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Abstract 
 
 

The development of efficient methods to understand and simulate conjugate heat 
transfer for multi-components systems appears in numerous engineering applications and still 
a need for industrials, especially in the case of the heat treatment of high-alloy steel by a 
continuously heating process inside industrial furnaces. The thermal history of the load and 
the temperature distribution in the furnace are critical for the final microstructure and the 
mechanical properties of the treated workpieces and can directly determined their final quality 
in terms of hardness, toughness and resistance. The main objectives of this thesis is then to 
understand and better model the heat treatment process at the same time in the furnace 
chamber and within the workpieces under specified furnace geometry, thermal schedule, parts 
loading design, initial operation conditions, and performance requirements. The 
Computational Fluid Dynamics (CFD) simulation provides a useful tool to predict the 
temperature evolution and such processes. In the first part of this work, various stabilized 
finite element methods required for computing the conjugate heat transfer and the 
incompressible flows are proposed and analyzed. Two turbulence models, the k-epsilon and 
the Large Eddy Simulations (LES) models were introduced and used to simulate and take into 
account the complex turbulent flows inside the furnace chamber. The effect of thermal 
radiation was appropriately accounted for by means of a volumetric model known as the P1-
model. In the latter part of this work, a multidomain approach referred as the immersed 
volume method (IVM) is introduced and applied to treat the fluid-solid interactions. It is 
based on the use of an adaptive anisotropic local grid refinement by means of the level-set 
function to well capture the sharp discontinuities of the fluid-solid interface. The proposed 
method showed that it is well suited to treat simultaneously the three modes, convective, 
conductive and radiative heat transfer that may interfere in both the fluid part and the solid 
part using anisotropic finite element meshes. 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Résumé 
 

 
La connaissance du comportement thermique des fours et des pièces est un problème 

difficile et cependant essentiel dans les thématiques de recherche industrielles actuelles. 
L’industrie cherche à se doter de moyens numériques de plus en plus efficaces tout en 
réduisant sans cesse le temps de calcul afin de modéliser des pièces et des assemblages de 
plus en plus réalistes. Les cinétiques de chauffe ainsi que la distribution de la température 
dans l’enceinte et dans les pièces traitées doivent également être maîtrisées, afin d’améliorer 
la qualité des produits chauffées en terme de résistance et dureté.  

Le travail présenté dans cette thèse porte donc sur le développement de méthodes de 
résolution numérique pour la simulation du transfert thermique. Ces méthodes permettent le  
calcul couplé de la température des pièces avec l’environnement du four afin d’optimiser la 
géométrie de ces pièces, leur position dans le four mais également les conditions initiales de 
chauffe. Le calcul de dynamique des fluides (CFD) peut être considéré comme un puissant 
outil technique de prédiction de l'écoulement des fluides et du transfert thermique dans des 
cas industriels réalistes. 

La première partie de la thèse porte sur l'étude de schémas numériques avancés relatifs 
aux méthodes éléments finis stabilisés. Ces méthodes de calculs efficaces ont étaient utilisées 
pour simuler des écoulements instationnaires et des transferts thermiques conjugués. Par la 
suite, deux modèles de turbulence (modèle k-epsilon et modèle Large Eddy Simulation) sont 
introduits et utilisés pour prendre en compte les écoulements complexes et turbulents dans 
l’enceinte du four. Le transfert radiatif est assuré par la résolution du modèle P1 tout en 
calculant un terme source volumique qui sera intégré dans l’équation de la chaleur. 

La deuxième partie de cette thèse se consacre à la mise en place d’une méthodologie 
de discrétisation robuste qui permet aux utilisateurs de générer de façon entièrement 
automatique un seul maillage. Ce maillage contient à la fois des domaines axés sur la 
résolution d’un problème fluide (air, eau, …) mais également solides spécifiques aux 
structures, et ce quel que soit le niveau de détail et donc de complexité du cas étudié. Cette 
approche, connue sous le nom d’ « immersion de volume », garantit un maillage anisotrope 
précis aux interfaces fluide-solide afin de capturer plus précisément les gradients thermiques 
et la forte discontinuité des propriétés physiques. Cette méthode offre donc une grande 
flexibilité dans la mise en données du problème mixte fluide-structure et aussi dans la prise en 
compte de plusieurs géométries (four, pièces, supports) et elle est également bien adaptée aux 
solveurs thermomécaniques développés. 

 
 
 
 
 



 
 
 
 



 
 
Contents 
 

 
Chapter 1 
General introduction ..............................................................................................................11 

1.1 Introduction to heat treatment furnaces ....................................................................12 
1.2 Role of computational modeling in heat furnace design ..........................................13 
1.3 Brief literature on heat transfer modeling.................................................................15 
1.4 Objectives of the thesis .............................................................................................16 
1.5 Work environment ....................................................................................................20 
1.6 Layout of the thesis...................................................................................................20 
References.............................................................................................................................21 

  
 
 
 
Chapter 2 
Stabilized finite element method of convection-diffusion-reaction equations...................23 

2.1 The need of stabilization methods ............................................................................24 
2.2 Standard Galerkin solution .......................................................................................25 

2.2.1 Problem setting .................................................................................................25 
2.2.2 Space discretization ..........................................................................................26 
2.2.3 Temporal discretization ....................................................................................27 
2.2.4 Introduction to stabilized method .....................................................................27 

2.3 Stabilized finite element methods.............................................................................31 
2.3.1 Streamline Upwind Petrov-Galerkin FEM .......................................................31 
2.3.2 Shock Capturing Petrov-Galerkin.....................................................................36 
2.3.3 Residual Free Bubbles ......................................................................................40 

2.4 Application to heat transfer equation........................................................................44 
2.5 Thermal shock treatment for unsteady diffusion problems ......................................47 
2.6 Numerical tests and validation..................................................................................48 

2.6.1 Transient CDR problems ..................................................................................48 
2.6.2 Transient pure convection.................................................................................50 
2.6.3 Transient heat transfer.......................................................................................55 

2.7 Conclusion ................................................................................................................58 
References.............................................................................................................................59 

  
 



 
Chapter 3 
Stabilised finite element methods for incompressible flows with high Reynolds numbe.85 

3.1 Basic formulation of the equation.............................................................................86 
3.1.1 Initial and boundary conditions ........................................................................87 
3.1.2 Classical mixed formulation .............................................................................88 

3.2 Stable mixed variational formulation........................................................................90 
3.3 Stabilized finite element method ..............................................................................91 

3.3.1 Multiscale approach..........................................................................................92 
3.3.2 Matrix formulation of the problem ...................................................................99 
3.3.3 Stabilization parameter ...................................................................................100 

3.4 Numerical examples and validation........................................................................102 
3.4.1 A convergence test..........................................................................................103 
3.4.2 Driven flow cavity problem (2-D) ..................................................................106 
3.4.3 Flow over a circular cylinder ..........................................................................115 
3.4.4 The flow over a backward-facing step............................................................118 

3.5 Conclusion ..............................................................................................................124 
References...........................................................................................................................125 

  
 
Chapter 4 
Implementation of turbulence models in incompressible flow solvers based on a finite 
element discretization...........................................................................................................131 

4.1 Introduction to turbulence.......................................................................................132 
4.2 Turbulence simulation ............................................................................................133 
4.3 The k-epsilon turbulence model..............................................................................135 

4.3.1 The standard formulation................................................................................136 
4.3.2 The boundary conditions.................................................................................138 
4.3.3 Enhanced wall treatment.................................................................................144 
4.3.4 Low Reynolds formulation .............................................................................145 
4.3.5 Finite element solution....................................................................................148 
4.3.6 Positivity of the solution .................................................................................150 

4.4 Large Eddy Simulation ...........................................................................................151 
4.4.1 Filtering equations ..........................................................................................152 
4.4.2 Subgrid-scale modeling ..................................................................................153 

4.5 Benchmarks for the k-epsilon model ......................................................................156 
4.5.1 Validation: grid turbulence .............................................................................156 
4.5.2 Comte-Bellot...................................................................................................157 
4.5.3 Flow over a backward-facing step ..................................................................162 

4.6 Flow behind an obstacle using LES model.............................................................169 
4.7 Conclusion ..............................................................................................................172 
References...........................................................................................................................173 

  
            
            
            
            
       
 



 
Chapter 5 
Immersed volume method for solving conjugate heat transfer ........................................179 

5.1 Introduction.............................................................................................................180 
5.2 The immersed volume method................................................................................183 

5.2.1 The signed distance function ..........................................................................183 
5.2.2 The anisotropic mesh adaptation ....................................................................185 
5.2.3 Mixing laws ....................................................................................................190 

5.3 Radiative heat transfer ............................................................................................194 
5.3.1 Introduction.....................................................................................................195 
5.3.2 The radiative transport equation (RTE) ..........................................................196 
5.3.3 Diffusive grey medium assumption................................................................197 
5.3.4 P1-model .........................................................................................................199 
5.3.5 Rosseland model .............................................................................................200 
5.3.6 Conclusion and discussion..............................................................................200 
5.3.7 Combined natural convection and radiation in a square cavity ......................201 

5.4 Applications ............................................................................................................206 
5.4.1 Forced and natural convection of conducting solids.......................................206 
5.4.2 Results and discussion ....................................................................................211 

5.5 Conclusion ..............................................................................................................212 
References...........................................................................................................................213 

 
 

Chapitre 6 
Immersed volume method for solving conjugate heat transfer and turbulent flows .....219 

6.1 Immersed volume method for solving natural convection, conduction and radiation 
of a hat-shaped disk inside an enclosure.............................................................................221 
6.2 Stable mixed-finite element method for incompressible flows with high Reynolds 
number ................................................................................................................................245 
6.3 Finite element solution to handle complex heat and fluid flows in industrial furnaces 
using the immersed volume method ...................................................................................275 
6.4 Numerical simulation in a full-scale industrial furnace..........................................303 

 
 

Chapter 7 
Conclusions and Perspectives……………………………………………………………..319 

 
            
            
   
 
 
 
 
 
 
 
 
 
 



 
            
            
            
            
            
            
            
            
           
 
         



Introduction to heat treatment furnaces 11 
 

 

Chapter 1  

General introduction 

 
 
 
 

Chapter 1 .................................................................................................................................. 11 
General introduction................................................................................................................. 11 

1.1 Introduction to heat treatment furnaces.................................................................... 12 
1.2 Role of computational modeling in heat furnace design.......................................... 13 
1.3 Brief literature on heat transfer modeling ................................................................ 15 
1.4 Objectives of the thesis ............................................................................................ 16 
1.5 Work environment.................................................................................................... 20 
1.6 Layout of the thesis .................................................................................................. 20 
References ............................................................................................................................ 21 
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1.1 Introduction to heat treatment furnaces 
 

Heat transfer is involved in several physical processes, and in actual fact it can be the 
limiting factor for many processes. The modeling of heat transfer effects inside industrial 
furnaces has started drawing attention of many more investigators as a result of the demand 
for energy conservation through efficiency improvement and for reduction of pollutant 
emissions. It also has become ever more important in the design of the products itself in many 
areas such as the electronics, automotive, machinery and equipment manufacturing industries. 
Research in both experimental and numerical areas and through mathematical models has 
proven to be effective in accelerating the understanding of complex problems as well as 
helping decrease the development costs for new processes. In the past, the optimizations and 
savings in large productions was made by only large companies that could support and afford 
the cost of sophisticated heat transfer modeling tools, specialized engineers and computer 
software. Nowadays, modeling has become an essential element of research and development 
for many industrial; and realistic models of complex three dimensional structure of the 
furnace can be feasible on a personal computer.  

A heat treatment furnace is a manufacturing process to control the mechanical and 
physical properties of metallic components. It involves furnace control, turbulent flows, 
conduction within the load, convection and thermal radiation simultaneously. The thermal 
history of each part and the temperature distribution in the whole load are critical for the final 
microstructure and the mechanical properties of workpieces and can directly determined the 
final quality of parts in terms of hardness, toughness and resistance. To achieve higher 
treatment efficiency, the major influencing factors such as the design of the furnace, the 
location of the workpieces, thermal schedule and position of the burners should be understood 
thoroughly.  

 
 

Thermocouples on a heated pieces Large hollow metal  ingot outside the furnace 
 

Figure 1. Heat treatment study on industrial parts 
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The damage to the global environment and the prospective depletion of essential 
resources caused by growing human activity constitute a dual challenge that calls for 
coordinated measures by multilateral organizations such as ADEME, French Environment 
and Energy Management Agency. This is an industrial and commercial public agency, under 
the joint supervision of French Ministries for Ecology, Sustainable Development and Spatial 
Planning (MEDAD) and for Higher Education and Research with a mission to encourage, to 
supervise, to coordinate, to facilitate and to undertake operations aiming in protecting the 
environment and managing energy.  

Since simulation of the heating up process of workpieces in heat treatment furnaces is 
of great importance for the prediction and control of the ultimate microstructure of the 
workpieces but specially the reduction of both energy consumption and pollutant emissions, 
this agency supports our research program and encourages all players and partners in this 
project to save energy, particularly sectors that consume high quantities of energy on daily 
basis. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Continuous heating inside a furnace. 

1.2 Role of computational modeling in heat furnace design  
 

As mentioned previously, the major factor to be considered in the working of a 
furnace is the heat transfer by all the modes, which occur simultaneously. To either study a 
new furnace or to optimize the heating process in existing ones, the heat transfer in the 
furnace has to be modeled in the same way of a real situation as closely as possible. Given the 
geometry of the furnace, different boundary conditions along the furnace length, gas 
composition and properties and other complexities, an analytical solution in not feasible and 
computational modeling has to be resorted to. Over the last 20 years, the CFD (Computational 
Fluid Dynamics) has gained its reputation of being an efficient tool in identifying and solving 
such problems. 

Modeling the heating process involves solving coupled heat transfer equations. By 
solving them computationally, the method should be capable of doing so in an accurate way 
and within a reasonable time. In the heat transfer of heat treatment furnace, there are 
conduction, convection, radiation, turbulent flow and furnace control. Conduction mainly 
occurs in all solids materials. Turbulent convection exists between the atmosphere and solid 
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materials exposed to it, and furnace walls to the ambient air. Radiation exists between solid 
materials exposed to each other and to all walls. The tools used in this thesis are the Finite 
Element Method (FEM) and Computational Fluid Dynamics (CFD). This method is shown as 
an attractive way to solve the turbulent flow and heat transfer in the furnace chamber and it 
can be applied for a variety of furnace geometry and boundary conditions. The entire heat 
transfer process is a transient one, and iterations are necessary. The main process is detailed in 
the following flowchart: 

 
 

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 

 

 

Figure 3. General flowchart for a heat treatment process 
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1.3 Brief literature on heat transfer modeling 
 

In order to give an idea of the evolution of the modelling process for transient heating 
in heat furnaces, a brief review will be presented here. Different methods and models have 
been used and each model can be characterized upon the assumptions made. Numerous 
practical methods and models for the prediction of thermal heating process have been 
developed and applied to various different furnace geometries. For a complete description 
about computational modelling of heat transfer in reheat furnaces, the readers may refer to 
Harish J. in [1]. Patankar and Spalding (1973) [2] modelled combustions chambers and 
furnaces using the composite-flux radiation model. The steady state heat transfer was 
modelled by Krivandin and Markov (1980) [3] using some empirical relations in both the 
pusher-type and walking beam furnaces. Only radiation was considered and convection was 
neglected.  

Minaev et. al. (1983) in [4] showed by studying walking beam furnaces that the 
convective heat transfer coefficient changes very little along the furnace. In [5], Tucker and 
Lorton (1984) investigated the effects of non-gray combustion products using the zone 
method proposed by Hottel and Cohen (1958) [6]. This method was used for absorbing, 
emitting and non-scattering homogeneous gas to predict radiative heat transfer in a reheating 
furnace. The zonal energy balance method was used to compute the gas temperature. 
However, it was stated that the coupling of the temperature distribution in the load and 
refractories with heat transfer from the combustion gases was not completely accurate.  

In the work of Gerasimov et. al. (1984) [7], passive experiments were conducted as an 
addition to a statistical mathematical model, monitoring the dimensions of the load, speed of 
movement and thermocouple readings. They found out that by considering only a uniform 
continuous entry of workpieces in to the furnace and by assuming that the temperature of the 
furnace atmosphere was constant in a zone, good results can be obtained. 

Kohlgriiber (1985) in [8] developed a simplified model capable of determining 
detailed temperatures profiles in the load for a continuous reheating furnace. This model 
consists in computing the gas temperature as a function of the distance though the furnace. 
The mean-beam length technique was used to compute the radiation effects using the gray 
model assumption for gases.  

 

   
 

Figure 4. Automotive, machinery and equipment manufacturing industries  

Li et al (1988) [9] developed a mathematical model for predicting steady state heat 
transfer. The radiation effects were computed using the zone method while transient 2D 
conduction equation was solved to compute the temperature profiles in the slab. They pointed 
out that the computing cost of the zone-method is too expensive and should be replaced. 
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In [10], Ramamurthy et al. (1991) developed a model of an indirectly fired continuous 
furnace capable of predicting the fuel consumption. The radiation heat transfer was calculated 
using the radiosity method assuming that the gases are a nonparticipating medium. A 1D 
model was used for the conduction in the solid. 

A mathematical system model for modelling direct fired continuous reheat furnaces 
was developed in [11] by Chapman et a1 (1991). The convective heat-transfer rate to the load 
and refractory surfaces was calculated using existing correlations from the literature. The zone 
method was applied for computing the radiation heat exchange between the load, the 
combustion gases, and the refractory. A parametric investigation was also conducted to study 
the effects of the load and refractory emissivities and the height of the combustion space on 
the thermal performance of the continuous reheating furnace.  

Barr (1995) [12], developed an interesting simplified approach for on-line temperature 
control of a pusher type furnace. The temperature was computed in the longitudinal section of 
each bloom inside a long-furnace type. An implicit finite-difference method was used to solve 
the convection heat transfer and a zonal method was applied to calculate the radiation effects. 

Marino (2000) developed in [13] a simplified on-line model for controlling a rotating 
reheat furnace. The radiation effects between individual load segments and between the 
burners and the load as well as the convection were neglected.  

Altschuler et. al. (2000) [14] developed both offline and online models of the pusher-
type and walking beam furnaces. The problem was divided into the load problem and the 
radiation problem for the purpose of analysis. The zonal method was used to calculate the 
radiation heat transfer and a finite volume approach was used to calculate the conduction heat 
transfer in the load. 

Harish and Dutta (2005) [15] developed a computational model to predict the heat 
transfer in a direct-fired pusher type reheat furnace.  The finite volume method was used to 
compute the gas radiative heat transfer.  

Recently, Man Y. Kim (2007) [16] developed a mathematical model to predict the 
radiative heat flux impinging on the slab surface and temperature distribution inside the slab. 
The furnace is modelled as radiating medium with spatially varying temperature and constant 
absorption coefficient.  

 

1.4 Objectives of the thesis 
 

As explained previously, heat treatment represents a critical step within the steelmaking 
process. It can be defined as a combination of heating and cooling operations applied to a 
metal alloy in solid state which controls its mechanical properties, therefore contributes to the 
product quality in terms of hardness, resistance and toughness.  Therefore, the objective of the 
proposed project is to develop a computational methodology able to predict the furnace 
atmosphere as well as the transient heat transfer to the load in a continuous heat treatment 
process.  

Due to the complexities of the physics that may occur for such applications, many 
mathematical models have been proposed over the past years. Of course this complexity has 
decreased with the available computing power but most of the time, the general idea of these 
models was to solve only for heat conduction within the load and employ different 
assumption and simplification about the surrounding gas temperature within the furnace using 
different heat transfer coefficients derived from known furnaces or previous experimental 
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works [17-18-19]. Additionally, in recent years, different environmental constrained pushed 
the industrials to change their previous regulations. Consequently, many experimental tests 
must be made to deduce such transfer coefficients that ensure both the convective and 
radiation effects on and from the treated solid. However, when dealing with a large diversity 
of shapes, dimensions and physical properties of these metals to heat or to quench, such 
operations can become rapidly very costly and time consuming.  

The development of efficient methods to understand and simulate conjugate heat 
transfer for multi-components systems (fluid-solid) is then highly demanded. In recent years, 
there has been increasing interest in studying numerically a variety of engineering 
applications that involve such coupling (fluids-solids) [20-21-22]. Typically, the general idea 
of these techniques consists in dividing the global domain and solving on each subdomain the 
corresponding equation independently. The global solution can then be constructed by 
suitably constructing local solutions from individually modeled subdomains. However, during 
the assembly, the coordination between the meshes can become complicated or even 
sometimes not feasible.  

Other alternative approaches have been applied for multi-phase flows problems and 
are available in the literature, such as the ghost fluid method introduced by Fedkiw et al. 
(1999) in [23], the immersed boundary method [24], the domain decomposition [25], the X-
FEM [26]. They introduced and improved enrichment functions for material interfaces and 
voids by means of the level set representations of surfaces.  

Nevertheless, in general when using all these techniques, one still needs to know the 
value of the heat transfer coefficients between the two domains which ensures, as a 
Neumann/Dirichlet boundary conditions, the heat exchange at the air/solid interface.  

The main objective of this work aims to overcome this drawback and to present a 
multidomain approach to solve the conjugate heat transfer for which the three modes, 
convective, conductive and radiative heat transfer interfere simultaneously and in both the 
fluid part and the solid part. The proposed numerical method for modeling such multimaterial 
flows (fluid/solid) will be referred as the immersed volume method (IVM). It allows an 
improved, simple and accurate resolution; in particularly at the interface between the fluid and 
solid. A full description and details about this method will be given. To complete, the three-
dimensional finite-element (FEM) methods needed for solving the transient heat transfer and 
turbulent flows inside the furnaces must be capable of taking into account also the proposed 
thermal coupling. 

Therefore, the first part of the thesis consists in developing different numerical 
methods for modeling the heat transfer and turbulent flow. At the burner’s level and inside the 
domain, it is well known that for convection-dominated problems, spurious oscillations may 
appear in the standard finite element resolution of the advection-diffusion equations. In order 
to overcome this numerical difficulty, different stabilized finite element methods will be 
presented, such as SUPG (Streamline Upwind Petrov-Galerkin) and SCPG (Shock Capturing 
Petrov-Galerkin). At ingot’s level, where diffusion is the sole mechanism for heat mass 
transfer, there are still some conditions for which the Galerkin method fails to solve the 
transient conduction problem. A new approach will be presented to obtain stabilized finite 
element formulation that ensures an oscillation-free solution and treats the thermal shocks. 
The velocity and the pressure fields are computed by solving the Navier-Stokes equations 
coupled to heat equations.  This finite element solver is already implemented in our library 



18                General introduction  

CIMLIB *. It uses the so called P1+/P1 or “MINI-element” formulation as a stabilization 
method. An extension of this solver will be studied, analyzed and added to take into account 
the convection dominated terms for simulating high Reynolds numbers. The work mainly 
involves the implementation of turbulence models. Two models will be added to this project, 
the k-epsilon model and the Large Eddy Simulation (LES) method (Smagorinsky model). In 
addition, it has been reported in the literature that radiation is the dominant mode of heat 
transfer inside the furnace or in quenching process. Therefore to capture accurately the 
temperature evolution, different thermal radiation models are discussed, only two are 
implemented and adapted to the proposed immersed volume method. All the numerical results 
obtained for benchmark problems are compared with other numerical models and analytical 
solutions for validation purposes. This will be the subject of the last part where also several 
industrial applications will be presented. 

To summarize, the originality of this work is the combination of stabilization methods, 
unstructured grids, anisotropic mesh adaptation, transient flows, heat transfer, turbulence 
models and radiation models in a multidomain approach. All those elements represent the 
features dedicated to industrial abilities of the method. 

 
This work was done within the THOST, “THermal Optimization SysTem” project 

context, which includes the following industrial members: 
 

� ADEME (www.ademe.fr):  industrial and commercial public agency 
� Snecma (www.snecma.fr) : aeronautic equipment 
� ArcelorMittal – Industeel (www.arcelormittal.com) : steelmaker company 
� EDF (www.edf.fr) : Electricity of France 
� Aubert & Duval (www.aubertduval.com) : world leader in alloys, manganese and nickel 

activities  
� Terreal (www.terreal.com) : producer of terra-cotta 
� Manoir Industries (www.manoir-industries.com): cast and forged metal components 
� Creusot Forge, group Areva (www.sfarsteel.com): heavy steel fabrication and mechanised 

welding of complex assemblies 
� SCC, Sciences Computers Consultants (www.scconsultants.com) industrialization and 

commercialization of material forming software (Ximex, THOST, Ludovic, Fakuma) 
 
The main tasks within this project were:   
 

− The establishment of physics-mathematical models for temperature and heat 
transfer analysis during a continuous heating inside the furnace. This will mainly 
include a turbulent flow model, a heat radiation model, a heat convection-
conduction model in a multi-domain approach.   

 
− The development of a numerical calculation method for estimating the temperature 

distributions in the furnace and workpieces by using stabilized finite element 
methods, under a specified furnace geometry, thermal schedule, part loading 
design, initial operation conditions, and performance requirements.  
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− Finally, the development of knowledge-based CAD tool, which will provide a 
CAD user interface for the information input of the furnace, workpieces, thermal 
and physical properties, and initial operation conditions that are used in the 
simulation. 

 
The first two points can resume the present work. The last point was conducted and managed 
by SCC. Another encouraging point for the industrial partners is the establishment of such 
user friendly interface. The project is built not only on the idea of offering accurate results 
for the heat furnace treatment but also in answering all our partner’s needs in a custom-made 
software. Here is a list of some industrial demands. 

 
1. Accurate prediction of temperature profiles in the furnace chamber.  

a. Temperature capturing at different positions (walls, corners…). 
b. Temperature capturing at the surface or core of every loaded parts. 
c. Capable of handling multiple parts in three-dimensional simulations.  

2. Ability to simulate various configurations 
a. Ability to arrange or randomly distribute loaded parts. 
b. Simulating different thermal schedule.  
c. Ability to insert or remove ingots at anytime during the simulation 

3. Facility to calculate important terms such as: 
a. The heat losses from the furnace.  
b. The heat and energy required for the load under different conditions.  
c. The heat stored in the furnace or in the load as a function of time.  

4. Ability to change the environment  
a. Opening or closing the doors 
b. Turning on or cutting off some burners during the simulation 
 

 
Figure 5. Large heated industrial workpieces 
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1.5 Work environment 
 

 In this thesis, all the numerical implementations of the developed methods are carried 
out using the finite element library CIMLIB. CIMLIB, which stands for CIM as Advanced 
Computing in Material forming research group and LIB for library, is developed by the team 
of T. Coupez and H. Digonnet [27]. It is the base for different numerical applications 
developed at CEMEF (www.cemef.mines-paristech.fr), in collaboration with other research 
team and industrial partners. This scientific library represents an Object Oriented Program 
and a fully parallel code, written in C++, gathers the numerical development of the group 
(Ph.D. students, researcher, associate professor…). CIMLIB aims at providing a set of 
components that can be organized to build numerical simulation of a certain process, such as 
REM3D, XIMEX, Forge3 and the present project THOST.  

 

1.6 Layout of the thesis 
 

 
The thesis is divided into seven chapters. Chapter 1 is an introduction to the topic 

considered in this thesis. Chapter 2 summarizes the basic governing equation for the heat 
transfer equation which leads to the common convection-diffusion-reaction equation.  The 
mathematical modelling with emphasis on stabilized finite element in industrial applications 
is presented. Chapter 3 gives a detailed description of the computational procedure needed to 
solve the flow problem. Special attention is given to the use of different stabilization methods 
for solving the Navier-Stokes equation at high Reynolds number. The computation of 
different benchmarks tests has been also carried out. Chapter 4 is devoted to the numerical 
approach of two turbulence models, k-epsilon and LES (Large Eddy Simulation). The 
Immersed Volume Method (IVM) coupled to the mesh adaptation for solving thermal 
coupling of fluids and solids and for the representation of the loads inside the furnace is 
presented and discussed in chapter 5. The radiative heat transfer models are detailed in the 
second part of this chapter. Chapter 6 summarizes the results obtained computationally along 
with the validation of the code on some industrial applications. Several comparisons with 
experimental works will be also presented in four preprints for publications.  In chapter 7, 
conclusion and the possible extension of the present work to include more features is 
explored. 
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Chapter 2  

Stabilized finite element method of convection-

diffusion-reaction equations 

 
 

 
The present chapter is dedicated to the modelling of the heat transfer equation in fluid 

mechanics which leads to the common convection-diffusion-reaction equation.  The need for 
stabilisation of the discrete equation is explained and a review on the stabilisation methods is 
discussed. After briefly reviewing the reason for the observed non-physical oscillations in the 
numerical solutions due to the presence of sharp gradients of temperature or in highly 
convected schemes, some methods to circumvent these oscillations are considered. The main 
part of the chapter is devoted to the family of residual based stabilisations methods which are 
discussed, implemented and validated on several numerical examples. Our motivation and our 
future goal are to resolve the transient heat transfer equation by a continuous finite element 
approximation using the above mentioned stabilized methods.  
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2.1  The need of stabilization methods 
 

The finite element method has been used widely in simulating many physical situations 
due to its flexibility to represent complex geometric domains especially for mechanical 
applications: airplanes, industrial furnaces and many others. Since in most cases analytical 
solutions are difficult or impossible to obtain, the finite element method can provide an 
interesting alternative way to solve and simulate physical situations governed by well 
established mathematical equations. Although it has been used extensively in structural 
mechanics, it was noticed that during recent years more advanced development are still being 
continued to extend its application in complex fluid mechanics. 

The solution of the transient convection-diffusion-reaction problem represents a very 
important subject in numerical modelling for a wide class of problems in fluid mechanics in 
particularly the heat transfer equation. Usually the Galerkin Finite Element (FE) method is the 
first mentioned among the various numerical techniques available to solve these problems. 
This can be explained due to its simplicity and ease of implementation in different codes. 

This method is usually based on the Eulerian formulation in which a fixed position 
control volume is used to derive the governing equations. Consequently, the resulting 
governing equation contains a convective term that has first order spatial derivatives. 
However, when using the standard Galerkin finite element procedure on this governing 
equation, the convective term creates a skew matrix which is the source of non-physical 
oscillations. These non-physical oscillations therefore are a result of the discretization of the 
first order spatial derivative in the convective term when dominating the other terms, like 
diffusion or reaction terms, in the same governing equation.  

We can find in the literature many papers with different methods proposed to avoid 
these numerical oscillations. These methods are known as the upwinding techniques. The idea 
in upwinding is that the node in the upstream direction gives more weight to the solution than 
the node in the downstream direction. 

Since 1950, many upwinding techniques have been the object of extensive 
investigations in the literature. This idea was first proposed by Courant et al. [1] in 1952 then 
outlined by [2] and [3]. The very first procedures have been proposed by Hughes et al.[4, 5, 
6], Donea et al. [7], Patankar [8], etc. For a review of literature relating to this subject, the 
readers are referred to a complete summary reported in [9] and [15]. These methods are quite 
efficient and stable in certain applications, with the use of specific discretization, but 
improvements and generalizations for finite element analysis with optimal accuracy 
characteristics are still under active development. In this chapter, we will discuss the need of 
such upwinding methods specifically for the convection dominated heat transfer equation 
inside the furnace. 

Other instabilities may occur where transient conduction is the sole mechanism for heat 
mass transfer in particularly at ingot’s level. There are still some conditions for which the 
Galerkin method fails to solve unsteady diffusion problem. A new approach based on the 
variational multiscale method will be presented here to obtain stabilized finite element 
formulation that ensures an oscillation-free solution and treats the thermal shocks. Many 
related ideas was proposed like, mesh refinement [10], M-matrix theory [11], finite volume 
method [12], discontinuous Galerkin models [13] and the diffusion-split method [14].  
Compared to all these methods, the new approach works for general meshes, can use any time 
step and has not only a good accuracy order, but also a smaller computational cost. 
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2.2 Standard Galerkin solution 
 
In this section the general equation of convection-diffusion-reaction is described and 

solved. The main interest is then to highlight the reason of the occurring unphysical 
oscillations. This can be easily done by analyzing a one dimension discrete equation as 
proposed by Donea and Heurta [16]. 

 
2.2.1 Problem setting 

 
The convection-diffusion-reaction equation over a bounded and polyhedral domain 
dΩ ⊂ ℜ

 (d being the space dimension) consists in finding a scalar u(x,t) such that: 

 

0
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0 (0, )
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tu u f in T

u on T

u u in

∂ + = Ω×
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⋅ = Ω

L

 

(2.1) 

 
Where LLLL   is the convection-diffusion-reaction operator: 

: ( )u a u k u uσ= ⋅∇ −∇ ⋅ ∇ +L  (2.2) 

Here, a is a given divergence-free velocity field, k > 0 is the diffusion coefficient and σ ≥ 0 is 
the reaction coefficient, f is a source function and u0  the initial data. First let us introduce 
some notation [15]. For a given dΩ ⊂ ℜ , the space of functions whose distributional 

derivatives of order up to m ≥ 0 belong to 2( )L Ω  is denoted by ( )mH Ω . The subspace of 
1( )H Ω  consisting of functions vanishing on the boundary is denoted by 1

0( )H Ω . The norm of 

( )mH Ω  is denoted by ,m Ω
⋅ . The 

2L  norm is denoted by 0,Ω
⋅  and its inner product by ( ),⋅ ⋅ . 

The topological dual of 1
0( )H Ω  is denoted by 1( )H − Ω  and ,

Ω
⋅ ⋅  is used to denote the duality 

pairing between them. 
 
The Galerkin variational formulation corresponding to (2.1) is obtained by multiplying this 
equation by test functions and integrating over the computational domain. The problem can be 
written in a weak form as follows: given 1( )f H −∈ Ω  and ( )a L∞∈ Ω , find 1

0: ( )u V H∈ = Ω  

such that :  
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2.2.2 Space discretization 

 
For the spatial discretization, we consider the finite element partition hT  of  Ω  into 

set of Nel elements K such that they cover the domain and there are either disjoint or share a 
complete edge (face). Using this partition, the above-defined functional space V is approached 
by a finite dimensional space Vh spanned by continuous piecewise polynomials.  
 

{ }1
0 /( ),h h h K his linear forV v H v K= ∈ Ω ∈T  

(2.4) 

 
The Galerkin discrete problem consists now in finding h hu V∈  such that: 

( , ) ( , ) ( )t h h h h h h hu v b u v l v v V∂ + = ∀ ∈
 

(2.5) 

 
Finally, the matrix systems follow from introduction of linear shape functions into the 

variational formulations (2.5). The linear matrix system for the convection-diffusion-reaction 
equation reads after assembly of the element matrices a system of first order differential 
equations:  

U U U U+ + + =&
c d rM K K K F

 
(2.6) 

  

where U is the vector of nodal unknown temperatures, M is the mass matrix, Kc the stiffness 
matrix from the conductive term, Kd the stiffness matrix from the diffusion term , Kr the 
stiffness matrix from the reaction term and F is the internal source. The finite element matrix 
equation must be solved to obtain the numerical solution for the convection-diffusion-reaction 
problem with specified boundary conditions. The coefficient matrices and load vectors are 
defined as follows: 

1

1

1

1

1

el

i

el

i

el

i

el

i

el

i

N
i i jK

N
i i jK

N
i i jK

N
i i jK

N
i jK

N N dK

a N N dK

k N N dK

N N dK

f N dK

σ

=

=

=

=

=

=

= ⋅∇

= ∇ ⋅∇

=

=

∫

∫

∫

∫

∫

c

d

c

M

K

K

K

F

A

A

A

A

A  

(2.7) 

 

being Ni the linear interpolation function at node i  and A  is the matrix assembly operator. 
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2.2.3 Temporal discretization 

 
The system of ordinary differential equations (2.6) has to be integrated in time. Using the 
finite difference  family of approximations, the derivative of the temperature with respect to 
time can be approximated at time t=n∆t by: 

( )
1

1 1(1 ) (1 )
n n

n n n nU U
M U U

t
θ θ θ θ

−
− +− + + − = + −

∆
K F F

 
(2.8) 

Here, ∆t denotes the chosen time step, n-1 the previous time level subject to n=0,…,( T/∆t )-1, 
T the simulation time and θ the parameter of the method, taken to be in the interval [0,1]. We 
remind that this family includes the backward Euler scheme (θ=1), the Crank-Nicolson 
scheme (θ=1/2) and the forward Euler scheme (θ=0).  The forward and backward Euler 
schemes have first-order accuracy. However, the Crank-Nicolson scheme it is the only 
scheme bearing second-order accuracy. The critical disadvantage of last mentioned method 
lies in the potential occurrence of oscillations during the development of the solution. The 
reason is usually due to a chosen time step being too large for the underlying problem.  Using, 
for example, the backward Euler scheme such an ‘incorrect’ time step may be overcome by 
the strong damping feature which comes into play by choosing θ>1/2. For a general analysis 
of these methods with regard to the damping feature, one may consult e.g. Hughes (2000) 
[17]. 
 

The explicit forward Euler method is subject to the so-called CFL (∆t│a│/h) 
(Courant-Friedrich-Levy)-condition governing the size of the time step depending on the 
velocity and the chosen spatial discretization h. When using extremely small time steps, the 
CFL-condition may become very restrictive. Despite the simplicity of this scheme, implicit 
scheme whose parameter lies between 1/2 and 1 are favoured here. Another alternative was 
suggested by [18] to increase slightly θ above 1/2 in order to cure the oscillations, but at the 
same time it sacrifices the second-order accuracy.  
 
2.2.4 Introduction to stabilized method 

 
In this section, the one dimensional convection-diffusion equation is considered to 

highlight the numerical problem when using the standard Galerkin finite element method. 
Although the following example is simple, it reflects the real situations even when simulating 
an industrial application. Assuming a steady state condition, a zero source term and without a 
reaction term, the problem will reduce as follow:  

2

2
0

du d u
a k in

dx dx
− = Ω

 
(2.9) 

 
A uniform mesh domain [0,L] to be considered with the element length h and its linear 
interpolation functions is shown in Figure 1: 
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Figure 1.  Interpolation function for the node i 

 
By applying the Galerkin method to equation (2.9) we obtain the following equation,  

2

2
0

du d u
a k v d

dx dxΩ

 
− Ω = 

 ∫
 

(2.10) 

Solving equation (2.10) leads the following discrete form for the i th node of a uniform mesh 
with element size h, 

1 1 1 1
2

2
0

2
i i i i iu u u u u

a k
h h

− + − +− + − +− =
 

(2.11) 

where ui-1, ui and ui+1 are the nodal values of u at nodes i-1, i and i+1  respectively. It can be 
seen that the Galerkin method gives rise to central-difference type approximations of 
differential operators, same as of the central finite difference method, which are well suited 
for elliptic problems, see for example Huerta et al. (2003) [19]. This equation can be 
simplified to obtain the following 
 

1 1( 1 ) 2 ( 1 ) 0e e
i i iPe u u Pe u− +− − + + − + =

 (2.12) 

 

where Pee is the element Péclet number, / 2ePe ah k= . It is a dimensionless number relating 
the rate of advection term of a flow to its rate of diffusion. So the flow is assumed to be 
convection-dominated for Pe >> 1 and diffusion-dominated when Pe << 1. When the 
convective terms dominate, these anti-symmetric terms create instability in the finite element 
solution which is indicated by oscillations. A simple illustration is given in the following 
example. 
 

Consider the 1D boundary value problem on the interval [0,1] with u(0)=1 and 
u(1)=0. The velocity field is prescribed by a=1 uniformly and constant diffusivity is assumed, 
k=10-2. If the element size h = 0.1 then the global Péclet number will be 100.  This outflow 
boundary layer problem have the following analytical solution:  
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Figure 2.  Solution of the 1D convection-diffusion problem using the Galerkin method  
 

Notice that the boundary layer is located at the right end of the interval (at x=1). In 
this region the gradient is important. As stated previously, for high Péclet numbers, i.e. when 
the flow is dominated by advection, it can be seen from figure 2 that the Galerkin 
discretization gives rise to node-to-node oscillations of the solution or “wiggles”. Such 
numerical instabilities pollute the global solution and create critical problems when solving 
couple heat transfer problems. One way to eliminate these oscillations is the use of upwind 
techniques such as stabilized finite element. 
 

In general, as stated in [9], the basic upwinding technique consists in replacing the 
central difference method obtained from the Galerkin finite element procedure for the 
convective terms by the forward difference method, of first order accuracy. This will give a 
stable calculation. However, using the complete forward difference method yields numerical 
results that are not satisfactory since they are overly diffused. To improve accuracy, several 
modified versions were proposed and developed by introducing an adjusted variable, which is 
a function of the Péclet number. The most popular formulation is known as the Streamline 
Upwind Petrov-Galerkin method (SUPG). It was proposed by Hughes and Brooks in [3] and 
[20] for advection dominated problems. In brief, the basic idea of the streamline upwind 
method (SU) is to add artificial diffusion which acts only in the direction of the flow.    
 

                          
Figure 3.  Weighting function of the Galerkin method and the SUPG method for linear 

elements 

Galerkin 
Flow 

SUPG i-1 
i+1 
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Then it was extended to a Petrov-Galerkin formulation by modifying the standard Galerkin 
weighting functions vh for all terms in the equation. This modification is interpreted by 
allowing more weight to the node in the upstream direction and reducing the weight to the 
node in the downstream direction (see figure 3). The modified equation will take the 
following form 

2

2
0

du d u
a k v d

dx dxΩ

 
− Ω = 
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(2.14) 

where 
dv

v v a
dx

τ= +%  is the new modified weighting function. Note also that since a linear 

interpolation is used, second derivative cancels out. The parameter τ , known as stabilizing 
parameter, will govern the amplitude of the added artificial diffusion. Finally equation (2.14) 
will be modified into 
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As a result, an exact nodal solution is obtained for one dimensional analysis. (Figure 4)  
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Figure 4.  Solution of the 1D convection-diffusion problem using the stabilized method 
 

The previous simple example illustrates some of the difficulties that motivated much of 
the development of upwind and stabilized finite element methods. For multidimensional 
cases, the idea of upwinding can not be easily applied. However, various methods have been 
proposed to implement the basic idea of upwinding to multidimensional analyses. In the 
following subsection, we shall discuss these methods for time-dependent convection-
diffusion-reaction specifically with respect to their use in heat transfer applications. 
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2.3 Stabilized finite element methods 
 

The numerical solution of convection-diffusion-reaction equation using Galerkin 
formulation normally exhibits global spurious oscillations in convection-dominated problems, 
especially in the vicinity of sharp gradients. In heat transfer applications, it is important to 
design a numerical methods guaranteeing that the discrete it temperature solution satisfies the 
physical conditions, in particular for convection dominated and sharp gradient problems. 
Another typical example is the simulation of process which involves solving the two-equation 
turbulence models. Such equations might be either convection or reaction dominated. 
Therefore, the main objective in this section is to revisit these numerical methods to obtain 
stable form for any regime without loss of accuracy. Over, the last two decades, a variety of 
finite elements approaches have been proposed to deal with such situations. These methods 
add a perturbation term to the weighting functions with aim to get an oscillation-free solution. 
These terms are mesh-dependent and allow getting a consistent and stabilizing numerical 
scheme. Recently, such methods have grown in popularity, especially in application to fluid 
dynamics. Starting with Hughes and Brooks in [3, 4, 5] with the SUPG method, a 
generalization was proposed for multidimensional advective–diffusive systems in [22] and 
[23]. Later, as pointed out in Harari and Hughes [24-25],  the Galerkin/Least-Squares (GLS) 
and gradient Galerkin/least-squares (GGLS) methods were used to optimize the performance 
of finite element formulations for advection-diffusion equation with production.  
 

At the same time, a number of interesting stabilized formulations have been proposed 
based on the multiscale methods [26] and related work on the residual free bubbles (RFB) by 
Russo [27] and Brezzi [28]. Further attempts to develop a stabilized finite element method 
with good stability in the presence of reactive terms are presented with the unusual stabilized 
method (USFEM) by Franca et al. [29, 30]. For a detailed comparison of some finite element 
methods for solving these equations, the readers are referred to the work of Codina [31]. 
Some advancement in this direction has been done in [31] and in [32] with the presentation of 
a subgrid scale method with a simple intrinsic time-scale parameter.  

 
In this section, we discuss the use of the SUPG and the RFB methods to solve the 

transient advection-diffusion-reaction equation. Different structure of the stabilizing 
parameters will be presented and conclusions will be drawn. 
 

 
2.3.1 Streamline Upwind Petrov-Galerkin FEM 

 
We reconsider the time-dependent convection-diffusion-reaction equation using the 

same homogeneous Dirichlet boundary condition and initial condition as (2.1), find h hu V∈  

such that : 

( , ) ( , ) ( , ) ( , ) ( , )t h h h h h h h h h h hu v a u v k u v u v f v v Vσ∂ + ⋅∇ + ∇ ∇ + = ∀ ∈  
(2.16) 

The original SUPG method was first designed for the steady version of Eq. 2.1 as a method to 
avoid the numerical oscillations found using the Galerkin approach when the diffusion term is 
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small. The extension to the transient problem that we consider here is based on a previous 
dicretization in time of the equation and then on the use of stabilized finite element method 
for the resulting spatially-continuous problem. This approach is mostly used in the literature 
(see [31] and [32]).  
 
For illustration purposes, we apply the backward implicit Euler method to equation (2.16) and 
we obtain the followed:  given un, find un+1 satisfying the boundary conditions and: h hv V∀ ∈  

1
1 1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , )h h

h h h

n n
n n n

h h h h h h h h

u u
v a u v k u v u v v f v v V

t t
σ

+
+ + ++ ⋅∇ + ∇ ∇ + = + ∀ ∈

∆ ∆
 

(2.17) 

 
By adding a streamline upwind perturbation which acts mainly in the flow direction:  

h h hv v a vτ= + ⋅∇%
 

(2.18) 

and inserting it into (2.17) , the SUPG method is formulated as follow: h hv V∀ ∈  

 

1
1 1 1( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )

h

h h h

h

n
n n n

h h h h h K h K
K

n

h h

u
v a u v k u v u v u a v

t
u

v f v
t

σ τ
+

+ + ++ ⋅∇ + ∇ ∇ + + ⋅∇
∆

= +
∆

∑ R

 

(2.19) 

Where R  (uh ) is the appropriate residual of the finite element components uh. We can see that 
this method is consistent in the sense that the additional stabilizing term is zero if uh is the 
solution of the continuous equation.  
 

1
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u u
a u k u u f a v
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τ σ
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+ + +

− − −

= ⋅∇

= + ⋅∇ − ∇ ⋅ ∇ + − − ⋅∇
∆ ∆

∑

∑
144444444424444444443

R

 

(2.20) 

 
This method up to now has been extensively used in convection dominated problems 

by introducing the streamline diffusion in the context of weighted residual methods. The 
added stabilizing terms are indicated by a subscript K which denotes integration over the 
element, (only added on the element interiors). Note that the third term vanishes in (2.20) 
while using linear interpolations. It remains to define how to compute the parameter τK called 
often ‘intrinsic time’ which can determines and calibrate the amount of upwinding weighting 
locally in each element. The definition of this parameter was originally computed for 1D 
problem. Then it was extended for multidimensional cases using some ‘ad hoc’ modifications.  
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More recently, other ways of computing τK have been proposed on the basis of the 

convergence and error analysis of the method. The purpose of the next subsection is to present 
some definitions of the stabilization parameters that can be directly implemented in our finite 
element code. 
 
 
2.3.1.1 Proposal for the parameters 

 
The critical question in the SUPG method remains in the choice of the parameter τK . 

How much of the perturbation term we must add to obtain the desirable effects of additional 
stability with high accuracy? There is a large amount of literature concerning this choice and 
design of the stability parameters in both presence and absence of the reaction term. However, 
very few of them have been so far used in the simulation of time-dependent equations. In our 
case, as we can see in the discretized equation (2.19), the transient term can act like an 
additional reaction term which might dominate the diffusion and the convection term, in 
particular for small time steps. Thus, appropriate parameters should take both the reaction and 
the transient term into account yielding modified stabilizing parameters.  
 
The standard design for τK  comes from advection-diffusion theory and computed as follow: 
 

( )
2ad Pe
h

a
τ ξ=

 
(2.21) 

where ( )Peξ , function of the Péclet number is derived from nodal exactness as: 

 

1 1
( ) coth min( ,1)

3
Pe Pe Pe

Pe
ξ = − ≈

 (2.22) 

For negative reaction terms, Codina in [31] and [33] derived the following formula for τK  
which emanates from the discrete maximum principle: 
 

1

2

24
cod

uk

h h
τ σ

−
 

= + + 
   

(2.23) 

 
A similar symmetric expression with respect to the sign of the reaction term is proposed by 
Shakib et al. [34] where each contribution is squared 
 

1/ 222
2

2

24
9

uk

h h
τ σ

−
    = + +         

(2.24) 
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From convergence and stability theory, Franca and Valentin [30] derived the following 
expression 

1

2

1 22

2 1

,1)

and

2
( ) ( )

( ) (

2

FV
k

k

k

i i

Pe Pe

Pe Pe

k

m h
max

m a hk
Pe Pe

m h k

τ ζ ζ

ζ

−
 

= + σ 
 
=

= =
σ  

(2.25) 

where mk equal to 1/3 is the optimal value for piecewise linear elements and a is the norm of 

the velocity. Here h, as mentioned in previous section, is an appropriate measure for the size 
of the mesh cell K.  
 

A Fourier analysis strategy was used by Codina [35] in the variational multiscale 
context. The subgrid scale equation from which we can derive the form of the stability 
parameter is expressed in the Fourier space within each element and approximated taking into 
account the subscales that contain only high wave numbers λ. This assumption enables us to 
get rid of the boundary term and to express the Fourier transform of a given variable g(x) in 
the physical space as follow: 

.
ˆ ( ) : exp ( )

K
x

x
g i g x d

h

λλ
Ω

 = − Ω 
 

∫  (2.26) 

where h is an elemental length parameter. The obtained approximate spatial derivative gives: 

2

2

ˆˆ
ˆ ˆ( ) ( ) , ( ) ( )j i j

j i j

k k kg g
k i g k k g k

x h x x h

∂ ∂≈ ≈ −
∂ ∂ ∂  

(2.27) 

where λ=(λ1……..λd) is the dimensionless wave number. It was shown that by substituting the 
obtained expressions into the subgrid scale equation, we obtain:  

12

2
ˆ( )

k u k
k i

h h
τ ε σ

−
 ⋅≈  + + 
 
   

(2.28) 

Note also that in the above expression, the assumption of velocity being constant within an 
element is required. Using the Pancheral’s formula and the mean value theorem, it leads us 
back to the definition of the stabilizing parameter [36]: 

1/ 22 2
2

1 22

k u
c c

h h
τ σ

−
    ≈ + +    
       

(2.29) 

Furthermore, the asymptotic behaviour of τ in the advection limit is dominated by the term 
h/u, the asymptotic behaviour in the diffusive limit is dominated by the term h2/k and the one 
in the reaction limit is dominated by σ. The link between equation (2.29) and the SUPG-like 
stabilization methods reside in the choice of the random constants as c1=4 and c2=2. 
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2.3.1.2 The modified parameters 

 
For a complete review with examples about the proposed parameters presented in the 

previous section, we recommend the following reference [37]. So far, most efforts have been 
invested to deal with steady-problem, while less attention has been devoted to unsteady 
problem. The goal here is to study how stabilization methods designed for steady problem 
could be adapted for non-stationary cases. A direct simple way is to use the above proposed 
parameters and apply them on the time-dependent equation (2.19). Recently, the same idea 
was proposed by [38] and consists in taking into account the transient term as an extra 
reaction term and inserting the time step ∆t into (2.23) and (2.25). This will provide the 
following stabilizing parameter: 

2

2

2

2

1 22

2 1

where

and

4 2 (1 )

6 ( ) ( )(1 )
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(1 ) 3

cod
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t h

k t u h t h t

t h

k t h t

a htk
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h t k

τ
σ

τ
ζ ζ σ

σ

∆≈
∆ + ∆ + + ∆

∆≈
∆ + + ∆

∆= =
+ ∆  

(2.30) 

It turns out that these proposed time-dependent parameters give identical results in some 
interesting limit cases. In order to analyze the asymptotic behavior, we consider first the 

convection-dominated regime, where the local Péclet number is large, / 2 1KPe a h k= >> . If 

the velocity is of the unity order from which follows k h<<  two cases could occurs:  

(h=1/64, κ =10-6) 

1t h∆ << <<  ~ ~
(1 )

cod FV
K K

t

t
τ τ

σ
∆

+ ∆  

~ 1t h∆ <<  ~ ~
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cod FV
K K

t h

u t h t
τ τ

σ
∆

∆ + + ∆  
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Figure 5. The profile of τK  for u=1 and c=1(left);  u=10-3 and c=0 (right) 
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For diffusion dominated regime, when the velocity norm is too small and zero reaction term is 
used, we can obtain ~ ~cod FV

K K tτ τ ∆  in particular when 
2h k t>> ∆ . Figure 5 illustrates the 

behavior of the stabilizing terms in function of the time step for both convection and diffusion 
dominated regimes.  

 
 

2.3.1.3 Element length definitions 
 

The characteristic element length h has a significant impact on the amount of the 
stabilizing parameter. It is shown that it can be proportional to h2 at the diffusion limit and 
linear in the element length at the convective limit. Therefore, the choice of the mesh cell is 
not obvious specifically in the presence of distorted mesh or highly elongated elements. It 
could be simply the diameter of the mesh cell or could be chosen as the mesh cell in the 
direction of the convection for convection-diffusion equations.  This choice is the most 
recommended in the literature, see for example [30,39].  

                          

             
Figure 6.  The support length in the streamline direction 
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∑ ∑

 
(2.31) 

Where ne is the number of nodes in the element, Nα is the basis function associated with the 
local node α, and a is again the local velocity. For more details about the determination of the 
element length taking into account anisotropy of the mesh, the work of J. Principe and R. 
Codina in [40] is highly recommended. 
 
 
2.3.2 Shock Capturing Petrov-Galerkin 
 

The SUPG method is a popular upwinding scheme. Many researchers have 
successfully applied this scheme to solve numerical problems in many fields, such as coupled 
heat transfer and fluid flow, turbulence models and transient incompressible flow. The 
numerical solution to a convection-dominated problem using this method is quite satisfactory 
when approximating smooth functions. Some numerical examples will be presented at the end 
of this chapter. However, when the function contains a shock front in the interior of the 
domain or a boundary layer, the numerical results exhibits some spurious oscillations know as 
overshoots and undershoots. To improve the result, beyond SUPG upwinding scheme were 

ax  

a 
ay 

h  
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introduced in [4], [5] and [41] with an objective to reduce or even to remove out these 
oscillations near a sharp gradients.  

 
The basic idea of these methods is to add a non-linear term to the SUPG formulation, 

allowing for more regulation of the function’s derivative in the direction of the gradient. One 
can distinguish several classes of these methods usually referred as discontinuity capturing or 
shock capturing methods. See [41] and [42]..The most familiar one are known as the 
Consistent Approximate Upwind (CAU) methods [43, 44, 45] and the Spurious Oscillations at 
Layers Diminishing (SOLD) methods, see [46, 47] for review. However, very few of them 
have been so far used in the simulation of time-dependent equations, in particular for heat 
transfer.   

 
As an extension for the SUPG method, this scheme adds an extra term called 

discontinuity-capturing operator. The extra term affects only the numerical solution in the 
direction of the gradient of the solution u. The weighting function is then modified to include 
this term and is defined as follows: 

 

//
c

h h h hv v a v a vτ τ= + ⋅∇ + ⋅∇%  (2.32) 

 
                                                                  
 
 
 
 

Figure  7.  Projection of the advection direction onto the solution gradient∇u 
 
Where the //c ha vτ ⋅∇  is the discontinuity-capturing term. It creates an artificial diffusivity in 

the gradient of the solution direction. The auxiliary vector //a  is a projection of the advection 

in the direction of the gradient hu∇ as shown in figure 7. It is defined as follows 
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.
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h h

h

h

a u
u if u

ua

if u
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 ∇ =  

(2.33) 

 
As we can see, since the new vector depends on the unknown discrete solution uh, the 
resulting method is nonlinear. Applying the Galerkin procedure to equation with the new 
weighting function, we obtain 
 

//( , ) ( , ) ( , ) ( , ) 0SUPG c
h h h h h h h K h K

K

discontinuity capturing

u v u v S u v u a vτ

−

= + + ⋅∇ =∑%
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R R R
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Therefore, the interaction of the new weighting function with the convective term of the 
equation will yield the following additional terms: 
 

1 1
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(2.35) 

 
In the expression above, we can see that the first term is the convective term obtained using 
the classical Galerkin method; the second term represents the artificial diffusivity term along 
the streamline direction obtained using the SUPG method while the last, the new extra term is 
the artificial diffusivity in the gradient direction. This last additional term controls the 
derivatives in the direction of the solution gradient, thus smoothing out the numerical result 
around a shock front or a boundary layer. Note also that all these additional terms are added in 
a way to preserve consistency. 
 

Due to the large number of various discontinuity-capturing methods and the 
comparatively small amount of theoretical research on them, the correct choice of the 
respective stabilization parameters is even less clear than for the SUPG method. For more 
details, see [4]. Often, the determination of c

Kτ  is similar to the one in the SUPG method when 

replacing the velocity vector a  by the new vector//a  into the calculation of all needed terms. 

Therefore, to simplify the notation, these terms will be indicated by a subscript c . Note also 
that using the same procedure to determine c

Kτ  will introduce the effect of the transient terms 

into its definition.  
 
Another important issue is when //a a≅ , a double artificial diffusivity effect occurs. 

Therefore, to avoid the double effect, the following ‘ad hoc’ correction was firstly introduced 
[4]. 

max(0, )c c
K K Kτ τ τ= −  

(2.36) 

 
Another definition that assures a single effect was also introduced by Tezduyar  et. al in [49] 
and [50]: 

//

// 22

c
c
K

ah

aa
τ η

 
=   

 
 (2.37) 

with 

( ) [ ]2 (1 ) , 0,1x x x xη = − ∈  
(2.38) 

 



Stabilized finite element methods 39 
 

 

In certain cases, for smooth problems, these techniques can introduce some undesirable 
crosswind diffusion that leads to less accurate solution than the SUPG methods. In order to 
minimize the effect of the discontinuity-capturing terms in regions where the solution is 
smooth, the idea in [43] and [45] was to introduce a feedback function about the regularity of 
the approximate solution. This locally defined function is added to the stabilizing parameter. 
It is given by:  

( )
h

h
h

a u

u
α ⋅∇=

R
 (2.39) 

Therefore, the modified methods will take the following form: 
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(2.40) 

 
Remarks  

 
1. The parameter c

Kτ  is influenced by the time step ∆t only indirectly through the 

residual and over the SUPG parameters. 
 

2. All these techniques are nonlinear since they need the computation of the 
approximated residual. This can be solved iteratively using a fixed-point technique. 
Recall that usually for nonlinear problems, the computational cost will increase since 
the storage of the previous solution in time is required for the whole iteration. But 
small variation of the solution occurs when small time step are chosen, therefore the 
residual can be approximated directly using the previous time solution. 

 

1

( )h h

h h h

n n
n n n

h

u u
u a u k u u f

t t
σ

−

≈ + ⋅∇ − ∇ ⋅ ∇ + − −
∆ ∆

R  (2.41) 

 
As a result and without significant efforts and development of new software, these 

algorithms allow reuse of existing spatial finite element frameworks and deploy a time 
dependent solution method. Thus, in practice, for several reasons, implicit, fully discrete 
formulations in which spatial and temporal discretizations are affected separately are in much 
more common use than the coupled time-space formulations. Note also that for a large 
number of computational applications like in the present work, the heating of an ingot inside 
industrial furnaces, the increased cost in the number of unknowns for coupled time-space 
formulations is a significant drawback. 
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2.3.3 Residual Free Bubbles 

 
As pointed out before, the previous stabilized methods add some consistent terms 

providing additional diffusion in the streamline direction (SUPG) or in the gradient direction 
(SCPG). However, the amount of such additional artificial diffusion is tuned by a stabilizing 
parameter that must be chosen in a suitable way. Despite the progress of these methods in 
theory and application, their essential drawback lies in the choice of τ. One way to remedy to 
this problem is the use of variational multiscale methods which offers a suitable convincing 
argument for the definition of such parameter and can provide the required theoretical 
foundation to classical stabilization techniques.   

 
The residual-free bubble method, as an example, started by Brezzi and Russo [50] and 

further developed by Franca and Russo [51], will be briefly described here. The variational 
multiscale method was proposed by Hughes [26] as an alternative viewpoint. An interesting 
error analysis on this subject can be found in [52] and [53]. In [54] the authors showed that 
the two approaches were completely equivalent. The basic idea behind those techniques is the 
search for an optimal τ  through the solution of a suitable boundary problem solved in each 
element K.  

 
For further explanation on this subject, the reader could refer to many publications 

about the residual-free bubbles authored by [29], [50] and [51]. The purpose of this section is 
to have a brief review to justify the definition and the choice of the stabilizing parameters and 
to offer an introduction for the following subsections.  

 
Let hB V⊂%  be a finite dimensional bubble space onhT  such that  

h
h K

K
B B

∈ℑ
= ⊕%  (2.42) 

where 1
0( )KB H K= . 

 
For each element K, we enrich and enlarge the following space Va defined by 

a h hV V B= ⊕ %  
(2.43) 

so that any element of this space admits a unique decomposition into the sum of an element of 
Vh and hB% . 

By (2.43) we have that any  a au V∈  can be split into a linear part h hu V∈  and into a bubble 

part b hu B∈ %  in a unique way: 

a h b h hu u u V B= + ∈ ⊕ %  
(2.44) 

 
Moreover, for any element K, we can write  

, ,withb K b K Kb Ku u u B= ∈  
(2.45) 
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Thus, the variational problem in Va can be re-stated as follows: 
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(2.46) 

Where the subscript ( , )
K

⋅ ⋅L  and ( , )K⋅ ⋅  indicates that the integrals involved are restricted to 

the element K. 
The static condensation consists in solving element-wise the second equation in (2.46) for 

,b Ku , known as the small scale equation, and then substituting the resulting expression into the 

first equation, called also the large scale equation. (see [55] for details). 

,
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u v f v u v f Lu v v B

∈
 = − = − ∀ ∈
L L  (2.47) 

At this stage, simplifications must be done to solve for the subgrid scale equation. In the 
literature, the usual approximation consists in taking the subgrid scale as element wise and 
solving (2.47) in each element: 

,( )
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b K h K

h

K
L u f Lu

u

= −

= R
 (2.48) 

Thus, for each uh, the unique solution of problem (2.47) can be written as 

( )1
,b K K h hK

u L f Lu K−= − ∀ ∈T
 

(2.49) 

where 1 1 1
0: ( ) ( )KL H K H K− − →  is the bounded linear operator. Inserting the resulting expression 

of the bubble part into the large scale equation (2.46) we obtain: 
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(2.50) 

It’s clear that the fact of introducing and eliminating the bubble has modified the Galerkin 
formulation by adding a residual-free stabilizing term. By applying the Green’s formula to the 
stabilization term, we can rewrite the problem as 

1 *( , ) ( ( ) , ) ( , )
h

h h

h h K h h K h h hK
K

find u V such that

u v L f Lu L v f v v V−

∈
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∑
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(2.51) 

where L* is the formal adjoint operator of L on K coming from the second integration by parts 
with Dirichlet boundary conditions and given by: 

* : ( )L v k v a v vσ= − ∇ ⋅ ∇ − ⋅∇ +  (2.52) 
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Recall that the purpose of this section is to show that the use of these methods can 
reproduce the streamline-diffusion scheme and, at the same time, will provide a suitable 
definition of the stabilizing parameter. However the implementation of the RFB method 
requires the solution of the subgrid scales problem which is of the same complexity of the 
original problem. Hence, by following the same approximations of the bubbles made and 
described in Brezzi et al. [28] we retain only the effect of these unresolved scales. Therefore, 
the result of the local inversion 1

KL− can be reduced to a multiplication by a constant on each 

element K that depends on the equation coefficient and the finite element mesh as: 

11
(1)RFB

K KK
L

K
τ −= ∫

 
(2.53) 

Then, the resulting stabilized scheme on Vh  takes the following form: 
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(2.54) 

By comparing (2.54) and (2.19) we immediately see that stabilization term introduced 
by the SUPG method and the RFB method are identical specifically when vh is linear on every 
element and under the assumption of piecewise constant coefficients. However, the advantage 
of the RFB method is that the stabilization parameter is produced by the approach rather than 
by ‘ad hoc’ tuning. Several publications regarding the link between the stabilized methods 
and the element wise residual-free bubbles were proposed in Franca and Farhat [29] and 
Franca and Russo [54]. 
 

At this point, the calculation of the stabilization parameter has to be specified. Recall 
that several strategies were proposed to model the subscales. For example, Codina derived in 
[31] his version using the maximum principle. Franca and Valentin in [56] proposed a 
definition of the stabilizing parameters based on the convergence theory. More general 
derivation was proposed later by Codina and Blasco using a Fourier analysis [57]. In [58] the 
authors used the element Green’s function to provide a suitable definition of this parameter.  
Let’s consider here an instructive example for the computation of RFB

Kτ . Let L be the 

convection-diffusion operator using piecewise constant coefficients, that Vh is the space of 
continuous, piecewise linear functions, on each element hK ∈T  we have 

 

( ( ) )= h h h hf Lu f k u a u f a u− = − −∇ ⋅ ∇ + ⋅∇ − ⋅∇
  (2.55) 

 
Giving that (2.55) is a constant and by the definition of (2.48) and (2.49) we obtain:  

1( ) ( )K h K h K kL f Lu f a u b− − = − ⋅∇  (2.56) 

 
In particular the stabilizing term in (2.51) will reduce to 

1 *( ( ) , ) ( )( )
KK

K h K h K h hKK

b
L f Lu L v a u f a v− − = ⋅∇ − ⋅∇∫

∫
 

(2.57) 
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Finally, the resulting scheme becomes 
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(2.58) 

Both SUPG and RFB have an identical structure with a particular choice of the 
stabilizing parameter. In most interesting case, the convection-dominated case, we can 
approximate the stabilizing term as discussed in [51].  For convection dominated problem, it 
was shown that the solution of the fine-scale can be approximated by solving the following 
reduced purely convective problem: 

1
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K

a b in K

b on K−

 ⋅∇ =


= ∂
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(2.59) 

If ha is the length of the longest segment parallel to a and contained in K, then the solution 

Kb% of this reduced problem can be seen as the volume of the pyramid of base K and height    

/ah a  (see Figure 8) 
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(2.60) 

 
 
 
 
 
 
 
     
          

 
Figure 8.  The adjoint residual-free bubble in 2D 

 
This value is straight-forward to compute and gives similar and good approximation of Kτ  in 

the convection-dominated regime. In the diffusion limit case [59] , when the diffusion term is 
large with respect to the convection term, we have  
 

2
KRFB K K

K
K

b h
c

k
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(2.61) 

where c is a constant that depends on K and h. We can see that in both regimes, these 
stabilizing parameters are very similar to those presented in the previous section.  
 
 
 

a 

ah
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2.4 Application to heat transfer equation 
 
In this section, the equations governing the heat transfer in the heat treatment furnaces 

are presented.  The treatment processes inside industrial furnaces involves three modes: the 
radiation, conduction and convection. The unknown temperature T (Kelvins) must be found 
from an equation that simultaneously incorporates all three heat transfer processes. Recall that 
the conduction heat transfer occurs in fixed solids that experience internal temperature 
gradients (Figure 9). The conduction heat flow is defined by Fourier’s law as 

''
condq k T= − ∇  (2.62) 

where k (W/mK) is the thermal conductivity of the solid multiplied by the temperature 
gradient. When the heat is transferred between the ingot and its surroundings, the furnace, via 
a flowing fluid, at a certain velocity, transport mechanisms occur, and the process is known as 
the thermal convection.  

 
 

Figure  9.  Heating process of an immersed solid inside an industrial furnace 
 

Radiation heat transfer is concerned with the exchange of thermal radiation energy 
between two or more bodies (wall, solid,…). The heat transferred into or out of an object by 
thermal radiation is a function of several components. These include its surface reflectivity, 
emissivity, surface area, temperature, and geometric orientation with respect to other 
thermally participating objects. More details about the radiative heat transfer will be treated 
later in chapter 5. 
 

By combining those modes, the energy conservation equation will be governed by a 
time-dependent conduction-convection equation as follow: 

( v ) ( )p

T
c T T f

t
ρ κ∂ + ⋅∇ − ∇ ⋅ ∇ =

∂  
(2.63) 

Conduction  

Convection 

Radiation 
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where, again T is the temperature of the treated domain (fluid or solid) having the respective 
material properties: κ is the thermal conductivity, ρ (kg/m3) is the mass density, cp is the 
specific heat (J/kg.K), v is a computed velocity (m/s) and f  is the energy source term. The 

following initial condition is applied 0 0( , ) ( )T x t T x=  where 0T  is the initial temperature 

distribution over the domain.  
 
Different boundary conditions can be considered for the problem: 

( )

s

w q

c out r c

T g on

k T q on

k T h T T q on

= Γ
− ∇ ⋅ = Γ

− ∇ ⋅ = − + Γ

n

n  

(2.64) 

Here, g  represents the wall temperature imposed on a portion of the boundarysΓ , wq  is a 

prescribed inflow heat flux imposed on the wall qΓ , while the convection boundary 

conditions are imposed on the wall cΓ  with ch  as a convection heat transfer coefficient , outT  

as the external temperature and rq  is the radiative heat flux . The dimensionless numbers 

relevant in this problem, the Péclet number take the following form:  

v

2
p KK

e

c h
P

ρ
κ

=
 

(2.65) 

Discretization of the time derivative can be made as shown previously by means of the 
θ  scheme. For simplicity in the notation, when θ =1, backward Euler method, Eq. (2.63) 
yields the following linear ordinary differential equation at each time step:  

1
1 1v ( ) in (0, )

n n
n n

p p f

T T
c c T T f t

t
ρ ρ κ

+
+ +− + ⋅∇ −∇ ⋅ ∇ = Ω×

∆  
(2.66) 

 
The stabilized variational formulation for the now discrete-in-time problem reads  
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The resulting equation shows at each time step an identical structure with respect to 
the stationary convection-diffusion-reaction equation. The space-discrete formulation for the 
heat transfer equation is now complete.  

Additional stabilizing terms are added in a consistent way to reduce and possibly to 
eliminate numerical oscillations in the streamline direction and the temperature gradient 
direction specifically at the burner’s level, where the convection is dominated. In the last 
section, some numerical examples will illustrate the behavior of the proposed method. These 
terms are tuned by the local stabilizing parameters given here for the thermal problem by: (see 
equation (2.22), (2.25) and (2.30)) 
 

2

2

1 22
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where
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(2.69) 

 
 

At ingot’s level, the only mechanism for heat mass transfer is the conduction. It is well 
known that the numerical solution of unsteady conduction problems using the Galerkin finite 
element method, based on piecewise polynomial interpolations, is often affected by severe 
numerical instabilities unless appropriately refined meshes are used in the solution’s layers. In 
this case, the solution exhibits steep gradients known usually as thermal shocks, that usually 
appear in the boundary of a domain initially hot (or cold) that is suddenly cooled (resp. 
heated).  In particular, the Galerkin method might fail to solve unsteady diffusion problems 
when either the diffusion parameter is low and/or small time steps are used in time 
discretization )( 12 −∆≤ thε  . For the thermal mechanical analysis, the problem can be serious 
in some cases specifically when the material behavior is temperature dependent. 
 

This difficulty has been object of research for the last decades, the purpose being to 
get finite element formulations that are stable for problems with boundary layers and coarse 
mesh accurate enough for smooth problems. In the next section, a new approach based on the 
variational multiscale method will be presented here to obtain a space-time stabilized finite 
element formulation that ensures an oscillation-free solution and treats the thermal shocks.  
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2.5 Thermal shock treatment for unsteady diffusion problems 
 
 
Abstract 

 
This paper presents an original technique via finite elements to treat numerically the 
thermal shocks in heat transfer finite element analysis using a continuous P1 element.  
The method consists in a slight modification on the standard enriched finite element 
approaches. It will be applied here to the transient conduction heat equation where the 
classical Galerkin method is shown to be unstable. The proposed method consists in 
adding and eliminating bubbles to the finite element space and then to interpolate the 
solution to the real time step. This modification is equivalent to the addition of a 
stabilizing term tuned by a local time-dependent stability parameter, which ensures an 
oscillating-free solution. To validate this approach, the numerical results obtained in 
classical 2D and 3D benchmark problems are compared with the Galerkin and the 
analytical solutions. 

 
Keywords: Finite elements, stabilization, heat conduction, static condensation 
* see attached paper at the end of the chapter (p. 65) 
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2.6 Numerical tests and validation 
 
In this section a series of numerical calculations is performed to assess the effectiveness 

of the methods described previously. Numerical examples for stationary and time-dependent 
problems are given in the following. The main interest of these examples is to test how well 
the space-time stability theory developed herein matches with computation. More applications 
on thermally coupled flows and heat transfer inside industrial furnaces will be treated later in 
chapter 5 and 6. 
 
2.6.1 Transient CDR problems 

In the section, several cases are considered in a unit square domain given by 

[ ] [ ]0,1 0,1Ω = × . These problems have been widely studied in literature, e.g., (see [4] and [5]) 

as good examples for the accuracy of various numerical schemes. Two tests series will be 
considered here. In the first one, no reaction term will be considered and zero Dirichlet 
boundary conditions are imposed on all sides. The source term is assumed to be equal to one 
and the domain is spatially discretized by 16x16 elements such that 0.0625 h ≈ . The 

simulations were performed with final time T=2s and the time step ∆t=0.1s. The flow is 
unidirectional and constant with velocity components: cos , sinx ya aα α= =  as shown in 

Figure 10. 
 
Recall that the element Péclet number and the element Damköhler number are given by: 

( ) and
2e e

h a h
P K Da

k a

σ= =
 

(2.70) 

The diffusion and reaction coefficients may have different values, leading to different Péclet 
and Damköhler numbers respectively.  
 
 

 
Figure 10.  Dirichlet boundary conditions and flow direction: case 1 (left) and case 2 (right) 

 
The results obtained from the first test series for different Péclet numbers are show in 

Figure 11. As expected, all methods give good results for low Péclet number without extra 
diffusivity. All solutions are wiggle free and indistinguishable. When the diffusion coefficient 
is decreased, the Péclet number increases over the unity, the discontinuity in the boundary 
data propagates into the computational region, and some wiggles originate at the boundary.  
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As k decreased further, the Galerkin solution blows up and the SUPG method 
produces smaller oscillations towards the outflow boundary. These remaining wiggles are due 
to cross-wind instabilities. On the other hand, the SCPG method show no oscillations and a 
smoothed solution is obtained. 
 

 
 

 
 

 
 
Figure 11. Comparison of the Galerkin (left), the SUPG (center) and the SCPG(right). From 

top to bottom,: PeK=0.5, PeK=5, PeK=50 
 

In the second example, different Dirichlet boundary conditions and flow direction are 
considered, (see case 2 in Figure 10). Here the parameters are chosen to have both convection 
and reaction-dominated problem; 10 and 8K KPe Da= = . Figure 12 shows the results obtained 

with the Galerkin, the SUPG and the SCPG methods.  
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As expected in the flow direction, the Galerkin solution yields oscillations towards the 
boundary y=1 whereas the SUPG produces oscillations with smaller amplitude towards the 
boundary x=0. Even on this coarse grid, the SCPG succeeded to remove most of the 
oscillations and to provide a good approximation of the solution in both directions. 

 
 
 

 
 

Figure 12.  Comparison of the Galerkin (left), the SUPG (center) and the SCPG(right). 
 
 
 
2.6.2 Transient pure convection 
 

We begin to compare the Galerkin, SUPG and the SCPG methods in the pure 
advection limit, i.e. for κ = 0. In order to provide a representative range of CFL values for 

each example, different time steps are used. Two dimensional unit square [ ] [ ]0,1 0,1Ω = ×  

with zero source term is considered. The problem is solved using an unstructured mesh of 
41x41 elements. This gives a partition of 2024 degrees of freedom, 3897 triangles and a mesh 
parameter 0.025h ≈ . This problem was first considered by P.B. Bochev et. al in [61] for 

studying transient advection of a cylinder with radius of 0.2, initially positioned at xc using a 
given velocity v. For further details about transient advection-diffusion problems, we highly 
recommend this reference. In this paper, a full comparison was only made between the 
Galerkin and the SUPG solutions. Here we have added the SCPG method, as pointed out in 
the conclusion and recommended by the authors, to preclude the overshoots and undershoots 
in the neighborhood of the vicinity. 

 
The boundary and initial condition values are as follow  (Figure 13): 

0
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1 0.2
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(2.71) 
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Figure 13.  Problem domain with initial and boundary conditions. 
 
Two advection fields were considered: 
 

. .constant velocity

. .variable solenoidal velocity
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i e
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 
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(2.72) 

 
Both examples are discretized in time using the Crank-Nicolson method. In order to study the 
behaviour of the method in respect with the time step, we used the following data:  
 

 ∆t 0.1s 0.01s 0.001s 0.0005s 
CFL 4.884 0.4884 0.04884 0.02441 

 
Each refinement of the time step leads to a change in the CFL number, above and 

below one. In both examples, we can see that the SUPG and SCPG methods perform better 
than the Galerkin solution by suppressing the global spurious oscillations even for small time 
steps. These conclusions are confirmed by plots of solution profiles along the lines x=0.75 
and y=0.6 in the case 1 and along the lines x=1 and y=0.85 in the case 2.   

However, in the vicinity of sharp gradient and internal layer, the SUPG solution still 
contains some remained oscillations. Figures 14 and 15 show graphically these remarks. By 
adding an artificial diffusion in the gradient solution direction, the SCPG method displays no 
non-physical oscillations and removes these over and undershoots in the neighbourhood of the 
discontinuities. Furthermore, the graphical comparisons between snapshots of the solutions at 
the finest time step in Figures 16 and 17 validate our remarks. Recall that the numerical 
results presented here are in excellent agreement with the chosen article. 

0
u

n

∂ =
∂0u =

0u =

0
u

n

∂ =
∂



52                          Stabilized finite element method for CDR equations 

∆t = 0.1

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1

t=0.5 ; x=0.75

  

∆t = 0.1

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1

t=0.5 ; y=0.6

 

∆t = 0.01

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1

t=0.5 ; x=0.75

  

∆t = 0.01

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1

t=0.5 ; y=0.6

 

∆t = 0.001

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1

t=0.5 ; y=0.6

  

∆t = 0.001

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1

t=0.5 ; x=0.75

 

∆t = 0.0005

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1

t=0.5 ; x=0.75

  

∆t = 0.0005

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1

t=0.5 ; y=0.6

 
Figure 14. Profile of the solutions: Galerkin (solid), SUPG (dotted) and SCPG (dashed)  
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Figure 15.  Profile of the solutions: Galerkin (solid), SUPG (dotted) and SCPG (dashed) 
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Figure 16. Profile of the solutions at t=0.5, ∆t=10-3: Galerkin (left), SUPG (centre) and 
SCPG (right) 

 
            
 
 
 
 

 
                                                                                                                                                                                        

 
Figure 17. Profile of the solutions at t=0.5, ∆t=10-3: Galerkin (left), SUPG (centre) and 

SCPG (right) 
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2.6.3 Transient heat transfer 
 

An interesting internal flow used for validation of unsteady flow code is the forced 
convection heat transfer between two parallel plates. A diagram of the calculation domain and 
boundary conditions is shown in Figure 18. This situation may be viewed as the modelling of 
a high temperature burner inside the furnace facing a 2D cold wall or cold solid. Near that 
region, a formation of a thermal boundary layer will be observed. Here, the diffusion 
coefficient is fixed to one and the source term assumed to be zero. Therefore, the chosen 
velocity will determine the Péclet number. Three numerical experiments have been performed 
using the following constant convecting velocities: 60, 200 and 2000 respectively. Recall that 
these experiments are inspired form the work of Lim et al. in [63] and then followed by S.J. 
DeSilva et al. in [64]. These interesting papers deal with the boundary element method 
applied on transient convection-conduction problems. It’s shown that for the above example 
we can obtain a closed form analytical solution specifically for high Péclet numbers. For 
further details about the derivation of the asymptotic solution, the reader could refer to Lim et 
al. More recent article about the same subject applied on different numerical examples can be 
also found in [62]. 

 
The exact solution is given by: 

.
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t
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(2.73) 

 
A mesh sensitivity study was conducted to validate the capability of the method. Therefore, 
three different unstructured grids are used for this comparisons with a mesh size h ≈ 0.05, 
0.025 and 0.01 respectively. (Figure 19) 

 
Figure 18. Thermal boundary layer: problem statement 
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Figure 19.  Different meshes with h equal to 0.05, 0.025 and 0.01 
 

The temperature profiles for different times and different Pe numbers are illustrated in Figures  
20-22. As expected, for low Pe, the solutions are accurate and coincide with the exact 
solution. As the Péclet number increases, the convection dominates and the flow gives rise to 
travelling waves with sharp gradient. One can clearly observe that the standard Galerkin 
formulation produces some oscillations specifically near the boundary layer on coarse mesh. 
The stabilized scheme yields satisfactory results on all meshes. With finer discretization, good 
improvements in the results are observed. These remarks can be seen graphically on mesh 3.  
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Figure 20.  Predicted temperature profiles at different time t=2.10-3, 5.10-3, 0.01 and 0.02s 
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Figure 21. Predicted temperature profiles at different time t=5.10-4, 1.10-3, 2.10-3and 5.10-3s 
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Figure 22. Predicted temperature profiles at different time t=5.10-5, 1.5.10-4, 3.10-4and 5.10-4  
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2.7 Conclusion 
 
The need for stabilization methods in the case of time-dependent convection diffusion 

reaction problems has been revisited. Different stabilized methods were introduced and 
discussed. Extension of these methods to transient problems was proposed and analysed.  For 
convection-dominated problems, it is shown that the SUPG and the SCPG methods are free of 
oscillations, yield satisfactory results and easy to implement. In the case of transient diffusion 
problems, a space-time stabilized finite element method has been presented and analysed to 
treat thermal shock in numerical heat transfer. The most important part of this chapter is the 
application of these stabilized formulations to the heat transfer equation needed later for 
simulation of heat treatment inside industrial furnaces. Finally, some numerical examples are 
given to study the efficiency of the proposed methods. 
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Abstract 
 
 
This paper presents an original technique via finite elements to treat numerically the 
thermal shocks in heat transfer finite element analysis.  The method consists in a slight 
modification on the standard enriched finite element approaches. It will be applied here 
to the transient conduction heat equation where the classical Galerkin method is shown 
to be unstable. The proposed method consists in adding and eliminating bubbles to the 
finite element space and then to interpolate the solution to the real time step. This 
modification is equivalent to the addition of a stabilizing term tuned by a local time-
dependent stability parameter, which ensures an oscillating-free solution. To validate 
this approach, the numerical results obtained in classical 2D and 3D benchmark 
problems are compared with the Galerkin and the analytical solutions. 
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1. Introduction  

The scalar diffusion equation is generally used as a linear model for simulating time-
dependent phenomena in domains like fluid dynamics and heat transfer. It is well 
known that the numerical solution of unsteady diffusion problems using the Galerkin 
finite element method, based on piecewise polynomial interpolations, is often affected 
by severe numerical instabilities unless appropriately refined meshes are used in the 
solution’s layers. In this case, the solution exhibits steep gradients known usually as 
thermal shocks, that usually appear in the boundary of a domain initially hot (or cold) 
that is suddenly cooled (resp. heated).  In particular, the Galerkin method might fail to 
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solve unsteady diffusion problems when either the diffusion parameterε , is low and/or 
small time stepst∆  are used in time discretization )( 12 −∆≤ thε  . This difficulty has been 
object of research for the last decades; the purpose is to obtain solutions that are stable 
and coarse mesh accurate. Such formulations, known as stabilized or enriched methods, 
consist generally in adding to the Galerkin formulation additional terms balanced by 
stabilization parameters [1-2-3-4-5]. This allows the control of spurious oscillations 
giving accurate results for real industrial applications like solidification, hot forming 
and casting, polymer injection molding. 
 

The present work aims to retain the advantages of using linear approximations 
(P1 finite elements) regarding the accuracy and the computational cost, especially for 
3D applications. This is the common choice when solving heat transfer problems 
making possible at the same time to overcome thermal shocks when small enough time 
increments are used. In this context, we will use the enriched method that employs 
bubble functions satisfying strongly the differential equations in each element subjected 
to homogeneous boundary conditions on the element boundary.  Nevertheless, one 
limitation of this method is that, when applied to a steady diffusion problem, it has no 
distinction to the original one if approximated with linear shape functions [4-5]. If 
instead, we apply this technique to an unsteady diffusion problem, we can show in this 
paper that static condensation procedure of the bubble yields a stabilized finite element 
method of the Galerkin Least Squares (GLS) type [8-9]. The authors show that the use 
of the GLS method in this conditions can be interpreted as the solution of the standard 
the Galerkin method, but with a much larger time step. To overcome this drawback, we 
propose the extension of the enriched method by interpolating the solution to the real 
time step, referred as an enriched method with interpolation (EM-I). This will result a 
local definition of stabilization parameters that resembles the one used in well-known 
stabilized formulations but whose origins are based on the use of local time-steps 
combined with a kind of synchronization scheme. This method shows good properties 
of stability and accuracy, both for smooth problems and for problems with boundary 
and internal layers. We can also mention that the proposed method can be helpful for 
computational engineers in the field of heat transfer analysis and it can be easily 
implemented in finite element codes.   
 

So far, most efforts have been invested to deal with steady-problem, while less 
attention has been devoted to unsteady problem, especially to transient conduction heat 
transfer. The most favored and efficient approach to such problems was proposed by 
[6]. In this paper, like in here, both temporal and spatial ingredients were used in order 
to get a stabilized solution in particularly for small time steps. Similarly, the authors in 
[7] discussed the use of such coupling between stabilized finite elements and finite 
difference time integration on more general problems such as the advection-diffusion-
reaction problems. Other related ideas was proposed like, mesh refinement [10], M-
matrix theory [11], finite volume method [12], discontinuous Galerkin models [13] and 
the diffusion-split method [14]. Compared to all these methods, the new approach 
works for general meshes, can use any time step or diffusion parameter and, with low 
computational cost offers a good accuracy order. The outline of the paper is as follows: 
first, we present the unsteady diffusion model and the associated Galerkin finite element 
formulation. Section 3 presents the enriched method with and without time-
interpolation. We perform several numerical validations in Section 4, which confirm the 
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good performance of the method. Finally, conclusions and perspectives are conclusions 
are draw in Section 5. 

2. The heat equation 

The model equation for transient heat transfer by conduction is: 
 

- .( ) = in (0, )p f

T
c k T f t

t
ρ ∂ ∇ ∇ Ω×

∂  
(1) 

where T is the temperature (the problem’s unknown), Ω  is the spatial computational 
domain,   t the time, ft  the final time, ρ  is the material’s density, pc  its specific heat, k 

the thermal conductivity  and f  represents a heat source.  The following initial 

condition is applied: )(),( 00 xTtxT =  where 0T  is the initial temperature distribution 

over the domain. For the heat equation,  various types of boundary conditions can be 
considered: 

s sT T on= Γ  (2) 

. w qk T n q on∇ = Γ  (3) 

. ( )c out ck T n h T T on∇ = − − Γ  (4) 

where sT  represents the wall temperature imposed on a portion of the boundarysΓ , wq  

is a prescribed inflow heat flux imposed onqΓ , while the convection boundary 

conditions are imposed on cΓ  using ch  as the convection heat transfer coefficient and 

outT  as the temperature outside this boundary of the domain. 

2.1. Galerkin finite element formulation 

The Galerkin finite element formulation is obtained by multiplying Eq. (1) by an 
appropriate test function w and by integrating over the computational domain [15]. For 

that, let us consider first the functional spaces )(1 ΩsH  in which we are searching the 

solution in accordance with its regularity: 

{ }1 1( )sH w H w s x= ∈ Ω = ∀ ∈Γ  

where )(1 ΩH  is a Sobolev space, classically defined as  

 

{ }1 2 2( ) ( ) , ( )H w L w LΩ = ∈ Ω ∇ ∈ Ω  

and )(2 ΩL is the Hilbert vector space of the functions quadratically summable on Ω : 

 

22( ) ( ) ( )L w x w x dx
Ω

  Ω = < ∞ 
  

∫  
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By applying the Galerkin weighted residual method and the Green’s theorem, the 
variational formulation corresponding to Eq. (1) became:  
 

Find )(1 Ω∈ sHT  such that 

1
0( , ) ( , ) ( ) ( )

T
a w b T w l w w H

t

∂ + = ∀ ∈ Ω
∂  

(5) 

            where 

           

( , )

( , ) .

( )  + 

c

q c

p

c

c out

T T
a w c wd

t t

b T w k T wd h Twd

l w fwd qwd h T wd

ρ
Ω

Ω Γ

Ω Γ Γ

∂ ∂= Ω
∂ ∂

= ∇ ∇ Ω + Γ

= Ω Γ + Γ

∫
∫ ∫

∫ ∫ ∫    

For the spatial discretization, we consider the finite element partition hℑ  of Ω  into 

tetrahedral elements K. Using these representations, the above-defined functional spaces 

)(1 ΩsH  and )(1
0 ΩH  are approached by discretized spaces )(1 Ωh

sH and )(1
0 ΩhH . The 

Galerkin approximation of (5) is formulated on these finite-dimensional subspaces as 
follows:  

Find  )(1 Ω∈ h
sh HT  such that 

1
0( , ) ( , ) ( ) hh

h h h h h

T
a w b T w l w for all w H

t

∂ + = ∈
∂  

(6) 

             

Finally, the problem defined by equations (1)-(6) yields the system of first order 
differential equations:  

t

∂ + =
∂
T

C KT F
 

(7) 

where T is the vector of nodal unknown temperatures, C is the capacitance matrix, K the 
conductivity matrix, and F is the internal source and external flux vector, defined as 

ij p i jC c N N dVρ
Ω

= ∫
 

(8) 

c

ij i j i jK k N N dV hN N dS
Ω Γ

= ∇ ⋅∇ +∫ ∫
 

(9) 

c c

i i w i out iF fN dV q N dS hT N dS
Ω Γ Γ

= + +∫ ∫ ∫
 

(10) 

            being Ni the linear interpolation function at node i.  
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2.2. Time integration scheme 

The system of ordinary differential equations (7) has to be integrated in time. Using the 
θ  finite difference family of approximations, the derivative of the temperature with 
respect to time can be approximated at time tnt ∆=  by  
 

( )
1

1(1 )
n n

n nT T
T T

t
θ θ

−
−− + + − =

∆
C K F

 
(11) 

 
where Ntt f /=∆  is the time step, ,,...,1 Nn =  and 10 ≤≤ θ . We remind that this 

family includes the backward Euler scheme( )1=θ , the Crank-Nicolson scheme 

( )5.0=θ  and the forward Euler scheme( )0=θ . For simplicity, we consider the first 
case, usually known as the implicit Euler scheme, and equation (11) can be written at 
time t+∆t as: 
 

1n n
nT T

T
t

−− + =
∆

C K F
 

(12) 

           where 
1−nT  is the temperature at the previous time step.  

3.  Stabilized finite element method  

When diffusion is the only mechanism for heat transfer, there are conditions for 
which the Galerkin method fails to produce smooth solutions. It is well known that this 
method, based on piecewise polynomial approximations, yields poor solutions for low 
thermal diffusivity materials ε and/or when the time step is small )( 2 th ∆≤ε . Thus, one 
way to overcome such limitations consists in using stabilized finite element methods. In 
the following, we discuss the use of enriched method on our unsteady diffusion 
problem. 

3.1. The enriched space approach (without time-interpolation) 

The concept of enriched methods has been developed and explored in [1-2-3].  This 
method is based on a local enrichment of the finite element space instead of a 
modification of the variational formulation. The idea is to add to the usual space of 
piecewise polynomials, referred to as macro-scales, the so-called bubbles, representing 
the micro-scales. In here, bubbles are functions whose support remains inside the 
elements of the triangulation. In other word, one solves additionally a micro-scale 
equation on individual elements with zero Dirichlet boundary conditions. The numerical 
method turns out to be stable (see, for example, [3] and [4]), even though there is a 
computational cost associated to the fact that the solution of local problems is necessary 
in order to approximate, and possibly eliminate, the bubble degrees of freedom. For 
sake of simplicity, we consider all of Γ  to be the zero Dirichlet boundary condition. 
Generalization to other types of boundary conditions will be subject of a future work.  
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We start with the model problem given by:  find a scalar valued function )(xT define in 

nℜ⊂Ω with initial condition )(),( 00 xTtxT =  such that  

 

- .( ) = in (0, )

 = 0 on (0, )

p f

f

T
c k T f t

t
T t

ρ ∂ ∇ ∇ Ω×
∂

Γ×
 (13) 

 
 where )(xf  is a given source function assumed to be square integrable inΩ . Using 
Euler implicit scheme, the classical Galerkin approximation of (13) is the following:  
 

Find )(1
0

)1( Ω⊂∈ HVT hh such that   

 

1 (1)( , ) ( , ) = ( , ) ( , )p pn n n
h h h h h h h h h

c c
T w k T w f w T w w V

t t

ρ ρ
−+ ∇ ∇ + ∀ ∈

∆ ∆  (14) 

where   
 { }(1) 0

/ 1( ) ( ) ,h h h K hV w C w P K K= ∈ Ω ∈ ∀ ∈ℑ   

 
is the finite element space of continuous, piecewise linear functions on hℑ  used to 

approximate the exact solution.  
 
For sake of simplicity in the notation, we replace all the second hand term, the source 
term and the previous time step solution by g, from (14) we get:  
 

1 (1)

(1)

( , ) ( , ) = ( , ) ( , )

( , ) ( , ) = ( , )

p pn n n
h h h h h h h h h

p n n
h h h h h h h

c c
T w k T w f w T w w V

t t
c

T w k T w g w w V
t

ρ ρ

ρ

−+ ∇ ∇ + ∀ ∈
∆ ∆

+ ∇ ∇ ∀ ∈
∆  

(15) 

 
Remark 1. As noted in [7], equation (16) can be seen as a family of steady diffusion-
reaction problems that could be either diffusion or reaction dominated.  Note also, that 
the proposed scheme deals with both regimes.  
 

The notation ∫Ω Ω= dfggf ),(  and ∫Ω Ω= dvuvu .),(  represents the inner product 

between scalar and vector fields respectively. 
 
We enrich and enlarge the following subspace )1(

hV  into:  

{ }1
0 1( ) ( ) ( ),b

h K hV w H w P K B K K= ∈ Ω ∈ ⊕ ∈ℑ  (16) 

 
B(K) denotes the space of bubble functions.  
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The bubble basis function satisfies:  









=
∂∈∀=

∈∀>

Kofbarycentertheatx

Kxx

Kxx

1)(

0)(

0)(

ϕ
ϕ
ϕ

 (17) 

          Consequently, the unknown solution b
hh VT ∈ can be decomposed into its linear part                

           )1(
1 hVT ∈  and its part spanned by the bubble: 

1 K

h

h b

K

T T T ϕ
∈ℑ

= +∑  (18) 

           where 
KbT  is the unknown bubble coefficient . 

 
First, we begin by solving equation (15) on the local-scale, called “bubble equation”:  

( , ) ( , )  = ( , )p n n
h K h K K

c
T k T g

t

ρ
ϕ ϕ ϕ+ ∇ ∇

∆  (19) 

 
By using the decomposition of the solution hT  (18) and substituting it into (19), we get: 

1 1( , ) ( , ) ( , ) ( , )  = ( , )
K K

p pn n
K b K K b K K

c c
T T k T T k g

t t

ρ ρ
ϕ ϕ ϕ ϕ ϕ ϕ ϕ+ + ∇ ∇ + ∇ ∇

∆ ∆
 (20) 

 
Using linear shape functions, the third term vanishes. Solving (20) for the bubble 
coefficient in each element hK ℑ∈  leads to: 

1
2 2

0, 0,

1
 = ( , )

K

p n
b K

p

K K

c
T g T

c t
k

t

ρ
ϕρ

ϕ ϕ
−

∆+ ∇
∆  

(21) 

 

where  ∫ Ω=
KK

d22

,0
. ϕϕ  . 

 
Remark 2.  The bubbles considered here are quasi-static, i.e., that the effect of their 
time variation may be neglected. Note that following the evolution of small-scales in 
time is an interesting method [18], but for this type of equation, it could increase the 
computational cost without considerable gain in accuracy.  
 
Hereafter, we need to solve equation (15) on the macro-scale. The static condensation 
procedure will eliminate the bubbles function at the element level 

1 1 1 1 1 1( , ) ( , ) ( , ) = ( , )
K

h

p pn n
b K

K

c c
T w T w k T w g w

t t

ρ ρ
ϕ

∈ℑ

+ + ∇ ∇
∆ ∆∑  (22) 
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The solution of the small-scale can be expressed using (21) and (22) on each element K: 

1 1 1
2 2

0, 0,

1
( , ) ( , ) ( , )

K

p p pn
b K K K

p

K K

c c c
T w g T w

ct t t
k

t

ρ ρ ρ
ϕ ϕ ϕρ

ϕ ϕ
= −

∆ ∆ ∆+ ∇
∆  

(23) 

           Following the lines in [16], one can simplify the expression of (23) into:  

2
1

1 1 1
2

2

( , ) ( , )
K

p p pnK
b K K

p
K

K

c c cC h
T w g T w

ct t t
h kC

t

ρ ρ ρ
ϕ ρ

τ

= −
∆ ∆ ∆+

∆1442443  

(24) 

where 1C  and 2C  are positive constants. The stabilizing parameter kτ  is computed for 

each element separately.  (we take C1 = 1 and C2 = 6 , see [1] for more details) 
Therefore, the resulting variational equation (14) is equivalent to use the standard 
Galerkin method with piecewise linear functions plus a stabilization term weighted by 

Kτ : 

1 1 1 1 1 1

1 1

( , ) ( , ) ( , )

= ( , ) ( , )

h

h

p p pn n n
K K

K

p
K K

K

c c c
T w k T w T w

t t t

c
g w g w

t

ρ ρ ρ
τ

ρ
τ

∈ℑ

∈ℑ

+ ∇ ∇ −
∆ ∆ ∆

−
∆

∑

∑  

(25) 

 
The bubble contribution took effect in one hand on transient term and in other hand on 
the modified source term g which represents the previous time step solution and the 

source term. The stabilization term contains a zero order term in the test function 1w  
and is equivalent to a change in the test function  as follows: 

1 1(1 )p
K

c
w w

t

ρ
τ= −

∆
%  (26) 

In the absence of the source term f, this can be seen as a modified problem by the 
Galerkin method with a much larger time step. The authors in [9] pointed out that the 
solution is free of oscillations but will no longer be the solution to the original problem. 

3.2. The modified formulation (with time-interpolation) 

The previous method improves stability by adding a stabilizing term obtained after 
condensation of the bubble function in the original problem. But as mentioned before, 
this can work only in particular case when the source term is zero. To fix ideas, we 
rewrite the new stabilized formulation of (25) after replacing g by its value: 

 

1

( , (1 )) ( , )=( , (1 ))
n n

p pn
p K p K

c cT T
c w k T w f c w

t t t t

ρ ρ
ρ τ ρ τ

−

− + ∇ ∇ + −
∆ ∆ ∆ ∆  (27) 
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It is clear when this method is applied to an unsteady diffusion problem without a 
source term, it can be interpreted as a Galerkin method with a modified larger time step:  

* 1
*

* *
( , ) ( , )=( , )

n

p p

T T
c w k T w c w

t t
ρ ρ

−

+ ∇ ∇
∆ ∆  (28) 

 where *T  is the modified solution and  *t∆  is the new  time step given on each K by:  

*

1
(1 ) , 0p

K

ct

t t

ρ
τ ξ

ξ
∆ = − = >
∆ ∆  (29) 

 
An easy way to correct the time step distortion introduced by the previous stabilization  
is to use an interpolation of the solution to the real time step:  

1)1(* −−+= nn TTT ξξ  (30) 

By substituting (30) into (28) we obtain: 
 

1 1

1

1

1

1

1
* *

*

1
*

( ( (1 ) ), ) ( ( (1 ) ), )= ( , )

( , ) ( (1 ) , ) ( , )

((1 ) , )=( , )

( , ) ( , )= ( , ) (( 1) , )

p pn n n n n

n
p n n

p

pn n

n n
n n

p p

c c
T T w k T T w T w

t t
cT

c w T w k T w
t t

c
k T w T w

t

T T
c w k T w c w k T w

t t

ρ ρ
ξ ξ ξ ξ

ρ
ρ ξ ξ

ρ
ξ

ρ ξ ρ ξ

− −

−

−

−
−

−

−

+ − + ∇ + − ∇
∆ ∆

⇒ + − + ∇ ∇
∆ ∆

+ − ∇ ∇
∆

⇒ + ∇ ∇ + − ∇ ∇
∆ ∆  

(31) 

 
Finally, we get: 

( ) ( )
1

1( , ) , = ( 1) ,
n n

n n
p

T T
c w k T w k T w

t
ρ ξ ξ

−
−− + ∇ ∇ − ∇ ∇

∆  (32) 

 
Comparing (32) with the original version (15), we see that the process of enlarging our 
space with bubbles and then modifying the time step yields a stabilized finite element 
formulation for the unsteady heat diffusion problem. This contribution acts as a new 

artificial, time-dependent thermal conductivity )( kξ  integrated over the element’s 

interior and tuned by a local stabilization term Kτ  that ensures an oscillating-free 
solution.  
 
Remark 3.   If we reconsider the heat source f, equation (28) can be always interpreted 
as a Galerkin method using a modified larger time step but in addition of a modified 
source term. The extension to the use of this term can be straightforward by simply 
considering the equivalent term fξ . The numerical example in section 4.3 will assess 
this matter. 
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In conclusion, the new approach formulation of the transient heat conduction with a 
source term will take the following form: 
 

1

1

.

( 1) . .

K

K K

n n
n

p K

K

n
K K

K K

T T
c wd k T wd

t

f wd k T wd f wd

ρ ξ

ξ τ

−

Ω Ω

−

Ω Ω Ω

− Ω + ∇ ∇ Ω =
∆

Ω + − ∇ ∇ Ω + ∇ ∇ Ω

∑∫ ∫

∑ ∑∫ ∫ ∫  

(33) 

3.3. Diffusion reduction factor  

Furthermore, in order to avoid an extra diffusion effect and thus a non-realistic result    
toward the steady state, a cut-off strategy is introduced. This strategy consists in 
modifying the stabilization parameter making it varying with time and depending on the 
regularity of the approximate solution. In practice, this diffusion correction factor can 
be seen as the coth-formula, function of the element Peclet number often used in 
convection-dominated problems. In conclusion, this strategy will at the same time 
ensure stability in the initial iterations and convergence toward the steady state without 
extra diffusivity. 

 

Correspondingly, we define the following dimensionless number in order to evaluate 
the regularity, computed at each time step by: 

( )e

h

h R h

T
α

ε
=

∇
 

(34) 

where ε  is the heat diffusivity (m2/s) 
 

and ( )hRe  is the residual of the approximate solution. Thus, the choice of the new 

parameter will ensure the following properties:  

1

1 1
k

k

if

if

ξ α
ξ

α
≥

=  <
 (36) 

− stability in the proximity of boundary layers, when α  is very large 

− accuracy when we converge to a steady state, where α  tends towards less than 
unity 
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4. Numerical results 

4.1. Unsteady diffusion in a semi-infinite solid with Dirichlet boundary conditions 

In order to evaluate the efficiency of the new formulation, we consider test problems 
that present analytical solutions. First, we consider equation (1) subject to homogenous 
boundary conditions in a semi-infinite solid cooled from the side. We take our domain 
initially at a uniform temperature of 800°C. The Dirichlet boundary condition for 
temperature is set to 25°C (cooled side). The conductivity is set to 5.10-5 W/mK while 
the material’s density and specific heat are equal to 1 kg/m3 and 1 J/KgK. We use a 3D 
unstructured triangulation with an uniform element size 310−≈h and equal time steps of 

st 210−=∆ , (see Figure 1 ). 
 
 

 
 

Figure 1: 3D bar - geometry and boundary conditions 

Subject only to the boundary condition sT  , the problem can be considered as one-

dimensional case for which the exact solution takes the following form [19]:  
 

0( , ) ( )
2

s s

x
T x t T T T erf

at

 = + −  
 

 (37) 

 
In Figure 2, we plot the evolution in time of the temperature for a node placed 2h far 
from the cooled side. We compare the results given by the Galerkin and the new method 
with the exact solution. We do not consider the solution given by the new method 
without time-interpolation since it is the solution at different time step. The Galerkin 
method is affected by thermal shocks and spurious oscillations near the cooled 
boundary. These instabilities appear at the initial time steps and decrease as the solution 
converges to the steady state. The new solution has no oscillations. Both predictions 
converges  to the analytical solution at the end of the simulation.  
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Figure 2: Evolution of the temperature at a node situated 2h far from the cooled side. 

4.2. Study of the thermal conductivity influence 

The previous example illustrates the performance of the new method on a 3D mesh 
for a given conductivity with an equal time step. One interesting aspect is to investigate 
the behavior in time of the solution when changing the conductivity value. For this, we 
consider another simple test adopted from [9] where we propose the solution of problem 
(1) subject to homogenous boundary conditions in a 1D semi-infinite from 0=x  to 1. 
The Dirichlet boundary condition for the temperature is set to 0°C (cooled side at 

0=x ). 
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Figure 3:  Comparison between solutions obtained by the different methods )10( 4−=ε  
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The different values of conductivity are selected to 10-4, 10-2 and 1, while the material’s 
density and specific heat are equal to the unity. The domain discretization is uniform 
with 1.0=h and st 310−=∆ . 
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Figure 4:  Comparison between solutions obtained by the different methods )10( 2−=ε  

 
In Figure 3, similar behaviour is observed in the predicted solutions: both stabilized 
methods, the GGLS and the EM-I provide exact nodal and oscillating-free solutions at 
all simulation times whereas, oscillations appear in the Galerkin resolution. Figures 4 
and 5 show that if we increase the conductivity, the Galerkin solution still presents some 
oscillations near the boundary layer but with small amplitude. However, when the 
temperature gradient is diffused over more than two elements, the oscillations 
disappear. At the end of the simulation, it is important to see that the proposed method 
does not present an excess of numerical diffusion, however, the GGLS solution seems 
to be a little bit diffusive. This matter was pointed out by authors in [9]: “This is the 
price to be paid to avoid oscillations". 
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Figure 5:  Comparison between solutions obtained by the different methods )1( =ε   
 

4.3. Source problem  

4.3.1. Case 1: constant source term (f=1) 

Here we consider the classical unit square subject to a homogeneous boundary 
condition (T=0). For a fixed conductivity 1=k , initial temperature T=1 and very small 

time step 510−=∆t  boundary layers appear close to the wall.  Figure 6 shows as 
expected the oscillations at the initial iteration near the walls where the high 
temperature gradients are localized. the Galerkin solution still suffer from numerical 
instabilities even in the presence of a  constant source term. Again, the behaviour of the 
proposed method is satisfactory. Note also, towards the steady state, both methods have 
comparable performance without additional diffusivity, (see Figure 6 - right).   
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Figure 6:  Solution at x=0.5  for t = 10-5 (left) t = 10-3
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4.3.2.Case 2:  piecewise linear source term  

For fixed time step equal to 1 and small ε = 10-6 , we consider the following piecewise linear 
source term :  

0 0.5
( , )

1 0.5 1

x if x
f x y

x if x

≤ ≤
=  − ≤ ≤  

(38) 

The unstructured mesh consists of 20x20 elements and all the parameters were adopted from 
[16]. Again, the proposed method performs better than the Galerkin solution as shown in 
figure 7. Results are I complete accordance with the reference  
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Figure 7:  Solution at y=0.5  for (left) and x=0.5 (right)  

4.4. 3D Multi-domain application using refined mesh 

In order to demonstrate the efficiency of this approach, we consider in this example 
a 3D computational domain that presents heterogeneous thermal properties. This 
domain is discretized using a single mesh on which we use an immersion technique [19-
20] to place an object inside. This is a typical case illustrating the problems posed by 
thermal shocks in current 3D industrial applications. In our case, this object is a hot 
ingot that will be heated or cooled thanks to the surrounding air (Figure 8).  

 
 
 
 

 

Figure 10 

 
 
 

Figure8: 3D computational domain with an immersed solid 
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The purpose of this example is to check the performance of new method in the 
presence sharp gradients inside the domain without any Dirichlet boundary conditions.  
To define the position of ingot/air interface of the ingot, we use a signed distance 
functionχ  : 

0 inside

0 outside

0 at theinterface

χ
χ
χ

>
 <
 =  

(39) 

 
In Figure 7 (a), we can see that the isosurface of χ  at t=t0 is accurately interpolated.  
 

           
 

Figure 9:  Mesh refinement at the interface level 
 

Moreover, since χ  is signed, so we can compute homogeneous material parameter’s 
distribution, from the different material properties of each component (Table I, air/ 
solid). Based on a mixture law, we define all thermal properties ),,,( kcT pρ  as follows:  

( )( , ) ( ) 1 ( )solid airT x t T f T fχ χ= + −  (40) 

If  CTsolid °= 400  in the ingot and CTair °= 20  outside, the temperature distribution is 

represented in Figure 9  (left).  
 

)(χf  is a function between 0 and 1 (straight, abrupt or gradual…) that will decide the 
amount of each property inside elements crossed by the interface. To gain high 
precision at the interface, we used an anisotropic mesh adaptation technique based on 
variations of χ  which allows a better capture of the discontinuities of the thermal 
parameters that characterize the strongly heterogeneous domain (air/solid) (Figure 9 -
right). See [19] for further details. 
 
We assume adiabatic conditions imposed in the outer boundary. For st 01.0=∆ , the 
obtained solution using the Galerkin method still, in the presence of mesh refinement, 
presents spurious oscillations specially in early iterations. As shown in figure 10, the 
present method captures the thermal shocks without oscillatory behavior.  
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All these instabilities decrease as the solutions converge to the steady state (figure 11).  
At this stage, the new approach yields equivalent results to the Galerkin method without 
extra diffusivity. 
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Figure 10:  Profile of the solution at z=0.5  (t=0.1s) 
 

 

 
Figure 11:  Isovalues of the solutions by Galerkin (left) and by EM-I method (right). 

Top (t = 0.1s) and bottom ( t=10s) 
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                Solid 

Density   ρ 2500 kg/m3 
Heat capacity   cp 1000 

J/(kgoC) 
Thermal conductivity  k 175 W/(moC) 
Initial temperature   T 400 oC 

Fluid  
Density   ρ 1,2 kg/m3 

Heat capacity   cp 1000 
J/(kgoC) 

Thermal conductivity  k 0.02 
W/(moC) 

Initial temperature   T 20oC 
 

Table I: Material properties for the multi-domain problem 

 

5. Conclusions and perspectives 

The new idea was first to apply the enriched method on an unsteady diffusion problem 
and then, to use a time interpolation for the modified problem (EM-I). The proposed 
method results in improved resolution compared with the standard Galerkin formulation 
on problems having sharp gradients. It avoids undesirable oscillations resulting in 
possible unphysical values of the solution. The concept of this stabilization method is to 
add an artificial conductivity controlled by space-time stabilization parameters that 
leads to a better representation of the solution in particularly for small time steps. More 
investigations are necessary to extend this approach to the boundary condition and this 
will be subject of future works.  
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Chapter 3  

Stabilised finite element methods for incompressible 

flows with high Reynolds number 

 
 

 
The present chapter is dedicated to the modelling of the flow inside the furnace. The 

stabilized finite element approximation from the previous chapter will be extended and 
applied for the resolution of the 3D transient Navier-Stokes equation. Recall that inside the 
furnace at the burner’s level, a forced convection is applied; therefore this chapter will focus 
on the stabilization of the convection-dominated flows for high Reynolds number. The 
Newton-Raphson linearization strategy will be adopted to deal with the nonlinear convective 
terms. The implementation algorithm of the equal velocity-pressure linear interpolation with 
additional bubble functions needed to satisfy the inf-sup condition will be considered here. 
The developed stabilized formulation is tested on four standard benchmarks and conclusions 
are drawn. 
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3.1  Basic formulation of the equation 
 

It is known that the property of incompressibility is a feature of the flow performed by 
the fluid. The flow is said to be incompressible if we neglect the density changes. Usually, we 
consider liquids, in particular the water, as incompressible flows. Whereas, the gases are 
mostly considered as compressible flows. For low Mach number around 0.3, they can be also 
be treated as incompressible [1]. This non-dimensional number quantifies the relation 
between a characteristic velocity u of the flow and the velocity of the sound c by: 

u
Ma

c
=

 
(3.1) 

The Mach number is named after physicist and philosopher Ernst Mach (1836-1916). Since 
the velocity of the sound is 340m/s in the air, then the conditions of incompressibility is well 
respected up to fluid velocity of 100m/s. In this work, these values for the velocity can be 
almost reached inside some of our partner’s industrial furnaces. Therefore, some assumptions 
and simplifications are made.  
 
Another important non-dimensional number that quantifies the properties of a particular flow 
is the REYNOLDS number given by 

Re
LU

υ
=

 
(3.2) 

where L is a characteristic length scale, U is a measure velocity and υ is the kinematic 
viscosity of the respective flow. It gives a measure of the ratio of inertial forces to viscous 
forces and, consequently it quantifies the relative importance of these two types of forces for 
given flow conditions. Reynolds numbers is frequently used to characterize different flow 
regimes, such as laminar or turbulent flow: laminar flow occurs at low Reynolds numbers, 
where viscous forces are dominant, and is characterized by smooth, constant fluid motion, 
while turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, 
which tend to produce random eddies, vortices and other flow fluctuations. Reynolds number 
is named after Osborne Reynolds (1842–1912), who proposed it in 1883. 
 

The transient equation of the fluid to be solved in a domain dΩ ⊂ ℜ  (d being the space 

dimension) for a time period T consists in finding the velocity u(x,t) and the pressure p(x,t) 
such that: 

( ) in (0, )

0 in (0, )
tu u u f T

u T

ρ σ∂ + ⋅∇ − ∇ ⋅ = Ω×
∇ ⋅ = Ω×  

(3.3) 

where σ is the stress tensor, ρ the density of the fluid and f is a given force vector. The stress 
tensor for a Newtonian fluid i.e., the viscosity is assumed to be constant, is given by the 
constitutive equation: 

2 ( )u pIσ µ ε= −  (3.4) 

where µ is the dynamic viscosity, I  the identity tensor, and p is the pressure. The strain rate 
tensor ε(u), is defined by  
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1
( )

2
tu u uε  = ∇ + ∇   

(3.5) 

 
Combining (3.3)-(3.5) yields the following momentum equation 

( ) 2 ( ) in (0, )

0 in (0, )
tu u u u p f T

u T

ρ µ ε∂ + ⋅∇ − ∇ ⋅ + ∇ = Ω×
∇ ⋅ = Ω×  

(3.6) 

 
The transient incompressible Navier-Stokes equations (3.6) constitute a nonlinear 

system of mixed hyperbolic-parabolic partial differential equations for the vector u and the 
scalar p. In order to solve this system, initial-boundary values must be set and specified. 
 
3.1.1 Initial and boundary conditions 

 
The initial condition at t=0 must satisfy 0 0u∇ ⋅ =  in order to obtain a well-posed 

problem and has the following form: 

0 in (0)u u= Ω×  
(3.7) 

Recall that for an incompressible flow there is no initial condition for the pressure. 
Usually, two types of boundary conditions can be applied, the Dirichlet boundary conditions 
on a  DΓ , and the Neumann boundary conditions on NΓ , where D N∂Ω = Γ = Γ ∪ Γ and 

D NΓ ∩ Γ = ∅ . These conditions are defined as follow: 

(0, )

(0, )

D D

N N

u u on T

n h on Tσ
= Γ ×

⋅ = Γ ×  
(3.8) 

where n is the unit outward normal vector to NΓ . 

 
In our context, inside an industrial furnace, two particular conditions can be characterized: 
 

- The inflow boundary conditions imposed at the burner’s level, which will be modelled 
by a fixed Dirichlet boundary conditions using a prescribed velocity uD . 

 

- The outflow boundary conditions which are not an easy task. It stills a challenge and 
an open problem. More details about this subject are discussed by Gresho [2] and 
Heywood et al. [3]. Within our case, the most popular “do nothing” boundary 
condition will be used, which means a zero Neumann boundary conditions. 

 

- The pressure boundary condition is critical when there is no Neumann boundary. 
When only Dirichlet boundary conditions are imposed everywhere on our domain, the 
resulting pressure is obtained only up to an arbitrary constant. Therefore, two ways to 
define pressure field uniquely, either in prescribing an average value with respect to 

the complete domain having: 0p d p
Ω

Ω =∫  where p0 is a constant that can be zero, or 

by prescribing discrete value of the pressure at a point which is computationally the 
most convenient. 



88                                            SFEM for incompressible flows with high Reynolds number 

3.1.2 Classical mixed formulation 
 

First let us define the function spaces that will be used in the remainder of this chapter.  
The function spaces for the velocity, the weighting function space and the scalar function 
space for the pressure are respectively defined by:  

( )( ){ }
( )( ){ }

( ){ }

1

1

2

,

, 0

,

d

D

d

D

u u H u g on

u u H u on

Q p p L

 ∈ Ω = Γ

 ∈ Ω = Γ

 ∈ Ω


V

W

=

=

=
 

 

Then the weak form of (3.6) consists in finding ( ) ( ), ,u p Q∈ V  such that: 

( ) ( ) ( )( ) ( ) ( ) ( )

( )

, , 2 : , , ,

, 0

N
N

u
v u u v u v p v f v h v

t

u q

ρ ρ ηε ε
Γ

 ∂  + ⋅∇ + − ∇ ⋅ = +  ∂ 
 ∇ ⋅ =

 

(3.9) 

Note that when integrating-by-parts the viscous and the pressure term, the Neumann boundary 
term appears naturally in the formulation.  
 

As mentioned in previous chapter, the Galerkin approximation consists in 
decomposing our domain Ω  into Nel elements K such that they cover the domain and there are 

either disjoint or share a complete edge (face). Using this partition, the above-defined 
functional spaces are approached by a finite dimensional spaces spanned by continuous 
piecewise polynomials such that: 

( )( ){ }
{ }

( ){ }

0 1

,0

0 1

( ) ,

, 0

( ) ,

d d

h h hh K

h h h h

h h h K

v C v P K K

v v

Q q C q P K K

Γ

 ∈ Ω ∈ ∀ ∈

 ∈ =

 ∈ Ω ∈ ∀ ∈


V

V

T

T

=

= V

=
 

 

 
The Galerkin discrete problem consists now in solving the mixed problem by: 

find the pair ,0
( , ) ( , ), ( , ) ( , )

h h h h h h h h
u p Q v q Q∈ ∀ ∈V V   such that: 

( ) ( ) ( )( ) ( ) ( ) ( )

( )

, , 2 : , , ,

, 0

N

h
h h h h h h h h h N h

h h

u
v u u v u v p v f v h v

t

u q

ρ ρ ηε ε
Γ

 ∂  + ⋅∇ + − ∇ ⋅ = +  ∂ 
 ∇ ⋅ =

 

(3.10) 

It is known that the finite element approximation (3.10) may fail because of two 
reasons: the inf-sup condition (Brezzi-Babuska) which required an appropriate pair of the 
function spaces for the velocity and the pressure [4, 5].  
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The second one is the dominance of the nonlinear convective term which can generate 
spurious oscillations that will pollute the whole numerical solution. In the present work we 
aim to retain the advantages of using linear approximations (P1 finite elements) regarding the 
accuracy and the computational cost, especially for 3D real applications. But it is well know 
that the combination of P1-P1 approximation for the velocity and the pressure does not lead to 
a stable discretization of (3.10) since it fails to satisfy the inf-sup condition: 

,0 0 1

( , )
inf sup 0
h h h h

h h

q Q u h h

u q

q u
βΩ

∈ ∈

∇ ⋅ ≥ >
V

 
(3.11) 

where β is a constant independent of h.  
 

Many measures may be distinguished to solve and get around these two difficulties, 
the instabilities in advection-dominated regime and the velocity-pressure compatibility 
condition. A very popular method was firstly proposed by Arnold, Brezzi and Fortin [6] for 
the Stokes problem. It was suggested to enrich hV  with space of bubble functions known as 

MINI element. Since the bubble functions vanish on each element boundary, they can be 
eliminated and statically condensed giving rise to a stabilized formulation for equal-order 
linear element. Later it was pointed out in [7] that using these local bubbles is equivalent to 
residual-based stabilized schemes with a natural way of choosing the stabilization parameters. 
Therefore, the selection of the “optimal” bubble function will reproduce the appropriate 
choice of the stability parameter. Thus, it’s clear that the bubble will have different shape on 
the diffusive dominated regime then the advection-dominated flow regime. For example, it 
was shown in [8, 9] that upwind bubbles must be used to reproduce the SUPG stabilization.  

 
A standard reference for mixed finite element methods is the book of Brezzi and 

Fortin [10].  A brief history on residual based stabilisation methods can be found in Brezzi et 
al. [11], the book of Donea and Huerta [12] , all the articles by Hughes et al. [13, 14, 15] on 
multiscale methods and SUPG/PSPG methods by Tezduyar [16].  The Unusual Stabilised 
finite element method was introduced by Franca and Farhat in [17]. Codina and co-workers 
introduced lately recent developments of residual based stabilisation methods using 
orthogonal subscales and time dependent subscales [18, 19, 20, 21]. These methods are very 
promising and considered to be an open door to turbulence. At the same level, we can find a 
complete description on the use of variational multiscale method for turbulent flows in 
Gravemeier [22, 23, 24] where a three scale separation method was developed and applied.  

 
The main interest of this chapter will focus on stabilizing the convection-dominated 

flows and to retain the use of equal velocity-pressure linear interpolation. A detailed 
description on the parallelisation of the 2D finite element solver using the Mini-element 
P1+/P1 can be found in T. Coupez [25, 26] and [27]. The implementation of the code in our 
finite element library CIMLIB and the stabilization for the 3D Stokes problem has to be 
credited to [28]. Recently, an extension to transient Navier-Stokes was considered and added 
by [29]. In this sense, the present work can be considered as a continuation of those references 
to deal with highly convection-dominated flows. Several numerical examples for solving the 
transient problems will show the benefits of the proposed scheme and conclusion will be 
drawn. 
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3.2 Stable mixed variational formulation 
 
The primary aim of the next two sections is twofold: we begin to present briefly the 

classical stable mixed-formulation for the Stokes problem which can be derived by 
introducing the MINI element and the corresponding static condensation [6]. This formulation 
is stable for equal-order interpolation for the velocity and the pressure fields (satisfies the inf-
sup condition) and already implemented in the CIMLIB library and validated by [27, 29]. 
Once we illustrate the basic enrichment of the functional spaces and the corresponding 
condensation procedure, we extend the presentation in the second part of this chapter for 
solving the transient Navier-Stokes equations using the general framework of the multiscale 
methods.  

 
The finite element formulation of the classical mixed formulation for Stokes equations 

reads:  find the pair ( , ) ( , )
h h h h

u p Q∈ V    such that: 
 

( ) ( )( ) ( ) ( )
( )
2 : , ,

, 0

h h h h h

h h

u v p v f v

u q

ηε ε − ∇ ⋅ =


∇ ⋅ =  

(3.12) 

We enrich the velocity functional space by the discrete space associated to the bubble 
function [6]:  
 

1 1

0
, ( ) ( ) , , 1,...,

i
h i i hh K

u u P K H K K i D
 

∈ ∩ ∀ ∈ = 
 

% % %
h

V T=
 

 

where D is the topological dimension and Ki is a decomposition of K in D subsimplex 
(subtrianle in two-dimension and subtetrahedra in three-dimension), that have as common 
vertex the barycentre of K. In other words, the choice of this bubble function is continuous 
inside the element, considered as linear on each sub-triangle and vanishes at the boundary of 
K.  
 
The velocity field is now an element of the function space generated by the following direct 

sum h
⊕ %

h
V V . Hence, we use continuous piecewise linear functions enriched by bubbles for 

the velocity and piecewise linear functions for the pressure. The mixed-finite element 

approximation of problem (3.12) can now be written: find h h
⊕∈ %

h
= V Vu VVVV and h h

p Q∈  such 
that: 
 

( ) ( )( ) ( ) ( )
( )
2 : , ,

, 0

h h h h h

h h

p f

q

ηε ε − ∇ ⋅ =


∇ ⋅ =

u v v v

u
 

(3.13) 
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Since the fine-scale problem is independent and uncoupled at the element level and vanishes 
on the element boundaries, the system in (3.13) can be decomposed into:  

( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )

( )

2 : , ,

2 : , ,

( ), 0

h h h h h

h h h h h

h h h

u v p v f v

u v p v f v

u u q

ηε ε

ηε ε

 − ∇ ⋅ =
 − ∇ ⋅ =
 ∇ ⋅ + =

% % % %

%
 

(3.14) 

 
Remark 1. Note that the fine-scale space is assumed to be orthogonal to the finite element 
space, the crossed viscous terms in both equations of (3.14) vanished [24]. 
 
Equations in (3.14) give rise to the following global system to solve:  

0

0

0

T

vv vp h v

T

bb bp h b

h pvp bp

A A u B

A A u B

p BA A

    
    
     =
    
         

%

 

(3.15) 

where : 

( ) ( )( ) ( ) ( )( ) ( ) ( )2 : , 2 : , , , ,
vv h h bb h h vp h h bp h h

A u v A u v A u q A q uηε ε ηε ε= = = ∇ ⋅ = ∇ ⋅% % %               

( ) ( ), , , , 0
v h b h p

B f v B f v B= = =%
    

 
The static condensation process consists into solving the second line for the bubble function 
u%  which by inserting into the third line of (3.15) results the condensed matrix scheme for 

large-scale unknowns uh and ph reading: 

T

vvv vp h

phvp pp

BA A u

BpA A

    
     =

    
    

%%

 

(3.16) 

where: 
1 1T T

pp bp bb bp p bp bb b
A A A A and B A A B− −= − = −% %

 
 

It is clear that taking into account locally the influence of fine scales (bubble functions) 
upon the resolved large scales has introduced new stabilizing terms and has modified the 
components of the global matrix giving rise to a stable mixed formulation for the velocity and 
pressure system of equations (see [29] for more details). 

 

3.3 Stabilized finite element method 
 
In this section the time-dependent Navier-Stokes equation is solved. The stabilizing 

schemes from a variational multiscale view point will be described and presented. The 
velocity and the pressure spaces will be enriched by a space of bubbles that will cure the 
spurious oscillations in the convection-dominated regime as well as the pressure instability.  
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3.3.1 Multiscale approach 

 
Following the lines in Hughes et al. [30], we assume an overlapping sum 

decomposition of the velocity and the pressure fields into resolvable coarse-scale and 
unresolved fine-scale hu u u= + %  and hp p p= + % . The fine-scale part is usually modelled via 

residual based terms that are derived consistently. The static condensation consists in 
substituting the fine-scale solution into the large-scale problem. Consequently, additional 
stabilized terms, tuned by a local time-dependent stabilizing parameter, will enhance the 
stability and accuracy of the standard Galerkin formulation for the transient nonlinear Navier-
Stokes equations. Likewise, we consider the same decomposition for the weighting functions 

hv v v= + %  and hq q q= + % . Note also, that the fine-scale may be represented via different 

bubbles functions (similar to the MINI element) and the selection of the “optimal” bubble 
function will reproduce the appropriate choice of the stability parameter [7, 8]. 
 

The enrichment of the functional spaces is then as follow: h ⊕ %V = V V , 0 ,0 0h ⊕ %V = V V , 

hQ Q Q⊕ %=  and 0 ,0 0hQ Q Q⊕ %= . The mixed-finite element approximation of problem (3.10) 

can now be written:  
 

find ( ) ( ), ,u p Q∈ V    such that:  

( ) ( )( )
( ) ( )( ) ( ) ( ) ,0 0

( )
, ( ( ), ,

2 : , ,
N

h h
h h h h h h h h h h

h h h h h h N h h h h h

u u
v v u u u u v v p p v v

t

u u v v f v v h v v v v

ρ ρ

η ε ε
Γ

⊕

∂ + + + + ⋅∇ + + − + ∇ ⋅ + ∂ 

+ + + = + + + ∀ + ∈

%
% % % % % %

%% % % % % V V

 

(3.17) 

( ) ,0 0( ), 0h h h h h hu u q q q q Q Q⊕∇ ⋅ + + = ∀ + ∈ %% % %
 (3.18) 

 
As shown previously, these equations can be split also into two sub-problems by separating 
the two scales: 
 
Integrating by parts within each element we obtain: 
 
- the coarse-scale problem: 

( ) ( ) ( ) ( )( )
( ) ( ) ,0

( )
, ( ( ), , 2 :

, ,
N

h h
h h h h h h h h h h h

h N h h h

u u
v u u u u v p p v u v

t

f v h v v

ρ ρ ηε ε

Γ

∂ + + + ⋅∇ + − + ∇ ⋅ + ∂ 

= + ∀ ∈

%
% % %

V
 

(3.19) 

( ) ,0( ), 0h h h h hu u q q Q∇ ⋅ + = ∀ ∈%
 (3.20) 
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- the fine-scale problem: 

( ) ( ) ( ) ( )( )
( ) ( ) 0

( )
, ( ) ( ), , 2 :

, ,
N

h h
h h h h h h h h h h

h N h h

u u
v u u u u v p p v u v

t

f v h v v

ρ ρ ηε ε

Γ

∂ + + + ⋅∇ + − + ∇ ⋅ + ∂ 

= + ∀ ∈

%
% % % % % % % %

%% % % V
 

(3.21) 

( ) 0( ), 0h h h hu u q q Q∇ ⋅ + = ∀ ∈ %% % %
 (3.22) 

 
To derive the stabilized formulation, we first solve the fine scale problem, defined on the sum 
of element interiors and written in terms of the time-dependant large-scale variables. Then we 
substitute the fine-scale solution back into the coarse problem (3.19 - 3.20), thereby 
‘eliminating the explicit appearance of the fine-scale while still modelling their effects’.  
 
Remark 1. Recall that for linear interpolation functions, the second derivatives vanish as well 
as all terms involving integrals over the element interior boundaries. 
 
Remark 2.  Since the fine-scale space is assumed to be orthogonal to the finite element space, 
the crossed viscous terms vanished in (3.19) and (3.21). [25-26] 
 
Remark 3.  For the sake of simplicity in the notation, we consider all of ∂Ω  to be zero 

Dirichlet boundary condition. Generalization to other types of boundary conditions is 
straightforward. 
 
Rearranging the terms, equation (3.21) is equivalent to: 
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(3.23) 

                                       ( ) ( ) ( ) 0, , ,h cu q u q q q Q∇ ⋅ = −∇ ⋅ = ∀ ∈ %% % % % %R
 (3.24) 

 
As we can observe, the subscale equation (3.23) is time dependent and highly 

nonlinear. To our knowledge, the first attempt to apply and use a time-dependent subscale for 
the Navier-Stokes equations has to be credited to Codina [19]. It was shown later in [31, 32] 
that by tracking the subscales in time and keeping their nonlinear contributions in the 
advection velocity will guarantee the global conservation of the momentum equation and can 
also open the door to turbulence modelling. These methods can be considered very promising 
and interesting and they will be for sure the subject of further research on the stabilization 
methods. 
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Here in our context, following the evolution and the storage of the small-scales in time 
together with the need of fine computational meshes can easily increase the computation cost 
in particular when long time simulation of heat treatment furnaces are considered. Therefore, 
for the time being, their effects will be replaced by the standard turbulence models such as the 
Smagorinsky-type eddy viscosity or k-epsilon-type eddy viscosity. These two models will be 
used later to deal with turbulent flows inside the furnace (see next chapter). 
 

Before the description of the temporal discretization, we follow the work already made 
and implemented by [29] on the use of Newton-Raphson linearization method for treating the 
nonlinear convective terms. Here in our context, inspired by the work of Codina in [31], we 
will extend the use of this method to the multiscale finite element formulation. Recall that 
Newton-Raphson method is attractive because it converges rapidly from any sufficiently good 
initial guess; however, one drawback of this method is the need to solve the Newton equation 
at each iteration. This can be expensive specifically when the number of unknowns is large. 
 
The nonlinear convective term in the large-scale problem can be approximated by keeping 
terms only to first order at the i th iteration as: 
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(3.25) 

where 
1iu −   is the previous know Newton-Raphson’s iteration.  

 
At this stage, before solving the fine-scale equation, the above mentioned assumptions will be 
detailed and then applied:  
 

1- First, the subscales will not be tracked in time, therefore, ‘quasi-static’ subscales are 
considered here. This choice is justified in [33].  Since additional turbulence model 
will be used, this approximation is reasonable for the time being. Moreover, we can 
say that the subscale equation is ‘quasi’ time-dependent since it is driven by the large-
scale time-dependent residual [31]. 

 
2- Second, the convective velocity of the nonlinear term may be approximated using only 

the large-scale part: ( ) ( )h h h h hu u u u u u u u+ ⋅∇ + ≈ ⋅∇ + ⋅∇% % % . This choice will provides 

us with some reduction of computational cost.  
 

Consequently, the fine-scale problem will reduce to the following: 
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(3.26) 
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With regard to the work of [29], we can identify at this point two important 
extensions. The first consists in considering the advection terms in equation (3.26) and the 
second is that the small-scale pressure is included. These two extensions are essential for 
simulating high convection-dominated flows.  
  

It is also known, from [44, 45] that by considering the small-scale pressure as an 
additional variable we complete the continuity condition on the small-scale level. This will 
provide additional stability in particularly with increasing Reynolds number. However, 
solving the small-scale equation for both the velocity and the pressure is somewhat 
complicated. Franca and co-workers [4] proposed a separation technique of the small-scale 
unknowns. They replaced the small-scale continuity equation by the small-scale pressure 
Poisson equation (PPE). Since only the effect of the small-scale pressure Poisson equation on 
the large-scale equation must be retained, Franca and Oliveira (2003) [34] showed that rather 
than solving this equation it could be approximated by way of an additional term in the 
fashion of a stabilizing term. This leads to an approximation of the form 

C hp uτ≈ − ∇ ⋅%  (3.27) 

The result (3.27) can now be integrated directly into the large-scale equation (3.19). 
For additional details about solving the PPE equation, see the thesis [46] and the work of 
Gravemeier [22, 23, 24, and 41]. In these references, a complete review on considering two-
scales and even three-scales for the convection-diffusion-reaction and the Navier-Stokes 
equations is fully described. Additionally, the author as in [36, 11] confirms that the effect of 
considering the small-scale pressure is important for high Reynolds applications.  
 
For the definition of Cτ , we adopt the definition made by Codina and co-workers [21, 31]: 
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uc

c h
τ υ

  
 = +  
     

(3.28) 

where c1 and c2 are two constants, independent of h, h is the characteristic element length 
defined in (2.31) and υ=η/ρ  is  the kinematic viscosity. More details about the choice of the 
stabilizing parameter will be addressed in the following section. 
 

According to the previous assumptions, this method is then considered as a combined 
of stable formulation (MINI-element) / (stabilizing strategy). The stable formulation, as 
described previously for the Stokes problem, is applied to the velocity field whereas the fine-
scale pressure is modelled using a stabilizing methods. After all, the main assumption that 

0p =%  in the small scale momentum equation and eliminating its effect in (3.26) comes down 

to the fact that ‘the small scale velocity is exclusively driven by the residual of the large scale 
momentum equation and not by the residual of the continuity equation’ [31].  
 

In the last part of this section, we go back to the small-scale momentum equation. 
Please note that our objective is to compute the small-scale velocity and then integrate the 
solution into the large-scale problem. Many methods have been proposed to solve and 
approximate this fine-scale system (3.26). Since solving directly this problem is difficult, 
therefore, only their effects must be retained.  
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We can find in the literature the Green’s function approach method proposed by 
Hughes [14] and Masud [35] and the two-level finite element approach proposed by Franca et 
al. [4]. The use of orthogonal subscales and the Fourier analysis approach was introduced and 
developed by Codina [31, 32]. The close relationship, the comparison between different 
stabilization techniques and the significantly contribution on the analysis of these method are 
credited to Codina in [18]. 
 

Without loss of generality, using the arguments of chapter 2 together with the previous 
section 3.2, the fine-scale problem is solved and the structure of the stability parameter is 
extracted by employing bubble functions on individual elements. Following all the earlier 
efforts made by Masud [47, 48, 49, 50], the fine-scale fields are expanded as follow: 

h h

h K K h K K
K K

u u b and v v b
∈ ∈

′ ′= =∑ ∑% %
T T  

(3.29) 

where bK represents the bubble shape functions, Ku′  represents the coefficients for the fine-

scale velocity field and Kv′  represents the coefficient for the fine-scale weighting function.  

 
Introducing (3.29) into the fine-scale momentum equation we get on each element K:  

( ) ( ) ( )( ) ( )1 , 2 : ,i
h K K K K K K K K m K K KKK

u b u b v b u b v b vρ ηε ε− ′ ′ ′ ′ ′⋅∇ + = R
 

(3.30) 

As stated previously in chapter 2, we can reconstruct the fine scale velocity by taking, out of 
the integral, the vectors of constant coefficients.  
 
Therefore, since Kv′  is arbitrary, the fine-scale velocity will take the following form: 
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(3.31) 

 
As expected, the structure of the elemental stabilisation parameterKτ  has appeared 

naturally via the solution of the fine-scale problem. Consequently, the effect of the bubble is 
now condensed in this elemental parameter. 
 

As mentioned before, it is clear that the choice of the bubble functions affects the 
value of the stability parameter. In (3.31) both convection and viscous regime are represented. 
But it is important to note that when using the same bubble function for the trial solution and 
the weighting function leads to the cancellation of the convection term in the definition of the 
needed stabilisation parameterKτ . Under the assumption that hu  is piecewise constant, it is 

easy to see that the choice of the MINI-element bubbles yields:   
 

( )1 , 0i
h K K hK

u b b K− ⋅∇ = ∀ ∈T
 

(3.32) 
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One way to recover the convection terms it was pointed out by [8, 9], is the use of 
additional upwind bubbles. Such choice can reproduce naturally the coefficients of SUPG 
stabilization methods. This matter was highlighted by also Masud et al. [49, 50] by proposing 
the use of different order interpolation functions for the trial solution and the weighting 
function in the skew part of (3.31) (see figure 1 for an example). In order to keep the 
presentation simple, and to extract the structure of the stability parameter Kτ , we employ a 

combination of standard bubble shape functions Kb and upwind shape functions *Kb   in the 

fine-scale field hv% . More details about this section are given in chapter 6 section 2.  

 
Therefore, by introducing the modified  hv%  in (3.30), the fine-scale velocity will take 

the modified following form: 
 

( ) ( ) ( )( )1 *

1
)

, 2 :

,K m K h

i
h K K K K KK

visocus termadvection term

u b K

u b b b bρ ηε ε−

′ = ∀ ∈
 
 ⋅∇ +
 
  

144424443144424443

(R T

 

(3.33) 

 
 
Remark 4. Using linear interpolations, the upwind part drops out directly in the viscous term. 
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Figure 1. Example of 1-D bubble function for the trial solution and the weighting function 

adopted from [50] 
 
Now, let us reconsider the coarse-scale problem given by (3.19-3.20) 
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(3.34) 

                         ( ) ( ) ,0, , 0h h h h h hu q u q q Q∇ ⋅ + ∇ ⋅ = ∀ ∈%
 (3.35) 
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Applying integration by parts to the third terms in equation (3.34) and to the second 
term in equation (3.35), and then substituting the expressions of both the fine-scale pressure 
(3.27) and the fine-scale velocity (3.33), we get: 
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(3.36) 
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(3.37) 

 
Finally, substituting the residual of the momentum equation and expanding all the 

additional terms, we obtain from (3.36) a modified coarse scale equations expressed solely in 
coarse scale functions. For illustration purposes, the new modified problem can now be 
decomposed into four main terms: the first one is the Galerkin contribution; the second and 
the third terms take into account the influence of the fine-scale velocity on the finite element 
components and the last term models the influence of the fine-scale pressure onto the large-
scale problem. 
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(3.38) 

 
When compared with the Galerkin method (3.9), the proposed stable formulation 

involves additional integrals that are evaluated element wise. These additional terms, obtained 
by replacing the approximated u%  and p%  into the large-scale equation, represent the effects of 

the sub-grid scales. As a result, different stabilization terms were introduced in a consistent 
way to the Galerkin formulation. As for the additional grad-div stabilization term, it was 
introduced to the large-scale momentum equation controlled by a suitable parameter Cτ  . All 

of these terms will overcome the instability of the classical formulation found in convection 
dominated flows and the need to satisfy the inf-sup condition for the velocity and pressure 
interpolations. While the last term in equation (3.38) provides additional stability at high 
Reynolds number.  
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Remark 1. The addition of the stabilizing terms does not compromise the consistency of the 
formulation, since these terms are weighted with the residuals of the equations, which vanish 
for exact solutions. 
 
Remark 2. Recall that when using linear elements (triangular and tetrahedral) all second 
order derivatives vanishes. These terms were directly omitted from the formulations. 
 
Remark 3. For sake of simplicity in the notation and for a better representation of all the 
additional terms in equation (3.38), the condensation procedure of the small-scale into the 
large scale is masked under these stabilizing parameters. However, from the implementation 
point of view, the structure of the stabilizing parameters will be computed naturally via the 
element-level matrices. 
 
 
3.3.2 Matrix formulation of the problem 
 

Let us summarize and rewrite the resulting variational stabilized formulation in the 
usual matrix scheme. Following the work of [29] on the development of the Navier-Stokes 
solver in CIMLIB library, it is adequate that we keep here the same matrix notations. All new 
additional stabilizing terms needed for the convection-dominated problems will be then 
highlighted. Note also that the structure of the stabilizing parameters will be computed 
naturally via the element-level matrices.  
 

For sake of simplicity in the notation, the Euler implicit temporal discretization is 
applied, the linearization (3.25) is introduced into the variational formulation for the space-
time discretized Navier-Stokes equations and the modified fine-scale weighting function hv%  is 

used. Correspondingly, the matrix equivalent of the stabilized problem simplifies to   
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(3.39) 
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The static condensation process consists into solving the second line for u%  and by 

inserting it into the first and third line of (3.39) it gives rise to the condensed matrix scheme 
for large-scale unknowns uh and ph reading 
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where: 
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It is clear that taking into account locally the influence of unresolved fine scales upon 

the resolved large scales has introduced new stabilizing terms and modified the components 
of all the matrices. The effect of the fine-scale pressure was added directly to the first matrix 
by a stabilizing term. These terms seems to play an important role in particularly for high 
Reynolds number flows. Later on, several numerical examples will show the benefits of the 
proposed scheme.  
 
Remark 4. In order to keep the presentation simple, we advise the reader to consult [29] as 
well as section 2 from chapter 6 for more details about the time discretization combined with 
the Newton-Raphson linearization.  
 
 
3.3.3 Stabilization parameter 
 

The selection of the stabilization parameter has attracted a significant amount of 
attention and research. This subject was also discussed in the previous chapter. Here, for the 
Navier-Stokes equation, these stabilizing parameters will involve in their structure the spatial 
and temporal discretization, the equation coefficients as well as the local Reynolds number. 
Various definitions were proposed and tested for the SUPG, GLS and the PSPG methods. 
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These definitions can be easily implemented in any finite element codes. Please consult [45, 
36, 51, 52] for more details.  
 

In the previous subsection, we showed that the stabilizing parameter was constructed 
naturally in a consistent manner by incorporating the coarse-scale residual evaluated over the 
element. This forms the advantage of using variational multiscale approach, i.e. unlike other 
SUPG/PSPG implementations, the multiscale approach allows a local tuning of the size of the 
stabilization term, thus enhancing flexibility and accuracy. But at the same time, it seems 
interesting to discuss the structure of these parameters and there limits in different regimes.  
 

Recall that the importance of stabilization is related to the local nature of the flow that 
is commonly characterized by a local Reynolds number to be defined. This leads us to set up 
different strategies for the choice of the stabilizing parameter depending on the local 
Reynolds number. However, using bubble approach to SUPG will lead to efficient strategies 
for an automatic choice of these parameters.  
 
Most of the strategies involve first of all the computation of a local Reynolds number  
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Then this common used stabilizing parameter will take the following form: 
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(3.43) 

where mk is 1/3 is the optimal value for piecewise linear elements and K
u is the norm of the 

velocity.  
 

Here h, as mentioned previously, is an appropriate measure for the size of the mesh 
cell K [45, 51]. Observe that in the expression (3.43) Kτ  switches between different 

dominated regimes; i.e. in diffusion dominated case, Kτ  is 2( / )KO h υ  and in the advection 

dominated case is ( / )K K
O h u  [47, 50].  

 
 
 



102                                            SFEM for incompressible flows with high Reynolds number 

 
A similar expression of the stabilizing parameters was suggested by Codina [31, 32] from a 
Fourier analysis of the subscale problem 
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where c1 and c2 are algorithmic constants chosen equal to 4 and 2 respectively for linear 
elements. Similarly, the two terms in the right–hand expression can be interpreted as the 
diffusion-dominated regime and the advection-dominated regime.  
 
For time-dependent problems, the time step is introduced into the definition ofKτ . Tezduyar 

and Osawa [45] supposed that 
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(3.45) 

 
This is the most common used definition for the transient Navier-Stokes problems. 

However, for small time step, the expression of Kτ  can degenerate in that 0Kτ → . One way 

to remedy this problem is the use of dynamic subgrid scales introduced by Codina et al. [21] , 
i.e. the fine-scale velocity becomes a history variable that needs to be stored. This seems like 
a promising step in the direction of more accurately representing the fine scales and can also 
open the door to turbulence modeling. 

 
To conclude, it is clear that in all the definitions given in this section, the structure of 

the stabilization parameter contains mainly two terms: convection term and viscous terms, 
which is identical to the structure given in the previous section (eq. 3.33).  
 

3.4 Numerical examples and validation 
 
In this section, four numerical calculations are performed to assess the effectiveness of 

the method described previously. Numerical examples for time-dependent flow problems are 
given in the following. The main interest of these examples is to test how well the stabilized 
formulation developed herein matches with computation in particularly for high Reynolds 
number. More applications on thermally coupled flows for heat treatment furnaces will be 
given later in chapter 5 and 6. The previous implementation of the Navier-Stokes solver [29] 
will also be used and referred as ‘previous version’ or ‘old scheme’. Recall that the difference 
between the new implemented method and the previous version resides only in the extension 
to deal with high convection dominated flows. In order to highlight the role of these 
additional terms, some comparisons are made and results are discussed.  
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3.4.1 A convergence test 

 
In this example, already presented in [53] and [46], we consider the Navier-stokes 

equations in the unit square [ ] [ ]0,1 0,1Ω = × . The objective of this test is to check the 

convergence of the approximation to the exact solution and to compare the effect of the new 
additional stabilizing terms in respect to the previous version implemented in CIMLIB [29]. 
This problem consists of a jet impinging upon a wall with a controlled body force f given by 

8 3 2
1

2

5 10 60

0

f xy xy xy

f

υ= + +
=  

(3.46) 

The exact velocity components and the pressure are then defined on the domain by: 
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(3.47) 

The boundary conditions as well as the expected velocity distribution are depicted in Fig. 2. 
                               

                                                                                             
           Figure 2.  Boundary conditions (left) and expected velocity distribution (right) 
 

The convergence study is divided into two parts. In the first part we study the 
convergence for low Reynolds number Re=0.5025 with 10υ =  (diffusion-dominated flow), 

and in the second part we present the convergence rates for high Reynolds number Re=5025 
with 0.001υ =  (convection-dominated flow). Uniform meshes of 4×4, 8×8 and 16×16 linear 

triangular elements have been used to discretize the computational domain. We compute the 
error of the velocity and the pressure solution using the L2-norm as follow:  

 

1 1
2 22 2

0 0

2 2
0 0

( ) ( )

,
h h

h hu p
h h

u u d p p d
u u p p

e e
u pu d p d

Ω Ω

Ω Ω

   − Ω − Ω
− −   

= = = =   Ω Ω   
   

∫ ∫

∫ ∫
 

(3.48) 

x

1
5u x= −

1
0u =

4

1
5u y= −

2
0.5u =

5

2
0.5u y=− +

f

y



104                                            SFEM for incompressible flows with high Reynolds number 

In the given reference [46], the objective being different, a full study of convergence 
was conducted for testing higher-order elements using different methods. Here, we retain the 
use of linear triangular elements and we investigate the effects of ignoring both the pressure 
subscale and the added stabilizing convective terms in different regimes.   
 

In Figure 3, the values of the pressure are shown and measured along the y-axis at 
x=0.5.  For diffusion-dominated flow, both methods are in very good agreements with the 
exact solution. As expected, when the flow becomes convection-dominated, some numerical 
oscillations appear in the solution (see Figure 3 and Figure 4). On the other hand, the new 
modified scheme yields good results when comparing to the analytical solution.   
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Figure 3.  Pressure solution obtained by using 16x16 linear triangular elements: diffusion-

dominated flow (left) and convection-dominated flow (right) 
 

Moreover, it was pointed out also in [46] that the use of linear elements in this 
numerical test leads to relatively ‘satisfactory’ results for the pressure. This can be observed 
in Figure 4 showing the pressure distribution for both methods. For more details about the use 
of higher-order elements and curing these instabilities, the readers could refer to [46].   
 

          
 

Figure 4.  Pressure distribution obtained by using 16x16 linear triangular elements for 
convection-dominated flow: analytical (left), new scheme (center) and previous version(right) 
 

Figure 5 and 6 present the convergence rates in the L2-norme for the velocity and the 
pressure fields. In the diffusion-dominated flow (Figure 5), the convergence rates are in 
complete accordance with the theoretical predictions and both methods accurately matched.  
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However, it is interesting to note that the error increases when the convection terms 
become dominant as showing in figure 6, whereas the new scheme exhibits smaller error and 
keeps the same order of convergences. These rates are in agreement with the references.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                 
Figure 5. L2-norm for diffusion-dominated flow: pressure (left) and velocity (right) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6. L2-norm for convection-dominated flow: pressure (left) and velocity (right) 
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3.4.2 Driven flow cavity problem (2-D) 
 

Now we numerically solve the lid-driven flow problem. This test has been widely used 
as a benchmark for numerical methods and has been analyzed by a number of authors (for 
example, see [37, 38, 39, 40]. The problem description, boundary conditions and the 
corresponding meshes are depicted in figure 7. Dirichlet boundary conditions prescribe 

(1,0)u
r

on the upper boundary at y=1, and (0,0)u
r

elsewhere onΩ . The source term is identical 

to zero. The viscosity is adjusted in order to obtain Reynolds number of 1000, 5000, 10000, 
20000, 33000 and 50000. Zero pressure is prescribed at the lower left corner. 
 
Two meshes of linear finite elements have been used in the calculations. The “coarse” one is 
made of 64×64 elements, refined near the walls of the cavity. The “fine” mesh consists of 
180×180 elements. All numerical experiments will be compared to the very known references 
of Ghia et al. (1982) [37] and Erturk et al. [42] . The authors in [37] applied a second-order 
accurate finite difference method using a fine grid of 257×257 while in [42] the 2-D steady 
incompressible Navier-Stokes equations was solved using a very efficient finite difference 
numerical method (fourth order compact formulation) on a very fine grid of 601 x 601. We 
consider that the steady state is reached when the normalized velocity deviations within one 
step are lower than a chosen tolerance of 10-6. Recall that the main interest is to compare the 
performance of the new scheme described in the previous section and the behavior of the 
solution for high Reynolds number flows.  
 

          
    

Fig 7. Problem settings: boundary conditions (left), coarse mesh (center), fine mesh (right) 
 

A first set of numerical experiments has been performed using both methods i.e., the 
previous version and the new modified scheme. The velocity profiles for ux and uy along 
x=0.5 and y=0.5 respectively are shown in figure 8 and 9.  Comparing these results with the 
given reference, one can clearly see the improvement of the new scheme in the solution in 
particularly when the Reynolds number increases. Hence, we conclude that the absence of the 
pressure subscale and the convection terms in the small-scale problem renders an extremely 
diffusive solution even on a very fine mesh. For high Reynolds number, the results are 
underestimated with respect to the new formulation. However, the solution of the modified 
scheme is in a very agreement with the reference in all situations.  
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Fig 8.  Velocity profile for ux along x=0.5: previous version (left) and modified scheme (right) 
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Fig 9. Velocity profile for uy along y=0.5: previous version (left) and modified scheme (right) 
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Some other interesting quantities than plotting the velocity profiles are available in the 
literature. For instance, in [46] the author have studied and analyzed the pressure and the 
vortex formation and comparisons were made using several numerical methods for different 
Reynolds number. In the following, we will get a closer look on the pressure isolines for 
Reynolds number 10000 and compared our results to the given reference. Table I and figure 
10 show a very good agreement of the new modified scheme with the given reference. 
 previous 

version 
new scheme USFEM two-level 

method 
Three-level 
method 

Re=10000, 
mesh 64x64 

-0.0372 / 
0.8056 

-0.1319 
/0.9142 

-0.0975 
/0.8774 

-0.0730 
/1.0465 

-0.0904 
/1.1278 

Table I. Minimum and maximum values of the pressure for various numerical methods 
 

                 
Figure 10. Pressure isolines on colored pressure distribution: two-level method adapted from 

[46] (left), the new modified scheme (middle) and the previous version (right) 
 

As in [29] we will continue our comparisons by investigating the location of the respective 
vortex centers. Figure 11 shows the computed flow fields in terms of the velocity magnitude 
and the corresponding streamlines.  

     
 

     
Figure 11. Streamline on colored velocity distribution from top-left to bottom-right: 

Re=1000, 5000, 10000, 20000, 33000 and 50000 with 180×180 mesh 
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Figure 12. A magnified view of various secondary vortices near the cavity corners, Re=50000  
 

As expected, using the fine mesh 180×180 the solutions exhibit additional counter-
rotating vortices in or near the cavity corners as Re increases. It is known that this problem 
involves a primary vortex, while for higher Reynolds numbers secondary vortices appear in 
the corners of the domain. As the Reynolds number increases, the location of the centers of 
these vortices change, secondary vortex has the tendency to break on two new vortex and 
consequently their number increases (see figure 11 and 12). The effect of Re on the genesis of 
new vortices inside the cavity is presented in the following graph.  
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Figure 13. Number of resolved vortices in function of the Reynolds number 

 
Figure 14 highlights by order of appearance the location of these expected vortices. The 
location of the centers of these vortices together with corresponding values from references 
solutions are summarized in Table II.  Qualitatively and quantitatively, the results are similar 
to reference solutions and a good agreement is observed, although the mesh used here is 
coarser than the one used in the reference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Location of the resolved vortices in order of appearance
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Reynolds 1000 5000 10000 20000 33000 50000 

Present 0,532 / 0,566 0,514 / 0,536 0,511 / 0,531 0,508 / 0,528 0,506 / 0,527 0,506 / 0,526 Vortex 1a 
Reference 0,5313 / 0,5625 0,5117 / 0,5352 0,5117 / 0,533 0,5100 / 0,5267 -   -  

Present 0,864 / 0,112 0,802 / 0,0733 0,767 / 0,0594 0,706 / 0,0416 0,667 / 0,035 0,654 / 0,0309 Vortex 2a 
Reference 0,8594 / 0,1094 0,8086 / 0,0742 0,7656 / 0,0586 0,7267 / 0,0450  -  -   

Present 0,0828 / 0,0785 0,0733 / 0,136 0,0589 / 0,16 0,0489 / 0,182 0,0375/  0,206 0,0307 / 0,226 Vortex 3a 
Reference 0,0859 / 0,0781 0,0703 / 0,1367 0,0586 / 0,1641 0,0483 / 0,1817  -  -   

Present  0,0641 / 0,909 0,071 / 0,911 0,0802 / 0,912 0,0852 / 0,911 0,0839 / 0,908 Vortex 4a 
Reference   0,0625 / 0,9102 0,0703 / 0,9141 0,0817 / 0,9133  -  -   

Present  0,978 / 0,0189 0,933 / 0,0689 0,929 / 0,106 0,926 / 0,119 0,99 / 0,0112 Vortex 2b 
Reference   0,9805 / 0,0195 0,9336 / 0,0625 0,9300 / 0,1033  -  -   

Present   0,016 / 0,0191 0,0536 / 0,0511 0,0692 / 0,0602 0,0831 / 0,0556 Vortex 3b 
Reference     0,0156 / 0,0195 0,0567 / 0,0533  -  -   

Present    0,808 / 0,115 0,863 / 0,178 0,816 / 0,0857 Vortex 2c 
Reference        -   -  -   

Present    0,0255 / 0,82 0,0339 / 0,811 0,0317 / 0,809 Vortex 4b 
Reference       0,0233 / 0,82  -  -   

Present    0,0539 / 0,783 0,0537 / 0,774 0,0446 / 0,763 Vortex 4c 
Reference        -   -  -   

Present     0,986 / 0,017 0,95 / 0,194 Vortex 2d 
Reference          -  -   

Present      0,732 / 0,0218 Vortex 2e 
Reference           -   

Present      0,126 / 0,988 Vortex 4d 
Reference           -   

Present      0,228 / 0,972 Vortex 4e 
Reference           -   

Table II.  Location of vortex centers (coordinate x / coordinate y) 
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 Remark 1.  We have used as reference [37] for number of Reynolds less than 10000, and 
[42] for Re = 20000. To our knowledge, results for Reynolds number 33000 and 50000 using 
linear stabilised finite elements methods are considered very rare. We notice a very interesting 
behaviour of these computations which will be subject of further investigations and of future 
publication (see section 2 in chapter 6). The velocity profiles for ux and uy along x=0.5 and 
y=0.5 respectively for Reynolds number 33000 and 50000 are shown in figure 15.  
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Figure 15. Velocity profile for ux along x=0.5 (left) and uy along y=0.5 (right) 

 
Another set of numerical experiments was conducted in order to study the 

convergence of the new scheme. We performed a mesh sensitivity study to validate the 
capability of the method. Therefore, five different unstructured grids were used for these 
comparisons with a mesh of 16×16, 32×32, 64×64, 80×80 and 125×125 elements 
respectively. The Reynolds number is chosen to be equal 5000. We compute the error of the 
velocity solution using the L2-norm: 

1

2
2

,

( ) ( )i i
ref h

x y

err h u u h
 

= − ∀ 
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∑

 

( 3.4.1) 

Results are compared to [42] obtained by employing a high-order accurate finite 
difference method on a 601×601 mesh. The approximation error is plotted in figure 16 and 
shows the expected improvement in the results. The velocity profiles employing different grid 
resolutions together with the reference solution are shown in figure 17 and 18. Note that the 
new implemented scheme converges rather rapidly to the given benchmark solution. 
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Figure 16. Evolution of the error in function of the mesh size h 
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Figure 17. Velocity profile for ux along x=0.5 using different meshes 
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Figure 18. Velocity profile for uy along y=0.5 (left) using different meshes 
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We conclude this numerical example by a short discussion on the computer demands. 
The computational costs for both methods are compared next. The number of time steps 
needed to reach the steady state with ∆t=0.1s, as well as the required CPU time, are reported 
in figure 19 and 20 respectively. Within each time step only a single iteration is performed. It 
can be observed that the old method requires less time steps to reach the steady state in 
particularly for high Reynolds number. The reason for this behavior is maybe due to the 
higher numerical diffusion of the scheme. Figure 19 illustrates the expected behavior in 
increasing the CPU time with respect to the increase of Reynolds number.  
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Figure 19. Physical time (s) required to reach the steady state for different Reynolds number 
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Figure 20. CPU-Time (s) to reach the steady state for different Reynolds number 

 
 
 
 



Numerical examples and validation 115 

 

3.4.3 Flow over a circular cylinder 
 

This example describes a widely solved benchmark problem; the flow over a certain 
object (a circular cylinder here). Inside the furnace, this solid body can be considered as the 
heated part. At a moderate Reynolds number, two symmetrical vortices will be stationary 
attached behind the cylinder. By increasing the Reynolds number, these vortices become 
starched and the flow will be disorted and broken apart, leading to an alternative vortex 
shedding known as Karman vortex street. The Reynolds number is defined by Re /UD υ= , 

where D is the diameter of the cylinder, U is the free-stream velocity and υ the kinematic 
viscosity. Having the diameter and the free-stream velocity equal to the unity, the kinematic 
viscosity was set to 0.01 to achieve a Reynolds number of 100.  
 

 
Figure 21. Geometry and boundary condition of the problem 

 
The mesh used for this simulation contains 4000 nodes and it was adapted and refined 

near the cylinder. We used (1,0)u
r

as initial condition except at the cylinder surface with a 

fixed time step ∆t=0.1. A backward Euler time scheme is used for the simulations. Within 
each time step, only one iteration is performed. The flow situation and boundary condition are 
depicted in figure 21. A complete description of this problem can be found in [54]. A detailed 
study on the use of different stabilization methods and time discretization for this benchmark 
can be found in [46] and [32].  
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Fig 22. Temporal evolution of Ux at A(6.15,4)  using both methods (left) and its detail (right) 
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Fig 23. Temporal evolution of Uy  at A(6.15,4)  using both methods (left) and its detail (right) 
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Fig 24. Pressure evolution at A(6.15,4)  using both methods (left) and its detail (right) 
 
For the comparisons, we choose [32] as the reference solution.  In this study, we plot the time 
history at point A(6.15, 4) of the velocity components and the pressure. The obtained 
frequency of the oscillations is in accordance with the benchmark solution. (Figure 22-24) 
 

 
 

Fig 25. The pressure distribution at t=160s:  reference [32] (left) and modified scheme (right) 
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Fig 26. The predicted Ux and Uy contours near the wake of the circular cylinder at t=160s 
 

However, it can be seen form these plots that the previous version of the solver gives a 
lower amplitude and lower frequency of the oscillation. The reason for this behavior is due 
once again to the higher numerical dissipation of the scheme. Figure 25 and 26 shows the 
pressure and the velocity contours respectively in the near wake of the circular cylinder at 
t=160s. All these results are in good agreement with the benchmark solution [32] as well as 
other published solution [46] and show the vortex-shedding as expected. Finally the Strouhal 
number will be calculated for the sake of comparisons with other numerical methods.  This 
non-dimensional number can be considered important to quantify the properties of the 
periodic solution of the vortex street. It is given by  
 

1
in

p

D
St

u T
=

 
( 3.4.2) 

 
Tp denotes the dimensionless time period. For Re=100, the Strouhal number 

corresponding to this benchmark is known to be equal 0.164. Using the old scheme and the 
new modified scheme yields a Strouhal number of approximately 0.169 and 0.166 
respectively. These values are matched more or less exactly by both methods. In Codina [31], 
employing a Crank-Nicholson scheme in time and coarser mesh the St number was reported 
equal to 0.174. A value of 0.167 was stated by Hughes and Brooks (1982) [13] using a 
stabilized method of SUPG-type and a predictor-multicorrector algorithm in time. It was 
pointed out by [46] that the use of backward Euler scheme introduces more numerical 
viscosity which yields quite satisfactory results.  
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3.4.4 The flow over a backward-facing step 
 
In this last section, the flow in a backward facing step is analyzed. This problem has 

been the subject of a detailed experimental study by [55] and has served for many years as a 
benchmark for turbulent flow solvers. Despite the simplicity of its geometry and boundary 
condition, it has characteristics of a very complex flow with layers separation, reattachment 
and recirculation which occurs in many practical engineering applications. The computational 
domain is presented in figure. 27.  

 

 
 

Figure 27. Geometry and boundary condition of the problem 
 

Solid walls are at the top, bottom and the frontal face of the channel. Non-slip boundary 
conditions were applied at those walls while a parabolic profile U(y) [56] is imposed at the 
channel entrance. The different experimental parameters used in the simulation are taken form 
[57] and are given below: 

− the step height:  H=5.08 cm;  
− the maximum mean velocity at the centre of the canal: U0 =11.562 m/s; 
− the kinetic laminar viscosity (air) : ν =1.4 10-5 m2/s; 
− the density: ρ =1.208 kg/m3 ; 
− the obtained Reynolds number: Re = 42000 
− time step: ∆t = 0.0002s 

 
At the outlet, the normal stress and the velocity Uy are set to zero. The 2D 

computational mesh consisted of approximately 18973 nodes and 37246 triangular elements 
and depicted in figure 28. As shown, local mesh refinement was employed in the vicinity of 
the walls and in the shear layer behind the step.  

No quantitative comparisons will be reported in this section since the main objective 
of this numerical test is only to evaluate the performance of the implemented method on 
heterogeneous meshes where both isotropic and anisotropic refinements are applied. The 
majority of published work on separated-reattached flow in this geometry deals with either 
laminar flows using direct simulation or turbulent flows using suitable turbulence models. 
However, comparatively little is published on the turbulent flow case, see the work and results 
by Le et al. [59] using direct numerical simulation (DNS).  A full study on the reattachment 
length and other critical parameters using different turbulence models will be presented in the 
next chapter.  

Note that at high Reynolds number, the fully turbulent flow comes from the upstream 
of the step, forming a thin boundary layer along the side wall. When the channel suddenly 
expands at the step, the pressure gradients cause the new mixing layer to curve toward the 
wall and bifurcate at the reattachment point. One branch develops as a new boundary layer 
after the reattachment point and the other branch forms the recirculation region. Therefore, the 
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flow undergoes rapid distortion in the region surrounding the reattachment point and 
subsequently relaxes downstream at this point.  

 

 
 

                                
 

Figure 28. Geometry and boundary condition of the problem 
 

The variation in the development of the streamlines, the pressure and the velocity is 
shown in Figure 29, 30 and 31 respectively starting from an arbitrary reference time. 
 

 
Figure 29. Periodic evolution of streamlines from t=3.04s to t =3.11s 
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In two-dimensional simulations at high Reynolds numbers, the authors in [59] have 
indicated the presence of oscillatory flow behaviour in the solution. This is clearly shown in 
the basic characteristics of the flow given by these plots. Moreover, the velocity components 
and the pressure fields appear to be qualitatively appropriate without any non-physical 
oscillations. 
 

 
 

Figure 30. Periodic evolution of the pressure from t=3.04s to t =3.11s 
 

The shear layer rolls up forming a large-scale structure behind the step. As the large-
scale structure grows, the reattachment location travels downstream than suddenly decreases 
indicating a detachment of the turbulent large-scale from the step. This movement of turbulent 
vortices is also described by the pressure field. From figure 30, one can clearly see that the 
low-pressure regions have been shown to correspond to the centres of coherent vortices. 

The velocity and pressure fluctuations as a function of time at two locations A and B; 
the first near the reattachment zone (x ≈ 6h) and the second in the middle of the channel (see 
figure 27) are ploted in figure 32 and 33.  Similar oscillatory responses are detected at those 
points in the flow fields. The Strouhal number corresponding to the dominant frequency is 
roughly St = f h / U0 ≈ 0.06, corresponding to period T ≈ 17h/U0. These values are in total 
accordance with previous experimental and numerical deductions given by [59]. This 
reference contains full details about the direct numerical simulation of the backward-facing 
step together with the entire statistical results. 
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In figures 33 and 34 we represent the periodic evolution of both velocity components 
and the pressure.  
 

 
 

Figure 31. Periodic evolution of the streamwise velocity from t=3.04s to t =3.11s 
 
 

Finally, we can conclude that from all these illustrations, we demonstrate that there is 
no presence of any spurious oscillations in the solutions, in particularly for the pressure. The 
implemented method has proved to work well on such heterogeneous meshes with highly 
stretched elements near the walls.  
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Figure 32. Periodic evolution of the velocity and the pressure at point A 
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Figure 33. Periodic evolution of the velocity and the pressure at point B 
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3.5 Conclusion 
 
“A lot must be achieved in order to obtain a complete Navier-Stokes solver, but the 

least in this chapter has been done: an extension of the previous scheme that takes into 
account the convection dominated flows”. In other words, a solver able to handle flows at 
high Reynolds number. In this chapter we have described a stabilized finite element method 
for the transient incompressible Navier-Stokes equations based on the decomposition of the 
unknowns into large scale and fine scale. The motivation of using these techniques comes 
from the desire of solving problems for higher Reynolds numbers. Note that the 
implementation of such efficient solver will be later used for solving heat transfer and 
convection-dominated flows inside industrial furnaces. The bottom line of the new approach 
was to take into account the small-scale pressure and to add the convection terms into the fine 
scale equations. Results for the unsteady Navier-Stokes equations obtained via the new 
modified scheme have been compared and analyzed. The numerical experiments show that 
the method is stable and the gain with respect to the previously implemented method is 
notorious in particularly for high Reynolds numbers. The performance and the efficiency of 
the overall new scheme have been demonstrated using four benchmarks. Detailed accurate 
and new results have been presented for the model problem of flow in a driven cavity. 
Reynolds number up to 50000 has been considered. Upcoming, more tests will be presented 
for three-dimensional computations (section 2, chapter 6) and coupled heat problem (section 1 
and 3, chapter 6).   
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Chapter 4  

Implementation of turbulence models in 

incompressible flow solvers based on a finite element 

discretization 

 
The present chapter is concerned with unsteady flow at high Reynolds number. The 

laminar to moderate flows discussed in the previous chapter are not applicable when 
turbulence occurs inside industrial furnaces. Two alternatives procedures, the k-epsilon model 
and the Large Eddy Simulation model (LES) will be introduced and studied to simulate such 
flow regimes. Moreover, the stabilized finite element methods from the previous chapters will 
be used and applied for the resolution of the set of equations needed for the numerical 
modelling of turbulent flows. Finally, to compare and analyze the results, the developed 
models are tested on three representative benchmark problems and conclusions are drawn. 
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4.1  Introduction to turbulence 
 

It was declared by the famous British physicist in 1932, Horace Lamb, at the British 
Association for the Advancement of Science meeting: “I am an old man now, and when I die 
and go to Heaven there are two matters on which I hope for enlightenment. One is quantum 
electrodynamics, and the other is the turbulent motion of fluids. And about the former I am 
really rather optimistic.” Turbulence was always considered very difficult to model in 
classical physics and it remains the most important and not totally understood problem. It can 
be defined by random and unpredicted variation of the velocity and the pressure that occurs at 
high Reynolds numbers. In everyday life, we experience and observe turbulent flows around a 
boat, a plane, a stone in a river, a fast car and of course the flow inside the furnace (figure 1). 

For more than a century, mathematicians and fluid dynamicists have been trying to 
understand turbulence in fluids, by analyzing the mechanisms that generate this disordered 
motion. They realized that as the Reynolds number increases, the flow becomes more 
turbulent and the requirements on resolution become more and more strict. The number of 
grid points and the smallness of the time steps required to solve the Navier-Stokes equations 
for all the relevant time and space scales of turbulent motion push the computation of 
turbulent flows in industrial equipment beyond the realms of present computing capabilities. 
For that reason the use of Direct Numerical Simulation (DNS) is still restricted for relatively 
moderate Reynolds numbers only. In CFD codes, this matter is overcome by the use of eddy 
viscosity models based on the Reynolds Averaged Navier-Stokes (RANS) equations and the 
LES model. 

The main focus of the chapter is to provide such alternative methods for the numerical 
solution of turbulent fluid dynamics equations. In brief outline, this chapter is structured 
around the following questions. Which model we should use?  How can we get reasonable 
results with an affordable computing cost? How much computing time do we need to simulate 
heat treatment furnaces? What is the required number of grids to fully describe the flows 
inside the furnace and around the heated objects?  Answering these questions will require at 
least understanding, developing, implementing and validating these two turbulence models in 
our finite element library CIMLIB. Doing that, we open the choice to the user to decide which 
methods to use regarding the application in hand. Each method will offer the accuracy of the 
results in respect to the computational costs and the required computing time. Note that 
recently, with the support of parallel schemes the two models can nowadays be possible. But 
before going into details on current modelling procedures we summarize some of the 
important fundamental properties of turbulence.  

 

  

Figure 1. Flows around a Lockheed L-1011 plane and F1 racing car 
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4.2 Turbulence simulation 

Turbulent behaviour can be predicted by simply resolving the transient Navier-Stokes if 
only very fine mesh resolution and adequate time steps are used. But of course this requires 
an extremely large computer resource which is not nowadays affordable specifically when 
simulating heat treatment industrial furnaces. That’s why most engineering computations 
involving turbulent flow processes will have to rely on models of turbulent flows, at least for 
the foreseeable future. This is especially true for heat treatment furnaces applications, where, 
in addition to turbulence models and set of equations, there are many other complexities such 
as radiation heat transfer, complex geometry, and so on.  

Large numbers of models have been developed and studied in the last three decades. 
We can classify these modeling approaches into three categories: DNS, LES and RANS. As 
one progresses from DNS to RANS, more and more of turbulent motions are approximated 
and, therefore, require less computational resources.  

In Direct Numerical Simulation we attempt to simulate and resolve all the scales of 
motion without approximation or the need of any additional modeling. DNS directly solves 
the Navier-Stokes equations described in the previous chapter. Since this approach aims to 
resolve all the spatial and temporal gradients, the application of DNS requires huge 
computational resources. Based on the Kolmogorov’s theory [1], the grid size must get down 

to 
3/ 4Reh −≈  and the grid must contain approximately 

9/ 4Re  vertices. A Reynolds number of 
5Re 5 10≈ ⋅ can be encountered in turbulent flow of industrial furnaces, so a reasonable 

number of vertices would be about 1013. This is just an example to give the reader an idea 
about the huge amount of needed computational resources which are prohibitively expensive 
and why turbulence modeling is that important in our context. However, DNS can provide at 
the same time valuable information, difficult to obtain from experiments, about the interaction 
of small-scale and large-scale motions. More details can be found in [9, 11, 13, 14]. 

Unlike DNS, large eddy simulations are based on filtering and decomposing the scales 
into large-scale and small-scale (subgrid-scale) components. Since the large-scale are 
assumed to be more energetic than the small-scale and are the main contributors to the 
transport of conserved quantities, LES attempts to simulate more precisely and solve these 
scales and to only model the effect of the small-scale eddies. These simulations are also three-
dimensional and time-dependent but are much less costly than DNS simulations. Later, we 
will introduce the fundamentals of LES, which include the filtered governing equations for 
LES; the subgrid-scale (SGS) models of LES that are used in the current study; the numerical 
methods in terms of the computational grid system, the discretization schemes, the numerical 
procedure used to solve the governing equations and the boundary conditions for wall. More 
details can be found in Germano et al. [2].  
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The Reynolds-averaged Navier-Stokes equation (RANS) determines ensemble-averaged 

flow parameters, such as air velocity and temperature using some turbulence modeling. The 
key point here is that all turbulent motions will be modeled. This averaging procedure will 
remove effectively all turbulent fluctuations. Consequently, much coarser grids can be used as 
the smaller turbulent eddies do not need to be captured.  Therefore, two and three-dimensional 
simulations can be performed with significantly less computer resources when compared to 
DNS and LES simulations. This is the biggest advantage of the RANS approach, and the 
primary reason why it is most widely used CFD method in many industrial applications. 
However, while not solving the small-scale eddies, some additional closure models are 
required to introduce and approximate the turbulence effects. One of the most widely used 
model is the two-equation model, namely the k-ε will be described and detailed in the 
following section. This model is the first recommended one as a baseline model that succeed 
in expressing the main features of many turbulent flows by relying on just one characteristic 
length scale and time scale. More details can be found in [4, 5, 6].  

 

Figure 2. Schematic representations of scales in turbulent flow and their relationship with 
modeling approaches (adapted from Ferziger and Peric, 1996 [15]) 

The finite element implementation of both the k-ε and LES turbulence models for 
unsteady flows will be described and analyzed in this chapter. The use of stabilized finite 
element techniques described in the previous chapters will be applied to solve these turbulent 
models. We can count only few attempts on the implementation turbulence model at the 
CEMEF. All these attempts have served under the code THERCAST but none in the finite 
element library CIMLIB. More details about this subject can be found in [16, 5]. We certainly 
and often referred to the work of L. Gaston in [5] since to our knowledge it was considered as 
complete and detailed useful information about the description of the k-ε model. In this sense, 
the present work can be considered as a continuation of those references not only to deal with 
highly turbulent flows but also to open the choice to the user to decide which methods to use 
regarding the application in hand. Each method will offer the accuracy of the results in respect 
to the computational costs. Several numerical examples for solving the transient problems 
will show the benefits of the new modified scheme and conclusion will be drawn. 
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4.3 The k-epsilon turbulence model 

In this section, details about the averaged Navier-Stokes equations using the Reynolds 
time-filtering or time-averaging technique will be presented. By applying those filters to the 
Navier-Stokes and continuity equations, we obtain a set of equations having an extra term 
corresponding to averaged products of fluctuating velocity components known by Reynolds 
stresses. The main idea was to assume that averaged quantities have only large-scale spatial-
temporal variations and that the Reynolds stresses group and include all turbulence effects.  

Later on, many methods were introduced to define and compute the Reynolds stresses; 
these techniques are often known by closure problem [3, 10, 12]. In our work, we have opted 
for a two-equation k-ε (turbulence kinetic energy and rate-of-dissipation energy) closure 
model to define the eddy viscosity for incompressible flows. This model usually involves 
transport equations for turbulence kinetic energy (TKE) and for a second turbulence variable, 
rate-of-dissipation energy, in order to evaluate the eddy viscosity. These two-equations of 
unsteady convection-diffusion-reaction type will be solved using the stabilized finite element 
method described in previous chapters. This model is the most popular model which has been 
used since 1970s. It is known to be effective in the far-wall zone, whereas, extra care must be 
paid in the near-wall zone. Additional wall functions must be added to close the model in the 
vicinity of those regions.  

The main objective of the THOST project is to describe numerically the airflow and 
temperature field inside an industrial furnace where high convective heat sources are used. 
The thermal wall jet created by this kind of source can greatly influence the temperature 
distribution inside the enclosure. Therefore, advance turbulence model are needed to produce 
better results in particularly in the vicinity of the walls. This can be one among different 
reasons to extend the standard k- ε model by the low Reynolds number k-ε model under a 
suitable mesh scheme. We will also justify this choice later in chapter 6. 

We start a presentation of the standard k-ε model which is mainly valid in the turbulent 
region (far-wall zone). The near-wall effects are simulated through wall functions which give 
boundary conditions for points situated in the turbulent zone. However, this procedure is not 
well adapted for complex flows, since the condition that the boundary must be in the turbulent 
zone cannot generally be respected rigorously. In our study, it was noticed that the use of an 
extended version of the k-ε model (low-Reynolds-number model) in combination with a wall 
function defined over the entire wall region is a much better choice. The appropriate choice of 
wall function in the near-wall zones is discussed in detail. A brief description of the solution 
strategy using a Newton-type method to solve for turbulence energy k and rate-of-dissipation 
energy ε is given in the same section. Finally we validate the model by simulating the 
turbulent flow between two plates and the backward facing step. Simulating results for a 
variety of flow are presented and discussed. 
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4.3.1 The standard formulation 

In this section, we introduce the mathematical description of turbulent flows using 
time averaged Navier-Stokes equations. Based on assumptions stated previously, the main 
idea is to model the Reynolds stresses in terms of mean flow quantities and closes the set of 
equations. Recall that those turbulence models do not simulate the details of the turbulent 
motion but only the effect of turbulence on the mean-flow behaviour.  

Besides the averaged Navier-Stokes equations, we can classify usually turbulence models 
according to the number of additional differential transport equations that need to solve [5]: 

1) Zero equation models, the mixing length (l) model 
2) One equation models  
3) Two-equation models, the most popular of them being the k-ε model (ε is turbulent 

kinetic energy dissipation rate) presented by [4, 19]. We have opted for the k-ε model 
since it is the more used one for industrial applications. This model solves two 
additional partial differential equations but it offers reliable and accurate predictions in 
particularly in the presence of complicated domain geometries [17, 18]. We begin by 
representing any turbulence quantity u(x,t) of interest as the sum of time-averaged 
component (resolvable scale)  and a fluctuating component (unresolvable scale) [5]: 

( , ) ( , ) ( , ) ( , )u x t u x t u x t and u x t u′= + =  (4.1) 

where < . > is the averaging (filtering) operator and the time averaged quantity may be 
obtained from 

1
( ) lim ( ) 0

t T

tT
u x u u t dt and u

T

+

→∞
′= = =∫  

(4.2) 

As we can see, the mean value u  does not vary in time but only in space. As shown in the 

[5], by considering that the small-scale fluctuations of space-time are negligible, we can set 
the following properties with the Reynolds-averaging operation: 

0, , 0,u u u uu uv u v u v′ ′ ′ ′= = = = +  (4.3) 

Using these assumptions, the frequency spectrum of the small-scale fluctuations is far away 
from the large-scale fluctuations, i.e. no interaction exists between the two scales [20, 23]. 
Applying these filters to both the velocity components and the pressure yields the so-called 
Reynolds averaged Navier-Stokes equations: 

T( ) ( ) in (0, )

0 in (0, )
tu u u u u p u u g T

u T

ρ µ ρ⊗′ ′∂ + ⋅∇ − ∇ ⋅ ∇ + ∇ + ∇ +∇ ⋅ = Ω×
∇ ⋅ = Ω×  

(4.4) 
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Equation (4.4) has the same form as the Navier-Stokes equations with the exception of 
the second-moment tensor (the last term on the right hand side of the first equation in Eq. 
4.4). These extra terms act as apparent stresses due to turbulent motions and are called 
Reynolds stresses or turbulent stresses and usually denoted by R. It contains the complete 
influence of the fluctuations field on the mean flow, in other words it represents the effect of 
the turbulence. Different methods were proposed to model this term. Here, in our work, we 
will use the standard k-e model [25], by setting R to the following form 

T 2
( )

3t u u kµ= ∇ + ∇ −R I
 

(4.5) 

where k  is the kinetic energy of turbulence. If we denote by ε  the dissipation of the kinetic 

energy of turbulence than from dimensional analysis, the eddy viscosity tµ  will be modeled 

as the product of a characteristic velocity k  and a characteristic length 
3/ 2 /k ε  as follow: 

2

t

k
Cµµ ρ

ε
=

 
(4.6) 

where  

2 T1
( )

2 2
k u and u u

µε′ ′ ′= = ∇ + ∇
 

 

The computation of the turbulent eddy viscosity is supposed to emulate the effect of 
unresolved velocity fluctuations u′ . The two turbulent quantities k and ε needed to compute 

the turbulent viscosity satisfy the following standard transport equations at each point of the 
domain: 

2

1 2

( ) 0

( ) 0

t
t

k

t
t

k
u k k P

t

u C P C
t k kε ε

ε

µρ µ − µ  ρε
σ

µε ε ερ ε µ ε µ ρ
σ

  ∂ + ⋅∇ − ∇ ⋅ + ∇ + =  ∂   

  ∂ + ⋅∇ − ∇ ⋅ + ∇ − + =  ∂     

(4.7) 

The standard values of the five empirical constants of the model are given in [19] 

1 20.09 1.0 1.3 1.44 1.92kC C Cµ ε ε εσ σ= = = = =  (4.8) 

and T: ( )P u u u= ∇ ∇ + ∇   represents the production of turbulence. 
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Finally, replacing the stress tensor and rearranging the set of equations, one has to solve the 
following problem in (0, )TΩ×  

( )T

2

1 2

( ) ( )( )

0

( )

( )

t t

t
t

k

t
t

u u u u u p g

u

k
u k k P

t

u C P C
t k kε ε

ε

ρ µ µ ρ

µρ µ µ  ρε
σ

µε ε ερ ε µ ε µ ρ
σ

∂ + ⋅∇ − ∇ ⋅ + ∇ + ∇ + ∇ =

∇ ⋅ =

  ∂ + ⋅∇ − ∇ ⋅ + ∇ = −  ∂   

  ∂ + ⋅∇ − ∇ ⋅ + ∇ = −  ∂   

%

 

(4.9) 

together with the corresponding boundary and initial conditions.  
 
The pressure has been modified into p%  by taking into account the isotropic part of the 

Reynolds stress tensor: 

2

3
p p k= +%

 
(4.10) 

 
Remark 1. In what follows, the overbar (–) in the mean value of the variables shall be 
omitted to simplify the notation. 
 

Close to a solid wall, the viscous effects predominate over turbulent ones. Therefore, 
these standard equations of the k-ε model are only valid at high Reynolds numbers and in the 
region away from a solid wall. Hence these equations have to be used in conjunction with an 
empirical wall function to overcome such drawback. We will discuss in the following various 
assumptions related to this subject [18, 20, 21, 23]. 
 
4.3.2 The boundary conditions 
 

When applying the k-ε model to study the heat transfer and fluid flow inside industrial 
furnaces, the inflow and outflow conditions can be complicated due to the effects of up and 
down-stream obstacles, free stream turbulence, highly convective jet, etc. Recall also that this 
turbulence model is valid only in regions where the viscous terms are small compared with 
the turbulence effects. It is not valid in the near-wall zones, which include the viscous and 
buffer sublayers. The most popular approach to overcome these difficulties and assign the 
appropriate boundary conditions is not to consider the near-wall zones and employ wall 
functions instead. This section discusses in detail all these conditions. 
 
Inflow condition 
 
At the inflow boundary, for a prescribed velocity u, the value of k can be computed using 

2

bck c u=  (4.11) 
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where [0.003,0.02]bcc ∈  is an empirical constant and .u u u=  is the Euclidian norm of the 

velocity. Usually bcc  is fixed to 0.02, see [5, 19] for more details. Once k is computed, the 

value of ε can be prescribed using 
3/ 2C k

L
µε =

 
(4.12) 

where L, a fixed constant, known as the characteristic length of  the  model.  
 
Remark 2. These computed values of k and ε are extended into the interior domain as initial 
conditions. 
 
Remark 3. The initial value of the turbulent viscosity can be directly computed using 
equation (4.6) together with (4.11) and (4.12) 
 
Outflow condition 
 
The treatment of the exit boundary condition is also important. At the outlet, a homogeneous 
Neumann (“do-nothing”) boundary condition should be applied. This would permit eddies in 
the flow to exit the domain without any adverse effect on the flow field inside the furnace.  

0 0n k and n ε⋅∇ = ⋅∇ =  (4.13) 

 
Remark 4. The numerical treatment of inflow and outflow boundary conditions does not 
present any difficulty. In the finite element framework, relations imply that the surface 
integrals resulting from integration by parts vanish and do not need to be assembled. 
 
Boundary condition 
 

If a non-slip boundary condition is used in turbulent flows, a large number of fine 
grids close to wall are needed, which is not practical at present due to computer limitations 
and long time heat treatment simulation. Moreover, near solid walls, the turbulence kinetic 
energy production is gradually reduced due to dominance of viscous effects. In this region, 
the large eddies dissipate their energy directly rather than transferring it to smaller scales as 
per the energy cascade. Therefore, although the strain rate can be expected to peak in the 
near-wall region due to steep velocity gradients, there will be a reduction in sub-grid scale 
stress. This effect is accounted for by damping the turbulent viscosity, tµ , as the wall is 

approached. The usual way to damp this additional viscosity in the vicinity of the wall and to 
capture the near-wall effects without drastically increasing the number of unknowns is the use 
of wall models. 

The first popular approach consists in avoiding the resolution of the Navier-Stokes 
equations and the two transport k-ε equations right up to the wall. Instead, the edge of the 
computational domain is placed at a small distance δ away from the wall in the high Reynolds 
number region. Empirical wall functions can then be derived and used to define boundary 
conditions at the edge of the modified domain, an internal boundary δΓ  located at distance 

δ  from the solid wall wΓ . The subscript w and δ  would mean at the wall and at the artificial 

wall boundary, see figure 3. 
  



140                                                      Turbulence models and finite element implementation 
 

Remark 5. The topic of variable resolution in near-wall models can serve as a Ph.D. level 
thesis all on its own, and it is therefore well beyond the scope of our study. In our work, the 
purpose is to understand these approaches and to retain those that would well correspond for 
simulating heat treatment inside industrial furnaces. A complete description of this simulation 
will be given later in chapter 6.  In what follows, we summarize the retained approaches.  
 

At a small distance from the solid wall we begin to set the normal component of the 
velocity equal to zero, whereas tangential slip is permitted in turbulent flow simulations.  

0u n⋅ =  (4.14) 

To complete the previous statement and close the problem, we still need to prescribe the wall 
traction for the momentum equations (tangential stress) wτ  as well as the boundary values of k 

and ε on the wall. Since a boundary layer of width δ  is removed from the computational 
domain Ω , the equations are now solved in the reduced domain δΩ  subject to empirical 

boundary conditions (see figure 3.3). 
To describe the asymptotic behavior of the different variables near a solid wall, as a 

first approach we imposed a combination of Neumann (tangential) and Dirichlet (normal) 
semi-empirical boundary conditions: 
 

2 3
2

w w w

u uu
u k on

u C
τ τ

τ δ
µ

τ ρ ε
κδ

= − = = Γ  (4.15) 

 
 
 
 
 
 
 
 

 
 

Figure 3. Discretization close to the wall 
 
where wτ  is the shear stress tensor (opposite to local velocity), used as a Neumann boundary 

condition for the momentum equation in the tangential direction, κ is the Von Karman 
constant ( κ=0.41 ) and uτ  is the friction velocity. Integration by parts in the weak form of the 

incompressible Navier-Stokes equations gives rise to a surface integral over the internal 
boundary δΓ  which contains the prescribed traction:  

2
w

u
v ds u v ds

uδ δ
ττ

Γ Γ
= − −∫ ∫  (4.16) 

It remains to determine the value of the friction velocity which is needed for the computation 
of (4.15). 
 
 

δ

, ,w w wkτ ε
δΓ

wΓ
solid wall
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Remark 6. The application of the no-penetration (free-slip) boundary condition (4.14) is 
nontrivial if the boundary of the computational domain is not aligned with the axes of the 
Cartesian coordinate system. Therefore, our formulation consists in computing first the 
normal vectors along the entire boundary domain by the use of the distance function. 
Consequently, the normal velocity component will set equal to zero using a simplified penalty 
method. The numerical implementation in our finite element library CIMLIB of this boundary 
condition as well as the friction law (4.16) has to be credited to the work of our colleagues 
Bruchon J. and Digonnet H [24]. Further details about this subject are published in [24]. It 
was shown that the use of such techniques developed in the framework of level set methods 
proves to be a simple yet efficient approach. The most straightforward way for computing the 
distance field is through the use of geometric brute force algorithm where the point-to-point 
distance is computed throughout the computational grid and the minimum distance for each 
point is stored. Once the distance field is computed, the normal to the entire boundary is 
defined by simply taking its gradient. This procedure will be applied only one time at the 
beginning of each simulation. Alternatively, Renato N. Elias et al. in [25] have proposed 
lately a fast marching method to compute the distance field using a finite element algorithm. 
A matter that needs further inspections in the near future. 
 
Wall function implementation 
 
In the region close to solid walls, wall function of Launder and Spalding 1974 [4] is usually 
used assuming that close to a solid wall the velocity and temperature can be described by 
universal logarithmic profiles. In this region, the turbulence variables k, ε and the shear stress 

wτ  are assumed to be constant and computed using (3.15). With these laws it is possible to 

express the mean velocity parallel to the wall by applying these boundary conditions for the 
momentum and turbulence transport equations rather than conditions at the wall itself.  As 
outlined in the previous section, the viscous sublayer does not need to be resolved and the 
need for a very fine mesh is circumvented. In what follows, the last detail about the 
computation of the friction velocity will be given. From experimental work, it is known that 
near-wall flows have a characteristic multilayered structure within the boundary layer. It can 
divide it into three layers as shown in figure 4: 
 

1. Viscous sublayer, where viscous stress dominated and molecular viscosity 
makes the flow behave close to laminar. 

 
2. Buffer layer, where the laminar and turbulent properties of the flow are both 

important and of the same magnitude. 
 

3. Fully turbulent layer, where the turbulent stress dominated. 
 
Three scalar variables, i.e., scalar velocity u+, scalar coordinate y+, and scalar temperature T+, 
have been defined in the wall function approach:  First, we set a local wall Reynolds number: 
 

wy
τρδ

µ ρ
+ =  (4.17) 
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The velocity based on the wall shear stress is given by 
 

/w

u
u

τ ρ
+ =  (4.18) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Figure 4. Flow structure near wall flows (adapted from Fluent user guide Vol. I [29]) 
 
where δ is the normal distance between the computational boundary and the wall and u is the 
tangent velocity as long as condition in (4.14) is imposed. When solving coupled problem, 
another non-dimensional number is used to characterize the temperature in the wall region:  
 

( )

/
w

w p

T T u
T

q c
τ

ρ
+ −=

 
(4.19) 

 

Recall that we are interested in computing the friction velocity /wuτ τ ρ≡  which is located 

at distance δ  from the wall. This can be done with the use of different relationships that exist 
between y+ and u+ depending on the magnitude of  y+ (see figure 4): 
 
In the viscous sub-layer, we have 

, 30u y y+ + += <  (4.20) 

 
In the inertial sub-layer, given by Launder and Spalding (1974) [4] and Smith (1984) [26]: 

1
ln( ), 30 100u Ey y

κ
+ + += < <

 
(4.21) 

where E is the roughness parameter. For smooth wall E is taken equal to 9.0.  
 

U y+ +=

1
ln( )U Ey

κ
+ +=
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An alternative way to ensure a direct transition between the laminar boundary layer and the 
turbulence zone is the use of the half-empirical law of Reichardt : 
 

/11 0.332.5ln(1 0.4 ) 7.8(1 )
11

y yy
u y e e

+ +
+

+ + − −= + + − −
 

(4.22) 

as suggested by Houghton and Carpenter (2003) [30].  
 

The constants in equation (4.22) were obtained via comparison with experimental 
data. In our implementation, we have used equations (4.20) and (4.21). The distance δ at 
which the nodes is placed is at the discretion of the researcher; but generally it should not be 
too large in order to lie inside the wall region( 100)y+ ≤ , but also not too small in order that 

the equations of the model remain valid( 30)y+ ≥ . 

Usually, we specify the value of δ over wΓ  at the beginning of the simulation, so that 

in order to find the friction velocity one must solve the nonlinear equation:  
 

( )1
( ) ln 0g u u u Ey

kτ τ
+= − =  (4.23) 

 
This equation can be solved iteratively by Newton’s method [43, 47]  
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(4.24) 

The initialization is given by: 

0 u
uτ

µ
ρδ

=
 

(4.25) 

No iterations are performed if it turns out that y+<20. In other words, it is equal to initial 
friction velocity in the viscous sublayer. The , andw w wkτ ε  are then calculated using 

equations (4.15) and used as boundary conditions for the following iterations. For further 
details regarding the implementation of wall laws the reader is referred to [20, 21]. 

 
Different strategies of wall functions have been studied over the past years. Recently, 

a two-velocity scale approach was used to enhance the behavior of the velocity near to the 
wall. In the following section, a brief summary about this method will be given. Although, the 
computations presented here were carried out using both the wall laws the two-layer k-ε 
model. Some comparisons will be given and conclusions will be drawn. 
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Remark 7. Another possibility could be successfully used in our work is to specify the value 
of y+ over the boundary with wall law condition. The main advantage of this choice is that 
given y+ no iterations that could fail to converge are needed anymore to be computed, the 
friction velocity can be evaluated in a direct manner. As a balancing drawback, now the 
distance δ depends on the solutions and can take different values at different points on the 
boundary. This is however not an issue when δ is negligible compared to the dimensions of 
the domain.  
 
4.3.3 Enhanced wall treatment 
 

Recently, most practitioners have used an alternative approach to improve the 
performance of the two-equation model in predicting near-wall flows [50, 51]. This approach 
is based on the use of two-scale velocities which offers some advantages in respect to the one-
scale velocity presented in the previous section. It improves the prediction of the turbulent 
quantities in the regions where the friction to the wall decreases (e.g., the vicinity of a 
reattachment point at which wτ  is zero) while the turbulence are still at high level.  This 

approach can also exhibit the correct heat transfer behavior at reattachment point.   
 

We have followed closely the work of Grotjans and Menter (1998) and the details 
from [41]. The main idea is to use the logarithmic wall functions to derive Neumann 
boundary conditions for the turbulent variables rather than the use of Dirichlet boundary 
conditions described previously in (4.15). The comparisons made by [41, 43, 44, 45] have 
demonstrated the efficiency of the enhanced wall treatment. In the last section, we will 
provide similar benchmarks to asses this matter. As explained, the smallest wall distance for 
the definition of y+ corresponds to point where the logarithmic layers meet the viscous 
sublayer. In this case, both linear and logarithmic functions (4.20) and (4.21) are assumed to 
hold. Hence, the optimal value of the parameter y+ can be found by simply solving this 
nonlinear equation: 
 

1
ln( )y Ey

κ
+ +=

 
(4.26) 

The resulting solution is given by 11.06cy+ = . As it was pointed out in Remark 7., for a given 

fixed value of y+ the friction velocity can be directly computed from: 
 

c

u
u

yτ +=
 

(4.27) 

Consequently, the nonlinearity of (4.23) for computing the friction velocity is now taken into 
account implicitly in the computation of cy+ .  

 
On the other hand, the wall shear stress will be now expressed using two-scale velocity: 
 

w k

u
u u on

uτ δτ ρ= − Γ  (4.28) 
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The new introduced velocity uk called often bulk velocity is the velocity scale based on the 
turbulent kinetic energy and given by: 
 

0.25
ku C kµ=  (4.29) 

where k is now computed naturally and ‘floats’ at the boundary of the computational domain 
by setting the normal gradient to the wall equal to zero, and the velocity profile is given by: 

1
ln( )
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+ + +
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+ + +
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>
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(4.30) 

Both the friction velocity and the TKE scale velocity are related using the modified 
dimensionless number: 
 

k
uu

y and u
uτ

ρδ
µ

+ += =  (4.31) 

To complete the previous statement and describe modified asymptotic behavior of the 
different variables near a solid wall, we imposed a new combination of Neumann and 
Dirichlet boundary conditions: 

3

0 k
w

uk
on

n δε
κδ

∂ = = Γ
∂

 (4.32) 

 
On the other hand levels of k remain high if the Neumann condition is adopted so that there is 
no difficulty in applying equation (4.28) with uτ  given by equation (4.27). The other types of 

boundary commonly encountered are not changed and treated in the same standard way (e.g. 
at inlet and outlet). To asses the implementations of the wall approaches, a comparisons 
between these two approaches will be given later in section 5. For the implementation issues 
of the two-scale velocity approach we have followed the work of [41, 43, 44]. 
 
Remark 8. The bridging y+ value between the viscous and inertial sub-layers of 11.6 was 
based on Thangam & Hur theory (1991) [37]. Again, it is at the discretion of the researcher 
how this value is defined; e.g. Hassan & Barsamian (2001) [31] used 11.81. 
 
 
4.3.4 Low Reynolds formulation 
 

For complex flows, ensuring that each boundary grid point will be located in the 
turbulent layer can become quite a tedious task. Moreover, the real position δ of the boundary 
may become highly irregular in particularly when simulating heat transfer and turbulent flows 
inside industrial furnaces (see figure 5).  This difficulty can be overcome by using the so-
called low-Reynolds-number k-ε model, which is valid up to the wall. The computation can 
then cover the entire flow domain, including buffer and viscous zones and the mesh reaches 
the wall [38].  
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However, the computational cost would be much higher, since a very fine grid is 
needed for the wall region because of the very steep gradients and strong variations one finds 
there. This choice is justified in chapter 6, where we will show the reader that this additional 
nodes added in the vicinity of the wall become a must when simulating multi-domain 
applications.  

 
 

Figure 5. Complex configuration of an industrial funace 
 

The main idea of using the low-Reynolds-number model is that the two-equations 
(4.9) can now be applied to the viscous sublayer directly without the use of the wall function. 
Therefore, a suitable damping function must be introduced in the equations to damp the 
turbulent viscosity in the near-wall region, where it is known to be small. In the far-wall 
region, this function returns to 1 and produce the same good results for high Reynolds-
numbers flows. Such modifications will improve the performance of the two-equation model 
in predicting the near-wall viscous layer for flows without separation.  
 
The modified transport equations for the turbulence quantities satisfy at each point of the 
domain: 
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=
 

(4.33) 

 
Compared with the standard k-ε equations, three damping functions 1 2,f f and fµ ε ε  

and two additional terms (E and D) were introduced to provide a smooth transition from 
turbulent to laminar flow in the near-wall area.  Many expressions for these functions can be 
founded in [38, 54, 55]. Since we extend the grid to the wall, then a suitable choice of these 
expressions must ensure on one hand that no terms goes to infinity as k approaches zero in the 
near-wall region and on the other hand it must provide appropriate boundary condition for ε.   
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We can find in [55] an interesting comparative study of five low Reynolds number k-ε 

models for predicting the flow and heat transfer characteristics. The authors have summarized 
and tested five models: Launder and Sharma [54],  Changez, Hsieh and Chen [56], Abid [57]; 
Lam and Bremhorst [58] and Abe, Kondoh and Nagona [59]. Another alternative was 
suggested by Chien’s in [38]. Here in our context, we have retained the expressions given by 
Chien [38]  due to their simplicity and favorable numerical properties (see [43] for more 
details).  Thus, the damping functions and the constants used in this model are as follow: 
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(4.34) 

 
As stated before, now only simple Dirichlet boundary conditions will be applied on the 

wall. The standard no-slip conditions for the velocity with zero values of k and ε are therefore 
implemented: 
 

0, 0, 0w w w wu k onε= = = Γ
 

(4.35) 

 
The specific role of each introduced functions that account for the low Reynolds 

numbers model is discussed briefly. In the first equation in (4.33), the introduced term D by 
Jones and Launder [53] is chosen so that the modified dissipation variable Dε ε= −%

 can be 

set equal to zero at the wall, a simple convenient boundary condition. The empirical constants 
in (4.34) shows a little diversity from those used in the standard k-ε model. This slight 
modification is determined from experimental data for a near-wall modeling.  

As for the first damping function fµ  which multiplies the eddy viscosity in (4.33) was 

introduced to reduce and eliminate the direct effect of the molecular viscosity on the shear 
stress. Consequently, close to the wall, this function approaches zero, and thus it will damp 
completely the added turbulent viscosity. Whereas the function 2fε  was introduced to 

incorporate low Reynolds number effects in the destruction term of the ε equation. The 
function 1fε  and/or the extra term E got the same role; increasing the magnitude of the 

dissipation rate in the near wall region, thereby decreasing the values of k. These can results 
in a zero eddy viscosity at the wall. For more details about the use of these expressions where 
eight different models summarizing various assumptions and functions introduced to account 
for the low Reynolds number can be found in the famous reference [53]. 
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In what follows, a description about the implementation of the finite element solver is 
discussed as well as the positivity of the numerical solutions. Several numerical examples are 
given in section 5 to asses the effectiveness of the adapted methods.  
 
 
4.3.5 Finite element solution 
 

The discretization in space for the incompressible Navier-Stokes equations and turbulence 
equations is performed by an unstructured grid stabilized finite element method. The method 
presented in chapter 2 for solving transient convection-diffusion-reaction equation is applied 
to the two-equation k-ε model (4.36). The variational multiscale method presented in chapter 
3 is used for solving the Reynolds Averaged Navier-Stokes equations (4.23). Recall that the 
Galerkin formulation is obtained by multiplying these equations by an appropriate test 
functions, applying the divergence theorem to the diffusion terms and integrating over the 
domain of interest (see Section 2.3). Both the momentum and turbulence transport equations 
are dominated by convection and, as shown in the previous chapters, the standard Galerkin 
discretization of such equations leads to non-physical oscillations. Hence, stabilization 
methods presented previously are used to provide smooth solutions and to suppress these 
oscillations. 

Before proceeding to the description of the finite element discretization of the equations to 
be solved [38], the first thing to be discussed is which iterative strategy should be used to 
linearize them. A special care should be adopted for linearization of the source and sink terms 
of k and ε transport equations in order to preserve the convergence. Many ideas were 
proposed in the literature, thus two modifications were retained. 

 The first as explained in [5] and proposed by [43] is to introduce an auxiliary 
parameter /i ikγ ε=  evaluated using the solution from the previous outer iteration in order to 

decouple and linearize these equations; and the second for practical implementation purposes 
is to linearize the nonlinear source term in the kinetic dissipation equation. These two 
modifications were also highlighted in [5] were both implicit and explicit formulation could 
be found. The author showed that these choices of decoupling the two-equation provide the 
needed robustness to deal with complex three-dimensional problems: 
 

1) The destruction term in the turbulent kinetic energy equation is modified into a 
reaction term for a better stability as suggested by [5]: 

i

i
k

k

ερε ρ=
 

(4.36) 

 
2) The destruction term in the dissipation equation is modified and linearized as follow: 

22

2 2 22
i i

i i
C C C

k k kε ε ε
ε ε ερ ρ ε ρ= −

 
(4.37) 

where ki and εi are the turbulent kinetic energy and dissipation at iteration i.  
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Therefore, the final linearized form of the k-ε equations can be written in the following form: 
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(4.38) 

The strategy followed is to solve first the Navier-Stokes equations for the velocity and the 
pressure with the fields variables obtained from previous iteration and the updated wall 
boundary conditions. In the second phase of the solution procedure, the two-equation are 
solved for k and ε, respectively, using the updated flow velocity and the wall boundary 
condition. The iterations terminates when the convergence criteria is satisfied. The successive 
iterative solution algorithm is illustrated as follow: 
 

i. giving initial conditions u0 ,  k0 and ε0 
ii. compute µt from k and ε 

iii.  for µt given : 
1. solve the momentum and continuity equations 
2. solve the k-equation 
3. solve the ε-equation 
4. update µt and go to (iii) 

 
The time derivatives are approximated by the Euler forward difference scheme. 

Following the lines on the use of stabilization methods for transient convection-diffusion-
reaction equations discussed in the previous chapters, the space-time discretized global 
system of the two-equation turbulence model may be written in the following form: 
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(4.39) 
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Subscript - indicates the variable is computed using the solution from previous time step. As 
in Reference [9], the diffusion term, as well as the mean velocities is computed using the eddy 
viscosity from the previous iteration. Recall that the non-linear equations for the velocity and 
the pressure are solved using the Newton-Raphson iterations. For scalar equations, only fixed-
point’s iterations are performed. The resulting linear systems are generated directly in a 
compressed sparse row format, and solved iteratively using the generalized minimal residual 
method (GMRES) with ILU preconditioner [60].  
 
4.3.6 Positivity of the solution 
 

By definition, the turbulence variables are positive quantities. However due to 
oscillations in the numerical solution of these equations, if one of the turbulence variables 
becomes negative than the eddy viscosity may locally become negative. This will cause an 
immediate breakdown of the solution algorithm. Negative or small value in the denominator 
of the source terms can also lead to an improper sign or overly large values for µt or for some 
source terms. Enhanced the robustness of the algorithm is achieved if one can ensure that 
turbulence variables remain positive throughout the domain and during the course of 
iterations.  

One way to preserve the positivity of the dependent variables was proposed by [52, 
61] and consists of solving for their logarithms. By changing the dependent variables into 
k=ln(k) and ε=ln(ε), one can guarantee that k and ε will remain positive throughout the 
computations. Hence, the eddy viscosity will always remain positive. A detailed comparison 
of the traditional solution procedure and that solving for the logarithms may be found in 
references [61]. The main disadvantage of these techniques is the appearance of exponentials 
in the turbulence equations.  

Another way to enhance robustness of the k-ε algorithm both k and ε are clipped to 
enforce positivity and to prevent these variables from taking overly small values. If k is too 
small it is replaced by max max/ wherekk k c k=  is the maximum value found in the domain and 

kc  is a user supplied constant. When ε is too small and results in overly large value of µt, it is 

replaced by 2 /( )C k cµ εε ρ µ=  where cε  is again a user supplied constant. However, changing 

the nodal value of the solution in an iterative process could lead to a deterioration of the 
stability of the equation.  Although, this technique is commonly used by several authors as in 
[5]. 

Here in our context, we rely on the use of stabilization methods introduced in chapter 
2 to reduce and possibly to eliminate numerical oscillations in the streamline direction 
(SUPG) and the solution gradient direction (SCPG). As shown in equation (4.39), two 
additional stabilizing terms were introduced; the first controls the oscillations in the direction 
of the streamline (SUPG) and the other controls the derivatives in the direction of the solution 
gradient. This can improve the result for convection dominated problems (SUPG), while the 
shock-capturing technique precludes the presence of overshoots and undershoots by 
increasing the amount of numerical dissipation in the neighborhood of layers and sharp 
gradients.  
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If we look further in the literature on this subject and we add our results from several 

numerical experiments we came to two main conclusions:  
 
1. The use of advanced stabilization finite element methods plays an important role in 

preserving the positivity of the solution and retarding the appearance of numerical 
oscillations. 

   
2. The instabilities in the solution of the classical Galerkin formulations of κ-ε equations 

is not caused only by the convection terms but also by the reaction terms.  
 
This matter was also highlighted by the authors in [62]. By inspection of the formulation, 

they realized that is not the negative values of k and ε that really matter and need to be 
clipped, but instead the appearance of negative diffusion or reaction coefficients that cause the 
exponential growth of the solution. They proposed to limit these coefficients from below 
without any clipping or touching the nodal values of  k or ε. The only adopted modifications 
introduced in the numerical resolution are: 
 

1. The associated eddy viscosity µt is bounded from below by a small fraction α of the 
laminar viscosity µ :  

2( )
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t n

k
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ε
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(4.40) 

 
2. Both the reaction terms and the source term in the ε-equation are limited from below: 
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(4.41) 

 
The above representations preclude division by zero or small values and guarantee 
nonnegative coefficients without manipulating the actual nodal values of k and ε. 
 
 

4.4 Large Eddy Simulation 
 

The LES method has been developed quickly in recent years and its future appears very 
promising with the modern developments in high performance computing (HPC) and parallel 
computing. Lesieur (1997) [64] pointed out that employing such sophisticated models offers 
high accuracy in respect to RANS models. In the LES simulations, the large-scale properties 
of the flow are computed directly from the filtered continuous Navier-Stokes equation while 
the subgrid-scale fields, which contain the fluctuations at smaller scales, are modelled.  
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Large eddy simulations are based on filtering and decomposing the scales into large-

scale and small-scale (subgrid-scale) components. Therefore, the idea is to simulate more 
precisely and solve the contributions of the large, energy-carrying structures to momentum 
and energy transfer and to only model the effect of the small-scale eddies, which are not 
resolved numerically. These simulations are also three-dimensional and time-dependent but 
are much less costly than DNS simulations. The number of grid points required to resolve the 
outer layer is proportional to Re0.4 while near the viscous sublayer it increases to Re1.8 [65]. 

The filtered governing equations for LES, the subgrid-scale (SGS) models, the 
numerical methods and the discretization schemes using unstructured grids, the numerical 
procedure, and the boundary conditions for wall treatment and inflow and outflow settings are 
given in the next section. More details can be found in Germano et al. (1991) [2]. 

4.4.1 Filtering equations 
 
In LES, the contribution of the large-scale is computed directly, and only the smallest 

scales of turbulence are modelled. To separate the large from the small scales, spatial  filtering 
operation are applied. The flow is divided into a large scale u  and a subgrid scale u′  (SGS)  

( , ) ( , ) ( , )u x t u x t u x t′= +  (4.42) 

 
The large scale is defined by a filtering [17, 63]. For example, a one-dimensional filtered 
velocity can be obtained from 

( , ) ( )i iu G x x u x dx′ ′ ′= ∫  (4.43) 

where the bar represents grid filtering, and G(x,x’) is the filter function which determines the 
structure and size of the small scales. The filter function depends on the difference (x-x’) and 
on the filter width. The length scale is a length over which averaging is performed. The 
filtering procedure removes spatial fluctuations that are narrower than the characteristic length 
scale. Flow eddies larger than the length scale are ‘large eddies’ and smaller than the length 
scale are ‘small eddies’. There are three commonly used filter kernels:  
 

1- The Gaussian filter: 
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2- The sharp Fourier cut-off filter: 
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3- The tophat / box filter: 
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(4.46) 

where ∆i is the filter width and i=1,…,d. Piomelli et al [34] pointed out that the Fourier and 
Gaussian filters were normally used for LES that applied spectral methods. For finite volume 
or finite difference, it was natural to use the box filter.  
 

By applying the filtering on the Navier-Stokes equations, we remove the small 
turbulent scales and we derive the resolvable-scale equation. Through this procedure, a non-
linear term are derived known as subgrid-scale stress (SGS) tensor and added to this equation 
which describes the effects of the unresolved scales. As shown for the RANS equation in 
section 2, the SGS tensor has to be modeled in order to close the equations.  
 
The derived governing equations of LES take the following form: 
 

( ) ( )( ) 2 ( ) in (0, )

0 in (0, )

tu u u S u u u p g T

u T

ρ µ ρ⊗ ⊗′ ′∂ + ∇ ⋅ − ∇ ⋅ − + ∇ = Ω×

∇ ⋅ = Ω×  
(4.47) 

 

4.4.2 Subgrid-scale modeling 
 

To model the effect of the small eddies and retain their contributions, two subgrid-
scale models can be used: static and dynamic. The first, static, is known as the Smagorinsky 
model (1963) [35], and has been widely used for physically and geometrically complex flows 
of engineering relevance like, e.g. in combustion chambers. It is based on the equilibrium 
hypothesis which implies that the small scales dissipate entirely and instantaneously all the 
energy they receive from the large scales. Therefore, it assumes that the SGS Reynolds 
stresses in equation (4.47), : u uτ ⊗′ ′= , are proportional to the rate of strain tensor uS( )

 

 

: 2S
tu u uτ µ⊗′ ′= = − S( )  (4.48) 

 
with tµ , the SGS eddy-viscosity given by:  

( )2

t SCµ = ∆ S  (4.49) 
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The magnitude of the strain-rate tensor is defined as 

( )
T

1/ 2 u + u
2 :

2
u u where u

∇ ∇
S = S( ) S( ) S( ) =

 
(4.50) 

The length scale ∆ is related to the grid size and is often taken as the cubic root of the cell 

volumes, or chosen to be the averaged grid size, i.e., ( )1/3
x y z∆ = ∆ ∆ ∆ .  Another possible 

definition already employed in LES with unstructured grids [66], and adopted in this work, is 

( )1/3
( )Vol K∆ =  in which  ( )Vol K  is the volume of the each element K of the corresponding 

mesh.  

The Smagorinsky constant CS needs to be specified prior to a simulation depending on 
the type of flow, the filter being used and the numerical method employed. For example, the 
theoretical value found by Lilly [67] is equal to 0.18 whereas Deardroff in [68] uses a smaller 
value CS = 0.1 for a plan channel flow. As one can see, the Smagorinsky model is usually 
used due to its simplicity and very easy to implement, however it has two major drawbacks: 

1- it introduces too much diffusion in particular in laminar regions and near walls 
2- the parameter Cs is not optimally defined 

In order to reduce the turbulent viscosity near walls and to account for the anisotropy of the 
turbulence, the Smagorinsky model is modified using the van Driest damping function [69]:  

( )2 / 251 y
t SC f where f eµ µµ

+−= ∆ = −S  (4.51) 

with y+ represents the dimensionless wall distance. As for the coefficient Cs, Germano (1991) 
in [2] and Lilly (1992) in [70] have introduced and developed the dynamic subgrid-scale 
model. They replaced the constant coefficient by a parameter Cs(x,t) which evolves 
dynamically in space and time. To accomplish this, additional information is needed and must 
be captured, such as the unresolved stresses. This can be obtained using a second filtering 
operation knows as test filter. The characteristic width of the test filter, ∆% , is assumed to be 

larger than the grid filter width ∆  (usually 2=∆ ∆% ). By applying the test filter (~) to the 

filtered governing equations of LES leads to the so-called subtest-scale stresses 

~
ST
ij i j iu u u uτ = − % %

 (4.52) 

The Germano identity relates the subtest-scale stresses to the SGS stresses (Eq. 4.48) via 

ST S
ij ij ijL τ τ= − %  (4.53) 

where Lij denotes the Leonard stresses associated with the test filter.  
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It represents the contribution to the Reynolds stresses by scales whose length is 
intermediate between the filter width ∆  and the test filter width∆% . If we express the subtest-

scale and the SGS stresses using the eddy-viscosity approach as in Eq. (4.48) together with 
Eq. (4.49), we obtain 
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ij

S S

S S  

(4.54) 

where [ ]~ means that the whole term enclosed in the brackets is test-filtered. Since the 
coefficient of the test filter cannot be resolved explicitly, Germano et al. (1991) [2] assumed 

that ST SC C≈  and 
~

S ij S ijC Cβ β   = %  . Replacing (4.52) into (4.53) together with the previous 

assumption, we get 

2 ( , )
3
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ij kk S ij ij ij ijL L C x t M where M
δ

α β− = − = −
 

(4.55) 

 Using the least-squares minimization proposed by Lilly [67], we obtain finally 

1
( , )

2
ij ij

S

ij ij

L M
C x t

M M
=

 
(4.56) 

Here <  > denotes an ensemble-averaged in the homogeneous direction. This final averaging 
procedure proposed by Lilly reduces the large fluctuations of the CS and produces stable 
results. For more details and other improved dynamic SGS models can be found in [63, 66, 
34]. 
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4.5 Benchmarks for the k-epsilon model 
 
In this section, numerical calculations are performed for three applications: decay of 

grid turbulence, flow over a flat plate (Comte-Bellot) and flow over a backward facing step 
(BFS). These numerical tests, taken from [5], are considered important for validating the 
methodology and assessing the computational performance of the k-ε model. Additionally to 
that, computations using the low-Reynolds and two-scale velocity are given. Comparisons 
with experimental data and other numerical predictions are presented.  

 
 

4.5.1 Validation: grid turbulence 
 

In this example, already presented by [61] and validated in [5], we consider the decay 
of grid turbulence in a uniform flow. The objective of this test is to check the formulation and 
implementation of the coupled k-ε transport equations by comparing to the exact solution. The 
availability of the analytical solution provides a rigours framework for assessment of solution 
accuracy. 

By taking extremely low value of the viscosity from one hand and constant velocity 
from the other, the diffusion terms become negligible and the analytical solution of the 
coupled problem takes the following form:  
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(4.57) 

 
The computational domain extends from (0,0) to (10,1). Dirichlet boundary conditions are 
applied at the inlet, while zero Neumann conditions are applied everywhere else. Figure 6 
shows the geometry of the flat plate and the corresponding boundary conditions.  
 
 
 
 
 
 
 
 

 
Figure 6. Geometry and boundary condition of the problem 
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Figure 7 shows the distribution of the turbulent kinetic energy and the turbulence 
dissipation along the x-axis. The numerical solutions are indistinguishable from the analytical 
solutions. This confirms the accuracy of predictions and ability of the code to deliver the right 
solution of this coupled problem.  
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Figure 7. Grid turbulence solution along the x-axis 

 
 
4.5.2 Comte-Bellot 
 

The verified code is now applied to turbulent flow on a 2D duct. This test has played a 
central role in benchmarking the performance of the k-ε turbulence model. This flow has been 
experimentally studied by Comte-Bellot [22].  The different experimental parameters used in 
the simulation are taken form [5] and are given below: 

− the half-width of the duct:  H=0.09m;  
− the velocity at the centre of the canal: U0 =10.5 m/s; 
− the kinetic laminar viscosity (air) : ν =1.5 10-5 m2/s; 
− the density: ρ =1.208 kg/m3 ; 
− the obtained Reynolds number: Re = 57000 
− time step: ∆t = 0.001s 

 
Since the solution of this problem is symmetric, we consider only half of the duct as 

shown in figure 8. Dirichlet boundary conditions for the turbulent variables are then applied at 
the inlet and computed using the given parabolic velocity Uinlet and the height H of the canal. 
Using Eq. (4.11) and (4.12) we obtain:  
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where δ=0.004m is the normal distance between the computational boundary and the wall and 
Uavg  is the average velocity equal to 9.5 m/s (see [5] for more details). 
 

 
Figure 8. Problem set up of the Comte-Bellot 2D duct 

 
The mesh, a rectangle of H x 60H, is highly stretched near the wall and smoothly 

varying towards the centre. The minimum length along the y-direction for the coarse mesh 
and for the fine mesh is 3.64 10-3 and 1.8 10-3 respectively. For illustration, figure 9 and 10 
show two cuts of the meshes used in our computations. The distance from the wall boundary 
to the nearest interior point corresponds to y+ ≈ 100.  
 

 
 

Figure 9. Coarse mesh of the half duct (3000 nodes) 
 

 
 

Figure 10. Fine mesh of the half duct (13000 nodes)  
 

The goal of this example is to check the implementation of the code and at the same 
time to evaluate the performance of the standard k-ε model with two different kinds of near-
wall treatment: wall function implemented as Neumann (two-scale velocity model) vs. 
Dirichlet (one-scale velocity model) boundary conditions. Therefore, two numerical 
simulations were made to assess the influence of the mentioned boundary conditions. In the 
first section, results computed using the two-scale velocity approach are presented. Contours 
of the turbulent kinetic energy and the rate-of-dissipation energy are shown in figure 11 and 
12. The velocity and the pressure profiles are displayed in the figure 13 and 14 respectively. 
The results are in complete agreement with the given reference [5].  
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Figure 11. Variation of the turbulent kinetic energy   

 
 

 
 

 
Figure 12. Variation of the rate-of-dissipation energy 

 
In figure 15, we plot at the outlet-section the results for turbulence kinetic energy k, 

the rate-of-dissipation energy ε and the velocity Ux using the two-scale velocity model. The k-
profile and ε-profile compares well with that obtained by experimental measurement in the 
near and far-wall regions. One can observe excellent agreement as well for the velocity 
profile. For more comparisons, we choose [5] as an additional reference solution.  We can 
clearly see from figure 15 (left column) that all obtained profiles are in complete accordance. 

Similar trends were observed using the standard k-ε model in the far-wall regions 
while different predictions occur in the near-wall regions. As shown in figure 16 the standard 
model gives a wrong behavior of the solution in the near-wall region. The reason for this 
behavior was pointed out in previous section and it is due to the use of Dirichlet boundary 
condition. Whereas using the two-scale velocity model which modifies the asymptotic 
behavior of the different variables near the solid wall and applies Neumann boundary 
conditions for the kinetic energy gives more appropriate results. 
 

 
 

 
Figure 13. Variation of the velocity Ux 

 
 

 
 

 
 

Figure 14. Variation of the pressure 
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Figure 15.  Solution profiles along the outlet-section:  two-scale velocity model (left) 

reference solution [5] (right) 
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The differences between solutions computed using wall functions implemented in the 
strong and weak sense were also observed by [43]. The authors have pointed out that the use 
of Dirichlet boundary conditions for k and ε produced rather disappointing results, whereas 
the performance of Neumann boundary conditions is remarkably efficient for the near-wall 
treatment. Numerical results for the fine mesh are compared as well with the experimental 
data in figure 17. As can be seen, the agreements are good with a slight significant 
improvement in the results.  
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Figure 16. Solution profiles along the outlet-section using one-scale velocity model  

 
We conclude from this example that the choice of a correct boundary condition for the 

turbulent variables is crucial. We have observed that the two-scale velocity model is superior 
to the standard model. By introducing the bulk velocity based on the turbulent kinetic energy 
and by letting k to be computed ‘naturally’ at the boundary of the computational domain, we 
improved the prediction of the turbulent quantities in the near wall regions and we obtained 
the correct behavior for all the profiles.   
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In the next section we present the last benchmark, the backward facing step. 
Computations in 2D and 3D are used to compare the performance of the turbulence model 
with the experimental measurement and to investigate the influence of the near-wall 
treatment.  
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               Figure 17.  Solution profiles along the outlet-section using two-scale velocity model    

                    (fine mesh) 
 
 

4.5.3 Flow over a backward-facing step 
 

The flow of greatest interest in this thesis is the backward facing step flow. This 
problem has been the subject of a detailed experimental study by [3] and has served for many 
years as a benchmark for turbulent flow solvers. Figure 18 is a schematic diagram of channel 
flow over a backward-facing step. 
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The fully turbulent flow comes from the upstream of the step, forming thin boundary 

layer along the wall. When the channel suddenly expands at the step, the pressure gradients 
cause the new mixing layer to curve toward the wall and bifurcate at the reattachment point. 
One branch develops as a new boundary layer after the reattachment point and the other 
branch forms the recirculation region. Therefore, the flow undergoes rapid distortion in the 
region surrounding the reattachment point and subsequently relaxes downstream at this point.  

 
 

 
 

Figure 18.  Schematic description of the turbulent flow over a backward-facing step (adapted 
from [36] 

 
A critical parameter to asses the accuracy of the employed method is the reattachment 

length. Table I presents different values of the predicted length. Every author uses a variant of 
the k-ε model with wall functions and type of algorithm. The only possible causes for the 
differences observed between authors are the meshes used and details of the code 
implementation. Note that in [71, 72] the authors have proposed an adaptive finite element 
method for this benchmark. 
 
Reference Turbulence model Recirculation length (L/H) 

Kim et al. experiment 7±1 
Mansour and Morel k-ε 5.2 
Pollard k-ε 5.88 
Rodi et al. k-ε 5.8 
Launder et al. ASM 6.9 
Donaldson et al. RSM 6.1 
Ilegbusi and Spalding modified k-ε 7.2 
Nallasamy and Chen k-ε 5.8 
Ilinca et al. k-ε 6.2 
Reference [5] k-ε 6 

 
Table I. Recirculation length obtained using different methods adopted from [74] 
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The different experimental parameters used in the simulation are taken form [5] and are given 
below: 

− the step height:  H=5.08 cm;  
− the velocity at the centre of the canal: U0 =11.562 m/s; 
− the kinetic laminar viscosity (air) : ν =1.4 10-5 m2/s; 
− the density: ρ =1.208 kg/m3 ; 
− the obtained Reynolds number: Re = 42000 
− time step: ∆t = 0.0002s 

 
The inlet Dirichlet boundary conditions (at x = -5H) for the turbulent variables are given 
below and used as initial value: 

2 2 2 3
0 00.78 / 80.6 /k m s and m sε= =  (4.59) 

The distance from the wall boundary to the nearest interior point corresponds to y+ ≈ 
100. The geometry, the dimensions and the boundary conditions are shown in figure 19. At 
the outlet, the normal stress, the normal derivatives of k and ε and the velocity Uy are all set to 
zero. Wall functions were used on the boundary except for the inlet and the outlet. The 2D 
computational mesh consisted of approximately 12000 nodes.  Local mesh refinement was 
employed in the vicinity of the walls and in the shear layer behind the step.  

 
Figure 19. Computational domain for the backward-facing step [3] 

 
The main objective is to evaluate the performance of the implemented method with 

three different kinds of near-wall treatment: wall functions implemented as Dirichlet and 
Neumann boundary conditions against the Low-Reynolds number model.  

A first visual comparison of the steady-state solutions for all the turbulent variables 
and the averaged velocity is presented. We compare both solutions using the standard k-ε 
model. Contours of all variables are plotted in figure 20. Recall, that we choose the adaptive 
finite element method of [72] as reference due to the high accuracy of the results. A good 
agreement with the reference solution is shown for all the variables. However, as expected, 
we noticed a slight difference in particularly near the corner of the step where all variables 
exhibit strong variations and the bottom wall. The difference is due to the adaptive remeshing 
procedure (see [72]). 
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Figure 20. Steady state distribution: reference solution (top), standard k-ε solution (bottom) 
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An important evaluation criterion for this popular test problem is the recirculation 
length defined as L = x / H.  Kim et al. (1980) [3] have experimentally determined the 
location of the reattachment point equal to 7H ± H. Different researchers obtained numerical 
values ranging from 4.8H to 7.0H. Table II summarizes the results obtained for the length of 
the recirculation zone using different methods. 

 
Reference Turbulence model Recirculation length  

Kim et al. experiment 7 ± 1 
Mesh 1 (2D) Standard model 5.9 
Mesh 1 (2D) Enhanced model 6.18 
Mesh 1 (2D) Low-Reynolds number model 5.79 
Mesh 2 (3D- 21000 nodes)  Standard model 6.13 
Reference [5] Standard model 6 

 
Table II. Recirculation length obtained using different methods 

 
Results obtained by our calculation (Table II) compared well with the results obtained 

by different other authors (Table I). Figure 21 presents comparison of predicted and measured 
turbulence kinetic energy. As can be seen, the agreement is generally good for all stations. It 
should be noted that [72] provides results using an adaptive strategy that captured well the 
very thin layer and peak in the TKE profile in particularly at x/H =1.0 and x/H =2.3. 
However, far from the step and close to the upper wall, our predictions agree more with the 
experiments. We suspect that the main discrepancy could be due to the use of Neumann 
boundary conditions for the kinetic energy. By letting k to be computed ‘naturally’ at the 
boundary we improved the prediction of the turbulent quantities in the near wall regions and 
we obtained the correct behavior.  

In the context of testing the implementation of two turbulent solvers using two 
different codes at the CEMEF, a three-dimensional test problem was done stimulatingly by 
[73] using the finite element code TherCast and the present implement method using the finite 
element library CIMLIB. The 3D computational mesh of the backward-facing step consisted 
of 71162 tetrahedral elements with 21514 nodes.  Local mesh refinement was employed in the 
vicinity of the walls and in the shear layer behind the step. Further details about this test can 
be found in [73]. In Figure 22, the calculated velocity profiles for 6 different distances from 
the step are compared to one another and the experimental data from [3], and other numerical 
codes (such as THERCAST, Jaeger…).  

The objective of this comparative study was to check the implementation of both the 
codes, the linearization of the coupled turbulent equations, the positivity of the solutions and 
the accuracy of the results. Figure 22 indicates that all the results all almost identical with one 
another and with the experimental measurements. The test has provided us a useful validation 
study for the implementation of the codes and the near-wall treatment methods. Finally, it is 
also worth mentioning that the profiles of k and ε do not suffer from spurious undershoots 
which are frequently observed in other computations. This can be attributed to the 
stabilization finite element discretization together with the positivity-preserving techniques 
mentioned in previous sections.  
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Figure 21. Distribution of turbulence kinetic energy: two-scale velocity (left) adaptative finite 

element method [72] (right) 
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Figure 22. Measured and predicted streamwise velocity profiles at 6 different locations 
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4.6 Flow behind an obstacle using LES model 
 

In this example, a turbulent unsteady flow past a square cylinder is analyzed to verify 
the proposed LES (Smagorinsky) model. The main focus of this numerical example is from 
one hand to offer a large diversity of numerical benchmarks and from the other hand it can be 
seen as an illustration of a flow past a heated ingot inside industrial furnaces. Recall that the 
objective is to validate the implementation of the code rather than comparing two different 
turbulent models. As mentioned in the introduction of the chapter, the idea was to open the 
choice to the user to decide which methods to use regarding the application in hand. Each 
method will offer the accuracy of the results in respect to the computational costs and the 
required computing time. 
 

Here, even for relatively simple geometries, simulating such flows and the loading 
imposed on the bodies is a difficult task. Over the years, it has become clear in these 
calculations that statistical turbulence models have difficulties with such complex flows 
consequently, the large eddy simulation approach is more suitable in such situations as it 
resolves the large-scale unsteady motions and requires modeling only of the small-scale. Of 
course, the LES approach is computationally considerably more expensive, but the recent 
advances in computer performance and numerical methods have made LES calculations 
feasible.  
 

This benchmark proposed by Lyn et al. [75, 79] has become a standard test case for 
unsteady turbulent flow of vortex-shedding past a square cylinder where different 
experimental measurements are given. It was shown that the occurrence and quality of vortex-
shedding prediction depend strongly on the turbulence model used [76, 82]. Due to the 
excessive production of turbulent kinetic energy, the standard k-ε model was found to 
severely unpredicted the strength of the shedding motion. Improvement were carried out 
using the large eddy simulation and results can be found in [76, 77]. The RANS models the 
turbulence and resolves only the mean-flow structures whereas the LES resolves the eddies of 
turbulence itself. Consequently, RANS requires less spatial and temporal resolution while 
LES requires very long integration time to build an ensemble averaged solution. Full details 
concerning this test using different turbulence models are given by [76, 82].  
 

We hope that this previous discussion would now answer the questions from the 
introduction of the chapter: “Which model we should use?”  and “How can we get reasonable 
results with an affordable computing cost?”.  
 

The mesh layout for this example as well as the boundary conditions is illustrated in 
figure 23. The dimensions shown in the figure are normalized by the length of the side of the 
square. The computational domain is discretized by 172264 elements and 32476 nodes. The 
inflow velocity is given equal to one and the Reynolds number is set to 22,000. Physical 
dimensions of our computations domain exactly matched to those of [78]. We choose the time 
step of 0.005, which is found to be sufficient to track unsteady characteristics of the flow. 
This paper among few, presents a stable finite element formulation to predict the behavior of 
high-speed wind passing bluff structures using the k-epsilon model.  
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Figure 23. Computational domain for the flow past a square cylinder 
 
 

For visualization and identification of instantaneous vortical structures, figure 24 
shows instantaneous vortices distribution around the square cylinder predicted by the LES 
model at two different phases. Note that the more the grid system becomes finer, the more 
realistic structures with smaller scale structures can be captured.  
 
 

 
 

Figure 24. Instantaneous vorticity distribution past the square cylinder 
 

Table III summarizes the dimensionless shedding frequency, the Strouhal number; 
St=fD/U0  (f is the frequency, D is the section of the obstacle and U0 is the given velocity), 
obtained in the present study and by different authors. This non-dimensional number can be 
considered important to quantify the properties of the periodic solution of the vortex street.  
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Reference St Strouhal number 

Present study 0.129 
Exp. Lyn [79] 0.135 
Exp. Duaro [80] 0.139 
LES [81] 0.132 
Standard k-ε [82] 0.124 

 
Table III. Strouhal number obtained using different methods 

 
As shown in table III, the Strouhal number is computed as 0.129, which is lower only 

by 5 percent compared to Lyn’s experimental results [79]. Figure 25 displays the distribution 
of the time-mean velocity U along the centerline. Experimental data and results from different 
other authors are included. The authors in their study have used the RNG k-ε model (Figure 
25 buttom). They have noticed that the data agree fairly well in the near-cylinder region and 
in front of the cylinder where the flow is basically inviscid while there are large differences in 
the wake region. Nevertheless, overall trends seem to be quite similar to the experimental 
results as well as results from others authors. An efficient and reliable numerical procedure 
for solving wind engineering problem in high Reynolds number flow regimes as well as many 
other comparisons on this test can be found in this reference. 
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Figure 25. Lateral velocity along the centerline at two phases: Present result (up) and 
reference (buttom). The picture were adapted from [78] 
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4.7 Conclusion 

In this chapter we have described two classical turbulence models to deal with unsteady 
flow at high Reynolds number. The motivation of using such models comes from the desire of 
solving turbulent flow problems inside industrial furnaces. Therefore, both the k-epsilon 
model and the Large Eddy Simulation model (LES) were introduced, analyzed and studied. 
The stabilized finite element methods was used and applied for the resolution of the set of 
equations. We can understand from the numerical experiments that a turbulence model should 
introduce the minimum amount of complexity while capturing the essence of the relevant 
physics. Consequently, the k-ε model, a traditional model attempts to strike the balance in this 
regard by sacrificing the details of the turbulence structures. It is still the most widely used 
turbulence modeling method in practical engineering applications. Whereas as opposed to the 
RANS approach, a major portion of the turbulent scales is numerically resolved within the 
LES model and offers more characteristics of the flow.  

The performance and the efficiency of the overall models have been demonstrated using 
four benchmarks and conclusions were drawn. The flow around a square cylinder at a 
Reynolds number of 22000 has been chosen for a last validation of the Smagorinsky model. 
Although the given benchmarks do not contain all the complexity of simulating an industrial 
furnace, they are well suited for validation since both experimental data and numerical results 
from several authors are available. Summarizing, the originality of this work is the 
combination of stabilization methods, unstructured grids, implicit time advancing and 
turbulence models. All those elements are now features dedicated to industrial abilities of the 
method. Upcoming, more tests will be presented for coupled heat problem.  
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Chapter 5  

Immersed volume method for solving conjugate heat 

transfer 

 
 
The present chapter is dedicated to develop a multidomain approach to solve the 

coupled heat problem and able to handle real complex geometries with different loading parts 
inside the furnace. First we present the complete description of the immersed volume method 
(IMV), which in turn is structured into three subsections:  the use of the level-set approach to 
immerse and define heated objects, the unstructured and anisotropic mesh generation to adapt 
the interface between the fluid and the solid, and finally the thermo-physical properties of 
each subdomains are assigned using different mixing laws. The second part will be devoted to 
the resolution of the radiative transport equation (RTE) which constitutes an important 
ingredient for solving conjugate heat transfer. All the methods developed in previous chapters 
will now be coupled and used to study numerically problems arising in aero-thermo-
mechanics inside industrial furnaces with different loadings. Finally, various numerical 
examples are considered for evaluating the proposed method and conclusions are drawn.  
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5.1  Introduction  
 

The development of efficient methods to understand and simulate conjugate heat 
transfer for multi-components systems is among engineering challenges and still a need for 
industrials, especially in the case of the heat treatment of high-alloy steel by a continuously 
heating process inside industrial furnaces (see figure 1). Usually, the heat treatment sequence 
involves heating to a high temperature of an empty furnace followed by a controlled heating 
ingots placed at different locations inside. The thermal history of each ingot and the 
temperature distribution in the whole load are critical for the final microstructure and the 
mechanical properties of the treated workpieces and can directly determine their final quality 
in terms of hardness, toughness and resistance.  

 
We have described in the previous chapters all the different numerical methods needed 

for solving the transient heat transfer and turbulent flows inside the furnaces. However, the 
modelling of the solid/fluid interaction problems and the thermal coupling are not yet treated. 
The main objective of this chapter is to present a multidomain approach to solve the conjugate 
heat transfer for which the three modes, convective, conductive and radiative heat transfer 
interfere simultaneously and in both the fluid part and the solid part. The proposed numerical 
method for modeling such multimaterial flows (fluid/solid) will be referred as the immersed 
volume method (IVM). A complete description and details about this method will be given. 
But first, we will discuss the driven motivation by revisiting some of the existing approaches 
that usually deal with such problems. 
 

In recent years, there has been increasing interest in studying numerically a variety of 
engineering applications that involve thermal coupling of fluids and solids [1, 2, 3]. Most of 
the time, the general idea of these techniques consists in dividing the global domain into 
several local subdomains over each of which a local model (equation to be solved) can be 
analyzed independently. The global solution can then be constructed by suitably piecing 
together local solutions from individually modeled subdomains.  
 

However, during the assembly, the coordination between the meshes can become 
complicated or even sometimes infeasible. Other alternative approaches have been applied for 
multi-phase flows problems and are available in the literature, such as the ghost fluid method 
introduced by Fedkiw et al. (1999) [4], the immersed boundary method [5, 6], domain 
decomposition [7], and the X-FEM [8]. They introduced and improved enrichment functions 
for material interfaces and voids by means of the level set representations of surfaces.  
 
 
 
 
 
 
 

 



Introduction 181 

 
Nevertheless, in general when using all these techniques, one still need to know the 

value of the heat transfer coefficients between the two domains which ensures, as a 
Neumann/Dirichlet boundary conditions, the heat transfer at the air/solid interface. In fact, 
industrials perform many experimental tests to obtain such heat transfer coefficients. But, 
when dealing with a large diversity of shapes, dimensions and physical properties of these 
metals to quench, such operations can become rapidly very costly and time consuming.  
 

In the present study, the proposed method aims to overcome this drawback. The main 
idea is to retain the use of the monolithic formulation and coupling it to some additional 
features that could allow a better and accurate resolution, in particularly at the interface 
between the fluid and solid. Recall that the monolithic resolution, based on the levelset 
approach consists in considering a single grid for both air and solid for which only one set of 
equations need to be solved. Consequently, different subdomains are treated as a single fluid 
with variable material properties. One important feature till now is that by solving the whole 
domain in a fully monolithic way there is no need of empirical data so as to determine the 
heat transfer coefficient. The heat exchange at the interface is replaced naturally by solving 
the convective fluid in the whole domain. Note also that different numerical methods 
introduced in the previous chapters could be used to solve the conjugate and coupled problem 
without additional efforts. Numerically, the communication between the solid and the fluid is 
obtained naturally without any further assumption and force modelling. In other words, there 
is no need for some coupling engines specifically designed to handle data exchange and 
algorithmic control signals between solid region and fluid region.  
 

The second feature of this method is the use advanced research in the anisotropic mesh 
adaptation to adapt the interface between two different materials. The proposed mesh 
generation algorithm allows the creation of meshes with extremely anisotropic elements 
stretched along the interface, which is an important requirement for conjugate heat transfer 
and multi-component devices with surface conductive layers [12]. Many research efforts have 
been devoted to analyze and improve the accuracy, stability, conservation and robustness of 
different immersed boundary method. This is obviously required when following an interface 
all along the computations. But in the present study, the solid, the heated objects inside the 
furnace, are considered fixed and, consequently, a preadapted meshing is totally affordable. 
All these previously cited techniques can at a certain degree explicitly be replaced by this 
proposed locally interface refinement that can generate a quasi conforming mesh with an 
acceptable cost.  
 

The interface between solid and fluid is only defined by a zero isovalue of the distance 
function; hence the calculations of the classical boundary integrals that account for the 
radiative heat transfer between the solid and the fluid are no longer applicable. The 
contribution of the radiations to the heat transfers is assessed by solving the radiative transfer 
equation (RTE) and by computing volumetric source terms. Two simple models, the 
‘Rosseland approach’ and the P1-model are introduced and implemented. 
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It is important to mention also that the same strategy has already been introduced in  
[9] et al., [10] and in [11], but the context was clearly different. In [9], the authors have 
proposed to use the metric properties of the distance function for simulating two bodies in 
contacts in a forging process. Details about the formulation of the contact condition, mesh 
adaptation as well as the computation of the distance function are given. On the other hand, in 
[10], the use of this method was highlighted by several numerical examples such as extrusion 
and industrial mixing processes. In [11], the authors illustrate the ability of this approach to 
accurately describe nucleation and grain growth in the context of recrystallization in a 
polycrystalline material. More details about the method can be also found in [13].  Here, we 
intend to apply the same strategy for simulating conjugate heat transfers and turbulent flows 
inside a furnace in the presence of heated industrial parts. 
 

The outline of the chapter is as follows: first, we present a detailed description of the 
immersed volume method using both the level set function and the anisotropic mesh 
adaptation. Section 3 presents the suitable radiative heat transfer models. In section 4, various 
numerical examples are considered for evaluating the proposed method. Comparisons with 
the experimental results are presented in section 5. Finally, conclusions and perspectives are 
outlined. 

 
 

 
 

Figure 1. Heat treatment furnace: turbulent flow and conjugate heat transfer with radiation 
in a multidomain approach 
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5.2 The immersed volume method 
 
The comprehensive description of the immersed volume method (IMV) is structured 

into three subsections. In the first section, the level-set approach is presented and used to 
describe, position and immerse heated objects inside the furnace; next the anisotropic mesh 
adaptation algorithm needed to refine the interface between the fluid and the solid is 
explained, and finally a brief review on mixing different thermo-physical properties for each 
subdomains is highlighted.  

 
 

5.2.1 The signed distance function 

In this section, brief details about computing the distance function and capturing the 
interface between a solid body and the surrounding fluid are presented. The algorithm used to 
compute the signed distance function has to be credited to Bruchon et al. and it is detailed in 
[9]. Distances are widely used in applications ranging from computer vision, physics and 
computer graphics and have been the subject of research of many authors in the last decade. 
We can find it in wide variety of problems such as: image reconstructing, multiphase flows 
and others [14, 15, 17]. In our context, we employed the distance function only as a geometric 
tool to initialize a given surface inside the furnace.  

The most straightforward way for computing distance fields is through the use of a 
geometric brute force algorithm where the point-to-point distance is computed throughout the 
computational grid and the minimum distance for each point is stored. If Ω  is a closed 

domain and d
solidΩ ⊂ Ω ⊂ ℜ  with piecewise smooth boundary Γ , then the signed distance 

function ( )xα r
 is defined as: 

( , )
( )

( , )
solid

solid

d x if x
x

d x if x
α

− Γ ∉ Ω
=  Γ ∈ Ω

r r
r

r r  (5.1) 

 
and  the needed distance is given by 

( , ) : min
p

p
x

d x x x
∈Γ

Γ = −r r r
 (5.2) 

 
For simple geometries, this function can be obtained from an implicit representation. For 
example, if the smooth boundary of a circle (see figure 2) with center (0.5 , 0.5)  and radius 
(R=0.25) is given by:  

{ } 2

( , ) ( ) ( )C R x d x R and d x x R xΓ = ∈Ω = = − ∀ ∈Ωr r r r r  (5.3) 

Then the signed distance function implies simply: ( ) ( )x R d xα = −r r .  
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Figure 2.  Definition of the signed distance function and representation of a circle 

 
However, for complex geometry, such as industrial heated parts, the surface can not be 

given by any implicit function and it will be estimated from a discrete surface representation. 
Note also, that the brute force algorithms are infeasible due their high computational cost.   
 
There exists a variety of algorithms to compute the distance function, which can be classified 
in two categories:  
 

i. Geometric calculation: The signed distance function is computed from the surface 
directly. 

 
ii. PDE methods: The signed distance function is a solution of a partial differential 

equation; the Eikonal equation [23, 46]. 
 

In the literature, most of the available methods for computing distance fields are 
developed for Cartesian grids, while little attention has been devoted to unstructured meshes. 
The study of more efficient methods for computing distance functions is still an open research 
area. [9, 14]. However, in the CIMLIB library, a modified fast algorithm for computing the 
distance function has been developed and implemented. Based on the geometric calculation, a 
new parameter, referred as the ‘quality parameter’ is introduced to compute the sign of the 
function as well as a hierarchical representation of the surface mesh is used to reduce as much 
as possible the computation time and cost. All the details including the algorithm can be 
found in [9]. The use of this computed distance function was also highlighted by many 3D 
applications with more complex configuration and can be found in [13, 15, 17, 18]. 
 

Recall that in our study, all the objects inside the furnace are considered fixed, and the 
computation of their respective distance functions is done only one time at the beginning of 
the resolution. Thus, the proposed algorithm is highly recommended in terms of accuracy and 
CPU time in particularly for three dimensional problems. 

 
 

 
 

( ) 0xα >r

( ) 0xα <r

: ( ) 0xαΓ =r
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5.2.2 The anisotropic mesh adaptation  

 
Accurate calculation of the temperature distribution along the fluid-solid interface is 

critical for a correct modelling of industrial experiments. When the heat flux is directed 
through the interface, the difficulty arises due to the presence of high gradients of temperature 
and due to the discontinuity of the material properties. If this latter is not aligned with the 
element edges, it may intersect the element arbitrarily such that the accuracy of the finite 
element approach can be compromised.  

 
In this section, we introduce the second feature of the IVM method by proposing a 

strategy to adapt automatically the interfaces between subdomains. The level-set function 
described in previous section is coupled to an anisotropic mesh adaptation [36, 37, 39, 12, 
13]. The mesh becomes locally refined around the zero isovalue of the level-set function 
which enables to sharply define the interface and to save a great number of elements 
compared to classical isotropic refinement. This anisotropic adaptation is performed by 
constructing a metric map that allows the mesh size to be imposed in the direction of the 
distance function gradient.  

 
First, let us remind that all the meshes presented in this work have been generated 

through CIMLIB by the MTC mesher and remesher. It is based on a topological optimization 
technique that, by considering the quality of the elements, improves the mesh topology. The 
3D tetrahedral, unstructured, isotropic or anisotropic mesh generator was developed by T. 
Coupez. and detailed in [16, 19, 20, 40, 41, 42, 43, 44].  
 

Here, a brief review on building this metric map is presented. Further detailed are also 
given in the last section (4.5). This subject has been extensively studied in our lab and used by 
many researcher [24, 25, 26].  The main idea is to build a certain metric M , a symmetric 

positive-definite matrix, that allows the creation of meshes with extremely anisotropic 
elements stretched along the interface. This forms an important ingredient for conjugate heat 
transfer and multi-component devices with surface conductive layers.  
 

Therefore, if the metric M  can be regarded as a tensor whose eigenvalues are related 

to the mesh sizes, and whose eigenvectors define the directions for which these sizes are 
applied, then one can think about imposing small element sizes along the direction of the 
distance function gradient α∇ , and keeping the same background size in the orthogonal 

direction α ⊥∇ . In other words, the proposed metric takes the following form:  

2 2( )Tm Iα α ε= ∇ ⊗∇ +M  (5.4) 

 
Where I is the identity tensor, ε and m are two positive-real parameters. This simply means 

that using this metric leads to a mesh size of  
22 21/ m α∇ + ε  in the direction of α∇ and to a 

mesh size of 1/ε  in the direction of α ⊥∇  .  
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However, since only the interface separating both subdomains is the region of interest, 
this pushes us to build a general metric map that is equal to an isotropic metric in the far-
interface region and equal to the previous constructed metric (5.4) in the vicinity of the 
interface. Accordingly, the general metric map takes the following form:  
 

2

2 2

2

/ 2

( ) / 2

T

I if e

N
B I if e

e

where B

ε α

ε ε α

α α
α

 >
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− + <


∇ ⊗ ∇=
∇

M

 

(5.5) 

where N is the number of elements required in a certain thickness e.  
 

As shown in figure 3 which presents a close-up on the interface zone at the end of the 
anisotropic adaptation process, the mesh has been gradually refined when approaching the 
interface. Consequently, only additional nodes are locally added in this region, whereas the 
rest of domain has maintained the same background size: an important feature that keeps the 
computational work devoted to the grid generation low. 
 
 

 
 

Figure 3. Interface refinement using anisotropic mesh adaptation: a zoom on the interface 

 
The proposed mesh generation algorithm works well for 2D or 3D geometries and can 

easily handle arbitrary geometries. Next, some numerical examples are given to illustrate the 
effectiveness of the proposed mesh algorithm. 
 
 
 
 

e
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5.2.2.1 Two simple geometries 
 

We consider two ingots placed in a 3D enclosure. Starting from a coarse mesh, we 
generate the multidomain metric and we adapt the mesh to this metric. After several 
iterations, one can clearly see from figure 4 that the interface between these objects and the 
surroundings is well adapted. Figure 5 shows that the refinement at the interface is 
anisotropic, while the rest of the domain has kept the same background size.   
 

 

              

           (initial mesh)                                                            (intermediate mesh) 

 

(final mesh) 

Figure 4. Iteration between the metric computation and the mesh generator 

Note also, when using an anisotropic mesh, with elements stretched in a 'right' 
direction, one could allow not only to save a lot of elements but also to well describe the 
geometry in terms of curvature, angles, etc. Contrary to others techniques, this promising 
method can provide an alternative to body-fitted mesh for very complex geometry.  In the 
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following example we consider a more complex problem: the immersion of a support grid 
inside an industrial furnace.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Zero isovalue of the immersed solid bodies 

 
5.2.2.2 Support grid inside a furnace 
 

Figure 6 presents a 1m3 gas-fired furnace provided by our industrial partner Terreal-
France. This furnace is used for continuous heat treatment of terra-cotta products positioned 
usually on a support grid. The support is made by six cylindrical object and flat grid all placed 
in the center of the furnace as shown in figure 6 (right). Such geometires can not be given by 
any implicit function and  the distance function must be computed.  
 

        

Figure 6. 1m3 furnace (left) and the support grid (right) 
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By applying the IVM method, the level-set function identifies automatically the 
complete support grid body from the surrounding air and then applies the anisotropic mesh 
adaptation at the interface. The computations of the coupled heated problem and the results 
for this furnace are given in the last section. Figure 7 shows the resulting unstructured meshes 
after several iterations. 
  

     

Figure 7.  Difference between the initial mesh (left) and the final mesh (right) 

 
The algorithm progressively detects and refines the support grid leading to a well 

respected shape in terms of curvature, angles, etc. All the small details in this given geometry 
can be captured accurately (see figure 8).  
 

         
 

Figure 8. Two cuts of the support grid at different level 

More examples and computational results are given in the last sections. As a 
conclusion, we have showed that the proposed anisotropic algorithm can capture accurately 
very complex industrial geometries. Although additional nodes are added to the initial 
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computational domain, we obtain very accurate interface which is an important requirement 
for conjugate heat transfer and multi-component devices with surface conductive layers. 
 

Finally, once the mesh is well adapted along the interface, we use different mixing 
laws to distribute the material between each physical subdomain (solid/fluid). This last feature 
of the IVM method is presented in the following section. 
 
 
5.2.3 Mixing laws 
 

The geometry and thermodynamic properties of the solid domain are characterized by 
the signed distance function. The location of the air is then deduced by complementarity and 
does not require the introduction of an additional distance function. The air-solid mixture can 
now be treated as a single fluid whose effective properties are defined using continuous 
heterogeneity between their coefficients. Consequently, the coupled heat problem is 
simultaneously solved over the entire domain including both fluid and solid regions with 
variable material properties. 

There exist in the literature roughly two categories of methods to compute the effective 
material properties. The first is based on numerical homogenization method which considers 
the dimension and geometry of periodic porous subdomains [27]. The other category, usually 
called mixture rules, relies on a ‘characteristic function’ of constituent materials and assumes 
no microstructure. Since our focus in this study is the heat treatment of large loads inside 
enclosures it is more convenient that the material distribution between each physical domain 
be described by means of the level set function. 

The characteristic function of the solid domain is simply defined by the Heaviside step 
function H as : 

( )
1 ( ) 0
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if x

H if x

if x

α
α α

α
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= =
 <

r

r

r

 

(5.6) 

 
The physical and thermodynamic properties in the domain are then calculated as a 

function of H(α); for instance, the mixed temperature is calculated using a linear interpolation 
between the values of the temperature in the fluid and the solid: 

( ) (1 ( ))solid fluidT T H T Hα α= + −  (5.7) 

However, using the Heaviside function described above leads to poor numerical results due to 
the assumed zero thickness of the interface and of course due to the sharp changes in the 
material properties.  
 

Instead, we can use an alternative description of the interface as proposed by Sussman 
et al. [28]; Unverdi and Tryggvason [29]; and Sussman et al. [30]. It should be noted that 
there exist another approach proposed by Kang et al. [31] which treats the interface in a sharp 
fashion using jump conditions at the interface.  
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The idea is to give the interface a fixed thickness that is proportional to the spatial 
mesh size, and substitute the Heaviside function described above by a smoothed function 
given by: 

1 ( )

1 ( ) 1 ( )
( ) 1 sin ( )

2

0 ( )

if x

x x
H if x
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α π αα α

π
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   = + + ≤ ε   ε ε  
 < −ε

r

r r
r
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(5.8) 

where ε is a small parameter such that  ε = O(h), known as the interface thickness, and h is 
the averaged mesh size in the vicinity of the interface. 

“Recall that the IVM method couples at the same time all the three features described 
previously. This will result in a smoothed Heaviside function based on the distance function 
and able to assign the right thermodynamic properties on each side of the extremely refined 
interface. Consequently, the distribution of the materials properties will again respect the zero 
assumed thickness of the interface between a solid and a fluid”. This is actually an advantage 
of the IVM method over traditional multimaterial structures.  

In addition to the use of the smoothed characteristic function, we still need a 
prescription for evaluating the appropriate mixture law at the interface for all the materials 
properties [32],. We conducted a large research on problems treating multiple materials with 
different properties in particularly, the conjugate heat transfer problem where convective heat 
transfer in the fluid and conductive heat transfer in the solid are handled simultaneously [32, 
33, 34, 35]. A closer inspection on the mixture formulation of different materials reveals that 
the use of linear variation for the thermal conductivities cannot handle the abrupt change at 
the interface and would lead to inaccurate results. “Thus a proper formulation is highly 
desirable” [32]. 
 
 

 

Figure 9. The interface between two domain and the distances associated with the interface 

The effective thermal conductivity calculated using a linear variation is given by:  

( ) (1 ( ))eff F Sk k f k fα α= + −  (5.9) 

where f(α) = dS / h  is an example of the interpolation factor.  
 

In [32], the author explained that it is not the local value of conductivity at the 
interface that is important (equation 5.9), it is rather the continuity of temperature and heat 
flux across the interface. The heat flux that leaves one control volume through a particular 
face must be identical to the heat flux that enters the next control volume through the same 
face (see figure 9). Otherwise, the overall balance would not be satisfied.  
 

Fd SdFd
h
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Therefore, in the absence of the source term, a steady one-dimensional analysis of the 
heat flux at the interface leads simply to:  

/ / /i

F S F S

F F S S eff

T T T T
q

d k d k h kΓ
− −= =
+  

(5.10) 

 
As a result, the appropriate expression for the effective thermal conductivity yields:  

1
1 ( ) ( )

eff
F S

f f
k

k k

α α
−

 −= + 
   

(5.11) 

 
This formulation, known as the harmonic average mean, basically reflects the 

requirement that diffusion flux should be the same even when calculated by different 
representative subdomains. Full details, demonstrations and complete analysis can be found in 
[32]. This is one conclusion about the mixture formulation among different others.  
 

A closed details as well as the influence on the use of different mixture rules are given 
in [45]. To simplify the exposition, only the retained formulas are given. The global material 
properties for the coupled heat transfer problem such as density ρ, initial temperature T0, 
dynamic viscosity µ, heat capacity Cp and thermal conductivity, are defined by the following 
laws: 
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(5.12) 

 
The sensitivity of the model to the estimation of the effective thermal conductivity and 

the interface representation is assessed using the following simple example. We consider in 
this test the transient conduction between two domains; a small squared heated solid 
immersed inside a cold cavity. The ratio of material properties across the interface is very 
large. Table I presents the different values used in this example. All walls of the cavity are 
maintained at adiabatic condition. Subject only to these boundary conditions, the analytical 
solution of this example is easily derived. The temperature evolution across the interface is 
presented in figure 11. Three type of interface are considered (figure 10). Two different 
mixture formulations for the thermal conductivity are used.  
 
Domain Temperature °C Density kg/m3 Heat capacity J/Kg°C ConductivityW/m°C 

Fluid 20°C 1.2 1000 0.02 
Solid 400°C 2500 1000 175 

Table I. Materials properties and initial temperature for both subdomains 
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The sharp discontinuity of the properties of the material across the interface and the 

presence of high gradients of temperature change this simple numerical example into a 
complicated one. From a numerical point of view, the sudden cooling of the hot immersed 
body inside a cold cavity is at the origin of so-called thermal shocks which cause spurious 
oscillations in the solution. To overcome this difficulty, the enriched finite element method 
presented in section 2.5.  has been applied. 

 

 

 

 

 

 

 
 
Figure 10. Density distribution across the interface 

 
 

 

Figure 11. Temperature evolution across the interface 

A comparison between the results obtained by the three cases is summarized in Table II.  

Mixture law No interface Conform interface Refined interface (IVM) 

Simple 4.1% 6.4% 1.73% 
Appropriate 0.15% 0.14% 0.12% 

Table II.  The relative error obtained using different mixture rules 

As expected, predictions for the resulting temperature seem to be less sensitive to the 
interface refinement when using the appropriate mixture law (equation 5.11) for the thermal 
conductivity. However, when simple laws (equation 5.9) are used, the temperature decreases 
rapidly and fails to predict the appropriate behaviour. The closest prediction to the analytical 
solution is obtained by using the harmonic mean formulation together with a refined interface.  

t=0s t=1000s t=10000s 

Interface

Solid

Fluid
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            a- no interface                           b- conform interface                       c- refined interface 

Figure 12. Distribution of the thermal conductivity across different interfaces 

The influence for using different mixture rules on other coefficient as viscosity or the 
density have been also investigated in the given reference [45]. The majority of published 
work confirms that the effect of other materials properties is less important compared to the 
effect of thermal conductivity.  

Having presented an initial validation of the IMV model, we proceed now to more 
detailed description on the radiative heat transfer; these include presentation of the radiative 
transport equation (RTE), the proposed models and 2D numerical validation. Finally, in the 
last sections, various results for the fluid and thermal flow processes simulated are illustrated 
in order to enhance the physical understanding of the phenomena taking place inside 
industrial furnaces. 

5.3 Radiative heat transfer 
 

The overall efficiency, the quality of the heated ingots and the production rates can be 
related directly to the accuracy of the thermal radiation model in industrial furnaces. We agree 
that thermal radiation exchange is the dominant mode of heat transfer in most furnaces and it 
depends on many factors including position, local temperature and composition. However, the 
prediction of radiative transfer is very complex due to the multidimensional and spectral 
nature of radiation. Recently, many works have been devoted to introduce some 
simplifications and assumptions suited to some particular application and modelling 
approach. Therefore, in this section we introduce some basic models to solve radiative heat 
transfer. In other words, the main focus of this section is structured around the following two 
questions: How do we predict radiative heat transfer inside industrial furnaces?  Which model 
we should use that can be adapted to the IVM approach described previously?   
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Two kinds of radiation heat transfer occur inside a furnace enclosure: from workpieces 
to workpieces and from furnace (flame, hot combustion gases…) to workpieces. Many studies 
have been done to simulate the radiative exchange between solids [65], while other works 
mainly focus on the gas radiative heat transfer [48, 49]. However, there are few studies that 
deal with both type of exchange. Summarizing, heat transfer and turbulent flows between 
furnace and workpieces, among workpieces and inside workpieces simultaneously are 
extremely complicated and to our knowledge this work can be considered among the few 
attempts to attempt such objectives [52, 53, 54]. 
 

The topic of analyzing different approaches to model accurately radiation inside 
furnaces can serve as a Ph.D. level thesis all on its own and need further inspections. 
However, for validation purposes, we have conducted a research trying to find the best fitted 
radiative heat transfer models that could complement, even as a start, the IVM approach. In 
what follows, we summarize the retained methods.  
 
5.3.1 Introduction 
 

Radiative heat transfers occur in several physical processes such as combustion, 
nuclear reactor safety, and of course furnaces. However, due to its complexity, it was 
generally neglected or replaced by some semi-empirical assumptions in many numerical 
computations. Such complexity can be characterized by the high computational cost, need of 
chemical database, or the important uncertainty concerning the optical properties of the 
participating media and surfaces.  

At the same time, radiation can strongly interact with convection in many situations of 
engineering interest. As highlighted in the following numerical example, the influence of 
radiation on natural convection is generally stronger than that on forced convection due to 
inherent coupling between the temperature and the flow fields in enclosures.  

In the full simulation of combustion systems, the radiative transfer, which is an 
integro-differential equation, must be solved along with the partial differential equations of 
material, momentum, energy transport and chemical reactions as a fully coupled system. The 
most accurate procedures available in the literature for computing radiative transfer are the 
zonal and Monte-Carlo methods ( Modest, McGraw Hill, 1993 [58]). However, these methods 
are not generally applied in combustion calculations due to their large computational time and 
storage requirements. Note also that these equations are in non-differential form, a significant 
inconvenience when solved in conjunction with the differential equations of flow and 
combustion.  

In the current work, we are interested in modelling the energy transport in high-
temperature gases using the CFD codes. Therefore, the models for solving the radiative 
transfer must be compatible with the numerical methods employed to solve the reacting flow 
equations. The zonal and Monte Carlo methods for solving the radiative transfer problem are 
incompatible with the mathematical formulations used in CFD codes, and require prohibitive 
computational resources for the desired spatial resolution. The discrete-ordinate and transfer 
methods (DOM/DTM, [63, 64]) appear to be reasonable compromises for solving the 
radiative transfer equations, but still one has to deal with large systems of algebraic equations, 
resulting from discretizing angle and space coordinates, that may deteriorate the efficiency of 
the CFD code. 
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Other approximated models for radiative transfer have also been derived and widely 
used in the literature. For instance we mention the diffusion approach (Rosseland, [50,58]) 
and the simplified PN equations, when the medium under consideration is isotropic and 
optically thick (opaque). In fact, in an opaque medium the system is close to a radiative 
equilibrium for which assumptions of diffusion and simplified PN equations are satisfied. 
Hence, in spite of the weaknesses of such approaches, especially when dealing with 
anisotropic or transparent (optically thin) media, i.e. when the system is far from the radiative 
equilibrium, they provide significant improvements for predicting interactions between 
radiation and matter. The following table summarizes a comparison of the different methods 
for modelling radiation transfer in furnaces: 
 
 

Model Description Advantages Disadvantages 

 
Monte 
Carlo 

models 

 
Uses random numbers to 
simulate and track 
individual beams of 
radiation through a furnace 
enclosure. 
 

 
-easy for complex geometries  
-handle shadowing effects 
-model scattering, specular 
reflectors and spectral wall 
properties. 

 
-incompatible with CFD 
equations 
-random behaviour does not 
guarantee the convergence. 

Flux 
models 

Direct solution of the RTE 
equation by subdividing 
the directional variation 
into a small number of 
angles in which radiation 
intensity is assumed to be 
constant. 

-valid to non-homogeneous 
absorbing and scattering 
media.  
-compatible with CFD model 
 

-all surface are diffusive 
 
-over-prediction of radiation 
 

 
Zonal 
models 

 
Radiation heat balance 
equations are solved using 
radiation exchange factors 
between each zone pair. 
 

 
-simple model, does not 
require complex solution 
techniques   
-valid to non-grey gases  

 
-invalid for non-homogeneous 
gases 
-incompatible with CFD  
-high computational cost  

The DTM Applies features of the 
above three methods  
 
 
 

-easy for complex geometries   
-valid for non-homogeneous 
gases  

-less accurate than the Zone 
method 
 

 
Here in this study, we shall restrict ourselves to the flux models which can be applied to non-
homogeneous absorbing media and they are well suited to application in CFD models.  
 
 
 
5.3.2 The radiative transport equation (RTE) 
 
The general equation of radiative transport is given by Eq. (5.13) [50]. The transport equation 
describes how radiant energy is affected as it travels through a medium along a direction s. 
 

4
( , ) (k k ) ( , ) k ( , ) ( , )

4
s

a s a b c

k
s I r s I r s I I r s s s d S

ππ
′ ′⋅∇ = − + + + φ Ω +∫  

(5.13) 
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In the above, s and r denote a unit vector along the direction of the radiation intensity I 
and the local position vector, respectively. ka and ks stands for the absorption and scattering 
coefficients respectively. Φ is a probability function, formally known as the phase function, 
and Sc represents the resulting radiative source term. Ω

’ denotes the solid angle. The specific 
role of each introduced functions that account for the RTE model is discussed briefly.(see [58, 
59]) 

The first term on the right hand side represents the attenuation of the incident energy 
by the extinction properties of the medium and constitutes a negative change in the incident 
energy. The second term represents the amount of energy which is emitted into the s direction 
by mass located along that direction. Energy which is attenuated and converted to internal 
energy may subsequently be emitted. The third term is shown in terms of the absorption 
coefficient ka; it is written this way to show that equal magnitudes of energy are absorbed and 
re-emitted in order when there is thermodynamic equilibrium. Ib is the blackbody intensity 
emitted by the medium at the local temperatures at position s. 
 

The last terms represents what may be called "Inscatterring", which is defined as that 
amount of energy from other directions which is scattered into the s direction after interacting 
with neighbouring elements. The probability function, Φ, scales the scattering of the 
neighbouring elements according to the uniformity or isotropy of the resulting scattered 
radiation. Inscatterring causes a positive change to the local intensity. Futher details can be 
found in [56, 57]. 
 
 
5.3.3 Diffusive grey medium assumption 
 

The equation of radiation transport is an integro-differential equation. It is complex to 
apply this equation due to the nature of the required information (seven variables in particular 
Φ) and the need to find the intensity for each location within the medium and for each angular 
orientation.  

 
Since solving equation (5.13) is often prohibitive in terms of CPU time, 

approximations can be made for varying situations which greatly simplify the analysis. The 
diffusion approximation, introduced by [59] presents one of the most important 
simplification. It is valid when the local intensity within the medium is a result of local 
emissions only; that is, emissions from distant elements are either absorbed or scattered and 
consequently diminished.  

 
In [58] the author shows that the accurate knowledge of frequential and directional 

properties is not always necessary and depends on the considered applications. Recall that 
studying the spectrum of a star and analysing the medium in which the beams go through 
require a very accurate resolution as far as the frequencies are concerned. Similarly, when one 
is interested by the anisotropic aspect of the intensity to study the surrounding radiative 
sources, one has to treat very accurately the angular dependency. However, when the global 
thermodynamic exchanges between the material and the radiative beam are the main concern, 
averaged values of frequential and directional properties are ‘often sufficient’. In the case of 
radiative exchanges in a furnace, this last approach, the diffuse grey medium assumption can 
be considered.  
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We begin by introducing the representative macroscopic quantities needed to derive 
the diffusive radiative model. By integrating the specific radiative intensity over the whole 
electromagnetic spectrum, for all directions and over all the wavelengths λ, the radiative 
energy, the vector of radiative flux and the tensor of radiative pressure are defined as: 
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(5.14) 

 
Remark 1. The radiative energy is usually referred by engineers and researcher as the 
incident radiative intensity Gray  = c Eray where c is the speed of light. 
 
For diffusive grey medium, we assume that the absorption coefficient is independent form the 
frequency and direction. Thus, according to the Bouguer Law, [59] the mean absorption 
coefficient can be defined by:  
 

1
k ln(1 )

m

a
L

−= −
 

(5.15) 

where a is the macroscopic absorptivity of the medium. 
 
Lm stands for the mean path length. In practical calculation, it can be considered as the 
characteristic size of the furnace which reads (see [59]): 

4
m

V
L C

S
=

 
(5.16) 

where V and S are respectively the volume and the surface area of the furnace and C is a 
correction factor typically taken as 0.9. Alternate mean beam lengths are based on the grid 
cell size as follows: 

4
m

V
L C

S

∆=
∆  

(5.17) 

with and 2( )V x y z S x y y z z x∆ = ∆ ∆ ∆ ∆ = ∆ ∆ + ∆ ∆ + ∆ ∆ . The definition adopted in the 

numerical computations is based on computing an appropriate volume and surface of the 
considered simplex when using unstructured grid [66].  
 

Based on the work of Modest [59], the author provides a comprehensive derivation for 
the diffusion approximation. The main conclusion that we can get is that the divergence of the 
radiative heat flux represents the difference between the energy emitted from a point through 
thermal radiation and the incident energy form all other points in the domain and is given by: 
 

4k(4 )ray rayq T Gπσ∇ ⋅ = −  (5.18) 

where σ is the Stefan–Boltzmann constant,  5.670 × 10–8  W.m–2.K–4 
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As a conclusion, solving now for the incident radiation Gray yields the required 
volumetric source term rayq∇ ⋅ . This source term is introduced back into the energy equation 

ensuring as a sink/load source the radiative heat transfer in the enclosure. Two basic models 
are studied and implemented in this work to solve the incident radiation G: the P1-model and 
the Rosseland model.  
 
5.3.4 P1-model 

 
The P1 model has been used for a number of years in the calculation of radiation 

transfer for industrial computational fluid dynamics (CFD), particularly in the simulation of 
combustion systems. In these applications, it was assumed that the absorption coefficient is 
constant, or an effective value was found, which is a function of composition and 
temperature, by some averaging technique such as the weighted-sum-of-grey-gases [59]. For 
the calculation of high temperature heated objects and the surrounding hot gases, such a 
degree of approximation is unacceptable, but a full integration over frequency is too 
computationally expensive. The averaged absorption coefficient (equation 1.3.3) can be used 
to solve the P1 equation. The governing equations for the P1 model are derived in detail in 
[51, 58, 59]. It was shown that under this diffusive limit, there is a link between the radiative 
pressure tensor and the radiative energy referred as the closure relation:  
 

1

3r rP E= I
 

(5.19) 

with I the identity tensor.  
 
Such a closure relation together with (5.14) and (5.18) enables to express the radiative flux as 
a linear function of the incident intensity gradient: 

1

3kray rayq G= − ∇
 

(5.20) 

 
For completeness, inserting the last expression into the radiative energy equation (RTE) leads 
to the well-known P1 diffusion-reaction equation: 

41
k 4k

3k ray rayG G Tσ −∇ ⋅ ∇ + = 
   

(5.21) 

 
The boundary condition for the P1 model is derived and discussed in detail in [57] and is 
given by: 
 

4(4k )
2(2 )

w
w w

w

eG
T G

n e
σ∂ = −

∂ −  
(5.22) 

 
where ew stands for the emissivity at the wall, the subscript w indicates the value at the wall 
and the direction n is normal to the wall and points into the gas. This expression, used usually 
in neutron diffusion theory, is known as the Marshak boundary condition [51, 57]. 



200                                                       The Immersed Volume Method and thermal radiation 
 
 
5.3.5 Rosseland model 
 

The Rosseland approximation has been established in [47] by a method based on a 
multiscale expansion in powers of the emissivity. In [50], the same Rosseland approximation 
is introduced for a reduced version of the grey model neglecting the time derivative in the 
energy balance equation. Compared to the P1 model, the Rosseland approximation introduces 
a supplementary simplification by approximating the radiative intensity using the Planck 
distribution [58]. It follows that the grey incident radiative intensity reads: 

44rayG Tσ=  (5.23) 

The grey radiative flux is expresses as: 
3

44 16
( )

3k 3kray

T
q T T

σ σ= − ∇ ≈ − ∇
 

(5.24) 

As shown in equation (5.24), the Rosseland model accounts for radiation losses through the 
use of a diffusive source term in the energy equation through an additional conductivity 
denoted by: 

316
k

3ray

T

k

σ= −
 

(5.25) 

The radiation problem thus reduces to a simple conduction problem with strongly temperature 
dependent conductivity.  
 
 
5.3.6 Conclusion and discussion 
 

The limitations of the so-called Rosseland approximation have been extensively 
studied in the literature. In general, despite the simplicity of this model, it predicts nearly 
uniform temperatures and neglects directional dependence while assuming that all energy is 
directly converted into radiation energy. These assumptions lead to poor numerical results 
when simulating industrial furnaces with heated objects.  
 

On the other hands, the P1 approach requires the solution of a radiation transport 
equation (RTE), and it is based on the assumption that radiation is continuous throughout the 
domain. It works best with participating media. The results of the P1 model are expected to 
yield better results inside the furnace with participating heated objects considering the modest 
calculation effort. Therefore, the one with the lowest computational effort, the P1 model, 
should be chosen for the time being. However, if the temperature distribution is important, 
this model, know to be a diffusion model, can yield over-predict radiation and must be 
replaced. This will be the subject of further investigations and future works.  
 

Since the IVM method used is shown as an attractive way to solve a coupled heat 
treatment problem by numerical simulation. Some needed improvements have been identified, 
mainly regarding the radiative heat transfer. An improved directional method in the 
CIMBLIB library is identified by the work of T. Kloczko [67, 68] for future works.  
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The natural assumption for a heterogeneous medium (solid/fluid) is to consider it as a 

single fluid with different opacities (absorption coefficients). Therefore, the effective medium 
is obtained using the IVM method and by defining an effective opacity (absorption 
coefficients) using an arithmetic mean formulation:  
 

( )a a a  k k k (1 ( ))solid fluidH Hα α= + −  (5.26) 

 
We restrict ourselves to the case where the two opacities exhibit a high-contrast ration: 

one of the component is diffusive and opaque (solid part) whereas the other one is not and is 
considered as non-participating medium (fluid part). It is noticed that solving the radiative 
transport equation (RTE) in both domains generates a volume source term rendered by the 
sharp discontinuity of the temperature and the materials properties. This source term is 
introduced into the energy equation ensuring the continuous cooling/heating of the immersed 
objects.  
 

More details about using the Rosseland approximation for radiative transfer in 
heterogeneous media can be found in [69, 70]. Both methods are implemented in the CIMLIB 
library, but only the P1 model is used in this study. For simple configuration inside an 
enclosure and in the presence of a heated object, the proposed effective opacities approach is 
considered as a first attempt. A complete study taking into account different objects and 
shadowing is a work on progress. The remainder of the chapter is structured as follows. In the 
next section, we present a 2D test case for validating the P1-model equation. In section 4, we 
give more simulation and numerical results on the effective opacity of the mixture.  
 

 

5.3.7  Combined natural convection and radiation in a square cavity 

One of the most popular benchmark in CFD computations is the laminar flow in a 
two-dimensional square cavity with differentially heated sidewalls. This test has been widely 
used as a benchmark for the validation of numerical codes and has been analyzed by a number 
of authors [60, 61]. The velocity and the temperature equations are coupled due to the 
buoyancy force and solved. Consequently, the flow inside the enclosure is driven by the 
temperature differences. The ratio of these two temperature differences is a very important 
factor to decide the heat transfer and flow characteristics of the enclosure.  

Here, in the present study, the main focus is restricted to validate the implementation 
of the P1-model and to evaluate the influence of the radiative heat transfer inside the cavity. 
The problem description and boundary conditions are shown in figure 13. The left wall is kept 
at a constant cold temperature of Tc=1000 K, whereas the right wall is kept at a constant high 
temperature of Th=2000 K. Other two walls are maintained at adiabatic condition. The 
radiation effects are assumed to be negligible in the first study case and active with absorption 
coefficients of 0.2 and 5 in the second one. We assume that the fluid properties are to be 
constant, except for the density in the buoyancy term, which allows Boussinesq 
approximation. The gravitational acceleration is taken parallel to the isothermal walls.  



202                                                       The Immersed Volume Method and thermal radiation 
 

 

Figure 13. Schematic domain and boundary conditions 

Radiation effects on convection can be quite important in the context of many 
industrial applications involving high temperatures such as nuclear power plant, gas turbines, 
and various propulsion engines for aircraft, missiles, satellites, and space technology. Ali et 
al. [71] studied the natural convection-radiation interaction in boundary layer flow over 
horizontal surfaces. Hossain and Pop [72] considered the effect of radiation on free 
convection of an optically dense viscous incompressible fluid along a heated inclined flat 
surface maintained at uniform temperature placed in a saturated porous medium. Hossain and 
Takhar [73] investigated the radiation effect on the mixed convection flow of an optically 
dense viscous incompressible fluid over vertical flat plate.  
 

In the present study, we analyzed the combined effect of radiation and heat absorption 
coefficient on the natural convection flow inside an enclosure [74]. In order to validate the 
accuracy of the present implemented solver, the results are compared with the numerical 
calculations obtained by Fluent [55-75]. The Prandtl number is taken to be 0.71, and the 
Rayleigh number based on the length of the cavity is 5.105. Note that the values of all 
physical properties and operating conditions (e.g., gravitational acceleration) have been 
adjusted to yield the desired Prandtl, Rayleigh, and Planck numbers and were adapted from 
Fluent user guide [75]. 

Let us remind some dimensionless numbers relevant in the coupled heat transfer and 
fluid flow. First, the Rayleigh number, a non-dimensional number, is the buoyant force 
divided by the product of the viscous drag and the rate of heat diffusion, it is given by: 

3( )h cg T T L
Ra

k

ρ β
µ

−=
 

(5.27) 

 
where β is the coefficient of thermal expansion of the fluid, ∆T = Th-Tc  is the temperature 
difference between the right hot and left cold walls in the figure separated by width L, k is the 
thermal diffusivity of the fluid, µ the dynamic viscosity and ρ the density of the fluid. It 
represents the ratio between the conduction and the convection for a given fluid in a certain   
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geometry configuration. Once the Ra exceeds a critical value, the dominant energy transport 
mechanism in the fluid becomes the convection. 
 

The Prandtl number Pr is a dimensionless number representing the ratio of the 
kinematic viscosity to the thermal diffusivity of a fluid and is an important control variable in 
thermal convection. It is defined as:  
 

Pr pc viscous diffusion rate

k thermal diffusion rate

µ
= =

 
(5.28) 

 
The division of the Rayleigh number by the Prandtl number gives the Grashof number, an 
interesting dimensionless number in fluid dynamics and heat transfer that approximates the 
ratio of the buoyancy to viscous force acting on a fluid. It frequently arises in the study of 
situations involving natural convection and it is given by: 
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(5.29) 

where υ is the kinematic viscosity. 
 

Finally, the Boussinesq approximation used for many natural-convection flows states 
that density differences are sufficiently small to be neglected, except where they appear in 
terms multiplied by g, the acceleration due to gravity. The essence of the Boussinesq 
approximation is that the difference in inertia is negligible but gravity is sufficiently strong to 
make the specific weight appreciably different between the two fluids. Consequently, the 
force term in the momentum equation change into: 
 

0 0 0( ) ( )g T T gρ ρ ρ β− ≈ − −  (5.30) 

where ρ0 is the constant density of the flow, T0 is the operating temperature, and β  is again 
the thermal expansion coefficient. 
 

In order to obtain the field of velocities, pressures, temperature and the incident 
radiation, the energy equation, the P1-model and the Navier-Stokes equations using the 
Boussinesq approximation are coupled and solved simultaneously. Figure 14 and 15 shows at 
convergence state, the isotherms and streamlines obtained using a pure natural convection 
compared to those obtained by the conjugate convection-radiation problem (absorption 
coefficient k=0.2 and k=5).  
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Figure 14. Temperature contours: without radiation (left); with radiation k=0.2 (center); 
with radiation k=5 (right) 

The classical recirculatory patterns observed are due to the natural convection in the 
cavity. At a low optical thickness (k=0.2), radiation should not have that large influence on 
the flow. The flow pattern is expected to be similar to that obtained with no radiation. 
However, for high optical thickness (k=5), the radiative source term becomes more important. 
In this case, one single circulation cell was formed and flow strength increases. With the 
increase of natural convection mechanism the flow pattern becomes very symmetric and the 
temperature distribution becomes more homogeneous as shown in figure 14 (right).   

 

     
 

Figure 15. General streamline pattern:  pure convection (left); with radiation k=0.2 (center); 
with radiation k=5 (right) 

 
The velocity profiles for uy along y=0.5 are shown in figure 16. The numerical 

solutions are indistinguishable from the reference solutions. This confirms the validity of the 
implemented finite element radiative solver.  These plots show the effect of the radiation 
parameter on the velocity fields. It is noticed that increasing the radiation parameter plays an 
important role inside the enclosure and enhances the velocity profile. These behaviors are 
expected inside a furnace enclosure. 
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Figure  16.  Velocity profiles for uy along y=0.5 
 
 

We can conclude from this simple example that radiation can strongly interact with 
convection in many situations. The influence of radiation on natural convection was 
highlighted and plays an important role due to inherent coupling between the temperature and 
the flow fields in enclosures.  
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5.4 Applications 
 

The main objective of this last section is to provide a numerical investigation of 
conjugate heat transfer and turbulent airflow in a full-scale industrial furnace. This type of 
application allows improvement in the productivity with very low capital investment, 
consequently reducing energy consumption. In addition, experimental tests have 
demonstrated that the furnace performance may be improved significantly by design 
optimization. A design optimization involves finding the best geometry of the furnace, which 
include the furnace dimensioning, positioning and type of the burners, positioning of exhaust 
ports, positioning and arrangement of the treated ingots. Because of great complexity of the 
problem, the large diversity of shape and large number of parameters variables involved, a 
complete analysis is only possible with the aid of powerful numerical codes and computers.  
 

We can find in the literature several recent works dedicated to the numerical 
investigation of combustion processes with different models [78, 79, 80]. The present work 
attempts to provide an additional contribution by simulating the heat treatment process inside 
an industrial furnace using the IVM approach. The advantage of the proposed method can be 
resumed by the following points:  
 

− The model produces detailed information simultaneously in both domains: the 
treated ingots and the surrounding hot air 

− Easy for the designer to simulate several different operational situations 
− Capable of handling multiple parts in 3-D.  
− Inexpensive for the designer to simulate conjugate problems: conduction in the 

solid and convection in the rest of the domain by solving one set of equations 
− Accurate representation of the fluid-solid interface 
− No need for previous experimental tests to deduce the transfer heat coefficient 

that ensures the heat exchange between subdomains.  
 

However, experiments must be performed in order to provide better understanding of the 
physics involved as well as to produce real data against which the model results should be 
compared.  
 
5.4.1 Forced and natural convection of conducting solids 

 
In this section, we will propose three numerical examples to illustrate the IVM 

approach from heat transfer and turbulent fluid dynamics points of view. We consider three 
cases:  

− cases (a) and (b) the continuous heating of immersed ingots by forced 
convection.  

− case (c) considers the air-cooling by natural convection of two heated objects 
inside an enclosure.  
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The radiation in these examples is considered negligible. Figure 17 illustrates the 

simplified pre-heated furnace geometry, which has a rectangular shape, with one ingot (case 
a) and two ingots (case b) inside located on the lower surface at arbitrary position. Figure 18 
illustrates the air cooling of two heated ingots in a simplified cold enclosure. The materials 
properties affected to each domains, the initial conditions and the parameters used in these 
test are presented in table III and IV respectively. 
 
Domain Temperature °C Density kg/m3 Heat capacity J/Kg°C ConductivityW/m°C 

Fluid 250°C 1.2 1000 0.02 
Solid (s) 50°C 100 1000 175 
 

Table III. Material properties for case (a) and (b)  
 

Domain Temperature °C Density kg/m3 Heat capacity J/Kg°C ConductivityW/m°C 

Fluid 20°C 1.2 1000 0.02 
Solid (1) 500°C 100 1000 175 
Solid (2) 250°C 100 1000 175 
 

Table IV.  Material properties for case (c) 
 

The levelset function is first applied to define and positioned the treated objects. The 
second step consists in deriving the anisotropic adapted mesh that describes very accurately 
the interface between the workpieces and the surrounding air. Recall that the mesh algorithm 
allows the creation of extremely stretched elements along the interface, which is an important 
requirement for multimaterial problem with surface conductive layers. The additional nodes 
are added only at the interface region keeping the computational cost low.  
 

 
 

Figure 17.  Schematic diagram and boundary condition; case (a) and (b) 
 

Once the mesh is well adapted along the interface, the material distribution between 
each physical domain can be described by means of the level set function. Consequently, the 
same set of equations; momentum equations, energy equation, the turbulent kinetic and 
dissipation energy equations (k-epsilon model), is simultaneously solved over the entire 
domain including both fluid and solid regions with variable material properties (see table III, 
and IV). 
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Note also that the interface between the solid and the fluid is rendered by the zero 
isovalue of the distance function; hence the calculations of the classical boundary conditions 
to ensure the heat exchange between the subdomains are no longer applicable on their 
interfaces.  

The state of art in the proposed thermal coupling analysis lies in that the heat transfer 
between the solid and the air at the interface has been treated “naturally", i.e. without the use 
or a previous knowledge of any heat transfer coefficient.  

The discretization in space for the incompressible Navier-Stokes equations, the heat 
transfer equation and the turbulence equations is performed by an unstructured grid stabilized 
finite element method. Thus, the numerical oscillations and thermal shocks are well captured 
and smooth solutions are obtained. 
 

 
 

Figure 18.  Schematic diagram and boundary condition; case (c) 
 
 

The evolution of the isotherms at different time steps inside the simplified furnace is 
illustrated in Figure 19. The hot air is pumped from the left inlet at 2m/s at a fixed 
temperature of 1000°C. The air is vented out the enclosure through the outlet positioned at left 
vertical wall. Standard wall function is applied on the rest of the boundary. The shape of the 
treated object is well capture and respected by applying the anisotropic mesh adaptation.  

The ingots slow down the injected air from the burner and slightly influence the main 
air circulation inside the domain. This explains the difference in the flow pattern between the 
two cases. 

When the hot fluid passes across the volume of the furnace, it induces a turbulent and 
recalculating motion within the geometry. This forced convection is caused by the interaction 
of the moving stream and the stationary fluid inside the furnace. The temperature distribution 
clearly indicates this expected flow pattern. The air movement around the workpieces is 
interesting; i.e. it allow studying the influence of different arrangements and positions to 
optimize the heat treatment. A number of vortexes between the objects and the surroundings 
can be observed due to the turbulence dissipation and mixing between the hot and cold air.  
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Figure  19.  Temperature distribution at different time step 
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In the next example we consider the air-cooling by natural convection of the heated 
ingots. Natural convection in an enclosed container has received a great deal of attention by 
research community due to the importance in many engineering devices. Most of the research 
has concentrated on the vertical differentially heated square problem where one side wall is a 
relatively hot temperature and the other side wall is at a relatively cold temperature and the 
top and bottom of the enclosure are adiabatic, while less attention was devoted to the presence 
of conduction bodies (except recently, [62, 76, 77]).  

The radiation effects are assumed to be negligible. We assume that the fluid properties 
are to be constant, except for the density in the buoyancy term, which allows Boussinesq 
approximation. The gravitational acceleration is taken parallel to the vertical walls. Figure 20 
shows the evolution of the temperature distribution at different time steps inside the 
simplified enclosure. Initially, the air inside the enclosure has the same cold temperature and 
is at rest. As the air inside becomes heated by conduction coming from both heated ingots, the 
temperature increases and the expected recirculation appears. Once again, the geometry of the 
objects immersed in the enclosure is respected due to the high efficacy of the mesh adaptation 
[36, 37, 38]. 

 
 

 
 
 

      
 

      
 
 
 
 
 



Applications 211 
 
 

      
 

Figure  20.  Temperature distribution at different time step 
 
 
5.4.2 Results and discussion 

 
Three simple numerical computations were presented to asses and illustrate the 

general ingredients of the IVM method. Although the geometry is simple, we always choose 
sharp gradients in the temperature and high discontinuity in the material properties to test the 
effectiveness of the implemented methods and also to be close as much as we can to the real 
industrial cases.  
 

A very important common characteristic of solid–fluid heterogeneous media is still 
how to resolve the discontinuity in physical properties across their interfaces. In the IVM 
method, the level-set function identifies automatically the solid part from the fluid region and 
applies the anisotropic mesh adaptation at the interface Conductivities are then calculated 
using a harmonic mean formulation [32] in order to handle the abrupt changes in the material 
properties Thus, we automatically well establish the continuity of temperature and heat flux 
across the interface. 
 

Also note that the use of high value of the relative kinematics viscosity in solid region 
would make the velocity components negligibly small by solving the momentum equations 
and hence the no-slip condition on the refined interface is satisfied. Therefore, the energy 
equation is reduced to transient heat conduction equation for the solid body, because its 
convection terms vanish. The implemented stabilized finite element method (section 2.5) is 
well adapted to the IVM approach and shown to be effective in capturing the thermal shocks 
at the interface. More examples and comparisons with the literature are given next.  
 

Concerning the solid domain, we have used the penalty method known as Standard 
Solid Penalty (SSP) approach, which uses simply a constant high viscosity in the solid region 
to mark the solid body without adding extra constraints.[15]. However, it is also well-known 
that the involved flow solver can face some problems with strongly discontinuous 
coefficients. Moreover, the influence of discontinuity that means the viscosity ratio between 
the solid and the fluid is not clear yet. Since choosing finite value parameters for viscosity as 
an approximation for the infinite values for real solid can lead to penetration from the 
surrounding flow into this object. However, this internal diffusion is mainly related to the 
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actual size of viscosity and the time scale for observing such perturbations may be much 
larger than the actual time interval calculation. Summing up, the combination of the local 
mesh adaptation and the use of iterative solvers together with the smoothed distribution of the 
viscosity across the interface may overcome this drawback and lead to good numerical 
behaviour. 
 

Since the idea is to investigate how well we can replace boundary conditions between 
two subdomains by volumetric source terms, various benchmarks, numerical examples and 
experimental validation are presented in the next sections. Simple 2D and 3D benchmarks to 
demonstrate the effectiveness of the proposed approach are given in chapter 6. Further 
investigations on more complex situations will be given. The last section is devoted to the 
main conclusion and computations for a real industrial furnace.  
 
 

5.5 Conclusion 

The flow regimes have been simulated by solving simultaneously the coupled flow and 
heat transfer processes inside different enclosures. An immersed volume method is introduced 
to identify inside each enclosure the surrounding air and the solid subdomains based on the 
levelset approach. Adaptive anisotropic local grid refinement was employed for capturing the 
sharp discontinuities of the fluid-solid interface. The temperature variation across the 
interface was calculated assuming heat flux continuity; for all variables in the computational 
domain containing solid and fluid, a parametric investigation has revealed that the harmonic 
formulation for the thermal conductivity provided better predictions against the experimental 
data available. The IVM approach was tested on two numerical examples showing a 
promising tool for simulating thermal coupling of solids and fluids. The volumetric radiation 
was introduced and detailed. Two simple models are implemented and tested. Various 
benchmarks and more complex numerical examples are given in the next chapter. The 
numerical results of forced turbulent convection inside industrial furnace are also included. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 213 
 

References 
 
[1] Houzeaux G, Codina R. An overlapping Dirichlet/Robin domain decomposition method. 
Journal of Computational and Applied Mathematics 2003; 158(2):243-276. 
 
[2] Felippa CA. Partitioned analysis for coupled mechanical systems. Engineering 
Computations 1988; 5:123-133. 
 
[3] Principe J, Codina R. A numerical approximation of the thermal coupling of fluids and 
solids. International Journal for Numerical Methods in Fluids 2009; 59:1181-1201. 
 
[4] Fedkiw R, Aslam T, Merriman B, , Osher S. A non-oscillatory eulerian approach to 
interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics 
1999; 152:457. 
 
[5] Fadlun E, Verzicco R, Orlandi P, Mohd-Yusof J. Combined immersed boundary finite 
diffrence methods for three-dimensional complex flow simulations. Journal of Computational 
Physics 2000; 161:35-60. 
 
[6] Peskin CS. The immersed boundary method. Acta Numerica 2002; 11:1-39. 
 
[7] Rixen D, Gosselet P. Domain decomposition methods applied to challenging engineering 
problems. 16th International Conference on Domain Decomposition Method, New-York, 
2005; 564-581. 
 
[8] Sukumar N, Moes N, Moran B, Belytschko T. Extended finite element method for three 
dimensional crack modeling. International Journal for Numerical Methods in Engineering 
2000; 48(11):1549-1570. 
 
[9] Bruchon J, Digonnet H, Coupez T. Using a signed distance function for the simulation of 
metal forming processes: Formulation of the contact condition and mesh adaptation. from a 
Lagrangian approach to an Eulerian approach. International Journal for Numerical Methods 
in Engineering 2008; online. 
 
[10] Valette R, Coupez T, David C, Vergnes B. A direct 3D numerical simulation code for 
extrusion and mixing  processes. International Polymer Processing XXIV 2009; 2:141-147. 
 
[11] Bernacki M, Chastel Y, Coupez T. Level set method for the numerical modelling of 
primary recrystallization in the polycrystalline materials. Scripta Materialia 2008; 
58(12):1129-1132. 
 
[12] Gruau C, Coupez T. 3D tetrahedral, unstructured and anisotropic mesh generation with 
adaptation to natural and multidomain metric. Computer Methods in Applied Mechanics and 
Engineering 2005; 194:4951-4976 
 
[13] T. Coupez, H. Digonnet, Y. Mesri, Adaptive Anisotropic Parallel Mesh Adaptation with 
Applications to Interface Capturing Problem, 17 th Mesh Round Table. Pittsburgh, 2008 
 



214                                                       The Immersed Volume Method and thermal radiation 
 
[14] R. N. ELIAS, M. A. D. MARTINS, A. L. G. A. COUTINHO, Simple Finite Element-
Based Computation of Distance Functions in Unstructured Grids , International Journal for 
Numerical Methods and Engineering, (72):1095-1110, 2007 
 
[15] Laure P, Beaume G, Basset O, Silva L, Coupez T. Les méthodes numériques pour les 
écoulements de fluides chargés. 1er colloque du GDR interactions fluide structure, 2005. 
 
[16] T. Coupez, Génération de maillage et adaptation de maillage par optimisation locale. 
Revue européenne des éléments finis 2000; 9(4):403-423. 
 
[17] Valette R, Bruchon J, Digonnet H, Laure P, Leboeuf M, Silva L, Vergnes B, Coupez T. 
Méthodes d'interaction fluide-structure pour la simulation multi-échelles des procédés de 
mélange. Mécanique et Industries 2007; 8(3):251-258. 
 

[18] T. Coupez, Rénitialisation convective et locale des fonctions levelset pour le mouvement 
de surfaces et d'interfaces, in: Journées Activités Universitaires de Mécanique 
 
[19] T. Coupez, "A mesh improvement method for 3D automatic remeshing". 4th 
International Conference of Numerical Grid Generation in Computational Fluid Dynamics 
and Related Fields. Swansea, Wales 6th - 8th April 1994. 
 
[20] T. Coupez. Grandes transformations et remaillage automatique. PhD thesis, Ecole 
Nationale supérieure des mines de Paris, 1991. 
 
[21] Basset O. Simulation numérique d'écoulements multi-fluides sur grille de calcul. PhD 
Thesis, Ecole Nationale Supérieure des Mines de Paris 2006. 
 
[22] T. Coupez. Parallel adaptive remeshing in 3d moving mesh finite element. In B.K. Soni 
and al., editors, Numerical Grid Generation in Computational Field Simulation, volume 1, 
pages 783–792. Mississippi University, 1996. 
 
[23] M. Kimura and H. Notsu. A level set method using the signed distance function, Japan 
Journal of Industrial and Applied Mathematics 19 (2002), no. 3, 415{446. 
 
[24] Basset O. Simulation numérique d'écoulements multi-fluides sur grille de calcul. PhD 
Thesis, Ecole Nationale Supérieure des Mines de Paris 2006. 
 
[25] Beaume Grégory. Modélisation et simulation de l'écoulement d'un fluide complexe. PhD 
Thesis, Ecole Nationale Supérieure des Mines de Paris 2008. 
 
[26] Gruau Cyril, Génération de métriques pour adaptation anisotrope de maillages, 
applications à la mise en forme des matériaux.. PhD Thesis, Ecole Nationale Supérieure des 
Mines de Paris 2004. 
 
[27] Bendsoe M., Kikuchi N. 1988 Generating Optimal Topologies in Structural Design 
Using a Homogenization Method, Comp. Meth. Appl. Mech. Eng. 71, 197-224. 
 
 
 



References 215 
 
[28] M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to 
incompressible two-phase flow, Journal of Computational Physics 114 (1994), pp. 146–159 
 
[29] O.S. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, 
multi-fluid flows, Journal of Computational Physics 100 (1992), pp. 25–37. 
 
[30] M. Sussman, A.S. Almgren, J.B. Bell, L.H. Howell, P. Colella and W.L. Welcome, An 
adaptive level set approach for incompressible two-phase flows, J. Comput. Phys. 148 (1999), 
pp. 81–124. 
 
[31] M. Kang, R.P. Fedkiw and X.D. Liu, A boundary condition capturing method for 
multiphase incompressible flow, J. Sci. Comput. 15 (2000), pp. 323–360 
 
[32] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Series in Computational and 
Physical Processes in Mechanics and Thermal Sciences, Taylor & Francis, 1980. 
 
[33] G. Iaccarino and S. Moreau, Natural and forced conjugate heat transfer in complex 
geometries on Cartesian adapted grids, J. Fluids Eng. 128 (2006), pp. 838–846 
 
[34] S. Kang, An improved immersed boundary method for computation of turbulent flows 
with heat transfer. Ph.D. Thesis, Stanford University, 2008. 
 
[35] Z. Yu, X. Shao and A. Wachs, A fictitious domain method for particulate flows with heat 
transfer, J. Comput. Phys. 217 (2006), pp. 424–452 
 
[36] B.Glut, T. Coupez and J.-L. Chenot, Automatic mesh generator for complex 2-D 
domains - Application to moving geometries in forming processes, Journal of Materials 
Processing Technology, 34, pp. 69-76, 1992.* 
 
[37] T. Coupez and J.-L. Chenot, Mesh topology for mesh generation problems - Application 
to three-dimensional remeshing, Numerical Methods in Industrial Forming Processes, Ed. by 
J. L. CHENOT et al, A.A. BALKEMA, Rotterdam, pp. 237-242, 1992. 
 
[38] T. Coupez, Maillage et remaillage automatique 3D par une technique générale 
d’amélioration de topologie, journée d’étude CSMA “vers l’automatisation des calculs 
éléments finis”, Edts Jean-Pierre Pelle et Paul-Louis George, INRIA Rocquencourt (1994) 
 
[39] T. Coupez,.A mesh improvement method for 3d automatic remeshing, In N.P.Weatherill 
et al., Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, 
pages 615--626. Pineridge Press, 1994. 
 
[40] T. Coupez, Automatic remeshing in three-dimensional moving mesh finite element 
analysis of industrial forming, Numerical Methods in Industrial Forming Processes - 
NUMIFORM 95, pages 407--412. A.A. Balkema, 1995. 
 
[41] T. Coupez, Mesh generation and adaptive remeshing by a local optimisation principle/, in 
NAFEMS world comgress 97, pages 1051--1060. NAFEMS Ltd, Glasgow, 1997. 
 



216                                                       The Immersed Volume Method and thermal radiation 
 
[42] T. Coupez, L.Fourment, and J. L.Chenot, Adaptive solutions in industrial forming 
process simulation, in P. Ladeveze and J. T. Oden, editors, New Advances in Adaptive 
Computational Mechanics, Pages 365--382, Elsevier, 1997. 
 
[43] T. Coupez, Adaptive meshing for forming processes, in M. Cross et al, editor, Numerical 
Grid Generation in Computational Field Simulation, U. of Greenwich (UK), edts. Mississipi 
State University,3-19, 1998 
 
[44] T. Coupez, E.Bigot, 3D Anisotropic mesh generation and adaptation with applications. 
European Congress on Computational Methods in Applied Sciences and Engineering, 
ECCOMAS 2000, CD-Rom, Barcelona, 2000. 
 
[45] G. Strotos M. Gavaises A. Theodorakakos G. Bergeles,  Numerical investigation of the 
cooling effectiveness of a droplet impinging on a heated surface, International Journal of 
Heat and Mass Transfer ,vol.51(no.19-20), 2008 
 
[46] 19. Sethian JA, Vladimirsky A. Fast methods for the Eikonal and related Hamilton 
Jacobi equations on unstructured meshes. Proceedings of the National Academy of Sciences 
2000; 97(11):5699–5703. 
 
 [47] Seigel R and Howell J, Thermal Radiation Heat Transfer, McGraw Hill, New York, 
(1972).  
 
[48] Cheng P 1966 Dynamics of a radiating gas with applications to flow over a wavy wall 
AIAA J. 4 238–45 
 
[49] Becker H A, Liu F and Bindar Y 1998 A comparative study of radiative heat transfer 
modelling in gas-fired furnaces using the simple grey gas and the weighted sum of grey 
gasses models, Int. J. Heat Mass Transfer 41 3357–71 
 
[50] Siegel R and Howell J R 1981 Thermal Radiation Heat Transfer 2nd edn (New York: 
Hemisphere) 
 
[51] Marshak R E 1947 Note on the spherical harmonic method as applied to the milne 
problem for a sphere, Phys. Rev. 71 443–6 
 
[52] E. Hachem, H. Digonnet, E. Massoni and T. Coupez, Heat transfer modeling inside 
industrial furnaces, 8th. World Congress on Computational Mechanics (WCCM8) 5th. 
European Congress on Computational Methods in Applied Sciences and Engineering 
(ECCOMAS 2008), Venise, 2008 
 
[53] E. Hachem, E. Massoni and T. Coupez, Immersed volume technique for solving natural 
convection, conduction and radiation of a hat-shaped disk inside an enclosure,  15th 
International Conference on Finite Elements in Flow Problems, Tokyo 2009 
 
[54] T. Coupez , E. Hachem and H. Digonnet, Stabilized finite element method for heat 
transfer and fluid flow inside industrial furnaces,  15th International Conference on Finite 
Elements in Flow Problems, Tokyo 2009 
 



References 217 
 
[55] FLUENT computational fluid dynamics software, Version 5. New Hampshire: Fluent 
Corp.; 1998 
 
[56] M.F. Modest, Two-dimensional radiative equilibrium of a gray medium in a plane layer 
bounded by gray non-isothermal walls, J Heat Transfer 96C (1974), pp. 483–488. 
 
[57] M.F. Modest, Radiative equilibrium in a rectangular enclosure bounded by gray non-
isothermal walls, JQSRT 15 (1975), pp. 445–461 
 
[58] F. Modest, Radiative heat transfer (2nd ed.), Academic Press, New York (2003). 
 
[59] R. Siegel and J.R. Howell, Thermal Radiation Heat Transfer (3rd ed.), Hemisphere 
Publishing Corp., New York (1992). 
 
[60] G. de Vahl Davis, Natural convection of air in a square cavity, a benchmark numerical 
solution, Int. J. Numer. Methods Fluids 3 (1962), pp. 249–264. 
 
[61] A. Yucel, S. Acharaya and M.L. Williams, Natural convection and radiation in a square 
enclosure, Numerical Heat Transfer 15 (1989), pp. 261–277 
 
[62] M. Y. Ha, I.-K. Kim, H. S. Yoon, K. S. Yoon, J. R. Lee, S. Balachandar, H. H. Chun, 
Two-dimensional and unsteady natural convection in a horizontal enclosure with a square 
body, Numerical heat transfer. Part A, Applications 41 (2) (2002) 183-210. 
 
[63] W.A. Fiveland, Discrete-ordinates solution of the radiative transport equation for 
rectangular enclosures, J Heat Transfer 106 (1984), pp. 699–706 
 
[64] W.A. Fiveland (1984). Discrete ordinates solution of the radiative transport equation for 
rectangular enclosures. Journal of Heat Transfer, Transactions of ASME, 106(4), 699–705. 
 
[65] R.A. Bialecki (1993). Solving Heat Radiation Problems Using the Boundary Element 
Method, volume 15 of Topics in Engineering. Computational Mechanics Publications, 
Southampton UK and Boston USA. 
 
[66] Okongo, N., Knight, D., and Zhou, G.2000. Large eddy simulation using an unstructured 
grid compressible Navier-Stokes algorithm. International Journal of Computational Fluid 
Dynamics13:303-326.  
 
[67] T. Kloczko. Radiative Heat Transfer: Basics and first simulations. Technical Report, 
CEMEF, 2009. 
 
[68] T. Kloczko. Immersed volume method for radiative heat transfer: theory and validation. 
First International Conference on Computational Methods for Thermal Problem           
ThermaComp2009 , September 8-10, 2009, Naples, Italy. 
 
[69] M. Larini, F. Giround, B. Porterier, J.C. Loraud, A multiphase formulation of fire 
propagation in heterogeneous combustible media, Int. J. Heat Mass Transfer 41 (1997) 881-
897. 
 



218                                                       The Immersed Volume Method and thermal radiation 
 
[70] Deutsch, C.; Vanderhaegen, D., Radiative transfer in statistically heterogeneous 
mixtures, AIP Conference Proceedings, Volume 152, pp. 416-427 (1986). 
 
[71] Ali, M. M., Chen, T. S., Armaly, B. F.: Natural convection-radiation interaction in 
boundary layer flow over horizontal surface. AIAA J.22, 1797–1803 (1984). 
 
[72] Hossain, M. A., Pop, I., Ahmed, M.: MHD free convection from an isothermal plate 
inclined at a small angle to the horizontal. Int. J. Theor. Appl. Fluid Mech. (to appear). 
 
[73] Hossain, M. A., Takhar, H. S.: Radiation effect on mixed convection along a vertical 
plate with uniform surface temperature. Heat Mass Transfer31, 243–248 (1996). 
 
[74] K. Huang, M. Ferraro, E. Hachem and K. Mocellin, Study of the radiation and natural 
convection phenomenons, Post Master Professional Certificate, COMPUMECH Ecole 
Nationale Supérieure des Mines de Paris, February 2008 
 
[75] Fluent v6.1 User’s Guide, Fluent Inc. (2003). 
 
[76] M. Y. Ha, J. J. Mi, A numerical study on three-dimensional conjugate heat transfer of 
natural convection and conduction in a differentially heated cubic enclosure with a heat 
generating cubic conducting body, International Journal of Heat and Mass Transfer 43 (23) 
(2000) 4229-4248. 
 
[77] M. K. Das, K. S. K. Reddy, Conjugate natural convection heat transfer in an inclined 
square cavity containing a conducting block, International Journal of Heat and Mass 
Transfer 49 (2006) 4987-5000. 
 
[78] Goldin, G. M., and Menon, S. A., 1998, "Comparison of Scalar PDF Turbulent 
Combustion Models," Combust. Flame, 113(3), pp. 442–453. 
 
[79] Song, G., Bjorge, T., Holen, J., and Magnussen, B. F., 1997, "Simulation Of Fluid Flow 
And Gaseous Radiation Heat Transfer In A Natural Gas-Fired Furnace," Int. J. Numer. 
Methods Heat Fluid Flow, 7, pp. 169–182.  
 
[80] Nieckele, A. O., Naccache, M. F., Gomes, M. S. P., and Kobayashi, W., 1997, Numerical 
Simulation of a Three Dimensional Aluminum Melting Furnace," Proc. 4th Int. Conf. on 
Technology and Combustion for a Clean Environment, Portugal, II (36.3), pp. 15–20. 
 
 



IMV for solving conjugate heat transfer                                                                                 219 
 
 

Chapitre 6  

Immersed volume method for solving conjugate 

heat transfer and turbulent flows  

 
 
 

Chapitre 6 ............................................................................................................................... 219 
Immersed volume method for solving conjugate heat transfer and turbulent flows.............. 219 

6.1 Immersed volume method for solving natural convection, conduction and radiation 
of a hat-shaped disk inside an enclosure ............................................................................ 221 
6.2 Stable mixed-finite element method for incompressible flows with high Reynolds 
number................................................................................................................................ 245 
6.3 Finite element solution to handle complex heat and fluid flows in industrial furnaces 
using the immersed volume method................................................................................... 275 
6.4 Numerical simulation in a full-scale industrial furnace ......................................... 303 

 



220                                                                             IVM for solving conjugate heat transfer 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



IMV for solving conjugate heat transfer                                                                                 221 

6.1 Immersed volume method for solving natural convection, 
conduction and radiation of a hat-shaped disk inside an 
enclosure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* see attached paper 



Immersed volume technique for solving natural convection, conduction and

radiation of a hat-shaped disk inside an enclosure

E. Hachema,∗, T. Kloczkoa,1, H. Digonneta,2, T. Coupeza,3

a Ecole des Mines de Paris, Centre de Mise en Forme des Matériaux (CEMEF), UMR CNRS 7635, Sophia-Antipolis, France

Abstract

An immersed volume method for time-dependent, three-dimensional, conjugate heat transfer and fluid flow
is presented in this paper. The incompressible Navier-Stokes equations and the heat transfer equations
are discretized using a stabilized finite element method. The interface of the immersed disk is defined and
rendered by the zero isovalues of a level set function. This signed distance function allows turning different
thermal properties of each component into homogeneous parameters and it is coupled to a direct anisotropic
mesh adaptation process providing a better capturing of the interface without affecting the initial background
mesh. Thus, a single set of equations is solved for both fluid and solid with different thermal properties
which can reduce the computational costs. On the other hand, using stabilized finite element method for the
Navier-Stokes and the convection-diffusion equations allows the control of spurious oscillations and thermal
shocks yielding very accurate results. The proposed method demonstrates the capability of the model to
simulate an unsteady three-dimensional heat transfer flow of natural convection, conduction and radiation in
a cubic enclosure with the presence of a conducting body (inconel 718). Results are assessed by comparing
the predictions with the experimental data.

Key words: Stabilized Finite Elements, natural convection, heat conduction, radiative transfer, immersion
volume technique

1. Introduction

The development of efficient methods to understand and simulate conjugate heat transfer for multi-
components systems is one of the most engineering challenges and still a need for industrials, especially in
the case of the heat treatment of high-alloy steel by a continuously cooling. Usually, the heat treatment
sequence involves heating to a high temperature followed by a controlled cooling so as to enhance the
particular microstructures and the combinations of properties such as hardness, toughness and resistance.
The most important part for hardening steel results from the cooling of the body in a liquid or a gas
that rapidly extracts heat. A good description of the operations performed during heat treating of steel is
available in [1] and [2]. It was stated that the rate of cooling in the heated disk depends on the heat removal
characteristics of the cooling medium (e.g. air), the thermal characteristics of the alloy (e.g. inconel 718),
and the section thickness of the disk. Fully hardened steel can be only obtained at a sufficiently high rate of
cooling conditions. In practice, industrials have to carry out many experimental tests to attain this critical
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rate of cooling. Hence, resorting to numerical experiments is expected to save both time and economical
resources. A first step to design an industrial numerical tool for the simulation of involved quenching
processes is the modelling of the transient air cooling of a heated body inside an enclosure. The present
paper aims at presenting a direct method to study and analyse all the phenomena taking place in such a
complex configuration, from a fluid dynamics and heat transfer point of view. We especially insist on the
representation of the physical domains (air and solid in the present case), and how to deal with these domains
both in terms of accuracy and computational costs. In recent years, there has been increasing interest in
studying numerically a variety of engineering applications that involve coupling between different physical
phenomena [3, 4, 5]. Most of the time, such analyses may be accomplished by dividing the global domain
into several local subdomains over each of which a local model (equation to be solved) can be analyzed
independently. The global solution can then be constructed by suitably piecing together local solutions
from individually modelled subdomains. However, during the assembly, it is often too cumbersome, or even
infeasible, to coordinate the meshes over separate subdomains. Many alternative approaches have been
applied for multi-phase flows problems and are available in the literature, such as the ghost-fluid method
introduced by Fedkiw et al. in [6], the immersed boundary method [7, 8], the domain decomposition [9],
the X-FEM [10]. In general, they introduced and improved enrichment functions for material interfaces and
voids by means of the level set representations of surfaces. Nevertheless, when using all these techniques,
one still need to know the value of the heat transfer coefficients between the two domains which ensures, as a
Neumann/Dirichlet boundary conditions, the heat transfer at the air/solid interface. Frequently, industrials
perform many experimental tests to obtain such heat transfer coefficients. But, when dealing with a large
diversity of shapes, dimensions and physical properties of these metals to quench, such operations can
become rapidly very costly and time consuming.

In the present study, the proposed method aims to overcome this drawback by considering a single grid
for both air and solid for which only one set of equations need to be solved. This technique, known as
immersed volume method (IVM), makes the use of a signed distance function (level-set function method
[11, 12]) that allows turning thermal properties of each component into homogeneous parameters. Thus, by
solving the whole domain in a fully monolithic way there is no need of empirical data so as to determine the
heat transfer coefficient. The heat exchange at the interface is replaced naturally by solving the convective
fluid in the whole domain. Additionally, solving the radiative transport equation (RTE) in both domains
generates a volume source term rendered by the sharp discontinuity of the temperature and the materials
properties. This source term is introduced into the energy equation ensuring the continuous cooling of
the hat shaped disk. As a last features of this method, we make the use of our advanced research in the
anisotropic mesh adaptation to adapt the interface between two different materials. The proposed mesh
generation algorithm allows the creation of meshes with extremely anisotropic elements stretched along
the interface, which is an important requirement for conjugate heat transfer and multi-component devices
with surface conductive layers [13, 14]. Numerically, the communication between the solid and the fluid
is obtained naturally without any further assumption and force modelling. Many research efforts have
been devoted to analyze and improve the accuracy, stability, conservation and robustness of the immersed
boundary method. This is obviously required when following an interface all along the computations. In
our context, the solid, the heated disk, is considered fixed and, consequently, a preadapt meshing is totally
affordable. All these cited techniques are explicitly replaced by a locally refined mesh that can, at certain
degree, generate a conforming mesh with such low cost.

It is importat to mention that the present approach has already been introduced in [15], [16] and in [17],
where the strategy is similar but the context is clearly different. In [15], the authors have proposed to use
the metric properties of the distance function for simulating two bodies in contacts in a forging process.
Details about the formulation of the contact condition, mesh adaptation as well as the computation of the
distance function are given. On the other hand, in [16], the use of this method was highlighted by several
numerical examples such as extrusion and industrial mixing processes. In [17], this method was adapted to
the context of the numerical modelling of recrystallization in a polycrystalline material, the authors illustrate
the ability of this approach to accurately describe nucleation and grain growth. Here, we intend to apply
the same strategy for simulating conjugate heat transfers and fluid flows inside an enclosure in the presence
of a conducting body.
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From a numerical point of view, the sudden cooling of hot solid immersed inside a gas fluid is at the origin
of so-called thermal shocks which cause spurious oscillations in the solution. In order to circumvent this
issue, a stabilized finite element method is used for both Navier-Stokes [18, 19, 20, 21] and the convection-
diffusion equations [22, 23, 24]. As far as the radiative terms are concerned, the radiative transfer equation
is solved separately using the so-called P-1 method [25].

The outline of the paper is as follows: first, we present the time-dependent, three-dimensional, conjugate
heat transfer and fluid flow problem. Section 2 presents the discretization as well as the stabilized finite
element method for solving these equations. A detailed description of the immersed volume method using
both the level set function and the anisotropic mesh adaptation is given in section 3. In section 4, the
numerical performance of the presented method is demonstrated by means of 2D test cases and a 3D real
industrial problem. Comparisons with the experimental results are presented. Finally, conclusions and
perspectives are outlined.

2. Governing equations

This section is devoted to the mathematical formulation of the 3D heat transfer and fluid flow around a
hat-shape disk inside an enclosure. For illustration, figure 20 shows the geometry and the schematic diagram
of the treated problem. The governing equations are considered to be three-dimensional, unsteady and
incompressible. Thermo-physical and mechanical properties are assumed to depend on both the temperature
and the relative position in the computational domain, in fact, discontinuous. Indeed, as mentioned in
introduction, the same computational domain is used to represent both gas and solid. More details about the
key feature of the proposed monolithic resolution are presented further. The computation of the heat transfer
and the fluid flow requires to solve simultaneously the Navier-Stokes and energy equations. Moreover, in
order to take into account the radiation effects, the radiative transfer equation has to be solved. Hence, the
resulting governing equations are the following:

i) the dynamic of the flow is given by the Navier-Stokes equations including the Boussinesq approximation:






∇ · u = 0 in Ω

ρ (∂tu + u · ∇u) − ∇ · (2µ εεε(u) − p Id) = ρ0β(T − T0) g in Ω

u = 0 in ∂Ω

(1)

where u is the velocity vector, ρ the density, p the pressure, T the temperature, µ the dynamic viscosity,
εεε(u) = (∇u+ t

∇u)/2 the deformation-rate tensor, ρ0 and T0 reference density and temperature, β the
thermal expansion coefficient and g the gravity vector.

ii) the heat transfers are governed by the energy equation:






ρCp(∂tT + u · ∇T ) − ∇ · (λ∇T ) = f − ∇ · qr in Ω

T (x, t) = Twall in ∂Ω

T (x, 0) = T0(x) in ∂Ω

(2)

where ρ is the density, Cp the specific heat, λ the heat conduction coefficient of the whole medium. f
is the external source term and qr is the radiative heat flux that has to be computed.

iii) the contribution of the radiations to the heat transfers is assessed using the radiative transfer equation
(RTE) coupled with the so-called P-1 radiation method. This latter enables to simplify the RTE equation
so that the incident radiation is computed by solving the following system:







∇ ·

(
1

3κ
∇G

)

− κG = 4κσT 4 in Ω

∂Gw

∂n
=

3κǫw

2(2 − ǫw)
(4σT 4

w − Gw) in ∂Ω

(3)
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where G is the incident radiation, κ is the mean absorption coefficient which is calculated using the
Bouger law [26], σ is the Stefan-Boltzmann constant and ǫw denotes the emissivity of the wall surfaces.
Under grey gas assumption (see [25]), the divergence of radiative flux from equation (2) that accounts
for the volumetric radiation is given by:

−∇ · qr = κ
(
G − 4κσT 4

)
(4)

3. Immersed Volume Method

The immersed volume method is based on solving a single set of equations for the whole computational
domain and treating the different subdomains as a single fluid with variable material properties. This
section presents the complete description of the method, which in turn is structured into three subsections:
immerse and define the heated object using the level-set function, apply the anisotropic mesh adaptation in
the vicinity of the interface solid-air and mix the thermo-physical properties for both domains.

3.1. Level set approach

In many two-phase flows encountered in industrial applications, multi-material properties, such as density
and viscosity, vary deterministically across the interface. This discontinuity in the properties makes such
flows much involved to model. In particular, simulating conjugate heat transfer for which the three modes,
convective, conductive and radiative heat transfer interfere simultaneously is a challenging task. Here, the
material distribution between each physical domains and the refined interface are described by means of
the so-called level set method. In practice, a signed distance function is used to localize the interface of the
immersed body and initialize the desirable properties on both sides of this latter. Recall that in our context,
the solid being fixed, the interface is static. Let Ωf , Ωs and Γi be respectively the fluid domain, the solid
domain and the interface. They verify:

Ωf ∪ Ωs = Ω and Ωf ∩ Ωs = Γi (5)

For each node of the computational domain Ω, the level set function α which is the signed distance from
the interface reads:

α(x) =







> 0 if x ∈ Ωf ,

0 if x ∈ Γi,

< 0 if x ∈ Ωs.

(6)

The physical and thermodynamic properties in the domain are then smoothed and calculated as a function
of α; for instance, the mixed density is calculated using a linear interpolation between the values of the
density in the fluid and the solid:

ρ = ρfH(α) + ρs(1 − H(α)) (7)

where H is a smoothed Heaviside function given by:

H(α) =







1 if α > ε

1

2

(

1 +
α

ε
+

1

π
sin

(πα

ε

))

if |α| ≤ ε

0 if α < −ε

(8)

where ε is a small parameter such that ε = O(h), known as the interface thickness, and h is the averaged
mesh size in the vicinity of the interface. Further details about the algorithm used to compute the distance
are available in [15].
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3.2. Anisotropic mesh adaptation

Accurate calculation of the temperature distribution along the air-solid interface is critical for a correct
modelling of industrial experiments. When the heat flux is directed through the interface, the difficulty arises
due to the discontinuity of the properties of the material across the interface together with the presence
of high gradients of temperature. If this latter is not aligned with the element edges, it may intersect the
element arbitrarily such that the accuracy of the finite element approach can be compromised. In order to
circumvent this issue, the level-set process is thus coupled to an anisotropic mesh adaptation as described
in [14]. The idea of this method is to pre-adapt the mesh at the interface. The mesh becomes locally refined
which enables to sharply define the interface and to save a great number of elements compared to classical
isotropic refinement. This anisotropic adaptation is performed by constructing a metric map that allows
the mesh size to be imposed in the direction of the distance function gradient. Let us briefly described the

(a) initial mesh (b) intermediate mesh (c) final mesh

Figure 1: Mesh adaptation process in the vicinity of the interface.

main principles of this technique. First of all, one has to resort to a so-called metric which is a symmetric
positive defined tensor representing a local base that modify the distance computation, such that:

||x||M =
√

tx · M · x , < x,y >M= tx · M · y . (9)

The metric M can be regarded as a tensor whose eigenvalues are related to the mesh sizes, and whose
eigenvectors define the directions for which these sizes are applied. For instance, using the identity tensor,
one recovers the usual distances and directions of the Euclidean space. In our case the direction of mesh
refinement is given by the unit normal to the interface which corresponds to the gradient of the level set
function: x = ∇α/||∇α||. A default mesh size, or background mesh size, hd is imposed far from the interface
and it is reduced as the interface comes closer. A likely choice for the mesh size evolution is the following:

h =







hd if |α(x)| > e/2

2hd(m − 1)

m e
|α(x)| +

hd

m
if |α(x)| ≤ e/2

(10)

Eventually, at the interface, the mesh size is reduced by a factor m with respect to the default value hd.
Then this size increases until equalling hd for a distance that corresponds to the half of a given thickness e.
The unit normal to the interface x and the mesh size h defined above, lead to the following metric:

M = C (x ⊗ x) +
1

hd

I with C =







0 if |α(x)| ≥ e/2

1

h2
−

1

h2
d

if |α(x)| < e/2
(11)

where I is the identity tensor. This metric corresponds to an isotropic metric far from the interface (with a
mesh size equal to hd for all directions) and to an anisotropic metric near the interface ( with a mesh size
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equal to h in the direction x and equal to hd in the others). In practice, the mesh is generated in several
steps using, through the CIMLIB library, the MTC mesher and remesher developed by [13]. Further details
on the anisotropic mesh generation can be found in [14]. The proposed mesh generation algorithm works
well for 2D or 3D geometries. It allows the creation of meshes with extremely anisotropic elements stretched
along the interface, which is an important requirement for conjugate heat transfer and multi-component
devices with surface conductive layers. The grid is only then modified in the vicinity of the interface which
keeps the computational work devoted to the grid generation low. Note that the proposed method can easily
handle arbitrary geometries and the mesh generated is not sensitive to small geometries.

Figure 1 illustrates some steps of the refinement process for a 2D square body immersed in a cavity. At
the beginning of the adaptation, the immersed surface of the small squared body is not aligned with the
mesh. Several steps are necessary to pre-adapt the interface between both adjoining materials. As shown
in figure 2 which presents a close-up on the interface zone at the end of the anisotropic adaptation process,
the mesh has been gradually refined when approaching the interface. Consequently, only additional nodes
are locally added in this region, whereas the rest of domain keeps the same background size. Note also,

Figure 2: Zoom on the interface zone after anisotropic adaptation

when using an anisotropic mesh, with elements stretched in a ’right’ direction, one could allow not only to
save a lot of elements but also to well describe the geometry in terms of curvature, angles, etc. Contrary to
others techniques, this promising method can provide an alternative to body-fitted mesh for very complex
geometry.

3.3. Mixing laws

The geometry and thermodynamic properties of the solid domain are characterized by the signed distance
function. The location of the air is then deduced by complementarity and does not require the introduction
of an additional distance function. The air-solid mixture can now be treated as a single fluid whose effective
properties are defined using mainly linear interpolations between their coefficients as previously evoked in
expression (7). The smoothed Heaviside function defined in (8) enables to assign the right properties on
each side of the interface. The global material properties introduced in systems of equations (1)-(4), such
as density, initial temperature, dynamic viscosity, heat capacity and emissivity, are defined by the following
laws:

ρ = ρfH(α) + ρs(1 − H(α))

µ = µfH(α) + µs(1 − H(α))

ρCp = (ρfCpfH(α) + ρsCps(1 − H(α)))

ρCpT = ρfCpfTfH(α) + ρsCpsTs(1 − H(α))

κ = κfH(α) + κs(1 − H(α))

(12)

The use of linear interpolation for the thermal conductivity would lead to inaccurate results. In order to
handle this abrupt changes at the interface, we use instead the harmonic mean formulation as suggested by
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Patankar [27]:

λ =

(
H(α)

λf

+
1 − H(α)

λs

)−1

(13)

This formulation basically reflects the requirement that diffusion flux should be the same even when cal-
culated by different representative subdomains. Concerning the solid domain, we have used the penalty

Properties Air Inconel 718

density ρ [kg/m3] 1.25

heat capacity Cp [J/(kg K)] 1000

viscosity µ [kg/(m s)] 1.9e-5 –

conductivity λ [W/(m K)] 0.0262

emissivity ǫ – 0.7

Table 1: Properties of materials.

method known as Standard Solid Penalty (SSP) approach, which uses simply a constant high viscosity in
the solid region to mark the solid body without adding extra constraints [28, 29].

3.4. The main objectives

It is noticeable that by immersing the body inside the volume, the interface Γi is no more explicitly
known and the related surface integrals are no more applicable. The interface is only defined by the zero
level of the distance function. In a gas quenching, the domain of temperatures in such heat transfer by
radiation is of importance only in an early stage of the quenching process. Only heat transfer by conduction
within the metal and by convection between the metal to be quenched and the quenching fluid is of interest
in the present paper. The convective thermal transport from a surface to a fluid in motion is known to be
related to the heat transfer coefficient hc, the surface-to-fluid temperature difference, and the wetted surface
area Γi in the form:

q =

∫

Γi

hc (T − Text) dΓ, (14)

where Text is the averaged temperature of the surroundings; and the radiative heat transfer still at the
interface ∫

Γi

σǫ
(
T 4 − T 4

ext
)
dΓ, (15)

where σ is the Stefan-Boltzmann constant and ǫ is the emissivity.
Once the object is immersed inside the computational domain using our technique, the need of geometric
boundary conditions vanishes and is replaced by the zero level of the level set function. Thus, the boundary
conditions (14–15) at the solid’s interface are no longer applicable. Our alternate approach consists in
simulating the conjugate heat transfer by solving the coupled problem (1)–(4) for both the surrounding
air and the heated object. We emphasize that the computation of the heat transfer coefficient hc can be a
difficult task since it needs experimental data and often requires to solve inverse problem. It can be therefore
a limiting issue for practical applications when one needs to change the geometry of the object, the physical
parameters, the number and the position of the objects, the surrounding fluid (air, water, etc). On the other
hand, our approach can be apply to any complex problem since it only requires the material properties of
the different media.
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4. Stabilized Finite-Element method

In this section, we describe briefly the Galerkin finite-element approximation and the corresponding
stabilization methods for the resulting discrete system of equations (1)-(4). Based on a partition Th of

Ω into set of Nel elements K, the functional spaces for the velocity V :=
(
H1

0 (Ω)
)nsd

and the pressure

P := C0(Ω̄) ∩ L2
0(Ω) are approached by the following finite dimensional spaces spanned by continuous

piecewise polynomials:

Vh =
{

u ∈
(
H1

0 (Ω)
)nsd

| u|K ∈ P 1(K)nsd, ∀K ∈ Th

}

Ph =
{
p ∈ C0(Ω̄) ∩ L2

0(Ω) | p|K ∈ P 1(K), ∀K ∈ Th

}
(16)

The weak formulation of the incompressible Navier-Stokes equations reads:







Find u ∈ Vh and p ∈ Ph such that:

∀w ∈ Vh, q ∈ Ph, B(u;u, p;w, q) = 0

B(v;u, p;w, q) = ρ (∂tu,w) + ρ (v · ∇u,w) + (2µεεε(u) : εεε(w)) − (p, ∇ · w) − (f,w) + (∇ · u, q)

(17)

where f is the given force vector. It is well know that the classical finite element approximation for the
flow problem may fail because of two reasons: the compatibility condition known by the inf-sup condition
or Brezzi-Babuska condition which required an appropriate pair of the function spaces for the velocity and
the pressure [30, 31, 32, 33, 24] and when the convection dominates [18]. Therefore, we employ stable finite
element formulation based on the enrichment of the functional spaces with space of bubble functions known
as Mini element [34, 35, 36]. The special choice of bubble functions enables us to employ static condensation
procedure giving rise to a stabilized formulation for equal-order linear element. A detailed description on
the implementation of the finite element solver using the P1+/P1-based mixed finite element method can be
found in [37, 28, 38].

Equations (2) and (3) can be represented by a single scalar transient convection-diffusion-reaction equa-
tion which reads:

∂tϕ + u · ∇ϕ + ∇ (α∇ϕ) + rϕ = f (18)

where ϕ is the scalar variable, u the velocity vector, α the diffusion coefficient, r the reaction coefficient
and f a source term. The solution strategy for solving these equations is similar to that used for the
equations of motion. Again, the spatial discretization is performed using approximation spaces. Thus, the
Galerkin formulation is obtained by multiplying these equations by an appropriate test functions, applying
the divergence theorem to the diffusion terms and integrating over the domain of interest. Following the
lines on the use of stabilisation methods for transient convection-diffusion-reaction equations as discussed
in [24, 39], the stabilized weak form of equation (18) reads:







Find ϕ ∈ Sh such that, ∀w ∈ Wh

(∂tϕ + u · ∇ϕ,w) + (α∇ϕ,∇w) + (rϕ,w)

+
∑

K

(R(ϕ), τSUPGu · ∇w)K

︸ ︷︷ ︸

streamline upwind

+
∑

K

(R(ϕ), τSCPGũ · ∇w)K

︸ ︷︷ ︸

discontinuity-capturing

= (f, v)
(19)

where Sh and Wh are standard test and weight finite element spaces (the scalar counterpart of the vector
space defined in (16)) and R(ϕ) is the appropriate residual of equation (18). As shown in equation (19),
two additional stabilizing terms were introduced; the first controls the oscillations in the direction of the
streamline (SUPG) [18, 40] and the other controls the derivatives in the direction of the solution gradient
(SCPG) [41]. This can improve the result for convection dominated problems while the shock-capturing
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technique precludes the presence of overshoots and undershoots by increasing the amount of numerical
dissipation in the neighborhood of layers and sharp gradients. The evaluation of the τSUPG and τSCPG

stabilizations terms follows the definition described in [18, 41, 42]. The time derivatives are approximated
by the Euler forward difference scheme.

The algebraic problems resulting from the finite element formulation are assembled and solved using
the conjugate residual method associated to the incomplete LU preconditioner from the PETSc (Portable
Extensive Toolkit for Scientific Computation) library. A master-slave parallel strategy was used [38, 12],
involving SPMD (Single Program, Multiple Data) modules and the MPI (Message Passing Interface) library
standard. The computations of the 3D conjugate heat transfer have been obtained using 8 2.4 Ghz Opteron
cores in parallel (linked by an Infiniband network).

5. Validation for 2D cases

In this section, we want to validate the accuracy and the efficiency of the immersed volume method over
relatively simple 2D test cases. All the numerical simulations were carried out by using the CIMLIB finite
element library. This C++ library, which is highly parallel, is developed at CEMEF by the team of Coupez
and Digonnet (see [38]). The three first simulations are quite academic. The results obtained with our code,
referred as IVM, are then compared with those obtained either by analytical solution or by other approaches.

5.1. A one-dimensional example

In this example, already presented and validated in [5], we consider a simple one-dimensional domain
with two different materials (fluid and solid). The objective of this test is to check the formulation and
implementation of the proposed method by comparing results to the exact solution. The availability of the
analytical solution provides a rigours framework for assessment of solution accuracy. The authors, as in
here, have described different aspects related to the numerical approximation of thermal coupling between
a fluid and a solid by proposing two alternatives to treat the interface coupling. For mode details about the
proposed algorithm and their interesting results, consult [5]. The computational domain is split into two
subdomains ΩF = [−1, 0] and ΩS = [0, 1]. The distribution of the conductivities, presented in figure 3, is

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
0

0.25

0.5
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Ω
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Figure 3: Distribution of thermal conductivity in each subdomain.

given, for both subdomains, by:

λF =
1 − e−γ

1 − e−γ + γeγx

λS =
1 − e−γ

1 − e−γ + γe−γx

(20)

where γ is a measure of the boundary layer width. Dirichlet boundary conditions, namely T (x = −1) = 1
and T (x = 1) = −1, are applied at both extremities while zero Neumann conditions are applied everywhere
else. Subject only to these boundary conditions, the problem can be considered as one-dimensional case for

9



which the exact solution takes the following form:

TF(x) =
1

2

(

−x +
1 − eγx

1 − e−γ

)

TS(x) =
1

2

(

−x −
1 − e−γx

1 − e−γ

) (21)

By applying the IVM method, the level-set function identifies automatically the solid region from the
fluid region and then applies the anisotropic mesh adaptation at the interface. Figure 4 shows the resulting

Figure 4: Anisotropic adapted grids. Top: coarse grid with 10 elements in each subdomain. Bottom: fine grid with 20 elements
in each subdomain.

unstructured meshes which consists of 10 and 20 elements along the x-direction in each subdomain. The
distributions of the temperature along the x-axis are presented in figure 5. The numerical solutions are

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
−1

−0.5

0

0.5
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X

T

 analytical

 IVM n=20

 IVM n=10

Figure 5: Finite element solution obtained using the IVM with anisotropic adapted meshes of 10 and 20 elements and compared
with the analytical solution.

indistinguishable from the analytical solution. This confirms the accuracy of predictions and ability of the
code to deliver the right solution of this multi-material problem. Inspired by the reference, we have solved
this problem again using three different unstructured meshes of 10, 20 and 40 elements, adapted isotropically
near the interface. As expected, some differences can be observed in particular near the interface when using

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
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X

T

 analytical

 n=40

 n=20
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Figure 6: Finite element solution obtained using the IVM with isotropic adapted meshes of 10, 20 and 40 elements and
compared with the analytical solution.
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coarser meshes (figure 6). Whereas as shown previously in figure 5, the IVM method gives much better results
in the case of a coarse discretization. The reason for this behaviour was pointed out in previous section and
it is due to the use of extremely anisotropic elements stretched along the interface, which is an important
requirement for conjugate heat transfer with surface conductive layers.

5.2. Conduction and radiation heat transfer

In this example, circular and square solids, initially at a temperature of T = 1000oC, are cooled in
presence of air at atmospheric conditions. The cooling process is mainly due to the radiative heat transfer
between the hot surface of the bodies and the air. High temperature gradient appears at the interface and a
conduction heat transfer between the core and the surface is established leading to the cooling of the whole
body. We compute the cooling for both solids using two different methods. The first one, the classical
approach, consists in treating the solids as single entities (cf. figures 7(a) and 7(c)). The radiative exchange
with the surrounding air is computed by the means of the boundary conditions and the use of the heat
transfer coefficients (14–15). The second approach, referred as IVM, consists in enlarging the computational

(a) Single disk

(b) Immersed disk

(c) Single square

(d) Immersed square

Figure 7: Computational domains for each case and each method.

domain so as to compute the heat transfer in both air and solid domain. The bodies are therefore immersed
inside a square cavity filled by the air. The remeshing process coupled to the level set function enables
to capture accurately the air-solid interface as shown in figures 7(b) and 7(d). The radiative exchange
is naturally taken into account inside the equation without using additional heat transfer coefficients.

(a) ǫ = 0.3 (b) ǫ = 0.6 (c) ǫ = 0.8

Figure 8: Temperature evolution of a circular body for different emissivity.

Figures 8 to 10 display the distribution of the temperature at different locations inside the solid body and
for different emissivities. As can be seen, the agreement is generally good for all stations. However, far from
the center and close to the interface, slight differences in the solution are observed. We suspect that the
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(a) ǫ = 0.3 (b) ǫ = 0.6 (c) ǫ = 0.8

Figure 9: Temperature evolution of a square body for different emissivity.

(a) sensor 1 (b) sensor 3 (c) sensor 5

Figure 10: Temperature evolution of a square body with ǫ = 0.8 at different locations.

main discrepancy could be due to the use of the P-1 radiation model which in general neglect the directional
influence and known to be a little bit diffusive. However, the approach of this model is relatively simple and
computationally cheap.

5.3. Enclosed square body in a differentially heated 2D square cavity

This test has been widely used as a benchmark for numerical methods and has been analyzed by a
number of authors ([43], [44], [45], [46], [47]). The velocity and the temperature equations are coupled due

No slip
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Figure 11: Enclosed square body in a differentially heated 2D square cavity: problem set-up.

to the buoyancy force and solved in the presence of a conducting body placed in the centre of the enclosure.
Consequently, the flow inside the enclosure is driven by two temperature differences: the first across the
enclosure and the second caused by the squared body. The ratio of these two temperature differences,
the thermal conductivity ratio and the heat capacity ratio are very important factors to decide the heat
transfer and flow characteristics of the enclosure. Many authors investigated these ratios and the effects of
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Rayleigh numbers on variations of streamlines, isotherms and the averaged Nusselt numbers. More details
can be found in [46] and [48]. Here, in the present study, the main focus is only restricted to evaluate the
performance of the IVM method in terms of multi-domain representation.

The problem description and boundary conditions are shown in figure 11. The left wall is kept at a
constant high temperature of Th, whereas the right wall is kept at a constant low temperature of Tc. Other
two walls are maintained at adiabatic condition. The radiation effects are assumed to be negligible. We

(a) (b) (c) (d)

Figure 12: Distribution of isotherms for the conducting body for different Rayleigh numbers: λ∗ = 0.2, (a) Ra = 103; (b)
Ra = 104; (c) Ra = 105; (d) Ra = 106 Top: reference solutions. Bottom: present work.

assume that the fluid properties are to be constant, except for the density in the buoyancy term, which
allows Boussinesq approximation. The gravitational acceleration is taken parallel to the isothermal walls.
The solid conducting body placed at the centre of the enclosure with thermal conductivity λS. The Prandtl
number, Pr is taken to be 0.71 corresponding to air. The thermal conductivity ratio λ∗ = λs/λf is taken
to be equal 0.2 and 5. Rayleigh number varies from 103 up to 106. All these given values were adopted
from [49]. In this reference, the authors have investigated also the influence of the angle of inclination of
the cavity. Results of their studies are detailed in [49]. By applying the IVM method, the level-set function
identifies automatically the solid square body from the fluid region and then applies the anisotropic mesh
adaptation at the interface. As noticed in the given reference, when the λ∗ = 0.2, the thermal conductiv-
ity of the fluid is 20 times larger than that of heat generating conducting body, consequently the value of
maximum temperature in the enclosure decreases slightly with increasing Rayleigh number. The calculated
Nusselt number for Ra = 105 is equal to 4.633 which is in good agreement with the values of [50, 46, 51].
The isotherms obtained from the present calculation for different Rayleigh numbers are shown in figure 12
and compared with results obtained by [49], showing good agreement between them. Same computations
have been repeated using different thermal conductivity ratio, λ∗ = 5 (see figure 13). In this case also, good
agreement has been obtained by comparing the results with those available in [48] and [49]. It is noticed that
with higher values of λ∗, better conductive heat transfer occurs within the squared body and the isotherms
are more clustered near the hot and cold walls.
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(a) (b) (c) (d)

Figure 13: Distribution of isotherms for the conducting body for different Rayleigh number: λ∗ = 5, (a) Ra = 103; (b)
Ra = 104; (c) Ra = 105; (d) Ra = 106. Top: reference solutions. Bottom: present work.

5.4. Mixed convection in a plane channel: the Poiseuille-Bénard flow

In this section, we want to validate the numerical performance of the immersed volume method over a
common benchmark involving two-dimensional thermally coupled flows. This test, known as the Poiseuille-
Bnard flow, consisting in a channel flow between two infinite parallel plates is frequently used for validating
unsteady coupled heat transfer. Both forced and natural convection are present and the limiting flow is
time-dependent.

5.4.1. Problem setup

It mainly consists of a two-dimensional laminar flow in a horizontal channel suddenly heated from below
under conditions which result in a thermonconvective instability. This problem was solved in [52] as a
benchmark for open boundary flows using a finite difference method and a fine grid. It has been extensively
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Figure 14: Problem definition

14



used by other researchers because of its growing interest in many applications and engineering problems
such as the fabrication of microelectronic circuits using the chemical vapour deposition process [53, 54].

Figure 15: Left: Meshes for single domain and multi-domain cases. Right: close-up on the interface between fluid and solid for
the multi-domain case.

Here in our study, two test cases are considered to lead this validation. For both of them, a rectangular
enclosure is regarded. However, in order to apply the IVM approach, the domain is enlarged by replacing
the top and bottom walls by a solid body (see figure 14). The imposed boundary conditions used in the
classical approach are then replaced by two highly conductive solid bodies initially taken at the required
temperature. The results obtained using the classical approach with boundary conditions; the IVM method
and the reference solutions [52] are then plotted on both domains and compared one to another.

Our purpose is then to first validate the finite element implementation of the coupled problem by com-
paring our prediction to the given reference, and second, to assess the effectiveness of the IVM method on
an extended domain using thick horizontal walls. We expect such conclusions from the following numerical
experiments:

i) The IVM method yields same results as the classical approach from a fluid dynamics, convective flow
and heat transfer point of view;

ii) The proposed approach seems promising to simulate multidomain flows and to replace the use of
imposed boundary conditions by corresponding conductive solid bodies.

Several experimental and numerical studies have been carried out on natural/forced convection heat transfer
in enclosures under boundary conditions; however, studies about partially divided enclosures are rarely inves-
tigated. Such applications range from cooling of electronic devices or industrial workpieces, jet impingement,
enhancement of room air, heat exchanger design and many others [55, 56, 57, 58].

The proposed approach seems to be completely suitable for simulating such multi-material problems. It
first computes the level set function that identifies automatically the solid part from the fluid region and
then applies the anisotropic mesh adaptation at the interface. Thus, a single set of equations (1) is solved
for the whole computational domain by treating the different subdomains as a single fluid with variable
material properties. Figure 14 shows the two diagrams of the calculation domain and boundary conditions.
The first domain consists of the 2D horizontal channel occupying the domain [0, 16] × [0, 1] and the second
one of [0, 16] × [0, 2]. A parabolic inlet velocity profile is prescribed at x = 0, whereas the outlet is left
free. The top and the bottom walls are respectively maintained at temperatures Tc and Th in the classical
approach (top of figure 14), whereas, for the IVM method, the two additional solid bodies are initially taken
at temperature Tc and Th (bottom of figure 14). Note also that the fluid in the channel is initially linearly
stratified in temperature and is flowing with a parabolic velocity distribution.

At solid-fluid interfaces, conductivities are calculated using a harmonic mean formulation [27] in order
to handle abrupt changes in the material properties. Thus, we automatically well establish the continuity of
temperature and heat flux across the interface. The temperature gradient inside the solid walls is extremely
low due to the use of high thermal conductivity (λ = 106).

Moreover, setting the relative kinematics viscosity very high value in the solid regions satisfies the zero
velocity in these regions and hence the no-slip condition on the interface is also satisfied. Therefore, the
convective terms in the energy equation drop out and the equation reduces to the transient conduction
equations in the solid. The stabilized finite element methods are employed to discretized and solve the
coupled heat transfer inside the enclosure.
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Figure 16: The temperature evolution at the mid-height of the duct compared with the calculations of Evans and Paolucci.

The aim of this numerical test is not to study the effect of conducting horizontal walls in terms of
thickness and conductivity ratios, it is more to analyse the general behaviour of the solution on extended
domains. The radiation effects are assumed to be negligible. We assume that the fluid properties are to
be constant, except for the density in the buoyancy term, which allows Boussinesq approximation. The
gravitational acceleration is taken perpendicular to the solid walls.

5.4.2. Analysis of the results

Calculations were carried out using a 10 × 40 linear triangular elements unstructured mesh and a time
step is chosen equal to 0.001 as in [59] to capture the physics accurately. The Reynolds number Re is taken
to be equal to 10, the Froude number Fr is fixed at 1/150 and the Peclet number Pe is 20/3. For such
values, taken from [52], the ratio of forced to natural convections forces is small, the resulting flow consists
of transverse travelling waves. In the above definitions, ν and α are the kinematic viscosity and the thermal
diffusivity respectively, β is the coefficient of volume expansion and g is the magnitude of the gravitational
field.

Figure 17: Comparison of the isotherms and the streamlines between the classical approach and the IMV method.
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The time history of the temperature T , captured at a mid-height of the duct five channel heights down-
stream of the entrance (5, 0.5), is shown in figure 16 and compared to a one period evolution from [52].
The agreement between the two calculations shows that the present coupled solvers accurately predicts the
temporal behaviour of the temperature. The temporal period of oscillation was predicted by the highest

Figure 18: Comparison of the velocity components between the classical approach and the IMV method.

resolution calculation of Evan and paolucci to be 1.306, which is 3.3% less than that predicted by the present
calculation, which is 1.35. The difference is not visible in the comparison in figure 16 and can be explained
due to the coarser mesh used in the present study. A comparison of isotherms, streamlines, and velocity
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Figure 19: Comparison between an unsteady calculation and the calculations of Evans and Paolucci: the vertical velocities and
the temperature.

components at a time tc that corresponds to a minimum in the temperature at the position (x = 5.0, y = 0.5)
between the classical approach (with zero wall thickness) and the IVM approach (with a thick horizontal
walls) over the first half of the computed domain are depicted in figures 17 and 18. As shown due to high
conductivity and high viscosity of the solid wall, the fluid behaves as the classical approach and both results
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are almost identical.
Finally, temperature and velocity distributions along two locations obtained on both domains are illus-

trated in figure 19 and compared to the reference solutions. Two locations are compared, one at x = 4.97
and the other at x = 10.01. Those two positions represent a strong negative (resp. positive) value of the
vertical velocity where the flow is directed towards the bottom wall (resp. top). Afresh, all the results are
almost indistinguishable between both approaches. The temperature profile shows the steep gradient near
the hot wall as opposed to the more shallow change near the cool wall on top.

6. Air cooling of an enclosed hat-shaped disk

6.1. Sketch of the experiment

Figure 20: Problem set-up: hat shaped disk inside an enclosure

A 3D Inconel-718 hat shape disk is initially taken at a temperature of 1160 oC and placed inside an
enclosure filled by air at atmospheric conditions. The complete set-up of this experiment is given in figures 20
and 23. We start by deriving an anisotropic adapted mesh that describes very accurately the interface
between air and solid. In figure 21, one can clearly see that, after a reduced number of steps, the shape
of the disk is well respected by the mesh. Only additional nodes are locally added in this region which
enables to sharply define the interface, whereas the rest of domain kept the same background size. Once the
mesh is well adapted along the interface, the material distribution between each physical domains can be
described by means of the level set function (see figure 22). Consequently, the same set of equations (1)-(4)
is simultaneously solved over the entire domain including both fluid and solid regions with variable material
properties (see table 1). It should be pointed out that the sharp discontinuity of thermal conductivities at
the interface between the fluid and the solid regions are handled by harmonic mean formulation. Thus, we
automatically well establish the continuity of temperature and heat flux across the interface. Also note that
the use of high value of the relative kinematics viscosity in solid region would make the velocity components
negligibly small by solving the momentum equations. The energy equation is then reduced to transient
heat conduction equation for the solid body, because its convection terms vanish. Summarizing, one can
clearly see that regardless the increasing requirement of computational storage and time, the global solution
procedure facilitates the code programming, making it possible and easier to solve conjugate heat transfer
problem.
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(a) isotropic mesh (b) anisotropic mesh

Figure 21: Quality of the interface across the adaptation process.

Figure 22: Distribution of the density across the air/solid interface.

Figure 23: Immersed body in the computational domain.
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6.2. Analysis of the results

(a) (b)

(c) (d)

Figure 24: Evolution of temperature distribution and streamlines during the cooling.

Recall that the interface between solid and fluid is only the zero level of the distance function; hence
the calculations of the boundary integrals of systems (1)-(4) are no longer applicable. The state of art in
this coupled convection-conduction-radiation analysis (1)-(4) lies in that the heat transfer between the solid
and the air at the interface has been treated “naturally”, i.e. without the use or a previous knowledge of
any heat transfer coefficient. Moreover, by solving the P-1 radiative model in both domains it generates a
volume source term rendered by the sharp discontinuity of the temperature and the materials properties (i.e.
emissivity). As shown in the second section, this source term is introduced back into the energy equation
ensuring the continuous cooling of the hat shaped disk. Figure 24 shows the evolution of the temperature
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Figure 25: Positions of the thermal sensors

at different time steps as well as the convective effects from the Boussinesq model. The streamlines and the
temperature distribution clearly indicate the expected flow pattern. It is characterized by a hot fluid rising
above the heated disk in the form of ascending thermal plumes. Once it reaches the top wall, it returns to
the heated solid forming two counter-rotating recirculation movements.

6.3. Comparison with experimental data

The hat shaped disk was instrumented with 6 thermal sensors at different locations (see figure 26).
Data were acquired via a computer controlled data acquisition system, tabulated and then reported by
our industrial partner. A comparison of experimentally measured temperature results with the numerical
simulation results at these different locations is shown in figure 26. As can be seen, the agreement is
generally good (within + − 5%) for all stations. However, the discrepancy shown at the top flat surface of
the heated disk (sensor f) indicates that a more sophisticated radiative transfer model may be needed to
improve solution and account for a better directional influence. This issue will be the subject of further
investigations.

Summing up, for any different geometry, even if we consider a new studied solid, it is shown that
the proposed method only requires to define the composite material properties without any knowledge or
previous experiment needed to deduce the heat transfer coefficient. It is also worth mentioning that the
profiles of the temperature does not suffer from spurious oscillations (undershoots or overshoots) which are
frequently observed in the presence of high temperature gradients at the interface or in convection dominated
problems across the enclosure. This can be attributed to the stabilization finite element discretization applied
on the system of equations (1)-(4).

7. Conclusion

In this paper we have described different aspects related to the numerical approximation of thermal
coupling between a fluid and a solid. Our approach, referred as the IVM method, solve one set of equation
in both domains with different materials properties. This has allowed us to propose alternatives to classical
boundary conditions (mixed-convection and radiation) and heat transfer coefficients that insure the heat
exchange between each subdomains. The sharp discontinuity of the material properties was captured by an
anisotropic refined solid-fluid interface. The robustness of the method to compute the flow and heat transfer
with large materials properties differences is demonstrated. The applications of the stabilized finite element
formulations for incompressible flows with thermal coupling to 2D and 3D test problems with conducting
bodies were also highlighted. The numerical tests show that the proposed scheme can produce the accurate
numerical solutions to unsteady flows. The validation with experimental results for the air cooling of a
hat-shaped disk allow us to use the same approach to model similar quenching process in different other
conditions without the need of experimentally computed heat transfer coefficients.
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(a) (b)

(c) (d)

(e) (f)

Figure 26: Comparison of temperature profiles between experimental and numerical results.
From top to bottom and from left to right: sensors a, b, c, d, e, f.
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SUMMARY

In the following paper, we discuss some implementations aspects of stabilization finite element methods
for the resolution of the 3D time-dependent incompressible Navier-Stokes equations. The proposed
method is based on the use of stable mixed formulation, which consists of continuous piecewise
linear functions enriched with a bubble function for the velocity and piecewise linear functions for
the pressure. This choice of element is stable and satisfies the so-called ’Babuska-Brezzi’ condition.
However, for simulating high Reynolds number, an extension of this method based on the multiscale
approach is used. We assess the behaviour and accuracy of the proposed mixed-stable approximation
on two test cases. First, the lid-driven square cavity at Reynolds number up to 50, 000 is compared with
the highly resolved numerical simulations and second, the lid-driven cubic cavity up to Re = 12, 000 is
compared with the experimental data. Results show that the present implementation is able to exhibit
good stability and accuracy properties for high Reynolds number flows using unstructured meshes.

key words: mixed-stable finite elements, high Reynolds number, 2D & 3D lid-driven cavity

1. INTRODUCTION

The incompressible Navier-Stokes equations are used to model a number of important physical
phenomen, including pipe flow, flow around airfoils, weather, blood flow and convective heat
transfer inside industrial furnaces. Significant emphasis has been placed in the literature on
developing stabilized formulations robust enough to model complex flows at high Reynolds
number [1, 2, 3, 4].

It is known that the Galerkin approximation of the Navier-Stokes equations may fail because
of two reasons. Firstly, for convection dominated flows, for which it appears layers where
the solution and its gradient exhibit rapid variation, the classical Galerkin approach leads
to oscillations of the solution in theses layer regions which can spread quickly and pollute
the entire solution domain. Secondly, the use of inappropriate combinations of interpolation
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CNRS 7635, Sophia-Antipolis, France.
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2 E. HACHEM ET AL.

functions to represent the velocity and pressure fields [5, 6] yields instable schemes. These
instabilities associated are usually circumvented by addition of stabilization terms to the
Galerkin formulation.

The present work aims at retaining the advantages of using linear approximations (P1

finite elements) regarding the accuracy and the computational cost, especially for 3D real
applications. But it is well known that the combination of P1-P1 approximation for the velocity
and the pressure does not lead to a stable discretization since it fails to satisfy the Babuska-
Brezzi condition.

Many measures may be distinguished to solve and get around these two difficulties, the
instabilities in advection-dominated regime and the velocity-pressure compatibility condition.
A very popular method was firstly proposed by Arnold, Brezzi and Fortin [7] for the Stokes
problem. It was suggested to enrich the functional spaces with space of bubble functions known
as Mini-element. Since the bubble functions vanish on each element boundary, they can be
eliminated and statically condensed giving rise to a stabilized formulation for equal-order linear
element. Later, in [8], it was pointed out that resorting to these local bubbles is equivalent to use
residual-based stabilized schemes with a natural way of choosing the stabilization parameters:
the selection of the optimal bubble function reproducing the appropriate choice of the stability
parameter. Thus, it is clear that the bubble can take different shapes for the diffusive dominated
regime and for the advection-dominated flow regime. For example, it was shown in [9, 10] that
upwind bubbles could be used to reproduce the SUPG stabilization. A standard reference for
mixed finite element methods is the book of Brezzi and Fortin [11]. A brief history on residual
based stabilisation methods can be found in Brezzi et al. [12], the book of Donea and Huerta
[13], all the articles by Hughes et al. [14, 15, 16, 17] on multiscale methods and SUPG/PSPG

methods by Tezduyar [18]. The Unusual Stabilised finite element method was introduced by
Franca and Farhat in [19]. Codina and co-workers introduced lately recent developments of
residual based stabilisation methods using orthogonal subscales and time dependent subscales
[20, 21, 22, 23]. These methods are very promising and can be regarded as an open door to
turbulence. At the same level, one can find a complete description on the use of variational
multiscale method for turbulent flows in [24, 25, 26] where a three scale separation method
was developed and applied. In diffusion dominant cases, the Mini-element formulation of the
problem yields acceptable results. However, when the convection terms dominate, the results
can be impaired and an extension for this method is needed. In the past three decades, various
numerical methods were developed to overcome this problem [14, 9, 27, 28]. In the present work,
the multiscale approach introduced by [29] is applied to deal with the dominance of the inertial
term. The main contributions of this work are a systematic study of the variational multiscale
method for three-dimensional problems and an implementation of a consistent formulation
suitable for large problems with high Reynolds number and unstructured meshes. Using the
mixed stable finite element method, we construct a stable scheme for the approximation of the
velocity and the pressure and by using the variational multiscale framework we add the needed
stabilizing term for the convection dominated problems. We demonstrate the performance of
the method for a number of two-dimensional and three-dimensional problems for Reynolds up
to 50, 000 and 12, 000 respectively.

The outline of the paper is as follows: first, we present the time-dependent, three-
dimensional, Navier-Stokes problem. In section 3, we present the classical mixed variational
formulation to solve the Stokes problem. The stabilizing schemes from a variational multiscale
point of view to deal with convection dominated problems is described and presented in

;
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section 4. In section 5, the numerical performance of the presented method is demonstrated by
means of 2D and 3D test cases. Comparisons with the literature results are presented. Finally,
conclusions and perspectives are outlined.

2. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Let Ω ⊂ R
nsd be the spatial domain at time t ∈ [0, T ], where nsd is the number of space

dimensions. Let Γ denote the boundary of Ω. We consider the following velocity-pressure
formulation of the Navier-Stokes equations governing unsteady incompressible flows:

{
ρ(∂tu + u · ∇u) − ∇ · σ = f in Ω × [0, T ] (1)

∇ · u = 0 in Ω × [0, T ] (2)

where ρ and u are the density and the velocity, f the body force vector per unity density and
σ the stress tensor which reads:

σ = 2µ εεε(u) − p Id (3)

with p and µ the pressure and the dynamic viscosity, Id the identity tensor and εεε the strain-rate
tensor defined as

εεε(u) =
1

2
(∇u + t

∇u) (4)

Essential and natural boundary conditions for equation (1) are:

u = g on Γg × [0, T ] (5)

n · σ = h on Γh × [0, T ] (6)

Γg and Γh are complementary subsets of the domain boundary Γ. Functions g and h are given
and n is the unit outward normal vector of Γ. As initial condition, a divergence-free velocity
field u0(x) is specified over the domain Ωt at t = 0:

u(x, 0) = u0(x) (7)

3. CLASSICAL MIXED VARIATIONAL FORMULATION

3.1. Weak formulation of the incompressible Navier-Stokes equations

The function spaces for the velocity, the weighting function space and the scalar function space
for the pressure are respectively defined by:

V =
{
u(x, t) | u(x, t) ∈ H1(Ω)nsd , u = g on Γg

}
(8)

Q =

{

p(x, t) | p(x, t) ∈ L2(Ω),

∫

Ω

p dΩ = 0

}

(9)

;
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The weak form of the system (1-2) consists in finding (u, p) ∈ V × Q such that:






ρ (∂tu,w)Ω + ρ (u · ∇u,w)Ω + (σ(p,u), εεε(w))Ω = (f ,w)Ω + (h,w)Γh
∀w ∈ V0

(∇ · u, q)Ω = 0 ∀q ∈ Q0

(10)

where (ϕ, ψ)Ω =
∫

Ω
ϕψdΩ is the standard scalar product in L2(Ω). The Galerkin approximation

consists in decomposing the domain Ω into Nel elements K such that they cover the domain
and there are either disjoint or share a complete edge (or face in 3D). Using this partition Th,
the above-defined functional spaces (8) and (9) are approached by finite dimensional spaces
spanned by continuous piecewise polynomials such that:

Vh =
{
uh | uh ∈ C0(Ω)nsd , uh|K ∈ P 1(K)nsd , ∀K ∈ Th

}
(11)

Qh =
{
ph | ph ∈ C0(Ω), ph|K ∈ P 1(K), ∀K ∈ Th

}
(12)

The Galerkin discrete problem consists therefore in solving the following mixed problem:

Find a pair (uh, ph) ∈ Vh × Qh, such that: ∀ (wh, qh) ∈ Vh,0 × Qh







ρ (∂tuh,wh)Ω + ρ (uh · ∇uh,wh)Ω

+(2µεεε(uh) : εεε(wh))Ω − (ph,∇ · wh)Ω = (f ,wh)Ω + (h,wh)Γh

(∇ · uh, qh)Ω = 0

(13)

3.2. Classical mixed formulation: the Stokes problem

This paragraph is devoted to the brief presentation of the classical stable mixed-formulation
for the Stokes problem which can be derived by introducing the Mini-element and the
corresponding static condensation [11]. This formulation is stable for equal-order interpolation
for the velocity and the pressure fields (satisfies the inf-sup condition) and has already been
implemented in the CIMLIB library and validated in [30, 31].

The finite element formulation of the classical mixed formulation for the Stokes equations
reads:

Find a pair (uh, ph) ∈ Vh × Qh, such that:






(2µεεε(uh) : εεε(wh))Ω − (ph,∇ · wh)Ω = (f ,wh)Ω ∀wh ∈ Vh,0

(∇ · uh, qh)Ω = 0 ∀qh ∈ Qh

(14)

The velocity functional space is enriched by the discrete space associated to the bubble function
[7]:

V ′ =
{

u′ | u′
|K ∈ P 1(K)nsd ∩ H1

0 (K)nsd , ∀K ∈ Th

}

(15)

The choice of this bubble function is continuous inside the element, considered as linear on
each sub-triangle and vanishes at the boundary of K. The velocity field is now an element
of the function space generated by the following direct sum Vh ⊕ V ′. In other words, we use
continuous piecewise linear functions enriched by bubbles for the velocity and piecewise linear

;
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functions for the pressure. The mixed-finite element approximation of problem (14) can now
be written as follows:

Find a pair (u, ph) ∈ V = Vh ⊕ V ′ × Qh, such that:






(2µεεε(u) : εεε(w))Ω − (ph, ∇ · w)Ω = (f ,w)Ω ∀w ∈ V0

(∇ · u, qh)Ω = 0 ∀qh ∈ Qh

(16)

Since the fine-scale problem is independent and uncoupled at the element level and vanishes
on the element boundaries, the system (16) can be decomposed into:







(2µεεε(uh) : εεε(wh))Ω − (ph,∇ · wh)Ω = (f ,wh)Ω

(2µεεε(u′) : εεε(w′))Ω − (ph, ∇ · w′)Ω = (f ,w′)Ω

(∇ · (uh + u′), qh)Ω = 0

(17)

As the fine-scale space is assumed to be orthogonal to the finite element space, the crossed
viscous terms in both equations of (17) vanished [32].

3.3. Matrix formulation

Equations of system (17) give rise to the following global system to solve:





Aww 0 tAwq

0 Abb
tAbq

Awq Abq 0











uh

u′

ph




 =






Bw

Bb

Bq




 (18)

where
Aww(uh) = (2µεεε(uh) : εεε(wh))Ω , Abb(u

′) = (2µεεε(u′) : εεε(w′))Ω ,

Awq(uh) = − (∇ · uh, qh)Ω , Abq(u
′) = − (∇ · u′, qh)Ω ,

tAwq(ph) = − (ph,∇ · wh)Ω , tAbq(ph) = − (ph, ∇ · w′)Ω ,

Bw = (f ,wh)Ω , Bb = (f ,w′)Ω , Bq = 0 .

(19)

The static condensation process consists in solving the second line for the bubble function u′

and inserting the result into the third line of (18) which yields the condensed matrix scheme
for large-scale unknowns uh and ph:

[

Aww
tAwq

Awq Ãqq

][

uh

ph

]

=

[

Bw

B̃q

]

(20)

where
Ãqq = AbqA

−1
bb

tAbq and B̃q = tAbqA
−1
bb Bb (21)

It is clear that taking into account locally the influence of fine scales (bubble functions) upon
the resolved large scales has introduced new stabilizing terms and has modified the components
of the global matrix. The new operator Ãqq provides a so-called pressure stabilization while

the new right hand side B̃q ensures consistency. Finally, we obtain a stable mixed formulation
for the velocity and pressure system of equations as previously presented in [31].

;
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4. STABLE MULTISCALE VARIATIONAL APPROACH

In this section the general equations of time-dependent Navier-Stokes equation are solved. The
stabilizing schemes from a variational multiscale point of view are described and presented.
The velocity and the pressure spaces are enriched by a space of bubbles that cures the spurious
oscillations in the convection-dominated regime as well as the pressure instability.

4.1. Basic principles of the multiscale approach

Following the lines in [29], we consider an overlapping sum decomposition of the velocity
and the pressure fields into resolvable coarse-scale and unresolved fine-scale u = uh + u′

and p = ph + p′. Likewise, we regard the same decomposition for the weighting functions
w = wh + w′ and q = qh + q′. The unresolved fine-scales are usually modelled using residual
based terms that are derived consistently. The static condensation consists in substituting the
fine-scale solution into the large-scale problem providing additional terms, tuned by a local
time-dependent stabilizing parameter, that enhance the stability and accuracy of the standard
Galerkin formulation for the transient non-linear Navier-Stokes equations. In order to represent
these fine-scales, different bubbles functions (similar to the Mini-element) may be used. The
selection of the optimal bubble function reproduces the appropriate choice of the stability
parameter [9, 8].

The enrichment of the functional spaces is performed as follows: V = Vh⊕V ′, V0 = Vh,0⊕V ′
0 ,

Q = Qh ⊕ Q′ and Q0 = Qh,0 + Q′
0. Thus, the mixed-finite element approximation of problem

(13) can read:

Find a pair (u, p) ∈ V × Q, such that: ∀ (w, q) ∈ V0 × Q0







ρ (∂t(uh + u′), (wh + w′))Ω + ρ ((uh + u′) · ∇(uh + u′), (wh + w′))Ω

+ (2µεεε(uh + u′) : εεε(wh + w′))Ω

− ((ph + p′), ∇ · (wh + w′))Ω = (f , (wh + w′))Ω + (h, (wh + w′))Γh

(∇ · (uh + u′), (qh + q′))Ω = 0
(22)

As shown previously, these equations can be split into two sub-problems by separating the two
scales. Integrating by parts within each element, we obtain the so-called coarse-scale problem







ρ (∂t(uh + u′),wh)Ω + ρ ((uh + u′) · ∇(uh + u′),wh)Ω + (2µεεε(uh) : εεε(wh))Ω

− ((ph + p′), ∇ · wh)Ω = (f ,wh)Ω + (h,wh)Γh
∀wh ∈ Vh,0

(∇ · (uh + u′), qh)Ω = 0 ∀qh ∈ Qh,0

(23)

and the fine-scale problem






ρ (∂t(uh + u′),w′)K + ρ ((uh + u′) · ∇(uh + u′),w′)K + (2µεεε(u′) : εεε(w′))K

− ((ph + p′), ∇ · w′)Ω = (f ,w′)Ω + (h,w′)Γh
∀w′ ∈ V ′

0

(∇ · (uh + u′), q′)Ω = 0 ∀q′ ∈ Q′
0

(24)

;
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To derive our stabilized formulation, we first solve the fine scale problem, defined on the sum
of element interiors and written in terms of the time-dependant large-scale variables. Then
we substitute the fine-scale solution back into the coarse problem (23), thereby eliminating

the explicit appearance of the fine-scale while still modelling their effects. At this stage, three
important remarks have to be made:

i) when using linear interpolation functions, the second derivatives vanish as well as all
terms involving integrals over the element interior boundaries;

ii) as the fine-scale space is assumed to be orthogonal to the finite element space, the crossed
viscous terms vanish in (23) and (24) [32];

iii) for the sake of clarity, only Dirichlet boundary conditions are considered, generalization
to other types of boundary conditions being straightforward.

4.2. The fine scale sub-problem

Rearranging the terms of equation (24) leads to:






ρ (∂tu
′,w′)Ω + ρ ((uh + u′) · ∇u′,w′)Ω

+(2µεεε(u′) : εεε(w′))Ω + (∇p′,w′)Ω = (RM,w′)Ω ∀w′ ∈ V ′
0

(∇ · u′, q′)Ω = (RC, q′)Ω ∀q′ ∈ Q′
0

(25)

with RM and RC the momentum and continuity residuals, respectively:

RM = f − ρ∂tuh − ρ(uh + u′) · ∇uh − ∇ph

RC = −∇ · uh

(26)

Here, some assumptions have to be made in order to deal with the time-dependency and the
non-linearity of the momentum equation of the subscale system (25):

i) the subscales are not tracked in time, therefore, quasi-static subscales are considered here
(see [33] for a justification of this choice); however, the subscale equation remains quasi
time-dependent since it is driven by the large-scale time-dependent residual;

ii) the convective velocity of the non-linear term may be approximated using only large-scale
part so that (uh + u′) · ∇(uh + u′) ≈ uh · ∇(uh + u′).

Consequently, the fine-scale problem reduces to the following:






ρ (uh · ∇u′,w′)Ω + (2µεεε(u′) : εεε(w′))Ω + (∇p′,w′)Ω = (RM,w′)Ω ∀w′ ∈ V ′
0

(∇ · u′, q′)Ω = (RC, q′)Ω ∀q′ ∈ Q′
0

(27)

With regard to the work of [31], two important extensions can be identified. The first one
consists in considering the advection terms in equation (27) and the second one is that
the small-scale pressure is included. These two extensions are essential for simulating high
convection-dominated flows. Indeed, it is known, from the works of Wall et al. [34], Tezduyar
and Osawa [35], that considering the small-scale pressure as an additional variable enables
to complete the continuity condition on the small-scale level. It provides additional stability
especially when increasing Reynolds number. However, solving the small-scale equation for

;
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both the velocity and the pressure is somewhat complicated. Franca and co-workers [5]
proposed a separation technique of the small-scale unknowns. They replaced the small-scale
continuity equation by the small-scale pressure Poisson equation (PPE). Since only the effect of
the small-scale pressure Poisson equation on the large-scale equation must be retained, Franca
and Oliveira [36] showed that rather than solving this equation it could be approximated by
way of an additional term in the fashion of a stabilizing term as follows:

p′ ≈ τCRC (28)

In this work, we adopt the definition proposed by Codina in [20] for the stabilizing coefficient:

τC =

((
µ

ρ

)2

+

(
c2

c1

‖u‖K

h

)2
)1/2

(29)

where c1 and c2 are two constants independent from h, h being the characteristic length of the
element. Once this stabilizing coefficient τC has been defined, expression (28) can be inserted
into the large scale equation (23). Then, it remains to deal with the small scale momentum
equation. Codina has shown in [20] that the small scale velocity is exclusively driven by the
residual of the large scale momentum equation and not by the residual of the continuity
equation. Consequently, in order to eliminate the effects of the small scale pressure in the
small scale momentum equation, we impose p′ = 0. Finally, the method can be regarded as
a combination of a stable formulation (Mini-element) plus a stabilizing strategy. Indeed, the
stable formulation, described previously for the Stokes problem, is applied to the velocity field
while the fine scale pressure is modelled using a stabilizing method.

Now, it remains to solve the small-scale momentum equation. Following Masud and Khurram
[27] and without loss of generality, the fine scale fields can be expanded using bubble functions
on individual elements:

u′ =
∑

K∈Th

u′
KbK and w′ =

∑

K∈Th

w′
KbK (30)

where bK represents the bubble shape functions, u′
K denotes the vector of coefficients for the

fine scale velocity field and w′
K represents the coefficients for the fine scale weighting function.

Inserting expressions (30) into the fine scale momentum equation (27) yields:
∑

K∈Th

ρ (uh · ∇bKu′
K , bKw′

K)K + (2µεεε(bKu′
K) : εεε(bKw′

K))K =
∑

K∈Th

(RM, bKw′
K)K (31)

Since the bubble functions vanish on element boundaries, the previous expression simplifies
into:

ρ (uh · ∇bKu′
K , bKw′

K)K + (2µεεε(bKu′
K) : εεε(bKw′

K))K = (RM, bKw′
K)K ∀K ∈ Th (32)

Taking the constant vector of coefficients u′
K and w′

K out of the integral and exploiting
arbitrariness of w′

K , one gets:

u′
K =

1

ρ (uh · ∇bK , bK)K + (2µεεε(bK) : εεε(bK))K

· (RM, bK)K ∀K ∈ Th (33)

Assuming that the large scale momentum residual RM is constant, the fine scale velocity on
each element K can read:

u′|K = τKRM ∀K ∈ Th (34)

;



STABILIZED VMS METHOD 9

where τK is the stabilization parameter which has been naturally obtained after the resolution
of the fine scale sub-problem:

τK =
bk

∫

K
bkdΩ

ρ (uh · ∇bK , bK)K + (2µεεε(bK) : εεε(bK))K

∀K ∈ Th (35)

The effect of the bubble is now condensed in this elemental parameter. Obviously, the choice
of the bubble functions affects the value of the stability parameter. In expression (35), both
convection and viscous regime are represented. However, using the same bubble function for
the trial function and the weighting function leads to the cancellation of the convection term.
Indeed, under the assumption that uh is piecewise constant, the choice of the Mini-element
yields:

(uh · ∇bK , bK)K = 0 ∀K ∈ Th (36)

As pointed out in [9], a way to recover the convection term is to resort to upwind bubbles.
Such a choice enables to reproduce naturally the coefficient of the SUPG stabilization method.
This issue has been also highlighted by Masud et al. in [27], they propose to use different order
of interpolation functions for the trial and the weighting functions in the skew part of (35).
In order to extract the structure of the stability parameter τK , we employ a combination of
standard bubble shape function bK and upwind shape functions bu

K in the fine scale field w′:

w′|K = w′
Kb∗K = w′

K (bK + bu
K) (37)

Introducing the modified w′ into (33) leads to the modified form of the stabilization parameter
τK :

τK =
bk

∫

K
b∗kdΩ

ρ (uh · ∇bK , bu
K)

K
+ (2µεεε(bK) : εεε(bK))K

∀K ∈ Th (38)

As we use linear interpolations, the upwind part drops out directly in the viscous term.

4.3. The coarse scale sub-problem

Let us consider the coarse scale problem of the expression (23) including the assumptions made
for the fine scale fields:







ρ (∂tuh,wh)Ω + (ρuh · ∇uh,wh)Ω + (ρuh · ∇u′,wh)Ω + (2µεεε(uh) : εεε(wh))Ω

− (ph, ∇ · wh)Ω − (p′,∇ · wh)Ω = (f ,wh)Ω ∀wh ∈ Vh,0

(∇ · uh, qh)Ω + (∇ · u′, qh)Ω = 0 ∀qh ∈ Qh,0

(39)

Applying integration by parts to the third terms in the first equation of (39) and to the second
term in the second equation, then substituting the expressions of both the fine-scale pressure
(28) and the fine-scale velocity (34), we get:







ρ (∂tuh,wh)Ω + (ρuh · ∇uh,wh)Ω −
∑

K∈Th

(τKRM, ρuh∇wh)K + (2µεεε(uh) : εεε(wh))Ω

− (ph,∇ · wh)Ω +
∑

K∈Th

(τCRC, ∇ · wh)K = (f ,wh)Ω ∀wh ∈ Vh,0

(∇ · uh, qh)Ω −
∑

K∈Th

(τKRM,∇qh)K = 0 ∀qh ∈ Qh,0

(40)

;
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Finally, substituting the residual of the momentum equation and expanding all the additional
terms, we obtain a modified coarse scale equations expressed solely in terms of coarse scale
functions. The new modified problem can now be decomposed into four main terms: the
first one is the Galerkin contribution, the second and the third terms take into account the
influence of the fine-scale velocity on the finite element components and the last term models
the influence of the fine-scale pressure onto the large-scale problem:

ρ (∂tuh + uh.∇uh,wh)Ω + (2µεεε(uh) : εεε(wh))Ω − (ph, ∇.wh)Ω + (∇.uh, qh)Ω − (f ,wh)Ω
︸ ︷︷ ︸

Galerkin terms

+
∑

K∈Th

τK (ρ(∂tuh + uh.∇uh) + ∇ph − f , ρuh∇wh)K

︸ ︷︷ ︸

Upwind stabilization terms

+
∑

K∈Th

τK (ρ(∂tuh + uh.∇uh) + ∇ph − f , ∇qh)K

︸ ︷︷ ︸

Pressure stabilization terms

+
∑

K∈Th

(τC∇ · uh,∇ · wh)K

︸ ︷︷ ︸

grad-div stabilization term

= 0 ∀wh ∈ Vh,0 , ∀qh ∈ Qh,0

(41)
When compared with the Galerkin method (13), the proposed stable formulation involves
additional integrals that are evaluated element wise. These additional terms, obtained by
replacing the approximated u′ and p′ into the large-scale equation, represent the effects of
the sub-grid scales and they are introduced in a consistent way to the Galerkin formulation.
All of these terms enable to overcome the instability of the classical formulation arising in
convection dominated flows and to satisfy the inf-sup condition for the velocity and pressure
interpolations. Moreover, the last term in equation (41) provides additional stability at high
Reynolds number [37].

For sake of simplicity in the notation and for a better representation of all the additional
terms in equation (41), the condensation procedure of the small-scale into the large scale
is masked under these stabilizing parameters. However, from the implementation point of
view, the structure of the stabilizing parameters is computed naturally via the element-level
matrices.

4.4. Time advancing

In the present study, the time derivative is discretized using a simple first order Euler formulae
while an implicit scheme is used for the other terms. To illustrate this point, let us focus on
the coarse scale momentum equation including the small scale pressure simplification. In this

;
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case, the weak form of the implicit scheme reads:

ρ

(
un+1

h − un
h

∆tn
,wh

)

Ω

+ (ρuh · ∇uh,wh)
n+1

Ω + (ρuh · ∇u′,wh)
n+1

Ω

+
(
2µεεε(un+1

h ) : εεε(wh)
)

Ω
−

(
pn+1

h , ∇ · wh

)

Ω
+

(
τC∇ · un+1

h ,∇ · wh

)

Ω
= (fn,wh)Ω

(42)

where the exponent n denotes the current time iteration while the exponent (n+1) represents
the next time level we want to compute. The resulting implicit scheme (42) is obviously non-
linear because of the non-linear nature of the convective terms. In order to circumvent this
issue, we resort to a classical Newton-Raphson linearization procedure. The implicit Newton-
Raphson iterative scheme reads:

ρ

(

u
n,i+1

h − un
h

∆tn
,wh

)

Ω

+ (ρuh · ∇uh,wh)
n,i+1

Ω + (ρuh · ∇u′,wh)
n,i+1

Ω

+
(

2µεεε(un,i+1

h ) : εεε(wh)
)

Ω
−

(

pn,i+1

h ,∇ · wh

)

Ω
+

(

τC∇ · un,i+1

h , ∇ · wh

)

Ω
= (fn,wh)Ω

(43)
where the exponent (n, i+1) denotes the (i+1)th iteration of the Newton-Raphson procedure
which uses as initial guess the solution at time level n. The linearization of the convective
terms consists in keeping only first order terms at the (i + 1)th Newton iteration as follows:

(uh · ∇uh)
n,i+1

=
(

u
n,i
h + (un,i+1

h − u
n,i
h )

)

· ∇
(

u
n,i
h + (un,i+1

h − u
n,i
h )

)

= u
n,i
h · ∇u

n,i+1

h + u
n,i+1

h · ∇u
n,i
h − u

n,i
h · ∇u

n,i
h

+
(

u
n,i+1

h − u
n,i
h

)

· ∇
(

u
n,i+1

h − u
n,i
h

)

≈ u
n,i
h · ∇u

n,i+1

h + u
n,i+1

h · ∇u
n,i
h − u

n,i
h · ∇u

n,i
h

(44)

with u
n,i
h the value of the velocity at the previous Newton iteration. Owing to we use quasi-

static bubble functions, the third term of equation (43) reduces to:

(uh · ∇u′)
n,i+1

≈ u
n,i
h · ∇u′n,i+1 (45)

The complete linearized Newton-Raphson scheme finally reads:

ρ

(

u
n,i+1

h

∆tn
+ u

n,i
h · ∇u

n,i+1

h + u
n,i+1

h · ∇u
n,i
h ,wh

)

Ω

+
(

ρun,i
h · ∇u′n,i+1,wh

)

Ω

+
(

2µεεε(un,i+1

h ) : εεε(wh)
)

Ω
−

(

pn,i+1

h , ∇ · wh

)

Ω
+

(

τC∇ · un,i+1

h ,∇ · wh

)

Ω

=

(

fn + ρ
un

h

∆tn
+ u

n,i
h · ∇u

n,i
h ,wh

)

Ω

(46)

4.5. Matrix formulation of the problem

When applied to both the coarse scale system and the fine scale system, the previous scheme
gives rise to a linear system that remains to be solve. This system can be put naturally under

;
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the following matrix form:






Aww
tAwb

tAwq

Awb Abb
tAbq

Awq Abq 0











uh

u′

ph




 =






Bw

Bb

Bq




 (47)

where

Aww(uh) = ρ

(

u
n,i+1

h

∆tn
+ u

n,i
h · ∇u

n,i+1

h + u
n,i+1

h · ∇u
n,i
h ,wh

)

Ω

+
(

2µεεε(un,i+1

h ) : εεε(wh)
)

Ω
+

(

τC∇ · un,i+1

h , ∇ · wh

)

Ω

Abb(u
′) = ρ

(

u
n,i
h · ∇u′n,i+1,w′

)

Ω
+

(
2µεεε(u′n,i+1) : εεε(w′)

)

Ω

Awb(uh) = ρ

(

u
n,i+1

h

∆tn
+ u

n,i
h · ∇u

n,i+1

h + u
n,i+1

h · ∇u
n,i
h ,w′

)

Ω

Awq(uh) = −
(

∇ · un,i+1

h , qh

)

Ω

Abq(u
′) = −

(
∇ · u′n,i+1, qh

)

Ω

Bw =

(

fn + ρ
un

h

∆tn
+ u

n,i
h · ∇u

n,i
h ,wh

)

Ω

Bb =

(

fn + ρ
un

h

∆tn
+ u

n,i
h · ∇u

n,i
h ,w′

)

Ω

Bq = 0

(48)

One can notice that, in the present case of the quasi-static bubble assumption, the following
simplification holds:

tAwb(u
′) = ρ

(

u
n,i
h · ∇u′n,i+1,wh

)

Ω
(49)

The static condensation process, previously detailed, which consists in solving the second line
involving u′ and inserting the solution into the first and third lines of system (47) results into
the condensed matrix scheme for large-scale unknowns uh and ph that reads:

[
Ãww

tÃwq

Ãwq Ãqq

][
uh

ph

]

=

[
B̃w

B̃q

]

(50)

with
Ãww = Aww − tAwbA

−1
bb Awb

tÃwq = tAwq −
tAwbA

−1
bb

tAbq

Ãwq = Awq − AbqA
−1
bb Awb Ãqq = −AbqA

−1
bb

tAbq

B̃w = Bw − tAwbA
−1
bb Bb B̃q = −AbqA

−1
bb Bb

(51)

;
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Taking into account locally the influence of unresolved fine scales upon the resolved large scales
has introduced new stabilizing terms and modified the components of all the matrices while
the effect of the fine-scale pressure has been added directly to the first matrix by a stabilizing
term. This matrix formulation can be put in relation with the classic expression (41) as follows:

i) the modified terms Ãww and Ãwq incorporate the upwind stabilization terms provided
by tAwbA

−1
bb Awb and AbqA

−1
bb Awb;

ii) similarly, the modified operators tÃwq and Ãqq contain the pressure stabilization terms
tAwbA

−1
bb

tAbq and AbqA
−1
bb

tAbq;
iii) eventually, the right hand side components have been modified to ensure consistency by

means of tAwbA
−1
bb Bb and AbqA

−1
bb Bb.

5. NUMERICAL EXAMPLES

In order to assess the main characteristics of the formulation previously presented and test
its feasibility in the context of high-performance computing, two examples are analyzed. They
were chosen to cover different flow regimes, from laminar to turbulence, and to deal with
engineering applications as well. Please note that the RB-VMS computations shown in the
following qualify this formulation as an important tool to be used within the realm of simulation
of real flows. That is especially due to the fact that it does not require any LES-type modeling
and, thus, can be applied to any region of the domain, regardless of the flow regime.

5.1. Driven flow cavity problem (2-D)

Now we numerically solve the lid-driven flow problem. This test has been widely used
as a benchmark for numerical methods and has been analyzed by a number of authors
[38, 39, 40, 41]. The problem description, boundary conditions and the corresponding meshes
are shown in figure 1. Dirichlet boundary conditions prescribe on the upper boundary at y = 1,
and elsewhere on . The source term is identical to zero. The viscosity is adjusted in order to
obtain Reynolds number of 1, 000, 5, 000, 10, 000, 20, 000, 33, 000 and 50, 000. Zero pressure is
prescribed at the lower left corner.

u (0 , 0)

u (1 , 0)

u
 (

0
 ,

 0
)

u
 (

0
 ,

 0
)

p = 0

Figure 1. Problem settings: boundary conditions (left) , coarse mesh (center) , fine mesh (right).

Two meshes of linear finite elements have been used in the calculations. The coarse one is

;
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Table I. Minimum and maximum values of the pressure for various numerical methods
for the coarse mesh (64 × 64) and for Re = 10000.

Present work USFEM Two-level method Three-level method

pmin -0.1319 -0.0975 -0.0730 -0.0904

pmax 0.9142 0.8774 1.0465 1.1278

made of 64×64 elements, refined near the walls of the cavity. The fine mesh is made of 180×180
elements. All numerical experiments are compared to the very known references of Ghia et al.

[38] and Erturk et al. [42]. The authors in [38] applied a second-order accurate finite difference
method using a fine grid of 257 × 257 while in [42] the 2-D steady incompressible Navier-
Stokes equations was solved using a very efficient finite difference numerical method (fourth
order compact formulation) on a very fine grid of 601×601. We consider that the steady state
is reached when the normalized velocity deviations within one step are lower than a chosen
tolerance of 10−6. Recall that the main interest is to compare the performance of our scheme
described in the previous section and the behaviour of the solution for high Reynolds number
flows. Therefore, a first set of numerical experiments has been performed using our scheme.
The velocity profiles for ux and uy along x = 0.5 and y = 0.5 respectively are shown in figure 2.
Comparing these results with the given reference, one can clearly see the improvement of the
new scheme in the solution in particularly when the Reynolds number increases. Hence, we
conclude that the absence of the pressure subscale and the convection terms in the small-scale
problem renders an extremely diffusive solution even on a very fine mesh. For high Reynolds
number, the results are underestimated with respect to the new formulation and they are very
inaccurate. However, the solution of the modified scheme is in excellent agreement with the
reference in all situations. Some other interesting quantities than plotting the velocity profiles
are available in the literature. In [43], the authors have studied and analyzed the pressure and
the vortex formation and comparisons were made using several numerical methods for different
Reynolds number. In the following, we will get a closer look on the pressure isolines for Reynolds
number 10000 and compared our results to the given reference. Table I and figure 3 show a
very good agreement of our modified scheme with the given reference. As in [31], we proceed
our comparisons by investigating the location of the respective vortex centers. Figure 4 shows
the computed flow fields in terms of the velocity magnitude and the corresponding streamlines.
As expected, using the fine mesh 180 × 180 the solutions exhibit additional counter-rotating
vortices in or near the cavity corners as Re increases. It is known that this problem involves a
primary vortex, while for higher Reynolds numbers secondary vortices appear in the corners
of the domain. As the Reynolds number increases, the location of the centers of these vortices
change, secondary vortex has the tendency to break on two new vortex and consequently their
number increases (see figures 4 and 5). The effect of the Reynolds number on the genesis
of new vortices inside the cavity is presented in the following graph. Figure 6 highlights by
order of appearance the location of these expected vortices. The location of the centers of
these vortices together with corresponding values from references solutions are summarized in
tables III and IV. Qualitatively and quantitatively, the results are similar to reference solutions
and a good agreement is observed, although the mesh used here is coarser than the one used

;
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Figure 2. Left: velocity profile for ux along x = 0.5. Right: velocity profile for uy along
y = 0.5. The dashed and solid lines denote the coarse and the fine meshes respectively

while the symbols represent the reference.
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Figure 3. Pressure isolines on colored pressure distribution.
Left: two-level method [43]. Right: present work.

Figure 4. Streamline on colored velocity distribution from top-left to bottom-right: Re = 1000, 5000,
10000, 20000, 33000 and 50000 with 180 × 180 mesh.

;
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Figure 5. A magnified view of various secondary vortices near the cavity corners for Re = 50000.

Table II. Number of resolved vortices in function of the Reynolds number.

Reynolds Vortices amount

1, 000 3
5, 000 5

10, 000 6
20, 000 8
30, 000 10
50, 000 13

in the reference. We have used as reference [38] for number of Reynolds less than 10, 000, and

Figure 6. Location of the resolved vortices in order of appearance

[42] for Re = 20, 000. To our knowledge, results for Reynolds number 33, 000 and 50, 000 using

;
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Table III. Location of vortex centers (coordinate x, coordinate y) for the two first zones (V1, V2).

Reynolds values 10, 000 20, 000 33, 000 50, 000

V1a

Current (0.5110, 0.5310) (0.5080, 0.5280) (0.506, 0.527) (0.506, 0.526)

Reference (0.5117, 0.5330) (0.5100, 0.5267) −− −−

V2a

Current (0.7670, 0.0594) (0.7060, 0.0416) (0.667, 0.0350) (0.654, 0.0309)

Reference (0.7656, 0.0586) (0.7267, 0.0450) −− −−

V2b

Current (0.9330, 0.0689) (0.9290, 0.1060) (0.926, 0.119) (0.99, 0.0112)

Reference (0.9336, 0.0625) (0.9300, 0.1033) −− −−

V2c

Current (0.808, 0.115) (0.863, 0.178) (0.816, 0.0857)

Reference −− −− −−

V2d

Current (0.986, 0.017) (0.95, 0.194)

Reference −− −−

V2e

Current (0.732, 0.0218)

Reference −−

Table IV. Location of vortex centers (coordinate x, coordinate y) for the two last zones (V3, V4).

Reynolds values 10, 000 20, 000 33, 000 50, 000

V3a

Current (0.0589, 0.1600) (0.0489, 0.1820) (0.0375, 0.206) (0.0307, 0.226)

Reference (0.0586, 0.1641) (0.0483, 0.1817) −− −−

V3b

Current (0.0160, 0.0191) (0.0536, 0.0511) (0.0692, 0.0602) (0.0831, 0.0556)

Reference (0.0156, 0.0195) (0.0567, 0.0533) −− −−

V4a

Current (0.0710, 0.9110) (0.0802, 0.9120) (0.0852, 0.911) (0.0839, 0.908)

Reference (0.0703, 0.9141) (0.0817, 0.9133) −− −−

V4b

Current (0.0255, 0.82) (0.0339, 0.811) (0.0317, 0.809)

Reference (0.0233, 0.82) −− −−

V4c

Current (0.0539, 0.783) (0.0537, 0.774) (0.0446, 0.763)

Reference −− −− −−

V4d

Current (0.126, 0.988)

Reference −−

V4e

Current (0.228, 0.972)

Reference −−

;
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linear stabilised finite elements methods are considered very rare. We notice a very interesting
behaviour of these computations which will be subject of further investigations. The velocity
profiles for ux and uy along x = 0.5 and y = 0.5 respectively for Reynolds number 33, 000
and 50, 000 are shown in figure 7. Another set of numerical experiments was conducted in
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Figure 7. Velocity profile for ux along x = 0.5 (left) and uy along y = 0.5 (right).

order to study the convergence of the new scheme. We performed a mesh sensitivity study to
validate the capability of the method. Therefore, five different unstructured grids were used
for these comparisons with a mesh of 16× 16, 32× 32, 64× 64, 80× 80 and 125× 125 elements
respectively. The Reynolds number is chosen to be equal to 5, 000. We compute the error of
the velocity solution using the L2-norm for all mesh sizes h as follows:

err(h) =

(
∑

x,y

(

u
refi−ui

k

)2

)1/2

∀ h (52)

Results are compared to [42] obtained by employing a high-order accurate finite difference
method on a 601 × 601 mesh. The approximation error is plotted in figure 8 and shows the
expected improvement in the results. The velocity profiles employing different grid resolutions
together with the reference solution are shown in figure 9. Note that the present method
converges rather rapidly to the given benchmark solution.

Figure 8. Evolution of the error in function of the mesh size h.

;
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Figure 9. Velocity profile using different meshes. Left: ux along x = 0.5. Right: uy along y = 0.5.

We conclude this numerical example by examining the computer demands. The number of
time steps needed to reach the steady state with ∆t = 0.1s, as well as the required CPU
time, are reported in figure 10. Within each time step only a single iteration is performed. As
expected, the required CPU time increases with the rise of the Reynolds number. This is due
to the fact that more physical time iterations are necessary to yield the solution; the ratio
CPU time

real time
remaining quite constant in all cases.

Figure 10. Required physical time (left) and CPU time (right) to reach the steady
state for different Reynolds number.

5.2. Three-dimensional lid-driven cavity flow

In many industrial, environmental and geophysical flows, the 3D lid-driven cavity flow can be
seen as an interesting re-circulating flow. The flow is confined in a cubic domain with the upper
wall moving at a constant speed (see figure 11 for details). Although the geometry is simple,
complex physical phenomena occurs inside the cubic cavity. Contrary to the 2D case presented
in the previous section, new phenomena can be captured with the 3D simulations. The
presence of side-walls confining the full flow modifies the flow pattern so that three-dimensional
structures that significantly altered the primary flow in the central plane are produced.
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Recently, the use of three-dimensional numerical simulation becomes a very interesting tool for
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Figure 11. Sketch of the 3D lid driven cavity problem

investigating such physical phenomena in particularly thanks to the increase of technological
advances in computer hardware and parallel computing.

A literature review on the 3D problem shows that in fact by examining a plane parallel to the
downstream wall, corner eddies were caused at the juncture of the side-walls and the ground
while downstream secondary vortices appeared. Moreover, due to centrifugal forces along the
downstream, eddy separation surface were found along the span. These vortices are often

Figure 12. Heterogeneous isotropic mesh for 3D lid-driven cavity flow.

;



22 E. HACHEM ET AL.

known as Taylor-Görter-like (TGL) vortices in reference to their curvature-induced origins. As
shown in the 2D numerical test, the number and location of these vortices were also function of
Reynolds number. The experimental visualization of these vortices were first accomplished at
Standford University by Koseff et al. [44, 45]. The numerical prediction of these vortices has to
be credited to the work of Freitas et al. [46, 47]. It was mentioned that not only corner vortices
in the vicinity of the vertical end-walls were observed but also locally spreading TGL vortices.
For instance, eight pairs of TGL vortices were observed for Re ≈ 3, 000. For higher Reynolds
numbers, regular unsteadiness is no longer sustained and thus evolved into turbulence.

From a numerical point of view, it is worth noticing that most of the computations were
made using structured grids due to the simplicity of the geometry in order to capture the flow
phenomenon accurately. Consequently, few calculations were performed using unstructured
grids. Here, in this work, two unstructured tetrahedral grids were employed to simulate the
lid-driven cavity flow: the first refered as the coarse mesh, consists of 36, 282 nodes and 192, 080
linear tetrahedral elements, and the second refereed as the fine mesh consists of 238, 580 nodes
and 1, 229, 089 linear tetrahedral elements with grid clustering near the six cavity walls. These
grids are displayed in figure 12. Aiming at comparing our results with the given reference, the
two different meshes employed here are formed by approximately the same number of elements
(see [48] for the coarse mesh and [49] for the fine mesh).

The initial velocity in the flow is set to zero everywhere except on the lid surface. The
viscosity is adjusted to obtain the desired Reynolds number. The computational results for
Re = 1, 000, Re = 3, 200 and Re = 12, 000 are compared to the results from Tang et al. [50],
Zang et al. [51] and Prasad and Koseff [52] respectively. The fluid motion is generates by the
top lid that moves in the x-direction with a constant velocity U0 = 1m/s. However, in order to
avoid discontinuity in Dirichlet boundary conditions, we resort to the following velocity profile
in the manner of [53] or [49].

Ux = U0

(

1 −

(
2x

L

)18
)2 (

1 −

(
2y

L

)18
)2

(53)

where L is the size of the cavity. For all the remaining walls, no-slip conditions are applied.
Following the lines in [49] a fixed time step of 0.1s is employed and 20, 000 time steps (2, 000

time units) are performed. Since the detailed convergence analysis is not within the goals of this
paper, only the velocity profiles in the mid-plane are plotted and compared with the reference
solutions. It is worth to mention that for Re ≥ 3, 200, all the experimental and numerical
observations reported by Koseff [44, 45] and Zang [51], showed that the steady state does not
exist but the transient behaviours become periodic. Consequently, a time interval, for which
oscillations of the velocity field occur, was identified and statistical studies in this period were
carried out in order to obtain the mean velocity profiles. Figure 13 show the velocity profiles
of ux component on the vertical centreline and uz component on the horizontal centreline of
the symmetry plane z = 0.5 for Re = 1, 000, Re = 3, 200 and Re = 12, 000, respectively. The
symbols denote the results of the reference data extracted from their figures. All the velocity
profiles are in good agreement with profiles reported by the given references. As mentioned
previously, as the flow is unsteady, the instantaneous velocity at the same time step is different
from the experimental results. Only the time-averaged velocity profile of fully developed flow
is plotted and agrees well with the experimental results. The profile is the average value of
100 dimensionless time units. The differences with the experimental results is most probably
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Figure 13. Comparison of velocity profiles in the mid-plane y = 0.5 with reference data (symbols)
from [50] for Re = 1, 000 (top), [51] for Re = 3, 200 (middle) and [52] for Re = 12, 000 (bottom).

Left: mean value of velocity in the x-direction. Right: mean value of velocity in the z-direction.
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due to the fact that the grid is not fine enough to simulate accurately such complex fluid
phenomena. However, as a first implementation, the agreement between the present and the
experimental results has been considered satisfactory.
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Figure 14. Comparison of velocity vectors for different Reynolds number: Re = 1, 000 (top);
Re = 3, 200 (middle) and Re = 12, 000 (bottom) along different planes: plane y-z (left); plane

x-y (middle); plane z-x (right).

In order to reveal the Taylor-Görtler structures, we investigate the flow vectors, after 2, 000
time units, on the three middle planes x = 0.5, y = 0.5 and z = 0.5. At Re = 1, 000, a primary
vortex appearing in the plane x-y is coming with two secondary contra-rotating vortices next
to the downstream and bottom walls as shown in planes y-z and z-x. Moreover, two additional
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Figure 15. Comparison of observed streamtraces for different Reynolds number:
Re = 1, 000 (top); Re = 3, 200 (middle) and Re = 12, 000 (bottom) on different

views: front view (left); side view (middle); oblique view (right).
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vortices can be observed in the top corners of plane y-z. The steadiness of the flow is clearly
highlighted by its symmetry. These results are in perfect agreement with those of Yang et al.

[54] and Wong and Baker [55]. When the Reynolds number increases, the centre of the primary
vortex moves toward the centre of the cube in the same way than the two-dimensional lid-
driven square cavity. Furthermore, the size of the secondary vortices decreases while their
number is rising. The flow loses its symmetry indicating that it becomes unsteady. Although
no quantitative measurements were reported in the given references, similar behaviour of the
velocity field was reported by [46, 56, 57].

For high Reynolds number (Re = 12, 000), the complexity of the flow is clearly emphasized
by the streamtraces displayed in figure 15. The flow structure is composed by a primary eddy,
a downstream secondary eddy, an upstream tertiary eddy and a corner eddy. As the Reynolds
number increases, the observed particle trajectory exhibits a qualitatively new feature; no
longer is the particle confined to a single side of the cavity, but instead, the particle can pass
from one side to the other, and back again given sufficient time, in apparent violation of mirror
symmetry. As shown by front view in figure 15, the corresponding spiralling path explores the
full width of the cavity.

6. CONCLUSION

In this paper, an unstructured finite element incompressible Navier-Stokes solver, based on
the used of a mixed stable and stabilized approach has been successfully developed for the
study of 2D and 3D unsteady incompressible flows at high Reynolds numbers. The method
is applied to the lid-driven cavity problem for both steady and unsteady flows at Reynolds
number up to 50, 000 for the 2D case and up to 12, 000 for the 3D case. All the results obtained
were compared with numerical solutions obtained by other researchers and are in very good
agreement with benchmark results in the literature.
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3. Oñate E, Valls A, Garćıa J. Modeling incompressible flows at low and high Reynolds numbers via a finite
calculus–finite element approach. Journal of Computational Physics 2007; 224(1):332–351.

4. Hachem E. Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces.
PhD Thesis, Ecole Nationale Supérieure des Mines de Paris 2009.

5. Franca L, Nesliturk A, Stynes M. On the stability of residual-free bubbles for convection-diffusion problems
and their approximation by a two-level finite element method. Computer Methods in Applied Mechanics
and Engineering 1998; 166:35–49.

;



STABILIZED VMS METHOD 27

6. Nesliturk A. Approximating the incompressible Navier-Stokes equations using a two level finite element
method. PhD Thesis, University of Colorado 1999.

7. Arnold D, Brezzi F, Fortin M. A stable finite element for the Stokes equations. Calcolo 1984; 23(4):337–
344.

8. Canuto C, Van Kemenade V. Bubble-stabilized spectral methods for the incompressible navier-stokes
equations. Computer Methods in Applied Mechanics and Engineering 1996; 135:35–61.

9. Brezzi F, Russo A. Choosing bubbles for advection-diffusion problems. Mathematical Models and Methods
in Applied Sciences 1994; 4:571–587.

10. Russo A. Bubble stabilization of finite element methods for linearized incompressible Navier-Stokes
equations. Computer Methods in Applied Mechanics and Engineering 1996; 132:335–343.

11. Brezzi F, M F. Mixed and Hybrid Finite Element Methods. No. 15 in Springer Series in Computational
Mathematics, Springer-Verlag: New-York, 1991.

12. Brezzi F, Franca L, Hughes T, Russo A. Stabilization techniques and subgrid scales capturing. Conference
of the State of the Art in Numerical Analysis, York, England, 1996.

13. Donea J, Huerta A. Finite Element Methods for Flow Problems. New-York, 2003.
14. Brooks A, Hughes T. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows

with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied
Mechanics and Engineering 1982; 32:199–259.

15. Hughes T. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale
models, bubbles and the origin of stabilized methods. Computer Methods in Applied Mechanics and
Engineering 1995; 127:387–401.

16. Brezzi F, Franca L, Hughes T, Russo A. b =
∫

g. Computer Methods in Applied Mechanics and Engineering
1997; 145:329–339.

17. Hughes TJR, Scovazzi G, Bochev PB, Buffa A. A multiscale discontinuous Galerkin method with the
computational structure of a continuous Galerkin method. Computer Methods in Applied Mechanics and
Engineering 2006; 195(19-22):2761–2787.

18. Tezduyar T, Shih R, Mittal S, Ray S. Incompressible flow computations with stabilized bilinear and
linear equal-order-interpolation velocity-pressure elements. Computer Methods in Applied Mechanics and
Engineering 1992; 95:221–242.

19. Franca L, C F. Bubble functions prompt unusual stabilized finite element methods. Computer Methods in
Applied Mechanics and Engineering 1995; 123:229–308.

20. Codina R. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element
methods. Computer Methods in Applied Mechanics and Engineering 2000; 190(13-14):1579–1599.

21. Codina R. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure
gradient projection. Computer Methods in Applied Mechanics and Engineering 2000; 182(3-4):277–300.

22. Codina R. Pressure stability in fractional step finite element methods for incompressible flows. Journal of
Computational Physics 2001; 170(1):112–140.

23. Codina R, Principe J. Dynamic subscales in the finite element approximation of thermally coupled
incompressible flows. International Journal for Numerical Methods in Fluids 2007; 54:707–730.

24. Gravemeier V. Scale-separating operators for variational multiscale large eddy simulation of turbulent
flows. Journal of Computational Physics 2006; 212(2):400–435.

25. Gravemeier V. A consistent dynamic localization model for large eddy simulation of turbulent flows based
on a variational formulation. Journal of Computational Physics 2006; 218(2):677–701.

26. Gravemeier V, Gee MW, Kronbichler M, Wall WA. An algebraic variational multiscalemultigrid method
for large eddy simulation of turbulent flow. Computer Methods in Applied Mechanics and Engineering
2009; (In Press).

27. Masud A, Khurram RA. A multiscale/stabilized finite element method for advection-diffusion equation.
Computer Methods in Applied Mechanics and Engineering 2004; 193:1997–2018.

28. Scovazzi G. A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale
framework. Computer Methods in Applied Mechanics and Engineering 2007; 196(4-6):1108–1132.

29. Hughes TJR, Feijoo GR, Mazzei L, Quincy JN. The variational multiscale method a paradigm for
computational mechanics. Computer Methods in Applied Mechanics and Engineering 1998; 166:3–24.

30. Digonnet H, Coupez T. Object-oriented programming for fast and easy development of parallel applications
in forming processes simulation. Computational Fluid and Solid Mechanics 2003, 2003; 1922–1924.
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Finite element solution to handle complex heat and fluid flows in
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SUMMARY

A mathematical and numerical model to design an industrial software solution able to handle
real complex furnaces configurations in terms of geometries, atmospheres, parts positioning, heat
generators and physical thermal phenomena has been developed. A 3D-dimensional algorithm based
on stabilized finite element methods (SFEM) for solving the momentum, energy, turbulence and
radiation equations is presented. An immersed volume method for thermal coupling of fluids and
solids is introduced. It consists in considering a single 3D grid of the furnace and solving one set of
equations for both fluid and solid with different thermal properties which can reduce the computational
costs. A level set function enables to define precisely the position and the interface of any objects inside
the furnace and to provide homogeneous physical and thermodynamic properties for each subdomain.
Furthermore, in order to ensure an accurate capture of the discontinuities that characterize the strongly
heterogeneous domain, we resort to an anisotropic mesh adaptation algorithm based on the variations
of the level set function. The proposed method demonstrates the capability of the model to simulate
an unsteady three dimensional heat transfers and turbulent flows in an industrial furnace with the
presence of three conducting solids.

key words: Immersion volume technique; level set method; anisotropic mesh adaptation; mixing

laws; radiative heat transfer.

1. INTRODUCTION

The analysis of transient heating characteristics of the steel in a heating furnace has attracted
considerable attention during the past few decades since the furnace process should have lower
energy consumption and pollutant emissions [1, 2]. In addition, requirement of the uniform
temperature distribution inside the volume and the treated workpieces greatly increases the
importance of accurate and fast prediction of furnace process because this determines the
quality of the steel product in terms of hardness, toughness and resistance. Intrinsically,
the resulting hot gas flow within the furnace influences the heat transfer process through
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CNRS 7635, Sophia-Antipolis, France.
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conduction in the solids, convection, and thermal radiation simultaneously [3]. However,
complex three-dimensional structure of the furnace including the thermal coupling of fluids
and solids, turbulent convection, thermal radiation, location of the ingots, the burners, and the
given geometry make the problem difficult to analyze accurately and economically. Therefore,
models and methods for predicting the furnace behaviour and heat transfer processes of the
workpieces are highly demand.

The main objective of this paper is to present a multidomain approach to solve the conjugate
heat transfer for which the three modes, convective, conductive and radiative heat transfer
interfere simultaneously and in both the fluid part and the solid part. The proposed numerical
method for modelling such multimaterial flows (fluid/solid) will be referred as the immersed
volume method (IVM) [4]. A complete description and details about this method will be given.
But first, we will discuss the driven motivation by revisiting some of the existing approaches
that usually deal with such problems.

In recent years, there has been increasing interest in studying numerically a variety of
engineering applications that involve thermal coupling of fluids and solids [5, 6, 7]. Most of the
time, the general idea of these techniques consists in dividing the global domain into several
local subdomains over each of which a local model (equation to be solved) can be analyzed
independently. The global solution can then be constructed by suitably piecing together
local solutions from individually modelled subdomains. However, during the assembly, the
coordination between the meshes can become complicated or even sometimes infeasible. Other
alternative approaches have been applied for multi-phase flows problems and are available in
the literature, such as the ghost fluid method introduced by Fedkiw et al. in [8], the immersed
boundary method [9, 10], the domain decomposition [11], the X-FEM [12]. They introduced
and improved enrichment functions for material interfaces and voids by means of the level set
representations of surfaces.

Nevertheless, in general when using all these techniques, one still need to know the value of
the heat transfer coefficients between the two domains which ensures, as a Neumann/Dirichlet
boundary conditions, the heat transfer at the air/solid interface. In fact, industrials perform
many experimental tests to obtain such heat transfer coefficients. But, when dealing with a
large diversity of shapes, dimensions and physical properties of these metals to quench, such
operations can become rapidly very costly and time consuming.

In the present study, the proposed method aims to overcome this drawback. The main idea
is to retain the use of the monolithic formulation and coupling it to some additional features
that could allow a better and accurate resolution, in particularly at the interface between the
fluid and solid. Recall that the monolithic resolution, based on the levelset approach consists
in considering a single grid for both air and solid for which only one set of equations need
to be solved. Consequently, different subdomains are treated as a single fluid with variable
material properties. One important feature till now is that by solving the whole domain in a
fully monolithic way there is no need of empirical data so as to determine the heat transfer
coefficient. The heat exchange at the interface is replaced naturally by solving the convective
fluid in the whole domain. Numerically, the communication between the solid and the fluid
is obtained naturally without any further assumption and force modelling. In other words,
there is no need for some coupling engines specifically designed to handle data exchange and
algorithmic control signals between solid region and fluid region.

The second feature of this method is the use of our advanced research in the anisotropic mesh
adaptation to adapt the interface between two different materials [4, 13, 14, 15]. The proposed
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mesh generation algorithm allows the creation of meshes with extremely anisotropic elements
stretched along the interface, which is an important requirement for conjugate heat transfer
and multi-component devices with surface conductive layers [16]. Many research efforts have
been devoted to analyze and to improve the accuracy, stability, conservation and robustness of
different immersed boundary method. This is obviously required when following an interface all
along the computations. However, in the present study, as the solid, the heated objects inside
the furnace are considered fixed, a preadapt meshing is totally affordable. All these previously
cited techniques can at a certain degree explicitly be replaced by this proposed locally interface
refinement that can generate a quasi conforming mesh with an acceptable cost. Recall that
the interface between solid and fluid is nothing but a zero isovalue of the distance function;
hence the calculations of the classical boundary integrals that account for the radiative heat
transfer between the solid and the fluid are no longer applicable. The contribution of the
radiations to the heat transfers is assessed by solving the radiative transfer equation (RTE)
and by computing volumetric terms that acts as an energy source terms via divergence of
radiative heat flux.

The present approach has already been introduced in the works of Bruchon et al. [13], Valette
et al. [14] and Bernacki et al. [15]. If the strategy is similar, the context is clearly different.
In [13], the authors have proposed to use the metric properties of the distance function for
simulating two bodies in contacts in a forging process. Details about the formulation of the
contact condition, mesh adaptation as well as the computation of the distance function are
given. On the other hand, in [14], the use of this method was highlighted by several numerical
examples such as extrusion and industrial mixing processes. In [15], the authors illustrate the
ability of this approach to accurately describe nucleation and grain growth in the context of
recrystallization in a polycrystalline material. The present study intends to apply the same
strategy for simulating conjugate heat transfers and turbulent fluid flows inside a furnace in
the presence of heated industrial parts.

From a numerical point of view, the sudden heating of solid is at the origin of so-called
thermal shocks which cause spurious oscillations in the solution. In order to circumvent this
issue, a stabilized finite element method is used for both Navier-Stokes [17, 18, 19, 20] and
the convection-diffusion equations [21, 22, 23]. As far as the radiative terms are concerned, the
radiative transfer equation is solved separately using the so-called P-1 method [24].

The outline of the paper is as follows: first, we present the time-dependent, three-
dimensional, conjugate heat transfer and fluid flow problem. The section 2 presents the
discretization as well as the stabilized finite element method for solving these equations. A
detailed description of the immersed volume method using both the level set function and the
anisotropic mesh adaptation is given in section 3. In section 4, the numerical performance of the
presented method is demonstrated by means of 2D test cases and a 3D real industrial problem.
Comparisons with the literature results are presented. Finally, conclusions and perspectives
are outlined.

;
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2. GOVERNING EQUATIONS

2.1. Navier-Stokes equations

Let Ω ⊂ R
d, d = 2, 3, be the spatial computational domain with boundary ∂Ω. In order

to compute the motion of an unsteady, viscous, incompressible, non-isothermal flow with
buoyancy forces, one has to solve the coupled non-linear system provided by the Navier-Stokes
equations including the Boussinesq approximation:







∇ · u = 0 in Ω (1)

ρ(∂tu + u · ∇u) − ∇ · (2µ εεε(u) − p Id) = ρ0β(T − T0) g in Ω (2)

ρCp(∂tT + u · ∇T ) − ∇ · (λ∇T ) = f − ∇ · qr in Ω (3)

where u is the velocity vector, p the pressure and T the temperature. Equation (1) is the
expression of the incompressibility constraint. Equation (2) that describes the momentum
conservation features the density ρ, the dynamic viscosity µ, the deformation-rate tensor
εεε(u) = (∇u+t

∇u)/2, the reference density and temperature ρ0 and T0, the thermal expansion
coefficient β and the gravitational acceleration g. Eventually, equation (3) denotes the energy
conservation and it involves the constant pressure heat capacity Cp, the specific thermal
conductivity λ, a volume source term f and the heat radiative flux qr.

2.2. Turbulence model

The turbulent aspect of flows in furnaces requires the use of dedicated models to compute the
flow field. In the present work, we solve the Reynolds-averaged Navier-Stokes problem derived
from the equations (1)-(3) and we resort to the standard k− ε model to close the system. The
RANS equations read:







∇ · u = 0 in Ω (4)

ρ(∂tu + u · ∇u) − ∇ · (2µe εεε(u) − pe Id) = ρ0β(T − T0) g in Ω (5)

ρCp(∂tT + u · ∇T ) − ∇ · (λe∇T ) = f − ∇ · qr in Ω (6)

where the averaged values of the unknowns are the velocity u, the effective pressure pe and the
temperature T . The system (4)-(6) features the effective viscosity µe and the effective thermal
conduction λe which are given by:

µe = µ + µt and λe = λ +
Cpµt

Prt

(7)

with Prt the turbulent Prandtl number. The turbulent viscosity µt in expression (7) is a
function of the turbulent kinetic energy k and the turbulent dissipation ε that reads:

µt = ρCµ

k2

ε
(8)

;
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with Cµ an empirical constant usually equal to 0.09. To assess µt, the introduced variables k
and ε are computed using two transport equations that read:







ρ (∂tk + u · ∇k) − ∇ ·

((

µ +
µt

Prk

)

∇k

)

= Pk + Pkb − ρε in Ω (9)

ρ (∂tε + u · ∇ε) − ∇ ·

((

µ +
µt

Prε

)

∇ε

)

=
ε

k
(C1εPk + C3ǫPεb − C2ǫρε) in Ω (10)

In equations (9) and (10), Pk represents the production of turbulent kinetic energy due to
the mean velocity gradients, Pkb is the production due to the buoyancy effects, Prk and Prε

are the turbulent Prandtl number for k and ǫ respectively, while C1ε, C2ε and C3ε are model
constants. The production terms Pk and Pkb are modelled as follows:

Pk = 2µt(εεε(u) : εεε(u)) and Pkb = −
µt

ρPrg

g∇ρ (11)

Finally, it remains to assess the real pressure from the effective pressure and the turbulent
kinetic energy, which is carried out in the following manner:

p = pe −
2

3
ρk (12)

2.3. Radiative transfer model

2.3.1. Gray gas assumption The gray gas model may often be sufficient for furnace
applications since, most of the time, surfaces are fairly rough and, as a result, reflect in a
relatively diffuse fashion. Furthermore, if the radiative properties do not vary much across the
spectrum then the gray gas simplifications may be valid. According to Modest [24], in the case
of a gray medium, the divergence of the heat radiative flux that appears in equation (3) or (6)
relies on the local temperature and the incident radiation as follows:

−∇ · qr = κ
(
G − 4κσT 4

)
(13)

where G denotes the incident radiation, κ is the mean absorption coefficient and σ the Stefan-
Boltzmann constant.

2.3.2. The P-1 approximation Equation (13) clearly establishes the necessity of getting an
expression of G in order to assess the divergence of qr. This can be achieved by considering the
radiative transfer equation (RTE) that may be found in [25]. In the present study, one resorts
to the so-called P-1 radiation model that is the simplest case of the P-N model to express
radiation intensity by means of series of spherical harmonics (cf. [24, 25] for more details).
Using this approach enables to simplify the RTE into an elliptical partial differential equation
in terms of the incident radiation G as follows:







∇ ·

(
1

3κ
∇G

)

− κG = 4κσT 4 in Ω

∂Gw

∂n
=

3κǫw

2(2 − ǫw)
(4σT 4

w
− Gw) in ∂Ω

(14)

where subscript w denotes wall quantities, n is the normal to the wall and ǫw the emissivity
of the wall.

;
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2.3.3. Radiative properties In the context of gray-medium assumption, the mean absorption
coefficient κ can be derived from the emissivity ǫ of the material using the Bouguer’s law which
reads:

κ = −
1

Lm

ln(1 − ǫ) (15)

where Lm is the mean beam length defined as:

Lm = 3.6
∆V

∆S
(16)

For unstructured grids, ∆V and ∆S are appropriate measures of volume and surface for each
element of the mesh.

2.4. Non dimensional parameters

In practice, relevant dimensionless numbers are used in our numerical experiments. They read:

Re :=
ρUL

µ
Reynolds number

Pe :=
ρCpUL

λ
Peclet number

Gr :=
ρ2βgL3∆T

µ2
Grashof number

Pr :=
Cpµ

λ
Prandtl number

Ra :=
ρ2CpβgL3∆T

µλ
Rayleigh number

Fr :=
U2

gL∆T
Froude number

(17)

where L is the characteristic length of the problem, U the characteristic velocity and
∆T the characteristic temperature difference. These numbers are related by Ra = Gr · Pr,
Fr = Re2 · Gr−1 and Re = Pe · Pr−1.

2.5. Boundary conditions

At the inflow boundary, for a prescribed velocity u, the value of k can be computed using:

kinlet = cbc · |u|
2 (18)

where cbc is fixed to 0.02 as an empirical constant. Once k is computed, the value of ε can be
prescribed using:

εinlet =
Cµ · k3/2

L
(19)

with L, a fixed constant, known as the characteristic length of the model [26]. These computed
values of k and ε are extended into the interior domain as initial conditions.

At the outflow, the following homogeneous Neumann boundary conditions are applied:

n · ∇k = 0 and n · ∇ε = 0 (20)

;
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On the rest of the computational boundary a combination of Neumann and Dirichlet conditions
is imposed by using classical wall function introduced in [27] which describe the asymptotic
behaviour of the different variables near the wall. If the boundary mesh nodes are located in
the logarithmic region, we impose the wall shear stress given by :

τw = ρU∗2

(21)

where U∗ is the friction velocity evaluated by solving the equation:

U

U∗
=

1

k
ln

(
ρEδ

µ
U∗

)

(22)

where U is the tangential velocity, δ is the distance to the wall, k is the Von Karman constant
(typically equal to 0.41) and E is a roughness parameter taken equal to 9.0 for smooth
walls. Imposing the wall shear stress corresponds to a non-homogeneous Neumann boundary
condition for the momentum equation in the tangential direction. The normal component of
the velocity is set to zero. The turbulent kinetic energy and its dissipation on the boundary of
the mesh are given as function of the friction velocity [27]:

kw =
U∗2

√
Cµ

and εw =
U∗3

kwδ
(23)

Boundary conditions at a wall for the energy equation are enforced through a temperature
wall function similar to that used for the momentum equations. The effective heat flux in the
wall function is computed as :

qw = n · qw =
ρCpC

1/4
µ kw(Tw − T )

T+
(24)

where Tw is the wall temperature and T+ is the normalized temperature given in [28].

3. IMMERSED VOLUME TECHNIQUE

The immersed volume technique consists in dealing with only one computational domain for
both fluid and solid. Hence, the domain can be viewed as a composite material made of several
components. In order to provide very accurate results, such a method must gather three key
ingredients: a level set function, an anisotropic mesh adaptation and appropriate mixing laws
to describe the properties of the composite material. The following paragraphs aim at detailing
these three items.

3.1. Level set approach

The so-called level set approach enables to represent the interface between solid and fluid as
a zero level of a smooth function. In practice, a signed distance function is used to localize
the interface and initialize the material properties on both sides of this latter. In our context,
the solid being fixed, the interface is static. Let Ωf , Ωs and Γi represent respectively the fluid
domain, the solid domain and the interface. They verify:

Ωf ∪ Ωs = Ω and Ωf ∩ Ωs = Γi (25)

;
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For each node of the computational domain Ω, the level set function α which is the signed
distance from the interface reads:

α(x) =







> 0 if x ∈ Ωf ,

0 if x ∈ Γi,

< 0 if x ∈ Ωs.

(26)

The physical and thermodynamic properties in the domain are then calculated as a function of
α; for instance, the mixed density is calculated using a linear interpolation between the values
of the density in the fluid and the solid:

ρ = ρfH(α) + ρs(1 − H(α)) (27)

where H is a smoothed Heaviside function given by:

H(α) =







1 if α > ε

1

2

(

1 +
α

ε
+

1

π
sin

(πα

ε

))

if |α| ≤ ε

0 if α < −ε

(28)

ε being a small parameter such that ε = O(h) and h the averaged mesh size in the vicinity of
the interface.

3.2. Anisotropic mesh adaptation

Accurate calculation of the temperature distribution along the air-solid interface is critical
for a correct modelling of industrial experiments. When the heat flux is directed through the
interface, the difficulty arises due to the discontinuity of the properties of the material across
the interface. If this latter is not aligned with the element edges, it may intersect the element
arbitrarily such that the accuracy of the finite element approach can be compromised. In
order to circumvent this issue, the level-set process is thus coupled to an anisotropic mesh
adaptation as described in [16]. The idea of this method is to gradually refine the mesh when
approaching the interface. In this way, the mesh becomes locally refined which enables to
sharply define the interface and to save a great number of elements with respect to classical
isotropic refinement. This anisotropic adaptation is performed by constructing a metric map
that allows the mesh size to be imposed in the direction of the distance function gradient. Let
us briefly described the main principles of this technique. First of all, one has to resort to a
so-called metric which is a symmetric positive defined tensor representing a local base that
modify the distance computation, such that:

||x||M =
√

tx · M · x , < x,y >M= tx · M · y . (29)

The metric M can be regarded as a tensor whose eigenvalues are related to the mesh sizes, and
whose eigenvectors define the directions for which these sizes are applied. For instance, using
the identity tensor, one recovers the usual distances and directions of the Euclidean space. In
our case the direction of mesh refinement is given by the unit normal to the interface which
corresponds to the gradient of the level set function: x = ∇α/||∇α||. A default mesh size, or

;
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backround mesh size, hd is imposed far from the interface and it is reduced as the interface
comes closer. A likely choice for the mesh size evolution is the following:

h =







hd if |α(x)| > e/2

2hd(m − 1)

m e
|α(x)| +

hd

m
if |α(x)| ≤ e/2

(30)

Eventually, at the interface, the mesh size is reduced by a factor m with respect to the default
value hd. Then this size increases until equalling hd for a distance that corresponds to the half

Figure 1. Mesh adaptation in the vicinity of the interface: from the initial mesh to the final mesh.

of a given thickness e. The unit normal to the interface x and the mesh size h defined above,
lead to the following metric:

M = C (x ⊗ x) +
1

hd

I with C =







0 if |α(x)| ≥ e/2

1

h2
−

1

h2
d

if |α(x)| < e/2
(31)

where I is the identity tensor. This metric corresponds to an isotropic metric far from the
interface (with a mesh size equal to hd for all directions) and to an anisotropic metric near
the interface ( with a mesh size equal to h in the direction x and equal to hd in the others).

;
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In practice, the mesh is generated in several steps using, through the CIMLIB librairy, the
MTC mesher developed by T. Coupez [29]. This mesher is based on a topological optimisation
technique available in [16] for the anisotropic case. At each step of the refinement process,
the mesh size converges locally toward the target size. Figure 1 illustrates the steps of the
refinement process for a three ingots immersed inside the three-dimensional furnace. Figure 2
shows the computational domain at the end of the anisotropic adaptation process, it clearly
emphasizes the mesh refinement along all the interfaces whereas the rest of the domain keeps
the same backround mesh size.

Figure 2. Computational domain after anisotropic adaptation

3.3. Mixing laws

The immersed volume technique implies that the material which is treated in the equations is a
composite one. Hence, it is necessary to define the physical and thermodynamic properties of
such a material. To achieve this, linear interpolations are mainly used between the values
of the properties in the fluid and the solid as previously evoked in expression (27). The
smoothed Heaviside function defined in (28) enables to assign the right properties on each
side of the interface. The material properties introduced in systems of equations (1-3)-(13),
such as density, initial temperature, dynamic vicosity, constant pressure heat capacity and

;
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mean absorption coefficient, are defined as:

ρ = ρfH(α) + ρs(1 − H(α))

µ = µfH(α) + µs(1 − H(α))

ρCp = (ρfCpfH(α) + ρsCps(1 − H(α)))

ρCpT = ρfCpfTfH(α) + ρsCpsTs(1 − H(α))

κ = κfH(α) + κs(1 − H(α))

(32)

However, as far as the thermal conductivity is concerned, linear interpolation would lead to
inaccurate results. According to [30], one has to resort to the following law to ensure the
conservation of the heat flux:

λ =

(
H(α)

λf

+
1 − H(α)

λs

)−1

(33)

Table I. Properties of materials.

Properties Air Inconel 718

density ρ [kg/m3] 1.25

heat capacity Cp [J/(kg K)] 1000

viscosity µ [kg/(m s)] 1.9e-5 –

conductivity λ [W/(m K)] 0.0262

emissivity ǫ – 0.7

3.4. Originality of the method

Usually, the simulation of the heat transfer between two media requires additional boundary
conditions of Neumann/Dirichlet type. Such conditions typically describe the convection
transfer at the interface ∫

Γi

hc (T − Text) dΓ, (34)

where hc is the heat transfer coefficient and Text is the averaged temperature of the
surroundings. Similarly, the radiative heat transfer is computed using the classical boundary
condition: ∫

Γi

σǫ
(
T 4 − T 4

ext
)
dΓ, (35)

where σ is the Stefan-Boltzmann constant and ǫ is the emissivity.
Once the object is immersed inside the computational domain using the IVM, the need of
geometric boundary conditions vanishes and is replaced by the zero level of the level set

;
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function. Thus, the boundary conditions (34) and (35) at the solid’s interface are no longer
applicable. Our alternate approach consists in simulating the conjugate heat transfer by
solving the coupled problem (1-3)-(13) for both the surrounding air and the heated object. We
emphasize that the computation of the heat transfer coefficient hc can be a difficult task since
it needs experimental data and often requires to solve inverse problem. It can be therefore a
limiting issue for practical applications when one needs to change the geometry of the object,
the physical parameters, the number and the position of the objects, the surrounding fluid
(air, water, etc.). On the other hand, our approach can be apply to any complex problem since
it only requires the material properties of the different media.

4. STABILIZED FINITE-ELEMENT METHOD

In this section, the Galerkin finite-element approximation and the corresponding stabilization
methods for the resulting discrete system of equations (1)-(3) are briefly described. Based
on a partition Th of Ω into set of Nel elements K, the functional spaces for the velocity

V :=
(
H1

0 (Ω)
)d

and the pressure P := C0(Ω̄) ∩ L2
0(Ω) are approached by the following finite

dimensional spaces spanned by continuous piecewise polynomials:

Vh =
{

u ∈
(
H1

0 (Ω)
)d

| u|K ∈ P 1(K)d, ∀K ∈ Th

}

Ph =
{
p ∈ C0(Ω̄) ∩ L2

0(Ω) | p|K ∈ P 1(K), ∀K ∈ Th

}
(36)

The weak formulation of the incompressible Navier-Stokes equations reads:






Find u ∈ Vh and p ∈ Ph such that:

∀w ∈ Vh, q ∈ Ph, B(u;u, p;w, q) = 0

B(v;u, p;w, q) = ρ (∂tu,w) + ρ (v · ∇u,w) + (2µεεε(u) : εεε(w))

− (p, ∇ · w) − (f,w) + (∇ · u, q)

(37)

where f is the given force vector. It is well known that the classical finite element approximation
for the flow problem may fail because of two reasons: the compatibility condition known as
the inf-sup condition or Brezzi-Babuska condition which required an appropriate pair of the
function spaces for the velocity and the pressure [31, 32, 33, 34, 23]; and when the convection
dominates [17]. Therefore, we employ stable finite element formulation based on the enrichment
of the functional spaces with space of bubble functions known as Mini element [35, 36, 37].
The special choice of bubble functions enables us to employ static condensation procedure
giving rise to a stabilized formulation for equal-order linear element. A detailed description on
the implementation of the finite element solver using the P1+/P1-based mixed finite element
method can be found in [38, 39, 40, 41].

Equations (3), (9), (10) and (14) can be represented by a single scalar transient convection-
diffusion-reaction equation which reads:

∂tϕ + u · ∇ϕ + ∇ (α∇ϕ) + rϕ = f (38)

where ϕ is the scalar variable, u the velocity vector, α the diffusion coefficient, r the reaction
coefficient and f a source term. The solution strategy for solving such an equation is similar

;
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to that used for the equations of motion. Again, the spatial discretization is performed
using approximation spaces. Thus, the Galerkin formulation is obtained by multiplying these
equations by an appropriate test functions, applying the divergence theorem to the diffusion
terms and integrating over the domain of interest. Following the lines on the use of stabilisation
methods for transient convection-diffusion-reaction equations as discussed in [23, 42], the
stabilized weak form of equation (38) reads:







Find ϕ ∈ Sh such that, ∀w ∈ Wh

(∂tϕ + u · ∇ϕ,w) + (α∇ϕ, ∇w) + (rϕ, w)

+
∑

K

(R(ϕ), τSUPGu · ∇w)K

︸ ︷︷ ︸

streamline upwind

+
∑

K

(R(ϕ), τSCPGũ · ∇w)K

︸ ︷︷ ︸

discontinuity-capturing

= (f, v)
(39)

where Sh and Wh are standard test and weight finite element spaces (the scalar counterpart
of the vector space defined in (36)) and R(ϕ) is the appropriate residual of equation (38).
In equation (39), two additional stabilizing terms have been introduced; the first controls
the oscillations in the direction of the streamline (SUPG) [17, 43] and the other controls the
derivatives in the direction of the solution gradient (SCPG) [44, 41]. This can improve the
result for convection dominated problems while the shock-capturing technique precludes the
presence of overshoots and undershoots by increasing the amount of numerical dissipation
in the neighborhood of layers and sharp gradients. The evaluation of the τSUPG and τSCPG

stabilizations terms follows the definition described in [17, 44, 41]. The time derivatives are
approximated by the Euler forward difference scheme.

The algebraic problems resulting from the finite element formulation are assembled and
solved using the conjugate residual method associated to the incomplete LU preconditioner
from the PETSc (Portable Extensive Toolkit for Scientific Computation) library. A master-
slave parallel strategy was used [40, 45], involving SPMD (Single Program, Multiple Data)
modules and the MPI (Message Passing Interface) library standard. The computations of the
3D conjugate heat transfer have been obtained using 8 2.4 Ghz Opteron cores in parallel (linked
by an Infiniband network).

5. VALIDATION FOR 2D CASES

In this section, we want to validate the numerical performance of the immersed volume method
over two numerical tests involving two-dimensional thermally coupled flows. All the numerical
simulations were carried out by using the CIMLIB finite element library. This C++ library,
which is highly parallel, is developed at CEMEF by the team of Coupez and Digonnet (see
[40]).

The transient natural convection of low-Prandtl-number fluids in a differentially heated
square cavity is solved at first using a classical approach and compared to the published
results. This preliminary step enables us to use the classical approach as a reference in order
to validate the IVM method. Two test cases are then considered to lead this validation. For
both of them, a square enclosure is regarded. However, in order to apply the IVM approach,
the domain is enlarged by replacing the left wall by a solid body. The results obtained using

;
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classical and IVM methods are then plotted on both domains and compared one to another.
The main purpose is to show that IVM method must yield same results as the classical one from
a fluid dynamics, turbulent flow and heat transfer point of view. We expect such conclusions
from the following numerical experiments:

i) The IVM method performed well on both conjugate laminar and turbulent mixed
convection and conduction in lid-driven enclosure with thick vertical wall.

ii) The proposed approach seems promising to simulate turbulent flow and heat transfer
inside industrial furnaces in the presence of heated workpieces.

5.1. Transient natural convection of low-Prandtl-number fluids

The study of flow and heat transfer for lid-driven enclosures offers an interesting test to
validate numerical solution algorithms [46, 47, 48]. It has been extensively used by researchers

Adiabatic

Adiabatic

Th Tc

L

g

upward movement
hot fluid

downward movement
                 cold fluid

Figure 3. Set-up of the differentially heated square cavity.

because of its growing interest in many applications such as materials processing, metallurgy,
crystal growth and many others [49, 46, 50, 47]. In [46], the authors repeated the numerical
example taken from [49] which consists in solving the classical flow in a cavity with differentially
heated vertical walls with low Prandtl number. It was shown that under such condition the
flow exhibits a Hopf bifurcation that leads to an oscillating flow pattern. This particular
example is still an interesting and challenging problem especially under transient conditions.
Correspondingly, the authors in [46] showed that by tracking the subscales and keeping their
effects in the thermal coupling problems, higher accuracy is obtained in the solution and the
stability of the coupled problem is improved in respect to other classical stabilized finite-
element methods. Our purpose here is first to validate the finite element implementation of
the coupled problem by comparing our prediction to the given reference, and second, to assess
the effectiveness of the IVM method on an extended domain using a thick vertical wall. The
problem is schematically shown in figure 6 which is a square enclosure with a side length L.
Both top and bottom surfaces of the enclosure are insulated i.e. the zero heat flux boundary
condition is prescribed. The vertical walls are maintained at different Th (hot) and Tc (cold)
constant temperatures. Homogeneous Dirichlet boundary conditions are prescribed everywhere
on the boundary for the velocity. The radiation effects are assumed to be negligible. We assume
that the fluid properties are to be constant, except for the density in the buoyancy term,
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Figure 4. Comparison of the present results (bottom) with the reference ones (top) in [46].
Left: streamlines. Middle: isotherms. Right: velocity norm.

which allows Boussinesq approximation. The gravitational acceleration is taken parallel to the
isothermal walls. Calculations were carried out using a 61 × 61 unstructured mesh refined near
the walls and a time step of 0.002. The Prandtl number Pr is taken to be equal to 0.005 and the
Grashof number Gr is fixed at 5 · 106. For such unusual values, taken from [49, 46], oscillations
are predicted with a dimensionless frequency of 12.2. Note that under certain conditions, these
convective oscillations appear in many low Prandtl number fluids as the crystal metal, the
liquid metals in casting, nuclear reactor safety and many other applications. More details can
be found in [49, 51, 48]. All computations have been carried out by starting with a fluid at
rest. The expected flow is basically formed by one main centred circulation limited by the
lateral confinement and four different recirculation located at the corners as shown in figure 4.
The streamlines, the isotherms and the velocity norm obtained at a certain time step from the
present calculation are exposed in figure 4 and compared with results obtained by Codina and
Principe in [46], showing good agreement between them. The time history of the velocity Ux,
captured at a mid right-hand corner of the cavity (0.9571, 0.5043), is shown in figure 5 and
compared well to results from [49]. As expected, the flow field oscillates with a dimensionless
frequency of 12.18 which is in very good accordance to the reference value.

;
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Figure 5. Time series of Ux at mid-right corner of the cavity: present work (left); reference (right).

5.2. Conjugate-mixed convection with a thick vertical wall

To evaluate the performance of the IVM method in terms of multi-domain representation, we
extend our domain by adding a vertical thick wall on the left side of the cavity (see figure 6).
Several experimental and numerical studies have been carried out on natural convection heat
transfer in enclosures under boundary conditions, however, studies about a partially divided
enclosures are rarely investigated [52]. Such applications concern cooling of electronic devices,
jet impingement [53], enhancement of room air [54], flow and temperature distribution in heat
loaded furnaces [55], heat exchanger design [56], etc.

The IVM approach, initially implemented and validated in [4], was shown to be completely
suitable for simulating such multi-material problems. In the present study, we aim to

Adiabatic

Adiabatic
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upward movement
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                 cold fluid
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L/4
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Figure 6. Schematic of the problem with domain and boundary conditions used. Case 1:
square enclosure with left and right walls differentially heated. Case 2: the same square

enclosure with a thick left vertical wall.

extend the validation on conjugate heat transfer and turbulent flow problems, in particularly,
for simulating industrial furnaces with heated objects inside. A very important common
characteristic of solidfluid heterogeneous media is still how to resolve the discontinuity in
physical properties across their interfaces. In the IVM method, the level set function identifies
automatically the solid part from the fluid region and applies the anisotropic mesh adaptation
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at the interface [4]. The proposed mesh generation algorithm allows the creation of meshes

Figure 7. Left: computational domain with a left thick wall. Right: close-up along the interface.

with extremely anisotropic elements stretched along the interface (cf. figure 7), which is an
important requirement for conjugate heat transfer and multi-component devices with surface
conductive layers [52].

Figure 8. Comparison between the IVM method (bottom) and the classical approach (top).
Left: streamlines. Middle: isotherms. Right: velocity norm.

Thus, a single set of equations (1)-(3) is solved for the whole computational domain by
treating the different subdomains as a single fluid with variable material properties. At solid-
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fluid interfaces, conductivities are calculated using a harmonic mean formulation [30] in order
to handle abrupt changes in the material properties. Thus, we automatically well establish
the continuity of temperature and heat flux across the interface. The solid domain have a
dimensionless thickness of 0.25L and is initially taken at Th (hot) constant temperature. The
temperature gradient inside the solid wall is extremely low due to the use of high thermal
conductivity (λ = 106). Moreover, setting the relative kinematics viscosity very high value in
the solid region satisfies the zero velocity in this region and hence the no-slip condition on
the interface is also satisfied. Therefore, the convective terms in the energy equation drop out
and the equation reduces to the transient conduction equations in the solid. The stabilized
finite element methods are employed to discritize and solve the coupled heat transfer inside
the enclosure.

The aim of this numerical test is not to study the effect of conducting left wall in terms
of thickness and conductivity ratios, it is more to analyse the general behaviour of the
solution on extended domains. As it was shown in [4], the idea is to investigate how well
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Figure 9. Comparison between the IVM method and the classical approach. Top: T along the x
centerline. Left: Uy along the x centerline. Right: Ux along the y centerline.

the boundary conditions between two subdomains by volumetric source terms can replaced.
Several benchmarks in [4] demonstrate the effectiveness of the proposed approach. Here, this
investigation is continued and carried out over more complex situations.
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The Prandtl number and the Grashof number are chosen to be under the threshold of
oscillation for this test. Thus, the flow and temperature showed a gradual approach to a
steady state without any oscillation. A comparison of streamlines, isotherms and velocity norm
between the classical approach (with zero wall thickness) and the IVM approach (with a thick
vertical wall) are depicted in figure 8. As shown, the streamlines are almost circular in shape
with very weak circulations at the corners and the obtained results are in complete agreement.
Due to high conductivity of the solid wall, the fluid behaves as the classical lid-driven cavity
problem. Finally, temperature and velocity distributions along the centrelines obtained on both
domains are illustrated in figure 9. Afresh, all the results are almost indistinguishable between
both approaches.

5.3. Forced turbulent convection in a partially divided square enclosure

In this section same computational domains have been used to solve forced turbulent convection
heat transfer on a solid wall. This example can be seen as a simplified model of a gas-
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Figure 10. Schematic of the problem with domain and boundary conditions used. Left: square
enclosure. Right: the same square enclose with a thick left vertical wall.

fired furnace. The heated air is pumped into the enclosure from the right inlet located at
y = 0.3L. The velocity magnitude is 0.5m/s, and the temperature is fixed at 1273K. At all
other boundaries, adiabatic condition for the temperature equation is applied. The air is vented
out the enclosure through the outlet positioned at x = 0.8L on the top wall. For illustration,
figures 10 and 11 show the schematic diagram and the sequence of the treated problem.

Unlike the previous test cases, the highly turbulent characteristic of the flow requires to
solve the k− ε model (4)-(6) with the standard logarithm wall functions [27]. Furthermore, to
preclude possible numerical oscillations in the regions of high convection and high gradients,
both the SUPG and SCPG stabilisation methods are included. The dimensionless parameters
involved in the problem are the Peclet number (Pe = 1, 000) and the Reynolds number
(Re = 50, 000).

As in the previous section, once the interface is refined, the material properties for
each subdomains are dispersed. Two additional equations, the turbulent kinetic energy and
dissipation are coupled and solved on both domains. Note that the use of high value for the
relative kinematics viscosity in solid region makes the velocity components negligibly small
and satisfies the no-slip condition at the refined interface. Therefore, as shown for the energy
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Figure 11. Sequence of the air injection at different time steps.

Figure 12. Comparison between the IVM method (bottom) and the classical approach (top).
Left: isotherms. Right: velocity norm.
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equations, all the convective terms as well as the source (i.e. destruction) terms in the two-
equations of the k−ε model drop out. To complete, the solution gradients of the k−ε model is
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Figure 13. Comparison between the IVM method and the classical approach along the x centerline.
Top left: velocity Ux. Top right: velocity Uy. Middle left: turbulent kinetic energy k · 102. Middle

right: turbulent dissipation ε · 102. Bottom: temperature T .

extremely low inside the solid wall due to the fact that the high introduced relative kinematics
viscosity is proportional to the diffusion terms in both turbulent equations (9)-(10) .
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Figure 12 shows a good agreement between both approaches for the temperature and the
velocity norm contours at a certain time step. As expected, the use of high viscosity in the
solid region satisfies the zero velocity in this region and hence the no-slip condition on the
extremely refined interface is also verified. Moreover, due to the low conductivity of the solid
wall, a quasi adiabatic surface is observed and reported.

In figure 13, the distributions of the velocity profiles, the temperature, the turbulent kinetic
energy and the turbulence dissipation are plotted along the line y = 0.5 at time t = 20s. This
stage corresponds to the fully development of the turbulent flow before it reachs a quasi-steady
state. Similar trends and good agreement between the two approaches are observed in all the
solutions. However, in the near-wall region, some differences in the solution exist. We suspect
that the main discrepancy could be due to the use of a simple wall function implemented
as Dirichlet boundary conditions in the classical approach. On the other hand, in the IVM

approach, the turbulent quantities are computed naturally at the interface. The differences
between solutions computed using wall functions implemented in the strong and weak sense
were also observed in [57] and [41]. It was shown that the use of Dirichlet boundary conditions
for k and ε produced rather disappointing results, whereas the performance of Neumann
boundary conditions is remarkably efficient for the near-wall treatment. The authors have
pointed out that by letting k to be computed ”naturally” at the boundary, they improved the
prediction of the turbulent quantities in the near wall regions and they obtained the correct
behaviour. This matter will be the subject of further investigations in a near future.

5.4. 3D test case

As a final example,the heat transfer and turbulent flow inside an industrial furnace is
considered. Figure 2 shows three ingots taken initially at 333K and positioned at different
locations inside the furnace. All computations have been conducted by starting with a fluid at
rest and at a constant temperature of 333K.

Figure 14. Computational domain inside the furnace. Left: initial geometry. Right: final geometry.

The heated air is pumped into the furnace from 10 different inlets forming a circle of 6m
diameter at 1.7m from the ground. The velocity magnitude of each burner is 10m/s, and the
corresponding temperature is fixed at 1073K. At all other boundaries, adiabatic condition for
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the temperature equation is applied for sake of simplicity. The air is vented out the furnace
through the outlet positioned at the centre-top wall (at z = 2.42m). The volume mesh used in
the computations has 57, 012 nodes and 304, 785 tetrahedral elements. The time-step is equal
to 0.001s. The 3D computations have been obtained using 32 2.4Ghz Opteron cores in parallel
(linked by an Infiniband network) [40]. We start by deriving an anisotropic adapted mesh that
describes very accurately the interface between the three workpieces and the surrounding air.
In figure 14, one can clearly see that, after a reduced number of steps, the shapes of the ingots
are well respected by the mesh. Only additional nodes are locally added at the interface

Figure 15. Streamlines and isotherms inside the furnace at different time steps.

region, whereas the rest of domain keeps the same background size. Once the mesh is well
adapted along the interface, the material distribution between each physical domain can be
described by means of the level set function. Consequently, the same set of equations (1)-(3)
is simultaneously solved over the entire domain including both fluid and solid regions with
variable material properties (see table I).

Figure 16. Velocity vectors in the midplane of the furnace.

As the interface between solid and fluid is only the zero level of the distance function,
the calculations of the boundary integrals of systems (1)-(3) are no longer applicable on their
interfaces. The state of art in the thermal coupling analysis (1)-(3) lies in that the heat transfer

;



24 E. HACHEM ET AL.

Table II.

Location Average temperature (K) Average velocity (m/s)

Near wall 706 45
Near center 526 45

between the solid and the air at the interface has been treated naturally, i.e. without the use
or a previous knowledge of any heat transfer coefficient. Moreover, we replace the classical
boundary conditions (35) by solving the P-1 radiative model (14) in both domains which
generates a volume source term for the energy equation.

Figure 15 shows the evolution of the isotherms and the streamlines at different time steps.
When the hot fluid passes across the volume of the furnace, it induces a turbulent and
recalculating motion within the geometry. This forced convection is caused by the interaction
of the moving stream and the stationary fluid inside the furnace. The streamlines and the
temperature distribution clearly indicate the expected flow pattern. The air movement around
the workpieces is quite complex and the temporal evolution is chaotic. A number of small
vortexes inside different buffer zones can be observed in figure 16. They are due to the
turbulence dissipation and mixing between the hot and cold air. On the vertical plane cutting
through the ingots, we see, as expected, the solid region satisfies the zero velocity and, hence,
the no-slip condition on the extremely refined interface is also verified. The obstacles (3 ingots)
slow down the air circulation in the central zone of the furnace and slightly influence the main
air circulation along the walls. Table II provides the average temperature and average velocity
values at two different locations: one at intermediate distance between the ingots and the walls
and the other at the centre of the furnace between the ingots. Figure 17 shows the temperature

Figure 17. Temperature distribution on three parallel planes inside the furnace.

distribution on three mutually parallel planes in the furnace. The amount of energy required
to increase the temperature of the three loads by a few hundred degrees is considerable both
in real application and computational studies. The present results, as exposed in figure 17,
describe the five first minutes of the heating process during which the immersed solids only
gain few degrees above their initial temperature. Such a 3D computation has yet required 4
days on 32 cores. Hence, a great effort is still necessary to supply fast algorithms in order to
calculate this kind of full heating sequences in reasonable reducing time.

These numerical results indicate that the IVM approach is suitable for the parallel
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numerical simulation of industrial furnaces with different loads. The method is now applied
in the consortium THOST, ”Thermal optimization system”, which groups many industrial
partners. Such calculations allow to predict different parameters and to understand the
flow characteristics for heat treatment furnaces. Future investigation will be concerned with
experimental comparisons and time reducing models.

6. CONCLUSION

In this paper, we have presented a numerical investigation of natural and forced convection
heat transfer, airflow in industrial furnace. The applications of the stabilized finite element
formulations for incompressible turbulent flows with thermal coupling to 2D and 3D test
problems with conducting bodies are highlighted. We have also described different aspects
related to the numerical approximation of thermal coupling between a fluid and a solid.
Our approach, referred as the IVM method, solve one set of equation in both domains with
different materials properties. This has allowed us to propose alternatives to classical boundary
conditions (mixed-convection and radiation) and heat transfer coefficients that insure the heat
exchange between each subdomains. The numerical tests show that the proposed scheme can
produce the accurate numerical solutions to unsteady laminar and turbulent flows. In some
of the cases, we were able to compare our results to those reported in the literature. The
favourable nature of the comparisons in those cases and the reasonable nature of the results in
the other cases increased our confidence in and demonstrated a good potential for formulations
developed.
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6.4 Numerical simulation in a full-scale industrial furnace 
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Abstract 
 
In this paper, a heat treatment furnace was simulated by using Computational Fluid 
Dynamics to investigate thermal performance of the furnace and the heating process. 
The furnace is used to heat and treat terra-cotta products impellers to obtain the required 
microstructure and mechanical properties. CFD simulation provides a useful tool to 
predict the temperature evolution in the furnace and within the walls and the support 
grid. The model consists of turbulent flow, thermal radiation and conjugate heat 
transfer. A 3D stabilized finite element methods is used to solve the conjugate heat 
problem. An immersed volume method (IVM) is applied to treat the fluid/solid 
interactions. Temperature measurements were carried in different location and are 
compared to the experimental results.  
 
Keywords: Finite elements, stabilization, heat conduction, static condensation 
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Introduction 
 

The prediction of the transient heat transfer inside the furnace and inside the steel 
charge is presented. This procedure couples a numerical solution of the turbulent fluid flow, 
thermal radiation and conjugate convection-conduction heat transfer inside the furnace 
including the charges, the surrounding air and the treated walls. The heating process of 
industrial furnaces represents a critical step to achieve the correct temperature and 
metallurgical properties of the treated workpieces. Many factors play an important role in the 
heat treatment process such as: minimisation of local temperature gradients, insuring a 
uniform temperature within the load, avoiding at maximum all surface defects such as skid 
marks, minimising energy usage and maximising furnace capacity.  

The design of a computational fluid dynamics (CFD) tool is invaluable for the 
exploration of these physical phenomena, investigation of process sensitivities and 
optimisation procedures.  

The study and development of stabilized finite element methods (chapter 1-4) able to 
handle such complex flow become more evident to obtain good predictions of the temperature 
solution at different locations inside the furnace and again, the immersed volume method 
(IVM) is applied to treat the fluid-solid interactions. 
 
Application 
 

Here in this study, we aim to present seven minutes of heating process for an industrial 
furnace given by our industrial partners.  The furnace was modelled as a rectangular section 
duct, 1.5x1.3x1.1 m3 forming one heat transfer zone. The hot gas is pumped into the furnace 
through two burners located on the vertical wall at 75m/s each having a constant temperature 
of  1100°C.  

        

Figure 1. 1m3 furnace (left) and the support grid (right) 

Domain Temperature 
°C at t=0s 

Density kg/m3 Heat capacity J/Kg°C ConductivityW/m°C 

Gas(air) 250°C 1.2 1000 0.02 
Solid (s) 250°C 2300 960 20 
Walls 250°C 90 950 0.2 

Table I. Materials properties and initial temperature 
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Figure 1 illustrates the furnace geometry where a support grid is positioned on the 

bottom wall while in Figure 2, the location of the burners on both left and right sidewalls are 
presented. The materials properties used in this test, as well as the initial conditions and 
different parameters are presented in table I. The air is vented out the enclosure through the 
outlet positioned at the centre of top wall. 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Left and right burners located on the vertical walls 

By applying the IVM method, the levelset function first detects and defines the treated 
objects. The second step consists in deriving the anisotropic adapted mesh that describes very 
accurately the interface between the workpieces, the walls and the surrounding air. Recall that 
the mesh algorithm allows the creation of extremely stretched elements along the interface, 
which is an important requirement for multimaterial problem with surface conductive layers. 
The additional nodes are added only at the interface region keeping the computational cost 
low. Note that although the support is made by six different cylindrical objects and one flat 
grid, however, as shown in figure 3, the shape of these treated objects is well captured and 
respected by applying the proposed anisotropic mesh adaptation.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Difference between the initial mesh (left) and the final mesh (right) 
 
The algorithm progressively detects and refines the support grid and the walls leading to a 
well respected shape in terms of curvature, angles, etc. All the small details in this given 
geometry can be captured accurately (see figure 4). Note that the the final mesh used for the 
numerical simulation consists of 155015 nodes and 896539 linear tetrahedral elements.  
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Figure 4. Two verticals cuts in the volume at different heights of the support grid 

Once the mesh is well adapted along the interfaces between the walls, the support grid and the 
volume of the furnace, the material distribution between each physical domain can be 
described by means of the level set function. Consequently, the same set of equations; 
momentum equations, energy equation, the turbulent kinetic and dissipation energy equations, 
is simultaneously solved over the entire domain including both fluid and solid regions with 
variable material properties. 
 

        

Figure 5. Detailed view of the anisotropic mesh adaptation along the treated walls 

Recall that the interface between the solid and the fluid is rendered by the zero isovalue of the 
distance function; hence the calculations of the classical boundary conditions to ensure the 
heat exchange between the subdomains (air-solid and air-walls) are no longer applicable on 
their interfaces (figure 6 and 7). The state of art in the proposed thermal coupling analysis lies 
in that the heat transfer at any interfaces has been treated “naturally", i.e. without the use or a 
previous knowledge of any heat transfer coefficient.  

Usually, the heat transfer coefficient between two subdomains can be obtained through 
experimental tests or empirical rules, but in the presence of complex geometries and flows, 
different configurations of the furnace (changing the speed of gas, changing the initial 
temperature, changing in the burner’s temperature…) such operations can become rapidly 
very costly and time consuming.  
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Summing up, for any different geometry, even if we consider a new studied solid, it is 

shown that the proposed method only requires to define the composite material properties to 
ensure the corresponding heat transfer.  
 
The discretization in space for the incompressible Navier-Stokes equations, the heat transfer 
equation and the turbulence equations is performed by an unstructured grid stabilized finite 
element method. Thus, the numerical oscillations and thermal shocks are well captured and 
smooth solutions are obtained. 
 
 

 

Figure 6. A top view of the density distribution along the walls, the atmosphere and the 
support grid 

 

 

Figure 7. Two cuts in the final mesh at different position. Locations of the burners, the outlet 
and the support grid 

 
 
 

air

support grid

walls
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Note that at fluid-solid interfaces, conductivities are calculated using a harmonic mean 
formulation in order to handle abrupt changes in the material properties.  Thus, we 
automatically well establish the continuity of temperature and heat flux across the interfaces. 
Moreover, setting the relative kinematics viscosity very high value in the solid regions, the 
walls and the support, satisfies the zero velocity in these regions and hence the no-slip 
condition on the interface is also satisfied. Therefore, the convective terms in the energy 
equation drop out and the equation reduces to the transient conduction equations in the solid.  

The aim of this numerical test is not to study the effect of the heating process for any 
optimisation or manufacturing processes, in terms of speed of gas, initial and inlet 
temperature or other factors; it is more to analyse the general behaviour of the solution in the 
presence of the extended domains.  

 
Both radiation effects of the gas and the walls are considered in the computations. The 

emissivity is assumed to be equal 0.05 for the gas and 0.45 for the walls. We assume that the 
fluid properties depend on the temperature, in particularly the density of the gas in the 
buoyancy term, which allows Boussinesq approximation. The gravitational acceleration is 
taken parallel to the solid walls. Calculations were carried out using a time step equal to 
0.001s to capture the physics accurately. The Reynolds number is assumed to be equal to 106. 
All the given parameters used for the numerical simulations do not reflect the true 
measurements from the experimental tests, due to the complexity of the materials, the gas 
composition and other technical issues. However, we made sure that the chosen parameters 
have at least the real physical representations and are appropriate to simulate the real test. The 
3D computations have been obtained using 32 2.4 Ghz Opteron cores in parallel (linked by an 
Infiniband network)  

The main objective of the THOST project is to describe numerically the airflow and 
temperature field inside an industrial furnace where high convective heat sources are used. 
The thermal wall jet created by this kind of source can greatly influence the temperature 
distribution inside the enclosure. Therefore, advance turbulence model are needed to produce 
better results in particularly in the vicinity of the walls. This can be one among different 
reasons to extend the standard k- ε model by the low Reynolds number k-ε model under a 
suitable mesh scheme. We will also justify this choice later in chapter 6. 

We start a presentation of the standard k-ε model which is mainly valid in the turbulent 
region (far-wall zone). The near-wall effects are simulated through wall functions which give 
boundary conditions for points situated in the turbulent zone. However, this procedure is not 
well adapted for complex flows, since the condition that the boundary must be in the turbulent 
zone cannot generally be respected rigorously. In our study, it was noticed that the use of an 
extended version of the k-ε model (low-Reynolds-number model) in combination with a wall 
function defined over the entire wall region is a much better choice. The appropriate choice of 
wall function in the near-wall zones is discussed in detail. A brief description of the solution 
strategy using a Newton-type method to solve for turbulence energy k and rate-of-dissipation 
energy ε is given in the same section. Finally we validate the model by simulating the 
turbulent flow between two plates and the backward facing step. Simulating results for a 
variety of flow are presented and discussed. 
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If a non-slip boundary condition is used in turbulent flows, a large number of fine 

grids close to wall are needed, which is not practical at present due to computer limitations 
and long time heat treatment simulation. Moreover, near solid walls, the turbulence kinetic 
energy production is gradually reduced due to dominance of viscous effects. In this region, 
the large eddies dissipate their energy directly rather than transferring it to smaller scales as 
per the energy cascade. Therefore, although the strain rate can be expected to peak in the 
near-wall region due to steep velocity gradients, there will be a reduction in sub-grid scale 
stress. This effect is accounted for by damping the turbulent viscosity, tm , as the wall is 

approached. The usual way to damp this additional viscosity in the vicinity of the wall and to 
capture the near-wall effects without drastically increasing the number of unknowns is the use 
of wall models. 
 
 
Results and discussions 
 

For illustration purposes, we present in figure 8 the evolution of the isotherms at two 
different locations and at a certain time step (t=70s) inside the furnace.  

 
 

  
 

Figure 8. Temperature distribution in the furnace atmosphere and within the support. 
 

The temperature distribution clearly indicates the expected flow pattern. At the solid’s 
level, we observe that the injected air from the bottom burner is slowed down and slightly 
influence the main air circulation in the lower part of the domain. This explains the difference 
in the flow pattern between the two burners. When the hot fluid passes across the volume of 
the furnace, it induces a turbulent and recalculating motion within the geometry. This forced 
convection is caused by the interaction of the moving stream and the stationary fluid inside 
the furnace.  
 

 
 
 



310                                                                             IVM for solving conjugate heat transfer 
 

 
 

 

Figure 9. Velocity distribution in the furnace atmosphere and around the support.  

 
The air movement around the workpieces is interesting; i.e. it allows studying the 

influence of different arrangements and positions to optimize the heat treatment. A number of 
vortices between the objects and the surroundings can be observed due to the turbulence 
dissipation and mixing between the hot and cold air (see figure 9). 
 

In order to reveal in details the unsteady complex structures and the flow pattern, we 
investigate in figure 10, 11 and 12 the vectors along the x-z, x-y and y-z planes respectively at 
four different positions after 200 time units. In each plane, the cross section is positioned near 
the first burner, then its moves towards the centre of the furnace passing through the support 
grid and the outlet and finally it ends up near the second burner. The two opposing burners are 
positioned far from the centre so that the flames jets do not meet. It is shown that once the 
flames hit the walls and deviate towards the centre it forms a slight counter clockwise rotating 
flow. Near the centre of the furnace and between the two pair of flames, a full rotating gas 
flow is formed, which is ended near the impeller top-surface and exits through the outlet.  
 

One can also observe as shown in Fig.11 (x-y plane) that the centre of a primary 
vortex moves toward the centre in the upper part of the furnace and secondary vortices appear 
clearly in different corners. This phenomenon is similar to that shown in the three-
dimensional lid-driven cubic cavity.  
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Figure 10. Velocity distribution in the furnace and around the support. (x-z plane)  

 
On all vertical planes cutting through the support grid and the surrounding walls in 

figures 10-12, we see as expected, the solid region satisfies the zero velocity and, hence, the 
no-slip condition on the extremely refined interface is also verified. For instance, the support 
grid slows down the air circulation in the lower part of the furnace and slightly influences the 
main recirculation along the walls. This explains why the upper part of the furnace is more 
heated than the lower part. The air movement around the workpieces is quite complex and the 
temporal evolution is chaotic. An important number of small vortices inside different buffer 
zones can be observed. They are due to the turbulence dissipation and mixing between the hot 
and cold air.  
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Figure 11. Velocity distribution in the furnace and around the support. (x-y plane)  

It is also worth mentioning that the profiles of the temperature do not suffer from 
spurious oscillations (high undershoots or overshoots) which are frequently observed in the 
presence of high temperature gradients at the interface or in convection dominated problems 
across the enclosure. This can be attributed to the stabilization finite element discretization 
applied on the system of equations. However, there is still some regions where the solution 
(temperature, turbulent kinetic energy or the dissipation rate energy) exhibits some overshoots 
or undershoots. But they are very localized and will not affect the overall solution and do not 
lead to global instability. It could be avoided by refining and adapting the grid in these 
regions using for example a posteriori error estimator coupled to an anisotropic mesh 
adaptation strategy. A point that needs also further investigations.  

 
Recall that the contribution of the radiations to the heat transfers is assessed by solving 

the radiative transfer equation (RTE) (discussed in the previous chapter) over the whole 
domain and by computing volumetric terms that acts as an energy source terms via divergence 
of radiative heat flux. These source terms, rendered by the discontinuity of both the 
temperature and the emissivity across the interfaces, replace the classical boundary conditions 
that usually are applied at the interface between two subdomains. 
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Figure 12. Velocity distribution in the furnace and around the support. (y-z plane)  

To get better information on the temperature evolution around the immersed objects, 
we present in figure 13 the temperature distribution on six different planes in the furnace at a 
certain time step. The amount of energy required to increase the temperature of the loads by a 
few hundred degrees is considerable both in real application and computational studies. The 
immersed solids gain only few degrees above their initial temperature. Such a 3D 
computation has yet required 5 days on 32 cores. Hence, a great effort is still necessary to 
supply fast algorithms in order to calculate this kind of full heating sequences in reasonable 
reducing time. 
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Figure 13. Temperature distribution in the furnace and around the support at a given time 
step.  

Figure 14 and 15 shows the evolution of the isotherms and the streamlines at different 
time steps (t= 1.25s, 9.61s, 27.08s, 58.77s, 116.57s and 222s). When the hot air passes across 
the volume of the furnace through the burners, it induces a turbulent and recalculating motion 
within the geometry. This forced convection is caused by the interaction of the moving stream 
and the fluid at rest inside the furnace. The streamlines and the temperature distribution 
clearly indicate the expected flow pattern. Again, as shown due to high viscosity of the solid 
walls and the support, the no-slip boundary condition is verified and only transient conduction 
is solved in those regions.  
 

These numerical results indicate that the IVM approach is suitable for the parallel 
numerical simulation of industrial furnaces with different loads. The method is now applied 
and used in the consortium THOST, "Thermal optimization system", which groups many 
industrial partners. Such calculations allow to predict different parameters and to understand 
the flow characteristics for heat treatment furnaces. Future investigation will be concerned 
with experimental comparisons and time reducing models. 
 

Finally, the time history of the temperature captured at the centres of the sidewalls is 
shown in figure 16 and compared to the experimental results given by our industrial partners.  
According to the analysis made by our industrial partners, it is shown that during the first 
150s the average temperature inside the volume and on the walls is approximately the same. 
At this stage, the temperature of 250°C was recorded and used as initial temperature for the 
numerical computations.  
 
 



IMV for solving conjugate heat transfer                                                                                 315 
 

 
 

 
 

Figure 14. The evolution of isotherms and streamlines at different time step (side view) 
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Figure 15. The evolution of isotherms and streamlines at different time step (top view) 
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The walls were instrumented with many thermal sensors at different locations. Data 
were acquired via a computer controlled data acquisition system, tabulated and then reported 
by our industrial partner. All the experimental results on the walls (resp. inside the volume) 
were approximately the same. Therefore, only their average temperature was plotted. The 
average temperature on the walls was referred as the ‘Zone 1’ while the average temperature 
in the centre was referred as ‘Zone 2’.  

A comparison of experimentally measured temperature results with the numerical 
simulation results at these locations is shown in figure 16. As can be seen, the agreement is 
generally good for all stations. However, the difference respect to the experimental results 
may be due to different factors. We will state here only the important one. First, the use of the 
correct physical properties as well as the appropriate initial conditions can play an important 
role on the final results. From the numerical point of view, we can say that the use of a fine 
enough grid could be more appropriate to simulate accurately such complex fluid phenomena. 
Moreover, such discrepancies in the results clearly indicate that a more sophisticated radiative 
transfer model may be needed to improve the solution and account for a better directional 
influence. This issue will be the subject of further investigations. 

 

Figure 16. Temperature-time profile at different locations in the furnace 

Conclusion 
 

This paper presents the CFD simulation of the heating process of a loaded industrial 
furnace. The simulation presented in this work has provided a useful tool to predict the 
temperature evolution at the same time in the furnace and within the walls and the support 
grid. The 3D stabilized finite element methods developed in this work was used to solve the 
turbulent flows, the conjugate heat transfer and the thermal radiation problem. The fluid-solid 
interactions were treated using the immersed volume method (IVM). Temperature 
measurement data on the walls and inside the volume was the used to validate the present 
CFD model.  The heating profile was reasonably predicted by the simulation. As a first 
implementation, the agreement between the present and the experimental results can been 
considered satisfactory. The proposed approach seems promising to simulate turbulent flow 
and heat transfer inside industrial furnaces in the presence of different heated workpieces. 
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Chapitre 7  

Conclusions and Perspectives 

 
The objective of this thesis is the development of an efficient method which is able to 

simulate complex flow problems inside industrial furnaces including fluid-solid interaction 
phenomena. Such simulation involves turbulent flows, conjugate heat transfer (convection 
and conduction) and thermal radiation all in a multi-component formulations. The tools used 
in this thesis are the Finite Element Method (FEM) and Computational Fluid Dynamics 
(CFD). This method is shown as an attractive way to solve the turbulent flow and heat 
transfer in the furnace chamber and it can be applied for a variety of furnace geometry and 
boundary conditions. 

 
Therefore, the first part of the thesis consisted in developing different numerical 

methods for modeling the heat transfer and turbulent flows. Standard finite element method 
normally exhibits global spurious oscillations in convection-dominated problems, especially 
in the vicinity of sharp gradients. More advanced methods in the stabilization context were 
proposed in chapter 2 and 3. 

 
In chapter 2, the need for the stabilization methods in the case of time-dependent 

convection diffusion reaction problems has been revisited. The Streamline Upwind Petrov-
Galerkin (SUPG) and the Shock Capturing Petrov-Galerkin (SCPG) methods were introduced 
and implemented. In the case of transient diffusion problems, a space-time stabilized finite 
element method referred as ‘Enriched-Method with time interpolation’ has been presented and 
analysed to treat thermal shock in numerical heat transfer. The most important part of this 
chapter is the application of these stabilized formulations to the heat transfer equation needed 
later for simulation of heat treatment inside industrial furnaces.  

 
A method able to handle flows at high Reynolds number in three-dimensional 

computations was discussed in chapter 3. We have described in this chapter a stabilized finite 
element method for the transient incompressible Navier-Stokes equations based on the 
variational multiscale (VMS) principle, e.g. the decomposition of the unknowns into large 
scale and fine scale. The motivation of using these advanced methods comes from the desire 
of extending the existed solver in order to deal with highly convection-dominated flows 
which occurs mainly in the furnace chamber. The bottom line of the proposed approach was 
to keep the previous implementation of the stable velocity-pressure formulation and to extend 
it by taking into account the small-scale pressure and the convection terms in the fine scale 
equations. Results for the unsteady Navier-Stokes equations obtained via the new modified 
scheme have been compared with the reference and analyzed. The numerical experiments 
show that the method is stable. The performance and the efficiency of the overall new scheme 
have been demonstrated using five benchmarks. 
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In chapter 4, the background of turbulence models is worked out in order to justify the 

choice of the particular method that must be used to simulate a real industrial furnace. Two 
classical turbulence models were introduced, analyzed and studied: the k-epsilon model and 
the Large Eddy Simulation (LES) model. The motivation of using such models comes from 
the desire of solving highly turbulent flow problems, e.g. the air velocity coming out from the 
burners into the furnace chamber could reach 75 m/s.  Again, the stabilized finite element 
methods proposed in chapter 2 and 3 was used and applied for the resolution of the set of 
turbulent equations. Most importantly, we concluded from the numerical experiments that a 
chosen turbulence model should introduce the minimum amount of complexity while 
capturing the essence of the relevant physics. Consequently, the k-ε model, a traditional 
model attempts to strike the balance in this regard by sacrificing the details of the turbulence 
structures, was adopted. An improved version of this model appropriate for multi-components 
simulation was also introduced and adopted in this work. However, the question of which 
suitable model must be used to simulate accurately turbulent flows in the furnace chamber 
requires certain attention. Our main objective remained on understanding and implementing 
these models to open the choice to the user to decide which methods one must use regarding 
the application in hand. We explicated briefly that each method offers the accuracy of the 
results in respect to the computational costs and the required computing time. Finally, the 
performance and the efficiency of the overall models have been demonstrated using four 
benchmark and comparisons with both experimental and numerical results from several 
authors were presented. 

 
As mentioned in chapter 5, thermal radiation exchange plays an important role on the 

overall efficiency, the quality of the heated ingots and the production rates since it is the 
dominant mode of heat transfer in most furnaces. Therefore, the second section of this chapter 
was dedicated to search and review different models for solving the radiative heat transfer. 
The main objective was to find the best fitted model with a certain capability to take into 
account fluid-solid interactions phenomena (gas-walls-heated ingots). Two thermal radiation 
models were chosen and discussed, implemented and adapted to our multi-components 
problem.  

 
A multidomain approach to solve the conjugate heat transfer for which the three 

modes, convective, conductive and radiative heat transfer interfere simultaneously and in both 
the fluid part and the solid part was introduced in chapter 5. This element represents the most 
important ingredient of this work. In the first section of chapter 5, we showed that the 
proposed numerical technique for modeling such multimaterial flows (fluid/solid), referred as 
the immersed volume method (IVM), allows a simple and accurate resolution, in particularly 
at the interface between the fluid and solid. Full description, details and examples about this 
method are discussed in this chapter. One important feature of the proposed approach is that 
all the three-dimensional stabilized finite-element (SFEM) methods developed in the first part 
of the thesis, which are needed for solving the transient heat transfer and turbulent flows 
inside the furnaces, are completely suited with this approach without additional efforts. 

 
 
 
 
 



Main conclusion and open lines of research                                                                           321       
 

The immersed volume method is based on the use of an adaptive anisotropic local grid 
refinement by means of the levelset function to well capture the sharp discontinuities of the 
fluid-solid interface, e.g. physical properties. We have used a mesh generation algorithm that 
allows the creation of meshes with extremely anisotropic elements stretched along the 
interface. This turned out to be an important requirement for conjugate heat transfer and 
multi-component devices with surface conductive layers. The strategy was to only add nodes 
locally at the interface, whereas the rest of domain keeps the same background size. Note 
also, when using an anisotropic mesh, with elements stretched in a 'right' direction, one could 
allow not only to save a lot of elements but also to well describe the geometry in terms of 
curvature, angles, etc. Contrary to others techniques, this promising method can provide an 
alternative to body fitted mesh for very complex geometry. 

To resume, the main idea in chapter 5 was to retain the use of the monolithic 
formulation and coupling it to such additional features (IVM). This allows a better and 
accurate resolution, in particularly at the interface between the fluid and solid. From the other 
hands, the computation of the heat transfer coefficient, which usually is used as a boundary 
conditions to insure the heat exchange between two subdomains, can be a difficult task since 
it needs experimental data and often requires solving inverse problems. This is a limiting 
issue for practical applications when one needs to change the geometry of the object, the 
physical parameters, the number and the position of the objects, the surrounding fluid (air, 
water, etc…).  

 
However, we have chosen in this work to consider a single grid for both air and solid 

for which only one set of equations need to be solved. Consequently, different subdomains are 
treated as a single fluid with variable material properties. The important aspect of the chosen 
strategy is that by solving the whole domain in a fully monolithic way there is no need of 
empirical data so as to determine the heat transfer coefficient between the treated solid and the 
surrounding fluid. The heat exchange at the interface is replaced naturally by solving the 
convective fluid in the whole domain. Numerically, the communication between the solid and 
the fluid was obtained directly without any further assumption and force modelling. In other 
words, there is no need for some coupling engines specifically designed to handle data 
exchange and algorithmic control signals between solid region and fluid region. In the last 
section of chapter 5, the IVM approach was tested on two numerical examples showing a 
promising tool for simulating thermal coupling of solids and fluids.  

Various benchmarks and more complex numerical examples are given in chapter 6. The 
numerical results of forced turbulent convection inside industrial furnace are also included. 

The simulation of the heating process of a loaded 3D industrial furnace is presented in 
the last section. The prediction of the temperature profiles at the same time in the furnace and 
within the walls and the support grid are presented. The fluid-solid interactions were treated 
using the immersed volume method (IVM). Temperature measurement data on the walls and 
inside the volume was the used to validate the present CFD model.   
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The focus in this work is on a new concept for numerical methods to estimate the 
temperature distributions at the same time in the furnace and within the workpieces under 
specified furnace geometry, thermal schedule, parts loading design, initial operation 
conditions, and performance requirements.  

 
However, the practically relevant test cases to achieve higher treatment efficiency are 

not in the scope of this work. Therefore, in future works with the proposed IVM method and 
the implemented finite element solvers, it is important to prove the usefulness of the proposed 
concept with a number of further real industrial cases. Possible applications, where the 
features of the coupled solver are desirable, are for example simulations of quenching and 
cooling process (ThosT II). 
 

Since simulation of the heat treatment sequence of workpieces in heat treatment 
furnaces followed by a controlled cooling process is of great importance for the prediction 
and control of the ultimate microstructure of the workpieces but specially the reduction of 
both energy consumption and pollutant emissions, then the construction of a model to 
simulation and to study the effect of quenching on the microstructure and mechanical 
property coupled to a multi-phase transformation model are possible extensions of the current 
work. 
 

Clearly, a number of other considerations have to be taken into account for more 
accurate predictions of temperature profiles in the furnace chamber. Here is the list of several 
important steps towards enhanced simulation tools for more realistic problems: 

 
-  The development of a more sophisticated radiative transfer model to improve 

solution and account for a better directional influence (the M1 model). 
 
-  A better determination of temperature wall functions for high Rayleigh number 

in multidomain problems. 
 

-  The development of fast algorithms in order to simulate full heating sequences 
in reasonable reducing time (e.g. POD, adaptive time-step, … ) 

 
-  Anisotropic mesh adaptation for finite element method using a posteriori error 

estimates 
 

 
 


