d’u B
L[a& kd—xzjde—O (2.10)

Solving equation (2.10) leads the following diser&irm for thei™ node of a uniform mesh
with element sizé,

a_ui—1+q+1 —k L1'—1_2l2'rI t Uy =0
2h h

whereu;;, Uy andui,; are the nodal values afat nodes-1, i andi+1 respectively. It can be

seen that the Galerkin method gives rise to cediffdrence type approximations of
differential operators, same as of the centratdiniifference method, which are well suited
for elliptic problems, see for example Hueea al. (2003) [19]. This equation can be
simplified to obtain the following

(2.11)

(-1-P€)y_,+2y+ (-1+ Pé) u,=C (2.12)

whereP¢€ is the element Péclet numbdte” = alV 2 k. It is a dimensionless number relating
the rate of advection term of a flow to its ratedafusion. So the flow is assumed to be
convection-dominated foPe >> 1 and diffusion-dominated wheRe << 1. When the
convective terms dominate, these anti-symmetritmgecreate instability in the finite element
solution which is indicated by oscillations. A silpgllustration is given in the following
example.

Consider the 1D boundary value problem on the watef0,1] with u(0)=1 and
u(1)=0. The velocity field is prescribed a=1 uniformly and constant diffusivity is assumed,
k=10Z If the element sizé = 0.1then the global Péclet number will be 100. Thisflow
boundary layer problem have the following analytaaution:

ax a

u(x) = e - ¢ (2.13)

a

1-ek
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Figure 2. Solution of the 1D convection-diffusmoblem using the Galerkin method

Notice that the boundary layer is located at tightriend of the interval (at=1). In
this region the gradient is important. As stateglvpously, for high Péclet numbers, i.e. when
the flow is dominated by advection, it can be sdem figure 2 that the Galerkin
discretization gives rise to node-to-node oscolagi of the solution or “wiggles”. Such
numerical instabilities pollute the global solutiand create critical problems when solving
couple heat transfer problems. One way to elimitia¢se oscillations is the use of upwind
techniques such as stabilized finite element.

In general, as stated in [9], the basic upwindiechhique consists in replacing the
central difference method obtained from the Gaterkihite element procedure for the
convective terms by the forward difference methafdfjrst order accuracy. This will give a
stable calculation. However, using the completevéod difference method yields numerical
results that are not satisfactory since they aexlpwiffused. To improve accuracy, several
modified versions were proposed and developed togdacing an adjusted variable, which is
a function of the Péclet number. The most popuwamtilation is known as the Streamline
Upwind Petrov-Galerkin method (SUPG). It was prambby Hughes and Brooks in [3] and
[20] for advection dominated problems. In briefe thasic idea of the streamline upwind
method (SU) is to add artificial diffusion whichtaonly in the direction of the flow.

Flow

Galerkin

i+1

Figure 3. Weighting function of the Galerkin mettemd the SUPG method for linear
elements
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Then it was extended to a Petrov-Galerkin formatatby modifying the standard Galerkin
weighting functionswv, for all terms in the equation. This modificatios interpreted by
allowing more weight to the node in the upstreamneation and reducing the weight to the
node in the downstream direction (see figure 3)e Thodified equation will take the
following form

du , d*u
——k—|VdQ =0 )
Ig[a dx d)("jv (2 14)

o v
WhereV‘V+Ta& is the new modified weighting function. Note almt since a linear

interpolation is used, second derivative cancels ©oe parameter, known as stabilizing
parameter, will govern the amplitude of the addefi@al diffusion. Finally equation (2.14)
will be modified into

2 2 2
(-1- Pee—%) Y +(2+ 2%)q+ 1+ Pé—%) 4,=0 (215

As a result, an exact nodal solution is obtainedfe dimensional analysis. (Figure 4)
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Figure 4. Solution of the 1D convection-diffuspoblem using the stabilized method

The previous simple example illustrates some ofdiffeculties that motivated much of
the development of upwind and stabilized finitensd&t methods. For multidimensional
cases, the idea of upwinding can not be easilyieghpHowever, various methods have been
proposed to implement the basic idea of upwindimgmnultidimensional analyses. In the
following subsection, we shall discuss these methéar time-dependent convection-
diffusion-reaction specifically with respect to ithese in heat transfer applications.
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2.3 Stabilized finite element methods

The numerical solution of convection-diffusion-réac equation using Galerkin
formulation normally exhibits global spurious oktibbns in convection-dominated problems,
especially in the vicinity of sharp gradients. leah transfer applications, it is important to
design a numerical methods guaranteeing that 8weale it temperature solution satisfies the
physical conditions, in particular for convectioontinated and sharp gradient problems.
Another typical example is the simulation of pracesich involves solving the two-equation
turbulence models. Such equations might be eitlmmvexction or reaction dominated.
Therefore, the main objective in this section igduisit these numerical methods to obtain
stable form for any regime without loss of accurd@yer, the last two decades, a variety of
finite elements approaches have been proposedaiowdd such situations. These methods
add a perturbation term to the weighting functiaith aim to get an oscillation-free solution.
These terms are mesh-dependent and allow gettiognsistent and stabilizing numerical
scheme. Recently, such methods have grown in poilaspecially in application to fluid
dynamics. Starting with Hughes and Brooks in [3, 5, with the SUPG method, a
generalization was proposed for multidimensionaleative—diffusive systems in [22] and
[23]. Later, as pointed out in Harari and Hughe$-28], the Galerkin/Least-Squares (GLS)
and gradient Galerkin/least-squares (GGLS) methagle used to optimize the performance
of finite element formulations for advection-diffas equation with production.

At the same time, a number of interesting staldlimrmulations have been proposed
based on the multiscale methods [26] and relatetdt wo the residual free bubbles (RFB) by
Russo [27] and Brezzi [28]. Further attempts toeli@y a stabilized finite element method
with good stability in the presence of reactiverterare presented with the unusual stabilized
method (USFEM) by Franaat al. [29, 30]. For a detailed comparison of some fieiiement
methods for solving these equations, the readersederred to the work of Codina [31].
Some advancement in this direction has been dof#d]rand in [32] with the presentation of
a subgrid scale method with a simple intrinsic tiseale parameter.

In this section, we discuss the use of the SUPGthadRFB methods to solve the
transient advection-diffusion-reaction equation. ff@ent structure of the stabilizing
parameters will be presented and conclusions willitawn.

2.3.1 Streamline Upwind Petrov-Galerkin FEM

We reconsider the time-dependent convection-diffuseaction equation using the
same homogeneous Dirichlet boundary condition aitéhli condition as (2.1), findu, OV,

such that :
Ou, )+ @My, W+ (kK y0w+@y W=(f WOy} (216

The original SUPG method was first designed fordieady version of Eq. 2.1 as a method to
avoid the numerical oscillations found using thée@an approach when the diffusion term is
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small. The extension to the transient problem ttatconsider here is based on a previous
dicretization in time of the equation and then bea tise of stabilized finite element method
for the resulting spatially-continuous problem. Sapproach is mostly used in the literature
(see [31] and [32]).

For illustration purposes, we apply the backwargliait Euler method to equation (2.16) and
we obtain the followed: gived, find u™* satisfying the boundary conditions ardv, 0V,

n+l n

u +1 +1 1 — uh
o M)+ (@mDu™, y)+ (KU, 0 y) + (@ V=6 RN a7

By adding a streamline upwind perturbation whicts awainly in the flow direction:
v, = v, +rally (2.18)

and inserting it into (2.17) , the SUPG methodisriulated as followllv, OV,

n+l
(uAh—t,vh)+(aD]]u:+1,\4])+(IG 0¥+ @ W+ ® YT @l y
K

" (2.19)
= (Khtivh)"'(f Vi)

WheregR (un ) is the appropriate residual of the finite eletm@mponentsi,. We can see that

this method is consistent in the sense that th&iadal stabilizing term is zero i, is the
solution of the continuous equation.

Sy, v) =D (R Y, 7 dD Y)
K

un+l un
=1 (—+a@u™ -OQKIU™) +ou™ -~ f, dll y), (2.20)
— "< VAt h h "Mt

time- dependent convectien diffusion reaction residual

This method up to now has been extensively usemmvection dominated problems
by introducing the streamline diffusion in the axit of weighted residual methods. The
added stabilizing terms are indicated by a subsé&tipvhich denotes integration over the
element, (only added on the element interiors).eNbft the third term vanishes in (2.20)
while using linear interpolations. It remains tdide how to compute the parametgrcalled
often ‘intrinsic time’ which can determines andilbedte the amount of upwinding weighting
locally in each element. The definition of this qaseter was originally computed for 1D
problem. Then it was extended for multidimensiargdes using somad hoc’ modifications.
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More recently, other ways of computing have been proposed on the basis of the
convergence and error analysis of the method. Theoge of the next subsection is to present
some definitions of the stabilization parameteed ttan be directly implemented in our finite
element code.

2.3.1.1Proposal for the parameters

The critical question in the SUPG method remainthechoice of the parametss .
How much of the perturbation term we must add t@iakthe desirable effects of additional
stability with high accuracy7here is a large amount of literature concernimg ¢hoice and
design of the stability parameters in both presemzkabsence of the reaction term. However,
very few of them have been so far used in the sitian of time-dependent equations. In our
case, as we can see in the discretized equatid®)(2he transient term can act like an
additional reaction term which might dominate th#udion and the convection term, in
particular for small time steps. Thus, approprdeameters should take both the reaction and
the transient term into account yielding modifiéaldizing parameters.

The standard design fag comes from advection-diffusion theory and compuwedollow:

Tog = 2la ‘E( e) (2.21)

where &(Pe) , function of the Péclet number is derived from alagkactness as:

&(Pe) = coth F>e—i = min%1 Pgl (2.22)
Pe

For negative reaction terms, Codina in [31] and] [@8@rived the following formula fork
which emanates from the discrete maximum principle:

:2 1
Tood = ( ns l:l‘ ‘ ‘j (2.23)

h2

A similar symmetric expression with respect to #ign of the reaction term is proposed by
Shakibet al.[34] where each contribution is squared

9 2 -1/2
r =9 4_kj + M +g? (2.24)
h? h
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From convergence and stability theory, Franca amdentin [30] derived the following
expression

2k B
ley = (WZ(P%) +0d( P?)]
¢ (Pe) = max Pe,1) (2.25)
%k _m|gh
Pe _—l’TL hz‘c‘ and Pg = 0

wheremy equal tol/3 is the optimal value for piecewise linear elem@md|a| is the norm of

the velocity. Heréh, asmentioned in previous section, is an appropria¢@sure for the size
of the mesh ceK.

A Fourier analysis strategy was used by Codina j85lhe variational multiscale
context. The subgrid scale equation from which @@ derive the form of the stability
parameter is expressed in the Fourier space wathoh element and approximated taking into
account the subscales that contain only high wawvebersA. This assumption enables us to
get rid of the boundary term and to express thai€otransform of a given variabbgx) in
the physical space as follow:

Al L AX
g(A) = IQK exp( |T)g(x)d§2X (2.26)
whereh is an elemental length parameter. The obtainetbappate spatial derivative gives:
le K . 0%g kk .
—= (k) =i—-g(k), K)=-—- 2.27
axj() 9K GXGX() = AR (2.27)

whereA=(A;....... Ad) is the dimensionless wave number. It was shownaubstituting the
obtained expressions into the subgrid scale equatie obtain:

-1
k 2
7(k) :[E‘h—‘z+ i%+aj (2.28)

Note also that in the above expression, the assompf velocity being constant within an
element is required. Using the Pancheral’s fornauid the mean value theorem, it leads us
back to the definition of the stabilizing paramd&8:

-1/2

N k \? u) .,
T= ClF + c;ZE +0 (2.29)

Furthermore, the asymptotic behaviourroh the advection limit is dominated by the term
h/u, the asymptotic behaviour in the diffusive limitdominated by the terhf/k and the one
in the reaction limit is dominated loy The link between equation (2.29) and the SUP@&-lik
stabilization methods reside in the choice of stredom constants ag=4 andc,=2.
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2.3.1.2The modified parameters

For a complete review with examples about the pedgarameters presented in the
previous section, we recommend the following refeee[37]. So far, most efforts have been
invested to deal with steady-problem, while leserdion has been devoted to unsteady
problem. The goal here is to study how stabilizatmethods designed for steady problem
could be adapted for non-stationary cases. A dsiegple way is to use the above proposed
parameters and apply them on the time-dependermtiequ(2.19). Recently, the same idea
was proposed by [38] and consists in taking intooaat the transient term as an extra
reaction term and inserting the time stdpinto (2.23) and (2.25)This will provide the
following stabilizing parameter:

pood At h?
© AkAt+2u Mt F (+A D)
R o At h?
© 6KAt{ (Pe,) + WP (Pg)(1+Ato) (2.30)
where
6Atk and Pg = w

5T WA at) 3k
It turns out that these proposed time-dependerdanpeters give identical results in some
interesting limit cases. In order to analyze thgngsotic behavior, we consider first the
convection-dominated regime, where the local Péuletber is largePe =|d W2 k>>1, |f
the velocity is of the unity order from which folls K<<h two cases could occurs:
(h=1/64, k=107°)

At <<h<<1 r;?’d~r,fv~L
(1+Ato)
Ath
cod FV
~h<< I, ~T, ~
At=h<<i % 2uAt+h+Ato)
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Figure 5. The profile ofk for u=1 and c=1(left); u=1C and c=0 (right)
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For diffusion dominated regime, when the velocitym is too small and zero reaction term is

cod __

used, we can obtaim®™ ~ 7,V ~At in particular whenh® >>KAt, Figure 5 illustrates the

behavior of the stabilizing terms in function oéttime step for both convection and diffusion
dominated regimes.

2.3.1.3Element length definitions

The characteristic element lengthhas a significant impact on the amount of the
stabilizing parameter. It is shown that it can bepprtional toh? at the diffusion limit and
linear in the element length at the convectivetlimherefore, the choice of the mesh cell is
not obvious specifically in the presence of digdrinesh or highly elongated elements. It
could be simply the diameter of the mesh cell anld¢de chosen as the mesh cell in the
direction of the convection for convection-diffusieequations. This choice is the most
recommended in the literature, see for example8(F0,

a
ay

ax

Figure 6. The support length in the streamlineediron
a ON,

hzz{za: Ta] 0% ] where  [d|= /Zqz (2.31)

Wherene is the number of nodes in the eleméty,is the basis function associated with the
local nodena, anda is again the local velocity. For more details atibe determination of the
element length taking into account anisotropy @& thesh, the work of J. Principe and R.
Codina in [40] is highly recommended.

2.3.2 Shock Capturing Petrov-Galerkin

The SUPG method is a popular upwinding scheme. Magsearchers have
successfully applied this scheme to solve numepmathlems in many fields, such as coupled
heat transfer and fluid flow, turbulence models arghsient incompressible flow. The
numerical solution to a convection-dominated problesing this method is quite satisfactory
when approximating smooth functions. Some numeagamples will be presented at the end
of this chapter. However, when the function corgainshock front in the interior of the
domain or a boundary layer, the numerical resultsbéts some spurious oscillations know as
overshoots and undershoots. To improve the resejtond SUPG upwinding scheme were
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introduced in [4], [5] and [41] with an objective reduce or even to remove out these
oscillations near a sharp gradients.

The basic idea of these methods is to add a neafliterm to the SUPG formulation,
allowing for more regulation of the function’s deative in the direction of the gradient. One
can distinguish several classes of these methaddlyseferred as discontinuity capturing or
shock capturing methods. See [41] and [42]..Thetnfiasiiliar one are known as the
Consistent Approximate Upwind (CAU) methods [43, 48] and the Spurious Oscillations at
Layers Diminishing (SOLD) methods, see [46, 47] feview. However, very few of them
have been so far used in the simulation of timeaddpnt equations, in particular for heat
transfer.

As an extension for the SUPG method, this schenus ah extra term called
discontinuity-capturing operator. The extra terrfeets only the numerical solution in the
direction of the gradient of the solution The weighting function is then modified to inckud
this term and is defined as follows:

Vo =V trallly+7r°g My, (2.32)

Figure 7. Projection of the advection directionto the solution gradieriu

Where ther, a, v, is the discontinuity-capturing term. It createsaatificial diffusivity in
the gradient of the solution direction. The auxjli@ector a, is a projection of the advection
in the direction of the gradiefifu, as shown in figure 7. It is defined as follows

Al oy i ou,#0
a, =4[ Bu, | (2.33)
0 if Cu, =0

As we can see, since the new vector depends omrtkeown discrete solutiony, the
resulting method is nonlinear. Applying the Galarkirocedure to equation with the new
weighting function, we obtain

R (U, %) = R (U, W) + ST( W, ) +Z(R Wi Al ), =0 (2.34)

discontinuity- capturing
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Therefore, the interaction of the new weighting diion with the convective term of the
equation will yield the following additional terms:

A @IU™, )+ = L @D Y)

+> 1, (alDu™, ally)
; K : %k (2.35)

+3°75 (3, U™, g, [I,), +...
K

In the expression above, we can see that thetdirst is the convective term obtained using
the classical Galerkin method; the second termessnts the artificial diffusivity term along
the streamline direction obtained using the SUP@atkwhile the last, the new extra term is
the artificial diffusivity in the gradient directio This last additional term controls the
derivatives in the direction of the solution gradjethus smoothing out the numerical result
around a shock front or a boundary layer. Note @daball these additional terms are added in
a way to preserve consistency.

Due to the large number of various discontinuitptaaing methods and the
comparatively small amount of theoretical reseaoch them, the correct choice of the
respective stabilization parameters is even lesardhan for the SUPG method. For more

details, see [4]. Often, the determinationrfis similar to the one in the SUPG method when
replacing the velocity vectas by the new vecta, into the calculation of all needed terms.

Therefore, to simplify the notation, these term# e indicated by a subscript. Note also
that using the same procedure to deternzipewill introduce the effect of the transient terms

into its definition.

Another important issue is wheaUa,, a double artificial diffusivity effect occurs.
Therefore, to avoid the double effect, the follogviad hoc’ correction was firstly introduced

[4]
I =max(0z¢ -7, ) (2.36)

Another definition that assures a single effect alg® introduced by Tezduyaet. alin [49]

and [50]:
K .
Z‘a,,‘

with
n(x)=2x@-x , x0[0,d (2.38)
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In certain cases, for smooth problems, these tgaksi can introduce some undesirable
crosswind diffusion that leads to less accuratetswi than the SUPG methods. In order to
minimize the effect of the discontinuity-capturibgrms in regions where the solution is
smooth, the idea in [43] and [45] was to introdadeedback function about the regularity of
the approximate solution. This locally defined ftioo is added to the stabilizing parameter.
It is given by:

a = allu, (2.39)
h — .
R (Uy)
Therefore, the modified methods will take the faliog form:
S* Py, v) =2 ® Y1 3 M Y
K
R U .
~ ——_0u, if Ou,#0
a = ”Duhnz (2.40)
0 if Ou, =0
¢ 2o 4 -
r° =7° max O,|a—|—Z with ¢ = maX 1}
11

Remarks

1. The parameterry is influenced by the time steft only indirectly through the
residual and over the SUPG parameters.

2. All these techniques are nonlinear since they n#wel computation of the
approximated residual. This can be solved iterbtiusing a fixed-point technique.
Recall that usually for nonlinear problems, the patational cost will increase since
the storage of the previous solution in time isuregf for the whole iteration. But
small variation of the solution occurs when smiatlet step are chosen, therefore the
residual can be approximated directly using th&iptes time solution.

un n-1
u=—+ald-0kKIM)+od———- f (2.41)
R At | -HHa LD " At

As a result and without significant efforts and elepment of new software, these
algorithms allow reuse of existing spatial finiteeraent frameworks and deploy a time
dependent solution method. Thus, in practice, Bresal reasons, implicit, fully discrete
formulations in which spatial and temporal dis@a&tions are affected separately are in much
more common use than the coupled time-space fotiong& Note also that for a large
number of computational applications like in thegant work, the heating of an ingot inside
industrial furnaces, the increased cost in the ramdé unknowns for coupled time-space
formulations is a significant drawback.
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2.3.3 Residual Free Bubbles

As pointed out before, the previous stabilized mdthadd some consistent terms
providing additional diffusion in the streamlingetition (SUPG) or in the gradient direction
(SCPG). However, the amount of such additionafieidl diffusion is tuned by a stabilizing
parameter that must be chosen in a suitable wagpi®ethe progress of these methods in
theory and application, their essential drawbae& in the choice of. One way to remedy to
this problem is the use of variational multiscaletinods which offers a suitable convincing
argument for the definition of such parameter aat provide the required theoretical
foundation to classical stabilization techniques.

The residual-free bubble method, as an examplgedthy Brezzi and Russo [50] and
further developed by Franca and Russo [51], wilbbiefly described here. The variational
multiscale method was proposed by Hughes [26] aslteamative viewpoint. An interesting
error analysis on this subject can be found in @&&] [53]. In [54] the authors showed that
the two approaches were completely equivalent.besic idea behind those techniques is the

search for an optimat through the solution of a suitable boundary probkolved in each
elementK.

For further explanation on this subject, the reactarld refer to many publications
about the residual-free bubbles authored by [ZH]] fnd [51]. The purpose of this section is
to have a brief review to justify the definitiondathe choice of the stabilizing parameters and
to offer an introduction for the following subsexts.

Let B, 0V be a finite dimensional bubble spaceTgrsuch that

B,= 0 B (2.42)

KOO,

whereB, = H;(K).

For each elememd, we enrich and enlarge the following sp&gealefined by
V.=V, 0B, (2.43)

so that any element of this space admits a unigaerdposition into the sum of an element of
VhandB, .

By (2.43) we have that any, OV, can be split into a linear pau, OV, and into a bubble
partu, [ I§n in a unique way:

u, =u,+u0V,0 B (2.44)

Moreover, for any elemei, we can write

Up = Uy with U, O B (2.45)
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Thus, the variational problem Wy, can be re-stated as follows:

find u, =y +u =y+ > y, OV suchthat

a
KOO,

LUy, V) + z LK(U‘O,K’ v) =(f,w)  OvOV (2.46)

KOO,

£ Uy )+ L, (U ) = (£ ) D0 B O KOT,

Where the subscripLK(E[ﬂ and (LD} indicates that the integrals involved are restdcto

the elemenk.
The static condensation consists in solving elemesg the second equation in (2.46) for

U, « ,» known as the small scale equation, and then isutiosg the resulting expression into the
first equation, called also the large scale eqnafigee [55] for details).

{find u,« 0 B, such that

L (U Voi) = (FV =L (U %) = (F= Ly, ) Oy, 0 B (2.47)

At this stage, simplifications must be done to eofar the subgrid scale equation. In the
literature, the usual approximation consists inngkhe subgrid scale as element wise and
solving (2.47) in each element:

L (Up)= f—Luy,

(2.48)
=R (uh)
Thus, for each,, the unique solution of problem (2.47) can betemntas
U, =L (f- |_uh)\K OKOT, (2.49)

wherel ':H *(K) - H;(K) is the bounded linear operator. Inserting theltieguexpression
of the bubble part into the large scale equatiofgPwe obtain:

find u, 0OV, such that
L)+ D L (L (F=Lw) . w)= (%) Oy oy, (2.50)

KDy,

stabilisation term

It's clear that the fact of introducing and elinting the bubble has modified the Galerkin
formulation by adding a residual-free stabiliziegn. By applying the Green’s formula to the
stabilization term, we can rewrite the problem as

find u, OV, such that
LUy, V) + z (L (f- Luh)|K v = (fy) OvOV, (2.51)

KO,

whereL’ is the formal adjoint operator &fon K coming from the second integration by parts
with Dirichlet boundary conditions and given by:

Lv:=—0QkOV) - alll W o \ (2.52)
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Recall that the purpose of this section is to slioat the use of these methods can
reproduce the streamline-diffusion scheme andhatsame time, will provide a suitable
definition of the stabilizing parameter. Howevee thmplementation of the RFB method
requires the solution of the subgrid scales probkgmch is of the same complexity of the
original problem. Hence, by following the same apj@mations of the bubbles made and
described in Brezat al [28] we retain only the effect of these unresdlgeales. Therefore,
the result of the local inversiop;* can be reduced to a multiplication by a constaneach

element that depends on the equation coefficient andittite felement mesh as:

I = |K|J L) (2.53)

Then, the resulting stabilized schemé\grtakes the following form:

find u, 0V, such that
LU, V)+ D TRP®R U, Lw) = (f,v) OyOV, (2.54)

KOry

By comparing (2.54) and (2.19) we immediately $e# stabilization term introduced
by the SUPG method and the RFB method are idergpedifically whenv, is linear on every
element and under the assumption of piecewise aohsbefficients. However, the advantage
of the RFB method is that the stabilization paranet produced by the approach rather than
by ‘ad hoc’ tuning. Several publications regarding the linkween the stabilized methods
and the element wise residual-free bubbles werpgsed in Franca and Farhat [29] and
Franca and Russo [54].

At this point, the calculation of the stabilizatiparameter has to be specified. Recall
that several strategies were proposed to modeduhscales. For example, Codina derived in
[31] his version using the maximum principle. Franand Valentin in [56] proposed a
definition of the stabilizing parameters based be tonvergence theory. More general
derivation was proposed later by Codina and Blasing a Fourier analysis [57]. In [58] the
authors used the element Green’s function to peogicuitable definition of this parameter.

Let's consider here an instructive example for tmmputation of°. Let L be the
convection-diffusion operator using piecewise canstcoefficients, thaV), is the space of
continuous, piecewise linear functions, on eachmeteK (17, we have

f-Lu,=f-(-0O04kOu)+ ally)= f- dD y (2.55)

Giving that (2.55) is a constant and by the debnibf (2.48) and (2.49) we obtain:
LA(f -Luy)|« =(f-amu)|, b (2.56)

In particular the stabilizing term in (2.51) witduce to

uﬂ<fluowLwn—j j(mm%—fdem) (2.57)
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Finally, the resulting scheme becomes
find u, OV, such that

L(UyV)* 2 7 [ (@Mu,- Hamy)=(fy) 0y0Y, (2.58)

KOz

Both SUPG and RFB have an identical structure \aitiparticular choice of the
stabilizing parameter. In most interesting cases tonvection-dominated case, we can
approximate the stabilizing term as discussed 1. [3-or convection dominated problem, it
was shown that the solution of the fine-scale carapproximated by solving the following

reduced purely convective problem:
allb =1 in K
Ek ) (2.59)
b, =0 onoK

If hy is the length of the longest segment paralled 8Bind contained i, then the solution
Bk of this reduced problem can be seen as the volunieeopyramid of bas& and height

h,/|d (seeFigure §

TKRFB:%J‘KbK :%IK@ :_l(:_:‘“qg]:& (2.60)

Figure 8. The adjoint residual-free bubble in 2D

This value is straight-forward to compute and gisgsilar and good approximation @f in

the convection-dominated regime. In the diffusiomtl case [59] , when the diffusion term is
large with respect to the convection term, we have

b 2
RFB _ .[K K < Ch_K (2.61)
K[k

where c is a constant that depends Knand h. We can see that in both regimes, these
stabilizing parameters are very similar to thosespnted in the previous section.
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2.4 Application to heat transfer equation

In this section, the equations governing the heasfer in the heat treatment furnaces
are presented. The treatment processes insidstiruurnaces involves three modes: the
radiation, conduction and convection. The unknoemgeraturel (Kelvins)must be found
from an equation that simultaneously incorporatetheee heat transfer processes. Recall that
the conduction heat transfer occurs in fixed solidat experience internal temperature
gradients (Figure 9). The conduction heat flowafirced by Fourier's law as

Quong = —KOT (2.62)

where k (W/mK) is the thermal conductivity of the solid multiglieby the temperature
gradient. When the heat is transferred betweemti@ and its surroundings, the furnace, via
a flowing fluid, at a certain velocityransport mechanisms occur, and the process isrkasw
the thermal convection.

Radiation

Convection B / l \

Figure 9. Heating process of an immersed solgid@ an industrial furnace

Radiation heat transfer is concerned with the exgbaof thermal radiation energy
between two or more bodies (wall, solid,...). Thethesnsferred into or out of an object by
thermal radiation is a function of several compdsemhese include its surface reflectivity,
emissivity, surface area, temperature, and geoenetrientation with respect to other
thermally participating objectdviore details about the radiative heat transfer bltreated
later in chapter 5.

By combining those modes, the energy conservatiuaton will be governed by a
time-dependent conduction-convection equation b@Wo

pcp(%—I+vD]]T)—DEqKDT): f (2.63)
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where, again T is the temperature of the treatedadio (fluid or solid) having the respective
material propertiesx is the thermal conductivityp (kg/nT) is the mass density, is the
specific heat (J/kg.K), v is a computed velocityg)rand f is the energy source term. The

following initial condition is appliedT(x t,)=T,(X where T, is the initial temperature
distribution over the domain.

Different boundary conditions can be consideredHerproblem:
T=g onl,
-kOTh=q, onl, (2.64)
-kOTh=h(T-T,)+ q on,

Here, g represents the wall temperature imposed on agpodf the boundarly_, g, is a
prescribed inflow heat flux imposed on the wdll, while the convection boundary
conditions are imposed on the wall with h, as a convection heat transfer coefficieif,,

as the external temperature aqgd is the radiative heat flux . The dimensionless bers
relevant in this problem, the Péclet number takeféfiowing form:

_ PG|V
2K

PK

e

(2.65)

Discretization of the time derivative can be masislzown previously by means of the
¢ scheme. For simplicity in the notation, wher=1, backward Euler method, Eq. (2.63)
yields the following linear ordinary differentiadjeation at each time step:

Tn+1 _Tn

C
PG At

+pcvIIT™ -OMkOT™) = f  inQx(0,t) (2.66)

The stabilized variational formulation for the nadgcrete-in-time problem reads

LT )+ ST W+ STUT W+ hT W,

c (2.67)
=T+ £+ (@, + (NTt G
Where
L(Th,Vh)=(%Th”+l,\¢)+(pcvaD ™, W+ (K T0 )
SSUPG(-Ir:’ V) :Z(R Tt VIO )
‘ (2.68)
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The resulting equation shows at each time steplantical structure with respect to
the stationary convection-diffusion-reaction equatiThe space-discrete formulation for the
heat transfer equation is now complete.

Additional stabilizing terms are added in a comsistway to reduce and possibly to
eliminate numerical oscillations in the streamlidieection and the temperature gradient
direction specifically at the burner’s level, whdlee convection is dominated. In the last
section, some numerical examples will illustrate biehavior of the proposed method. These
terms are tuned by the local stabilizing paramegersn here for the thermal problem by: (see
equation (2.22), (2.25) and (2.30))

At h?
I, =
6KAt{ (Pe,) + oC, HF{ (Pe)
where (2.69)
c_|vlh
O pe=? oV
pc,h 3k

At ingot’s level, the only mechanism for heat maassfer is the conduction. It is well
known that the numerical solution of unsteady catidn problems using the Galerkin finite
element method, based on piecewise polynomial potations, is often affected by severe
numerical instabilities unless appropriately refimeeshes are used in the solution’s layers. In
this case, the solution exhibits steep gradientsviknusually as thermal shocks, that usually
appear in the boundary of a domain initially hot ¢omld) that is suddenly cooled (resp.
heated). In particular, the Galerkin method mifghit to solve unsteady diffusion problems
when either the diffusion parameter is low and/arak time steps are used in time

discretization(e < h?At™) . For the thermal mechanical analysis, the prottambe serious
in some cases specifically when the material bemasitemperature dependent.

This difficulty has been object of research for thst decades, the purpose being to
get finite element formulations that are stabledooblems with boundary layers and coarse
mesh accurate enough for smooth problems. In theseetion, a new approach based on the
variational multiscale method will be presentedehtr obtain a space-time stabilized finite
element formulation that ensures an oscillatioe-Belution and treats the thermal shocks.
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2.5 Thermal shock treatment for unsteady diffusion probdems

Abstract

This paper presents an original technique viadimitements to treat numerically the
thermal shocks in heat transfer finite elementsiglusing a continuous P1 element.
The method consists in a slight modification on gh@ndard enriched finite element
approaches. It will be applied here to the trartstemduction heat equation where the
classical Galerkin method is shown to be unstable proposed method consists in
adding and eliminating bubbles to the finite eletngpace and then to interpolate the
solution to the real time step. This modificatia equivalent to the addition of a
stabilizing term tuned by a local time-dependeabiity parameter, which ensures an
oscillating-free solution. To validate this apprbathe numerical results obtained in
classical 2D and 3D benchmark problems are compatitid the Galerkin and the
analytical solutions.

Keywords: Finite elements, stabilization, heat aartgbn, static condensation
* see attached paper at the end of the chapter (p5)
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2.6 Numerical tests and validation

In this section a series of numerical calculatiengerformed to assess the effectiveness
of the methods described previously. Numerical gdamfor stationary and time-dependent
problems are given in the following. The main ietrof these examples is to test how well
the space-time stability theory developed hereitch&s with computation. More applications
on thermally coupled flows and heat transfer insikistrial furnaces will be treated later in
chapter 5 and 6.

2.6.1 Transient CDR problems

In the section, several cases are considered imita square domain given by
Q =[0,J]><[ O,Z]. These problems have been widely studied in liteeate.g., (see [4] and [5])

as good examples for the accuracy of various nualesichemes. Two tests series will be
considered here. In the first one, no reaction ternth be considered and zero Dirichlet
boundary conditions are imposed on all sides. Thece term is assumed to be equal to one
and the domain is spatially discretized by 16x16mants such thah=0.0625. The

simulations were performed with final timB=2s and the time stegt=0.1s. The flow is
unidirectional and constant with velocity compomers, =cosa, a, = sinr as shown in
Figure 10.

Recall that the element Péclet number and the eleBemkohler number are given by:
h|a| oh
P(K)=—— and Da,=—
(K) = SR (2.70)

The diffusion and reaction coefficients may haviéedent values, leading to different Péclet
and Damkohler numbers respectively.

u=0 u=1
casel case?Z
a _
u=0 (310 u=0 u=1 a 30° u=0
u=0 u=0

Figure 10. Dirichlet boundary conditions and flalivection: case 1 (left) and case 2 (right)

The results obtained from the first test seriesdifferent Péclet numbers are show in
Figure 11. As expected, all methods give good tedol low Péclet number without extra
diffusivity. All solutions are wiggle free and irglinguishable. When the diffusion coefficient
is decreased, the Péclet number increases ovamihg the discontinuity in the boundary
data propagates into the computational regionsante wiggles originate at the boundary.
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As k decreased further, the Galerkin solution blows amg the SUPG method
produces smaller oscillations towards the outflaurdary. These remaining wiggles are due

to cross-wind instabilities. On the other hand, 8@PG method show no oscillations and a
smoothed solution is obtained.
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Figure 11. Comparison of the Galerkin (left), tHéRS5 (center) and the SCPG(right). From
top to bottom,: Pe=0.5, P&=5, Pg=50

In the second example, different Dirichlet boundemoynditions and flow direction are
considered, (see case 2 in Figure 10). Here trepeters are chosen to have both convection
and reaction-dominated problerRg, =10 and Dg, = ¢ Figure 12 shows the results obtained
with the Galerkin, the SUPG and the SCPG methods.
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As expected in the flow direction, the Galerkinugmn yields oscillations towards the
boundary y¥1 whereas the SUPG produces oscillations with smaleplitude towards the
boundaryx=0. Even on this coarse grid, the SCPG succeedecertmwe most of the
oscillations and to provide a good approximatiothef solution in both directions.

Figure 12 Comparison of the Galerkin (left), the SUPG (cengerd the SCPG(right).

2.6.2 Transient pure convection

We begin to compare the Galerkin, SUPG and the S@iEods in the pure
advection limit, i.e. forc = 0. In order to provide a representative range of @&lues for

each example, different time steps are used. Twwewsional unit squar® =[0,1x[ 0,1

with zero source term is considered. The problemoised using an unstructured mesh of
41x41 elements. This gives a partition of 2024 degrof freedom, 3897 triangles and a mesh
parameterh =0.025. This problem was first considered by P.B. Bocle¢val in [61] for

studying transient advection of a cylinder withitadof 0.2, initially positioned at. using a
given velocityv. For further details about transient advectioriugibn problems, we highly
recommend this reference. In this paper, a full gamnson was only made between the
Galerkin and the SUPG solutions. Here we have atlie(6CPG method, as pointed out in
the conclusion and recommended by the authorsietdyzle the overshoots and undershoots
in the neighborhood of the vicinity.

The boundary and initial condition values are die¥o (Figure 13):

1if [x-x|<0.2 (o,zsj At
U.(X) = X , CFL=v— 2.71
o9 {O elsewhere *o2s h (2.71)
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I 0.750

. 0.250

u=0
Figure 13. Problem domain with initial and bounglaronditions.

Two advection fields were considered:

1.0 . )
casel. v 07 i.e.constant velocity

(2.72)
y+10|. . . .

case?2. Vv i e.variable solenoidal veloci
X+0.7

Both examples are discretized in time using thenkzdicolson method. In order to study the
behaviour of the method in respect with the tinep stve used the following data:

At 0.1s | 0.01s | 0.001s | 0.0005s
CFL | 4.884| 0.4884] 0.04884 0.02441

Each refinement of the time step leads to a chamghe CFL number, above and
below one. In both examples, we can see that tHeGsand SCPG methods perform better
than the Galerkin solution by suppressing the dlsparious oscillations even for small time
steps. These conclusions are confirmed by plotsoition profiles along the lines=0.75
andy=0.6in the case 1 and along the linesl andy=0.85in the case 2.

However, in the vicinity of sharp gradient and mi layer, the SUPG solution still
contains some remained oscillations. Figures 141dndhow graphically these remarks. By
adding an artificial diffusion in the gradient sidun direction, the SCPG method displays no
non-physical oscillations and removes these oveénamershoots in the neighbourhood of the
discontinuities. Furthermore, the graphical congmars between snapshots of the solutions at
the finest time step in Figures 16 and 17 validaie remarks. Recall that the numerical
results presented here are in excellent agreem#ntive chosen article.
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0 0.2 0,4 0,6 08 1 0 0,2 0.4 0,6 0.8 1
1’4 Il Il Il Il ] 1’4 L L L I I

0 0,2 0,4 0,6 0,8 1 0 0,2 0,4 0,6 0,8 1

At=0.01
0,8 1

0,6 -
0,4 -

0,2 -

At =0.001 At =0.001

0 0,2 0,4 0,6 0,8 1 0 0,2 0,4 0,6 0,8 1

At = 0.0005 At = 0.0005

-0,2 -

Figure 14. Profile of the solutions: Galerkin (sli SUPG (dotted) and SCPG (dashed)
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Figure 15. Profile of the solutions: Galerkin (&) SUPG (dotted) and SCPG (dashed)




54 Stabilized finite elemenethod for CDR equations

pe
Y

K
SEsey o

“Ww i

i

KPR,
i
LR

5

K

:
‘ 2 5 Eie
“ ‘\h": e L 2 Rt ':a.‘
s
Vv

2
o

W ”“)m“m Anni;::'#}» 5 “1;53.‘;‘:‘ SN & 5 vv% i >< “mvm‘, m B

\a‘,

s =
'ﬂ A«z‘" i
l’ 4& \v

WYY

m
.

" ety TAYAVAY S S ;4#‘ S v
Cii R m': % ST RS
D 12

SEEess

LA
e
%Iénﬂma ‘

'4; l\
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2.6.3 Transient heat transfer

An interesting internal flow used for validation ofsteady flow code is the forced
convection heat transfer between two parallel platediagram of the calculation domain and
boundary conditions is shown in Figure 18. Thisaibn may be viewed as the modelling of
a high temperature burner inside the furnace faeair&p cold wall or cold solid. Near that
region, a formation of a thermal boundary layerl vié observed. Here, the diffusion
coefficient is fixed to one and the source termuassd to be zero. Therefore, the chosen
velocity will determine the Péclet number. Threenetical experiments have been performed
using the following constant convecting velocitie8; 200 and 200@espectively. Recall that
these experiments are inspired form the work of kinal. in [63] and then followed by S.J.
DeSilva et al in [64]. These interesting papers deal with tloeirfgary element method
applied on transient convection-conduction problelts shown that for the above example
we can obtain a closed form analytical solutioncgpmlly for high Péclet numbers. For
further details about the derivation of the asyrtiptsolution, the reader could refer to Leh
al. More recent article about the same subject agplredifferent numerical examples can be
also found in [62].

The exact solution is given by:

O.S[Z—erfc(—x_ Pet)} if x< Pet
2\t
T(x 1) = 5 (2.73)
O.S[erfc(—x et)} if x> Pet
2t

A mesh sensitivity study was conducted to validhte capability of the method. Therefore,
three different unstructured grids are used fos ttomparisons with a mesh siae= 0.05,
0.025and0.01respectively. (Figure 19)

Ty
(0,0.5) an (1,0.5)
—
T=1]—» V T=0
—
o0 o oTTTTmmmmmmmmmmm—— (1,0)
IT_,
on

Figure 18. Thermal boundary layer: problem statetnen
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Figure 19. Different meshes with h equal to 0@B25 and 0.01

The temperature profiles for different times anffiedentPe numbers are illustrated in Figures
20-22. As expected, for lowe the solutions are accurate and coincide with ékact
solution. As the Péclet number increases, the atimredominates and the flow gives rise to
travelling waves with sharp gradient. One can tyeabserve that the standard Galerkin
formulation produces some oscillations specificalar the boundary layer on coarse mesh.
The stabilized scheme yields satisfactory resuitalbmeshes. With finer discretization, good
improvements in the results are observed. Thesarkencan be seen graphically on mesh 3.

111 Pe 60 -Mesh 1 11 Pe 60 - Mesh 2
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Figure 20. Predicted temperature profiles at difet time t=2.1C, 5.10% 0.01 and 0.02s
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2.7 Conclusion

The need for stabilization methods in the caseneé-dependent convection diffusion
reaction problems has been revisited. Differenbikt@d methods were introduced and
discussed. Extension of these methods to trangrebtems was proposed and analysed. For
convection-dominated problems, it is shown that3b#*G and the SCPG methods are free of
oscillations, yield satisfactory results and easiyniplement. In the case of transient diffusion
problems, a space-time stabilized finite elementhoe: has been presented and analysed to
treat thermal shock in numerical heat transfer. iflost important part of this chapter is the
application of these stabilized formulations to theat transfer equation needed later for
simulation of heat treatment inside industrial fwses. Finally, some numerical examples are
given to study the efficiency of the proposed mdtho
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conduction heat transfer
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Abstract

This paper presents an original technique viadimitements to treat numerically the
thermal shocks in heat transfer finite elementysisl The method consists in a slight
modification on the standard enriched finite eletragproaches. It will be applied here
to the transient conduction heat equation whereldmssical Galerkin method is shown
to be unstable. The proposed method consists im@dohd eliminating bubbles to the
finite element space and then to interpolate tHatiso to the real time step. This
modification is equivalent to the addition of aksliaing term tuned by a local time-
dependent stability parameter, which ensures aitlatsg-free solution. To validate
this approach, the numerical results obtained mssital 2D and 3D benchmark
problems are compared with the Galerkin and thé/acal solutions.

Keywords: Finite elements, stabilization, heat aaetobn, static condensation
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1. Introduction

The scalar diffusion equation is generally use@ dimear model for simulating time-
dependent phenomena in domains like fluid dynamaied heat transfer. It is well
known that the numerical solution of unsteady diibmn problems using the Galerkin
finite element method, based on piecewise polynbmiarpolations, is often affected
by severe numerical instabilities unless approglyatefined meshes are used in the
solution’s layers. In this case, the solution eihkilsteep gradients known usually as
thermal shocks, that usually appear in the boundaigy domain initially hot (or cold)
that is suddenly cooled (resp. heated). In pdeicthe Galerkin method might fail to
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solve unsteady diffusion problems when either tiffesilon parametet , is low and/or
small time stepst are used in time discretizatiqa< h®At™) . This difficulty has been

object of research for the last decades; the perf® obtain solutions that are stable
and coarse mesh accurgseich formulations, known as stabilized or enrichethods,
consist generally in adding to the Galerkin forntiola additional terms balanced by
stabilization parameters [1-2-3-4-5]. This allowe tcontrol of spurious oscillations
giving accurate results for real industrial apgimas like solidification, hot forming
and casting, polymer injection molding.

The present work aims to retain the advantagessioiguinear approximations
(P1 finite elements) regarding the accuracy andctimaputational cost, especially for
3D applications. This is the common choice wherviagl heat transfer problems
making possible at the same time to overcome tHeshwcks when small enough time
increments are used. In this context, we will use ¢nriched method that employs
bubble functions satisfying strongly the differahtquations in each element subjected
to homogeneous boundary conditions on the elemeunhdary. Nevertheless, one
limitation of this method is that, when appliedasteady diffusion problem, it has no
distinction to the original one if approximated hviinear shape functions [4-5]. If
instead, we apply this technique to an unsteadygidn problem, we can show in this
paper that static condensation procedure of thélbupelds a stabilized finite element
method of the Galerkin Least Squares (GLS) typ8][8Fhe authors show that the use
of the GLS method in this conditions can be intetgd as the solution of the standard
the Galerkin method, but with a much larger tinepsfTo overcome this drawback, we
propose the extension of the enriched method ®rpotating the solution to the real
time step, referred as an enriched method withpotation (EM-I). This will result a
local definition of stabilization parameters thasembles the one used in well-known
stabilized formulations but whose origins are basedthe use of local time-steps
combined with a kind of synchronization scheme .sTinethod shows good properties
of stability and accuracy, both for smooth probleanmsl for problems with boundary
and internal layers. We can also mention that tlopgsed method can be helpful for
computational engineers in the field of heat transinalysis and it can be easily
implemented in finite element codes.

So far, most efforts have been invested to dedl stiéady-problem, while less
attention has been devoted to unsteady problerecedly to transient conduction heat
transfer. The most favored and efficient approacisuch problems was proposed by
[6]. In this paper, like in here, both temporal apatial ingredients were used in order
to get a stabilized solution in particularly for airtime steps. Similarly, the authors in
[7] discussed the use of such coupling betweeniliged finite elements and finite
difference time integration on more general proldlesuch as the advection-diffusion-
reaction problems. Other related ideas was proptked mesh refinement [10], M-
matrix theory [11], finite volume method [12], dsstinuous Galerkin models [13] and
the diffusion-split method [14]. Compared to alese methods, the new approach
works for general meshes, can use any time stejffasion parameter and, with low
computational cost offers a good accuracy ordee. diitline of the paper is as follows:
first, we present the unsteady diffusion model #redassociated Galerkin finite element
formulation. Section 3 presents the enriched methwath and without time-
interpolation. We perform several numerical valioias in Section 4, which confirm the
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good performance of the method. Finally, conclusiand perspectives are conclusions
are draw in Section 5.

2. The heat equation

2.1.

The model equation for transient heat transferdmdaction is:

pcp%—I-D.(kDT) = f inQx(0,t ) (1)

where T is the temperature (the problem’s unknovid)js the spatial computational
domain, tthe time,t; the final time, o is the material’s densityg,, its specific heat, k
the thermal conductivity andf represents a heat source. The following initial
condition is appliedT(x,t,) =T,(x )where T, is the initial temperature distribution

over the domain. For the heat equation, variopgdyof boundary conditions can be
considered:

T=T, onl, 2
kdT.n=gq, onl, 3
kOT.n=-R(T-T,) on, 4)

where T, represents the wall temperature imposed on agoodi the boundary,, g,

is a prescribed inflow heat flux imposed [Qn while the convection boundary
conditions are imposed o, using h, as the convection heat transfer coefficient and
T, as the temperature outside this boundary of tineadia

out

Galerkin finite element formulation

The Galerkin finite element formulation is obtainbg multiplying Eq. (1) by an
appropriate test functiow and by integrating over the computational domab.[ For

that, let us consider first the functional spa¢@$(Q) in which we are searching the
solution in accordance with its regularity:
H:={wOHYQ)| w=s0xr}

where H'(Q) is a Sobolev space, classically defined as

HY(Q) ={wO 1X(Q).|Ow] 0 (@)}

and L*(Q)is the Hilbert vector space of the functions qutidaly summable orQ :

12(Q) = {w(x) I|V\( R dx< oo }
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By applying the Galerkin weighted residual methodl ahe Green’s theorem, the
variational formulation corresponding to Eq. (1rame:

Find T OH (Q) such that

aCL W+ T, W= (v D) @) ©)

where

oT oT
a(—,w)= —wd
G ch" at

b(T, W) :LkDT.chn+jr h TwH
| (w) :L fwd +Jr qwd +_[r h T, wd

For the spatial discretization, we consider thétdirelement partition[J, of Q into
tetrahedral element§. Using these representations, the above-definedtifinal spaces
HX(Q) and H}(Q) are approached by discretized spatt¥ (Q)and HI'(Q). The
Galerkin approximation of (5) is formulated on thdite-dimensional subspaces as
follows:

Find T, OH(Q) such that

oT,
a5 W)+ BT, W) = Kwy) - for all wl H" (6)

Finally, the problem defined by equations (1)-(6¢lgs the system of first order
differential equations:
Ca—T+KT =F (7)
ot

whereT is the vector of nodal unknown temperatuf@ss the capacitance matriK,the
conductivity matrix, andF is the internal source and external flux vectefjreed as

C.J-=_[pCpNNdV ®
Kij=jkDN N dv+j hiN I\ 9
F=[mNave[anas | hp Nd (10)

beindNi the linear interpolation function at node
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2.2.

Time integration scheme

The system of ordinary differential equations (@¥ o be integrated in time. Using the
0 finite differencefamily of approximations, the derivative of the t@enature with
respect to time can be approximated at tirvenAt by

T
At

C (o7 +@-0)T™) =F (11)

where At =t; /N is the time steph=1...,N, and 0<8<1. We remind that this

family includes the backward Euler scheffie1), the Crank-Nicolson scheme

(6=05) and the forward Euler scheffge=0). For simplicity, we consider the first
case, usually known as the implicit Euler scheme, eguation (11) can be written at
time t+At as:

cl T kT =F (12)
At

wherel "™ s the temperature at the previous time step.

3. Stabilized finite element method

3.1.

When diffusion is the only mechanism for heat tfansthere are conditions for
which the Galerkin method fails to produce smodathutsons. It is well known that this
method, based on piecewise polynomial approximafigrelds poor solutions for low
thermal diffusivity materials and/or when the time step is smédi< h®At . Thus, one
way to overcome such limitations consists in usitapilized finite element methods. In
the following, we discuss the use of enriched metlom our unsteady diffusion
problem.

The enriched space approach (without time-interpoigt

The concept of enriched methods has been developgkdxplored in [1-2-3]. This
method is based on a local enrichment of the figlement space instead of a
modification of the variational formulation. The &lés to add to the usual space of
piecewise polynomials, referred to as macro-scafesso-called bubbles, representing
the micro-scales. In here, bubbles are function®sehsupport remains inside the
elements of the triangulation. In other word, omdves additionally a micro-scale
equation on individual elements with zero Dirichdeundary conditions. The numerical
method turns out to be stable (see, for exampleaf@ [4]), even though there is a
computational cost associated to the fact thasthéation of local problems is necessary
in order to approximate, and possibly eliminates Hubble degrees of freedom. For
sake of simplicity, we consider all df to be the zero Dirichlet boundary condition.
Generalization to other types of boundary condgiail be subject of a future work.
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We start with the model problem given by: findcalar valued functio (x) define in
Q [0 O"with initial conditionT(x,t,) = T,(x ) such that

oT .
'OC"E -0.kOT) = f inQx (0.t ) 13)

T =0 onlx (0f, ;

where f(x) is a given source function assumed to be squaegreble 2. Using
Euler implicit scheme, the classical Galerkin appr@tion of (13) is the following:

Find T, OV,® 0 H3(Q) such that

C C
EET W)+ (OT0W = (Lw)+ E2 T w) Dwl ¥ a9

where
Vi ={w,0C@)] w0 RK, 0 KOO}

is the finite element space of continuous, piecewisear functions onJ, used to
approximate the exact solution.

For sake of simplicity in the notation, we repladethe second hand term, the source
term and the previous time step solution by g, f(é4) we get:

PC, ., n PC, .,
(TpTh’Wh)'*'(kDT’DV\A):(f!W])"'(_p-rr? ;W) O wO \Z)

{ At
o (15)
(T;’Th”,wh)+ (KT, 0w) = (g w) O wd W

Remark 1. As noted in [7], equation (16) can be seen as alyawh steady diffusion-
reaction problems that could be either diffusionreaction dominated. Note also, that
the proposed scheme deals with both regimes.

The notatior(f,g):_[Q fgdQ and (u,v):jQu.de represents the inner product
between scalar and vector fields respectively.

We enrich and enlarge the following subsps(¢® into:

vy ={wO Hy(Q)| w O R(K D B K), KOO} (16)

B(K) denotes the space of bubble functions.
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The bubble basis function satisfies:

#(x) >0 OxOK
#(x) =0 OxOoK 17)
#(x) =1 atthebarycentenof K

Consequently, the unknown solutirV,”can be decomposed into its linear part

T, OV,” and its part spanned by the bubble:

T=T+ ) T4 18)

KOO,

whereT, is the unknown bubble coefficient .

First, we begin by solving equation (15) on thealescale, called “bubble equation”:

Jolo
(T:Th”ﬁ)K + (KOT,".00)« = (9.0 ) (19)

By using the decomposition of the solutidn (18) and substituting it into (19)e get:

(pTCtpTln’mK * T (pA—Ctp¢,¢)K +H(KIT,00) + T, (Kg.09) = (g ) (20)

Using linear shape functions, the third term vaesshSolving (20) for the bubble

coefficient in each elemer U 0, leads to:

1 Jols
T, = (9-—LT1".9)
pc At TR (21)
P i, +k0al,

where [¢]; = ¢°dQ .

Remark 2. The bubbles considered here are quasi-static,that the effect of their

time variation may be neglected. Note that follogvime evolution of small-scales in
time is an interesting method [18], but for thipéyof equation, it could increase the

computational cost without considerable gain inuaacy.

Hereafter, we need to solve equation (15) on theroascale. The static condensation

procedure will eliminate the bubbles function a dtement level

PC, . PC =
(A—tpTl,vvl)+;1;K(A—tp¢,vq)K+(m1“,Dvy)—(g W) (22)
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3.2.

The solution of the small-scale can be expressied)(81) and (22) on each elemént
pC 1 PC

T (@ Wi = <o i
2o ol +Iodl,

Following the lines in [16], one can piify the expression of (23) into:

pS,
-[n’¢)K (A_t¢1 VY)K (23)

pC C,H PC, _, PC
T P& - 1 -
n (e P Wk i (9-— T ~ Wk

ph2+k 24
At ° < (&%)

K

where C, and C, are positive constants. The stabilizing parameteis computed for

each element separately. (we t&le= 1 andC,= 6, see [1] for more details)
Therefore, the resulting variational equation (1g)equivalent to use the standard
Galerkin method with piecewise linear functionssplu stabilization term weighted by
T:

P " Ow)- PGS 1 PG
Cae T (AT 0w - D 1 (e T 70 Wy
“ e (25)
=(0.W)~ ) T (97" W

KOO,

The bubble contribution took effect in one handtr@msient term and in other hand on
the modified source term g which represents theipue time step solution and the

source term. The stabilization term contains a zeder term in the test functiof:
and is equivalent to a change in the test funcasrfollows:

C
W, = w(1-r, £2) (29)

In the absence of the source term f, this can lea ss a modified problem by the
Galerkin method with a much larger time step. Ththers in [9] pointed out that the
solution is free of oscillations but will no longee the solution to the original problem.

The modified formulation (with time-interpolation)

The previous method improves stability by addingtabilizing term obtained after
condensation of the bubble function in the origipedblem. But as mentioned before,
this can work only in particular case when the seuerm is zero. To fix ideas, we
rewrite the new stabilized formulation of (25) afteplacingg by its value:

T
P At

T n-1 pcp

(pc A WI-7, E)) (27)

W1 )+ (T Ow=(f+ 0
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It is clear when this method is applied to an wyediffusion problem without a
source term, it can be interpreted as a Galerkitadewith a modified larger time step:

-I-n—l
At'k 1

(00, 1= W)+ (K0T, OW=(0 G W} 28)

whereT" is the modified solution and\t™ is the newtime step given on eadhby:

1

L
o T ; , §>0 (29)

An easy way to correct the time step distortionodticed by the previous stabilization
is to use an interpolation of the solution to thal time step:

T =f+@-H1™ (30)
By substituting (30) into (28) we obtain:

P,

* Tn_l 1
At W

CEET +@-ET™) W+ (OE T+ @1-¢)T)0 W=

- (pcp%,w)ﬂ%(l—mm,w EKXT.OW

. @)
+ (@ OOT™, DW= T, W
= (0, 1 W+ EKTTOW=(0G 1, W+ (€= 10 T 0 1)
Finally, we get:
(,ocan;tTnl,W)+(£kDT”,DV\):((E—1)IGT“,Dv)' (32)

Comparing (32) with the original version (15), weeghat the process of enlarging our
space with bubbles and then modifying the time siefuls a stabilized finite element

formulation for the unsteady heat diffusion problehhis contribution acts as a new
artificial, time-dependent thermal conductivilﬁfk) integrated over the element’s

interior and tuned by a local stabilization terrp that ensures an oscillating-free
solution.

Remark 3. If we reconsider the heat sourfgequation (28) can be always interpreted
as a Galerkin method using a modified larger tinep $ut in addition of a modified
source term. The extension to the use of this team be straightforward by simply
considering the equivalent terénf . The numerical example in section 4.3 will assess

this matter.
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In conclusion, the new approach formulation of trensient heat conduction with a
source term will take the following form:

-I—n _Tnfl
Tl wdo + f KT Owd =
J.Q PC At Z Q 4
(33)
fwdQ + —) KT O wdd+ I 7.0 f0 wad
[ 2, @ 2],
3.3. Diffusion reduction factor

Furthermore, in order to avoid an extra diffusidfe& and thus a non-realistic result
toward the steady state, a cut-off strategy isothiced. This strategy consists in
modifying the stabilization parameter making itwiag with time and depending on the
regularity of the approximate solution. In practites diffusion correction factor can
be seen as the coth-formula, function of the eleénkatlet number often used in
convection-dominated problems. In conclusion, thisategy will at the same time
ensure stability in the initial iterations and ceryence toward the steady state without
extra diffusivity.

Correspondingly, we define the following dimens&sd number in order to evaluate
the regularity, computed at each time step by:

h|R(H)|
£|0T,|

a= (34)

where ¢ is the heat diffusivitfm?/s)

and |Re(h)| is the residual of the approximate solution. s[htbe choice of the new
parameter will ensure the following properties:

4 ifa=1
f _{1 if <1 (36)
- stability in the proximity of boundary layers, whénis very large

- accuracy when we converge to a steady state, wietends towards less than
unity
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4. Numerical results

4.1.

Unsteady diffusion in a semi-infinite solid withribhlet boundary conditions

In order to evaluate the efficiency of the new fatation, we consider test problems
that present analytical solutions. First, we coasifjuation (1) subject to homogenous
boundary conditions in a semi-infinite solid cookedm the side. We take our domain
initially at a uniform temperature d00°C The Dirichlet boundary condition for
temperature is set 25°C (cooled side). The conductivity is set3d.0> W/mK while
the material’s density and specific heat are etualkg/m3andl J/KgK We use a 3D
unstructured triangulation with an uniform elemsize h =107 and equal time steps of

At =107s, (see Figure 1).

Figure 1: 3D bar - geometry and boundary conditions

Subject only to the boundary conditidy , the problem can be considered as one-
dimensional case for which the exact solution takedollowing form [19]:

_ _ X
T)=T+(F-T) erf[ . &j 37)

In Figure 2, we plot the evolution in time of therperature for a node plac2d far
from the cooled side. We compare the results goyetihe Galerkin and the new method
with the exact solution. We do not consider theusoh given by the new method
without time-interpolation since it is the solutiam different time step. The Galerkin
method is affected by thermal shocks and spuriossllations near the cooled
boundary. These instabilities appear at the initiaé steps and decrease as the solution
converges to the steady state. The new solutiomnbasscillations. Both predictions
converges to the analytical solution at the enthefsimulation.
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— — Galerkin
- = = .EM-I
Exact solution

300 T
0 0,2

0,6 0,8 1
Figure 2: Evolution of the temperature at a nodeaied 2h far from the cooled side.

0,4

4.2. Study of the thermal conductivity influence

The previous example illustrates the performanct®inew method on a 3D mesh
for a given conductivity with an equal time stemeOnteresting aspect is to investigate
the behavior in time of the solution when chandimg conductivity value. For this, we
consider another simple test adopted from [9] whexgropose the solution of problem
(1) subject to homogenous boundary conditions IiDasemi-infinite fromx = 0Oto 1.
The Dirichlet boundary condition for the temperatus set to0°C (cooled side at

Figure 3: Comparison between solutions obtainethieydifferent methodgs =10™)

x=0).
Tc t = 0.001s T t=0.1s
r L3
I\ I\
1 II \» 1 I[/\\' -
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The different values of conductivity are selected@® 102 and 1, while the material's
density and specific heat are equal to the unibe @omain discretization is uniform

with h=0.1and At =10°s.

Tt t=0.001s Tt t=0.1s
r
1\
1 ’I/\\» = 14 II,T
I
/ Exact solution Exact solution
051 ———-Galerkin 0514 ———-Galerkin
fo et e EM-I
—-—--GGLS —-—--GGLS
0 . 0 .
0 0,5 1 0,5 1
X X
T t=0.5s T t=1s
1 = 1 A ————————— ————
/
Exact solution Exact solution
05+ f ———-Galerkin 0,5 — — — - Galerkin
------- EMHI N =YY
—-—--GGLS —-—--GGLS
0 . 0 .
0 0,5 1 0,5 1
X X

Figure 4: Comparison between solutions obtainethieydifferent methodés =107)

In Figure 3, similar behaviour is observed in thedicted solutions: both stabilized
methods, the GGLS and the EM-I provide exact naaal oscillating-free solutions at
all simulation times whereas, oscillations app@athie Galerkin resolution. Figures 4
and 5 show that if we increase the conductivitg, @alerkin solution still presents some
oscillations near the boundary layer but with snafiplitude. However, when the
temperature gradient is diffused over more than w®ements, the oscillations
disappear. At the end of the simulation, it is impot to see that the proposed method
does not present an excess of numerical diffugiomever, the GGLS solution seems
to be a little bit diffusive. This matter was pa@dtout by authors in [9]: “This is the
price to be paid to avoid oscillations".

Tc t=0.001s T t=0.1s
Exact solution
— — — - Galerkin
------- EM-I
14 5 14 —-—--GGLS

Exact solution

054% ———-Galerkin ,
------- EMHI 0.5
—-—--GGLS

0 ;
0 0,5 1] 0
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TC t=0.5s Tt t=1s
Exact solution
141 ———_Galerkin 14 Exact solution
....... BEM-I — — — - Galerkin
—-—--GGLS ||| | e EM-I
—-—--GGLS
0,5 0,5
0 0
0 0,5 1 0 0,5 1
X X

Figure 5: Comparison between solutions obtainedhigydifferent method& =1)

4.3. Source problem

4.3.1. Case 1: constant source term (f=1)

Here we consider the classical unit square subjeca homogeneous boundary
condition(T=0). For a fixed conductivityk =1, initial temperaturd=1 and very small

time step At =107 boundary layers appear close to the wall. Figurghows as
expected the oscillations at the initial iteratiorear the walls where the high
temperature gradients are localized. the Galer&lntien still suffer from numerical
instabilities even in the presence of a constantce term. Again, the behaviour of the
proposed method is satisfactory. Note also, towHrdsteady state, both methods have
comparable performance without additional diffusiy{see Figure 6 - right).

T12- k ﬁ T12-
1 ] - v 1 7
]
0,8 - 0,8 -
0.6 - Galerkin 0.6 - Galerkin
0,4 - — —EM 0,4 - — —EM
0,2 0,2 -
O I 0 I )
0 0,5 1 0 0,5 1
y y

Figure 6: Solution at x=0.5 for t = I¥(left) t = 10> (right)
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4.3.2.Case 2piecewise linear source term

For fixed time step equal tband smalk = 10° , we consider the following piecewise linear
source term :

X if 0<x<0.5

f(xy)= .
) {1—x if 0.5sx<1

(38)

The unstructured mesh consists of 20x20 elementskhthe parameters were adopted from
[16]. Again, the proposed method performs bettanttine Galerkin solution as shown in
figure 7. Results are | complete accordance wigtréierence

1 1
— — — - Galerkin — — — - Galerkin
0,75 - . .
——— Enriched method 0,75 Enriched method
0,5
N I
] 05 14} 2
i I \
0,25 \I h \
A !
0,25
04!, f
\/
Y
-0,25 : 0 ‘

0,5

1

0

0,5 1

Figure 7: Solution at y=0.5 for (left) and x=0(Bght)

4.4. 3D Multi-domain application using refined mesh

In order to demonstrate the efficiency of this &agh, we consider in this example
a 3D computational domain that presents heterogendgbermal properties. This
domain is discretized using a single mesh on whieluse an immersion technique [19-
20] to place an object inside. This is a typicaecdlustrating the problems posed by
thermal shocks in current 3D industrial applicasion our case, this object is a hot
ingot that will be heated or cooled thanks to tine@inding air (Figure 8).

Figure8: 3D computational domain with an immersetids
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The purpose of this example is to check the permce of new method in the
presence sharp gradients inside the domain withytDirichlet boundary conditions.
To define the position of ingot/air interface ofetingot, we use a signed distance
functiony :

x>0 inside
X <0 outside (39)
x =0 attheinterfac

In Figure 7 (a), we can see that the isosurfacg @itt=to is accurately interpolated.

Figure 9: Mesh refinement at the interface level

Moreover, sincey is signed, so we can compute homogeneous mapemameter’s
distribution, from the different material propegi®f each component (Table I, air/
solid). Based on a mixture law, we define all thalrproperties(T, p,c,,k) as follows:

T ) =Ty fOXN)+ T, (1_ f()()) (40)
If T

«iad = 400°C in the ingot and,, =20°C outside, the temperature distribution is
represented in Figure 9 (left).

f(x) is a function between 0 and 1 (straight, abrupgradual...) that will decide the

amount of each property inside elements crossedhbyinterface. To gain high
precision at the interface, we used an anisotromsh adaptation technique based on
variations of X which allows a better capture of the discontimgitof the thermal
parameters that characterize the strongly hetesmgendomain (air/solid) (Figure 9 -
right). See [19] for further detalls.

We assume adiabatic conditions imposed in the dubendary. ForAt = 001s, the
obtained solution using the Galerkin method siillthe presence of mesh refinement,
presents spurious oscillations specially in eamyaitions. As shown in figure 10, the
present method captures the thermal shocks wittgmitlatory behavior.
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All these instabilities decrease as the solutimrms/erge to the steady state (figure 11).
At this stage, the new approach yields equivalestlis to the Galerkin method without
extra diffusivity.

T 400 - f
2504 1 EM-1
— Galerkin
100 -
'50 T T 1
0 0,5 1 1,5
X

Figure 11: Isovalues of the solutions by Galerft@it) and by EM-I method (right).
Top (t = 0.1s) and bottom ( t=10s)
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Solid
Density p 2500 kg/m
Heat capacityc, 1000
JI(kgC)
Thermal conductivityk 175 W/(nfC)
Initial temperatureT 400°C
Fluid
Density p 1,2 kg/n?
Heat capacityc, 1000
J(kgC)
Thermal conductivityk 0.02
W/(m°C)
Initial temperatureT 20°C

Table |: Material properties for the multi-domaimngblem

5. Conclusions and perspectives

The new idea was first to apply the enriched methioén unsteady diffusion problem
and then, to use a time interpolation for the medifproblem (EM-I). The proposed
method results in improved resolution compared Withstandard Galerkin formulation
on problems having sharp gradients. It avoids uralde oscillations resulting in
possible unphysical values of the solution. Theceph of this stabilization method is to
add an artificial conductivity controlled by spatme stabilization parameters that
leads to a better representation of the solutigpanticularly for small time steps. More
investigations are necessary to extend this apprtmthe boundary condition and this
will be subject of future works.
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Chapter 3

Stabilised finite element methods for incompressiel

flows with high Reynolds number

The present chapter is dedicated to the modellinpeoflow inside the furnace. The
stabilized finite element approximation from theeygous chapter will be extended and
applied for the resolution of the 3D transient Nanstokes equation. Recall that inside the
furnace at the burner’s level, a forced convectsoapplied; therefore this chapter will focus
on the stabilization of the convection-dominatedwl for high Reynolds number. The
Newton-Raphson linearization strategy will be addpto deal with the nonlinear convective
terms. The implementation algorithm of the equdbeigy-pressure linear interpolation with
additional bubble functions needed to satisfy tifesup condition will be considered here.
The developed stabilized formulation is tested @ fstandard benchmarks and conclusions
are drawn.
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3.1 Basic formulation of the equation

It is known that the property of incompressibilisya feature of the flow performed by
the fluid. The flow is said to be incompressiblevé neglect the density changes. Usually, we
consider liquids, in particular the water, as inpoessible flows. Whereas, the gases are
mostly considered as compressible flows. For Mach number aroun@.3,they can be also
be treated as incompressible [1]. This non-dimera@iocnumber quantifies the relation
between a characteristic velociyf the flow and the velocity of the souadby:

u
Ma ; (3.1)

The Mach number is named after physicist and pbjgber Ernst Mach (1836-1916). Since

the velocity of the sound 840m/sin the air, then the conditions of incompressipiis well

respected up to fluid velocity dfoOm/s In this work, these values for the velocity can b

almost reached inside some of our partner’s indddtirnaces. Therefore, some assumptions

and simplifications are made.

Another important non-dimensional number that giiastthe properties of a particular flow
is the REYNOLDS number given by
LU

Re=— (3.2)
where L is a characteristic length scald, is a measure velocity and is the kinematic
viscosity of the respective flow. It gives a measaf the ratio of inertial forces to viscous
forces and, consequently it quantifies the relaitimportance of these two types of forces for
given flow conditions. Reynolds numbers is freqlenised to characterize different flow
regimes, such as laminar or turbulent flow: lamifiaw occurs at low Reynolds numbers,
where viscous forces are dominant, and is charaeteiby smooth, constant fluid motion,
while turbulent flow occurs at high Reynolds nunsband is dominated by inertial forces,
which tend to produce random eddies, vortices ahdrdlow fluctuations. Reynolds number
is named after Osborne Reynolds (1842-1912), wbpqgsed it in 1883.

The transient equation of the fluid to be solved ilomainQ O 0° (d being the space
dimension) for a time period@ consists in finding the velocity(x,t) and the pressune(x,t)
such that:

p@u+ullu)-OWr= fin Qx(0,T)

Om =0 inQx(0,T) (3:3)

whereg is the stress tensqo,the density of the fluid anfdis a given force vector. The stress
tensor for a Newtonian fluide., the viscosity is assumed to be constant, is glwerthe
constitutive equation:

o =2uE)- pl (3.4)

where s is the dynamic viscosityl, the identity tensor, and p is the pressure. Trarstate
tensorgu), is defined by
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£(u) =%[DU+DU‘] (3.5)

Combining (3.3)-(3.5) yields the following moment@guation
pOu+ulllu)-2¢0L(W+0p= finQx(0,T) 36
Om =0 inQx(0,T) (3.6)

The transient incompressible Navier-Stokes equsti(316) constitute a nonlinear
system of mixed hyperbolic-parabolic partial diffetial equations for the vectorand the
scalam. In order to solve this system, initial-boundagafues must be set and specified.

3.1.1 Initial and boundary conditions

The initial condition at=0 must satisfyJli, =0 in order to obtain a well-posed
problem and has the following form:

u=u, inQx(0) (3.7)

Recall that for an incompressible flow there isinibial condition for the pressure.
Usually, two types of boundary conditions can bplied, the Dirichlet boundary conditions
on a [, and the Neumann boundary conditions bg, wheredQ =T =, 0T, and

N, nT, =0.These conditions are defined as follow:

u=u, onl,x(0,T)

nlg=h, onl,x(0,T) (38)

wheren is the unit outward normal vector [q, .

In our context, inside an industrial furnace, tvastizular conditions can be characterized:

- The inflow boundary conditions imposed at the brmievel, which will be modelled
by a fixed Dirichlet boundary conditions using assribed velocity, .

- The outflow boundary conditions which are not asyei@sk. It stills a challenge and
an open problem. More details about this subjeetdascussed by Gresho [ahd
Heywood et al [3]. Within our case, the most popular “do nogfinrboundary
condition will be used, which means a zero Neuntasundary conditions.

- The pressure boundary condition is critical whearg¢his no Neumann boundary.
When only Dirichlet boundary conditions are imposedrywhere on our domain, the
resulting pressure is obtained only up to an abjtconstant. Therefore, two ways to
define pressure field uniquely, either in preserpan average value with respect to

the complete domain havindg:2 p dQ = p, wherepy is a constant that can be zero, or

by prescribing discrete value of the pressure pbiat which is computationally the
most convenient.
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3.1.2 Classical mixed formulation

First let us define the function spaces that wallused in the remainder of this chapter.
The function spaces for the velocity, the weightfngction space and the scalar function
space for the pressure are respectively defined by:

Y = {u, uD(Hl(Q))d| u=gonf_ }
W = {u, uD(Hl(Q))d| u=0onl_ }

Q={p. pO2(Q)]}

Then the weak form of (3.6) consists in findifig p) J(+, Q) such that:

o[ S ]+ plumu+(272(9 :6(9)-( AODY=( £ ¥+( b ¥,

(O, q)=0 (3.9)

Note that when integrating-by-parts the viscous thiedpressure term, the Neumann boundary
term appears naturally in the formulation.

As mentioned in previous chapter, the Galerkin apipnation consists in
decomposing our domai? into Ne elementK such that they cover the domain and there are

either disjoint or share a complete edge (face)ndJshis partition, the above-defined
functional spaces are approached by a finite dirbeak spaces spanned by continuous
piecewise polynomials such that:

v ={th(C°(Q))d ‘th 0P(K*,0KOT, ]

Vv ={vD7/,v :0}
h,0 h h' “hr

Q, ={thC°(Q)‘ 9, - P(K O KDT]

The Galerkin discrete problem consists now in sghe mixed problem by:
find the pair(U,, P)U®, Q) U(v,q)UE Q) such that:

p(%,vh]w(uhﬂﬂuwvh%(?ﬂf( u):e(w)=( pa0W=( £ +( h Y,

(Dﬁuh,qh)=0 (3.10)

It is known that the finite element approximatiahl() may fail because of two
reasons: the inf-sup condition (Brezzi-Babuska)clwhiequired an appropriate pair of the
function spaces for the velocity and the pressdiy ]|
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The second one is the dominance of the nonlineavemtive term which can generate
spurious oscillations that will pollute the wholamerical solution. In the present work we
aim to retain the advantages of using linear apprations (P1 finite elements) regarding the
accuracy and the computational cost, especiallBreal applications. But it is well know
that the combination of P1-P1 approximation forvbcity and the pressure does not lead to
a stable discretization of (3.10) since it fails#tisfy the inf-sup condition:

inf  sup M2ﬂ> C

thQn lJh[}’/h.o |qh|0|uh|1

(3.11)

wherefis a constant independentiof

Many measures may be distinguished to solve ancmgeind these two difficulties,
the instabilities in advection-dominated regime athe@ velocity-pressure compatibility
condition. A very popular method was firstly propdsby Arnold, Brezzi and Fortin [6] for

the Stokes problem. It was suggested to entighwith space of bubble functions known as

MINI element. Since the bubble functions vanisheath element boundary, they can be
eliminated and statically condensed giving riseatstabilized formulation for equal-order

linear element. Later it was pointed out in [7]tthaing these local bubbles is equivalent to
residual-based stabilized schemes with a naturglokahoosing the stabilization parameters.
Therefore, the selection of the “optimal” bubblendtion will reproduce the appropriate

choice of the stability parameter. Thus, it's cldzat the bubble will have different shape on
the diffusive dominated regime then the advectiomishated flow regime. For example, it

was shown in [8, 9] that upwind bubbles must belueeeproduce the SUPG stabilization.

A standard reference for mixed finite element mdghas the book of Brezzi and
Fortin [10]. A brief history on residual basedtslization methods can be found in Breeti
al. [11], the book of Donea and Huerta [12] , all timeckes by Hughegt al [13, 14, 15] on
multiscale methods and SUPG/PSPG methods by Tezdlgh The Unusual Stabilised
finite element method was introduced by Franca feadhat in [17]. Codina and co-workers
introduced lately recent developments of residuaked stabilisation methods using
orthogonal subscales and time dependent subsda#led 9, 20, 21]. These methods are very
promising and considered to be an open door tatence. At the same level, we can find a
complete description on the use of variational recdtile method for turbulent flows in
Gravemeier [22, 23, 24] where a three scale saparatethod was developed and applied.

The main interest of this chapter will focus onbdtaing the convection-dominated
flows and to retain the use of equal velocity-puesslinear interpolation. A detailed
description on the parallelisation of the 2D fingement solver using the Mini-element
P1+/P1 can be found in T. Coupez [25, 26] and [ZWE implementation of the code in our
finite element library CIMLIB and the stabilizatidior the 3D Stokes problem has to be
credited to [28]. Recently, an extension to tramshavier-Stokes was considered and added
by [29]. In this sense, the present work can besickemed as a continuation of those references
to deal with highly convection-dominated flows. el numerical examples for solving the
transient problems will show the benefits of thegmsed scheme and conclusion will be
drawn.
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3.2 Stable mixed variational formulation

The primary aim of the next two sections is twofalke begin to present briefly the
classical stable mixed-formulation for the Stoke®bfem which can be derived by
introducing the MINI element and the corresponditagic condensation [6]. This formulation
is stable for equal-order interpolation for theoatly and the pressure fields (satisfies the inf-
sup condition) and already implemented in the CiBilibrary and validated by [27, 29].
Once we illustrate the basic enrichment of the fional spaces and the corresponding
condensation procedure, we extend the presentatidhe second part of this chapter for
solving the transient Navier-Stokes equations usireggeneral framework of the multiscale
methods.

The finite element formulation of the classical sdformulation for Stokes equations
reads: find the paitu . P)U(@ . Q) such that:

(3.12)

{(mg(uh) 1e(v,))=(p,.00)=( f.v)

(O, q,)=0

We enrich the velocity functional space by the @ise space associated to the bubble
function [6]:

v ={a , 0 OP(K)n H;(Ki),DKDfIh,i=1,...,D}

h h‘u

where D is the topological dimension ard is a decomposition oK in D subsimplex
(subtrianle in two-dimension and subtetrahedrahied-dimension), that have as common
vertex the barycentre ¢f. In other words, the choice of this bubble funatis continuous
inside the element, considered as linear on edehr@ngle and vanishes at the boundary of
K.

The velocity field is now an element of the funatigpace generated by the following direct

sum?, B ¥ . Hence, we use continuous piecewise linear funstienriched by bubbles for
the velocity and piecewise linear functions for theessure. The mixed-finite element

approximation of problem (3.12) can now be writténd U 0% =% O f’;ﬁ and P_UQ such
that:

(3.13)

{(2’7‘5(‘%) (V)= (P O,) =(f,v,)

(Omw,,q,)=0
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Since the fine-scale problem is independent andwpled at the element level and vanishes
on the element boundaries, the system in (3.13peatecomposed into:

(272 (u,) :£(w)) = (0 Bg) =( £, v)
(27¢(0,) e(%)) ~ (PO D) =( £, %) (3.14)
(0Qu, +4,), ,)=0

Remark 1. Note that the fine-scale space is assumed to begwhal to the finite element
space, the crossed viscous terms in both equatdiqi3s14) vanished [24].

Equations in (3.14) give rise to the following giblsystem to solve:

A 0 Alu) (B

w vp h Vv

0O A A0 |=|B (3.15)

A =(@e{u):e(v)) - A=(2e(v)e(v) . A=(O0y, ) A=( qp0y

The static condensation process consists intorgpltrie second line for the bubble function
U which by inserting into the third line of (3.1%sults the condensed matrix scheme for

large-scale unknowns, andpy, reading:

A ATp u B
v = .’ 3.16
A A |lp & (3.16)
vp pp h P
where:

A =—AA'A and B= - AAB
PP bp" bb~ bp p b

It is clear that taking into account locally théluence of fine scales (bubble functions)
upon the resolved large scales has introduced mahilizing terms and has modified the

components of the global matrix giving rise toab# mixed formulation for the velocity and
pressure system of equations (see [29] for moraldpt

3.3 Stabilized finite element method

In this section the time-dependent Navier-Stokesaggn is solved. The stabilizing
schemes from a variational multiscale view pointl We described and presented. The
velocity and the pressure spaces will be enrichea lspace of bubbles that will cure the
spurious oscillations in the convection-dominategime as well as the pressure instability.
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3.3.1 Multiscale approach

Following the lines in Hughest al. [30], we assume an overlapping sum
decomposition of the velocity and the pressured$ieinto resolvable coarse-scale and
unresolved fine-scale=u, + 0 andp= p, + p. The fine-scale part is usually modelled via
residual based terms that are derived consistefithe static condensation consists in
substituting the fine-scale solution into the lasgale problem. Consequently, additional
stabilized terms, tuned by a local time-dependéabilizing parameter, will enhance the
stability and accuracy of the standard Galerkimiaation for the transient nonlinear Navier-
Stokes equations. Likewise, we consider the samendgosition for the weighting functions
v=\,+V and q=q,+ Q. Note also, that the fine-scale may be represen@dlifferent
bubbles functions (similar to the MINI element) ath@ selection of the “optimal” bubble
function will reproduce the appropriate choicelad stability parameter [7, 8].

The enrichment of the functional spaces is thefolbew: v = v, 07,7, = %, ,0 Vs,

Q=Q,0 Qand Q- QO QO. The mixed-finite element approximation of problégn10)
can now be written:

find (u. P)O(v , Q) such that:

p(—a(u“afuh),vh+\7hj+p((uh+UDD(LHUn), ) =( R0 g y)
+(2/7£(uh+ﬂh) :g(vh+vh))=( fov+ ) +( hy v+ NV)rN O v+ "y o 07, (3.17)
(OQu, +0),q,+8) =0 Og+790 Q0 Q (3.18)

As shown previously, these equations can be dglit iato two sub-problems by separating
the two scales:

Integrating by parts within each element we obtain:

- the coarse-scale problem:

p(a(uh + []h) ,

. wJ+p«%+%mK%+%%W‘(R+ﬂﬂD@+Cm4‘Df(@)

=(fov)+(how),  OwbOvy

(3.19)

(Ou, +),0) =0 0¢,0Q, (3.20)
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- the fine-scale problem:

p(M,vhjw((uhwh)mwvn),m)—( B+ PO +(276(7) 26 ()
ot (3.21)
=(£,%)+(h.%),  O%07,
(OQu,+0,),§) =0 0y0Q (3.22)

To derive the stabilized formulation, we first slthe fine scale problem, defined on the sum
of element interiors and written in terms of thedidependant large-scale variables. Then we
substitute the fine-scale solution back into therse problem (3.19 - 3.20), thereby
‘eliminating the explicit appearance of the fineacwhile still modelling their effects’

Remark 1. Recall that for linear interpolation functionsetsecond derivatives vanish as well
as all terms involving integrals over the elemeat¢iior boundaries.

Remark 2. Since the fine-scale space is assumed to begutiad to the finite element space,
the crossed viscous terms vanished in (3.19) a2d (325-26]

Remark 3. For the sake of simplicity in the notation, wensigler all of9Q to be zero

Dirichlet boundary condition. Generalization to ethtypes of boundary conditions is
straightforward.

Rearranging the terms, equation (3.21) is equivaten

p(%,vj + p((u,+0)IMy Y +(2/7£(1):£(~9)+(D”p~\)

time- dependent subscale nonlinear convection term

:[f—p%—p(uh+ﬂ)ﬂﬂuh—ﬂpﬂ/j 03, (3:23)
=(R.,.,V) Ov0v,
(Om,a) =(-00y, §=(x..9 00 Q (3.24)

As we can observe, the subscale equation (3.23)me dependent and highly
nonlinear. To our knowledge, the first attempt pplst and use a time-dependent subscale for
the Navier-Stokes equations has to be creditedottina [19]. It was shown later in [31, 32]
that by tracking the subscales in time and keeph®jr nonlinear contributions in the
advection velocity will guarantee the global consgion of the momentum equation and can
also open the door to turbulence modelling. Thesthads can be considered very promising
and interesting and they will be for sure the scibgd further research on the stabilization
methods.
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Here in our context, following the evolution ané tstorage of the small-scales in time
together with the need of fine computational mestaseasily increase the computation cost
in particular when long time simulation of heatatraent furnaces are considered. Therefore,
for the time being, their effects will be repladadthe standard turbulence models such as the
Smagorinsky-type eddy viscosity or k-epsilon-typlel\e viscosity. These two models will be
used later to deal with turbulent flows inside thnace (see next chapter).

Before the description of the temporal discret@atiwe follow the work already made
and implemented by [29] on the use of Newton-Raphs®arization method for treating the
nonlinear convective terms. Here in our contexdpired by the work of Codina in [31], we
will extend the use of this method to the multischhite element formulation. Recall that
Newton-Raphson method is attractive because itexges rapidly from any sufficiently good
initial guess; however, one drawback of this metisoithe need to solve the Newton equation
at each iteration. This can be expensive spedyiedien the number of unknowns is large.

The nonlinear convective term in the large-scalgbj@m can be approximated by keeping
terms only to first order at th¥ iteration as:

(v @) = (47 + (- ”)Dﬂ(ﬂﬁ”w-“l)’?
(wmu )+ (4t )= (gt Y+ (- ) m(w-w) ) @29)
=(u, D)+ (4 Dﬂw (Wmyy

whereU'™ is the previous know Newton-Raphson'’s iteration.

At this stage, before solving the fine-scale equmtihe above mentioned assumptions will be
detailed and then applied:

1- First, the subscales will not be tracked in tintesréfore, ‘quasi-static’ subscales are
considered here. This choice is justified in [38ince additional turbulence model
will be used, this approximation is reasonabletf@ time being. Moreover, we can
say that the subscale equation is ‘quasi’ time-ddpst since it is driven by the large-
scale time-dependent residual [31].

2- Second, the convective velocity of the nonlineamtenay be approximated using only
the large-scale partu, +0)M(u,+ 1) = y 0y + yI This choice wilprovides
us with some reduction of computational cost.

Consequently, the fine-scale problem will reducthtfollowing:

p(uma, )+ (276 (1) :(V)+(0DY = (R, Y 0OV,

5 (3.26)
(0m,a) =(%..9) 0Y0 Q
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With regard to the work of [29], we can identify #tis point two important
extensions. The first consists in considering tbeeation terms in equation (3.26) and the
second is that the small-scale pressure is inclufiedse two extensions are essential for
simulating high convection-dominated flows.

It is also known, from [44, 45] that by consideritige small-scale pressure as an
additional variable we complete the continuity atinod on the small-scale level. This will
provide additional stability in particularly withnéreasing Reynolds number. However,
solving the small-scale equation for both the vigoand the pressure is somewhat
complicated. Franca and co-workers [4] proposeepamtion technique of the small-scale
unknowns. They replaced the small-scale continedyation by the small-scale pressure
Poisson equation (PPE). Since only the effect efstimall-scale pressure Poisson equation on
the large-scale equation must be retained, FramdaDéiveira (2003) [34] showed that rather
than solving this equation it could be approximabydway of an additional term in the
fashion of a stabilizing term. This leads to anragjmnation of the form

p=-r.UML, (3.27)

The result (3.27) can now be integrated directlp ithe large-scale equation (3.19).
For additional details about solving the PPE equitsee the thesis [46] and the work of
Gravemeier [22, 23, 24, and 41]. In these refergn@ecomplete review on considering two-
scales and even three-scales for the convectidush-reaction and the Navier-Stokes
equations is fully described. Additionally, the laart as in [36, 11] confirms that the effect of
considering the small-scale pressure is impor@nhigh Reynolds applications.

For the definition ofr. , we adopt the definition made by Codina and cokery [21, 31]:

| | 512
c, U
Ie :[,ﬁ J{éTKJ } (3.28)

wherec; andc, are two constants, independenthpth is the characteristic element length
defined in (2.31) and=n/p is the kinematic viscosity. More details about theicamf the
stabilizing parameter will be addressed in theofeihg section.

According to the previous assumptions, this metisatien considered as a combined
of stable formulation (MINI-element) / (stabilizingtrategy). The stable formulation, as
described previously for the Stokes problem, idieggo the velocity field whereas the fine-
scale pressure is modelled using a stabilizing austhAfter all, the main assumption that
p=0 in the small scale momentum equation and elinmigaitis effect in (3.26) comes down

to the fact that ‘the small scale velocity is exthely driven by the residual of the large scale
momentum equation and not by the residual of tmtiwoity equation’ [31].

In the last part of this section, we go back to $heall-scale momentum equation.
Please note that our objective is to compute thallssnale velocity and then integrate the
solution into the large-scale problem. Many methbdse been proposed to solve and
approximate this fine-scale system (3.26). Sindeirsp directly this problem is difficult,
therefore, only their effects must be retained.
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We can find in the literature the Green’s functiapproach method proposed by
Hughes [14] and Masud [35] and the two-level firrtement approach proposed by Fraetca
al. [4]. The use of orthogonal subscales and thei€oanalysis approach was introduced and
developed by Codina [31, 32]. The close relationstine comparison between different
stabilization techniques and the significantly cdmition on the analysis of these method are
credited to Codina in [18].

Without loss of generality, using the argumentstapter 2 together with the previous
section 3.2, the fine-scale problem is solved dred dtructure of the stability parameter is
extracted by employing bubble functions on indiadelements. Following all the earlier
efforts made by Masud [47, 48, 49, 50], the finalsdields are expanded as follow:

G,=> uch and¥y=> ¥ b (3.29)

KDy, KDy,

wherebk represents the bubble shape functiarjs,represents the coefficients for the fine-
scale velocity field and, represents the coefficient for the fine-scale Wweigy function.

Introducing (3.29) into the fine-scale momentumadmn we get on each eleméfit
p(u M e, B ), +(276(R @) :e( R ¥)), =(Rmr B Y, (3.30)

As stated previously in chapter 2, we can recoosthe fine scale velocity by taking, out of
the integral, the vectors of constant coefficients.

Therefore, sincey, is arbitrary, the fine-scale velocity will takeetfollowing form:

' 1
Uy = (R b)) OKOT,

[ p(u i, b ), +(275 () 6 ( &), | (3.31)
T,

As expected, the structure of the elemental statibn parametey has appeared

naturally via the solution of the fine-scale prableConsequently, the effect of the bubble is
now condensed in this elemental parameter.

As mentioned before, it is clear that the choicehaf bubble functions affects the
value of the stability parameter. In (3.31) botlmwection and viscous regime are represented.
But it is important to note that when using the gambble function for the trial solution and
the weighting function leads to the cancellatioriha convection term in the definition of the
needed stabilisation parametgr Under the assumption thaf, is piecewise constant, it is

easy to see that the choice of the MINI-elemenblasyields:

(u* @by, )K =0 0OKOT, (3.32)
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One way to recover the convection terms it was tgdirout by [8, 9], is the use of
additional upwind bubbles. Such choice can repreduaturally the coefficients of SUPG
stabilization methods. This matter was highlightgdalso Masuekt al. [49, 50] by proposing
the use of different order interpolation functiofes the trial solution and the weighting
function in the skew part of (3.31) (see figuredt &in example). In order to keep the
presentation simple, and to extract the structiirhe stability parameter, , we employ a
combination of standard bubble shape functibpand upwind shape functiortg in the

fine-scale fieldV, . More details about this section are given in t&iaf section 2.

Therefore, by introducing the modified, in (3.30), the fine-scale velocity will take
the modified following form:

: 1
up = ®.,b) OKOT,

p(um b, ), +(205(R) 2 B)),

advection term visocus term

(3.33)

Remark 4. Using linear interpolations, the upwind part drops directly in the viscous term.

/o~
/
0,8 /
/
/
0,6 /
/
x /
o2 04 /,
/,
// Regular bubble for trial solution
0.2 y — — — - Bubble for w eighting function
0 : : : oS
-1 -0,5 0 0,5 1

X-axis

Figure 1. Example of 1-D bubble function for the ltgalution and the weighting function
adopted from [50]

Now, let us reconsider the coarse-scale problemngby (3.19-3.20)
ou 1
(pa—t“,vh]+(puhmuh, W) +(o Ut my, v)+ (276 u) (V)

~(PnB0) - (RO, =( fw) DBV

(3.34)

(Om,q)+(0mM, q)=0  0q0Q, (3.35)
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Applying integration by parts to the third termsdquation (3.34) and to the second
term in equation (3.35), and then substitutingekpressions of both the fine-scale pressure
(3.27) and the fine-scale velocity (3.33), we get:

[p%,vhJ+(puh[l]]uh,vh)— > ( IR ., put vh)+(2/7£( u) :£( w)
t K (3.36)
~(p, O)+ > (rO0m,004) =( f,v) OOV,

KO,

(Om,,q,)- > (7R wOa,) =0 0a6,0Q, (3.37)

KO,

Finally, substituting the residual of the momentequation and expanding all the
additional terms, we obtain from (3.36) a modifexhrse scale equations expressed solely in
coarse scale functions. For illustration purposhs, new modified problem can now be
decomposed into four main terms: the first onehes Galerkin contribution; the second and
the third terms take into account the influencéhef fine-scale velocity on the finite element
components and the last term models the influefidbeofine-scale pressure onto the large-
scale problem.

(p%,vh}(puhﬂﬂuwvh%(?ﬂf(w) £(w)-( ROOY+(00y, g-( £y

Galerkin terms

+Z(T p%wu Mu, +0p- f, py;* DD%)

KOr,

Upwind stabilization terms

+Z( Kp_+puh[[|:|uh+|:|p_ f, D(Jnj

KOz,

(3.38)

Pressure stabilization terms

+> (r.0m,00,) =0 0Ov,07,,, 0g,0Q,,

KDy,

grad—div stabilization term

When compared with the Galerkin method (3.9), theppsed stable formulation
involves additional integrals that are evaluatennent wise. These additional terms, obtained
by replacing the approximate®l and p into the large-scale equation, represent the tsfiefc

the sub-grid scales. As a result, different staaiion terms were introduced in a consistent
way to the Galerkin formulation. As for the addi# grad-div stabilization term, it was
introduced to the large-scale momentum equatiotraibed by a suitable parameter . All

of these terms will overcome the instability of ttlassical formulation found in convection
dominated flows and the need to satisfy the inf-sapdition for the velocity and pressure
interpolations. While the last term in equation3@. provides additional stability at high
Reynolds number.
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Remark 1. The addition of the stabilizing terms does nanhpoomise the consistency of the
formulation, since these terms are weighted withrésiduals of the equations, which vanish
for exact solutions.

Remark 2. Recall that when using linear elements (triangalad tetrahedral) all second
order derivatives vanishes. These terms were jrentitted from the formulations.

Remark 3. For sake of simplicity in the notation and fobetter representation of all the
additional terms in equation (3.38), the condensaprocedure of the small-scale into the
large scale is masked under these stabilizing petexshn However, from the implementation
point of view, the structure of the stabilizing gareters will be computed naturally via the
element-level matrices.

3.3.2 Matrix formulation of the problem

Let us summarize and rewrite the resulting vamatiostabilized formulation in the
usual matrix scheme. Following the work of [29] e development of the Navier-Stokes
solver in CIMLIB library, it is adequate that wedgehere the same matrix notations. All new
additional stabilizing terms needed for the coneectiominated problems will be then
highlighted. Note also that the structure of thab#izing parameters will be computed
naturally via the element-level matrices.

For sake of simplicity in the notation, the Eulempiicit temporal discretization is
applied, the linearization (3.25) is introducedoiihe variational formulation for the space-
time discretized Navier-Stokes equations and thdified fine-scale weighting functiofi, is

used. Correspondingly, the matrix equivalent ofdtabilized problem simplifies to

A A AIp u

w vb h Bv
bv Abb Azp Dh = Bb (3.39)
Avp A|Dp 0 P, Bp
where
A = p%,vh +(pdh‘1DDdh, vh)+(plth]] U;l, v)+(2175( u) :g( \{))+(TCDDLL,DD\a
Effect of
A = p%,\"/h +(,odh‘1D]]th,Vh)+(pl‘JhD]] U;l,"vh)

- o ma, %) +2ne( 1) ()
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B :( f,vh)+,0[%,vh +,0(D d*.ut, v)

v h h h

B, =0

p

o,2(18)e{ 4 relon )

At h

The static condensation process consists into rapltiie second line fol and by

inserting it into the first and third line of (3.8R gives rise to the condensed matrix scheme
for large-scale unknowns, andpy, reading

A ATp u B
Y S 3.40
A A p B ( )
vp pp h P
where:
A=A -AA*A A=A-AAA
w w vb bb bv vp vp bv bb bp
AT = AT - AT AT A A= -AAA
vp vp vb bb bp pp bp bb bp
B=B-A A'B B= - AAB
v \Y vb bb p bp bb b

It is clear that taking into account locally thdluence of unresolved fine scales upon
the resolved large scales has introduced new gilabilterms and modified the components
of all the matrices. The effect of the fine-scategsure was added directly to the first matrix
by a stabilizing term. These terms seems to playrgortant role in particularly for high
Reynolds number flows. Later on, several numerosa@mples will show the benefits of the
proposed scheme.

Remark 4. In order to keep the presentation simple, we salthe reader to consult [29] as
well as section 2 from chapter 6 for more detdilsud the time discretization combined with
the Newton-Raphson linearization.

3.3.3 Stabilization parameter

The selection of the stabilization parameter hdsm@ed a significant amount of
attention and research. This subject was also sk&tliin the previous chapter. Here, for the
Navier-Stokes equation, these stabilizing parametdt involve in their structure the spatial
and temporal discretization, the equation coeffitseas well as the local Reynolds number.
Various definitions were proposed and tested fer 3WPG, GLS and the PSPG methods.
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These definitions can be easily implemented in famie element codes. Please consult [45,
36, 51, 52] for more details.

In the previous subsection, we showed that thalgialy parameter was constructed
naturally in a consistent manner by incorporatimg ¢oarse-scale residual evaluated over the
element. This forms the advantage of using vamafionultiscale approach, i.e. unlike other
SUPG/PSPG implementations, the multiscale appralietvs a local tuning of the size of the
stabilization term, thus enhancing flexibility aadcuracy. But at the same time, it seems
interesting to discuss the structure of these perars and there limits in different regimes.

Recall that the importance of stabilization is tethto the local nature of the flow that
is commonly characterized by a local Reynolds nunibde defined. This leads us to set up
different strategies for the choice of the stabiliz parameter depending on the local
Reynolds number. However, using bubble approac®UBG will lead to efficient strategies
for an automatic choice of these parameters.

Most of the strategies involve first of all the qomumtation of a local Reynolds number

m h
Re =ﬁ (3.42)
K 4
Next, if we set
ReK if 0< RG}.\( <
Re )= .
<Re.) 1 if Re>1 (3.42)
Then this common used stabilizing parameter wilétdne following form:
h2
m — if 0<Re <1
h ¢(Re ) ) ) (3.43)
7 =—— = .
L P L
2Jul, ‘

wheremy is 1/3 is the optimal value for piecewise linekmeents andu|, is the norm of the
velocity.

Hereh as mentioned previously, is an appropriate measurdghie size of the mesh
cell K [45, 51]. Observe that in the expression (3.43) switches between different

dominated regimes; i.e. in diffusion dominated ¢ae is O(K /v) and in the advection
dominated case i©(h, /|, ) [47, 50].
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A similar expression of the stabilizing parametees suggested by Codina [31, 32] from a
Fourier analysis of the subscale problem

I :[(%j +[c2%] ] (3.44)

wherec; andc, are algorithmic constants chosen equal to 4 amesectively for linear
elements. Similarly, the two terms in the right-¢thaxpression can be interpreted as the
diffusion-dominated regime and the advection-doteidaegime.

For time-dependent problems, the time step is duiced into the definition @f, . Tezduyar
and Osawa [45] supposed that

SLOROEC

This is the most common used definition for thensiant Navier-Stokes problems.
However, for small time step, the expressiorrpfcan degenerate in thag — 0. One way

to remedy this problem is the use of dynamic subsgales introduced by Codieaal.[21] ,

i.e. the fine-scale velocity becomes a historyalalg that needs to be stored. This seems like
a promising step in the direction of more accuyatepresenting the fine scales and can also
open the door to turbulence modeling.

To conclude, it is clear that in all the definitgogiven in this section, the structure of
the stabilization parameter contains mainly twontrconvection term and viscous terms,
which is identical to the structure given in thepous section (eq. 3.33).

3.4 Numerical examples and validation

In this section, four numerical calculations arefgened to assess the effectiveness of
the method described previously. Numerical examfdesime-dependent flow problems are
given in the following. The main interest of theseamples is to test how well the stabilized
formulation developed herein matches with compatain particularly for high Reynolds
number. More applications on thermally coupled Bofer heat treatment furnaces will be
given later in chapter 5 and 6. The previous imgetation of the Navier-Stokes solver [29]
will also be used and referred as ‘previous versiorold scheme’. Recall that the difference
between the new implemented method and the previexsson resides only in the extension
to deal with high convection dominated flows. Inder to highlight the role of these
additional terms, some comparisons are made antisese discussed.
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3.4.1 A convergence test

In this example, already presented in [53] and ,[46} consider the Navier-stokes
equations in the unit squar®=[0,]x[0,1. The objective of this test is to check the

convergence of the approximation to the exact soluand to compare the effect of the new
additional stabilizing terms in respect to the powas version implemented in CIMLIB [29].
This problem consists of a jet impinging upon alwath a controlled body forcégiven by

f. =5xy° +10xy + 6 X
fl 0 Y y Y (3.46)
,=

The exact velocity components and the pressurtharedefined on the domain by:

u=-5x/ . u=-I+y
1 (3.47)
p=2 (¥~ y)+5y’

The boundary conditions as well as the expecteatitgldistribution are depicted in Fig. 2.

y“ AN,
u=-5x u =05 D
1 e
////y(«k«/k(
) i
/////////////
u1:—5y“ H///////////////
— VAN IAAAAS A A 7S
u=0|  ------ > u=-05+y [ 11y sy
1 2 Yy
f bbb
A
Pat bbb b
- N
> N
X RN
I S A A A A A A A

Figure 2. Boundary conditions (left) and expectetbcity distribution (right)

The convergence study is divided into two parts.tie first part we study the
convergence for low Reynolds number Re=0.5025 WifhlO (diffusion-dominated flow),
and in the second part we present the convergees for high Reynolds number Re=5025
with ¥ =0.001 (convection-dominated flow). Uniform meshes of 4848 and 16x16 linear

triangular elements have been used to discreteedmputational domain. We compute the
error of the velocity and the pressure solutiomgs$hel>-norm as follow:

(p- R)* A :
ool [} )
[ e, [pPa

1
(uU-u)?dQ |2
o umul, [1474
M, | v
Q
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In the given reference [46], the objective beinffedent, a full study of convergence
was conducted for testing higher-order elementsgudifferent methods. Here, we retain the
use of linear triangular elements and we investighé effects of ignoring both the pressure
subscale and the added stabilizing convective terrdgferent regimes.

In Figure 3, the values of the pressure are shawhmeasured along theaxis at
x=0.5. For diffusion-dominated flow, both methods amevery good agreements with the
exact solution. As expected, when the flow becooms/ection-dominated, some numerical
oscillations appear in the solution (see Figuren8 Rigure 4). On the other hand, the new
modified scheme yields good results when compdartge analytical solution.

50 0,20
I 7 Analytical
40 | - - - -Analytical 015 | ———-newscheme
— — —-new scheme ’ ' previous version
previous version

301 0,10 |

20 1
0,05 -

10 -
0,00 - : : :

. 02 04 06 08 ]
0 0,2 0,4 0,6 0,8 1 -0,05

Figure 3. Pressure solution obtained by using Bolkdear triangular elements: diffusion-
dominated flow (left) and convection-dominated f(oght)

Moreover, it was pointed out also in [46] that thee of linear elements in this
numerical test leads to relatively ‘satisfactorgsults for the pressure. This can be observed
in Figure 4 showing the pressure distribution fothbmethods. For more details about the use
of higher-order elements and curing these instadslithe readers could refer to [46].

Pressure

.D.'\QS |

0.0959

0.0639

0.0320

Figure 4. Pressure distribution obtained by usix16 linear triangular elements for
convection-dominated flow: analytical (left), nesheme (center) and previous version(right)

0.000

Figure 5 and 6 present the convergence rates ih,therme for the velocity and the
pressure fields. In the diffusion-dominated flowigiife 5), the convergence rates are in
complete accordance with the theoretical predistemd both methods accurately matched.
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However, it is interesting to note that the ermreases when the convection terms
become dominant as showing in figure 6, whereasi¢glve scheme exhibits smaller error and
keeps the same order of convergences. These ratesagreement with the references.
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Figure 5. l>-norm for diffusion-dominated flow: pressure (left)d velocity (right)
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Figure 6. l%-norm for convection-dominated flow: pressure )laftd velocity (right)
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3.4.2 Driven flow cavity problem (2-D)

Now we numerically solve the lid-driven flow probie This test has been widely used
as a benchmark for numerical methods and has besyzad by a number of authors (for
example, see [37, 38, 39, 40]. The problem desoriptboundary conditions and the
corresponding meshes are depicted in figure 7.cBhlet boundary conditions prescribe
Gi(1,0)on the upper boundary g1, andii(0, 0)elsewhere of . The source term is identical

to zero. The viscosity is adjusted in order to wbfeynolds number of 1000, 5000, 10000,
20000, 33000 and 50000. Zero pressure is prescaibi lower left corner.

Two meshes of linear finite elements have been usétk calculations. The “coarse” one is
made of 64x64 elements, refined near the walldhefdavity. The “fine” mesh consists of
180x180 elements. All numerical experiments willdoenpared to the very known references
of Ghiaet al (1982) [37] and Erturlet al. [42] . The authors in [37] applied a second-order
accurate finite difference method using a fine gid57x257 while in [42] the 2-D steady
incompressible Navier-Stokes equations was sohsdgua very efficient finite difference
numerical method (fourth order compact formulation)a very fine grid of 601 x 601. We
consider that the steady state is reached whendhmalized velocity deviations within one
step are lower than a chosen tolerance & Recall that the main interest is to compare the
performance of the new scheme described in theiqus\section and the behavior of the
solution for high Reynolds number flows.

ii(1,0)

i(0,0) 0.0y

Fig 7. Problem settings: boundary conditions (le€arse mesh (center), fine mesh (right)

A first set of numerical experiments has been peréal using both methods i.e., the
previous version and the new modified scheme. Télecity profiles forux and uy, along
x=0.5 andy=0.5 respectively are shown in figure 8 and 9. Conmmuathese results with the
given reference, one can clearly see the improvemikethe new scheme in the solution in
particularly when the Reynolds number increasesicelewe conclude that the absence of the
pressure subscale and the convection terms inntlaé-scale problem renders an extremely
diffusive solution even on a very fine mesh. FoghhiReynolds number, the results are
underestimated with respect to the new formulatléowever, the solution of the modified
scheme is in a very agreement with the referened Bituations.
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Fig 8. Velocity profile for walong x=0.5: previous version (left) and modifezheme (right)
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Fig 9. Velocity profile for yalong y=0.5: previous version (left) and modif@zheme (right)
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Some other interesting quantities than plottingulecity profiles are available in the
literature. For instance, in [46] the author haweded and analyzed the pressure and the
vortex formation and comparisons were made usingraénumerical methods for different
Reynolds number. In the following, we will get ao®br look on the pressure isolines for
Reynolds number 10000 and compared our resultsetgiven reference. Table | and figure
10 show a very good agreement of the new modifibéme with the given reference.

previous | new scheme USFEM two-level Three-level

version method method
Re=10000, | -0.0372/ |-0.1319 -0.0975 -0.0730 -0.0904
mesh 64x64| 0.8056 /0.9142 /0.8774 /1.0465 /1.1278

Table I. Minimum and maximum values of the presiurearious numerical methods

Figure 10. Pressure isolines on colored pressustriliution: two-level method adapted from
[46] (left), the new modified scheme (middle) amel previous version (right)

As in [29] we will continue our comparisons by istigating the location of the respective
vortex centers. Figure 11 shows the computed fieWdd in terms of the velocity magnitude
and the corresponding streamlines.
N S— 51 Z

NN\ ——

Figure 11. Streamline on c eft to bottom-right:
Re=1000, 5000, 10000, 20000, 33000 and 50000 v&@x180 mesh
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Figure 12. A magnified view of various secondargiges near the cavity corners, Re=50000

As expected, using the fine mesh 180x180 the swisitexhibit additional counter-
rotating vortices in or near the cavity cornersRasincreases. It is known that this problem
involves a primary vortex, while for higher Reyneldumbers secondary vortices appear in
the corners of the domain. As the Reynolds numhenreases, the location of the centers of
these vortices change, secondary vortex has tlteneyn to break on two new vortex and
consequently their number increases (see figur@ntll12). The effect dReon the genesis of
new vortices inside the cavity is presented infthllewing graph.

14

13 4
10

Number of vortices
L L L L L L

Re

0 10000 20000 30000 40000 50000

Figure 13. Number of resolved vortices in functodrthe Reynolds number

Figure 14 highlights by order of appearance thatioa of these expected vortices. The
location of the centers of these vortices togethi#in corresponding values from references
solutions are summarized in Table Il. Qualitatyvahd quantitatively, the results are similar
to reference solutions and a good agreement isnaatealthough the mesh used here is
coarser than the one used in the reference.
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Reynolds 1000 5000 10000 20000 33000 50000
Vortex 1a Present 0,532 /0,566 0,514 /0,536 0,511 /0,531 0,5082% 0,506 / 0,527 0,506 / 0,526
Reference 0,5313/0,5625 0,5117 / 0,5352 0,5117 /0,538 50,5267 - -
Vortex 2a Present 0,864 /0,112 0,802 /0,0733 0,767 / 0,0594 0,7M6416 0,667 / 0,035 0,654 / 0,0309
Reference 0,8594 / 0,1094 0,8086 / 0,0742 0,7656 / 0,0586  26¥7 0,0450 - -
Vortex 3a Present 0,0828 / 0,0785 0,0733/0,136 0,0589/ 0,16 0,043282 0,0375/ 0,206 0,0307 / 0,226
Reference 0,0859 /00,0781 0,0703/0,1367 0,0586/0,1641 48R0 0,1817 - -
Vortex 4a Present 0,0641 /0,909 0,071/0,911 0,0802 /0,912 0,085911 0,0839 /0,908
Reference 0,0625/0,9102 0,0703/0,9141 0,0817/0,9133 - -
Vortex 2b Present 0,978 /0,0189 0,933 /0,0689 0,929 /0,108 0/92419 0,99/0,0112
Reference 0,9805 / 0,0195 0,9336 / 0,0625 0,9300/ 0,1033 - -
Present 0,016 / 0,0191 0,0536 / 0,0511 0,0692 /0,0602 0831 /0,0556
Vortex 3b
Reference 0,0156 / 0,0195 0,0567 / 0,0533 - -
Present 0,808 /0,115 0,863/0,178 0,816 / 0,085
Vortex 2c
Reference - - -
Vortex 4b Present 0,0255/ 0,82 0,0339/0,811 0,0317 /0,80
Reference 0,0233/0,82 - -
Present 0,0539 /0,783 0,0537 /0,774 0,0446 /0,76
Vortex 4c
Reference - - -
Pr n
Vortex 2d esent 0,986 / 0,017 0,95/0,194
Reference - -
Vortex 2e Present 0,732/0,0218
Reference B}
Pr nt
Vortex 4d ese 0,126 / 0,988
Reference -
Vortex 4e Present 0,228 /0,972
Reference B

Table II. Location of vortex centers (coordinatecoordinate y)
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Remark 1. We have used as reference [37] for number of Regnlgss than 10000, and
[42] for Re = 20000. To our knowledge, resultsRaynolds number 33000 and 50000 using
linear stabilised finite elements methods are c®rsid very rare. We notice a very interesting
behaviour of these computations which will be sabg further investigations and of future
publication (see section 2 in chapter 6). The vstgorofiles for u, anduy, alongx=0.5 and
y=0.5respectively for Reynolds number 33000 and 5008Ghown in figure 15.

1 0,6
0.8 1 — Re=33000 0.4 | — Re=33000
06 1 = — Re=50000

— Re=50000 02 |
0,4 -
0,2 - 20
ol ) 0,5
=0 | 02 ]
0,2 { 0,5 1
04 -0,4 1

y X

-0,6 06

Figure 15. Velocity profile for,ualong x=0.5 (left) and yalong y=0.5 (right)

Another set of numerical experiments was condudmdorder to study the
convergence of the new scheme. We performed a messitivity study to validate the
capability of the method. Therefore, five differamstructured grids were used for these
comparisons with a mesh of 16x16, 32x32, 64x64,880xnd 125x125 elements
respectively. The Reynolds number is chosen todoales000. We compute the error of the
velocity solution using the?-norm:

ent)=[ S~y o 342

Results are compared to [42] obtained by employngigh-order accurate finite
difference method on a 601601 mesh. The approiomarror is plotted in figure 16 and
shows the expected improvement in the results.vEtaxity profiles employing different grid
resolutions together with the reference solutic strown in figure 17 and 18. Note that the
new implemented scheme converges rather rapidlyetgiven benchmark solution.

12
1,1 1

1
0,9
0,8
0,7
0,6
0,5
0,4 1
0,3 1
0,2 1
0,1

0

error(h)

0 0,02 0,04 0,06 0,08
mesh size (h)

Figure 16. Evolution of the error in function oktmesh size h
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1
reference 601x601 —------ 16 x 16 /
og | ~— - 32x32 eeeeees 64 x 64 ¥
' ----80x80 ———125x125

-0,6 1 reference 601x601 ---—-- 16 x16 A\\ '\}}’
————— 32 x32 ~o---- 64X 64 N
----80x80 — 125x125 —V

0,8

Figure 18. Velocity profile foryalong y=0.5 (left) using different meshes
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We conclude this numerical example by a short disiolm on the computer demands.
The computational costs for both methods are coatbaext. The number of time steps
needed to reach the steady state witt0.1s as well as the required CPU time, are reported
in figure 19 and 20 respectively. Within each tistep only a single iteration is performed. It
can be observed that the old method requires Igss steps to reach the steady state in
particularly for high Reynolds number. The reason this behavior is maybe due to the
higher numerical diffusion of the scheme. Figure illi®strates the expected behavior in

increasing the CPU time with respect to the in@aedReynolds number.

1500
---A--- old scheme
— = new scheme
1000 -
796
@
(]
=
iz
500 .--A
513
G . 332
‘_.é'5. 218
0 T T T
0 5000 10000 R 15000 20000
e

Figure 19. Physical time (s) required to reach siieady state for different Reynolds number

8000
---A -- old scheme
— = new scheme
4745
4000 -
w
GEJ ””” .--A
= L.t 2956
. -t 1941
3377 1208
- 284
0 T T T
0 5000 10000 Re 15000 20000

Figure 20. CPU-Time (s) to reach the steady statalifferent Reynolds number
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3.4.3 Flow over a circular cylinder

This example describes a widely solved benchmaoklpm; the flow over a certain
object (a circular cylinder here). Inside the fur@athis solid body can be considered as the
heated part. At a moderate Reynolds number, twonsstnical vortices will be stationary
attached behind the cylinder. By increasing the riels number, these vortices become
starched and the flow will be disorted and brokearg leading to an alternative vortex
shedding known as Karman vortex street. The Regnoltnber is defined bfe=UD /v

whereD is the diameter of the cylinded is the free-stream velocity arelthe kinematic
viscosity. Having the diameter and the free-stre@focity equal to the unity, the kinematic
viscosity was set to 0.01 to achieve a Reynoldshauraf100.

L=16 h=g
—>
_ D=1 T u free
u" =1
i $Q o u free I,
u, =9 A6.15,4) %0
1 l

Figure 21. Geometry and boundary condition of thebfem

The mesh used for this simulation contains 400@aauhd it was adapted and refined
near the cylinder. We used(1,0)as initial condition except at the cylinder surfagigh a

fixed time stepdt=0.1. A backward Euler time scheme is used for the Etians. Within
each time step, only one iteration is performed flbw situation and boundary condition are
depicted in figure 21. A complete description agtproblem can be found in [54]. A detailed
study on the use of different stabilization methadd time discretization for this benchmark
can be found in [46] and [32].

Ux —— —previous version Ux —— —previous version
1 new scheme 0,25 - new scheme
0,8
0,15 -
0,6
0.4 1 0,05 -
0,2 - |
0 -0,05 - o
I\ A
oa Al R Avivd .
' 0,15 4, | ‘ ;(
-0,6 't -0,25 't
0 50 100 150 200 150 160 170 180

Fig 22. Temporal evolution of l&t A(6.15,4) using both methods (left) and itaidi€right)
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Fig 23. Temporal evolution of Uat A(6.15,4) using both methods (left) and itsudi€right)
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Fig 24. Pressure evolution at A(6.15,4) using bo#thods (left) and its detail (right)

For the comparisons, we choose [32] as the refersolution. In this study, we plot the time
history at pointA(6.15, 4)of the velocity components and the pressure. Thiaimed
frequency of the oscillations is in accordance \lign benchmark solution. (Figure 22-24)

Fig 25. The pressure distribution at t=160s: refiece [32] (left) and modified scheme (right)
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Uy Ux

-0.680 -0.332 0.0152 0.363 0.710 -0.273 0.149 0.570 0.992 1.41
- -
' 4 —
5 ®

<&

Fig 26. The predicted jand U, contours near the wake of the circular cylindet=160s

However, it can be seen form these plots that tbeigus version of the solver gives a
lower amplitude and lower frequency of the osdiblat The reason for this behavior is due
once again to the higher numerical dissipationhef $cheme. Figure 25 and 26 shows the
pressure and the velocity contours respectivelthennear wake of the circular cylinder at
t=160s All these results are in good agreement withiteechmark solution [32] as well as
other published solution [46] and show the vortegekling as expected. Finally the Strouhal
number will be calculated for the sake of comparsswith other numerical methods. This
non-dimensional number can be considered importantjuantify the properties of the
periodic solution of the vortex street. It is givien

(3.4.2)

T, denotes the dimensionless time period. Re=10Q the Strouhal number
corresponding to this benchmark is known to be keQuig64 Using the old scheme and the
new modified scheme vyields a Strouhal number ofr@pmately 0.169 and 0.166
respectively. These values are matched more oebassly by both methods. In Codina [31],
employing a Crank-Nicholson scheme in time and ssramesh th&t number was reported
equal to 0.174. A value of 0.167 was stated by lesgand Brooks (1982) [13] using a
stabilized method of SUPG-type and a predictor-iomitector algorithm in time. It was
pointed out by [46] that the use of backward Ewudeheme introduces more numerical
viscosity which yields quite satisfactory results.
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3.4.4 The flow over a backward-facing step

In this last section, the flow in a backward facstgp is analyzed. This problem has
been the subject of a detailed experimental stydjpb] and has served for many years as a
benchmark for turbulent flow solvers. Despite tivamicity of its geometry and boundary
condition, it has characteristics of a very complexw with layers separation, reattachment
and recirculation which occurs in many practicajiaeering applications. The computational
domain is presented in figure. 27.

Figure 27. Geometry and boundary condition of thebfem

Solid walls are at the top, bottom and the frofitale of the channel. Non-slip boundary
conditions were applied at those walls while a palia profile U(y) [56] is imposed at the
channel entrance. The different experimental pararseised in the simulation are taken form
[57] and are given below:

- the step heightH=5.08 cm

- the maximum mean velocity at the centre of the kcahg=11.562 m/s

— the kinetic laminar viscosity (air)u=1.4 10° nf/s;

- the densityp=1.208 kg/n ;

— the obtained Reynolds numb&e = 42000

— time step4t = 0.0002s

At the outlet, the normal stress and the velodity are set to zero. The 2D
computational mesh consisted of approximately 188¥@es and 37246 triangular elements
and depicted in figure 28. As shown, local mesimeshent was employed in the vicinity of
the walls and in the shear layer behind the step.

No quantitative comparisons will be reported irsteection since the main objective
of this numerical test is only to evaluate the perfance of the implemented method on
heterogeneous meshes where both isotropic andtuso refinements are applied. The
majority of published work on separated-reattacthed in this geometry deals with either
laminar flows using direct simulation or turbuleifdws using suitable turbulence models.
However, comparatively little is published on thebulent flow case, see the work and results
by Le et al.[59] using direct numerical simulation (DNS). Allfstudy on the reattachment
length and other critical parameters using diffetarbulence models will be presented in the
next chapter.

Note that at high Reynolds number, the fully tudmilflow comes from the upstream
of the step, forming a thin boundary layer along fide wall. When the channel suddenly
expands at the step, the pressure gradients cheisgetv mixing layer to curve toward the
wall and bifurcate at the reattachment point. Orenth develops as a new boundary layer
after the reattachment point and the other braoohd the recirculation region. Therefore, the
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flow undergoes rapid distortion in the region surrding the reattachment point and
subsequently relaxes downstream at this point.
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Figure 28. Geometry and boundary condition of thebfem

The variation in the development of the streamlinibs pressure and the velocity is
shown in Figure 29, 30 and 31 respectively starfiom an arbitrary reference time.

.A ) -_-__ . e J\_
Figure 29. Periodic evolution of streamlines fron3104s to t =3.11s
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In two-dimensional simulations at high Reynolds bens, the authors in [59] have
indicated the presence of oscillatory flow behavimuthe solution. This is clearly shown in
the basic characteristics of the flow given by ¢hpkts. Moreover, the velocity components
and the pressure fields appear to be qualitatiagpropriate without any non-physical
oscillations.

8
o
o]
~J
o
o
3
n
o]
o

Figure 30. Periodic evolution of the pressure fr#8.04s to t =3.11s

The shear layer rolls up forming a large-scalecstine behind the step. As the large-
scale structure grows, the reattachment locatiawvets downstream than suddenly decreases
indicating a detachment of the turbulent largeeséam the step. This movement of turbulent
vortices is also described by the pressure fietdmFfigure 30, one can clearly see that the
low-pressure regions have been shown to corresjootie centres of coherent vortices.

The velocity and pressure fluctuations as a funatibtime at two locations A and B;
the first near the reattachment zone=(&h) and the second in the middle of the chanresd (s
figure 27) are ploted in figure 32 and 33. Simiacillatory responses are detected at those
points in the flow fields. The Strouhal number esponding to the dominant frequency is
roughly St = f h / U = 0.06 corresponding to perio@l = 17h/W. These values are in total
accordance with previous experimental and numerd=ductions given by [59]. This
reference contains full details about the direanerical simulation of the backward-facing
step together with the entire statistical results.
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In figures 33 and 34 we represent the periodicgian of both velocity components
and the pressure.

-12.4 -5.41 . 8.51 15.5

Figure 31. Periodic evolution of the streamwiseoedly from t=3.04s to t =3.11s

Finally, we can conclude that from all these iltaibns, we demonstrate that there is
no presence of any spurious oscillations in theatswis, in particularly for the pressure. The
implemented method has proved to work well on sheterogeneous meshes with highly
stretched elements near the walls.
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Figure 32. Periodic evolution of the velocity amhe fpressure at point A
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Figure 33. Periodic evolution of the velocity ahe fpressure at point B
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3.5 Conclusion

“A lot must be achieved in order to obtain a cortelBlavier-Stokes solver, but the
least in this chapter has been done: an extendidheoprevious scheme that takes into
account the convection dominated flows”. In otherdsg, a solver able to handle flows at
high Reynolds number. In this chapter we have desdra stabilized finite element method
for the transient incompressible Navier-Stokes #qgna based on the decomposition of the
unknowns into large scale and fine scale. The ratom of using these techniques comes
from the desire of solving problems for higher Ralgs numbers. Note that the
implementation of such efficient solver will be datused for solving heat transfer and
convection-dominated flows inside industrial fureacThe bottom line of the new approach
was to take into account the small-scale pressutdé@add the convection terms into the fine
scale equations. Results for the unsteady NavikeSt equations obtained via the new
modified scheme have been compared and analyzedniiimerical experiments show that
the method is stable and the gain with respectéo greviously implemented method is
notorious in particularly for high Reynolds numbefrfie performance and the efficiency of
the overall new scheme have been demonstrated €mimgoenchmarks. Detailed accurate
and new results have been presented for the madélem of flow in a driven cavity.
Reynolds number up to 50000 has been consideretbrilpg, more tests will be presented
for three-dimensional computations (section 2, tdraf) and coupled heat problem (section 1
and 3, chapter 6).
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Chapter 4

Implementation  of  turbulence models in
Incompressible flow solvers based on a finite elemie

discretization

The present chapter is concerned with unsteady #8bwigh Reynolds number. The
laminar to moderate flows discussed in the previchapter are not applicable when
turbulence occurs inside industrial furnaces. TWeraatives procedures, the k-epsilon model
and the Large Eddy Simulation model (LES) will beraduced and studied to simulate such
flow regimes. Moreover, the stabilized finite elehenethods from the previous chapters will
be used and applied for the resolution of the $etquations needed for the numerical
modelling of turbulent flows. Finally, to compar@daanalyze the results, the developed
models are tested on three representative benchpnalolems and conclusions are drawn.
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4.1 Introduction to turbulence

It was declared by the famous British physicistlB82, Horace Lamb, at the British
Association for the Advancement of Science meetihgm an old man now, and when | die
and go to Heaven there are two matters on whicbgdehfor enlightenment. One is quantum
electrodynamics, and the other is the turbulentiomoof fluids. And about the former | am
really rather optimistic’ Turbulence was always considered very diffictdt model in
classical physics and it remains the most imporait not totally understood problem. It can
be defined by random and unpredicted variatiornefvelocity and the pressure that occurs at
high Reynolds numbers. In everyday life, we expergeand observe turbulent flows around a
boat, a plane, a stone in a river, a fast car &cdwrse the flow inside the furnace (figure 1).

For more than a century, mathematicians and flyidachicists have been trying to
understand turbulence in fluids, by analyzing thechanisms that generate this disordered
motion. They realized that as the Reynolds numbereases, the flow becomes more
turbulent and the requirements on resolution becoroee and more strict. The number of
grid points and the smallness of the time stepsired to solve the Navier-Stokes equations
for all the relevant time and space scales of tferiumotion push the computation of
turbulent flows in industrial equipment beyond tiealms of present computing capabilities.
For that reason the use of Direct Numerical Sinma(DNS) is still restricted for relatively
moderate Reynolds numbers only. In CFD codes,ntlaiger is overcome by the use of eddy
viscosity models based on the Reynolds AveragedeX&tokes (RANS) equations and the
LES model.

The main focus of the chapter is to provide sutdriaative methods for the numerical
solution of turbulent fluid dynamics equations. brnief outline, this chapter is structured
around the following questions. Which model we ddlaitse? How can we get reasonable
results with an affordable computing cost? How meaimputing time do we need to simulate
heat treatment furnaces? What is the required numbgrids to fully describe the flows
inside the furnace and around the heated objedis&wering these questions will require at
least understanding, developing, implementing aadalating these two turbulence models in
our finite element library CIMLIB. Doing that, wgoen the choice to the user to decide which
methods to use regarding the application in haaghEnethod will offer the accuracy of the
results in respect to the computational costs d&edréquired computing time. Note that
recently, with the support of parallel schemestih@ models can nowadays be possible. But
before going into details on current modelling madures we summarize some of the
important fundamental properties of turbulence.

Figure 1. Flows around a Lockheed L-1011 plane Bhdacing car
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4.2 Turbulence simulation

Turbulent behaviour can be predicted by simply Ikesg the transient Navier-Stokes if
only very fine mesh resolution and adequate tilmpssare used. But of course this requires
an extremely large computer resource which is motadays affordable specifically when
simulating heat treatment industrial furnaces. Bhathy most engineering computations
involving turbulent flow processes will have toyreln models of turbulent flows, at least for
the foreseeable future. This is especially truehtmat treatment furnaces applications, where,
in addition to turbulence models and set of equatithere are many other complexities such
as radiation heat transfer, complex geometry, amahs

Large numbers of models have been developed anéedtin the last three decades.
We can classify these modeling approaches intetbategories: DNS, LES and RANS. As
one progresses from DNS to RANS, more and moreirblutent motions are approximated
and, therefore, require less computational resgurce

In Direct Numerical Simulation we attempt to sintelaand resolve all the scales of
motion without approximation or the need of anyiaddal modeling. DNS directly solves
the Navier-Stokes equations described in the posvihapter. Since this approach aims to
resolve all the spatial and temporal gradients, application of DNS requires huge
computational resources. Based on the Kolmogoritnsry [1], the grid size must get down

to h=Re®* and the grid must contain approximatd,;lyégl4 vertices. A Reynolds number of

Re= 50can be encountered in turbulent flow of industfiainaces, so a reasonable
number of vertices would be about*10This is just an example to give the reader aa ide
about the huge amount of needed computational resewvhich are prohibitively expensive
and why turbulence modeling is that important im context. However, DNS can provide at
the same time valuable information, difficult totain from experiments, about the interaction
of small-scale and large-scale motions. More detaih be found in [9, 11, 13, 14].

Unlike DNS, large eddy simulations are based derfilg and decomposing the scales
into large-scale and small-scale (subgrid-scaleinpmments. Since the large-scale are
assumed to be more energetic than the small-scaleaee the main contributors to the
transport of conserved quantities, LES attemptsinwlate more precisely and solve these
scales and to only model the effect of the smalleseddies. These simulations are also three-
dimensional and time-dependent but are much lesycthan DNS simulations. Later, we
will introduce the fundamentals of LES, which indéuthe filtered governing equations for
LES; the subgrid-scale (SGS) models of LES thauaes in the current study; the numerical
methods in terms of the computational grid systim,discretization schemes, the numerical
procedure used to solve the governing equationgtetioundary conditions for wall. More
details can be found in Germaebal. [2].
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The Reynolds-averaged Navier-Stokes equation (RANSrmines ensemble-averaged
flow parameters, such as air velocity and tempegatising some turbulence modeling. The
key point here is that all turbulent motions wi# Imodeled. This averaging procedure will
remove effectively all turbulent fluctuations. Cegsiently, much coarser grids can be used as
the smaller turbulent eddies do not need to beucegt Therefore, two and three-dimensional
simulations can be performed with significantlysleomputer resources when compared to
DNS and LES simulations. This is the biggest adagatof the RANS approach, and the
primary reason why it is most widely used CFD mdthio many industrial applications.
However, while not solving the small-scale eddissmme additional closure models are
required to introduce and approximate the turbwdeeitects. One of the most widely used
model is the two-equation model, namely the Will be described and detailed in the
following section. This model is the first recommded one as a baseline model that succeed
in expressing the main features of many turbulewts by relying on just one characteristic
length scale and time scale. More details can bedan [4, 5, 6].

LES DNS i

W, b

U

DNS RANS

Figure 2. Schematic representations of scalesrioufent flow and their relationship with
modeling approaches (adapted from Ferziger and® 1996 [15])

The finite element implementation of both thes lend LES turbulence models for
unsteady flows will be described and analyzed is tihapter. The use of stabilized finite
element techniques described in the previous cteaptdl be applied to solve these turbulent
models. We can count only few attempts on the impl&ation turbulence model at the
CEMEF. All these attempts have served under the GGdERCAST but none in the finite
element library CIMLIB. More details about this gett can be found in [16, 5]. We certainly
and often referred to the work of L. Gaston ingbjce to our knowledge it was considered as
complete and detailed useful information aboutdégcription of the le-model. In this sense,
the present work can be considered as a contimuatithose references not only to deal with
highly turbulent flows but also to open the chadiceghe user to decide which methods to use
regarding the application in hand. Each method offttr the accuracy of the results in respect
to the computational costs. Several numerical exesnfor solving the transient problems
will show the benefits of the new modified schemd aonclusion will be drawn.
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4.3 The k-epsilon turbulence model

In this section, details about the averaged NaStekes equations using the Reynolds
time-filtering or time-averaging technique will lpeesented. By applying those filters to the
Navier-Stokes and continuity equations, we obtagetof equations having an extra term
corresponding to averaged products of fluctuatialpaity components known by Reynolds
stresses. The main idea was to assume that avegagetities have only large-scale spatial-
temporal variations and that the Reynolds stregsmg and include all turbulence effects.

Later on, many methods were introduced to defirle@mpute the Reynolds stresses;
these techniques are often known by closure prof3erh0, 12]. In our work, we have opted
for a two-equation le& (turbulence kinetic energy and rate-of-dissipatemergy) closure
model to define the eddy viscosity for incomprelesitows. This model usually involves
transport equations for turbulence kinetic eney¢K) and for a second turbulence variable,
rate-of-dissipation energy, in order to evaluate #udy viscosity. These two-equations of
unsteady convection-diffusion-reaction type will gmved using the stabilized finite element
method described in previous chapters. This madile most popular model which has been
used since 1970s. It is known to be effective anfdr-wall zone, whereas, extra care must be
paid in the near-wall zone. Additional wall funct®must be added to close the model in the
vicinity of those regions.

The main objective of the THOST project is to désemumerically the airflow and
temperature field inside an industrial furnace wehkigh convective heat sources are used.
The thermal wall jet created by this kind of souman greatly influence the temperature
distribution inside the enclosure. Therefore, adeaturbulence model are needed to produce
better results in particularly in the vicinity dig walls. This can be one among different
reasons to extend the standard kaodel by the low Reynolds numbereknodel under a
suitable mesh scheme. We will also justify thisichdater in chapter 6.

We start a presentation of the standardrkedel which is mainly valid in the turbulent
region (far-wall zone). The near-wall effects armawdated through wall functions which give
boundary conditions for points situated in the tlebt zone. However, this procedure is not
well adapted for complex flows, since the conditibat the boundary must be in the turbulent
zone cannot generally be respected rigorouslyumstudy, it was noticed that the use of an
extended version of the&kmodel (low-Reynolds-number model) in combinatiothva wall
function defined over the entire wall region is aai better choice. The appropriate choice of
wall function in the near-wall zones is discussedetail. A brief description of the solution
strategy using a Newton-type method to solve fdoulence energi and rate-of-dissipation
energye€ is given in the same section. Finally we validdte model by simulating the
turbulent flow between two plates and the backwiang step. Simulating results for a
variety of flow are presented and discussed.
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4.3.1 The standard formulation

In this section, we introduce the mathematical dpson of turbulent flows using
time averaged Navier-Stokes equations. Based ammgd®ns stated previously, the main
idea is to model the Reynolds stresses in ternmezin flow quantities and closes the set of
equations. Recall that those turbulence models atcsimulate the details of the turbulent
motion but only the effect of turbulence on the méaw behaviour.

Besides the averaged Navier-Stokes equations, wecleasify usually turbulence models
according to the number of additional differentransport equations that need to solve [5]:

1) Zero equation models, the mixing lengthrfiodel

2) One equation models

3) Two-equation models, the most popular of them beimegk€e model € is turbulent
kinetic energy dissipation rate) presented by B}, We have opted for thee model
since it is the more used one for industrial agions. This model solves two
additional partial differential equations but ifexs reliable and accurate predictions in
particularly in the presence of complicated dongaometries [17, 18]. We begin by
representing any turbulence quantitgx,t) of interest as the sum of time-averaged
component (resolvable scale) and a fluctuatingpmorant (unresolvable scale) [5]:

u(x ) =T(x )+ d(x ) and7f x)=( p (4.1)

where < . > is the averaging (filtering) operatoidahe time averaged quantity may be
obtained from

U(x)=<u>=y5r;%j:”u(pdt and ( ()=0 (4.2)

As we can see, the mean valgedoes not vary in time but only in space. As shawthe

[5], by considering that the small-scale fluctuaticof space-time are negligible, we can set
the following properties with the Reynolds-averagaperation:

(U)=0, (w)=T, (u)=0 (uy="uw( Uy (4.3)

Using these assumptions, the frequency spectrutheo$mall-scale fluctuations is far away

from the large-scale fluctuations, i.e. no intei@ttexists between the two scales [20, 23].
Applying these filters to both the velocity compateand the pressure yields the so-called
Reynolds averaged Navier-Stokes equations:

P@U+UMNU)-0QuOTu+0T )+ Op+OH uo )= p gin Qx(0, T

_ (4.4)
O =0 1inQx(0,T)
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Equation (4.4) has the same form as the NaviereStekjuations with the exception of
the second-moment tensor (the last term on the hghd side of the first equation in Eq.
4.4). These extra terms act as apparent stressegodturbulent motions and are called
Reynolds stresses or turbulent stresses and usietigted byR. It contains the complete
influence of the fluctuations field on the meannflan other words it represents the effect of
the turbulence. Different methods were proposenhdalel this term. Here, in our work, we
will use the standard k-e model [25], by settititp the following form

R:M(DU+DUT)—§kI (4.5)

whereK is the kinetic energy of turbulence. If we denbye¢ the dissipation of the kinetic
energy of turbulence than from dimensional analybis eddy viscosityy, will be modeled

as the product of a characteristic velooit§ and a characteristic lenghi’?/ £ as follow:

t=pC, (4.6)
3

where
_1 /12 _/'1 [2 T
k—§<|u|> and g—E(Du+Du)

The computation of the turbulent eddy viscositysigoposed to emulate the effect of
unresolved velocity fluctuationd . The two turbulent quantitidsande needed to compute

the turbulent viscosity satisfy the following stand transport equations at each point of the
domain:

p(%+UDDk)—D[E[/J+%JDk}—/Jt P+ pg=0

k

5 , 4.7)

E | _ Y7 £ £

—+ue) -0 +—=L |0e|-C,—uP+C,p—=0

p( Ot ) [%(,U 0_6 j :| €1 k /’It 5210 k

The standard values of the five empirical constahtee model are given in [19]
C,=0.09 0,=100,=13C,=144C,= 1¢ (4.8)

andP =0u:(0u+01") represents the production of turbulence.
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Finally, replacing the stress tensor and rearrantjie set of equations, one has to solve the
following problem inQ x(0,T)

p@T+TMT)-Df(u+ ) (0T+0T))+ Op=p g
0@ =0

ok _
p(a+u DDk)—D[%(,u+%]Dk}:/Jt P- pe (4.9

k
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together with the corresponding boundary and inttieditions.

The pressure has been modified ingo by taking into account the isotropic part of the
Reynolds stress tensor:

o]
1
ol
+
wIinN
~

(4.10)

Remark 1. In what follows, the overbar (=) in the mean vabfethe variables shall be
omitted to simplify the notation.

Close to a solid wall, the viscous effects pred@terover turbulent ones. Therefore,
these standard equations of #ae model are only valid at high Reynolds numbers ianthe
region away from a solid wall. Hence these equatimave to be used in conjunction with an
empirical wall function to overcome such drawbagle will discuss in the following various
assumptions related to this subject [18, 20, 21, 23

4.3.2 The boundary conditions

When applying th&-e model to study the heat transfer and fluid flowside industrial
furnaces, the inflow and outflow conditions candmenplicated due to the effects of up and
down-stream obstacles, free stream turbulencelyhagimvective jet, etc. Recall also that this
turbulence model is valid only in regions where t&ous terms are small compared with
the turbulence effects. It is not valid in the neall zones, which include the viscous and
buffer sublayers. The most popular approach toaoree these difficulties and assign the
appropriate boundary conditions is not to consither near-wall zones and employ wall
functions instead. This section discusses in dalidihese conditions.

Inflow condition

At the inflow boundary, for a prescribed veloaditythe value ok can be computed using

k=g,|u* (4.11)



The k-epsilon turbulence model 139

where ¢, . [1[0.003,0.02 is an empirical constant arM =Juu is the Euclidian norm of the
velocity. Usuallyc,. is fixed to 0.02, see [5, 19] for more details.cO®k is computed, the
value ofe can be prescribed using

_ Cﬂk3/2

L

whereL, a fixed constant, known as the characteristigtleof the model.

£ (4.12)

Remark 2. These computed values lbfind € are extended into the interior domain as initial
conditions.

Remark 3. The initial value of the turbulent viscosity cae lklirectly computed using
equation (4.6) together with (4.11) and (4.12)

Outflow condition

The treatment of the exit boundary condition iafeportant. At the outlet, a homogeneous
Neumann (“do-nothing”) boundary condition shoulddpplied. This would permit eddies in
the flow to exit the domain without any adverseeffon the flow field inside the furnace.

nk=0 and mne=0 (4.13)

Remark 4. The numerical treatment of inflow and outflow bdany conditions does not
present any difficulty. In the finite element frawmk, relations imply that the surface
integrals resulting from integration by parts vared do not need to be assembled.

Boundary condition

If a non-slip boundary condition is used in turlmiléows, a large number of fine
grids close to wall are needed, which is not pcattat present due to computer limitations
and long time heat treatment simulation. Moreowerar solid walls, the turbulence kinetic
energy production is gradually reduced due to damie of viscous effects. In this region,
the large eddies dissipate their energy directilgenathan transferring it to smaller scales as
per the energy cascade. Therefore, although tlaénstate can be expected to peak in the
near-wall region due to steep velocity gradiertiere will be a reduction in sub-grid scale
stress. This effect is accounted for by damping ttheulent viscosityy, , as the wall is
approached. The usual way to damp this additioisabsity in the vicinity of the wall and to
capture the near-wall effects without drasticatigreasing the number of unknowns is the use
of wall models.

The first popular approach consists in avoiding tésolution of the Navier-Stokes
equations and the two transpérte equations right up to the wall. Instead, the edfjéhe
computational domain is placed at a small distanaeay from the wall in the high Reynolds
number region. Empirical wall functions can thendsived and used to define boundary
conditions at the edge of the modified domain, riernal boundary ; located at distance

o from the solid walll" ,. The subscriptv andd would mean at the wall and at the artificial
wall boundary, see figure 3.
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Remark 5. The topic of variable resolution in near-wall mtsdean serve as a Ph.D. level
thesis all on its own, and it is therefore well beg the scope of our study. In our work, the
purpose is to understand these approaches anthio tieose that would well correspond for
simulating heat treatment inside industrial furrsad® complete description of this simulation
will be given later in chapter 6. In what followse summarize the retained approaches.

At a small distance from the solid wall we beginsti the normal component of the
velocity equal to zero, whereas tangential slipaamitted in turbulent flow simulations.

uth=0 (4.14)
To complete the previous statement and close thigigm, we still need to prescribe the wall
traction for the momentum equations (tangenti@ssyz,, as well as the boundary valueskof

and € on the wall. Since a boundary layer of widlhis removed from the computational
domain Q, the equations are now solved in the reduced dorfigi subject to empirical
boundary conditions (see figure 3.3).

To describe the asymptotic behavior of the diffeneariables near a solid wall, as a
first approach we imposed a combination of Neum@angential) and Dirichlet (normal)
semi-empirical boundary conditions:

(4.15)

A VA

solid wall

Figure 3. Discretization close to the wall

wherer,, is the shear stress tensor (opposite to locakitg)pused as a Neumann boundary

condition for the momentum equation in the tangendiirection,k is the Von Karman
constant k=0.41) and u, is the friction velocity. Integration by partstime weak form of the

incompressible Navier-Stokes equations gives rnis& tsurface integral over the internal
boundaryl” ; which contains the prescribed traction:

— u ‘
J.rg ’deS‘_LJ_ Lfm v d (4.16)

It remains to determine the value of the frictiaocity which is needed for the computation
of (4.15).
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Remark 6. The application of the no-penetration (free-slggundary condition (4.14) is
nontrivial if the boundary of the computational damis not aligned with the axes of the
Cartesian coordinate system. Therefore, our fortimiaconsists in computing first the
normal vectors along the entire boundary domainthy use of the distance function.
Consequently, the normal velocity component witlesgual to zero using a simplified penalty
method. The numerical implementation in our fildtement library CIMLIB of this boundary
condition as well as the friction law (4.16) hasb® credited to the work of our colleagues
Bruchon J. and Digonnet H [24]. Further details wlibis subject are published in [24]. It
was shown that the use of such techniques develiope framework of level set methods
proves to be a simple yet efficient approach. Tlstrstraightforward way for computing the
distance field is through the use of geometric doiforce algorithm where the point-to-point
distance is computed throughout the computationdl and the minimum distance for each
point is stored. Once the distance field is comgutae normal to the entire boundary is
defined by simply taking its gradient. This procedwill be applied only one time at the
beginning of each simulation. Alternatively, Ren&o Eliaset al in [25] have proposed
lately a fast marching method to compute the degdreld using a finite element algorithm.
A matter that needs further inspections in the heaire.

Wall function implementation

In the region close to solid walls, wall functiohlaaunder and Spalding 1974 [4] is usually
used assuming that close to a solid wall the vBlomnd temperature can be described by
universal logarithmic profiles. In this region, thebulence variablels, £ and the shear stress
r,, are assumed to be constant and computed using).(3Vith these laws it is possible to

express the mean velocity parallel to the wall pglging these boundary conditions for the
momentum and turbulence transport equations rdtfaer conditions at the wall itself. As
outlined in the previous section, the viscous syglaloes not need to be resolved and the
need for a very fine mesh is circumvented. In wfalows, the last detail about the
computation of the friction velocity will be givekrom experimental work, it is known that
near-wall flows have a characteristic multilayestdicture within the boundary layer. It can
divide it into three layers as shown in figure 4:

1. Viscous sublayer, where viscous stress dominatet raalecular viscosity
makes the flow behave close to laminar.

2. Buffer layer, where the laminar and turbulent prtips of the flow are both
important and of the same magnitude.

3. Fully turbulent layer, where the turbulent stresmahated.

Three scalar variables, i.e., scalar veloaityscalar coordinatg’, and scalar temperatufe,
have been defined in the wall function approacinstFwe set a local wall Reynolds number:

y' :ﬁ\/r—iw (4.17)
u\p
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The velocity based on the wall shear stress isigbye

(4.18)

inner layer

F Y

outer|layer

K \
(o] .
buffer layer fully turbulent region Upper limit
or or depends on
blending log-law region Reynolds no.
viscous sublayer region
v =5 V=60

Figure 4. Flow structure near wall flows (adaptedrh Fluent user guide Vol. | [29])
wheredis the normal distance between the computatiooahtary and the wall andis the

tangent velocity as long as condition in (4.14)mgposed. When solving coupled problem,
another non-dimensional number is used to charaetdre temperature in the wall region:

T+ — (T_Tw)ur

4.19
A,/ pc, (4.19)

Recall that we are interested in computing theiéncvelocity u, =/7,,/ 0 which is located

at distanced from the wall. This can be done with the use ffiedent relationships that exist
betweery” andu® depending on the magnitude pf (see figure 4):

In the viscous sub-layer, we have
ut =y, y <30 (4.20)
In the inertial sub-layer, given by Launder and|8ipg (1974) [4] and Smith (1984) [26]:
u* zlln(Ey+), 30< y <10C (4.21)
K

whereE is the roughness parameter. For smooth iv@ltaken equal to.0.
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An alternative way to ensure a direct transitiotbween the laminar boundary layer and the
turbulence zone is the use of the half-empirical d&& Reichardt :

U =2.5In(l+ 0.4 F 7.8(t e-y*’“—% g0 (4.22)
as suggested by Houghton and Carpenter (2003) [30].

The constants in equation (4.22) were obtainedcwaiaparison with experimental
data. In our implementation, we have used equat{drZ)) and (4.21). The distandeat
which the nodes is placed is at the discretiorhefresearcher; but generally it should not be
too large in order to lie inside the wall reg{gri <100), but also not too small in order that

the equations of the model remain vl > 30).
Usually, we specify the value @dfover ", at the beginning of the simulation, so that
in order to find the friction velocity one must gelthe nonlinear equation:

1
g(u,):|q—L;E(ln EY):O (4.23)
This equation can be solved iteratively by Newtan&thod [43, 47]

f(ur):|u|—u,%(ln Ey):o

oy 1) iU

' : i=1,2...
ur uT fl(u;-) !

1/k+g(u) (4.24)

where QCJ):%(M Eg/) and .y= max(ZOM)
U

The initialization is given by:

o= [H

= £ 4.25
=\ 0o (4.25)

No iterations are performed if it turns out thak®0. In other words, it is equal to initial
friction velocity in the viscous sublayer. Thg, k, ande, are then calculated using

equations (4.15) and used as boundary conditionshfo following iterations. For further
details regarding the implementation of wall lalws teader is referred to [20, 21].

Different strategies of wall functions have beamdstd over the past years. Recently,
a two-velocity scale approach was used to enhdmedehavior of the velocity near to the
wall. In the following section, a brief summary aibthis method will be given. Although, the
computations presented here were carried out usiotly the wall laws the two-layer &-
model. Some comparisons will be given and conchssigill be drawn.
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Remark 7. Another possibility could be successfully useaum work is to specify the value
of y+ over the boundary with wall law condition. The maidvantage of this choice is that
giveny+ no iterations that could fail to converge are meednymore to be computed, the
friction velocity can be evaluated in a direct mannAs a balancing drawback, now the
distanced depends on the solutions and can take differeluiesaat different points on the
boundary. This is however not an issue wides negligible compared to the dimensions of
the domain.

4.3.3 Enhanced wall treatment

Recently, most practitioners have used an alterma#ipproach to improve the
performance of the two-equation model in predictiegr-wall flows [50, 51]. This approach
is based on the use of two-scale velocities whitdr®some advantages in respect to the one-
scale velocity presented in the previous sectibimproves the prediction of the turbulent
quantities in the regions where the friction to theall decreases (e.g., the vicinity of a
reattachment point at which, is zero) while the turbulence are still at highele This

approach can also exhibit the correct heat tramsflbavior at reattachment point.

We have followed closely the work of Grotjans anerier (1998) and the details
from [41]. The main idea is to use the logarithmiall functions to derive Neumann
boundary conditions for the turbulent variablesheatthan the use of Dirichlet boundary
conditions described previously in (4.15). The cangbns made by [41, 43, 44, 45] have
demonstrated the efficiency of the enhanced walhttnent. In the last section, we will
provide similar benchmarks to asses this mattereXjdained, the smallest wall distance for
the definition ofy+ corresponds to point where the logarithmic layerset the viscous
sublayer. In this case, both linear and logarithfuretions (4.20) and (4.21) are assumed to
hold. Hence, the optimal value of the paramgtercan be found by simply solving this
nonlinear equation:

+ _1 +
y = KIn(Ey) (4.26)

The resulting solution is given lyy =11.06. As it was pointed out in Remaik, for a given
fixed value ofy+ the friction velocity can be directly computedrfro

o =l (4.27)
T y(-:— .
Consequently, the nonlinearity of (4.23) for conpgtthe friction velocity is now taken into

account implicitly in the computation of, .

On the other hand, the wall shear stress will e expressed using two-scale velocity:

Tw=—purukﬁ on I, (4.28)
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The new introduced velocityk called oftenbulk velocityis the velocity scale based on the
turbulent kinetic energy and given by:

u, = Co*Vk (4.29)

wherek is now computed naturally and ‘floats’ at the bdary of the computational domain
by setting the normal gradient to the wall equaiéwm, and the velocity profile is given by:

+

y for y' <y

1In(Ey*) for y" >y
K

+

u* = (4.30)

Both the friction velocity and the TKE scale velgciare related using the modified
dimensionless number:

and U :M (4.31)

. ou
y :h
U u

T

To complete the previous statement and describeifieddasymptotic behavior of the
different variables near a solid wall, we imposedew combination of Neumann and
Dirichlet boundary conditions:

ok u;

—=0 E=—< onTl 4.32
an %) ° (4.32)

On the other hand levels bfremain high if the Neumann condition is adoptedhsd there is
no difficulty in applying equation (4.28) with, given by equation (4.27). The other types of
boundary commonly encountered are not changedraated in the same standard way (e.qg.
at inlet and outlet). To asses the implementatiohshe wall approaches, a comparisons
between these two approaches will be given latsestion 5. For the implementation issues
of the two-scale velocity approach we have followeelwork of [41, 43, 44].

Remark 8. The bridgingy” value between the viscous and inertial sub-lapér$l.6 was
based on Thangam & Hur theory (1991) [37]. Agalins iat the discretion of the researcher
how this value is defined; e.g. Hassan & Barsar(2é®91) [31] used 11.81.

4.3.4 Low Reynolds formulation

For complex flows, ensuring that each boundary grdht will be located in the
turbulent layer can become quite a tedious taskeb\er, the real positiod of the boundary
may become highly irregular in particularly whemslating heat transfer and turbulent flows
inside industrial furnaces (see figure 5). ThiSialilty can be overcome by using the so-
called low-Reynolds-numbeés-¢ model, which is valid up to the wall. The compigatcan
then cover the entire flow domain, including buféerd viscous zones and the mesh reaches
the wall [38].
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However, the computational cost would be much higace a very fine grid is
needed for the wall region because of the verypsgeadients and strong variations one finds
there. This choice is justified in chapter 6, wherewill show the reader that this additional
nodes added in the vicinity of the wall become astmwhen simulating multi-domain
applications.

Figure 5. Complex configuration of an industriahfice

The main idea of using the low-Reynolds-number rhasléhat the two-equations
(4.9) can now be applied to the viscous sublayercty without the use of the wall function.
Therefore, a suitable damping function must beothiced in the equations to damp the
turbulent viscosity in the near-wall region, wheres known to be small. In the far-wall
region, this function returns to 1 and produce saene good results for high Reynolds-
numbers flows. Such modifications will improve therformance of the two-equation model
in predicting the near-wall viscous layer for flowghout separation.

The modified transport equations for the turbulegoantities satisfy at each point of the
domain:

p(%+uDDk)—D (,u+ﬁ]Dk -uUP+ple+ D=0
0,

k

2

o +ume) 00| u+ 2 |0e |-, 1,2 uPr G, (05 +pE=0  (433)

ot . k k
kZ

where 1= p C, L?

Compared with the standafde equations, three damping functiohs f,, and f,
and two additional termsE(and D) were introduced to provide a smooth transitioonir
turbulent to laminar flow in the near-wall area.aiy expressions for these functions can be
founded in [38, 54, 55]. Since we extend the goidhte wall, then a suitable choice of these
expressions must ensure on one hand that no teresstq infinity ak approaches zero in the
near-wall region and on the other hand it must joi@@appropriate boundary condition for
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We can find in [55] an interesting comparative gtofifive low Reynolds numbet-&
models for predicting the flow and heat transfearelsteristics. The authors have summarized
and tested five models: Launder and Sharma [54nGez, Hsieh and Chen [56], Abid [57];
Lam and Bremhorst [58] and Abe, Kondoh and Nagds@|.[Another alternative was
suggested by Chien’s in [38]. Here in our contewd,have retained the expressions given by
Chien [38] due to their simplicity and favorablanmerical properties (see [43] for more
details). Thus, the damping functions and the t@os used in this model are as follow:

f,=1-exp(-0.011y" )

f, =1
2 2
f,=1- 0.22ex;E— pk j
ouUE
po*

HE .
E=2 expty /12
(pdzj pCy /2)

C,=0.09, 0,=10,0,=13C,= 135C,= 1

As stated before, now only simple Dirichlet bounydeonditions will be applied on the

wall. The standard no-slip conditions for the véluwith zero values ok and¢ are therefore
implemented:

u,=0, k,=0, ¢£,=0 onTl,, (4.35)

The specific role of each introduced functions thatount for the low Reynolds
numbers model is discussed briefly. In the firatadgpn in (4.33), the introduced tefby
Jones and Launder [53] is chosen so that the neoddissipation variable = g_ p can be

set equal to zero at the wall, a simple converbbenndary condition. The empirical constants
in (4.34) shows a little diversity from those usedthe standard k- model. This slight
modification is determined from experimental datad near-wall modeling.

As for the first damping functiorf, which multiplies the eddy viscosity in (4.33) was

introduced to reduce and eliminate the direct ¢ftdadhe molecular viscosity on the shear
stress. Consequently, close to the wall, this foncapproaches zero, and thus it will damp
completely the added turbulent viscosity. Wherdas function f,, was introduced to

incorporate low Reynolds number effects in the rdesbn term of thee equation. The
function f,, and/or the extra terrk got the same role; increasing the magnitude of the

dissipation rate in the near wall region, therebgrdasing the values kf These can results

in a zero eddy viscosity at the wall. For more diet@bout the use of these expressions where
eight different models summarizing various assuomgtiand functions introduced to account
for the low Reynolds number can be found in thedasreference [53].
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In what follows, a description about the implemépota of the finite element solver is
discussed as well as the positivity of the numésoéutions. Several numerical examples are
given in section 5 to asses the effectivenesseottapted methods.

4.3.5 Finite element solution

The discretization in space for the incompresditd®ier-Stokes equations and turbulence
equations is performed by an unstructured gridilsted finite element method. The method
presented in chapter 2 for solving transient cotiwedaliffusion-reaction equation is applied
to the two-equation k-model (4.36). The variational multiscale methodsanted in chapter
3 is used for solving the Reynolds Averaged Na$tkes equations (4.23). Recall that the
Galerkin formulation is obtained by multiplying #e equations by an appropriate test
functions, applying the divergence theorem to tliugion terms and integrating over the
domain of interest (see Section 2.3). Both the nmioma and turbulence transport equations
are dominated by convection and, as shown in tegiqus chapters, the standard Galerkin
discretization of such equations leads to non-maysoscillations. Hence, stabilization
methods presented previously are used to providsotmsolutions and to suppress these
oscillations.

Before proceeding to the description of the firskement discretization of the equations to
be solved [38], the first thing to be discussedvigch iterative strategy should be used to
linearize them. A special care should be adoptedirfearization of the source and sink terms
of k and ¢ transport equations in order to preserve the agevee. Many ideas were
proposed in the literature, thus two modificatiorese retained.

The first as explained in [5] and proposed by [48]to introduce an auxiliary
parametey=¢' /k' evaluated using the solution from the previousoiieration in order to

decouple and linearize these equations; and thanddor practical implementation purposes
is to linearize the nonlinear source term in thaekc dissipation equation. These two
modifications were also highlighted in [5] were fbamplicit and explicit formulation could
be found. The author showed that these choicegadupling the two-equation provide the
needed robustness to deal with complex three-diimealsproblems:

1) The destruction term in the turbulent kinetic eyersgjuation is modified into a
reaction term for a better stability as suggestefbb

PE= p%k (4.36)
2) The destruction term in the dissipation equatiomaglified and linearized as follow:
2 ; 2

£ £ &'
szp? = 2C£210F£ - Cg210? (437)

wherek ande' are the turbulent kinetic energy and dissipatioitezationi.
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Therefore, the final linearized form of theelequations can be written in the following form:

p(‘;_‘t(+uunk) - D[F(,Lﬁﬂjﬂk} +pyk = uP
g,

k

o€ i
,O(E'l'UDDS) - DEF(#"’%JDE} + CpE = G P+ G o) (4.38)

&

Transient and convectiveterms Diffusion terms Reaction terms Source terms

The strategy followed is to solve first the Navi&iokes equations for the velocity and the
pressure with the fields variables obtained froravpous iteration and the updated wall
boundary conditions. In the second phase of thatisal procedure, the two-equation are
solved fork and & respectively, using the updated flow velocity ahé wall boundary
condition. The iterations terminates when the cogeece criteria is satisfied. The successive
iterative solution algorithm is illustrated as &l

i.  giving initial conditionsuy, ko andé&y
li. computes fromk ande
iii.  for z4 given:
1. solve the momentum and continuity equations
2. solve thek-equation
3. solve thes-equation
4. updatey and go to (iii)

The time derivatives are approximated by the Edteward difference scheme.
Following the lines on the use of stabilization hoets for transient convection-diffusion-
reaction equations discussed in the previous clgpthe space-time discretized global
system of the two-equation turbulence model mawiien in the following form:

Find k' ande' suchthatd M V

[,0 lAt ] ,vJ+(pu“1DDI€,v) —((,u+%)DR,DVJ +(,0V"1 k, \a

+Y Rk UV, +D (R KTy YY), = (ﬂt'—l Pt \a

streamline upwind discontinuity capturing

(4.39)

At
+ YR T UV, + Y ®ETE G, = (G TP o) E )

streamline upwind discontinuity capturing

(,ogi £ ,v]+(,ou“1D]]£i ,v) —[(,u+§)ﬂé 0 vj +( C,oy ¢ ,v)
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Subscript indicates the variable is computed using the smhufrom previous time step. As
in Reference [9], the diffusion term, as well as thean velocities is computed using the eddy
viscosity from the previous iteration. Recall thfa non-linear equations for the velocity and
the pressure are solved using the Newton-Raphematidans. For scalar equations, only fixed-
point’s iterations are performed. The resultingeéin systems are generated directly in a
compressed sparse row format, and solved itergtiveéihg the generalized minimal residual
method (GMRES) with ILU preconditioner [60].

4.3.6 Positivity of the solution

By definition, the turbulence variables are positiquantities. However due to
oscillations in the numerical solution of these a&ns, if one of the turbulence variables
becomes negative than the eddy viscosity may pdmtome negative. This will cause an
immediate breakdown of the solution algorithm. Negaor small value in the denominator
of the source terms can also lead to an improger @i overly large values fgr or for some
source terms. Enhanced the robustness of the thigors achieved if one can ensure that
turbulence variables remain positive throughout ttemain and during the course of
iterations.

One way to preserve the positivity of the dependemiables was proposed by [52,
61] and consists of solving for their logarithmsy Bhanging the dependent variables into
k=In(k) and &=In(¢), one can guarantee thktand £ will remain positive throughout the
computations. Hence, the eddy viscosity will alwagsain positive. A detailed comparison
of the traditional solution procedure and that sawvfor the logarithms may be found in
references [61]. The main disadvantage of thedenigues is the appearance of exponentials
in the turbulence equations.

Another way to enhance robustness of khealgorithm bothk and € are clipped to
enforce positivity and to prevent these variablesnftaking overly small values. Kis too
small it is replaced bk =k ../ ¢ wherek . is the maximum value found in the domain and

C, is a user supplied constant. Wheis too small and results in overly large valugft is

replaced bye = oC, k*/(c.1) wherec, is again a user supplied constant. However, changi

the nodal value of the solution in an iterative qgass could lead to a deterioration of the
stability of the equation. Although, this techregis commonly used by several authors as in

[5].

Here in our context, we rely on the use of stabilan methods introduced in chapter
2 to reduce and possibly to eliminate numericalillasions in the streamline direction
(SUPG) and the solution gradient direction (SCP&9. shown in equation (4.39), two
additional stabilizing terms were introduced; thstfcontrols the oscillations in the direction
of the streamline (SUPG) and the other controlddgrévatives in the direction of the solution
gradient. This can improve the result for convetiilmminated problems (SUPG), while the
shock-capturing technique precludes the presenceovafrshoots and undershoots by
increasing the amount of numerical dissipation he teighborhood of layers and sharp
gradients.
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If we look further in the literature on this sulfjeand we add our results from several
numerical experiments we came to two main conchssio

1. The use of advanced stabilization finite elementhods plays an important role in
preserving the positivity of the solution and rdtag the appearance of numerical
oscillations.

2. The instabilities in the solution of the classiGallerkin formulations ok-€ equations
is not caused only by the convection terms but bysthe reaction terms.

This matter was also highlighted by the authorf6#]. By inspection of the formulation,
they realized that is not the negative valuek @nd ¢ that really matter and need to be
clipped, but instead the appearance of negativesiiiin or reaction coefficients that cause the
exponential growth of the solution. They proposedimit these coefficients from below

without any clipping or touching the nodal valudsloor . The only adopted modifications
introduced in the numerical resolution are:

1. The associated eddy viscosjyis bounded from below by a small fractianof the
laminar viscosityu:

U = max[Cy (En)z ,a',uj (4.40)

2. Both the reaction terms and the source term iretbguation are limited from below:

Reaction( k = max pE ,0]

Reaction(¢) = max C;Z,oE ,Oj (4.41)

2
Source(e) =max QE/JI P gp%,O]

The above representations preclude division by zerosmall values and guarantee
nonnegative coefficients without manipulating ticéual nodal values df ande.

4.4 Large Eddy Simulation

The LES method has been developed quickly in regests and its future appears very
promising with the modern developments in high geniance computing (HPC) and parallel
computing. Lesieur (1997) [64] pointed out that égmg such sophisticated models offers
high accuracy in respect to RANS models. In the IsiEfulations, the large-scale properties
of the flow are computed directly from the filteredntinuous Navier-Stokes equation while
the subgrid-scale fields, which contain the flutiuas at smaller scales, are modelled.
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Large eddy simulations are based on filtering aedodhposing the scales into large-
scale and small-scale (subgrid-scale) componeritsrefore, the idea is to simulate more
precisely and solve the contributions of the largmergy-carrying structures to momentum
and energy transfer and to only model the effecthef small-scale eddies, which are not
resolved numerically. These simulations are alseetdimensional and time-dependent but
are much less costly than DNS simulations. The rarrobgrid points required to resolve the
outer layer is proportional ®€* while near the viscous sublayer it increaseRdd [65].

The filtered governing equations for LES, the subgrale (SGS) models, the
numerical methods and the discretization schemasy umstructured grids, the numerical
procedure, and the boundary conditions for walittreent and inflow and outflow settings are
given in the next section. More details can be tbumGermaneet al. (1991) [2].

4.4.1 Filtering equations

In LES, the contribution of the large-scale is comejol directly, and only the smallest
scales of turbulence are modelled. To separatiatge from the small scales, spatial filtering
operation are applied. The flow is divided inta@egke scalg; and a subgrid scalg (SGS)

u(xt)=u(x )+ u(x 9P (4.42)

The large scale is defined by a filtering [17, 6Bhr example, a one-dimensional filtered
velocity can be obtained from

0 = [ G(x %) u( %) dk (4.43)

where the bar represents grid filtering, &,x’) is the filter function which determines the
structure and size of the small scales. The filiaction depends on the differencex’) and

on the filter width. The length scale is a lengtrelowhich averaging is performed. The
filtering procedure removes spatial fluctuationatthre narrower than the characteristic length
scale. Flow eddies larger than the length scalélamge eddies’ and smaller than the length
scale are ‘small eddies’. There are three commosdy filter kernels:

6 -6x°
G(X) = [—
P CE:

2- The sharp Fourier cut-off filter:

1- The Gaussian filter:

j (4.44)

Zsm(A{j (4.45)
G(x)=——-2
]m
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3- The tophat / box filter:

1 A,
N if |xi|s?

G(x)=1 " A (4.46)
0 if |xi|>?i

wherel; is the filter width and=1,...,d. Piomelliet al [34] pointed out that the Fourier and
Gaussian filters were normally used for LES thailizd spectral methods. For finite volume
or finite difference, it was natural to use the Ihitter.

By applying the filtering on the Navier-Stokes etjpas, we remove the small
turbulent scales and we derive the resolvable-segimtion. Through this procedure, a non-
linear term are derived known asbgrid-scale stres&SGS) tensor and added to this equation
which describes the effects of the unresolved scas shown for the RANS equation in
section 2, the SGS tensor has to be modeled im toddose the equations.

The derived governing equations of LES take thiewahg form:

,0(6J+DQUDU))—D[@2/J SU- U0 u)+ Op=p ginQx(0, 7

(4.47)
O@=0 inQx(0,T)

4.4.2 Subgrid-scale modeling

To model the effect of the small eddies and retheir contributions, two subgrid-
scale models can be used: static and dynamic. ifdte dtatic, is known as the Smagorinsky
model (1963) [35], and has been widely used forspially and geometrically complex flows
of engineering relevance like, e.g. in combustibarobers. It is based on the equilibrium
hypothesis which implies that the small scalesipigs entirely and instantaneously all the
energy they receive from the large scales. Thesefirassumes that the SGS Reynolds

stresses in equation (4.4%),;=u'C U , are proportional to the rate of strain tensqy)
r°:=u'0u =-245(T) (4.48)

with £ , the SGS eddy-viscosity given by:

#=(CA) s (4.49)



154 Turbulence models and finite element impletagon

The magnitude of the strain-rate tensor is defeed

— —T
|S|=(25(@):S(W)"* where S(U= % (4.50)

The length scal@ is related to the grid size and is often takemhascubic root of the cell

volumes, or chosen to be the averaged grid siee,A.:(AxAyAz)llg. Another possible
definition already employed in LES with unstructiigrids [66], and adopted in this work, is

A= (VoI(K))“3 in which Vol(K) is the volume of the each eleméhbf the corresponding
mesh.

The Smagorinsky consta@t needs to be specified prior to a simulation dependn
the type of flow, the filter being used and the mewical method employed. For example, the
theoretical value found by Lilly [67] is equal @018 whereas Deardroff in [68] uses a smaller
value Cs = 0.1 for a plan channel flow. As one can see, the Smasjoy model is usually
used due to its simplicity and very easy to impletneowever it has two major drawbacks:

1- it introduces too much diffusion in particular antinar regions and near walls
2- the parameteCsis not optimally defined

In order to reduce the turbulent viscosity nearlsvahd to account for the anisotropy of the
turbulence, the Smagorinsky model is modified ushevan Driest damping function [69]:

#=(CA f,)[s| where f=1- &' (4.51)

with y* represents the dimensionless wall distance. AthiacoefficientCs Germano (1991)
in [2] and Lilly (1992) in [70] have introduced arkveloped the dynamic subgrid-scale
model. They replaced the constant coefficient bypaameterCs(x,t) which evolves
dynamically in space and time. To accomplish théglitional information is needed and must
be captured, such as the unresolved stresses.cahive obtained using a second filtering
operation knows agest filter The characteristic width of the test filték, is assumed to be

larger than the grid filter widtid (usually A=2A). By applying the test filter (~) to the
filtered governing equations of LES leads to thealed subtest-scale stresses

P~

T =qu -G (4.52)
The Germano identity relates the subtest-scalessseto the SGS stresses (Eg. 4.48) via
L =r>"-° (4.53)

whereL;; denotes the Leonard stresses associated witeshélter.
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It represents the contribution to the Reynoldsss&g by scales whose length is
intermediate between the filter width and the test filter width . If we express the subtest-

scale and the SGS stresses using the eddy-visamgiyach as in Eqg. (4.48) together with
Eq. (4.49), we obtain

(4.54)

where [ | means that the whole term enclosed in the bradketsst-filtered. Since the
coefficient of the test filter cannot be resolvegblecitly, Germanoet al. (1991) [2] assumed

that C, = C, and [Csﬁij] T=C4B; . Replacing (4.52) into (4.53) together with theyious
assumption, we get

)
L —3’ Ly =—2Cs(x,t)M; where M =a; -4 (4.55)
Using the least-squares minimization proposedibly [67], we obtain finally

Ca(x 0 :%M (4.56)

oy

Here < > denotes an ensemble-averaged in the remeogs direction. This final averaging
procedure proposed by Lilly reduces the large @latons of theCs and produces stable
results. For more details and other improved dyna®®S models can be found in [63, 66,
34].
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4.5 Benchmarks for the k-epsilon model

In this section, numerical calculations are peridnior three applications: decay of
grid turbulence, flow over a flat plate (Comte-Bé&lland flow over a backward facing step
(BFS). These numerical tests, taken from [5], avas@ered important for validating the
methodology and assessing the computational peaiocen of thek-£ model. Additionally to
that, computations using the low-Reynolds and teales velocity are given. Comparisons
with experimental data and other numerical pregingiare presented.

4.5.1 Validation: grid turbulence

In this example, already presented by [61] anddeddid in [5], we consider the decay
of grid turbulence in a uniform flow. The objectigéthis test is to check the formulation and
implementation of the coupldde transport equations by comparing to the exactisoluThe
availability of the analytical solution providesigours framework for assessment of solution
accuracy.

By taking extremely low value of the viscosity framne hand and constant velocity
from the other, the diffusion terms become neglegibnd the analytical solution of the
coupled problem takes the following form:

k() =k 1+%(92—1)x_

Cey
1 Ce

£
=g|1+2(C, -1
e(X)=¢ ko(z )X

(4.57)

with U, =10m/s, k=5m/ § and,=10 fn/*®

The computational domain extends from (0,0) to XLODirichlet boundary conditions are
applied at the inlet, while zero Neumann conditiamns applied everywhere else. Figure 6
shows the geometry of the flat plate and the cpmeding boundary conditions.
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Figure 6. Geometry and boundary condition of theljpem
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Figure 7 shows the distribution of the turbulemetic energy and the turbulence
dissipation along thg-axis. The numerical solutions are indistinguiskdbbm the analytical
solutions. This confirms the accuracy of predicsi@md ability of the code to deliver the right
solution of this coupled problem.

6 12
54 10
— numerical — numerical

4 - o analytical 8 - o analytical
Kk 3

2 a

1 n

O T T T T O T T T T

0 2 4 6 8 10 0 2 4 6 8 10
X X

Figure 7. Grid turbulence solution along the x-axis

4. 5.2 Comte-Bellot

The verified code is now applied to turbulent flowa 2D duct. This test has played a
central role in benchmarking the performance ofkdagurbulence model. This flow has been
experimentally studied by Comte-Bellot [22]. Th&eatent experimental parameters used in
the simulation are taken form [5] and are giverobel

— the half-width of the ductH=0.09m

— the velocity at the centre of the carld=10.5 m/s
- the kinetic laminar viscosity (air)u=1.5 10° nf/s;
— the densityp=1.208 kg/n ;

— the obtained Reynolds numb&e = 57000

— time step4t = 0.001s

Since the solution of this problem is symmetric, amsider only half of the duct as
shown in figure 8. Dirichlet boundary conditions the turbulent variables are then applied at
the inlet and computed using the given paraboliooy Ui and the heighid of the canal.
Using Eq. (4.11) and (4.12) we obtain:

2
Um.et(y)=Uo—3(Uo—Umoy)(H—y5j , k,=1.805nf /¢ ande,= 24251 /}  (4.58)
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whered=0.004mis the normal distance between the computatiomah8ary and the wall and
Uayg is the average velocity equal3®d m/s(see [5] for more details).

Figure 8. Problem set up of the Comte-Bellot 2Dtduc

The mesh, a rectangle &f x 60H, is highly stretched near the wall and smoothly
varying towards the centre. The minimum length gltime y-direction for the coarse mesh
and for the fine mesh .64 10° and1.8 10° respectively. For illustration, figure 9 and 10
show two cuts of the meshes used in our computatibne distance from the wall boundary
to the nearest interior point correspondg’‘te- 10Q

Figure 9. Coarse mesh of the half duct (3000 nodes)

Figure 10. Fine mesh of the half duct (13000 nodes)

The goal of this example is to check the implemgmaof the code and at the same
time to evaluate the performance of the stanétegamodel with two different kinds of near-
wall treatment: wall function implemented as Neumgwo-scale velocity model) vs.
Dirichlet (one-scale velocity model) boundary cdiwts. Therefore, two numerical
simulations were made to assess the influenceeofrténtioned boundary conditions. In the
first section, results computed using the two-sealecity approach are presented. Contours
of the turbulent kinetic energy and the rate-ofgliation energy are shown in figure 11 and
12. The velocity and the pressure profiles arelaygul in the figure 13 and 14 respectively.
The results are in complete agreement with thengieéerence [5].
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Figure 11. Variation of the turbulent kinetic engrg
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Figure 12. Variation of the rate-of-dissipation egg

In figure 15, we plot at the outlet-section theutesfor turbulence kinetic enerdy
the rate-of-dissipation energyand the velocityJx using the two-scale velocity model. Tke
profile ande-profile compares well with that obtained by expental measurement in the
near and far-wall regions. One can observe exdelgneement as well for the velocity
profile. For more comparisons, we choose [5] asdditional reference solution. We can
clearly see from figure 15 (left column) that dbtained profiles are in complete accordance.

Similar trends were observed using the standegdmodel in the far-wall regions
while different predictions occur in the near-wagions. As shown in figure 16 the standard
model gives a wrong behavior of the solution in tlear-wall region. The reason for this
behavior was pointed out in previous section and due to the use of Dirichlet boundary
condition. Whereas using the two-scale velocity elodhich modifies the asymptotic
behavior of the different variables near the sokdll and applies Neumann boundary
conditions for the kinetic energy gives more appiadp results.

(aXa ) 7.6 8.5 2,35 10.5
[ i .

e
Figure 13. Variation of the velocity,U

-0.547 238 5.31 8,25 11.2
[ i i

Figure 14. Variation of the pressure
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Figure 15. Solution profiles along the outlet-sect two-scale velocity model (left)
reference solution [5] (right)
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The differences between solutions computed usinyfurctions implemented in the
strong and weak sense were also observed by [#8]alithors have pointed out that the use
of Dirichlet boundary conditions fdt ande produced rather disappointing results, whereas
the performance of Neumann boundary conditioneimsarkably efficient for the near-wall
treatment. Numerical results for the fine mesh @mpared as well with the experimental
data in figure 17. As can be seen, the agreememtsgaod with a slight significant
improvement in the results.
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Figure 16. Solution profiles along the outlet-sentusing one-scale velocity model

We conclude from this example that the choice ocbraect boundary condition for the
turbulent variables is crucial. We have observed the two-scale velocity model is superior
to the standard model. By introducing the bulk e#obased on the turbulent kinetic energy
and by lettingk to be computed ‘naturally’ at the boundary of doenputational domain, we
improved the prediction of the turbulent quantitieshe near wall regions and we obtained
the correct behavior for all the profiles.
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In the next section we present the last benchmtr&, backward facing step.
Computations in 2D and 3D are used to compare énnmance of the turbulence model
with the experimental measurement and to investighae influence of the near-wall
treatment.

0,6 45 £ ‘ ‘
| | |
40 Lo - R — [
05 - 1 1 1
35 1 | | |
04 - 30 . ——numerical  _____ ) ___
o experimental
25 | xpert ‘
03 1 1 1
20 oo
| | |
0,2 + 15 4 ----- ------ B R R ET EEEE
| | |
‘ 0 fL--——- -5 - S AR
0 1 ; | . ] | | |
' i ——numerical o L o
i o experimental | : i
0 0
0 0,02 0,04 0,06 0,08 0,1 0 0,02 0,04 0,06 0,08 0,1

11

10,5

Figure 17. Solution profiles alothg outlet-section using two-scale velocity model
(fine mesh)

4.5.3 Flow over a backward-facing step

The flow of greatest interest in this thesis is treckward facing step flow. This
problem has been the subject of a detailed expatahstudy by [3] and has served for many
years as a benchmark for turbulent flow solvergufé 18 is a schematic diagram of channel
flow over a backward-facing step.
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The fully turbulent flow comes from the upstreamtioé step, forming thin boundary
layer along the wall. When the channel suddenlyaagp at the step, the pressure gradients
cause the new mixing layer to curve toward the \wwatl bifurcate at the reattachment point.
One branch develops as a new boundary layer dfterdattachment point and the other
branch forms the recirculation region. Therefohes tlow undergoes rapid distortion in the
region surrounding the reattachment point and sjuesdly relaxes downstream at this point.

U,

Corer eddy

Dividing streamline

-
>

Separation
X Reattachment

Figure 18. Schematic description of the turbulgmtv over a backward-facing step (adapted
from [36]

A critical parameter to asses the accuracy of thel@yed method is the reattachment
length. Table | presents different values of thedjoted length. Every author uses a variant of
the k-€ model with wall functions and type of algorithmhé only possible causes for the
differences observed between authors are the mesbked and details of the code
implementation. Note that in [71, 72] the authoavdr proposed an adaptive finite element
method for this benchmark.

Reference Turbulence model Recirculation length}L/
Kim et al. experiment 7x1
Mansour and Morel k-€ 5.2
Pollard k-€ 5.88
Rodiet al. k-g 5.8
Launderet al. ASM 6.9
Donaldsoret al. RSM 6.1
llegbusi and Spalding modifiedk-¢ 7.2
Nallasamy and Chen k-€ 5.8
llinca et al. k-€ 6.2
Reference [5] k-€ 6

Table I. Recirculation length obtained using diéier methods adopted from [74]
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The different experimental parameters used in itnelation are taken form [5] and are given
below:

— the step heightH=5.08 cm

— the velocity at the centre of the cardy=11.562 m/s

- the kinetic laminar viscosity (air)u=1.4 10° nf/s;

- the densityp=1.208 kg/m ;

— the obtained Reynolds numb&e = 42000

— time step4t = 0.0002s

The inlet Dirichlet boundary conditions (a&t= -5H) for the turbulent variables are given
below and used as initial value:

k,=0.78n7 /< ande,= 80.6 M /¥ (4.59)

The distance from the wall boundary to the neargstior point corresponds g =
100. The geometry, the dimensions and the boundargittons are shown in figure 19. At
the outlet, the normal stress, the normal derieatiofk ande and the velocityy are all set to
zero. Wall functions were used on the boundary gixta the inlet and the outlet. The 2D
computational mesh consisted of approximately 1208@es. Local mesh refinement was
employed in the vicinity of the walls and in theeahlayer behind the step.

a4 | Inlet \

wall functions Outlet

5H Hl

20H

Figure 19. Computational domain for the backwardifg step [3]

The main objective is to evaluate the performaniceéhe implemented method with
three different kinds of near-wall treatment. whlhctions implemented as Dirichlet and
Neumann boundary conditions against the Low-Reynidnber model.

A first visual comparison of the steady-state sohg for all the turbulent variables
and the averaged velocity is presented. We comibpatie solutions using the standake
model. Contours of all variables are plotted irufigg 20. Recall, that we choose the adaptive
finite element method of [72] as reference dueh® liigh accuracy of the results. A good
agreement with the reference solution is shownafbthe variables. However, as expected,
we noticed a slight difference in particularly n¢lae corner of the step where all variables
exhibit strong variations and the bottom wall. Tikerence is due to the adaptive remeshing
procedure (see [72]).

Velocity u
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Velocity v

Figure 20. Steady state distribution: referencautioh (top), standard lesolution (bottom)
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An important evaluation criterion for this populeast problem is the recirculation
length defined as = x/ H. Kim et al (1980) [3] have experimentally determined the
location of the reattachment point equal’té + H. Different researchers obtained numerical
values ranging frord.8H to 7.0H. Table Il summarizes the results obtained forlémgth of
the recirculation zone using different methods.

Reference Turbulence model Recirculation length
Kim et al experiment 71

Mesh 1 (2D) Standard model 5.9

Mesh 1 (2D) Enhanced model 6.18

Mesh 1 (2D) Low-Reynolds number model 5.79

Mesh 2 (3D- 21000 nodes) Standard model 6.13

Reference [5] Standard model 6

Table Il. Recirculation length obtained using diéfiet methods

Results obtained by our calculation (Table 1) camgal well with the results obtained
by different other authors (Table I). Figure 21gamats comparison of predicted and measured
turbulence kinetic energy. As can be seen, theeaggat is generally good for all stations. It
should be noted that [72] provides results usingqadaptive strategy that captured well the
very thin layer and peak in the TKE profile in peutarly at x/H =1.0 and x/H =2.3.
However, far from the step and close to the uppadt, wur predictions agree more with the
experiments. We suspect that the main discrepanajd de due to the use of Neumann
boundary conditions for the kinetic energy. Byiftetk to be computed ‘naturally’ at the
boundary we improved the prediction of the turbulgmantities in the near wall regions and
we obtained the correct behavior.

In the context of testing the implementation of twobulent solvers using two
different codes at the CEMEF, a three-dimensioesi problem was done stimulatingly by
[73] using the finite element code TherCast andoitesent implement method using the finite
element library CIMLIB. The 3D computational meshtlee backward-facing step consisted
of 71162tetrahedral elements witl514nodes. Local mesh refinement was employed in the
vicinity of the walls and in the shear layer behthd step. Further details about this test can
be found in [73]. In Figure 22, the calculated ity profiles for 6 different distances from
the step are compared to one another and the exgr@al data from [3], and other numerical
codes (such as THERCAST, Jaeger...).

The objective of this comparative study was to &hthe implementation of both the
codes, the linearization of the coupled turbulentations, the positivity of the solutions and
the accuracy of the results. Figure 22 indicatas &H the results all almost identical with one
another and with the experimental measurementsté&tdas provided us a useful validation
study for the implementation of the codes and tharwall treatment methods. Finally, it is
also worth mentioning that the profiles lolande do not suffer from spurious undershoots
which are frequently observed in other computatiombis can be attributed to the
stabilization finite element discretization togethth the positivity-preserving techniques
mentioned in previous sections.
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Figure 21. Distribution of turbulence kinetic engrgwo-scale velocity (left) adaptative finite
element method [72] (right)
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4.6 Flow behind an obstacle using LES model

In this example, a turbulent unsteady flow pastj@ase cylinder is analyzed to verify
the proposed LES (Smagorinsky) model. The maindamfuthis numerical example is from
one hand to offer a large diversity of numericatdiemarks and from the other hand it can be
seen as an illustration of a flow past a heatedtingside industrial furnaces. Recall that the
objective is to validate the implementation of dwxle rather than comparing two different
turbulent models. As mentioned in the introductadrthe chapter, the idea was to open the
choice to the user to decide which methods to agarding the application in hand. Each
method will offer the accuracy of the results ispect to the computational costs and the
required computing time.

Here, even for relatively simple geometries, sirtinta such flows and the loading
imposed on the bodies is a difficult task. Over ffears, it has become clear in these
calculations that statistical turbulence models ehahfficulties with such complex flows
consequently, the large eddy simulation approacimase suitable in such situations as it
resolves the large-scale unsteady motions andresgmodeling only of the small-scale. Of
course, the LES approach is computationally comaldg more expensive, but the recent
advances in computer performance and numerical adstthave made LES calculations
feasible.

This benchmark proposed by Lyt al. [75, 79] has become a standard test case for
unsteady turbulent flow of vortex-shedding past @uase cylinder where different
experimental measurements are given. It was shbatrthie occurrence and quality of vortex-
shedding prediction depend strongly on the turbzdemodel used [76, 82]. Due to the
excessive production of turbulent kinetic enerdye tstandarck-€e model was found to
severely unpredicted the strength of the sheddimgom Improvement were carried out
using the large eddy simulation and results cafobed in [76, 77]. The RANS models the
turbulence and resolves only the mean-flow strestuvhereas the LES resolves the eddies of
turbulence itself. Consequently, RANS requires Iggatial and temporal resolution while
LES requires very long integration time to build @msemble averaged solution. Full details
concerning this test using different turbulence els@re given by [76, 82].

We hope that this previous discussion would nowwansthe questions from the
introduction of the chapter\Which model we should use@and “How can we get reasonable
results with an affordable computing cdst?

The mesh layout for this example as well as thentaty conditions is illustrated in
figure 23. The dimensions shown in the figure avamalized by the length of the side of the
square. The computational domain is discretized T83264 elements and 32476 nodes. The
inflow velocity is given equal to one and the Regsonumber is set to 22,000. Physical
dimensions of our computations domain exactly meddio those of [78]. We choose the time
step of 0.005, which is found to be sufficient tack unsteady characteristics of the flow.
This paper among few, presents a stable finite ehrformulation to predict the behavior of
high-speed wind passing bluff structures usingktle@silon model.
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Figure 23. Computational domain for the flow pastcuare cylinder

For visualization and identification of instantansovortical structures, figure 24
shows instantaneous vortices distribution aroured dfjuare cylinder predicted by the LES
model at two different phases. Note that the mbeedrid system becomes finer, the more
realistic structures with smaller scale structwas be captured.

Figure 24. Instantaneous vorticity distribution pése square cylinder

Table 1l summarizes the dimensionless sheddinguieacy, the Strouhal number;
St=fD/U, (f is the frequencyD is the section of the obstacle adglis the given velocity),
obtained in the present study and by different @sthThis non-dimensional number can be
considered important to quantify the propertiethefperiodic solution of the vortex street.
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Reference

SStrouhal number

Present study
Exp. Lyn [79]
Exp. Duaro [80]
LES [81]
Standard ke [82]

0.129
0.135
0.139
0.132
0.124

Table Ill. Strouhal number obtained using differergéthods

As shown in table Ill, the Strouhal number is cotepuas 0.129, which is lower only

by 5 percent compared to Lyn’s experimental requi#$. Figure 25 displays the distribution
of the time-mean velocity along the centerline. Experimental data and redtdim different
other authors are included. The authors in theidyshave used the RNke model (Figure
25 buttom). They have noticed that the data agaely fwell in the near-cylinder region and
in front of the cylinder where the flow is basigaithviscid while there are large differences in
the wake region. Nevertheless, overall trends seeive quite similar to the experimental
results as well as results from others authorseffigient and reliable numerical procedure
for solving wind engineering problem in high Reyalwhumber flow regimes as well as many
other comparisons on this test can be found inréference.
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Figure 25. Lateral velocity along the centerlinetab phases: Present result (up) and
reference (buttom). The picture were adapted fr@8j |
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4.7 Conclusion

In this chapter we have described two classic@lui@nce models to deal with unsteady
flow at high Reynolds number. The motivation ofngssuch models comes from the desire of
solving turbulent flow problems inside industrialrfiaces. Therefore, both theepsilon
model and the Large Eddy Simulation model (LES)ematroduced, analyzed and studied.
The stabilized finite element methods was usedapplied for the resolution of the set of
equations. We can understand from the numericaraxents that a turbulence model should
introduce the minimum amount of complexity whilepttaing the essence of the relevant
physics. Consequently, thkee model, a traditional model attempts to strike llagance in this
regard by sacrificing the details of the turbulestmictures. It is still the most widely used
turbulence modeling method in practical engineeapglications. Whereas as opposed to the
RANS approach, a major portion of the turbulentiescas numerically resolved within the
LES model and offers more characteristics of the/fl

The performance and the efficiency of the overaltiels have been demonstrated using
four benchmarks and conclusions were drawn. The ffwound a square cylinder at a
Reynolds number of 22000 has been chosen for addidhation of the Smagorinsky model.
Although the given benchmarks do not contain al ¢tbmplexity of simulating an industrial
furnace, they are well suited for validation sit@th experimental data and numerical results
from several authors are available. Summarizingg @miginality of this work is the
combination of stabilization methods, unstructurgids, implicit time advancing and
turbulence models. All those elements are now featdedicated to industrial abilities of the
method. Upcoming, more tests will be presenteddémpled heat problem.
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Chapter 5

Immersed volume method for solving conjugate heat

transfer

The present chapter is dedicated to develop a doualain approach to solve the
coupled heat problem and able to handle real cong#gemetries with different loading parts
inside the furnace. First we present the completeption of the immersed volume method
(IMV), which in turn is structured into three subBens: the use of the level-set approach to
immerse and define heated objects, the unstrucamddanisotropic mesh generation to adapt
the interface between the fluid and the solid, &ndlly the thermo-physical properties of
each subdomains are assigned using different mlaing. The second part will be devoted to
the resolution of the radiative transport equat{®&TE) which constitutes an important
ingredient for solving conjugate heat transfer.th# methods developed in previous chapters
will now be coupled and used to study numericallpbtems arising in aero-thermo-
mechanics inside industrial furnaces with differéoadings. Finally, various numerical
examples are considered for evaluating the propestod and conclusions are drawn.
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5.1 Introduction

The development of efficient methods to understand simulate conjugate heat
transfer for multi-components systems is amongresgging challenges and still a need for
industrials, especially in the case of the heattinent of high-alloy steel by a continuously
heating process inside industrial furnaces (sagdid). Usually, the heat treatment sequence
involves heating to a high temperature of an enfiptiyace followed by a controlled heating
ingots placed at different locations inside. Thermmal history of each ingot and the
temperature distribution in the whole load areiaalt for the final microstructure and the
mechanical properties of the treated workpiecescamddirectly determine their final quality
in terms of hardness, toughness and resistance.

We have described in the previous chapters alllififierent numerical methods needed
for solving the transient heat transfer and tunbufeows inside the furnaces. However, the
modelling of the solid/fluid interaction problemsdathe thermal coupling are not yet treated.
The main objective of this chapter is to presemiugtidomain approach to solve the conjugate
heat transfer for which the three modes, convectteaductive and radiative heat transfer
interfere simultaneously and in both the fluid pantl the solid part. The proposed numerical
method for modeling such multimaterial flows (fligdlid) will be referred as the immersed
volume method (IVM). A complete description andailstabout this method will be given.
But first, we will discuss the driven motivation bgvisiting some of the existing approaches
that usually deal with such problems.

In recent years, there has been increasing interestidying numerically a variety of
engineering applications that involve thermal couplof fluids and solids [1, 2, 3]. Most of
the time, the general idea of these techniquesistsns dividing the global domain into
several local subdomains over each of which a lowadlel (equation to be solved) can be
analyzed independently. The global solution camthe constructed by suitably piecing
together local solutions from individually modekabdomains.

However, during the assembly, the coordination betwthe meshes can become
complicated or even sometimes infeasible. Otherradtive approaches have been applied for
multi-phase flows problems and are available inlitleeature, such as the ghost fluid method
introduced by Fedkiwet al (1999) [4], the immersed boundary method [5, &main
decomposition [7], and the X-FEM [8]. They intro@acand improved enrichment functions
for material interfaces and voids by means of évell set representations of surfaces.
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Nevertheless, in general when using all these tqabs, one still need to know the
value of the heat transfer coefficients between tihve domains which ensures, as a
Neumann/Dirichlet boundary conditions, the heanhgfar at the air/solid interface. In fact,
industrials perform many experimental tests to iobtich heat transfer coefficients. But,
when dealing with a large diversity of shapes, disi@ns and physical properties of these
metals to quench, such operations can become yamd} costly and time consuming.

In the present study, the proposed method aimsdocome this drawback. The main
idea is to retain the use of the monolithic forntiola and coupling it to some additional
features that could allow a better and accuratelutien, in particularly at the interface
between the fluid and solid. Recall that the mahdali resolution, based on the levelset
approach consists in considering a single gricbfiih air and solid for which only one set of
eguations need to be solved. Consequently, differeiddomains are treated as a single fluid
with variable material properties. One importardtéee till now is that by solving the whole
domain in a fully monolithic way there is no neddempirical data so as to determine the
heat transfer coefficient. The heat exchange aintegface is replaced naturally by solving
the convective fluid in the whole domain. Note aldmt different numerical methods
introduced in the previous chapters could be ugsemblve the conjugate and coupled problem
without additional efforts. Numerically, the comnication between the solid and the fluid is
obtained naturally without any further assumptiond &rce modelling. In other words, there
is no need for some coupling engines specificabgighed to handle data exchange and
algorithmic control signals between solid regiod &nid region.

The second feature of this method is the use a@dargsearch in the anisotropic mesh
adaptation to adapt the interface between two rdiffe materials. The proposed mesh
generation algorithm allows the creation of meshd extremely anisotropic elements
stretched along the interface, which is an impartaquirement for conjugate heat transfer
and multi-component devices with surface condudayers [12]. Many research efforts have
been devoted to analyze and improve the accur#alyilis/, conservation and robustness of
different immersed boundary method. This is obMpusquired when following an interface
all along the computations. But in the present\stilde solid, the heated objects inside the
furnace, are considered fixed and, consequentpreadapted meshing is totally affordable.
All these previously cited techniques can at aatertiegree explicitly be replaced by this
proposed locally interface refinement that can gaeea quasi conforming mesh with an
acceptable cost.

The interface between solid and fluid is only defirby a zero isovalue of the distance
function; hence the calculations of the classicaliralary integrals that account for the
radiative heat transfer between the solid and tbel fare no longer applicable. The
contribution of the radiations to the heat trarsisrassessed by solving the radiative transfer
equation (RTE) and by computing volumetric soureems. Two simple models, the
‘Rosseland approach’ and the P1-model are intratiace implemented.
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It is important to mention also that the same sgathas already been introduced in
[9] et al, [10] and in [11], but the context was clearlyfalient. In [9], the authors have
proposed to use the metric properties of the distdanction for simulating two bodies in
contacts in a forging process. Details about thenfitation of the contact condition, mesh
adaptation as well as the computation of the digtdanction are given. On the other hand, in
[10], the use of this method was highlighted byesalynumerical examples such as extrusion
and industrial mixing processes. In [11], the atghbustrate the ability of this approach to
accurately describe nucleation and grain growththi@ context of recrystallization in a
polycrystalline material. More details about thetimogl can be also found in [13]. Here, we
intend to apply the same strategy for simulatingjugate heat transfers and turbulent flows
inside a furnace in the presence of heated indiligiirts.

The outline of the chapter is as follows: first, me@sent a detailed description of the
immersed volume method using both the level setction and the anisotropic mesh
adaptation. Section 3 presents the suitable radiatat transfer models. In section 4, various
numerical examples are considered for evaluatiegpftoposed method. Comparisons with
the experimental results are presented in sectidtinally, conclusions and perspectives are
outlined.

Temperature (C)
2000.

1500,

- 1000,
500,

0.

CIMLIB
THOST v1.0

Figure 1. Heat treatment furnace: turbulent flonwdaconjugate heat transfer with radiation
in a multidomain approach
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5.2 The immersed volume method

The comprehensive description of the immersed velunethod (IMV) is structured
into three subsections. In the first section, teel-set approach is presented and used to
describe, position and immerse heated objectsanid furnace; next the anisotropic mesh
adaptation algorithm needed to refine the interfae¢ween the fluid and the solid is
explained, and finally a brief review on mixing féifent thermo-physical properties for each
subdomains is highlighted.

5.2.1 The signed distance function

In this section, brief details about computing thstance function and capturing the
interface between a solid body and the surrountliing are presented. The algorithm used to
compute the signed distance function has to batecktb Bruchoret al.and it is detailed in
[9]. Distances are widely used in applications mggrom computer vision, physics and
computer graphics and have been the subject chnds®f many authors in the last decade.
We can find it in wide variety of problems such msage reconstructing, multiphase flows
and others [14, 15, 17]. In our context, we empiblyee distance function only as a geometric
tool to initialize a given surface inside the furea

The most straightforward way for computing distafiedds is through the use of a
geometric brute force algorithm where the poinptint distance is computed throughout the
computational grid and the minimum distance forhepoint is stored. IfQ is a closed

domain andQ_,, 0 Q 00" with piecewise smooth boundafy , then the signed distance
function g(X) is defined as:

. -d(x,I) if XOQ, 4
a(X) = e e o (5.1)
d(x,IN if x 0Qg,,
and the needed distance is given by
d(xT) = min[x-%,| (5.2)

Xp ar

For simple geometries, this function can be obthifrem an implicit representation. For
example, if the smooth boundary of a circle (sgark 2) with centerQ(5 , 0.5 and radius
(R=0.25 is given by:

Men ={X0Q] d¥=R and ¢x=|"x RO KQ (5.3)

Then the signed distance function implies simptyx) = R— d( Y
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IOQAS

0.0677

Ifo‘m

-0.282

-0.458

Figure 2. Definition of the signed distance fuantand representation of a circle

However, for complex geometry, such as industreggted parts, the surface can not be
given by any implicit function and it will be estated from a discrete surface representation.
Note also, that the brute force algorithms areasitéle due their high computational cost.

There exists a variety of algorithms to computedistance function, which can be classified
in two categories:

i. Geometric calculationThe signed distance function is computed from gheface
directly.

ii. PDE methods The signed distance function is a solution of atipl differential
equation; the Eikonal equation [23, 46].

In the literature, most of the available methods f@mputing distance fields are
developed for Cartesian grids, while little attenthas been devoted to unstructured meshes.
The study of more efficient methods for computimgiahce functions is still an open research
area. [9, 14]. However, in the CIMLIB library, a gibed fast algorithm for computing the
distance function has been developed and implemeBtsed on the geometric calculation, a
new parameter, referred as the ‘quality paramesemtroduced to compute the sign of the
function as well as a hierarchical representatioih® surface mesh is used to reduce as much
as possible the computation time and cost. All details including the algorithm can be
found in [9]. The use of this computed distancecfiom was also highlighted by many 3D
applications with more complex configuration and ba found in [13, 15, 17, 18].

Recall that in our study, all the objects inside tlwrnace are considered fixed, and the
computation of their respective distance functindone only one time at the beginning of
the resolution. Thus, the proposed algorithm isilyigecommended in terms of accuracy and
CPU time in particularly for three dimensional pebs.
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5.2.2 The anisotropic mesh adaptation

Accurate calculation of the temperature distributedong the fluid-solid interface is
critical for a correct modelling of industrial expaents. When the heat flux is directed
through the interface, the difficulty arises dug¢he presence of high gradients of temperature
and due to the discontinuity of the material praipsr If this latter is not aligned with the
element edges, it may intersect the element aritytrauch that the accuracy of the finite
element approach can be compromised.

In this section, we introduce the second featur¢hef VM method by proposing a
strategy to adapt automatically the interfaces betwsubdomains. The level-set function
described in previous section is coupled to anoarapic mesh adaptation [36, 37, 39, 12,
13]. The mesh becomes locally refined around the movalue of the level-set function
which enables to sharply define the interface amdsave a great number of elements
compared to classical isotropic refinement. Thiss@mnopic adaptation is performed by
constructing a metric map that allows the mesh 8izbe imposed in the direction of the
distance function gradient.

First, let us remind that all the meshes presemethis work have been generated
through CIMLIB by the MTC mesher and remeshers Ibased on a topological optimization
technique that, by considering the quality of thements, improves the mesh topology. The
3D tetrahedral, unstructured, isotropic or anigutranesh generator was developed by T.
Coupez. and detailed in [16, 19, 20, 40, 41, 42443

Here, a brief review on building this metric magpresented. Further detailed are also
given in the last section (4.5). This subject hesrbextensively studied in our lab and used by
many researcher [24, 25, 26]. The main idea iBuitd a certain metric¥ , a symmetric

positive-definite matrix, that allows the creati@ meshes with extremely anisotropic
elements stretched along the interface. This famgénportant ingredient for conjugate heat
transfer and multi-component devices with surfamadeictive layers.

Therefore, if the metrie¥ can be regarded as a tensor whose eigenvalues|aied

to the mesh sizes, and whose eigenvectors defmalitections for which these sizes are
applied, then one can think about imposing smalineint sizes along the direction of the
distance function gradientla , and keeping the same background size in the gotiad

direction Oa"” . In other words, the proposed metric takes theviohg form:

M =m?(DaO00a")+£71 (5.4)

Wherel is the identity tensorsand m are two positive-real parameters. This simply rsean

that using this metric leads to a mesh S|zelbq‘/m2|Da| +¢” in the direction ofJa and to a
mesh size ol/e in the direction ofla" .
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However, since only the interface separating batldemains is the region of interest,
this pushes us to build a general metric map thatqual to an isotropic metric in the far-
interface region and equal to the previous constlenetric (5.4) in the vicinity of the
interface. Accordingly, the general metric map tattee following form:

&2 if |a|>e/2
M=3 N .
(—-€)B+&%l if |a|<el2
e (5.5)
T
where Bz—DaDDZU
|Pal

whereN is the number of elements required in a certaokitesse.

As shown in figure 3 which presents a close-uphaninterface zone at the end of the
anisotropic adaptation process, the mesh has beslualy refined when approaching the
interface. Consequently, only additional nodeslacally added in this region, whereas the

rest of domain has maintained the same backgroued an important feature that keeps the
computational work devoted to the grid generatam. |

*solid"

Figure 3. Interface refinement using anisotropicsinadaptation: a zoom on the interface

The proposed mesh generation algorithm works wel2D or 3D geometries and can

easily handle arbitrary geometries. Next, some mioa@leexamples are given to illustrate the
effectiveness of the proposed mesh algorithm.
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5.2.2.1Two simple geometries

We consider two ingots placed in a 3D enclosurartiafy from a coarse mesh, we
generate the multidomain metric and we adapt thehnte this metric. After several
iterations, one can clearly see from figure 4 thatinterface between these objects and the
surroundings is well adapted. Figure 5 shows tlmgt tefinement at the interface is
anisotropic, while the rest of the domain has kieptsame background size.

(initial mesh) (intermediate mmes

(final mesh)

Figure 4. Iteration between the metric computatimid the mesh generator

Note also, when using an anisotropic mesh, witmelgs stretched in a ‘right’
direction, one could allow not only to save a lbtetements but also to well describe the
geometry in terms of curvature, angles, etc. Contta others techniques, this promising
method can provide an alternative to body-fittedsiméor very complex geometry. In the
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following example we consider a more complex probléhe immersion of a support grid
inside an industrial furnace.

Figure 5. Zero isovalue of the immersed solid bedie

5.2.2.2Support grid inside a furnace

Figure 6 presents &nT gas-fired furnace provided by our industrial partierreal-
France. This furnace is used for continuous heatrinent of terra-cotta products positioned
usually on a support grid. The support is madeikygwindrical object and flat grid all placed
in the center of the furnace as shown in figuredghf). Such geometires can not be given by
any implicit function and the distance functionshbe computed.

Figure 6. 1m furnace (left) and the support grid (right)
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By applying the IVM method, the level-set functiadentifies automatically the
complete support grid body from the surroundingaaid then applies the anisotropic mesh
adaptation at the interface. The computations efdbupled heated problem and the results
for this furnace are given in the last sectionuFég7 shows the resulting unstructured meshes
after several iterations.

Figure 7. Difference between the initial mesht(lehd the final mesh (right)

The algorithm progressively detects and refines shpport grid leading to a well
respected shape in terms of curvature, anglesAbtthe small details in this given geometry
can be captured accurately (see figure 8).

HoT

P L
Y ATARYE
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EAN,
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v"i’ﬁ Sty
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v

Figure 8. Two cuts of the support grid at differael

More examples and computational results are giverthe last sections. As a
conclusion, we have showed that the proposed aofsotalgorithm can capture accurately
very complex industrial geometries. Although additil nodes are added to the initial
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computational domain, we obtain very accurate fater which is an important requirement
for conjugate heat transfer and multi-componentasvwith surface conductive layers.

Finally, once the mesh is well adapted along theriace, we use different mixing
laws to distribute the material between each playsicbdomain (solid/fluid). This last feature
of the IVM method is presented in the following tsea.

5.2.3 Mixing laws

The geometry and thermodynamic properties of thiel skomain are characterized by
the signed distance function. The location of tinesathen deduced by complementarity and
does not require the introduction of an additiasiatance function. The air-solid mixture can
now be treated as a single fluid whose effectiveperties are defined using continuous
heterogeneity between their coefficients. Consetlyerthe coupled heat problem is
simultaneously solved over the entire domain inicigdooth fluid and solid regions with
variable material properties.

There exist in the literature roughly two categemé methods to compute the effective
material properties. The first is based on numéhocaogenization method which considers
the dimension and geometry of periodic porous soiadies [27]. The other category, usually
called mixture rules, relies on a ‘characteristindtion’ of constituent materials and assumes
no microstructure. Since our focus in this studyhis heat treatment of large loads inside
enclosures it is more convenient that the matelgtribution between each physical domain
be described by means of the level set function.

The characteristic function of the solid domainsimply defined by the Heaviside step
functionH as :

1 if a(X)>0
H(a)=41/2 if a®)=0 (5.6)
0 if a(X)<O0

The physical and thermodynamic properties in thealo are then calculated as a
function ofH(a); for instance, the mixed temperature is calculatgdg a linear interpolation
between the values of the temperature in the #nid the solid:

T = Toia H(a) * T 1= H(@)) (5.7)

However, using the Heaviside function describedvalleads to poor numerical results due to
the assumed zero thickness of the interface antbofse due to the sharp changes in the
material properties.

Instead, we can use an alternative descriptiohefriterface as proposed by Sussman
et al [28]; Unverdi and Tryggvason [29]; and Sussnearal [30]. It should be noted that
there exist another approach proposed by Karad [31] which treats the interface in a sharp
fashion using jump conditions at the interface.
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The idea is to give the interface a fixed thickndsst is proportional to the spatial
mesh size, and substitute the Heaviside functiscrid®ed above by a smoothed function
given by:

1 if a(X)>¢
H(a) = %(1+@+7—];sin[%®jj if oa®)<e (5.8)
0 if a(X)<-¢

wheree is a small parameter such theat O(h), known as the interface thickness, &nd
the averaged mesh size in the vicinity of the fat=e.

“Recall that the IVM method couples at the sameetedi the three features described
previously. This will result in amoothed Heavisiddunction based on thdistance function
and able to assign the right thermodynamic propein each side of the extremedyined
interface. Consequently, the distribution of theenals properties will again respect the zero
assumed thickness of the interface between a aotica fluid”. This is actually an advantage
of the IVM method over traditional multimateriafsttures.

In addition to the use of the smoothed characterifinction, we still need a
prescription for evaluating the appropriate mixtlaes at the interface for all the materials
properties [32],. We conducted a large researchroblems treating multiple materials with
different properties in particularly, the conjugatsat transfer problem where convective heat
transfer in the fluid and conductive heat trangfiethe solid are handled simultaneously [32,
33, 34, 35]. A closer inspection on the mixturenfafation of different materials reveals that
the use of linear variation for the thermal conduts cannot handle the abrupt change at
the interface and would lead to inaccurate restlfbus a proper formulation is highly
desirable” [32].

Figure 9. The interface between two domain anddtences associated with the interface

The effective thermal conductivity calculated usambinear variation is given by:
ket =Ke f(a) + k(- f(a)) (5.9)

wheref(a) = ds/ h is an example of the interpolation factor.

In [32], the author explained that it is not thecdb value of conductivity at the
interface that is important (equation 5.9), it aher the continuity of temperature and heat
flux across the interface. The heat flux that lsawae control volume through a particular
face must be identical to the heat flux that entlkesnext control volume through the same
face (see figure 9). Otherwise, the overall balamoeld not be satisfied.
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Therefore, in the absence of the source term,aagtene-dimensional analysis of the
heat flux at the interface leads simply to:

¢ =—r T =Tk (5.10)
T rdlk Nk, '

As a result, the appropriate expression for theotiffe thermal conductivity yields:

Ko =(1_ ta), f(a)j_ (5.11)
.k

This formulation, known as the harmonic average nmdaasically reflects the
requirement that diffusion flux should be the samen when calculated by different
representative subdomains. Full details, demomstraind complete analysis can be found in
[32]. This is one conclusion about the mixture fakation among different others.

A closed details as well as the influence on theafdifferent mixture rules are given
in [45]. To simplify the exposition, only the retad formulas are given. The global material
properties for the coupled heat transfer problewhsas densityp, initial temperaturerly,

dynamic viscosityy, heat capacityC, and thermal conductivity, are defined by the failog
laws:

P = Psyig H (a) + Puig @—H (@)
H= Hgig H (a) + Mg A=H (@)
'OCP :pCPsolld H(O’) * pCPfluld (l_ H(O'))

PCT, =G T H(a) + PG T (1- H@)) (12)

’ :( H(a) , 1-H (a)]_l

kquid Igolid

The sensitivity of the model to the estimationlo# effective thermal conductivity and
the interface representation is assessed usinfplioeiing simple example. We consider in
this test the transient conduction between two dospaa small squared heated solid
immersed inside a cold cavity. The ratio of matepi@perties across the interface is very
large. Table | presents the different values usetthis example. All walls of the cavity are
maintained at adiabatic condition. Subject onljthese boundary conditions, the analytical
solution of this example is easily derived. The penature evolution across the interface is
presented in figure 11. Three type of interface @asidered (figure 10). Two different
mixture formulations for the thermal conductiviseaised.

Domain Temperature °C  Density kg/m Heat capacity J/JKg°C  ConductivityW/m°C

Fluid 20°C 1.2 1000 0.02
Solid 400°C 2500 1000 175

Table I. Materials properties and initial temperedufor both subdomains
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The sharp discontinuity of the properties of thearial across the interface and the
presence of high gradients of temperature change siimple numerical example into a
complicated one. From a numerical point of viewg #udden cooling of the hot immersed
body inside a cold cavity is at the origin of sdle thermal shocks which cause spurious
oscillations in the solution. To overcome this idiffty, the enriched finite element method
presented in section 2.5. has been applied.

Interface

t=0s 0= t=1000s = t=10000s

Figure 11. Temperature evolution across the integfa

A comparison between the results obtained by treetbases is summarized in Table Il.

Mixture law  No interface  Conform interface  Refinaterface (IVM)

Simple 4.1% 6.4% 1.73%
Appropriate 0.15% 0.14% 0.12%

Table 1l. The relative error obtained using di#et mixture rules

As expected, predictions for the resulting tempegsmseem to be less sensitive to the
interface refinement when using the appropriatetunexlaw (equation 5.11) for the thermal
conductivity. However, when simple laws (equatiof)@are used, the temperature decreases
rapidly and fails to predict the appropriate bebavi The closest prediction to the analytical
solution is obtained by using the harmonic meamftdation together with a refined interface.
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Figure 12. Distribution of the thermal conductivagross different interfaces

The influence for using different mixture rules otther coefficient as viscosity or the
density have been also investigated in the givéereace [45]. The majority of published
work confirms that the effect of other materialggerties is less important compared to the
effect of thermal conductivity.

Having presented an initial validation of the IMVodel, we proceed now to more
detailed description on the radiative heat trandferse include presentation of the radiative
transport equation (RTE), the proposed models d@na@merical validation. Finally, in the
last sections, various results for the fluid anertimal flow processes simulated are illustrated
in order to enhance the physical understanding hef phenomena taking place inside
industrial furnaces.

5.3 Radiative heat transfer

The overall efficiency, the quality of the heatedats and the production rates can be
related directly to the accuracy of the thermalaton model in industrial furnaces. We agree
that thermal radiation exchange is the dominantermfcheat transfer in most furnaces and it
depends on many factors including position, loeadgerature and composition. However, the
prediction of radiative transfer is very complexedio the multidimensional and spectral
nature of radiation. Recently, many works have bekvoted to introduce some
simplifications and assumptions suited to some iqQdar application and modelling
approach. Therefore, in this section we introdum®es basic models to solve radiative heat
transfer. In other words, the main focus of thistiea is structured around the following two
guestions: How do we predict radiative heat transigde industrial furnaces? Which model
we should use that can be adapted to the IVM apjprdascribed previously?
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Two kinds of radiation heat transfer occur insidieimace enclosure: from workpieces
to workpieces and from furnace (flame, hot comlmunsgases...) to workpieces. Many studies
have been done to simulate the radiative exchaeggelen solids [65], while other works
mainly focus on the gas radiative heat transfer f48. However, there are few studies that
deal with both type of exchange. Summarizing, hemsfer and turbulent flows between
furnace and workpieces, among workpieces and insidekpieces simultaneously are
extremely complicated and to our knowledge thiskmvoan be considered among the few
attempts to attempt such objectives [52, 53, 54].

The topic of analyzing different approaches to nhodecurately radiation inside
furnaces can serve as a Ph.D. level thesis alltorown and need further inspections.
However, for validation purposes, we have condueteesearch trying to find the best fitted
radiative heat transfer models that could complép®ren as a start, the IVM approach. In
what follows, we summarize the retained methods.

5.3.1 Introduction

Radiative heat transfers occur in several physprakcesses such as combustion,
nuclear reactor safety, and of course furnaces. edew due to its complexity, it was
generally neglected or replaced by some semi-eaapiessumptions in many numerical
computations. Such complexity can be characterimethe high computational cost, need of
chemical database, or the important uncertaintyceonng the optical properties of the
participating media and surfaces.

At the same time, radiation can strongly interaithwonvection in many situations of
engineering interest. As highlighted in the folloginumerical example, the influence of
radiation on natural convection is generally stemthan that on forced convection due to
inherent coupling between the temperature andidmeffelds in enclosures.

In the full simulation of combustion systems, trediative transfer, which is an
integro-differential equation, must be solved alavith the partial differential equations of
material, momentum, energy transport and chemezdtrons as a fully coupled system. The
most accurate procedures available in the litegeatar computing radiative transfer are the
zonal and Monte-Carlo methods ( Modest, McGraw, H#193 [58]). However, these methods
are not generally applied in combustion calculatidoe to their large computational time and
storage requirements. Note also that these eqgadi@nin non-differential form, a significant
inconvenience when solved in conjunction with th&edential equations of flow and
combustion.

In the current work, we are interested in modellthg energy transport in high-
temperature gases using the CFD codes. Therefoeembdels for solving the radiative
transfer must be compatible with the numerical méshemployed to solve the reacting flow
equations. The zonal and Monte Carlo methods fimirgpthe radiative transfer problem are
incompatible with the mathematical formulationsdige CFD codes, and require prohibitive
computational resources for the desired spatialuéen. The discrete-ordinate and transfer
methods (DOM/DTM, [63, 64]) appear to be reasonatenpromises for solving the
radiative transfer equations, but still one haddal with large systems of algebraic equations,
resulting from discretizing angle and space coaigig, that may deteriorate the efficiency of
the CFD code.
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Other approximated models for radiative transferehalso been derived and widely
used in the literature. For instance we mentiondifieision approach (Rosseland, [50,58])
and the simplified R equations, when the medium under consideratioisagopic and
optically thick (opaque). In fact, in an opaque med the system is close to a radiative
equilibrium for which assumptions of diffusion asdnplified Ry equations are satisfied.
Hence, in spite of the weaknesses of such appreadtspecially when dealing with
anisotropic or transparent (optically thin) media, when the system is far from the radiative
equilibrium, they provide significant improvementsr predicting interactions between
radiation and matter. The following table summasiaecomparison of the different methods
for modelling radiation transfer in furnaces:

Model Description Advantages Disadvantages

Monte Uses random numbers to -easy for complex geometries-incompatible with CFD

Carlo simulate and track -handle shadowing effects  equations
individual beams of -model scattering, specular -random behaviour does not
models  radiation through a furnacereflectors and spectral wall guarantee the convergence.
enclosure. properties.
Flux Direct solution of the RTE -valid to non-homogeneous -all surface are diffusive
models €duation by subdividing  absorbing and scattering
the directional variation media. -over-prediction of radiation
into a small number of -compatible with CFD model
angles in which radiation
intensity is assumed to be
constant.
Zonal Radiqtion heat balance ' -simple model, does not -invalid for non-homogeneous
models equations are solved using require complex solution gases _
radiation exchange factors techniques -incompatible with CFD
between each zone pair. -valid to non-grey gases -high computational cost
The DTM Applies features of the -easy for complex geometries-less accurate than the Zone
above three methods -valid for non-homogeneous method

gases

Here in this study, we shall restrict ourselvesthi flux models which can be applied to non-
homogeneous absorbing media and they are welldstatapplication in CFD models.

5.3.2 The radiative transport equation (RTE)

The general equation of radiative transport isgibe Eq. (5.13) [50]. The transport equation
describes how radiant energy is affected as ietsathrough a medium along a directgn

smi(r,s) =—(k, +k.)I(r,s)+ ka|b+:—;.|'4ﬂl (r,s)e(s,s)dd'+ S (5.13)
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In the aboves andr denote a unit vector along the direction of thdiaon intensityl
and the local position vector, respectively.akdks stands for the absorption and scattering
coefficients respectively® is a probability function, formally known as thbgse function,
andS. represents the resulting radiative source t€knmdenotes the solid angle. The specific
role of each introduced functions that accountlierRTE model is discussed briefly.(see [58,
59))

The first term on the right hand side represengsattenuation of the incident energy
by the extinction properties of the medium and ttutes a negativehange in the incident
energy.The second term represents the amount of energghusemitted into the direction
by mass located along that direction. Energy whschttenuated and converted to internal
energy may subsequently be emitted. The third tsrshown in terms of the absorption
coefficient k; it is written this way to show that equal magd#s of energy are absorbed and
re-emitted in order when there is thermodynamicildgium. Iy is the blackbody intensity
emitted by the medium at the local temperaturgmsition s.

The last terms represents what may be called "ttesdag”, which is defined as that
amount of energy from other directions which istsrad into the s direction after interacting
with neighbouring elements. The probability funaotioP, scales the scattering of the
neighbouring elements according to the uniformityisotropy of the resulting scattered
radiation. Inscatterring causes a positive chaogthé local intensity. Futher details can be
found in [56, 57].

5.3.3 Diffusive grey medium assumption

The equation of radiation transport is an integftecential equation. It is complex to
apply this equation due to the nature of the reguinformation (seven variables in particular
®) and the need to find the intensity for each lmratvithin the medium and for each angular
orientation.

Since solving equation (5.13) is often prohibitive terms of CPU time,
approximations can be made for varying situatiomhsciv greatly simplify the analysis. The
diffusion approximation, introduced by [59] presenbne of the most important
simplification. It is valid when the local intengitvithin the medium is a result of local
emissions only; that is, emissions from distantnelets are either absorbed or scattered and
consequently diminished.

In [58] the author shows that the accurate knowdedfjfrequential and directional
properties is not always necessary and dependseocansidered applications. Recall that
studying the spectrum of a star and analysing tedium in which the beams go through
require a very accurate resolution as far as gguincies are concerned. Similarly, when one
is interested by the anisotropic aspect of thensitg to study the surrounding radiative
sources, one has to treat very accurately the angelpendency. However, when the global
thermodynamic exchanges between the material andathative beam are the main concern,
averaged values of frequential and directional ertigs are ‘often sufficient’. In the case of
radiative exchanges in a furnace, this last approhe diffuse grey medium assumption can
be considered.
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We begin by introducing the representative macnoiscquantities needed to derive
the diffusive radiative model. By integrating theesific radiative intensity over the whole
electromagnetic spectrum, for all directions aneroall the wavelengthd, the radiative
energy, the vector of radiative flux and the teredfaladiative pressure are defined as:

E. %LJ: ,(r,s) dA dQ’
oy = [, [ 1,(r,5) s b (5.14)

Igray Z%LJ: l,(r,s)sosd dY

Remark 1. The radiative energy is usually referred by engiseand researcher as the
incident radiative intensit(;ay = ¢ Eay Wherec is the speed of light.

For diffusive grey medium, we assume that the gidsor coefficient is independent form the
frequency and direction. Thus, according to the dgdmu Law, [59] the mean absorption
coefficient can be defined by:

=E—1ln(1-a) (5.15)

m

wherea is the macroscopic absorptivity of the medium.

Ln stands for the mean path length. In practical datmon, it can be considered as the
characteristic size of the furnace which reads [S@p:

Y,
L, =C— (5.16)
S
where V and S are respectively the volume and tiface area of the furnace and C is a
correction factor typically taken as 0.9. Alternatean beam lengths are based on the grid

cell size as follows:

4AV
L,=C——— 5.17
n=Coe (5.17)

WithAV = AxAyAzandA S= 2(A A wA & #A /x ). The definition adopted in the

numerical computations is based on computing amogpiate volume and surface of the
considered simplex when using unstructured grid.[66

Based on the work of Modest [59], the author presid comprehensive derivation for
the diffusion approximation. The main conclusioattive can get is that the divergence of the
radiative heat flux represents the difference betwthe energy emitted from a point through
thermal radiation and the incident energy fornoéiler points in the domain and is given by:

00, =k(4moT"-G,) (5.18)

whereg is the Stefan—Boltzmann constabt670 x 108 W.m2%K™
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As a conclusion, solving now for the incident rdidia G,y yields the required
volumetric source ternd! [d},,. This source term is introduced back into the gnequation

ensuring as a sink/load source the radiative maasfer in the enclosure. Two basic models
are studied and implemented in this work to soheeihcident radiatio®: the P1-model and
the Rosseland model.

5.3.4 P1-model

The P1 model has been used for a number of yeatiseircalculation of radiation
transfer for industrial computational fluid dynasi@CFD), particularly in the simulation of
combustion systems. In these applications, it veasiraed that the absorption coefficient is
constant, or an effective value was found, whichaisfunction of composition and
temperature, by some averaging technique sucheawéighted-sum-of-grey-gases [59]. For
the calculation of high temperature heated objectsd the surrounding hot gases, such a
degree of approximation is unacceptable, but a itégration over frequency is too
computationally expensive. The averaged absormi@ificient (equation 1.3.3) can be used
to solve the P1 equation. The governing equationghife P1 model are derived in detail in
[51, 58, 59]. It was shown that under this diffesiimit, there is a link between the radiative
pressure tensor and the radiative energy refegeleaclosure relation:

P :%Erl (5.19)

with | the identity tensor.

Such a closure relation together with (5.14) an@i§benables to express the radiative flux as
a linear function of the incident intensity gradien

1
qray = _ﬁ |jc;ray (520)

For completeness, inserting the last expressiantive radiative energy equation (RTE) leads
to the well-known P1 diffusion-reaction equation:

-0 [ﬁs—lk DGrayj +kG,, =4kaT* (5.21)

The boundary condition for the P1 model is deriaed discussed in detail in [57] and is
given by:

0G_ e,

n _Z(TE;N)(ArkJTW -G,) (5.22)

where ¢ stands for the emissivity at the wall, the sulpgasi indicates the value at the wall
and the directiom is normal to the wall and points into the gas.sTéxpression, used usually
in neutron diffusion theory, is known as the Maksbhaundary condition [51, 57].
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5.3.5 Rosseland model

The Rosseland approximation has been establish¢di7lnby a method based on a
multiscale expansion in powers of the emissivity[30], the same Rosseland approximation
is introduced for a reduced version of the grey ehaweglecting the time derivative in the
energy balance equation. Compared to the P1 mib@eRosseland approximation introduces
a supplementary simplification by approximating ttagliative intensity using the Planck
distribution [58]. It follows that the grey incideradiative intensity reads:

G,, =40T* (5.23)
The grey radiative flux is expresses as:

3
101" p (5.24)

40
qray = —ED(T“ = -

As shown in equation (5.24), the Rosseland modebwads for radiation losses through the
use of a diffusive source term in the energy eguathrough an additional conductivity
denoted by:

__160T°
ray 3k

The radiation problem thus reduces to a simple gatmoh problem with strongly temperature
dependent conductivity.

(5.25)

5.3.6 Conclusion and discussion

The limitations of the so-called Rosseland appratiom have been extensively
studied in the literature. In general, despite shmaplicity of this model, it predicts nearly
uniform temperatures and neglects directional dégece while assuming that all energy is
directly converted into radiation energy. Theseuaggtions lead to poor numerical results
when simulating industrial furnaces with heateceoty.

On the other hands, the P1 approach requires tuticso of a radiation transport
equation (RTE), and it is based on the assumptiahradiation is continuous throughout the
domain. It works best with participating media. Tiesults of the P1 model are expected to
yield better results inside the furnace with pgrating heated objects considering the modest
calculation effort. Therefore, the one with the &stv computational effort, the P1 model,
should be chosen for the time being. However, éf thmperature distribution is important,
this model, know to be a diffusion model, can yieder-predict radiation and must be
replaced. This will be the subject of further invgations and future works.

Since the IVM method used is shown as an attractisg to solve a coupled heat
treatment problem by numerical simulation. Somelademprovements have been identified,
mainly regarding the radiative heat transfer. Anpraved directional method in the
CIMBLIB library is identified by the work of T. Klozko [67, 68] for future works.
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The natural assumption for a heterogeneous medoiiffluid) is to consider it as a
single fluid with different opacities (absorptioaetficients). Therefore, the effective medium
is obtained using the IVM method and by defining effiective opacity (absorption
coefficients) using an arithmetic mean formulation:

Ky =Kasoig H (a) + K, g A-H (@) (5.26)

We restrict ourselves to the case where the tweits exhibit a high-contrast ration:
one of the component is diffusive and opaque (gudid) whereas the other one is not and is
considered as non-participating medium (fluid palit)s noticed that solving the radiative
transport equation (RTE) in both domains generateslume source term rendered by the
sharp discontinuity of the temperature and the nase properties. This source term is
introduced into the energy equation ensuring theicoous cooling/heating of the immersed
objects.

More details about using the Rosseland approximafmr radiative transfer in
heterogeneous media can be found in [69, 70]. Bwthods are implemented in the CIMLIB
library, but only the P1 model is used in this stuéfor simple configuration inside an
enclosure and in the presence of a heated objechroposed effective opacities approach is
considered as a first attempt. A complete studyntpknto account different objects and
shadowing is a work on progress. The remaindenethapter is structured as follows. In the
next section, we present a 2D test case for valigldahe P1-model equation. In section 4, we
give more simulation and numerical results on fifiecéve opacity of the mixture.

5.3.7 Combined natural convection and radiation in a sgare cavity

One of the most popular benchmark in CFD computatig the laminar flow in a
two-dimensional square cavity with differentiallgdted sidewalls. This test has been widely
used as a benchmark for the validation of numedodes and has been analyzed by a number
of authors [60, 61]. The velocity and the temperataquations are coupled due to the
buoyancy force and solved. Consequently, the floside the enclosure is driven by the
temperature differences. The ratio of these twoptsature differences is a very important
factor to decide the heat transfer and flow charastics of the enclosure.

Here, in the present study, the main focus isioestt to validate the implementation
of the P1-model and to evaluate the influence efrddiative heat transfer inside the cavity.
The problem description and boundary conditionssamvn in figure 13. The left wall is kept
at a constant cold temperatureTgt1000 K, whereas the right wall is kept at a constant high
temperature ofl,=2000 K Other two walls are maintained at adiabatic coowli The
radiation effects are assumed to be negligibl@enfirst study case and active with absorption
coefficients 0f0.2 and5 in the second one. We assume that the fluid ptieiseare to be
constant, except for the density in the buoyancymtewhich allows Boussinesq
approximation. The gravitational acceleration ketaparallel to the isothermal walls.
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Figure 13. Schematic domain and boundary conditions

Radiation effects on convection can be quite ingurtin the context of many
industrial applications involving high temperatusegh as nuclear power plant, gas turbines,
and various propulsion engines for aircraft, messilsatellites, and space technology. éli
al. [71] studied the natural convection-radiationemaction in boundary layer flow over
horizontal surfaces. Hossain and Pop [72] constele effect of radiation on free
convection of an optically dense viscous incompbéssluid along a heated inclined flat
surface maintained at uniform temperature places saturated porous medium. Hossain and
Takhar [73] investigated the radiation effect oe thixed convection flow of an optically
dense viscous incompressible fluid over verticat fllate.

In the present study, we analyzed the combinedtedfieradiation and heat absorption
coefficient on the natural convection flow inside @nclosure [74]. In order to validate the
accuracy of the present implemented solver, thalteesre compared with the numerical
calculations obtained by Fluent [55-75]. The Pramdimber is taken to b8.71 and the
Rayleigh number based on the length of the cawt.1(. Note that the values of all
physical properties and operating conditions (eggavitational acceleration) have been
adjusted to yield the desired Prandtl, Rayleigld Branck numbers and were adapted from
Fluent user guide [75].

Let us remind some dimensionless numbers relevatite coupled heat transfer and
fluid flow. First, the Rayleigh number, a non-dinrs@mal number, is the buoyant force
divided by the product of the viscous drag andrétte of heat diffusion, it is given by:

_ 3
Ra=PIA(, —T) L
MK

(5.27)

where S is the coefficient of thermal expansion of thed|udT = Ty-T. is the temperature
difference between the right hot and left cold wall the figure separated by widthk is the
thermal diffusivity of the fluid,iz the dynamic viscosity and the density of the fluid. It
represents the ratio between the conduction andadireection for a given fluid in a certain
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geometry configuration. Once tiiRa exceeds a critical value, the dominant energysprart
mechanism in the fluid becomes the convection.

The Prandtl numbePr is a dimensionless number representing the ratiohe
kinematic viscosity to the thermal diffusivity offlaid and is an important control variable in
thermal convection. It is defined as:

_ C,M _viscous diffusion rat

Pr =
k thermal diffusion ratt

(5.28)

The division of the Rayleigh number by the Pramdtinber gives the Grashof number, an
interesting dimensionless number in fluid dynamacsl heat transfer that approximates the
ratio of the buoyancy to viscous force acting oftual. It frequently arises in the study of
situations involving natural convection and it igem by:

or= AL LI 2 (5.29)

whereu is the kinematic viscosity.

Finally, the Boussinesq approximation used for maagural-convection flows states
that density differences are sufficiently smallb® neglected, except where they appear in
terms multiplied byg, the acceleration due to gravity. The essencehef Boussinesq
approximation is that the difference in inertianegligible but gravity is sufficiently strong to
make the specific weight appreciably different begw the two fluids. Consequently, the
force term in the momentum equation change into:

(P=P)3==-pB(T-T) g (5.30)

where pyis the constant density of the flowg is the operating temperature, afidis again
the thermal expansion coefficient.

In order to obtain the field of velocities, pressrtemperature and the incident
radiation, the energy equation, the P1l-model ared Nlavier-Stokes equations using the
Boussinesq approximation are coupled and solvedl&meously. Figure 14 and 15 shows at
convergence state, the isotherms and streamlinesnel using a pure natural convection
compared to those obtained by the conjugate coioverddiation problem (absorption
coefficient k=0.2 and k=5).
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Figure 14. Temperature contours: without radiatigerft); with radiationk=0.2 (center);
with radiationk=5 (right)

The classical recirculatory patterns observed aeetd the natural convection in the
cavity. At a low optical thickness (k=0.2), rada@tishould not have that large influence on
the flow. The flow pattern is expected to be simila that obtained with no radiation.
However, for high optical thickness (k=5), the etlie source term becomes more important.
In this case, one single circulation cell was fodnand flow strength increases. With the
increase of natural convection mechanism the flattepn becomes very symmetric and the
temperature distribution becomes more homogeneoala@wn in figure 14 (right).

Figure 15. General streamline pattern: pure cortiet(left); with radiationk=0.2 (center);
with radiationk=5 (right)

The velocity profiles foru, along y=0.5 are shown in figure 16. The numerical
solutions are indistinguishable from the referesakitions. This confirms the validity of the
implemented finite element radiative solver. Thesets show the effect of the radiation
parameter on the velocity fields. It is noticedttimereasing the radiation parameter plays an
important role inside the enclosure and enhancesvéthocity profile. These behaviors are
expected inside a furnace enclosure.
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Figure 16. Velocity profiles foryualong y=0.5

We can conclude from this simple example that tawhacan strongly interact with
convection in many situations. The influence ofiaidn on natural convection was
highlighted and plays an important role due to rehécoupling between the temperature and
the flow fields in enclosures.
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5.4 Applications

The main objective of this last section is to pdavia numerical investigation of
conjugate heat transfer and turbulent airflow ifullkescale industrial furnace. This type of
application allows improvement in the productivityith very low capital investment,
consequently reducing energy consumption. In amditi experimental tests have
demonstrated that the furnace performance may bgowed significantly by design
optimization. A design optimization involves findjthe best geometry of the furnace, which
include the furnace dimensioning, positioning ayyktof the burners, positioning of exhaust
ports, positioning and arrangement of the treatgwts. Because of great complexity of the
problem, the large diversity of shape and large memof parameters variables involved, a
complete analysis is only possible with the aigp@iverful numerical codes and computers.

We can find in the literature several recent wodedicated to the numerical
investigation of combustion processes with diffénerodels [78, 79, 80]. The present work
attempts to provide an additional contribution bydating the heat treatment process inside
an industrial furnace using the IVM approach. THeamtage of the proposed method can be
resumed by the following points:

— The model produces detailed information simultasgoin both domains: the
treated ingots and the surrounding hot air

— Easy for the designer to simulate several diffeograrational situations

— Capable of handling multiple parts in 3-D.

— Inexpensive for the designer to simulate conjugatdlems: conduction in the
solid and convection in the rest of the domaindilyiag one set of equations

— Accurate representation of the fluid-solid integac

— No need for previous experimental tests to dednedransfer heat coefficient
that ensures the heat exchange between subdomains.

However, experiments must be performed in ordeprtwvide better understanding of the
physics involved as well as to produce real datirsg which the model results should be
compared.

5.4.1 Forced and natural convection of conducting solids

In this section, we will propose three numericabmples to illustrate the IVM
approach from heat transfer and turbulent fluidadyits points of view. We consider three
cases:

— cases (a) and (b) the continuous heating of imrdeisgots by forced
convection.

— case (c) considers the air-cooling by natural cotiwe of two heated objects
inside an enclosure.
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The radiation in these examples is considered gibtgi Figure 17 illustrates the
simplified pre-heated furnace geometry, which hascaangular shape, with one ingot (case
a) and two ingots (case b) inside located on theetasurface at arbitrary position. Figure 18
illustrates the air cooling of two heated ingotsairsimplified cold enclosure. The materials
properties affected to each domains, the initiaddittons and the parameters used in these
test are presented in table Il and IV respectively

Domain Temperature °C  Density kgym Heat capacity J/JKg°C  ConductivityW/m°C

Fluid 250°C 1.2 1000 0.02
Solid (s) 50°C 100 1000 175

Table Ill. Material properties for case (a) and (b)

Domain Temperature °C Density kg/mi  Heat capacity JJKg°C ~ ConductivityW/m°C

Fluid 20°C 1.2 1000 0.02
Solid (1) 500°C 100 1000 175
Solid (2) 250°C 100 1000 175

Table IV. Material properties for case (c)

The levelset function is first applied to definadgvositioned the treated objects. The
second step consists in deriving the anisotropaptetl mesh that describes very accurately
the interface between the workpieces and the sadiag air. Recall that the mesh algorithm
allows the creation of extremely stretched elemaltdsg the interface, which is an important
requirement for multimaterial problem with surfaoenductive layers. The additional nodes
are added only at the interface region keepingtimeputational cost low.

23

fluid Fluid movement \

12
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<+ inlet Q
solid

Q

solid

¥

Figure 17. Schematic diagram and boundary condjtaase (a) and (b)

Once the mesh is well adapted along the interfd@e material distribution between
each physical domain can be described by mearsedével set function. Consequently, the
same set of equations; momentum equations, eneggstien, the turbulent kinetic and
dissipation energy equations (k-epsilon model)simultaneously solved over the entire
domain including both fluid and solid regions withriable material properties (see table lll,
and 1V).
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Note also that the interface between the solid thiedfluid is rendered by the zero
isovalue of the distance function; hence the cateuts of the classical boundary conditions
to ensure the heat exchange between the subdoraeenso longer applicable on their
interfaces.

The state of art in the proposed thermal couplimgyssis lies in that the heat transfer
between the solid and the air at the interfaceblegs treated “naturally”, i.e. without the use
or a previous knowledge of any heat transfer coeffit.

The discretization in space for the incompressiidevier-Stokes equations, the heat
transfer equation and the turbulence equationsrf®pned by an unstructured grid stabilized
finite element method. Thus, the numerical osddlz and thermal shocks are well captured
and smooth solutions are obtained.

fluid Fluid movement

(D

(2)
Qsolid Qsol

Y

Figure 18. Schematic diagram and boundary condjtazase (C)

The evolution of the isotherms at different timepst inside the simplified furnace is
illustrated in Figure 19. The hot air is pumpednirdhe left inlet at 2m/s at a fixed
temperature of 1000°C. The air is vented out thretosare through the outlet positioned at left
vertical wall. Standard wall function is applied thre rest of the boundary. The shape of the
treated object is well capture and respected biyagpthe anisotropic mesh adaptation.

The ingots slow down the injected air from the laurand slightly influence the main
air circulation inside the domain. This explaine thfference in the flow pattern between the
two cases.

When the hot fluid passes across the volume ofutrece, it induces a turbulent and
recalculating motion within the geometry. This fedcconvection is caused by the interaction
of the moving stream and the stationary fluid iesiide furnace. The temperature distribution
clearly indicates this expected flow pattern. The movement around the workpieces is
interesting; i.e. it allow studying the influencé different arrangements and positions to
optimize the heat treatment. A number of vortexesvben the objects and the surroundings
can be observed due to the turbulence dissipatidnmaxing between the hot and cold air.
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Figure 19. Temperature distribution at differémte step
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In the next example we consider the air-coolingnbyural convection of the heated
ingots. Natural convection in an enclosed contalreey received a great deal of attention by
research community due to the importance in maigyneering devices. Most of the research
has concentrated on the vertical differentiallytedasquare problem where one side wall is a
relatively hot temperature and the other side vgalit a relatively cold temperature and the
top and bottom of the enclosure are adiabatic,enbgs attention was devoted to the presence
of conduction bodies (except recently, [62, 76).77]

The radiation effects are assumed to be negligiWle assume that the fluid properties
are to be constant, except for the density in theyancy term, which allows Boussinesq
approximation. The gravitational acceleration letaparallel to the vertical walls. Figure 20
shows the evolution of the temperature distribut@n different time steps inside the
simplified enclosure. Initially, the air inside tleaclosure has the same cold temperature and
is at rest. As the air inside becomes heated bguwiion coming from both heated ingots, the
temperature increases and the expected reciraulagipears. Once again, the geometry of the
objects immersed in the enclosure is respectedatree high efficacy of the mesh adaptation
[36, 37, 38].

380.
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Figure 20. Temperature distribution at differéime step

5.4.2 Results and discussion

Three simple numerical computations were presemteésses and illustrate the
general ingredients of the IVM method. Although geometry is simple, we always choose
sharp gradients in the temperature and high disaatyt in the material properties to test the
effectiveness of the implemented methods and ald® tclose as much as we can to the real
industrial cases.

A very important common characteristic of solidtdlilheterogeneous media is still
how to resolve the discontinuity in physical prdjger across their interfaces. In the IVM
method, the level-set function identifies autonaltcthe solid part from the fluid region and
applies the anisotropic mesh adaptation at thafade Conductivities are then calculated
using a harmonic mean formulation [32] in ordeh&mdle the abrupt changes in the material
properties Thus, we automatically well establisé tlontinuity of temperature and heat flux
across the interface.

Also note that the use of high value of the relatinematics viscosity in solid region
would make the velocity components negligibly snigll solving the momentum equations
and hence the no-slip condition on the refinedrfate is satisfied. Therefore, the energy
equation is reduced to transient heat conductiamtan for the solid body, because its
convection terms vanish. The implemented stabilifneite element method (section 2.5) is
well adapted to the IVM approach and shown to lbecéte in capturing the thermal shocks
at the interface. More examples and comparisorts tivé literature are given next.

Concerning the solid domain, we have used the pena¢thod known as Standard
Solid Penalty (SSP) approach, which uses simplynstant high viscosity in the solid region
to mark the solid body without adding extra coriatsa[15]. However, it is also well-known
that the involved flow solver can face some proldemith strongly discontinuous
coefficients. Moreover, the influence of discontigithat means the viscosity ratio between
the solid and the fluid is not clear yet. Sinceasing finite value parameters for viscosity as
an approximation for the infinite values for reallid can lead to penetration from the
surrounding flow into this object. However, thidemal diffusion is mainly related to the
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actual size of viscosity and the time scale foreobisg such perturbations may be much
larger than the actual time interval calculationn@ning up, the combination of the local
mesh adaptation and the use of iterative solvgstiher with the smoothed distribution of the
viscosity across the interface may overcome theswback and lead to good numerical
behaviour.

Since the idea is to investigate how well we carlaee boundary conditions between
two subdomains by volumetric source terms, varibeschmarks, numerical examples and
experimental validation are presented in the negtiens. Simple 2D and 3D benchmarks to
demonstrate the effectiveness of the proposed apprare given in chapter 6. Further
investigations on more complex situations will beeg. The last section is devoted to the
main conclusion and computations for a real indgaisurnace.

5.5 Conclusion

The flow regimes have been simulated by solvinguieneously the coupled flow and
heat transfer processes inside different enclosdresmmersed volume method is introduced
to identify inside each enclosure the surroundimgaad the solid subdomains based on the
levelset approach. Adaptive anisotropic local gefinement was employed for capturing the
sharp discontinuities of the fluid-solid interfacéhe temperature variation across the
interface was calculated assuming heat flux corttintor all variables in the computational
domain containing solid and fluid, a parametriceistigation has revealed that the harmonic
formulation for the thermal conductivity providedtter predictions against the experimental
data available. The IVM approach was tested on twmnerical examples showing a
promising tool for simulating thermal coupling aflisls and fluids. The volumetric radiation
was introduced and detailed. Two simple models iamplemented and tested. Various
benchmarks and more complex numerical examplesgmaen in the next chapter. The
numerical results of forced turbulent convectiosidie industrial furnace are also included.
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Immersed volume technique for solving natural convection, conduction and
radiation of a hat-shaped disk inside an enclosure
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Abstract

An immersed volume method for time-dependent, three-dimensional, conjugate heat transfer and fluid flow
is presented in this paper. The incompressible Navier-Stokes equations and the heat transfer equations
are discretized using a stabilized finite element method. The interface of the immersed disk is defined and
rendered by the zero isovalues of a level set function. This signed distance function allows turning different
thermal properties of each component into homogeneous parameters and it is coupled to a direct anisotropic
mesh adaptation process providing a better capturing of the interface without affecting the initial background
mesh. Thus, a single set of equations is solved for both fluid and solid with different thermal properties
which can reduce the computational costs. On the other hand, using stabilized finite element method for the
Navier-Stokes and the convection-diffusion equations allows the control of spurious oscillations and thermal
shocks yielding very accurate results. The proposed method demonstrates the capability of the model to
simulate an unsteady three-dimensional heat transfer flow of natural convection, conduction and radiation in
a cubic enclosure with the presence of a conducting body (inconel 718). Results are assessed by comparing
the predictions with the experimental data.

Key words: Stabilized Finite Elements, natural convection, heat conduction, radiative transfer, immersion
volume technique

1. Introduction

The development of efficient methods to understand and simulate conjugate heat transfer for multi-
components systems is one of the most engineering challenges and still a need for industrials, especially in
the case of the heat treatment of high-alloy steel by a continuously cooling. Usually, the heat treatment
sequence involves heating to a high temperature followed by a controlled cooling so as to enhance the
particular microstructures and the combinations of properties such as hardness, toughness and resistance.
The most important part for hardening steel results from the cooling of the body in a liquid or a gas
that rapidly extracts heat. A good description of the operations performed during heat treating of steel is
available in [1] and [2]. It was stated that the rate of cooling in the heated disk depends on the heat removal
characteristics of the cooling medium (e.g. air), the thermal characteristics of the alloy (e.g. inconel 718),
and the section thickness of the disk. Fully hardened steel can be only obtained at a sufficiently high rate of
cooling conditions. In practice, industrials have to carry out many experimental tests to attain this critical

*
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rate of cooling. Hence, resorting to numerical experiments is expected to save both time and economical
resources. A first step to design an industrial numerical tool for the simulation of involved quenching
processes is the modelling of the transient air cooling of a heated body inside an enclosure. The present
paper aims at presenting a direct method to study and analyse all the phenomena taking place in such a
complex configuration, from a fluid dynamics and heat transfer point of view. We especially insist on the
representation of the physical domains (air and solid in the present case), and how to deal with these domains
both in terms of accuracy and computational costs. In recent years, there has been increasing interest in
studying numerically a variety of engineering applications that involve coupling between different physical
phenomena [3, 4, 5]. Most of the time, such analyses may be accomplished by dividing the global domain
into several local subdomains over each of which a local model (equation to be solved) can be analyzed
independently. The global solution can then be constructed by suitably piecing together local solutions
from individually modelled subdomains. However, during the assembly, it is often too cumbersome, or even
infeasible, to coordinate the meshes over separate subdomains. Many alternative approaches have been
applied for multi-phase flows problems and are available in the literature, such as the ghost-fluid method
introduced by Fedkiw et al. in [6], the immersed boundary method [7, 8], the domain decomposition [9],
the X-FEM [10]. In general, they introduced and improved enrichment functions for material interfaces and
voids by means of the level set representations of surfaces. Nevertheless, when using all these techniques,
one still need to know the value of the heat transfer coefficients between the two domains which ensures, as a
Neumann/Dirichlet boundary conditions, the heat transfer at the air/solid interface. Frequently, industrials
perform many experimental tests to obtain such heat transfer coefficients. But, when dealing with a large
diversity of shapes, dimensions and physical properties of these metals to quench, such operations can
become rapidly very costly and time consuming.

In the present study, the proposed method aims to overcome this drawback by considering a single grid
for both air and solid for which only one set of equations need to be solved. This technique, known as
immersed volume method (IVM), makes the use of a signed distance function (level-set function method
[11, 12]) that allows turning thermal properties of each component into homogeneous parameters. Thus, by
solving the whole domain in a fully monolithic way there is no need of empirical data so as to determine the
heat transfer coefficient. The heat exchange at the interface is replaced naturally by solving the convective
fluid in the whole domain. Additionally, solving the radiative transport equation (RTE) in both domains
generates a volume source term rendered by the sharp discontinuity of the temperature and the materials
properties. This source term is introduced into the energy equation ensuring the continuous cooling of
the hat shaped disk. As a last features of this method, we make the use of our advanced research in the
anisotropic mesh adaptation to adapt the interface between two different materials. The proposed mesh
generation algorithm allows the creation of meshes with extremely anisotropic elements stretched along
the interface, which is an important requirement for conjugate heat transfer and multi-component devices
with surface conductive layers [13, 14]. Numerically, the communication between the solid and the fluid
is obtained naturally without any further assumption and force modelling. Many research efforts have
been devoted to analyze and improve the accuracy, stability, conservation and robustness of the immersed
boundary method. This is obviously required when following an interface all along the computations. In
our context, the solid, the heated disk, is considered fixed and, consequently, a preadapt meshing is totally
affordable. All these cited techniques are explicitly replaced by a locally refined mesh that can, at certain
degree, generate a conforming mesh with such low cost.

It is importat to mention that the present approach has already been introduced in [15], [16] and in [17],
where the strategy is similar but the context is clearly different. In [15], the authors have proposed to use
the metric properties of the distance function for simulating two bodies in contacts in a forging process.
Details about the formulation of the contact condition, mesh adaptation as well as the computation of the
distance function are given. On the other hand, in [16], the use of this method was highlighted by several
numerical examples such as extrusion and industrial mixing processes. In [17], this method was adapted to
the context of the numerical modelling of recrystallization in a polycrystalline material, the authors illustrate
the ability of this approach to accurately describe nucleation and grain growth. Here, we intend to apply
the same strategy for simulating conjugate heat transfers and fluid flows inside an enclosure in the presence
of a conducting body.

2



From a numerical point of view, the sudden cooling of hot solid immersed inside a gas fluid is at the origin
of so-called thermal shocks which cause spurious oscillations in the solution. In order to circumvent this
issue, a stabilized finite element method is used for both Navier-Stokes [18, 19, 20, 21] and the convection-
diffusion equations [22, 23, 24]. As far as the radiative terms are concerned, the radiative transfer equation
is solved separately using the so-called P-1 method [25].

The outline of the paper is as follows: first, we present the time-dependent, three-dimensional, conjugate
heat transfer and fluid flow problem. Section 2 presents the discretization as well as the stabilized finite
element method for solving these equations. A detailed description of the immersed volume method using
both the level set function and the anisotropic mesh adaptation is given in section 3. In section 4, the
numerical performance of the presented method is demonstrated by means of 2D test cases and a 3D real
industrial problem. Comparisons with the experimental results are presented. Finally, conclusions and
perspectives are outlined.

2. Governing equations

This section is devoted to the mathematical formulation of the 3D heat transfer and fluid flow around a
hat-shape disk inside an enclosure. For illustration, figure 20 shows the geometry and the schematic diagram
of the treated problem. The governing equations are considered to be three-dimensional, unsteady and
incompressible. Thermo-physical and mechanical properties are assumed to depend on both the temperature
and the relative position in the computational domain, in fact, discontinuous. Indeed, as mentioned in
introduction, the same computational domain is used to represent both gas and solid. More details about the
key feature of the proposed monolithic resolution are presented further. The computation of the heat transfer
and the fluid flow requires to solve simultaneously the Navier-Stokes and energy equations. Moreover, in
order to take into account the radiation effects, the radiative transfer equation has to be solved. Hence, the
resulting governing equations are the following:

i) the dynamic of the flow is given by the Navier-Stokes equations including the Boussinesq approximation:

V.-u=0 in
p(Ou+u-Vu) = V- (2ue(u)—pla) =poB(T —To) g in (1)
u=0 in 00

where u is the velocity vector, p the density, p the pressure, T the temperature, u the dynamic viscosity,
e(u) = (Vu+tVu)/2 the deformation-rate tensor, py and Tj reference density and temperature, 3 the
thermal expansion coefficient and g the gravity vector.

ii) the heat transfers are governed by the energy equation:

pCo(O T +u-VI) -V -AVI)=f-V.-qr inQ
wall in 99 (2)
T(x,0) = Tp(x) in 99

where p is the density, C}, the specific heat, A the heat conduction coefficient of the whole medium. f
is the external source term and q, is the radiative heat flux that has to be computed.

T(x,t) =

ili) the contribution of the radiations to the heat transfers is assessed using the radiative transfer equation
(RTE) coupled with the so-called P-1 radiation method. This latter enables to simplify the RTE equation
so that the incident radiation is computed by solving the following system:

1
V- ( VG) — kG = 4rkeT* in Q
3K

(3)
0G, 3Ky 4 .
on " 22—cy) (40T, — G,) in 02
3




where G is the incident radiation, x is the mean absorption coefficient which is calculated using the
Bouger law [26], o is the Stefan-Boltzmann constant and €,, denotes the emissivity of the wall surfaces.
Under grey gas assumption (see [25]), the divergence of radiative flux from equation (2) that accounts
for the volumetric radiation is given by:

~V gy = k(G — 4koT?) (4)

3. Immersed Volume Method

The immersed volume method is based on solving a single set of equations for the whole computational
domain and treating the different subdomains as a single fluid with variable material properties. This
section presents the complete description of the method, which in turn is structured into three subsections:
immerse and define the heated object using the level-set function, apply the anisotropic mesh adaptation in
the vicinity of the interface solid-air and mix the thermo-physical properties for both domains.

3.1. Lewvel set approach

In many two-phase flows encountered in industrial applications, multi-material properties, such as density
and viscosity, vary deterministically across the interface. This discontinuity in the properties makes such
flows much involved to model. In particular, simulating conjugate heat transfer for which the three modes,
convective, conductive and radiative heat transfer interfere simultaneously is a challenging task. Here, the
material distribution between each physical domains and the refined interface are described by means of
the so-called level set method. In practice, a signed distance function is used to localize the interface of the
immersed body and initialize the desirable properties on both sides of this latter. Recall that in our context,
the solid being fixed, the interface is static. Let ¢, Q5 and I'; be respectively the fluid domain, the solid
domain and the interface. They verify:

QfUQS:Q and QfﬂQSZFZ‘ (5)

For each node of the computational domain €2, the level set function o which is the signed distance from
the interface reads:
>0 ifxe Qf,

alx) =40 if x ey, (6)
<0 ifxe,.

The physical and thermodynamic properties in the domain are then smoothed and calculated as a function
of «a; for instance, the mixed density is calculated using a linear interpolation between the values of the
density in the fluid and the solid:

p=prH(a)+ps(1 - H()) (7)

where H is a smoothed Heaviside function given by:

ifa>e¢

(1+a+1sm (m)) if o] < e 8)
g T 13

ifa< —¢

H(a) =

S o=

where ¢ is a small parameter such that ¢ = O(h), known as the interface thickness, and h is the averaged
mesh size in the vicinity of the interface. Further details about the algorithm used to compute the distance
are available in [15].



3.2. Anisotropic mesh adaptation

Accurate calculation of the temperature distribution along the air-solid interface is critical for a correct
modelling of industrial experiments. When the heat flux is directed through the interface, the difficulty arises
due to the discontinuity of the properties of the material across the interface together with the presence
of high gradients of temperature. If this latter is not aligned with the element edges, it may intersect the
element arbitrarily such that the accuracy of the finite element approach can be compromised. In order to
circumvent this issue, the level-set process is thus coupled to an anisotropic mesh adaptation as described
in [14]. The idea of this method is to pre-adapt the mesh at the interface. The mesh becomes locally refined
which enables to sharply define the interface and to save a great number of elements compared to classical
isotropic refinement. This anisotropic adaptation is performed by constructing a metric map that allows
the mesh size to be imposed in the direction of the distance function gradient. Let us briefly described the
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(a) initial mesh (b) intermediate mesh (c) final mesh
Figure 1: Mesh adaptation process in the vicinity of the interface.

main principles of this technique. First of all, one has to resort to a so-called metric which is a symmetric
positive defined tensor representing a local base that modify the distance computation, such that:

x/[w = VX M-x, <xy>='xMy. (9)

The metric M can be regarded as a tensor whose eigenvalues are related to the mesh sizes, and whose
eigenvectors define the directions for which these sizes are applied. For instance, using the identity tensor,
one recovers the usual distances and directions of the Euclidean space. In our case the direction of mesh
refinement is given by the unit normal to the interface which corresponds to the gradient of the level set
function: x = Va/||Va||. A default mesh size, or background mesh size, hq is imposed far from the interface
and it is reduced as the interface comes closer. A likely choice for the mesh size evolution is the following:

ha
h=9q 2h4(m - 1)
m e

(10)

Eventually, at the interface, the mesh size is reduced by a factor m with respect to the default value hg.
Then this size increases until equalling h, for a distance that corresponds to the half of a given thickness e.
The unit normal to the interface x and the mesh size h defined above, lead to the following metric:

0 if [a(x)| > e/2

1
M=C(x®x)+-—1 with C= 1 1 . 11

where [ is the identity tensor. This metric corresponds to an isotropic metric far from the interface (with a
mesh size equal to hg for all directions) and to an anisotropic metric near the interface ( with a mesh size

)



equal to h in the direction x and equal to hg in the others). In practice, the mesh is generated in several
steps using, through the CIMLIB library, the MTC mesher and remesher developed by [13]. Further details
on the anisotropic mesh generation can be found in [14]. The proposed mesh generation algorithm works
well for 2D or 3D geometries. It allows the creation of meshes with extremely anisotropic elements stretched
along the interface, which is an important requirement for conjugate heat transfer and multi-component
devices with surface conductive layers. The grid is only then modified in the vicinity of the interface which
keeps the computational work devoted to the grid generation low. Note that the proposed method can easily
handle arbitrary geometries and the mesh generated is not sensitive to small geometries.

Figure 1 illustrates some steps of the refinement process for a 2D square body immersed in a cavity. At
the beginning of the adaptation, the immersed surface of the small squared body is not aligned with the
mesh. Several steps are necessary to pre-adapt the interface between both adjoining materials. As shown
in figure 2 which presents a close-up on the interface zone at the end of the anisotropic adaptation process,
the mesh has been gradually refined when approaching the interface. Consequently, only additional nodes
are locally added in this region, whereas the rest of domain keeps the same background size. Note also,

TASLA NS
\/\/‘\ \/\\J\\
| N N <

Y

TSI
Qﬂl

AVAVAVAYAVAYav

Figure 2: Zoom on the interface zone after anisotropic adaptation

when using an anisotropic mesh, with elements stretched in a ’right’ direction, one could allow not only to
save a lot of elements but also to well describe the geometry in terms of curvature, angles, etc. Contrary to
others techniques, this promising method can provide an alternative to body-fitted mesh for very complex
geometry.

3.83. Mixing laws

The geometry and thermodynamic properties of the solid domain are characterized by the signed distance
function. The location of the air is then deduced by complementarity and does not require the introduction
of an additional distance function. The air-solid mixture can now be treated as a single fluid whose effective
properties are defined using mainly linear interpolations between their coefficients as previously evoked in
expression (7). The smoothed Heaviside function defined in (8) enables to assign the right properties on
each side of the interface. The global material properties introduced in systems of equations (1)-(4), such
as density, initial temperature, dynamic viscosity, heat capacity and emissivity, are defined by the following

o p = prH(a) + pu(1 - H(a))
= 1 H (@) + (1 — H(a))
6Cy = (07 CprH(0) + puCpall — H()) (12)
$CyT = prCosTrH(@) + p.CyoTu(1 — H(a))
K=k H(a) + k(1 — H(a))

The use of linear interpolation for the thermal conductivity would lead to inaccurate results. In order to
handle this abrupt changes at the interface, we use instead the harmonic mean formulation as suggested by

6



Patankar [27]:

\ <H(a> L1 —H(a))‘l (13)

s e

This formulation basically reflects the requirement that diffusion flux should be the same even when cal-
culated by different representative subdomains. Concerning the solid domain, we have used the penalty

Properties Air  Inconel 718
density p [kg/m? 1.25
heat capacity Cp [J/(kg K)] 1000
viscosity p [kg/(m s)] 1.9e-5 -
conductivity A [W/(m K)] 0.0262
emissivity e - 0.7

Table 1: Properties of materials.

method known as Standard Solid Penalty (SSP) approach, which uses simply a constant high viscosity in
the solid region to mark the solid body without adding extra constraints [28, 29].

3.4. The main objectives

It is noticeable that by immersing the body inside the volume, the interface I'; is no more explicitly
known and the related surface integrals are no more applicable. The interface is only defined by the zero
level of the distance function. In a gas quenching, the domain of temperatures in such heat transfer by
radiation is of importance only in an early stage of the quenching process. Only heat transfer by conduction
within the metal and by convection between the metal to be quenched and the quenching fluid is of interest
in the present paper. The convective thermal transport from a surface to a fluid in motion is known to be
related to the heat transfer coefficient h., the surface-to-fluid temperature difference, and the wetted surface
area I'; in the form:

¢= / he (T — Texy) dT, (14)
T

where Teyt is the averaged temperature of the surroundings; and the radiative heat transfer still at the
interface

/ oe (T* — Tiy) dT, (15)

r;

where o is the Stefan-Boltzmann constant and € is the emissivity.
Once the object is immersed inside the computational domain using our technique, the need of geometric
boundary conditions vanishes and is replaced by the zero level of the level set function. Thus, the boundary
conditions (14-15) at the solid’s interface are no longer applicable. Our alternate approach consists in
simulating the conjugate heat transfer by solving the coupled problem (1)—(4) for both the surrounding
air and the heated object. We emphasize that the computation of the heat transfer coefficient h. can be a
difficult task since it needs experimental data and often requires to solve inverse problem. It can be therefore
a limiting issue for practical applications when one needs to change the geometry of the object, the physical
parameters, the number and the position of the objects, the surrounding fluid (air, water, etc). On the other
hand, our approach can be apply to any complex problem since it only requires the material properties of
the different media.



4. Stabilized Finite-Element method

In this section, we describe briefly the Galerkin finite-element approximation and the corresponding
stabilization methods for the resulting discrete system of equations (1)-(4). Based on a partition 7 of
Q into set of N, elements K, the functional spaces for the velocity V := (Hé (Q))nSd and the pressure
P := C°(Q) N L(Q) are approached by the following finite dimensional spaces spanned by continuous
piecewise polynomials:

Vi = {we (HH9)"™" | wx € PHK)"™, VK € T, }

16
Py = {pe COQ) NL3(Q) | px € PM(K), VK € T;} "
The weak formulation of the incompressible Navier-Stokes equations reads:
Find u € V}, and p € P such that:
Yw € Vi, ¢ € Pr, B(uju,p;w,q) =0 (17)

B(viu,piw,q) = p (0, w) + p (v - Vu,w) + (2ue(1) : 6(w)) — (. V - w) — (f, W) + (V- u,)

where f is the given force vector. It is well know that the classical finite element approximation for the
flow problem may fail because of two reasons: the compatibility condition known by the inf-sup condition
or Brezzi-Babuska condition which required an appropriate pair of the function spaces for the velocity and
the pressure [30, 31, 32, 33, 24] and when the convection dominates [18]. Therefore, we employ stable finite
element formulation based on the enrichment of the functional spaces with space of bubble functions known
as Mini element [34, 35, 36]. The special choice of bubble functions enables us to employ static condensation
procedure giving rise to a stabilized formulation for equal-order linear element. A detailed description on
the implementation of the finite element solver using the P1+/P1-based mixed finite element method can be
found in [37, 28, 38].
Equations (2) and (3) can be represented by a single scalar transient convection-diffusion-reaction equa-
tion which reads:
Op+u-Vo+V (aVe)+ro=f (18)

where ¢ is the scalar variable, u the velocity vector, o the diffusion coefficient, r the reaction coefficient
and f a source term. The solution strategy for solving these equations is similar to that used for the
equations of motion. Again, the spatial discretization is performed using approximation spaces. Thus, the
Galerkin formulation is obtained by multiplying these equations by an appropriate test functions, applying
the divergence theorem to the diffusion terms and integrating over the domain of interest. Following the
lines on the use of stabilisation methods for transient convection-diffusion-reaction equations as discussed
in [24, 39], the stabilized weak form of equation (18) reads:

Find ¢ € S}, such that, Yw € W,

(Orp+u-Vo,w) + (aVe, Vw) + (re, w)

+ Z (R(#), Tsuraut - V) e + Z (R(¢); scrat - Vw) o = (f,0)
K K

(19)

streamline upwind discontinuity-capturing

where S;, and W), are standard test and weight finite element spaces (the scalar counterpart of the vector

space defined in (16)) and R(yp) is the appropriate residual of equation (18). As shown in equation (19),

two additional stabilizing terms were introduced; the first controls the oscillations in the direction of the

streamline (SUPG) [18, 40] and the other controls the derivatives in the direction of the solution gradient

(SCPG) [41]. This can improve the result for convection dominated problems while the shock-capturing
8



technique precludes the presence of overshoots and undershoots by increasing the amount of numerical
dissipation in the neighborhood of layers and sharp gradients. The evaluation of the Tgype and Tscpg
stabilizations terms follows the definition described in [18, 41, 42]. The time derivatives are approximated
by the Euler forward difference scheme.

The algebraic problems resulting from the finite element formulation are assembled and solved using
the conjugate residual method associated to the incomplete LU preconditioner from the PETSc (Portable
Extensive Toolkit for Scientific Computation) library. A master-slave parallel strategy was used [38, 12],
involving SPMD (Single Program, Multiple Data) modules and the MPI (Message Passing Interface) library
standard. The computations of the 3D conjugate heat transfer have been obtained using 8 2.4 Ghz Opteron
cores in parallel (linked by an Infiniband network).

5. Validation for 2D cases

In this section, we want to validate the accuracy and the efficiency of the immersed volume method over
relatively simple 2D test cases. All the numerical simulations were carried out by using the CIMLIB finite
element library. This C++ library, which is highly parallel, is developed at CEMEF by the team of Coupez
and Digonnet (see [38]). The three first simulations are quite academic. The results obtained with our code,
referred as IVM, are then compared with those obtained either by analytical solution or by other approaches.

5.1. A one-dimensional example

In this example, already presented and validated in [5], we consider a simple one-dimensional domain
with two different materials (fluid and solid). The objective of this test is to check the formulation and
implementation of the proposed method by comparing results to the exact solution. The availability of the
analytical solution provides a rigours framework for assessment of solution accuracy. The authors, as in
here, have described different aspects related to the numerical approximation of thermal coupling between
a fluid and a solid by proposing two alternatives to treat the interface coupling. For mode details about the
proposed algorithm and their interesting results, consult [5]. The computational domain is split into two
subdomains Qp = [—1,0] and Qg = [0,1]. The distribution of the conductivities, presented in figure 3, is

1

— y=100

0.75 b

I I
E)1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Figure 3: Distribution of thermal conductivity in each subdomain.

given, for both subdomains, by:

1—e™
Ap = ——————
1—e™7 +vyer”
(20)
1—e 7
A= —
1—e™7 4 ye®
where 7 is a measure of the boundary layer width. Dirichlet boundary conditions, namely T'(z = —1) = 1
and T'(x = 1) = —1, are applied at both extremities while zero Neumann conditions are applied everywhere

else. Subject only to these boundary conditions, the problem can be considered as one-dimensional case for



which the exact solution takes the following form:

1 1—¢e7
1 1—e™®
T =35 (‘f - 1_>

By applying the IVM method, the level-set function identifies automatically the solid region from the
fluid region and then applies the anisotropic mesh adaptation at the interface. Figure 4 shows the resulting

AVANAVAVANAN, /BN

(21)

Figure 4: Anisotropic adapted grids. Top: coarse grid with 10 elements in each subdomain. Bottom: fine grid with 20 elements
in each subdomain.

unstructured meshes which consists of 10 and 20 elements along the x-direction in each subdomain. The
distributions of the temperature along the x-axis are presented in figure 5. The numerical solutions are

1

— analytical
- IVM n=20
IVM n=10

0.51 N

- | 1 L
-11 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
X

Figure 5: Finite element solution obtained using the IVM with anisotropic adapted meshes of 10 and 20 elements and compared
with the analytical solution.

indistinguishable from the analytical solution. This confirms the accuracy of predictions and ability of the
code to deliver the right solution of this multi-material problem. Inspired by the reference, we have solved
this problem again using three different unstructured meshes of 10, 20 and 40 elements, adapted isotropically
near the interface. As expected, some differences can be observed in particular near the interface when using

1

T — analytical
I - n=40
.. n=20
0.5F TImeag X ---n=10
o
-0.51 T B
-1 Il Il Il Il i i —
-1 -0.75 -0.5 -0.25 )(% 0.25 0.5 0.75 1

Figure 6: Finite element solution obtained using the IVM with isotropic adapted meshes of 10, 20 and 40 elements and
compared with the analytical solution.
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coarser meshes (figure 6). Whereas as shown previously in figure 5, the IVM method gives much better results
in the case of a coarse discretization. The reason for this behaviour was pointed out in previous section and
it is due to the use of extremely anisotropic elements stretched along the interface, which is an important
requirement for conjugate heat transfer with surface conductive layers.

5.2. Conduction and radiation heat transfer

In this example, circular and square solids, initially at a temperature of T' = 1000°C', are cooled in
presence of air at atmospheric conditions. The cooling process is mainly due to the radiative heat transfer
between the hot surface of the bodies and the air. High temperature gradient appears at the interface and a
conduction heat transfer between the core and the surface is established leading to the cooling of the whole
body. We compute the cooling for both solids using two different methods. The first one, the classical
approach, consists in treating the solids as single entities (cf. figures 7(a) and 7(c)). The radiative exchange
with the surrounding air is computed by the means of the boundary conditions and the use of the heat
transfer coefficients (14-15). The second approach, referred as IVM, consists in enlarging the computational

(a) Single disk
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(d) Immersed square

Figure 7: Computational domains for each case and each method.

domain so as to compute the heat transfer in both air and solid domain. The bodies are therefore immersed
inside a square cavity filled by the air. The remeshing process coupled to the level set function enables
to capture accurately the air-solid interface as shown in figures 7(b) and 7(d). The radiative exchange
is naturally taken into account inside the equation without using additional heat transfer coefficients.
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Figure 8: Temperature evolution of a circular body for different emissivity.

Figures 8 to 10 display the distribution of the temperature at different locations inside the solid body and
for different emissivities. As can be seen, the agreement is generally good for all stations. However, far from
the center and close to the interface, slight differences in the solution are observed. We suspect that the
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Figure 9: Temperature evolution of a square body for different emissivity.
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Figure 10: Temperature evolution of a square body with ¢ = 0.8 at different locations.

main discrepancy could be due to the use of the P-1 radiation model which in general neglect the directional

influence and known to be a little bit diffusive. However, the approach of this model is relatively simple and
computationally cheap.

5.3. Enclosed square body in a differentially heated 2D square cavity

This test has been widely used as a benchmark for numerical methods and has been analyzed by a
number of authors ([43], [44], [45], [46], [47]). The velocity and the temperature equations are coupled due

Adiabatic
No slip
L

T, No slip

No slip
No slip
~

L2

No slip
Adiabatic

Figure 11: Enclosed square body in a differentially heated 2D square cavity: problem set-up.

to the buoyancy force and solved in the presence of a conducting body placed in the centre of the enclosure.

Consequently, the flow inside the enclosure is driven by two temperature differences: the first across the

enclosure and the second caused by the squared body. The ratio of these two temperature differences,

the thermal conductivity ratio and the heat capacity ratio are very important factors to decide the heat

transfer and flow characteristics of the enclosure. Many authors investigated these ratios and the effects of
12



Rayleigh numbers on variations of streamlines, isotherms and the averaged Nusselt numbers. More details
can be found in [46] and [48]. Here, in the present study, the main focus is only restricted to evaluate the
performance of the IVM method in terms of multi-domain representation.

The problem description and boundary conditions are shown in figure 11. The left wall is kept at a
constant high temperature of T}, whereas the right wall is kept at a constant low temperature of T,.. Other
two walls are maintained at adiabatic condition. The radiation effects are assumed to be negligible. We
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Figure 12: Distribution of isotherms for the conducting body for different Rayleigh numbers: \* = 0.2, (a) Ra = 103; (b)
Ra = 10%; (c) Ra = 10%; (d) Ra = 108 Top: reference solutions. Bottom: present work.

assume that the fluid properties are to be constant, except for the density in the buoyancy term, which
allows Boussinesq approximation. The gravitational acceleration is taken parallel to the isothermal walls.
The solid conducting body placed at the centre of the enclosure with thermal conductivity As. The Prandtl
number, Pr is taken to be 0.71 corresponding to air. The thermal conductivity ratio A* = X\;/Ay is taken
to be equal 0.2 and 5. Rayleigh number varies from 103 up to 10°. All these given values were adopted
from [49]. In this reference, the authors have investigated also the influence of the angle of inclination of
the cavity. Results of their studies are detailed in [49]. By applying the IVM method, the level-set function
identifies automatically the solid square body from the fluid region and then applies the anisotropic mesh
adaptation at the interface. As noticed in the given reference, when the A* = 0.2, the thermal conductiv-
ity of the fluid is 20 times larger than that of heat generating conducting body, consequently the value of
maximum temperature in the enclosure decreases slightly with increasing Rayleigh number. The calculated
Nusselt number for Ra = 10° is equal to 4.633 which is in good agreement with the values of [50, 46, 51].
The isotherms obtained from the present calculation for different Rayleigh numbers are shown in figure 12
and compared with results obtained by [49], showing good agreement between them. Same computations
have been repeated using different thermal conductivity ratio, \* =5 (see figure 13). In this case also, good
agreement has been obtained by comparing the results with those available in [48] and [49]. Tt is noticed that
with higher values of \*, better conductive heat transfer occurs within the squared body and the isotherms
are more clustered near the hot and cold walls.
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Figure 13: Distribution of isotherms for the conducting body for different Rayleigh number: \* = 5, (a) Ra = 103; (b)
Ra = 10%; (c) Ra = 10%; (d) Ra = 10%. Top: reference solutions. Bottom: present work.

5.4. Mixed convection in a plane channel: the Poiseuille-Bénard flow

In this section, we want to validate the numerical performance of the immersed volume method over a
common benchmark involving two-dimensional thermally coupled flows. This test, known as the Poiseuille-
Bnard flow, consisting in a channel flow between two infinite parallel plates is frequently used for validating
unsteady coupled heat transfer. Both forced and natural convection are present and the limiting flow is
time-dependent.

5.4.1. Problem setup

It mainly consists of a two-dimensional laminar flow in a horizontal channel suddenly heated from below
under conditions which result in a thermonconvective instability. This problem was solved in [52] as a
benchmark for open boundary flows using a finite difference method and a fine grid. It has been extensively

I.=0
y = H = e e e g e e e e e e e e )
? w) )
y<bleel’leno-nono-on"?e i .k iiiioo-emiem e ko e o > o o o o e e
T,=1
el ) A 17 -
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lj T,=0 (at =0) ‘ 1
y=H= :
W ) 2H
T,=1 (at t=0) ‘ ;

Figure 14: Problem definition

14



used by other researchers because of its growing interest in many applications and engineering problems
such as the fabrication of microelectronic circuits using the chemical vapour deposition process [53, 54].

Figure 15: Left: Meshes for single domain and multi-domain cases. Right: close-up on the interface between fluid and solid for
the multi-domain case.

Here in our study, two test cases are considered to lead this validation. For both of them, a rectangular
enclosure is regarded. However, in order to apply the IVM approach, the domain is enlarged by replacing
the top and bottom walls by a solid body (see figure 14). The imposed boundary conditions used in the
classical approach are then replaced by two highly conductive solid bodies initially taken at the required
temperature. The results obtained using the classical approach with boundary conditions; the IVM method
and the reference solutions [52] are then plotted on both domains and compared one to another.

Our purpose is then to first validate the finite element implementation of the coupled problem by com-
paring our prediction to the given reference, and second, to assess the effectiveness of the IVM method on
an extended domain using thick horizontal walls. We expect such conclusions from the following numerical
experiments:

i) The IVM method yields same results as the classical approach from a fluid dynamics, convective flow
and heat transfer point of view;

ii) The proposed approach seems promising to simulate multidomain flows and to replace the use of
imposed boundary conditions by corresponding conductive solid bodies.

Several experimental and numerical studies have been carried out on natural/forced convection heat transfer
in enclosures under boundary conditions; however, studies about partially divided enclosures are rarely inves-
tigated. Such applications range from cooling of electronic devices or industrial workpieces, jet impingement,
enhancement of room air, heat exchanger design and many others [55, 56, 57, 58].

The proposed approach seems to be completely suitable for simulating such multi-material problems. It
first computes the level set function that identifies automatically the solid part from the fluid region and
then applies the anisotropic mesh adaptation at the interface. Thus, a single set of equations (1) is solved
for the whole computational domain by treating the different subdomains as a single fluid with variable
material properties. Figure 14 shows the two diagrams of the calculation domain and boundary conditions.
The first domain consists of the 2D horizontal channel occupying the domain [0, 16] x [0,1] and the second
one of [0,16] x [0,2]. A parabolic inlet velocity profile is prescribed at = 0, whereas the outlet is left
free. The top and the bottom walls are respectively maintained at temperatures T, and T} in the classical
approach (top of figure 14), whereas, for the IVM method, the two additional solid bodies are initially taken
at temperature T, and T}, (bottom of figure 14). Note also that the fluid in the channel is initially linearly
stratified in temperature and is flowing with a parabolic velocity distribution.

At solid-fluid interfaces, conductivities are calculated using a harmonic mean formulation [27] in order
to handle abrupt changes in the material properties. Thus, we automatically well establish the continuity of
temperature and heat flux across the interface. The temperature gradient inside the solid walls is extremely
low due to the use of high thermal conductivity (A = 106).

Moreover, setting the relative kinematics viscosity very high value in the solid regions satisfies the zero
velocity in these regions and hence the no-slip condition on the interface is also satisfied. Therefore, the
convective terms in the energy equation drop out and the equation reduces to the transient conduction
equations in the solid. The stabilized finite element methods are employed to discretized and solve the
coupled heat transfer inside the enclosure.
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Figure 16: The temperature evolution at the mid-height of the duct compared with the calculations of Evans and Paolucci.

The aim of this numerical test is not to study the effect of conducting horizontal walls in terms of
thickness and conductivity ratios, it is more to analyse the general behaviour of the solution on extended
domains. The radiation effects are assumed to be negligible. We assume that the fluid properties are to
be constant, except for the density in the buoyancy term, which allows Boussinesq approximation. The
gravitational acceleration is taken perpendicular to the solid walls.

5.4.2. Analysis of the results

Calculations were carried out using a 10 x 40 linear triangular elements unstructured mesh and a time
step is chosen equal to 0.001 as in [59] to capture the physics accurately. The Reynolds number Re is taken
to be equal to 10, the Froude number Fr is fixed at 1/150 and the Peclet number Pe is 20/3. For such
values, taken from [52], the ratio of forced to natural convections forces is small, the resulting flow consists
of transverse travelling waves. In the above definitions, v and « are the kinematic viscosity and the thermal

diffusivity respectively, G is the coefficient of volume expansion and g is the magnitude of the gravitational
field.

Figure 17: Comparison of the isotherms and the streamlines between the classical approach and the IMV method.
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The time history of the temperature T', captured at a mid-height of the duct five channel heights down-
stream of the entrance (5,0.5), is shown in figure 16 and compared to a one period evolution from [52].
The agreement between the two calculations shows that the present coupled solvers accurately predicts the
temporal behaviour of the temperature. The temporal period of oscillation was predicted by the highest

Figure 18: Comparison of the velocity components between the classical approach and the IMV method.

resolution calculation of Evan and paolucci to be 1.306, which is 3.3% less than that predicted by the present
calculation, which is 1.35. The difference is not visible in the comparison in figure 16 and can be explained
due to the coarser mesh used in the present study. A comparison of isotherms, streamlines, and velocity

¢ reference
— classical approach
=== IVM approach

¢ reference
— classical approach
=== VM approach

Figure 19: Comparison between an unsteady calculation and the calculations of Evans and Paolucci: the vertical velocities and

the temperature.

components at a time ¢, that corresponds to a minimum in the temperature at the position (x = 5.0, y = 0.5)
between the classical approach (with zero wall thickness) and the IVM approach (with a thick horizontal
walls) over the first half of the computed domain are depicted in figures 17 and 18. As shown due to high
conductivity and high viscosity of the solid wall, the fluid behaves as the classical approach and both results



are almost identical.

Finally, temperature and velocity distributions along two locations obtained on both domains are illus-
trated in figure 19 and compared to the reference solutions. Two locations are compared, one at x = 4.97
and the other at = 10.01. Those two positions represent a strong negative (resp. positive) value of the
vertical velocity where the flow is directed towards the bottom wall (resp. top). Afresh, all the results are
almost indistinguishable between both approaches. The temperature profile shows the steep gradient near
the hot wall as opposed to the more shallow change near the cool wall on top.

6. Air cooling of an enclosed hat-shaped disk
6.1. Sketch of the experiment

Figure 20: Problem set-up: hat shaped disk inside an enclosure

A 3D Inconel-718 hat shape disk is initially taken at a temperature of 1160 °C and placed inside an
enclosure filled by air at atmospheric conditions. The complete set-up of this experiment is given in figures 20
and 23. We start by deriving an anisotropic adapted mesh that describes very accurately the interface
between air and solid. In figure 21, one can clearly see that, after a reduced number of steps, the shape
of the disk is well respected by the mesh. Only additional nodes are locally added in this region which
enables to sharply define the interface, whereas the rest of domain kept the same background size. Once the
mesh is well adapted along the interface, the material distribution between each physical domains can be
described by means of the level set function (see figure 22). Consequently, the same set of equations (1)-(4)
is simultaneously solved over the entire domain including both fluid and solid regions with variable material
properties (see table 1). It should be pointed out that the sharp discontinuity of thermal conductivities at
the interface between the fluid and the solid regions are handled by harmonic mean formulation. Thus, we
automatically well establish the continuity of temperature and heat flux across the interface. Also note that
the use of high value of the relative kinematics viscosity in solid region would make the velocity components
negligibly small by solving the momentum equations. The energy equation is then reduced to transient
heat conduction equation for the solid body, because its convection terms vanish. Summarizing, one can
clearly see that regardless the increasing requirement of computational storage and time, the global solution
procedure facilitates the code programming, making it possible and easier to solve conjugate heat transfer
problem.

18



(b) anisotropic mesh

(a) isotropic mesh

Figure 21: Quality of the interface across the adaptation process.
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Figure 22: Distribution of the density across the air/solid interface.

Figure 23: Immersed body in the computational domain.
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6.2. Analysis of the results

.
(a) (b)
(c) (d)

Figure 24: Evolution of temperature distribution and streamlines during the cooling.

Recall that the interface between solid and fluid is only the zero level of the distance function; hence
the calculations of the boundary integrals of systems (1)-(4) are no longer applicable. The state of art in
this coupled convection-conduction-radiation analysis (1)-(4) lies in that the heat transfer between the solid
and the air at the interface has been treated “naturally”, i.e. without the use or a previous knowledge of
any heat transfer coefficient. Moreover, by solving the P-1 radiative model in both domains it generates a
volume source term rendered by the sharp discontinuity of the temperature and the materials properties (i.e.
emissivity). As shown in the second section, this source term is introduced back into the energy equation
ensuring the continuous cooling of the hat shaped disk. Figure 24 shows the evolution of the temperature
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Figure 25: Positions of the thermal sensors

at different time steps as well as the convective effects from the Boussinesq model. The streamlines and the
temperature distribution clearly indicate the expected flow pattern. It is characterized by a hot fluid rising
above the heated disk in the form of ascending thermal plumes. Once it reaches the top wall, it returns to
the heated solid forming two counter-rotating recirculation movements.

6.3. Comparison with experimental data

The hat shaped disk was instrumented with 6 thermal sensors at different locations (see figure 26).
Data were acquired via a computer controlled data acquisition system, tabulated and then reported by
our industrial partner. A comparison of experimentally measured temperature results with the numerical
simulation results at these different locations is shown in figure 26. As can be seen, the agreement is
generally good (within + — 5%) for all stations. However, the discrepancy shown at the top flat surface of
the heated disk (sensor f) indicates that a more sophisticated radiative transfer model may be needed to
improve solution and account for a better directional influence. This issue will be the subject of further
investigations.

Summing up, for any different geometry, even if we consider a new studied solid, it is shown that
the proposed method only requires to define the composite material properties without any knowledge or
previous experiment needed to deduce the heat transfer coefficient. It is also worth mentioning that the
profiles of the temperature does not suffer from spurious oscillations (undershoots or overshoots) which are
frequently observed in the presence of high temperature gradients at the interface or in convection dominated
problems across the enclosure. This can be attributed to the stabilization finite element discretization applied
on the system of equations (1)-(4).

7. Conclusion

In this paper we have described different aspects related to the numerical approximation of thermal
coupling between a fluid and a solid. Our approach, referred as the IVM method, solve one set of equation
in both domains with different materials properties. This has allowed us to propose alternatives to classical
boundary conditions (mixed-convection and radiation) and heat transfer coefficients that insure the heat
exchange between each subdomains. The sharp discontinuity of the material properties was captured by an
anisotropic refined solid-fluid interface. The robustness of the method to compute the flow and heat transfer
with large materials properties differences is demonstrated. The applications of the stabilized finite element
formulations for incompressible flows with thermal coupling to 2D and 3D test problems with conducting
bodies were also highlighted. The numerical tests show that the proposed scheme can produce the accurate
numerical solutions to unsteady flows. The validation with experimental results for the air cooling of a
hat-shaped disk allow us to use the same approach to model similar quenching process in different other
conditions without the need of experimentally computed heat transfer coefficients.
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SUMMARY

In the following paper, we discuss some implementations aspects of stabilization finite element methods
for the resolution of the 3D time-dependent incompressible Navier-Stokes equations. The proposed
method is based on the use of stable mixed formulation, which consists of continuous piecewise
linear functions enriched with a bubble function for the velocity and piecewise linear functions for
the pressure. This choice of element is stable and satisfies the so-called 'Babuska-Brezzi’ condition.
However, for simulating high Reynolds number, an extension of this method based on the multiscale
approach is used. We assess the behaviour and accuracy of the proposed mixed-stable approximation
on two test cases. First, the lid-driven square cavity at Reynolds number up to 50, 000 is compared with
the highly resolved numerical simulations and second, the lid-driven cubic cavity up to Re = 12,000 is
compared with the experimental data. Results show that the present implementation is able to exhibit
good stability and accuracy properties for high Reynolds number flows using unstructured meshes.

KEY WORDS: mixed-stable finite elements, high Reynolds number, 2D & 3D lid-driven cavity

1. INTRODUCTION

The incompressible Navier-Stokes equations are used to model a number of important physical
phenomen, including pipe flow, flow around airfoils, weather, blood flow and convective heat
transfer inside industrial furnaces. Significant emphasis has been placed in the literature on
developing stabilized formulations robust enough to model complex flows at high Reynolds
number [1, 2, 3, 4].

It is known that the Galerkin approximation of the Navier-Stokes equations may fail because
of two reasons. Firstly, for convection dominated flows, for which it appears layers where
the solution and its gradient exhibit rapid variation, the classical Galerkin approach leads
to oscillations of the solution in theses layer regions which can spread quickly and pollute
the entire solution domain. Secondly, the use of inappropriate combinations of interpolation

*Correspondence to: Ecole des Mines de Paris, Centre de Mise en Forme des Matériaux (CEMEF), UMR
CNRS 7635, Sophia-Antipolis, France.
TE-mail: Elie.Hachem@mines-paristech.fr
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functions to represent the velocity and pressure fields [5, 6] yields instable schemes. These
instabilities associated are usually circumvented by addition of stabilization terms to the
Galerkin formulation.

The present work aims at retaining the advantages of using linear approximations (P1
finite elements) regarding the accuracy and the computational cost, especially for 3D real
applications. But it is well known that the combination of P1-P1 approximation for the velocity
and the pressure does not lead to a stable discretization since it fails to satisfy the Babuska-
Brezzi condition.

Many measures may be distinguished to solve and get around these two difficulties, the
instabilities in advection-dominated regime and the velocity-pressure compatibility condition.
A very popular method was firstly proposed by Arnold, Brezzi and Fortin [7] for the Stokes
problem. It was suggested to enrich the functional spaces with space of bubble functions known
as Mini-element. Since the bubble functions vanish on each element boundary, they can be
eliminated and statically condensed giving rise to a stabilized formulation for equal-order linear
element. Later, in [8], it was pointed out that resorting to these local bubbles is equivalent to use
residual-based stabilized schemes with a natural way of choosing the stabilization parameters:
the selection of the optimal bubble function reproducing the appropriate choice of the stability
parameter. Thus, it is clear that the bubble can take different shapes for the diffusive dominated
regime and for the advection-dominated flow regime. For example, it was shown in [9, 10] that
upwind bubbles could be used to reproduce the SUPG stabilization. A standard reference for
mixed finite element methods is the book of Brezzi and Fortin [11]. A brief history on residual
based stabilisation methods can be found in Brezzi et al. [12], the book of Donea and Huerta
[13], all the articles by Hughes et al. [14, 15, 16, 17] on multiscale methods and SUPG/PSPG
methods by Tezduyar [18]. The Unusual Stabilised finite element method was introduced by
Franca and Farhat in [19]. Codina and co-workers introduced lately recent developments of
residual based stabilisation methods using orthogonal subscales and time dependent subscales
[20, 21, 22, 23]. These methods are very promising and can be regarded as an open door to
turbulence. At the same level, one can find a complete description on the use of variational
multiscale method for turbulent flows in [24, 25, 26] where a three scale separation method
was developed and applied. In diffusion dominant cases, the Mini-element formulation of the
problem yields acceptable results. However, when the convection terms dominate, the results
can be impaired and an extension for this method is needed. In the past three decades, various
numerical methods were developed to overcome this problem [14, 9, 27, 28]. In the present work,
the multiscale approach introduced by [29] is applied to deal with the dominance of the inertial
term. The main contributions of this work are a systematic study of the variational multiscale
method for three-dimensional problems and an implementation of a consistent formulation
suitable for large problems with high Reynolds number and unstructured meshes. Using the
mixed stable finite element method, we construct a stable scheme for the approximation of the
velocity and the pressure and by using the variational multiscale framework we add the needed
stabilizing term for the convection dominated problems. We demonstrate the performance of
the method for a number of two-dimensional and three-dimensional problems for Reynolds up
to 50,000 and 12,000 respectively.

The outline of the paper is as follows: first, we present the time-dependent, three-
dimensional, Navier-Stokes problem. In section 3, we present the classical mixed variational
formulation to solve the Stokes problem. The stabilizing schemes from a variational multiscale
point of view to deal with convection dominated problems is described and presented in
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section 4. In section 5, the numerical performance of the presented method is demonstrated by
means of 2D and 3D test cases. Comparisons with the literature results are presented. Finally,
conclusions and perspectives are outlined.

2. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Let © C R™4 be the spatial domain at time ¢ € [0,7], where ngg is the number of space
dimensions. Let I' denote the boundary of €. We consider the following velocity-pressure
formulation of the Navier-Stokes equations governing unsteady incompressible flows:

p(Opu+u-Vu)—V.o=f in 2 x [0,7] (1)
{V-uO in 2 x[0,T] (2)

where p and u are the density and the velocity, f the body force vector per unity density and
o the stress tensor which reads:

o=2ue(w)—ply (3)

with p and p the pressure and the dynamic viscosity, I4 the identity tensor and € the strain-rate
tensor defined as

e(u) = %(Vu + V) (4)

Essential and natural boundary conditions for equation (1) are:
u=g onlyx[0,7T] (5)
n-o=h onTl} x[0,T] (6)

I'y and I'y, are complementary subsets of the domain boundary I'. Functions g and h are given
and n is the unit outward normal vector of I'. As initial condition, a divergence-free velocity
field ug(x) is specified over the domain €; at ¢ = 0:

u(x,0) = up(x) (7)

3. CLASSICAL MIXED VARIATIONAL FORMULATION

3.1. Weak formulation of the incompressible Navier-Stokes equations

The function spaces for the velocity, the weighting function space and the scalar function space
for the pressure are respectively defined by:

V ={u(x,t) | u(x,t) € H' ()™, u=gonT,} (8)

Q- {p<x,t> [ < 2@, [ pdﬂzo} (9)
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The weak form of the system (1-2) consists in finding (u,p) € V' x @ such that:

p (O, w)g +p(u-Vu,w)g + (a(p,u),e(w))g = (f,w)g + (h,w)p,  Ywe V) (10)
(V-u,q)q =0 Vg€ Qo

where (¢, 1) = [, ©1dQis the standard scalar product in L?(£2). The Galerkin approximation
consists in decomposing the domain ) into N,; elements K such that they cover the domain
and there are either disjoint or share a complete edge (or face in 3D). Using this partition 7y,
the above-defined functional spaces (8) and (9) are approached by finite dimensional spaces
spanned by continuous piecewise polynomials such that:

Vh = {uh ‘ up € CO(Q)nSda uh\K € Pl(K)n5d7 VK € 771} (11)

Qn={pn | pn € C°(Q), pnjx € P'(K), VK € T;,} (12)
The Galerkin discrete problem consists therefore in solving the following mixed problem:
Find a pair (up,pp) € Vi, X Qp, such that: V (wp, qn) € Vio X Qn

p (Orun, Wh)g + p(an - Vup, wp)q
13
+ (2ue(up) :e(wn))g — (pr, V- Wi) g = (£, wn)q + (h,wh)p, 1)

(V- un,qn)q =0

8.2. Classical mized formulation: the Stokes problem

This paragraph is devoted to the brief presentation of the classical stable mixed-formulation
for the Stokes problem which can be derived by introducing the Mini-element and the
corresponding static condensation [11]. This formulation is stable for equal-order interpolation
for the velocity and the pressure fields (satisfies the inf-sup condition) and has already been
implemented in the CIMLIB library and validated in [30, 31].

The finite element formulation of the classical mixed formulation for the Stokes equations

reads:
Find a pair (up,pn) € Vi, X Qp, such that:

(2pe(an) 1 e(wn))g — (Pr, V- Wa)g = (£, Wn)g  YWn € Vio (14)

(V-un,qn)g =0 Vg, € Qp

The velocity functional space is enriched by the discrete space associated to the bubble function

[7]:
V' = {u/ I uTK c Pl(K)nsd mHOl(I()nsd7 VK € Th} (15)

The choice of this bubble function is continuous inside the element, considered as linear on
each sub-triangle and vanishes at the boundary of K. The velocity field is now an element
of the function space generated by the following direct sum V}, @ V’. In other words, we use
continuous piecewise linear functions enriched by bubbles for the velocity and piecewise linear
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functions for the pressure. The mixed-finite element approximation of problem (14) can now
be written as follows:

Find a pair (u,pp) € V =V, @& V' x Qp, such that:
(2pe(u) 1 (W) — (pn, V- W) = (f,w)g VW eV, (16)

(V -, CIh)Q =0 VgneQy

Since the fine-scale problem is independent and uncoupled at the element level and vanishes
on the element boundaries, the system (16) can be decomposed into:

(2ue(up) :e(wn))g — (Pn, V- Wi)g = (£, wn)q
(2ue(u’) :e(W')gq — (pr, V- w')g = (£, w')g (17)
(V- (up+1u),qn)g =0

As the fine-scale space is assumed to be orthogonal to the finite element space, the crossed
viscous terms in both equations of (17) vanished [32].

8.8. Matriz formulation

Equations of system (17) give rise to the following global system to solve:

Aww 0 tAwq up Bw
0 Abb tAbq 11/ = Bb (18)
Awg  Abg 0 Ph B,

where
Apw(un) = (2ue(un) 1 e(wn))g » Aw(u') = (2ue(u’) 1 e(w'))g ,

Avgup) == (Vup,qn)g , Apg(u)=—(V-u',qn)q , 19)
19
tAwq(ph) =—(pn, V- Wh)sz ) tAbq(Ph) == (Pm \E W/)sz )
Bw = (f,Wh)Q s Bb = (f,W/)Q y Bq =0.

The static condensation process consists in solving the second line for the bubble function u’
and inserting the result into the third line of (18) which yields the condensed matrix scheme
for large-scale unknowns uy, and pp:

Aww tAwq up Bw
~ = (20)
Awg  Agq Pn B,
where ) R
Ay = Apg Ayt PApy and B, ="Ap ALl By (21)

It is clear that taking into account locally the influence of fine scales (bubble functions) upon
the resolved large scales has introduced new stabilizing terms and has modified the components
of the global matrix. The new operator A,, provides a so-called pressure stabilization while
the new right hand side Bq ensures consistency. Finally, we obtain a stable mixed formulation
for the velocity and pressure system of equations as previously presented in [31].
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4. STABLE MULTISCALE VARIATIONAL APPROACH

In this section the general equations of time-dependent Navier-Stokes equation are solved. The
stabilizing schemes from a variational multiscale point of view are described and presented.
The velocity and the pressure spaces are enriched by a space of bubbles that cures the spurious
oscillations in the convection-dominated regime as well as the pressure instability.

4.1. Basic principles of the multiscale approach

Following the lines in [29], we consider an overlapping sum decomposition of the velocity
and the pressure fields into resolvable coarse-scale and unresolved fine-scale u = uy + u’
and p = p, + p’. Likewise, we regard the same decomposition for the weighting functions
w = wj, +w' and q = g, + ¢’. The unresolved fine-scales are usually modelled using residual
based terms that are derived consistently. The static condensation consists in substituting the
fine-scale solution into the large-scale problem providing additional terms, tuned by a local
time-dependent stabilizing parameter, that enhance the stability and accuracy of the standard
Galerkin formulation for the transient non-linear Navier-Stokes equations. In order to represent
these fine-scales, different bubbles functions (similar to the Mini-element) may be used. The
selection of the optimal bubble function reproduces the appropriate choice of the stability
parameter [9, 8.

The enrichment of the functional spaces is performed as follows: V =V, &V’ Vi = V}, 0DV,
Q=0Qnr®Q and Qo = Qno + Q). Thus, the mixed-finite element approximation of problem
(13) can read:

Find a pair (u,p) € V x @, such that: V (w,q) € Vj x Qo
p (Or(up + '), (Wi, + W) + p ((w + 1) - V(u, + '), (w), + W)
+ (2ue(up +u') e(wy, +w'))g

—((pr + 1), V- (w, + W), = (£, (Wn + W) + (b, (wp, + W)

h

(V- (up+1), (g +¢)g=0

(22)
As shown previously, these equations can be split into two sub-problems by separating the two
scales. Integrating by parts within each element, we obtain the so-called coarse-scale problem

p (Oc(up + '), wi)g + p((up +10') - V(u, + '), wp)g + (2ue(un) : e(wn))g
—((pn +9'), V -wi)g = (£, wn)g + (b, wy)p, VWi € Vo (23)

(V- (un+u),qn)g =0 VYan € Qnpo
and the fine-scale problem
P (Ou(n + 1), W) e + p (wn 4+ W) - V(wp + 1), W) + (2e(u) s (W)
—((pn +p'), V- w')g = (£, W) + (h’wl)rh yw' e Vg (24)

(V-(up+1u'),¢)g=0 V¢ e
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To derive our stabilized formulation, we first solve the fine scale problem, defined on the sum
of element interiors and written in terms of the time-dependant large-scale variables. Then
we substitute the fine-scale solution back into the coarse problem (23), thereby eliminating
the explicit appearance of the fine-scale while still modelling their effects. At this stage, three
important remarks have to be made:

i) when using linear interpolation functions, the second derivatives vanish as well as all
terms involving integrals over the element interior boundaries;
ii) as the fine-scale space is assumed to be orthogonal to the finite element space, the crossed
viscous terms vanish in (23) and (24) [32];
iii) for the sake of clarity, only Dirichlet boundary conditions are considered, generalization
to other types of boundary conditions being straightforward.

4.2. The fine scale sub-problem

Rearranging the terms of equation (24) leads to:
p (O, w')g +p ((wp, +u') - V', w')g,
+ (2ue(’) :e(w'))g + (VP W)g = (Ru, W)y VW' €V (25)

(V : u/7q/)Q = (Re, q/)Q Vq/ € Q6
with Ry and R¢ the momentum and continuity residuals, respectively:
Ry = f — pdyuy — p(uy, + ') - Vu,, — Vpy,

(26)
Re=-V - u,

Here, some assumptions have to be made in order to deal with the time-dependency and the
non-linearity of the momentum equation of the subscale system (25):

i) the subscales are not tracked in time, therefore, quasi-static subscales are considered here
(see [33] for a justification of this choice); however, the subscale equation remains quasi
time-dependent since it is driven by the large-scale time-dependent residual;

ii) the convective velocity of the non-linear term may be approximated using only large-scale
part so that (u, +u’) - V(uy +u') = up - V(u, + ).

Consequently, the fine-scale problem reduces to the following:
plup - Vu',w)g + 2ue(u’) s e(w'))g + (VP , w)g = (Ru, W)y VW €V

(V-u',¢)g=(Re,d)g V4 €Qp

With regard to the work of [31], two important extensions can be identified. The first one
consists in considering the advection terms in equation (27) and the second one is that
the small-scale pressure is included. These two extensions are essential for simulating high
convection-dominated flows. Indeed, it is known, from the works of Wall et al. [34], Tezduyar
and Osawa [35], that considering the small-scale pressure as an additional variable enables
to complete the continuity condition on the small-scale level. It provides additional stability
especially when increasing Reynolds number. However, solving the small-scale equation for

(27)
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both the velocity and the pressure is somewhat complicated. Franca and co-workers [5]
proposed a separation technique of the small-scale unknowns. They replaced the small-scale
continuity equation by the small-scale pressure Poisson equation (PPE). Since only the effect of
the small-scale pressure Poisson equation on the large-scale equation must be retained, Franca
and Oliveira [36] showed that rather than solving this equation it could be approximated by
way of an additional term in the fashion of a stabilizing term as follows:

P = 1cRe (28)
In this work, we adopt the definition proposed by Codina in [20] for the stabilizing coefficient:

S GRG

where ¢; and ¢y are two constants independent from h, h being the characteristic length of the
element. Once this stabilizing coefficient 7 has been defined, expression (28) can be inserted
into the large scale equation (23). Then, it remains to deal with the small scale momentum
equation. Codina has shown in [20] that the small scale velocity is exclusively driven by the
residual of the large scale momentum equation and not by the residual of the continuity
equation. Consequently, in order to eliminate the effects of the small scale pressure in the
small scale momentum equation, we impose p’ = 0. Finally, the method can be regarded as
a combination of a stable formulation (Mini-element) plus a stabilizing strategy. Indeed, the
stable formulation, described previously for the Stokes problem, is applied to the velocity field
while the fine scale pressure is modelled using a stabilizing method.

Now, it remains to solve the small-scale momentum equation. Following Masud and Khurram
[27] and without loss of generality, the fine scale fields can be expanded using bubble functions
on individual elements:

u = Z uibxy  and W = Z wibk (30)
KeTy, KeTy,

where by represents the bubble shape functions, u’ denotes the vector of coefficients for the
fine scale velocity field and w’, represents the coefficients for the fine scale weighting function.
Inserting expressions (30) into the fine scale momentum equation (27) yields:

D o Vhgul, bewic) i + (2pe(breuly) 1 e(bxwic)) g = > (R bxWic) e (31)
KeTy, KeTy,
Since the bubble functions vanish on element boundaries, the previous expression simplifies
into:
p(ap - Vbgul, bxwi) - + (2ue(brul) : €(bxwi)) e = (R be W) i VK €T, (32)
Taking the constant vector of coefficients uj and w’ out of the integral and exploiting
arbitrariness of w’, one gets:
1
uf = - (R, b VK €7, 33
K - Vb b+ (b)) O K v @

Assuming that the large scale momentum residual Ry is constant, the fine scale velocity on
each element K can read:

11/|K = TKRM \V/K S 7;L (34)
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where T is the stabilization parameter which has been naturally obtained after the resolution
of the fine scale sub-problem:
b [ e brdQ
TK = VK €T, 35
p(up - Vb, bi ) + (2ue(bi ) 1 €(bk)) i (%)
The effect of the bubble is now condensed in this elemental parameter. Obviously, the choice
of the bubble functions affects the value of the stability parameter. In expression (35), both
convection and viscous regime are represented. However, using the same bubble function for
the trial function and the weighting function leads to the cancellation of the convection term.
Indeed, under the assumption that uy is piecewise constant, the choice of the Mini-element
yields:

(uh . VbKva)K =0 VK € T, (36)

As pointed out in [9], a way to recover the convection term is to resort to upwind bubbles.
Such a choice enables to reproduce naturally the coefficient of the SUPG stabilization method.
This issue has been also highlighted by Masud et al. in [27], they propose to use different order
of interpolation functions for the trial and the weighting functions in the skew part of (35).
In order to extract the structure of the stability parameter 7x, we employ a combination of
standard bubble shape function bx and upwind shape functions bY% in the fine scale field w’:

Wl = Wiebic = wie (b + ) (37)

Introducing the modified w’ into (33) leads to the modified form of the stabilization parameter

TK:
bi [, b9
B o (wy - Vb, b)) + 2ue(br) s e(br) ¢ " (38)

As we use linear interpolations, the upwind part drops out directly in the viscous term.

4.3. The coarse scale sub-problem

Let us consider the coarse scale problem of the expression (23) including the assumptions made
for the fine scale fields:

P (Oan, wi)q + (pun - Vun, wi)g + (pun - Vu',wy) g + (2ue(ur) : €(wa))g
— (ph, V. Wh)Q — (p/, V. Wh)Q = (f, Wh)Q Ywy, € Vh70 (39)

(Vup,qn)og+ (V-u',qn)g =0 Vg, € Qno

Applying integration by parts to the third terms in the first equation of (39) and to the second
term in the second equation, then substituting the expressions of both the fine-scale pressure
(28) and the fine-scale velocity (34), we get:

p (O, Wh)g + (pun - Vun, wi)g — > (TRt pun VW) i + (2pe(up) < £(wi))g

KeTy,
—(pn, V-wp)g + Z (7cRe, V- wh) i = (£,wr)q  Ywi € Vo
KeT,
(V-wnan)g— > kR, Van) g =0 Yau € Qo

KeT,
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Finally, substituting the residual of the momentum equation and expanding all the additional
terms, we obtain a modified coarse scale equations expressed solely in terms of coarse scale
functions. The new modified problem can now be decomposed into four main terms: the
first one is the Galerkin contribution, the second and the third terms take into account the
influence of the fine-scale velocity on the finite element components and the last term models
the influence of the fine-scale pressure onto the large-scale problem:

P (81511}1 + uh.Vuh,wh)Q + (2ue(uh) : 6(Wh))Q — (ph, V.Wh)Q —+ (V.uh, qh)Q — (f,Wh)Q

Galerkin terms

+ Z 7K (p(Orup +up.Vuy) + Vo, — £, 00, Vwy)
KeTy,

Upwind stabilization terms

+ Z 7K (p(Opup, +up.Vuy) + Vp, — £, Vi)
KeT,

Pressure stabilization terms

+ Z (¢ V ~uh,V~wh)K =0 VwpeVho, Van € Qnpo
KeT,

grad-div stabilization term

(41)
When compared with the Galerkin method (13), the proposed stable formulation involves
additional integrals that are evaluated element wise. These additional terms, obtained by
replacing the approximated u’ and p’ into the large-scale equation, represent the effects of
the sub-grid scales and they are introduced in a consistent way to the Galerkin formulation.
All of these terms enable to overcome the instability of the classical formulation arising in
convection dominated flows and to satisfy the inf-sup condition for the velocity and pressure
interpolations. Moreover, the last term in equation (41) provides additional stability at high
Reynolds number [37].

For sake of simplicity in the notation and for a better representation of all the additional
terms in equation (41), the condensation procedure of the small-scale into the large scale
is masked under these stabilizing parameters. However, from the implementation point of
view, the structure of the stabilizing parameters is computed naturally via the element-level
matrices.

4.4. Time advancing

In the present study, the time derivative is discretized using a simple first order Euler formulae
while an implicit scheme is used for the other terms. To illustrate this point, let us focus on
the coarse scale momentum equation including the small scale pressure simplification. In this
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case, the weak form of the implicit scheme reads:

uZ+1 — u;zl n4+1 / n4+1
Pl A Wn )|+ (pun - Vuy, wa)o™ + (puy - V', wi)g
o (42)

+ (2pe(upth) e(wWn))g, — (pptt, v - W)+ (e V - utt v wh) o = (", wr)g

where the exponent n denotes the current time iteration while the exponent (n + 1) represents
the next time level we want to compute. The resulting implicit scheme (42) is obviously non-
linear because of the non-linear nature of the convective terms. In order to circumvent this
issue, we resort to a classical Newton-Raphson linearization procedure. The implicit Newton-
Raphson iterative scheme reads:

n,i+1 n ) "
p <’Wh> + (pup - Vg, wi) g+ (puy - Vil wy )"
Q

+(pet ™ o)) = (7Y ) (0¥ Y ) = (€,
(43)
where the exponent (n,i+ 1) denotes the (i 4 1)"™ iteration of the Newton-Raphson procedure
which uses as initial guess the solution at time level n. The linearization of the convective
terms consists in keeping only first order terms at the (¢ + 1)*® Newton iteration as follows:

n,i+1 n,i n,i+1 n,i n,i n,1+1 n,s
(up, - Vuy) = (uh +(u,"" —uy )) -V (uh + (u,"" —uy ))
_.n, n,i+1 n,i+1 n,t n,i n,t
=u,” -Vu,"" +u,”" - Vu, —u,” - Vu,

n,i+1 n,t n,i+1 n,t
JF(uh -, )‘V(“h - )

~ 11Tl n,i+1 n,i+1 n,t n,i n,t
~u, -Vu, +uy, -Vu,” —u,” - Vu,

(44)

with uZ’i the value of the velocity at the previous Newton iteration. Owing to we use quasi-
static bubble functions, the third term of equation (43) reduces to:

(u - Vu') " & U AT (45)

The complete linearized Newton-Raphson scheme finally reads:

n,i+1

h n,i n,i+1 n,i+1 n,i n, m,i+1

P < N +u,” - Vu, "+, -V, ,wh> + (puh -Vu ,wh)Q
Q

n (2u6(u2’i+1) : e(wh))Q - (pZ’H_l, v. wh>Q + (TCV v Wh)Q (46)

uy i i
= (f" +p7:n +u" - Vuy ,Wh)
A Q

4.5. Matriz formulation of the problem

When applied to both the coarse scale system and the fine scale system, the previous scheme
gives rise to a linear system that remains to be solve. This system can be put naturally under
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the following matrix form:

Apw "Auwp "Aug uy B,
Awp A TAp, u | =| By (47)
Awg  Apg 0 Ph B,
where
u”7i+1 . . . .
Apw(up) =p ( Zt” +up" - VuZ’H_1 + uZ”‘H . VuZ’Z,wh>
Q

+ (ZME(uZ’iH) :e(wh))Q + (TCV upth v wh)Q

Ap(u') =p (uZz . Vu’mﬂ,w’)Q + (2pe(u™ ) re(w')),

un,iJrl

App(up) =p ( Zt” + uZ’i . VuZ’iJrl + uZ’iJr1 . VuZ’i,w’>
Q

. (48)
Awg(up) = — (v : uZ’H_l,qh)Q

Apg(u') = — (V- u™r qh)Q

uy ; ;
By, = (f” + pAhn +up" - VuZ’Z,Wh>
Q
uyp i ;
B, = (f" Fpp gt Vuﬁ’l,w’)
Q

B, =0

One can notice that, in the present case of the quasi-static bubble assumption, the following
simplification holds:

tAwb<u/) =p <U-Z’i : Vuln7i+17 Wh)Q (49)

The static condensation process, previously detailed, which consists in solving the second line
involving u’ and inserting the solution into the first and third lines of system (47) results into
the condensed matrix scheme for large-scale unknowns uy and p; that reads:

Aw w ¢ Aw q up B w
N N =1 . (50)
Auwg  Agq Pn By
with . .
Aww = Aww - tAwa;blAwb tAwq = tAwq - tAwal;)l tAbq
Ay = Awg — Apg Ayt Aup Ay = —Ap Ayl t A, (51)

Bw = Bw - tAwab_ble éq = 7AI”IAI7_Z)1BI7
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Taking into account locally the influence of unresolved fine scales upon the resolved large scales
has introduced new stabilizing terms and modified the components of all the matrices while
the effect of the fine-scale pressure has been added directly to the first matrix by a stabilizing
term. This matrix formulation can be put in relation with the classic expression (41) as follows:

i) the modified terms Ay and flwq incorporate the upwind stabilization terms provided
by tAwa&)lAwb and Aqu;blAwb;
ii) similarly, the modified operators *A,,, and A, contain the pressure stabilization terms
LA Ayt tApg and Apg Ayt Apg;
iii) eventually, the right hand side components have been modified to ensure consistency by
means of * A, Ay, By and Apg Ay, By.

5. NUMERICAL EXAMPLES

In order to assess the main characteristics of the formulation previously presented and test
its feasibility in the context of high-performance computing, two examples are analyzed. They
were chosen to cover different flow regimes, from laminar to turbulence, and to deal with
engineering applications as well. Please note that the RB-VMS computations shown in the
following qualify this formulation as an important tool to be used within the realm of simulation
of real flows. That is especially due to the fact that it does not require any LES-type modeling
and, thus, can be applied to any region of the domain, regardless of the flow regime.

5.1. Driven flow cavity problem (2-D)

Now we numerically solve the lid-driven flow problem. This test has been widely used
as a benchmark for numerical methods and has been analyzed by a number of authors
[38, 39, 40, 41]. The problem description, boundary conditions and the corresponding meshes
are shown in figure 1. Dirichlet boundary conditions prescribe on the upper boundary at y = 1,
and elsewhere on . The source term is identical to zero. The viscosity is adjusted in order to
obtain Reynolds number of 1,000, 5,000, 10,000, 20,000, 33,000 and 50, 000. Zero pressure is
prescribed at the lower left corner.

S
S
&

o2

u(,0
EARERR R
UL

o
POt

Figure 1. Problem settings: boundary conditions (left) , coarse mesh (center) , fine mesh (right).

Two meshes of linear finite elements have been used in the calculations. The coarse one is
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Table I. Minimum and maximum values of the pressure for various numerical methods
for the coarse mesh (64 x 64) and for Re = 10000.

Present work USFEM  Two-level method Three-level method

Pmin -0.1319 -0.0975 -0.0730 -0.0904
Pmax 0.9142 0.8774 1.0465 1.1278

made of 64 x 64 elements, refined near the walls of the cavity. The fine mesh is made of 180 x 180
elements. All numerical experiments are compared to the very known references of Ghia et al.
[38] and Erturk et al. [42]. The authors in [38] applied a second-order accurate finite difference
method using a fine grid of 257 x 257 while in [42] the 2-D steady incompressible Navier-
Stokes equations was solved using a very efficient finite difference numerical method (fourth
order compact formulation) on a very fine grid of 601 x 601. We consider that the steady state
is reached when the normalized velocity deviations within one step are lower than a chosen
tolerance of 107%. Recall that the main interest is to compare the performance of our scheme
described in the previous section and the behaviour of the solution for high Reynolds number
flows. Therefore, a first set of numerical experiments has been performed using our scheme.
The velocity profiles for u, and u, along x = 0.5 and y = 0.5 respectively are shown in figure 2.
Comparing these results with the given reference, one can clearly see the improvement of the
new scheme in the solution in particularly when the Reynolds number increases. Hence, we
conclude that the absence of the pressure subscale and the convection terms in the small-scale
problem renders an extremely diffusive solution even on a very fine mesh. For high Reynolds
number, the results are underestimated with respect to the new formulation and they are very
inaccurate. However, the solution of the modified scheme is in excellent agreement with the
reference in all situations. Some other interesting quantities than plotting the velocity profiles
are available in the literature. In [43], the authors have studied and analyzed the pressure and
the vortex formation and comparisons were made using several numerical methods for different
Reynolds number. In the following, we will get a closer look on the pressure isolines for Reynolds
number 10000 and compared our results to the given reference. Table I and figure 3 show a
very good agreement of our modified scheme with the given reference. As in [31], we proceed
our comparisons by investigating the location of the respective vortex centers. Figure 4 shows
the computed flow fields in terms of the velocity magnitude and the corresponding streamlines.
As expected, using the fine mesh 180 x 180 the solutions exhibit additional counter-rotating
vortices in or near the cavity corners as Re increases. It is known that this problem involves a
primary vortex, while for higher Reynolds numbers secondary vortices appear in the corners
of the domain. As the Reynolds number increases, the location of the centers of these vortices
change, secondary vortex has the tendency to break on two new vortex and consequently their
number increases (see figures 4 and 5). The effect of the Reynolds number on the genesis
of new vortices inside the cavity is presented in the following graph. Figure 6 highlights by
order of appearance the location of these expected vortices. The location of the centers of
these vortices together with corresponding values from references solutions are summarized in
tables IIT and IV. Qualitatively and quantitatively, the results are similar to reference solutions
and a good agreement is observed, although the mesh used here is coarser than the one used
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Re = 1000

Re = 1000
0.8
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Figure 2. Left: velocity profile for u, along z = 0.5. Right: velocity profile for u, along
y = 0.5. The dashed and solid lines denote the coarse and the fine meshes respectively
while the symbols represent the reference.

15
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Figure 3. Pressure isolines on colored pressure distribution.
Left: two-level method [43]. Right: present work.

Figure 4. Streamline on colored velocity distribution from top-left to bottom-right: Re = 1000, 5000,
10000, 20000, 33000 and 50000 with 180 x 180 mesh.
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Figure 5. A magnified view of various secondary vortices near the cavity corners for Re = 50000.

Table II. Number of resolved vortices in function of the Reynolds number.

Reynolds Vortices amount
1,000 3
5,000 5

10,000 6
20,000 8
30,000 10
50,000 13

in the reference. We have used as reference [38] for number of Reynolds less than 10,000, and

Figure 6. Location of the resolved vortices in order of appearance

[42] for Re = 20,000. To our knowledge, results for Reynolds number 33, 000 and 50, 000 using
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Table III. Location of vortex centers (coordinate x, coordinate y) for the two first zones (V1, Va).

E. HACHEM ET AL.

Reynolds values

10,000

20,000

33,000

50,000

v, Current (0.5110,0.5310 (0.5080, 0.5280 (0.506, 0.527) (0.506, 0.526)
®  Reference (0.5117,0.5330)  (0.5100,0.5267 —— -
Vs Current (0.7670, 0.0594 (0.7060, 0.0416 (0.667,0.0350)  (0.654,0.0309)
*  Reference (0.7656, 0.0586 (0.7267,0.0450 - ——
Vo Current (0.9330, 0.0689 (0.9290, 0.1060 (0.926,0.119) (0.99,0.0112)
Reference  (0.9336,0.0625 (0.9300,0.1033 —— ——
y,, Current (0.808,0.115)  (0.863,0.178)  (0.816,0.0857)
¢ Reference —— —— ——
Vou Current (0.986,0.017) (0.95,0.194)
Reference —— ——
Vs Current (0.732,0.0218)
© Reference ——

Table IV. Location of vortex centers (coordinate x, coordinate y) for the two last zones (V3, Vi).

Reynolds values

10,000

20,000

33,000

50,000

Vs Current (0.0589,0.1600)  (0.0489,0.1820)  (0.0375,0.206) (0.0307, 0.226)
* Reference (0.0586,0.1641)  (0.0483,0.1817) —— ——
Vi Current (0.0160,0.0191)  (0.0536,0.0511)  (0.0692,0.0602) (0.0831,0.0556)
Reference  (0.0156,0.0195)  (0.0567,0.0533) —— ——
Vi Current (0.0710,0.9110)  (0.0802,0.9120)  (0.0852,0.911) (0.0839, 0.908)
* Reference (0.0703,0.9141)  (0.0817,0.9133) —— ——
v, Curent (0.0255,0.82)  (0.0339,0.811)  (0.0317,0.809)
Reference (0.0233,0.82) —— ——
Vi Current (0.0539,0.783) (0.0537,0.774) (0.0446,0.763)
° Reference —— —— ——
Vis Current (0.126,0.988)
Reference —_
Vi Current (0.228,0.972)

Reference
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linear stabilised finite elements methods are considered very rare. We notice a very interesting
behaviour of these computations which will be subject of further investigations. The velocity
profiles for u, and u, along x = 0.5 and y = 0.5 respectively for Reynolds number 33,000
and 50,000 are shown in figure 7. Another set of numerical experiments was conducted in

1 T T T T T T T T T 0.6

--- Re = 30,000
— Re = 50,000 04

08l --- Re =30,000

— Re =50,000

0.6f
0.2

3 0
-0.2}

-0.4f

0 01 02 03 04 05 06 07 08 09 1 _0'60 01 02 03 04 05 06 07 08 09 1
Y X

Figure 7. Velocity profile for u, along x = 0.5 (left) and wu, along y = 0.5 (right).

order to study the convergence of the new scheme. We performed a mesh sensitivity study to
validate the capability of the method. Therefore, five different unstructured grids were used
for these comparisons with a mesh of 16 x 16, 32 x 32, 64 x 64, 80 x 80 and 125 x 125 elements
respectively. The Reynolds number is chosen to be equal to 5,000. We compute the error of
the velocity solution using the L?-norm for all mesh sizes h as follows:

o\ /2
err(h) = <Z (urefi,u;c) ) YV h (52)

z,Y

Results are compared to [42] obtained by employing a high-order accurate finite difference
method on a 601 x 601 mesh. The approximation error is plotted in figure 8 and shows the
expected improvement in the results. The velocity profiles employing different grid resolutions
together with the reference solution are shown in figure 9. Note that the present method
converges rather rapidly to the given benchmark solution.

error(h)
o
o

0 0,02 0,04 0,06 0,08

mesh size (h)

Figure 8. Evolution of the error in function of the mesh size h.
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Figure 9. Velocity profile using different meshes. Left: u, along = 0.5. Right: u, along y = 0.5.

We conclude this numerical example by examining the computer demands. The number of
time steps needed to reach the steady state with At = 0.1s, as well as the required CPU
time, are reported in figure 10. Within each time step only a single iteration is performed. As
expected, the required CPU time increases with the rise of the Reynolds number. This is due

to the fact that more physical time iterations are necessary to yield the solution; the ratio
CPU time

- remaining quite constant in all cases.
real time

1500 8000
1464

1000 +
796

4000 -

Time (s)

500 A 402

Time (s)

0 5000 10000 R 15000 20000 0 5000 10000 R 15000 20000
e e

Figure 10. Required physical time (left) and CPU time (right) to reach the steady
state for different Reynolds number.

5.2. Three-dimensional lid-driven cavity flow

In many industrial, environmental and geophysical flows, the 3D lid-driven cavity flow can be
seen as an interesting re-circulating flow. The flow is confined in a cubic domain with the upper
wall moving at a constant speed (see figure 11 for details). Although the geometry is simple,
complex physical phenomena occurs inside the cubic cavity. Contrary to the 2D case presented
in the previous section, new phenomena can be captured with the 3D simulations. The
presence of side-walls confining the full flow modifies the flow pattern so that three-dimensional
structures that significantly altered the primary flow in the central plane are produced.
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Recently, the use of three-dimensional numerical simulation becomes a very interesting tool for

y
| —
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1
1
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1 z’ v
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L Side Wall
o B e o
“e‘*‘f\, -*"Bottom Wall s“e‘b
)t o
Side Wall  [®
0 1 X

Figure 11. Sketch of the 3D lid driven cavity problem

investigating such physical phenomena in particularly thanks to the increase of technological
advances in computer hardware and parallel computing.

A literature review on the 3D problem shows that in fact by examining a plane parallel to the
downstream wall, corner eddies were caused at the juncture of the side-walls and the ground
while downstream secondary vortices appeared. Moreover, due to centrifugal forces along the
downstream, eddy separation surface were found along the span. These vortices are often

Figure 12. Heterogeneous isotropic mesh for 3D lid-driven cavity flow.
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known as Taylor-Gorter-like (TGL) vortices in reference to their curvature-induced origins. As
shown in the 2D numerical test, the number and location of these vortices were also function of
Reynolds number. The experimental visualization of these vortices were first accomplished at
Standford University by Koseff et al. [44, 45]. The numerical prediction of these vortices has to
be credited to the work of Freitas et al. [46, 47]. It was mentioned that not only corner vortices
in the vicinity of the vertical end-walls were observed but also locally spreading TGL vortices.
For instance, eight pairs of TGL vortices were observed for Re ~ 3,000. For higher Reynolds
numbers, regular unsteadiness is no longer sustained and thus evolved into turbulence.

From a numerical point of view, it is worth noticing that most of the computations were
made using structured grids due to the simplicity of the geometry in order to capture the flow
phenomenon accurately. Consequently, few calculations were performed using unstructured
grids. Here, in this work, two unstructured tetrahedral grids were employed to simulate the
lid-driven cavity flow: the first refered as the coarse mesh, consists of 36, 282 nodes and 192, 080
linear tetrahedral elements, and the second refereed as the fine mesh consists of 238, 580 nodes
and 1,229,089 linear tetrahedral elements with grid clustering near the six cavity walls. These
grids are displayed in figure 12. Aiming at comparing our results with the given reference, the
two different meshes employed here are formed by approximately the same number of elements
(see [48] for the coarse mesh and [49] for the fine mesh).

The initial velocity in the flow is set to zero everywhere except on the lid surface. The
viscosity is adjusted to obtain the desired Reynolds number. The computational results for
Re = 1,000, Re = 3,200 and Re = 12,000 are compared to the results from Tang et al. [50],
Zang et al. [51] and Prasad and Koseff [52] respectively. The fluid motion is generates by the
top lid that moves in the z-direction with a constant velocity Uy = 1m/s. However, in order to
avoid discontinuity in Dirichlet boundary conditions, we resort to the following velocity profile
in the manner of [53] or [49].

9\ 18 2 29\ 1 2

(i ()" (- (2)) -

where L is the size of the cavity. For all the remaining walls, no-slip conditions are applied.
Following the lines in [49] a fixed time step of 0.1s is employed and 20, 000 time steps (2,000
time units) are performed. Since the detailed convergence analysis is not within the goals of this
paper, only the velocity profiles in the mid-plane are plotted and compared with the reference
solutions. It is worth to mention that for Re > 3,200, all the experimental and numerical
observations reported by Koseff [44, 45] and Zang [51], showed that the steady state does not
exist but the transient behaviours become periodic. Consequently, a time interval, for which
oscillations of the velocity field occur, was identified and statistical studies in this period were
carried out in order to obtain the mean velocity profiles. Figure 13 show the velocity profiles
of u, component on the vertical centreline and u, component on the horizontal centreline of
the symmetry plane z = 0.5 for Re = 1,000, Re = 3,200 and Re = 12,000, respectively. The
symbols denote the results of the reference data extracted from their figures. All the velocity
profiles are in good agreement with profiles reported by the given references. As mentioned
previously, as the flow is unsteady, the instantaneous velocity at the same time step is different
from the experimental results. Only the time-averaged velocity profile of fully developed flow
is plotted and agrees well with the experimental results. The profile is the average value of
100 dimensionless time units. The differences with the experimental results is most probably
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Figure 13. Comparison of velocity profiles in the mid-plane y = 0.5 with reference data (symbols)
from [50] for Re = 1,000 (top), [51] for Re = 3,200 (middle) and [52] for Re = 12,000 (bottom).
Left: mean value of velocity in the z-direction. Right: mean value of velocity in the z-direction.
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due to the fact that the grid is not fine enough to simulate accurately such complex fluid
phenomena. However, as a first implementation, the agreement between the present and the
experimental results has been considered satisfactory.

L e -

23

Figure 14. Comparison of velocity vectors for different Reynolds number: Re = 1,000 (top);
Re = 3,200 (middle) and Re = 12,000 (bottom) along different planes: plane y-z (left); plane
z-y (middle); plane z-z (right).

In order to reveal the Taylor-Gortler structures, we investigate the flow vectors, after 2,000
time units, on the three middle planes x = 0.5, y = 0.5 and z = 0.5. At Re = 1,000, a primary
vortex appearing in the plane z-y is coming with two secondary contra-rotating vortices next
to the downstream and bottom walls as shown in planes y-z and z-z. Moreover, two additional
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re 15. Comparison of observed streamtraces for different Reynolds number:
Re = 1,000 (top); Re = 3,200 (middle) and Re = 12,000 (bottom) on different
views: front view (left); side view (middle); oblique view (right).



26 E. HACHEM ET AL.

vortices can be observed in the top corners of plane y-z. The steadiness of the flow is clearly
highlighted by its symmetry. These results are in perfect agreement with those of Yang et al.
[54] and Wong and Baker [55]. When the Reynolds number increases, the centre of the primary
vortex moves toward the centre of the cube in the same way than the two-dimensional lid-
driven square cavity. Furthermore, the size of the secondary vortices decreases while their
number is rising. The flow loses its symmetry indicating that it becomes unsteady. Although
no quantitative measurements were reported in the given references, similar behaviour of the
velocity field was reported by [46, 56, 57].

For high Reynolds number (Re = 12,000), the complexity of the flow is clearly emphasized
by the streamtraces displayed in figure 15. The flow structure is composed by a primary eddy,
a downstream secondary eddy, an upstream tertiary eddy and a corner eddy. As the Reynolds
number increases, the observed particle trajectory exhibits a qualitatively new feature; no
longer is the particle confined to a single side of the cavity, but instead, the particle can pass
from one side to the other, and back again given sufficient time, in apparent violation of mirror
symmetry. As shown by front view in figure 15, the corresponding spiralling path explores the
full width of the cavity.

6. CONCLUSION

In this paper, an unstructured finite element incompressible Navier-Stokes solver, based on
the used of a mixed stable and stabilized approach has been successfully developed for the
study of 2D and 3D unsteady incompressible flows at high Reynolds numbers. The method
is applied to the lid-driven cavity problem for both steady and unsteady flows at Reynolds
number up to 50, 000 for the 2D case and up to 12,000 for the 3D case. All the results obtained
were compared with numerical solutions obtained by other researchers and are in very good
agreement with benchmark results in the literature.
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SUMMARY

A mathematical and numerical model to design an industrial software solution able to handle
real complex furnaces configurations in terms of geometries, atmospheres, parts positioning, heat
generators and physical thermal phenomena has been developed. A 3D-dimensional algorithm based
on stabilized finite element methods (SFEM) for solving the momentum, energy, turbulence and
radiation equations is presented. An immersed volume method for thermal coupling of fluids and
solids is introduced. It consists in considering a single 3D grid of the furnace and solving one set of
equations for both fluid and solid with different thermal properties which can reduce the computational
costs. A level set function enables to define precisely the position and the interface of any objects inside
the furnace and to provide homogeneous physical and thermodynamic properties for each subdomain.
Furthermore, in order to ensure an accurate capture of the discontinuities that characterize the strongly
heterogeneous domain, we resort to an anisotropic mesh adaptation algorithm based on the variations
of the level set function. The proposed method demonstrates the capability of the model to simulate
an unsteady three dimensional heat transfers and turbulent flows in an industrial furnace with the
presence of three conducting solids.

KEY WORDS: Immersion volume technique; level set method; anisotropic mesh adaptation; mixing
laws; radiative heat transfer.

1. INTRODUCTION

The analysis of transient heating characteristics of the steel in a heating furnace has attracted
considerable attention during the past few decades since the furnace process should have lower
energy consumption and pollutant emissions [1, 2]. In addition, requirement of the uniform
temperature distribution inside the volume and the treated workpieces greatly increases the
importance of accurate and fast prediction of furnace process because this determines the
quality of the steel product in terms of hardness, toughness and resistance. Intrinsically,
the resulting hot gas flow within the furnace influences the heat transfer process through

*Correspondence to: Ecole des Mines de Paris, Centre de Mise en Forme des Matériaux (CEMEF), UMR
CNRS 7635, Sophia-Antipolis, France.
TE-mail: Elie.Hachem@mines-paristech.fr
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conduction in the solids, convection, and thermal radiation simultaneously [3]. However,
complex three-dimensional structure of the furnace including the thermal coupling of fluids
and solids, turbulent convection, thermal radiation, location of the ingots, the burners, and the
given geometry make the problem difficult to analyze accurately and economically. Therefore,
models and methods for predicting the furnace behaviour and heat transfer processes of the
workpieces are highly demand.

The main objective of this paper is to present a multidomain approach to solve the conjugate
heat transfer for which the three modes, convective, conductive and radiative heat transfer
interfere simultaneously and in both the fluid part and the solid part. The proposed numerical
method for modelling such multimaterial flows (fluid/solid) will be referred as the immersed
volume method (IVM) [4]. A complete description and details about this method will be given.
But first, we will discuss the driven motivation by revisiting some of the existing approaches
that usually deal with such problems.

In recent years, there has been increasing interest in studying numerically a variety of
engineering applications that involve thermal coupling of fluids and solids [5, 6, 7]. Most of the
time, the general idea of these techniques consists in dividing the global domain into several
local subdomains over each of which a local model (equation to be solved) can be analyzed
independently. The global solution can then be constructed by suitably piecing together
local solutions from individually modelled subdomains. However, during the assembly, the
coordination between the meshes can become complicated or even sometimes infeasible. Other
alternative approaches have been applied for multi-phase flows problems and are available in
the literature, such as the ghost fluid method introduced by Fedkiw et al. in [8], the immersed
boundary method [9, 10], the domain decomposition [11], the X-FEM [12]. They introduced
and improved enrichment functions for material interfaces and voids by means of the level set
representations of surfaces.

Nevertheless, in general when using all these techniques, one still need to know the value of
the heat transfer coefficients between the two domains which ensures, as a Neumann/Dirichlet
boundary conditions, the heat transfer at the air/solid interface. In fact, industrials perform
many experimental tests to obtain such heat transfer coefficients. But, when dealing with a
large diversity of shapes, dimensions and physical properties of these metals to quench, such
operations can become rapidly very costly and time consuming.

In the present study, the proposed method aims to overcome this drawback. The main idea
is to retain the use of the monolithic formulation and coupling it to some additional features
that could allow a better and accurate resolution, in particularly at the interface between the
fluid and solid. Recall that the monolithic resolution, based on the levelset approach consists
in considering a single grid for both air and solid for which only one set of equations need
to be solved. Consequently, different subdomains are treated as a single fluid with variable
material properties. One important feature till now is that by solving the whole domain in a
fully monolithic way there is no need of empirical data so as to determine the heat transfer
coefficient. The heat exchange at the interface is replaced naturally by solving the convective
fluid in the whole domain. Numerically, the communication between the solid and the fluid
is obtained naturally without any further assumption and force modelling. In other words,
there is no need for some coupling engines specifically designed to handle data exchange and
algorithmic control signals between solid region and fluid region.

The second feature of this method is the use of our advanced research in the anisotropic mesh
adaptation to adapt the interface between two different materials [4, 13, 14, 15]. The proposed



mesh generation algorithm allows the creation of meshes with extremely anisotropic elements
stretched along the interface, which is an important requirement for conjugate heat transfer
and multi-component devices with surface conductive layers [16]. Many research efforts have
been devoted to analyze and to improve the accuracy, stability, conservation and robustness of
different immersed boundary method. This is obviously required when following an interface all
along the computations. However, in the present study, as the solid, the heated objects inside
the furnace are considered fixed, a preadapt meshing is totally affordable. All these previously
cited techniques can at a certain degree explicitly be replaced by this proposed locally interface
refinement that can generate a quasi conforming mesh with an acceptable cost. Recall that
the interface between solid and fluid is nothing but a zero isovalue of the distance function;
hence the calculations of the classical boundary integrals that account for the radiative heat
transfer between the solid and the fluid are no longer applicable. The contribution of the
radiations to the heat transfers is assessed by solving the radiative transfer equation (RTE)
and by computing volumetric terms that acts as an energy source terms via divergence of
radiative heat flux.

The present approach has already been introduced in the works of Bruchon et al. [13], Valette
et al. [14] and Bernacki et al. [15]. If the strategy is similar, the context is clearly different.
In [13], the authors have proposed to use the metric properties of the distance function for
simulating two bodies in contacts in a forging process. Details about the formulation of the
contact condition, mesh adaptation as well as the computation of the distance function are
given. On the other hand, in [14], the use of this method was highlighted by several numerical
examples such as extrusion and industrial mixing processes. In [15], the authors illustrate the
ability of this approach to accurately describe nucleation and grain growth in the context of
recrystallization in a polycrystalline material. The present study intends to apply the same
strategy for simulating conjugate heat transfers and turbulent fluid flows inside a furnace in
the presence of heated industrial parts.

From a numerical point of view, the sudden heating of solid is at the origin of so-called
thermal shocks which cause spurious oscillations in the solution. In order to circumvent this
issue, a stabilized finite element method is used for both Navier-Stokes [17, 18, 19, 20] and
the convection-diffusion equations [21, 22, 23]. As far as the radiative terms are concerned, the
radiative transfer equation is solved separately using the so-called P-1 method [24].

The outline of the paper is as follows: first, we present the time-dependent, three-
dimensional, conjugate heat transfer and fluid flow problem. The section 2 presents the
discretization as well as the stabilized finite element method for solving these equations. A
detailed description of the immersed volume method using both the level set function and the
anisotropic mesh adaptation is given in section 3. In section 4, the numerical performance of the
presented method is demonstrated by means of 2D test cases and a 3D real industrial problem.
Comparisons with the literature results are presented. Finally, conclusions and perspectives
are outlined.
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2. GOVERNING EQUATIONS
2.1. Navier-Stokes equations

Let Q ¢ RY d = 2, 3, be the spatial computational domain with boundary 9. In order
to compute the motion of an unsteady, viscous, incompressible, non-isothermal flow with
buoyancy forces, one has to solve the coupled non-linear system provided by the Navier-Stokes
equations including the Boussinesq approximation:

V-u=0 in Q (1)
p(Oru4+u-Vu) =V -2ue(u)—plyg) =pS(T—To) g in Q (2)
pCo(O T +u-VT) -V -(AVT)=f—-V-q inQ (3)

where u is the velocity vector, p the pressure and T the temperature. Equation (1) is the
expression of the incompressibility constraint. Equation (2) that describes the momentum
conservation features the density p, the dynamic viscosity p, the deformation-rate tensor
e(u) = (Vu+tVu)/2, the reference density and temperature pg and Tp, the thermal expansion
coefficient § and the gravitational acceleration g. Eventually, equation (3) denotes the energy
conservation and it involves the constant pressure heat capacity C), the specific thermal
conductivity A, a volume source term f and the heat radiative flux q.

2.2. Turbulence model

The turbulent aspect of flows in furnaces requires the use of dedicated models to compute the
flow field. In the present work, we solve the Reynolds-averaged Navier-Stokes problem derived
from the equations (1)-(3) and we resort to the standard k — e model to close the system. The
RANS equations read:

V.-u=0 in Q (4)
p(Opu+u-Vu) — V- (2u. e(u) —pe Ia) = pof(T —Tp) g in Q (5)
pCr(O T +u-VT) =V -AVT)=f -V -q in Q (6)

where the averaged values of the unknowns are the velocity u, the effective pressure p. and the
temperature T. The system (4)-(6) features the effective viscosity p. and the effective thermal
conduction A\, which are given by:

C
fe =+ py  and )\e:)\—i—p—m (7)
PI‘t

with Pr; the turbulent Prandtl number. The turbulent viscosity p: in expression (7) is a
function of the turbulent kinetic energy k and the turbulent dissipation ¢ that reads:
k‘2
Mt = pCN? (®)



with C), an empirical constant usually equal to 0.09. To assess p, the introduced variables k
and € are computed using two transport equations that read:

p(atk+u-Vk)V~<<u+ut)Vk>PkJrPkbpe nQ (9
k

p(Oe+u-Ve) -V - ((ﬂ + I/ft ) Vs) = %(Clng + CscPep — Caepe) in 2 (10)
Te

In equations (9) and (10), Py represents the production of turbulent kinetic energy due to

the mean velocity gradients, Py is the production due to the buoyancy effects, Pry and Pr.

are the turbulent Prandtl number for k£ and e respectively, while Ci., Cs. and Cs. are model

constants. The production terms P and Py, are modelled as follows:

gVp (11)

Pk = Z,U‘t(s(u) :5(11)) and Pkb = — e

pPr,

Finally, it remains to assess the real pressure from the effective pressure and the turbulent
kinetic energy, which is carried out in the following manner:

2
P =Dpe— gpk (12)

2.8. Radiative transfer model

2.8.1. Gray gas assumption The gray gas model may often be sufficient for furnace
applications since, most of the time, surfaces are fairly rough and, as a result, reflect in a
relatively diffuse fashion. Furthermore, if the radiative properties do not vary much across the
spectrum then the gray gas simplifications may be valid. According to Modest [24], in the case
of a gray medium, the divergence of the heat radiative flux that appears in equation (3) or (6)
relies on the local temperature and the incident radiation as follows:

~V - qr = k(G — 4koT") (13)

where G denotes the incident radiation,  is the mean absorption coefficient and ¢ the Stefan-
Boltzmann constant.

2.8.2. The P-1 approzimation Equation (13) clearly establishes the necessity of getting an
expression of G in order to assess the divergence of q,.. This can be achieved by considering the
radiative transfer equation (RTE) that may be found in [25]. In the present study, one resorts
to the so-called P-1 radiation model that is the simplest case of the P-N model to express
radiation intensity by means of series of spherical harmonics (cf. [24, 25] for more details).
Using this approach enables to simplify the RTE into an elliptical partial differential equation
in terms of the incident radiation G as follows:

V- <31 VG> — kG = 4keT* in Q
K

14
0w _ _3KCw (4omt _G) i 00 "
on  2(2—e,) w v

where subscript w denotes wall quantities, n is the normal to the wall and ¢, the emissivity
of the wall.
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2.8.3. Radiative properties In the context of gray-medium assumption, the mean absorption
coefficient x can be derived from the emissivity e of the material using the Bouguer’s law which

reads: 1
K= =7 In(1 —¢) (15)

m

where L,, is the mean beam length defined as:
AV
L,, =3.6—— 16
3615 (16)

For unstructured grids, AV and AS are appropriate measures of volume and surface for each
element of the mesh.

2.4. Non dimensional parameters

In practice, relevant dimensionless numbers are used in our numerical experiments. They read:

UL
Re := 22~ Reynolds number
I
L
Pe := LC’;\U Peclet number
23gL3AT
Gr := /)ﬁguiz Grashof number
O (17)
Pr .= % Prandtl number
2C,[BgL3AT
Ra = ZCpOILTAT o eigh number
UA
U2
Fr:= JLAT Froude number

where L is the characteristic length of the problem, U the characteristic velocity and
AT the characteristic temperature difference. These numbers are related by Ra = Gr - Pr,
Fr = Re?- Gr~' and Re = Pe - Pr— .

2.5. Boundary conditions
At the inflow boundary, for a prescribed velocity u, the value of k£ can be computed using:
kinlet = Cpc * |u|2 (18)

where ¢y, is fixed to 0.02 as an empirical constant. Once k is computed, the value of ¢ can be
prescribed using: )
CM . kS 2
Einlet = L (19)
with L, a fixed constant, known as the characteristic length of the model [26]. These computed
values of k and ¢ are extended into the interior domain as initial conditions.
At the outflow, the following homogeneous Neumann boundary conditions are applied:

n-Vk=0 and n-Ve=0 (20)



On the rest of the computational boundary a combination of Neumann and Dirichlet conditions
is imposed by using classical wall function introduced in [27] which describe the asymptotic
behaviour of the different variables near the wall. If the boundary mesh nodes are located in
the logarithmic region, we impose the wall shear stress given by :

T = pU* (21)
where U™ is the friction velocity evaluated by solving the equation:
U 1 pE§
=—-In(—U" 22
Uk ( p ) @2

where U is the tangential velocity, ¢ is the distance to the wall, k is the Von Karman constant
(typically equal to 0.41) and E is a roughness parameter taken equal to 9.0 for smooth
walls. Imposing the wall shear stress corresponds to a non-homogeneous Neumann boundary
condition for the momentum equation in the tangential direction. The normal component of
the velocity is set to zero. The turbulent kinetic energy and its dissipation on the boundary of
the mesh are given as function of the friction velocity [27]:

%2 *
v and e, = v
Ve o
Boundary conditions at a wall for the energy equation are enforced through a temperature
wall function similar to that used for the momentum equations. The effective heat flux in the
wall function is computed as :

ky =

(23)

- - PCI>C/1L/4kw(Tw - T)
Gw=1"q, = T+

where T, is the wall temperature and 7" is the normalized temperature given in [28].

(24)

3. IMMERSED VOLUME TECHNIQUE

The immersed volume technique consists in dealing with only one computational domain for
both fluid and solid. Hence, the domain can be viewed as a composite material made of several
components. In order to provide very accurate results, such a method must gather three key
ingredients: a level set function, an anisotropic mesh adaptation and appropriate mixing laws
to describe the properties of the composite material. The following paragraphs aim at detailing
these three items.

8.1. Level set approach

The so-called level set approach enables to represent the interface between solid and fluid as
a zero level of a smooth function. In practice, a signed distance function is used to localize
the interface and initialize the material properties on both sides of this latter. In our context,
the solid being fixed, the interface is static. Let Q2¢, €2, and I'; represent respectively the fluid
domain, the solid domain and the interface. They verify:

QUQ, =0 and QrNQ, =T, (25)
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For each node of the computational domain €2, the level set function o which is the signed
distance from the interface reads:

>0 ifx ey,
a(x)=40 ifxely, (26)
<0 ifxen,.

The physical and thermodynamic properties in the domain are then calculated as a function of
«; for instance, the mixed density is calculated using a linear interpolation between the values
of the density in the fluid and the solid:

p=prH(a)+ps(1 - H(a)) (27)
where H is a smoothed Heaviside function given by:
ifa>e

1
(1+O‘+sm(m)) if [af < e (28)
g ™ 13

ifa< —¢

H(a) =

S =

¢ being a small parameter such that e = O(h) and h the averaged mesh size in the vicinity of
the interface.

3.2. Anisotropic mesh adaptation

Accurate calculation of the temperature distribution along the air-solid interface is critical
for a correct modelling of industrial experiments. When the heat flux is directed through the
interface, the difficulty arises due to the discontinuity of the properties of the material across
the interface. If this latter is not aligned with the element edges, it may intersect the element
arbitrarily such that the accuracy of the finite element approach can be compromised. In
order to circumvent this issue, the level-set process is thus coupled to an anisotropic mesh
adaptation as described in [16]. The idea of this method is to gradually refine the mesh when
approaching the interface. In this way, the mesh becomes locally refined which enables to
sharply define the interface and to save a great number of elements with respect to classical
isotropic refinement. This anisotropic adaptation is performed by constructing a metric map
that allows the mesh size to be imposed in the direction of the distance function gradient. Let
us briefly described the main principles of this technique. First of all, one has to resort to a
so-called metric which is a symmetric positive defined tensor representing a local base that
modify the distance computation, such that:

Xl = VA M X, <Xy Su='x M-y . (29)

The metric M can be regarded as a tensor whose eigenvalues are related to the mesh sizes, and
whose eigenvectors define the directions for which these sizes are applied. For instance, using
the identity tensor, one recovers the usual distances and directions of the Euclidean space. In
our case the direction of mesh refinement is given by the unit normal to the interface which
corresponds to the gradient of the level set function: x = Va/||Va||. A default mesh size, or



backround mesh size, hy is imposed far from the interface and it is reduced as the interface
comes closer. A likely choice for the mesh size evolution is the following:

hd if |a(x)| > e/2
h = 2hg(m — 1)
me

Eventually, at the interface, the mesh size is reduced by a factor m with respect to the default
value hy. Then this size increases until equalling hy for a distance that corresponds to the half

(30)
a0l + 14 if [af)] < /2

Figure 1. Mesh adaptation in the vicinity of the interface: from the initial mesh to the final mesh.

of a given thickness e. The unit normal to the interface x and the mesh size h defined above,
lead to the following metric:

X 0 if |a(x)| > e/2
_ . 1 = ]_ 1
M C(x®x)+hd 1 with C == if Ja(x)| < ¢/2 (31)
d

where I is the identity tensor. This metric corresponds to an isotropic metric far from the
interface (with a mesh size equal to hg for all directions) and to an anisotropic metric near
the interface ( with a mesh size equal to h in the direction x and equal to hg in the others).
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In practice, the mesh is generated in several steps using, through the CIMLIB librairy, the
MTC mesher developed by T. Coupez [29]. This mesher is based on a topological optimisation
technique available in [16] for the anisotropic case. At each step of the refinement process,
the mesh size converges locally toward the target size. Figure 1 illustrates the steps of the
refinement process for a three ingots immersed inside the three-dimensional furnace. Figure 2
shows the computational domain at the end of the anisotropic adaptation process, it clearly
emphasizes the mesh refinement along all the interfaces whereas the rest of the domain keeps
the same backround mesh size.

Figure 2. Computational domain after anisotropic adaptation

3.3. Mizing laws

The immersed volume technique implies that the material which is treated in the equations is a
composite one. Hence, it is necessary to define the physical and thermodynamic properties of
such a material. To achieve this, linear interpolations are mainly used between the values
of the properties in the fluid and the solid as previously evoked in expression (27). The
smoothed Heaviside function defined in (28) enables to assign the right properties on each
side of the interface. The material properties introduced in systems of equations (1-3)-(13),
such as density, initial temperature, dynamic vicosity, constant pressure heat capacity and
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mean absorption coefficient, are defined as:
p=prH(a)+ps(1— H(a))
p=ppH(a)+ ps(1 — H(a))
pCp = (pyCpsH () + psCps(1 — H(ar))) (32)
pCpT = prCppTyH () + psCpsTs(1 — H(ev))
v =rpH(a)+ rs(1 — H(a))

However, as far as the thermal conductivity is concerned, linear interpolation would lead to
inaccurate results. According to [30], one has to resort to the following law to ensure the

conservation of the heat flux:
H(a) 1—H(a)\ "
A= 33
(52 ()

Table I. Properties of materials.

Properties Air  Inconel 718
density p [kg/m?) 1.25
heat capacity C} [J/(kg K)] 1000
viscosity p [kg/(m s)] 1.9¢-5 -
conductivity A [W/(m K)] 0.0262
emissivity e - 0.7

3.4. Originality of the method

Usually, the simulation of the heat transfer between two media requires additional boundary
conditions of Neumann/Dirichlet type. Such conditions typically describe the convection
transfer at the interface

/ he (T — Tog) dT, (34)
Tr;

where h. is the heat transfer coefficient and Teyt is the averaged temperature of the
surroundings. Similarly, the radiative heat transfer is computed using the classical boundary
condition:

/ oe (T* — Tiy ) dT, (35)
I;

where o is the Stefan-Boltzmann constant and e is the emissivity.
Once the object is immersed inside the computational domain using the IVM, the need of
geometric boundary conditions vanishes and is replaced by the zero level of the level set
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function. Thus, the boundary conditions (34) and (35) at the solid’s interface are no longer
applicable. Our alternate approach consists in simulating the conjugate heat transfer by
solving the coupled problem (1-3)-(13) for both the surrounding air and the heated object. We
emphasize that the computation of the heat transfer coefficient h. can be a difficult task since
it needs experimental data and often requires to solve inverse problem. It can be therefore a
limiting issue for practical applications when one needs to change the geometry of the object,
the physical parameters, the number and the position of the objects, the surrounding fluid
(air, water, etc.). On the other hand, our approach can be apply to any complex problem since
it only requires the material properties of the different media.

4. STABILIZED FINITE-ELEMENT METHOD

In this section, the Galerkin finite-element approximation and the corresponding stabilization
methods for the resulting discrete system of equations (1)-(3) are briefly described. Based
on a partition 7, of Q into set of N, elements K, the functional spaces for the velocity
V= (H) (Q))d and the pressure P := C°(Q) N L3(2) are approached by the following finite
dimensional spaces spanned by continuous piecewise polynomials:

Vi = {u € (HX(Q)" | ux € PHK), VK € Th}

(36)
Py ={peC'(Q)NL§(Q) | px € PHK), VK € Tp,}
The weak formulation of the incompressible Navier-Stokes equations reads:
Find u € V}, and p € Py, such that:
VYw €V, q € Py, B(u;u,p;w,q) =0
(37)

B(viu,p;w, q) = p(du, w) + p (v- Vu,w) + (2ue(u) : £(w))

—(p,VW)—(f,W)—l—(Vu,q)

where f is the given force vector. It is well known that the classical finite element approximation
for the flow problem may fail because of two reasons: the compatibility condition known as
the inf-sup condition or Brezzi-Babuska condition which required an appropriate pair of the
function spaces for the velocity and the pressure [31, 32, 33, 34, 23]; and when the convection
dominates [17]. Therefore, we employ stable finite element formulation based on the enrichment
of the functional spaces with space of bubble functions known as Mini element [35, 36, 37].
The special choice of bubble functions enables us to employ static condensation procedure
giving rise to a stabilized formulation for equal-order linear element. A detailed description on
the implementation of the finite element solver using the P14 /P1-based mixed finite element
method can be found in [38, 39, 40, 41].

Equations (3), (9), (10) and (14) can be represented by a single scalar transient convection-
diffusion-reaction equation which reads:

Op+u-Vo+V (aVe)+ro=f (38)

where ¢ is the scalar variable, u the velocity vector, a the diffusion coefficient, r the reaction
coefficient and f a source term. The solution strategy for solving such an equation is similar
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to that used for the equations of motion. Again, the spatial discretization is performed
using approximation spaces. Thus, the Galerkin formulation is obtained by multiplying these
equations by an appropriate test functions, applying the divergence theorem to the diffusion
terms and integrating over the domain of interest. Following the lines on the use of stabilisation
methods for transient convection-diffusion-reaction equations as discussed in [23, 42], the
stabilized weak form of equation (38) reads:

Find ¢ € S} such that, Vw € W,

(Orp+u-Vo,w)+ (aVep, Vw) + (ro,w)
(39)

+Y (R(@)smsupcu - V) e + Y (R(9), Tseralt - V) e = (f,0)
K K

streamline upwind discontinuity-capturing

where S;, and W), are standard test and weight finite element spaces (the scalar counterpart
of the vector space defined in (36)) and R(y) is the appropriate residual of equation (38).
In equation (39), two additional stabilizing terms have been introduced; the first controls
the oscillations in the direction of the streamline (SUPG) [17, 43] and the other controls the
derivatives in the direction of the solution gradient (SCPG) [44, 41]. This can improve the
result for convection dominated problems while the shock-capturing technique precludes the
presence of overshoots and undershoots by increasing the amount of numerical dissipation
in the neighborhood of layers and sharp gradients. The evaluation of the 7gypg and Tscpa
stabilizations terms follows the definition described in [17, 44, 41]. The time derivatives are
approximated by the Euler forward difference scheme.

The algebraic problems resulting from the finite element formulation are assembled and
solved using the conjugate residual method associated to the incomplete LU preconditioner
from the PETSc (Portable Extensive Toolkit for Scientific Computation) library. A master-
slave parallel strategy was used [40, 45], involving SPMD (Single Program, Multiple Data)
modules and the MPI (Message Passing Interface) library standard. The computations of the
3D conjugate heat transfer have been obtained using 8 2.4 Ghz Opteron cores in parallel (linked
by an Infiniband network).

5. VALIDATION FOR 2D CASES

In this section, we want to validate the numerical performance of the immersed volume method
over two numerical tests involving two-dimensional thermally coupled flows. All the numerical
simulations were carried out by using the CIMLIB finite element library. This C++ library,
which is highly parallel, is developed at CEMEF by the team of Coupez and Digonnet (see
[40]).

The transient natural convection of low-Prandtl-number fluids in a differentially heated
square cavity is solved at first using a classical approach and compared to the published
results. This preliminary step enables us to use the classical approach as a reference in order
to validate the IVM method. Two test cases are then considered to lead this validation. For
both of them, a square enclosure is regarded. However, in order to apply the IVM approach,
the domain is enlarged by replacing the left wall by a solid body. The results obtained using
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classical and IVM methods are then plotted on both domains and compared one to another.
The main purpose is to show that IVM method must yield same results as the classical one from
a fluid dynamics, turbulent flow and heat transfer point of view. We expect such conclusions
from the following numerical experiments:

i) The IVM method performed well on both conjugate laminar and turbulent mixed
convection and conduction in lid-driven enclosure with thick vertical wall.

ii) The proposed approach seems promising to simulate turbulent flow and heat transfer
inside industrial furnaces in the presence of heated workpieces.

5.1. Transient natural convection of low-Prandtl-number fluids

The study of flow and heat transfer for lid-driven enclosures offers an interesting test to
validate numerical solution algorithms [46, 47, 48]. Tt has been extensively used by researchers

Adiabatic

upward movement
hot fluid

T, T,

downward movement
cold fluid

Adiabatic

L

Figure 3. Set-up of the differentially heated square cavity.

because of its growing interest in many applications such as materials processing, metallurgy,
crystal growth and many others [49, 46, 50, 47]. In [46], the authors repeated the numerical
example taken from [49] which consists in solving the classical flow in a cavity with differentially
heated vertical walls with low Prandtl number. It was shown that under such condition the
flow exhibits a Hopf bifurcation that leads to an oscillating flow pattern. This particular
example is still an interesting and challenging problem especially under transient conditions.
Correspondingly, the authors in [46] showed that by tracking the subscales and keeping their
effects in the thermal coupling problems, higher accuracy is obtained in the solution and the
stability of the coupled problem is improved in respect to other classical stabilized finite-
element methods. Our purpose here is first to validate the finite element implementation of
the coupled problem by comparing our prediction to the given reference, and second, to assess
the effectiveness of the IVM method on an extended domain using a thick vertical wall. The
problem is schematically shown in figure 6 which is a square enclosure with a side length L.
Both top and bottom surfaces of the enclosure are insulated i.e. the zero heat flux boundary
condition is prescribed. The vertical walls are maintained at different 7}, (hot) and T, (cold)
constant temperatures. Homogeneous Dirichlet boundary conditions are prescribed everywhere
on the boundary for the velocity. The radiation effects are assumed to be negligible. We assume
that the fluid properties are to be constant, except for the density in the buoyancy term,
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Figure 4. Comparison of the present results (bottom) with the reference ones (top) in [46].
Left: streamlines. Middle: isotherms. Right: velocity norm.

which allows Boussinesq approximation. The gravitational acceleration is taken parallel to the
isothermal walls. Calculations were carried out using a 61 x 61 unstructured mesh refined near
the walls and a time step of 0.002. The Prandtl number Pr is taken to be equal to 0.005 and the
Grashof number Gr is fixed at 5 - 10%. For such unusual values, taken from [49, 46], oscillations
are predicted with a dimensionless frequency of 12.2. Note that under certain conditions, these
convective oscillations appear in many low Prandtl number fluids as the crystal metal, the
liquid metals in casting, nuclear reactor safety and many other applications. More details can
be found in [49, 51, 48]. All computations have been carried out by starting with a fluid at
rest. The expected flow is basically formed by one main centred circulation limited by the
lateral confinement and four different recirculation located at the corners as shown in figure 4.
The streamlines, the isotherms and the velocity norm obtained at a certain time step from the
present calculation are exposed in figure 4 and compared with results obtained by Codina and
Principe in [46], showing good agreement between them. The time history of the velocity U,,
captured at a mid right-hand corner of the cavity (0.9571,0.5043), is shown in figure 5 and
compared well to results from [49]. As expected, the flow field oscillates with a dimensionless
frequency of 12.18 which is in very good accordance to the reference value.
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Figure 5. Time series of U, at mid-right corner of the cavity: present work (left); reference (right).

5.2. Conjugate-mized convection with a thick vertical wall

To evaluate the performance of the IVM method in terms of multi-domain representation, we
extend our domain by adding a vertical thick wall on the left side of the cavity (see figure 6).
Several experimental and numerical studies have been carried out on natural convection heat
transfer in enclosures under boundary conditions, however, studies about a partially divided
enclosures are rarely investigated [52]. Such applications concern cooling of electronic devices,
jet impingement [53], enhancement of room air [54], flow and temperature distribution in heat
loaded furnaces [55], heat exchanger design [56], etc.

The IVM approach, initially implemented and validated in [4], was shown to be completely
suitable for simulating such multi-material problems. In the present study, we aim to

Adiabatic Adiabatic
upward movement upward movement
hot fluid hot fluid

g g
Ty T, Ty T,
downward movement downward movement
cold fluid Q Q cold fluid
solid fluid
Adiabatic Adiabatic
L L/4 L

Figure 6. Schematic of the problem with domain and boundary conditions used. Case 1:
square enclosure with left and right walls differentially heated. Case 2: the same square
enclosure with a thick left vertical wall.

extend the validation on conjugate heat transfer and turbulent flow problems, in particularly,
for simulating industrial furnaces with heated objects inside. A very important common
characteristic of solidfluid heterogeneous media is still how to resolve the discontinuity in
physical properties across their interfaces. In the IVM method, the level set function identifies
automatically the solid part from the fluid region and applies the anisotropic mesh adaptation
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at the interface [4]. The proposed mesh generation algorithm allows the creation of meshes

Figure 7. Left: computational domain with a left thick wall. Right: close-up along the interface.
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with extremely anisotropic elements stretched along the interface (cf. figure 7), which is an
important requirement for conjugate heat transfer and multi-component devices with surface

conductive layers [52].

Figure 8. Comparison between the IVM method (bottom) and the classical approach (top).
Left: streamlines. Middle: isotherms. Right: velocity norm.

Thus, a single set of equations (1)-(3) is solved for the whole computational domain by
treating the different subdomains as a single fluid with variable material properties. At solid-
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fluid interfaces, conductivities are calculated using a harmonic mean formulation [30] in order
to handle abrupt changes in the material properties. Thus, we automatically well establish
the continuity of temperature and heat flux across the interface. The solid domain have a
dimensionless thickness of 0.25L and is initially taken at T}, (hot) constant temperature. The
temperature gradient inside the solid wall is extremely low due to the use of high thermal
conductivity (A = 10%). Moreover, setting the relative kinematics viscosity very high value in
the solid region satisfies the zero velocity in this region and hence the no-slip condition on
the interface is also satisfied. Therefore, the convective terms in the energy equation drop out
and the equation reduces to the transient conduction equations in the solid. The stabilized
finite element methods are employed to discritize and solve the coupled heat transfer inside
the enclosure.

The aim of this numerical test is not to study the effect of conducting left wall in terms
of thickness and conductivity ratios, it is more to analyse the general behaviour of the
solution on extended domains. As it was shown in [4], the idea is to investigate how well

1 . classi;:al approach -
— IVM method
0.8f 1
0.6 1
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Figure 9. Comparison between the IVM method and the classical approach. Top: T" along the z
centerline. Left: U, along the x centerline. Right: U, along the y centerline.

the boundary conditions between two subdomains by volumetric source terms can replaced.
Several benchmarks in [4] demonstrate the effectiveness of the proposed approach. Here, this
investigation is continued and carried out over more complex situations.
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The Prandtl number and the Grashof number are chosen to be under the threshold of
oscillation for this test. Thus, the flow and temperature showed a gradual approach to a
steady state without any oscillation. A comparison of streamlines, isotherms and velocity norm
between the classical approach (with zero wall thickness) and the IVM approach (with a thick
vertical wall) are depicted in figure 8. As shown, the streamlines are almost circular in shape
with very weak circulations at the corners and the obtained results are in complete agreement.
Due to high conductivity of the solid wall, the fluid behaves as the classical lid-driven cavity
problem. Finally, temperature and velocity distributions along the centrelines obtained on both
domains are illustrated in figure 9. Afresh, all the results are almost indistinguishable between
both approaches.

5.8. Forced turbulent convection in a partially divided square enclosure

In this section same computational domains have been used to solve forced turbulent convection
heat transfer on a solid wall. This example can be seen as a simplified model of a gas-

0.8L 0.1L 0.8L 0.1L
{ 1 j—
Adiabatic T = Adiabatic T
outlet outlet
2
§ Fluid movement Fluid movement
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< |
— oL ~— toiL
inlet inlet
03L 0.3L
Qsolid Qﬂuid
Adiabatic Adiabatic
L L/4 L

Figure 10. Schematic of the problem with domain and boundary conditions used. Left: square
enclosure. Right: the same square enclose with a thick left vertical wall.

fired furnace. The heated air is pumped into the enclosure from the right inlet located at
y = 0.3L. The velocity magnitude is 0.5m/s, and the temperature is fixed at 1273K. At all
other boundaries, adiabatic condition for the temperature equation is applied. The air is vented
out the enclosure through the outlet positioned at z = 0.8L on the top wall. For illustration,
figures 10 and 11 show the schematic diagram and the sequence of the treated problem.

Unlike the previous test cases, the highly turbulent characteristic of the flow requires to
solve the k — e model (4)-(6) with the standard logarithm wall functions [27]. Furthermore, to
preclude possible numerical oscillations in the regions of high convection and high gradients,
both the SUPG and SCPG stabilisation methods are included. The dimensionless parameters
involved in the problem are the Peclet number (Pe = 1,000) and the Reynolds number
(Re = 50, 000).

As in the previous section, once the interface is refined, the material properties for
each subdomains are dispersed. Two additional equations, the turbulent kinetic energy and
dissipation are coupled and solved on both domains. Note that the use of high value for the
relative kinematics viscosity in solid region makes the velocity components negligibly small
and satisfies the no-slip condition at the refined interface. Therefore, as shown for the energy
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Figure 11. Sequence of the air injection at different time steps.
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Figure 12. Comparison between the IVM method (bottom) and the classical approach (top).
Left: isotherms. Right: velocity norm.
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equations, all the convective terms as well as the source (i.e. destruction) terms in the two-
equations of the k£ —e model drop out. To complete, the solution gradients of the k—e model is
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Figure 13. Comparison between the IVM method and the classical approach along the x centerline.
Top left: velocity U,. Top right: velocity U,. Middle left: turbulent kinetic energy & - 102. Middle
right: turbulent dissipation ¢ - 10%. Bottom: temperature T

extremely low inside the solid wall due to the fact that the high introduced relative kinematics
viscosity is proportional to the diffusion terms in both turbulent equations (9)-(10) .
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Figure 12 shows a good agreement between both approaches for the temperature and the
velocity norm contours at a certain time step. As expected, the use of high viscosity in the
solid region satisfies the zero velocity in this region and hence the no-slip condition on the
extremely refined interface is also verified. Moreover, due to the low conductivity of the solid
wall, a quasi adiabatic surface is observed and reported.

In figure 13, the distributions of the velocity profiles, the temperature, the turbulent kinetic
energy and the turbulence dissipation are plotted along the line y = 0.5 at time ¢ = 20s. This
stage corresponds to the fully development of the turbulent flow before it reachs a quasi-steady
state. Similar trends and good agreement between the two approaches are observed in all the
solutions. However, in the near-wall region, some differences in the solution exist. We suspect
that the main discrepancy could be due to the use of a simple wall function implemented
as Dirichlet boundary conditions in the classical approach. On the other hand, in the IVM
approach, the turbulent quantities are computed naturally at the interface. The differences
between solutions computed using wall functions implemented in the strong and weak sense
were also observed in [57] and [41]. It was shown that the use of Dirichlet boundary conditions
for k and e produced rather disappointing results, whereas the performance of Neumann
boundary conditions is remarkably efficient for the near-wall treatment. The authors have
pointed out that by letting k to be computed ”"naturally” at the boundary, they improved the
prediction of the turbulent quantities in the near wall regions and they obtained the correct
behaviour. This matter will be the subject of further investigations in a near future.

5.4. 3D test case

As a final example,the heat transfer and turbulent flow inside an industrial furnace is
considered. Figure 2 shows three ingots taken initially at 333K and positioned at different
locations inside the furnace. All computations have been conducted by starting with a fluid at
rest and at a constant temperature of 333K.

Figure 14. Computational domain inside the furnace. Left: initial geometry. Right: final geometry.

The heated air is pumped into the furnace from 10 different inlets forming a circle of 6m
diameter at 1.7m from the ground. The velocity magnitude of each burner is 10m/s, and the
corresponding temperature is fixed at 1073K. At all other boundaries, adiabatic condition for
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the temperature equation is applied for sake of simplicity. The air is vented out the furnace
through the outlet positioned at the centre-top wall (at z = 2.42m). The volume mesh used in
the computations has 57,012 nodes and 304, 785 tetrahedral elements. The time-step is equal
to 0.001s. The 3D computations have been obtained using 32 2.4Ghz Opteron cores in parallel
(linked by an Infiniband network) [40]. We start by deriving an anisotropic adapted mesh that
describes very accurately the interface between the three workpieces and the surrounding air.
In figure 14, one can clearly see that, after a reduced number of steps, the shapes of the ingots
are well respected by the mesh. Only additional nodes are locally added at the interface

Temperature K
1273,

108s.

323,
Figure 15. Streamlines and isotherms inside the furnace at different time steps.

region, whereas the rest of domain keeps the same background size. Once the mesh is well
adapted along the interface, the material distribution between each physical domain can be
described by means of the level set function. Consequently, the same set of equations (1)-(3)
is simultaneously solved over the entire domain including both fluid and solid regions with
variable material properties (see table I).

Figure 16. Velocity vectors in the midplane of the furnace.

As the interface between solid and fluid is only the zero level of the distance function,
the calculations of the boundary integrals of systems (1)-(3) are no longer applicable on their
interfaces. The state of art in the thermal coupling analysis (1)-(3) lies in that the heat transfer
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Table II.
Location Average temperature (K)  Average velocity (m/s)
Near wall 706 45
Near center 526 45

between the solid and the air at the interface has been treated naturally, i.e. without the use
or a previous knowledge of any heat transfer coefficient. Moreover, we replace the classical
boundary conditions (35) by solving the P-1 radiative model (14) in both domains which
generates a volume source term for the energy equation.

Figure 15 shows the evolution of the isotherms and the streamlines at different time steps.
When the hot fluid passes across the volume of the furnace, it induces a turbulent and
recalculating motion within the geometry. This forced convection is caused by the interaction
of the moving stream and the stationary fluid inside the furnace. The streamlines and the
temperature distribution clearly indicate the expected flow pattern. The air movement around
the workpieces is quite complex and the temporal evolution is chaotic. A number of small
vortexes inside different buffer zones can be observed in figure 16. They are due to the
turbulence dissipation and mixing between the hot and cold air. On the vertical plane cutting
through the ingots, we see, as expected, the solid region satisfies the zero velocity and, hence,
the no-slip condition on the extremely refined interface is also verified. The obstacles (3 ingots)
slow down the air circulation in the central zone of the furnace and slightly influence the main
air circulation along the walls. Table II provides the average temperature and average velocity
values at two different locations: one at intermediate distance between the ingots and the walls
and the other at the centre of the furnace between the ingots. Figure 17 shows the temperature

Temperature K

I1273

1035

Figure 17. Temperature distribution on three parallel planes inside the furnace.

distribution on three mutually parallel planes in the furnace. The amount of energy required
to increase the temperature of the three loads by a few hundred degrees is considerable both
in real application and computational studies. The present results, as exposed in figure 17,
describe the five first minutes of the heating process during which the immersed solids only
gain few degrees above their initial temperature. Such a 3D computation has yet required 4
days on 32 cores. Hence, a great effort is still necessary to supply fast algorithms in order to
calculate this kind of full heating sequences in reasonable reducing time.

These numerical results indicate that the IVM approach is suitable for the parallel
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numerical simulation of industrial furnaces with different loads. The method is now applied
in the consortium THOST, ”Thermal optimization system”, which groups many industrial
partners. Such calculations allow to predict different parameters and to understand the
flow characteristics for heat treatment furnaces. Future investigation will be concerned with
experimental comparisons and time reducing models.

6. CONCLUSION

In this paper, we have presented a numerical investigation of natural and forced convection
heat transfer, airflow in industrial furnace. The applications of the stabilized finite element
formulations for incompressible turbulent flows with thermal coupling to 2D and 3D test
problems with conducting bodies are highlighted. We have also described different aspects
related to the numerical approximation of thermal coupling between a fluid and a solid.
Our approach, referred as the IVM method, solve one set of equation in both domains with
different materials properties. This has allowed us to propose alternatives to classical boundary
conditions (mixed-convection and radiation) and heat transfer coefficients that insure the heat
exchange between each subdomains. The numerical tests show that the proposed scheme can
produce the accurate numerical solutions to unsteady laminar and turbulent flows. In some
of the cases, we were able to compare our results to those reported in the literature. The
favourable nature of the comparisons in those cases and the reasonable nature of the results in
the other cases increased our confidence in and demonstrated a good potential for formulations
developed.
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6.4 Numerical simulation in a full-scale industrial furnace

E. Hachem H. Digonnet, E. Massonj H. Lemercief and T. Coupez
* Centre For Material Forming (CEMEF), Ecole desids de Paris
06904 Sophia-Antipolis, France
+ Terreal, Research and Development departmentiuesPages, 92150 SURESNES

Abstract

In this paper, a heat treatment furnace was simalal using Computational Fluid
Dynamics to investigate thermal performance of ftib@ace and the heating process.
The furnace is used to heat and treat terra-cotidugpts impellers to obtain the required
microstructure and mechanical properties. CFD satih provides a useful tool to
predict the temperature evolution in the furnacd athin the walls and the support
grid. The model consists of turbulent flow, thermradiation and conjugate heat
transfer. A 3D stabilized finite element methodsused to solve the conjugate heat
problem. An immersed volume method (IVM) is applitdl treat the fluid/solid
interactions. Temperature measurements were camiedifferent location and are
compared to the experimental results.

Keywords: Finite elements, stabilization, heat aactobn, static condensation

* This section is a preprint and subject for a futurepublication



304 IVM for solving conjate heat transfer

Introduction

The prediction of the transient heat transfer iaside furnace and inside the steel
charge is presented. This procedure couples a meahsplution of the turbulent fluid flow,
thermal radiation and conjugate convection-conductheat transfer inside the furnace
including the charges, the surrounding air and tteated walls. The heating process of
industrial furnaces represents a critical step thiewe the correct temperature and
metallurgical properties of the treated workpieddany factors play an important role in the
heat treatment process such as: minimisation ol léemperature gradients, insuring a
uniform temperature within the load, avoiding atxmaum all surface defects such as skid
marks, minimising energy usage and maximising fcenaapacity.

The design of a computational fluid dynamics (CRD9YI is invaluable for the
exploration of these physical phenomena, investigatof process sensitivities and
optimisation procedures.

The study and development of stabilized finite edlatrmethods (chapter 1-4) able to
handle such complex flow become more evident taiolgood predictions of the temperature
solution at different locations inside the furnaa@d again, the immersed volume method
(IVM) is applied to treat the fluid-solid interaotis.

Application

Here in this study, we aim to present seven minokd®ating process for an industrial
furnace given by our industrial partners. The &os was modelled as a rectangular section
duct, 1.5x1.3x1.1 rhforming one heat transfer zone. The hot gas ispaahinto the furnace
through two burners located on the vertical walf'atn/s each having a constant temperature
of 1100°C.

Figure 1. 1m furnace (left) and the support grid (right)

Domain Temperature Density kg/mi  Heat capacity J/Kg°C  ConductivityW/m°C

°C at t=0s
Gas(air) 250°C 1.2 1000 0.02
Solid (s) 250°C 2300 960 20
Walls 250°C 90 950 0.2

Table I. Materials properties and initial temperestu
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Figure 1 illustrates the furnace geometry whereugpert grid is positioned on the
bottom wall while in Figure 2, the location of tharners on both left and right sidewalls are
presented. The materials properties used in tlsis & well as the initial conditions and
different parameters are presented in table I. dihés vented out the enclosure through the
outlet positioned at the centre of top wall.

Figure 2. Left and right burners located on thetical walls

By applying the IVM method, the levelset functiomst detects and defines the treated
objects. The second step consists in deriving tieo&opic adapted mesh that describes very
accurately the interface between the workpiecesydlls and the surrounding air. Recall that
the mesh algorithm allows the creation of extrensthgtched elements along the interface,
which is an important requirement for multimatepabblem with surface conductive layers.
The additional nodes are added only at the interfagion keeping the computational cost
low. Note that although the support is made bydsiferent cylindrical objects and one flat
grid, however, as shown in figure 3, the shapehebé¢ treated objects is well captured and
respected by applying the proposed anisotropic radaptation.

Figure 3. Difference between the initial mesh )laftd the final mesh (right)

The algorithm progressively detects and refinesstngport grid and the walls leading to a
well respected shape in terms of curvature, angles, All the small details in this given
geometry can be captured accurately (see figurBldie that the the final mesh used for the
numerical simulation consists of 155015 nodes &&589 linear tetrahedral elements.
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Figure 4. Two verticals cuts in the volume at défe heights of the support grid

Once the mesh is well adapted along the interfaetseen the walls, the support grid and the
volume of the furnace, the material distributiontieen each physical domain can be
described by means of the level set function. Comsetly, the same set of equations;
momentum equations, energy equation, the turbliestic and dissipation energy equations,
IS simultaneously solved over the entire domairnutiiog both fluid and solid regions with
variable material properties.
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Figure 5. Detailed view of the anisotropic mesh@d#on along the treated walls

Recall that the interface between the solid andithé is rendered by the zero isovalue of the
distance function; hence the calculations of ttessital boundary conditions to ensure the
heat exchange between the subdomains (air-solidaarwalls) are no longer applicable on
their interfaces (figure 6 and 7). The state ofirathe proposed thermal coupling analysis lies
in that the heat transfer at any interfaces has breated “naturally”, i.e. without the use or a
previous knowledge of any heat transfer coefficient

Usually, the heat transfer coefficient between swbdomains can be obtained through
experimental tests or empirical rules, but in tihespnce of complex geometries and flows,
different configurations of the furnace (changire tspeed of gas, changing the initial
temperature, changing in the burner’'s temperaturguch operations can become rapidly
very costly and time consuming.
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Summing up, for any different geometry, even if se@sider a new studied solid, it is
shown that the proposed method only requires tmeléhe composite material properties to
ensure the corresponding heat transfer.

The discretization in space for the incompressidwier-Stokes equations, the heat transfer
equation and the turbulence equations is perforbyedn unstructured grid stabilized finite
element method. Thus, the numerical oscillations$ #aermal shocks are well captured and
smooth solutions are obtained.

. — walls

air

. ———  support grid

Figure 6. A top view of the density distributioord) the walls, the atmosphere and the
support grid

Figure 7. Two cuts in the final mesh at differensifion. Locations of the burners, the outlet
and the support grid
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Note that at fluid-solid interfaces, conductivitee® calculated using a harmonic mean
formulation in order to handle abrupt changes ie thaterial properties. Thus, we
automatically well establish the continuity of teengture and heat flux across the interfaces.
Moreover, setting the relative kinematics viscosigyy high value in the solid regions, the
walls and the support, satisfies the zero veloaitythese regions and hence the no-slip
condition on the interface is also satisfied. Thaes the convective terms in the energy
equation drop out and the equation reduces tadmsient conduction equations in the solid.

The aim of this numerical test is not to study éfffect of the heating process for any
optimisation or manufacturing processes, in termisspeed of gas, initial and inlet
temperature or other factors; it is more to anatieegeneral behaviour of the solution in the
presence of the extended domains.

Both radiation effects of the gas and the wallscargsidered in the computations. The
emissivity is assumed to be equal 0.05 for theayaks0.45 for the walls. We assume that the
fluid properties depend on the temperature, ini@adrly the density of the gas in the
buoyancy term, which allows Boussinesq approxinmatibhe gravitational acceleration is
taken parallel to the solid walls. Calculations evearried out using a time step equal to
0.001s to capture the physics accurately. The Régmumber is assumed to be equal td 10
All the given parameters used for the numerical utions do not reflect the true
measurements from the experimental tests, dueetcwadmplexity of the materials, the gas
composition and other technical issues. Howevermaee sure that the chosen parameters
have at least the real physical representationaendppropriate to simulate the real test. The
3D computations have been obtained using 32 2.4@eron cores in parallel (linked by an
Infiniband network)

The main objective of the THOST project is to désemumerically the airflow and
temperature field inside an industrial furnace wehkigh convective heat sources are used.
The thermal wall jet created by this kind of souman greatly influence the temperature
distribution inside the enclosure. Therefore, adeaturbulence model are needed to produce
better results in particularly in the vicinity dig walls. This can be one among different
reasons to extend the standard kaodel by the low Reynolds numbereknodel under a
suitable mesh scheme. We will also justify thisichdater in chapter 6.

We start a presentation of the standardrkedel which is mainly valid in the turbulent
region (far-wall zone). The near-wall effects armawdated through wall functions which give
boundary conditions for points situated in the tlebt zone. However, this procedure is not
well adapted for complex flows, since the conditibat the boundary must be in the turbulent
zone cannot generally be respected rigorouslyumstudy, it was noticed that the use of an
extended version of thegkmodel (low-Reynolds-number model) in combinatioithve wall
function defined over the entire wall region is aai better choice. The appropriate choice of
wall function in the near-wall zones is discussedetail. A brief description of the solution
strategy using a Newton-type method to solve fdoulence energi and rate-of-dissipation
energye is given in the same section. Finally we validdte model by simulating the
turbulent flow between two plates and the backwiang step. Simulating results for a
variety of flow are presented and discussed.
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If a non-slip boundary condition is used in turlmiléows, a large number of fine
grids close to wall are needed, which is not pcattat present due to computer limitations
and long time heat treatment simulation. Moreowerar solid walls, the turbulence kinetic
energy production is gradually reduced due to damge of viscous effects. In this region,
the large eddies dissipate their energy directilgenathan transferring it to smaller scales as
per the energy cascade. Therefore, although tlénstate can be expected to peak in the
near-wall region due to steep velocity gradiertiere will be a reduction in sub-grid scale
stress. This effect is accounted for by damping ttireulent viscosity,,, as the wall is

approached. The usual way to damp this additioisabsity in the vicinity of the wall and to
capture the near-wall effects without drasticatigreasing the number of unknowns is the use
of wall models.

Results and discussions

For illustration purposes, we present in figurén® evolution of the isotherms at two
different locations and at a certain time step @&)1nside the furnace.

//M“

Figure 8. Temperature distribution in the furnadenasphere and within the support.

The temperature distribution clearly indicates ¢xpected flow pattern. At the solid’s
level, we observe that the injected air from thé&dio burner is slowed down and slightly
influence the main air circulation in the lower tpaf the domain. This explains the difference
in the flow pattern between the two burners. Whentiot fluid passes across the volume of
the furnace, it induces a turbulent and recalaudathotion within the geometry. This forced
convection is caused by the interaction of the mg\stream and the stationary fluid inside
the furnace.
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Figure 9. Velocity distribution in the furnace atspiere and around the support.

The air movement around the workpieces is intergsti.e. it allows studying the
influence of different arrangements and positianegtimize the heat treatment. A number of
vortices between the objects and the surroundimgsbe observed due to the turbulence
dissipation and mixing between the hot and coldsse figure 9).

In order to reveal in details the unsteady comglenctures and the flow pattern, we
investigate in figure 10, 11 and 12 the vectora@lthe x-z, x-y and y-z planes respectively at
four different positions after 200 time units. lacé plane, the cross section is positioned near
the first burner, then its moves towards the ceotrthe furnace passing through the support
grid and the outlet and finally it ends up neargbeond burner. The two opposing burners are
positioned far from the centre so that the flangts go not meet. It is shown that once the
flames hit the walls and deviate towards the cehfems a slight counter clockwise rotating
flow. Near the centre of the furnace and betweentwo pair of flames, a full rotating gas
flow is formed, which is ended near the impellgr-surface and exits through the outlet.

One can also observe as shown in Fig.11 (x-y pl#ma) the centre of a primary
vortex moves toward the centre in the upper path®furnace and secondary vortices appear
clearly in different corners. This phenomenon isisir to that shown in the three-
dimensional lid-driven cubic cavity.
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Figure 10. Velocity distribution in the furnace aabund the support. (x-z plane)

On all vertical planes cutting through the supmpitd and the surrounding walls in
figures 10-12, we see as expected, the solid regatisfies the zero velocity and, hence, the
no-slip condition on the extremely refined intedds also verified. For instance, the support
grid slows down the air circulation in the lowertpaf the furnace and slightly influences the
main recirculation along the walls. This explaineythe upper part of the furnace is more
heated than the lower part. The air movement artlmmavorkpieces is quite complex and the
temporal evolution is chaotic. An important numbéismall vortices inside different buffer
zones can be observed. They are due to the tudmitlissipation and mixing between the hot
and cold air.
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Figure 11. Velocity distribution in the furnace aadund the support. (x-y plane)

It is also worth mentioning that the profiles oetkemperature do not suffer from
spurious oscillations (high undershoots or overtd)owhich are frequently observed in the
presence of high temperature gradients at thefaaror in convection dominated problems
across the enclosure. This can be attributed tcstigilization finite element discretization
applied on the system of equations. However, tiestill some regions where the solution
(temperature, turbulent kinetic energy or the g@isson rate energy) exhibits some overshoots
or undershoots. But they are very localized andivat affect the overall solution and do not
lead to global instability. It could be avoided bgfining and adapting the grid in these
regions using for example a posteriori error ediimacoupled to an anisotropic mesh
adaptation strategy. A point that needs also fuithestigations.

Recall that the contribution of the radiationshe heat transfers is assessed by solving
the radiative transfer equation (RTE) (discussedhim previous chapter) over the whole
domain and by computing volumetric terms that astan energy source terms via divergence
of radiative heat flux. These source terms, rerdldsg the discontinuity of both the
temperature and the emissivity across the intesfaeplace the classical boundary conditions
that usually are applied at the interface betwaensubdomains.
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Figure 12. Velocity distribution in the furnace aabund the support. (y-z plane)

To get better information on the temperature ewatuairound the immersed objects,

we present in figure 13 the temperature distribuba six different planes in the furnace at a
certain time step. The amount of energy requirdddmease the temperature of the loads by a
few hundred degrees is considerable both in realicgtion and computational studies. The

immersed solids gain only few degrees above theitiai temperature. Such a 3D

computation has yet required 5 days on 32 coreacéjea great effort is still necessary to
supply fast algorithms in order to calculate thisdkof full heating sequences in reasonable

reducing time.
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Figure 13. Temperature distribution in the furnaoed around the support at a given time
step.

Figure 14 and 15 shows the evolution of the isaotiseand the streamlines at different
time stepste 1.25s, 9.61s, 27.08s, 58.77s, 116.57s and)2®22ken the hot air passes across
the volume of the furnace through the burnersidtuices a turbulent and recalculating motion
within the geometry. This forced convection is @by the interaction of the moving stream
and the fluid at rest inside the furnace. The stigges and the temperature distribution
clearly indicate the expected flow pattern. Agas,shown due to high viscosity of the solid
walls and the support, the no-slip boundary coadits verified and only transient conduction
is solved in those regions.

These numerical results indicate that the IVM applois suitable for the parallel
numerical simulation of industrial furnaces wittifelient loads. The method is now applied
and used in the consortium THOST, "Thermal optitndra system”, which groups many
industrial partners. Such calculations allow todmedifferent parameters and to understand
the flow characteristics for heat treatment furisadeuture investigation will be concerned
with experimental comparisons and time reducing eted

Finally, the time history of the temperature captuat the centres of the sidewalls is
shown in figure 16 and compared to the experimaetallts given by our industrial partners.
According to the analysis made by our industriatres, it is shown that during the first
150s the average temperature inside the volumeoarite walls is approximately the same.
At this stage, the temperature of 250°C was recbed®l used as initial temperature for the
numerical computations.
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Figure 14. The evolution of isotherms and streaediat different time step (side view)



316 IVM for solving conjate heat transfer

Temperature °C
50.0 188, 325. 463, 600,
I

Figure 15. The evolution of isotherms and streaediat different time step (top view)
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The walls were instrumented with many thermal senso different locations. Data
were acquired via a computer controlled data adeunssystem, tabulated and then reported
by our industrial partner. All the experimentaluks on the walls (resp. inside the volume)
were approximately the same. Therefore, only taggrage temperature was plotted. The
average temperature on the walls was referredea¥tine 1’ while the average temperature
in the centre was referred as ‘Zone 2'.

A comparison of experimentally measured temperatasellts with the numerical
simulation results at these locations is showngaré 16. As can be seen, the agreement is
generally good for all stations. However, the ddfece respect to the experimental results
may be due to different factors. We will state heméy the important one. First, the use of the
correct physical properties as well as the appadginitial conditions can play an important
role on the final results. From the numerical pahtview, we can say that the use of a fine
enough grid could be more appropriate to simulateii@tely such complex fluid phenomena.
Moreover, such discrepancies in the results cleadicate that a more sophisticated radiative
transfer model may be needed to improve the soluiod account for a better directional
influence. This issue will be the subject of furthrerestigations.
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Figure 16. Temperature-time profile at differentddions in the furnace
Conclusion

This paper presents the CFD simulation of the hggtrocess of a loaded industrial
furnace. The simulation presented in this work pesvided a useful tool to predict the
temperature evolution at the same time in the ten@and within the walls and the support
grid. The 3D stabilized finite element methods deped in this work was used to solve the
turbulent flows, the conjugate heat transfer amdttiermal radiation problem. The fluid-solid
interactions were treated using the immersed volumethod (IVM). Temperature
measurement data on the walls and inside the volwasethe used to validate the present
CFD model. The heating profile was reasonably ipted by the simulation. As a first
implementation, the agreement between the presehtttee experimental results can been
considered satisfactory. The proposed approachseeomising to simulate turbulent flow
and heat transfer inside industrial furnaces inpilesence of different heated workpieces.
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Chapitre 7
Conclusions and Perspectives

The objective of this thesis is the developmenamfefficient method which is able to
simulate complex flow problems inside industriatrfaces including fluid-solid interaction
phenomena. Such simulation involves turbulent floa@njugate heat transfer (convection
and conduction) and thermal radiation all in a medimponent formulations. The tools used
in this thesis are the Finite Element Method (FEM) Computational Fluid Dynamics
(CFD). This method is shown as an attractive waysdtve the turbulent flow and heat
transfer in the furnace chamber and it can be eggbr a variety of furnace geometry and
boundary conditions.

Therefore, the first part of the thesis consistaddeveloping different numerical
methods for modeling the heat transfer and turliulews. Standard finite element method
normally exhibits global spurious oscillations ionwection-dominated problems, especially
in the vicinity of sharp gradients. More advanceetimds in the stabilization context were
proposed in chapter 2 and 3.

In chapter 2, the need for the stabilization meshod the case of time-dependent
convection diffusion reaction problems has beensied. The Streamline Upwind Petrov-
Galerkin (SUPG) and the Shock Capturing Petrov-BalgSCPG) methods were introduced
and implemented. In the case of transient diffupoosblems, a space-time stabilized finite
element method referred as ‘Enriched-Method witletinterpolation’ has been presented and
analysed to treat thermal shock in numerical hesatster. The most important part of this
chapter is the application of these stabilized fdations to the heat transfer equation needed
later for simulation of heat treatment inside intdasfurnaces.

A method able to handle flows at high Reynolds nemin three-dimensional
computations was discussed in chapter 3. We hasaitied in this chapter a stabilized finite
element method for the transient incompressible idédestokes equations based on the
variational multiscale (VMS) principle, e.g. thecdenposition of the unknowns into large
scale and fine scale. The motivation of using threbeanced methods comes from the desire
of extending the existed solver in order to deathwhighly convection-dominated flows
which occurs mainly in the furnace chamber. Thedmotline of the proposed approach was
to keep the previous implementation of the stakleaity-pressure formulation and to extend
it by taking into account the small-scale pressand the convection terms in the fine scale
equations. Results for the unsteady Navier-Stokgmtens obtained via the new modified
scheme have been compared with the reference aalgzad. The numerical experiments
show that the method is stable. The performancelandfficiency of the overall new scheme
have been demonstrated using five benchmarks.
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In chapter 4, the background of turbulence modeisarked out in order to justify the
choice of the particular method that must be usesirhulate a real industrial furnace. Two
classical turbulence models were introduced, aealyand studied: thieepsilon model and
the Large Eddy Simulation (LES) model. The motiwatof using such models comes from
the desire of solving highly turbulent flow problepe.g. the air velocity coming out from the
burners into the furnace chamber could reach 75 mAgain, the stabilized finite element
methods proposed in chapter 2 and 3 was used aigdyor the resolution of the set of
turbulent equations. Most importantly, we concludiexn the numerical experiments that a
chosen turbulence model should introduce the mimmamount of complexity while
capturing the essence of the relevant physics. €pestly, thek-e model, a traditional
model attempts to strike the balance in this reggrdacrificing the details of the turbulence
structures, was adopted. An improved version & thodel appropriate for multi-components
simulation was also introduced and adopted in wWosk. However, the question of which
suitable model must be used to simulate accuratehulent flows in the furnace chamber
requires certain attention. Our main objective na@ on understanding and implementing
these models to open the choice to the user taleednich methods one must use regarding
the application in hand. We explicated briefly tieaich method offers the accuracy of the
results in respect to the computational costs &edréquired computing time. Finally, the
performance and the efficiency of the overall mededve been demonstrated using four
benchmark and comparisons with both experimental mummerical results from several
authors were presented.

As mentioned in chapter 5, thermal radiation exgeaplays an important role on the
overall efficiency, the quality of the heated inrg@nd the production rates since it is the
dominant mode of heat transfer in most furnacesréfore, the second section of this chapter
was dedicated to search and review different moftelsolving the radiative heat transfer.
The main objective was to find the best fitted mogih a certain capability to take into
account fluid-solid interactions phenomena (gadsala¢ated ingots). Two thermal radiation
models were chosen and discussed, implemented dapteal to our multi-components
problem.

A multidomain approach to solve the conjugate heatsfer for which the three
modes, convective, conductive and radiative haatster interfere simultaneously and in both
the fluid part and the solid part was introducedhapter 5. This element represents the most
important ingredient of this work. In the first §ea of chapter 5, we showed that the
proposed numerical technique for modeling suchimaterial flows (fluid/solid), referred as
the immersed volume method (IVM), allows a simpbel @accurate resolution, in particularly
at the interface between the fluid and solid. Eekcription, details and examples about this
method are discussed in this chapter. One impoféattire of the proposed approach is that
all the three-dimensional stabilized finite-elemEEM) methods developed in the first part
of the thesis, which are needed for solving thedient heat transfer and turbulent flows
inside the furnaces, are completely suited with #gproach without additional efforts.
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The immersed volume method is based on the usk atlaptive anisotropic local grid
refinement by means of the levelset function tol wapture the sharp discontinuities of the
fluid-solid interface, e.g. physical properties. Wave used a mesh generation algorithm that
allows the creation of meshes with extremely anigit elements stretched along the
interface. This turned out to be an important regquent for conjugate heat transfer and
multi-component devices with surface conductiveetay The strategy was to only add nodes
locally at the interface, whereas the rest of domaieps the same background size. Note
also, when using an anisotropic mesh, with elemsinégched in a 'right' direction, one could
allow not only to save a lot of elements but alsovell describe the geometry in terms of
curvature, angles, etc. Contrary to others tectesgthis promising method can provide an
alternative to body fitted mesh for very compleogetry.

To resume, the main idea in chapter 5 was to retian use of the monolithic
formulation and coupling it to such additional fgas (IVM). This allows a better and
accurate resolution, in particularly at the inteefdbetween the fluid and solid. From the other
hands, the computation of the heat transfer coeffic which usually is used as a boundary
conditions to insure the heat exchange betweerstbdomains, can be a difficult task since
it needs experimental data and often requires rsgluiverse problems. This is a limiting
issue for practical applications when one needshtange the geometry of the object, the
physical parameters, the number and the positiothefobjects, the surrounding fluid (air,
water, etc...).

However, we have chosen in this work to considemngle grid for both air and solid
for which only one set of equations need to beeshlConsequently, different subdomains are
treated as a single fluid with variable materiagerties. The important aspect of the chosen
strategy is that by solving the whole domain inullyf monolithic way there is no need of
empirical data so as to determine the heat tragskficient between the treated solid and the
surrounding fluid. The heat exchange at the intexfes replaced naturally by solving the
convective fluid in the whole domain. Numericalilge communication between the solid and
the fluid was obtained directly without any furttessumption and force modelling. In other
words, there is no need for some coupling engimpexically designed to handle data
exchange and algorithmic control signals betwedid segion and fluid region. In the last
section of chapter 5, the IVM approach was testedwmn numerical examples showing a
promising tool for simulating thermal coupling afisls and fluids.

Various benchmarks and more complex numerical elesyge given in chapter 6. The
numerical results of forced turbulent convectiogside industrial furnace are also included.

The simulation of the heating process of a loadedn8lustrial furnace is presented in
the last section. The prediction of the temperaguodiles at the same time in the furnace and
within the walls and the support grid are presentdet fluid-solid interactions were treated
using the immersed volume method (IVM). Temperataeasurement data on the walls and
inside the volume was the used to validate thegpiteSFD model.
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The focus in this work is on a new concept for nuoa methods to estimate the
temperature distributions at the same time in tiragice and within the workpieces under
specified furnace geometry, thermal schedule, péstgling design, initial operation
conditions, and performance requirements.

However, the practically relevant test cases toeaehhigher treatment efficiency are
not in the scope of this work. Therefore, in futwerks with the proposed IVM method and
the implemented finite element solvers, it is intpot to prove the usefulness of the proposed
concept with a number of further real industriases Possible applications, where the
features of the coupled solver are desirable, areexample simulations of quenching and
cooling process (ThosT II).

Since simulation of the heat treatment sequencevarkpieces in heat treatment
furnaces followed by a controlled cooling proces®f great importance for the prediction
and control of the ultimate microstructure of therkpieces but specially the reduction of
both energy consumption and pollutant emissionen tthe construction of a model to
simulation and to study the effect of quenching tbe microstructure and mechanical
property coupled to a multi-phase transformatiordeh@re possible extensions of the current
work.

Clearly, a number of other considerations have @otdken into account for more
accurate predictions of temperature profiles inftheace chamber. Here is the list of several
important steps towards enhanced simulation taslenbre realistic problems:

The development of a more sophisticated radiatesester model to improve
solution and account for a better directional ieflae (the M1 model).

A better determination of temperature wall functidor high Rayleigh number
in multidomain problems.

The development of fast algorithms in order to dateufull heating sequences
in reasonable reducing time (e.g. POD, adaptive-step, ... )

Anisotropic mesh adaptation for finite element noetlusing a posteriori error
estimates



