]. A. Bibliographie1 and . Alfonsi, On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods and Applications, pp.355-384, 2005.

A. Alfonsi, High order discretization schemes for the CIR process: Application to affine term structure and Heston models, Mathematics of Computation, vol.79, issue.269, 2009.
DOI : 10.1090/S0025-5718-09-02252-2

URL : https://hal.archives-ouvertes.fr/hal-00143723

L. Andersen, Efficient Simulation of the Heston Stochastic Volatility Model. SSRN eLibrary, 2007.

P. K. Andersen, O. Borgan, R. D. Gill, and N. Keiding, Statistical models based on counting processes, 1993.
DOI : 10.1007/978-1-4612-4348-9

M. Avellaneda, D. Boyer-olson, J. Busca, and P. Friz, Reconstructing volatility, Risk, pp.87-91, 2002.

G. Bakshi, N. Kapadia, and D. Madan, Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options, Review of Financial Studies, vol.16, issue.1, pp.101-143, 2003.
DOI : 10.1093/rfs/16.1.0101

V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function. Probability Theory and Related Fields, pp.43-60, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00074427

V. Bally and D. Talay, The Law of the Euler Scheme for Stochastic Differential Equations: II. Convergence Rate of the Density, Monte Carlo Methods and Applications, vol.2, issue.2, pp.93-128, 1996.
DOI : 10.1515/mcma.1996.2.2.93

URL : https://hal.archives-ouvertes.fr/inria-00074016

A. Bangia, F. X. Diebold, and T. Schuermann, Ratings Migration and the Business Cycle, With Application to Credit Portfolio Stress Testing. Center for Financial Institutions Working Papers 00-26, 2000.

H. Berestycki, J. Busca, and I. Florent, An inverse parabolic problem arising in finance, Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, pp.331965-969, 2000.
DOI : 10.1016/S0764-4442(00)01749-3

H. Berestycki, J. Busca, and I. Florent, Asymptotics and calibration of local volatility models, Quantitative Finance, vol.4, issue.1, pp.61-69, 2002.
DOI : 10.1002/cpa.3160450103

A. Berkaoui, M. Bossy, and A. Diop, Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence, ESAIM: Probability and Statistics, vol.12, pp.1-11, 2008.
DOI : 10.1051/ps:2007030

URL : https://hal.archives-ouvertes.fr/inria-00000176

A. Beskos, O. Papaspiliopoulos, and G. O. Roberts, Retrospective exact simulation of diffusion sample paths with applications, Bernoulli, vol.12, issue.6, 2006.
DOI : 10.3150/bj/1165269151

A. Beskos, O. Papaspiliopoulos, G. O. Roberts, and P. Fearnhead, Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion), Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.6, issue.3, pp.333-382, 2006.
DOI : 10.1093/biomet/88.3.603

A. Beskos and G. O. Roberts, Exact simulation of diffusions, The Annals of Applied Probability, vol.15, issue.4, pp.2422-2444, 2005.
DOI : 10.1214/105051605000000485

N. P. Bollen and R. E. Whaley, Does Net Buying Pressure Affect the Shape of Implied Volatility Functions?, The Journal of Finance, vol.1, issue.2, pp.711-753, 2004.
DOI : 10.1111/j.1540-6261.2004.00647.x

D. Bosq, Nonparametric statistics for stochastic processes, volume 110 of Lecture Notes in Statistics Estimation and prediction, 1998.

N. Branger and C. Schlag, Why is the index smile so steep ? Review of Finance, pp.109-127, 2004.

M. Broadie and P. Glasserman, Estimating Security Price Derivatives Using Simulation, Management Science, vol.42, issue.2, pp.269-285, 1996.
DOI : 10.1287/mnsc.42.2.269

M. Broadie and . Kaya, Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes, Operations Research, vol.54, issue.2, pp.217-231, 2006.
DOI : 10.1287/opre.1050.0247

G. Celeux and J. Diebolt, The SEM algorithm : a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem, Computational Statistics Quarterly, vol.2, pp.73-82, 1985.

P. Cizeau, M. Potters, and J. Bouchaud, Correlation structure of extreme stock returns, Quantitative Finance, vol.1, issue.2, pp.217-222, 2001.
DOI : 10.1080/713665669

D. Clayton and J. Cuzick, Multivariate Generalizations of the Proportional Hazards Model, Journal of the Royal Statistical Society. Series A (General), vol.148, issue.2, pp.82-117, 1985.
DOI : 10.2307/2981943

R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, On the LambertW function, Advances in Computational Mathematics, vol.1, issue.6, pp.329-359, 1996.
DOI : 10.1007/BF02124750

F. Couderc and O. Renault, Times-to-default :life cycle, global and industry cycle impact. FAME Research Paper Series rp142, International Center for Financial Asset Management and Engineering, 2005.

M. Crouhy, D. Galai, and R. Mark, A comparative analysis of current credit risk models, Journal of Banking & Finance, vol.24, issue.1-2, pp.59-117, 2000.
DOI : 10.1016/S0378-4266(99)00053-9

A. B. Cruzeiro, P. Malliavin, and A. Thalmaier, Geometrization of Monte-Carlo numerical analysis of an elliptic operator : strong approximation. Comptes Rendus de l, Académie des Sciences. Série I. Mathématique, vol.338, issue.6, pp.481-486, 2004.

D. Servigny and O. Renault, Default correlation : empirical evidence. S&P working paper, 2002.

G. Deelstra and F. Delbaen, Convergence of discretized stochastic (interest rate) processes with stochastic drift term Applied Stochastic Models and Data Analysis, pp.77-84, 1998.

M. Delloye, J. Fermanian, and M. Sbai, Dynamic frailties and credit portfolio modelling, Risk, vol.19, issue.10, pp.100-105, 2006.

A. Dermoune, Propagation and conditional propagation of chaos for pressureless gas equations . Probability Theory and Related Fields, pp.459-476, 2003.

J. Diebolt and E. H. Ip, Stochastic EM : method and application, Markov chain Monte Carlo in practice, pp.259-273, 1996.

H. Doss, Liens entré equations différentielles stochastiques et ordinaires, Ann. Inst. H. Poincaré Sect. B (N.S.), vol.13, issue.2, pp.99-125, 1977.

F. Dubois and T. Lelievre, Efficient pricing of Asian options by the PDE approach, The Journal of Computational Finance, vol.8, issue.2, 2004.
DOI : 10.21314/JCF.2005.138

D. Duffie, A. Eckner, G. Horel, and L. Saita, Frailty correlated default, The Journal of Finance, 2009.

D. Duffie and K. J. Singleton, Modeling Term Structures of Defaultable Bonds, Review of Financial Studies, vol.12, issue.4, pp.687-720, 1999.
DOI : 10.1093/rfs/12.4.687

B. Dupire, Pricing with a smile, Risk, pp.18-20, 1994.

P. Fearnhead, O. Papaspiliopoulos, and G. O. Roberts, Particle filters for partially observed diffusions, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.94, issue.4, 2006.
DOI : 10.1111/j.1467-9868.2008.00661.x

J. Fermanian and M. Sbai, A comparative analysis of dependence levels in intensitybased and Merton-style credit risk models Advances in Risk Management, 2006.

A. Friedman, Partial differential equations of parabolic type, N.J, 1964.

M. Fu, D. Madan, and T. Wang, Pricing continuous Asian options: a comparison of Monte Carlo and Laplace transform inversion methods, The Journal of Computational Finance, vol.2, issue.2, 1999.
DOI : 10.21314/JCF.1998.024

H. Geman, N. Karoui, and J. C. Rochet, Changes of num??raire, changes of probability measure and option pricing, Journal of Applied Probability, vol.5, issue.02, pp.443-458, 1995.
DOI : 10.2307/3003143

H. Geman and A. Eydeland, Domino effect, Risk, pp.65-67, 1995.

H. Geman and M. Yor, BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES, Mathematical Finance, vol.1, issue.3, 1993.
DOI : 10.2307/1427477

K. Giesecke and S. Azizpour, Self-exciting corporate defaults : Contagion vs. frailty, 2008.

M. Giles, Improved Multilevel Monte Carlo Convergence using the Milstein Scheme, pp.343-358, 2006.
DOI : 10.1007/978-3-540-74496-2_20

M. Giles, Multilevel Monte Carlo Path Simulation, Operations Research, vol.56, issue.3, pp.607-617, 2008.
DOI : 10.1287/opre.1070.0496

E. Gobet, Weak approximation of killed diffusion using Euler schemes, Stochastic Processes and their Applications, pp.167-197, 2000.
DOI : 10.1016/S0304-4149(99)00109-X

E. Gobet and C. Labart, Sharp estimates for the convergence of the density of the Euler scheme in small time, Electronic Communications in Probability, vol.13, issue.0, pp.352-363, 2008.
DOI : 10.1214/ECP.v13-1393

URL : https://hal.archives-ouvertes.fr/hal-00281365

M. B. Gordy, A comparative anatomy of credit risk models, Journal of Banking & Finance, vol.24, issue.1-2, pp.119-149, 2000.
DOI : 10.1016/S0378-4266(99)00054-0

J. Guyon, Euler scheme and tempered distributions, Stochastic Processes and their Applications, pp.877-904, 2006.
DOI : 10.1016/j.spa.2005.11.011

I. Gyöngy, Mimicking the one-dimensional marginal distributions of processes having an Itô differential. Probability Theory and Related Fields, pp.501-516, 1986.

J. Helwege and P. Kleiman, Understanding Aggregate Default Rates of High Yield Bonds, Current Issues in Economics and Finance, vol.2, issue.6, 1996.

S. L. Heston, A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, Review of Financial Studies, vol.6, issue.2, pp.327-370, 1993.
DOI : 10.1093/rfs/6.2.327

P. Hougaard, Analysis of multivariate survival data. Statistics for Biology and Health, 2000.

J. Hull and A. White, The Pricing of Options on Assets with Stochastic Volatilities, The Journal of Finance, vol.40, issue.2, pp.281-300, 1987.
DOI : 10.1111/j.1540-6261.1987.tb02568.x

J. E. Ingersoll, Theory of Financial Decision Making, 1987.

R. A. Jarrow, D. Lando, and S. M. Turnbull, A Markov Model for the Term Structure of Credit Risk Spreads, Review of Financial Studies, vol.10, issue.2, pp.481-523, 1997.
DOI : 10.1093/rfs/10.2.481

B. Jourdain and M. Sbai, Exact retrospective Monte Carlo computation of arithmetic average asian options. Monte Carlo Methods and Applications, pp.135-171, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00141141

C. Kahl and P. Jäckel, Fast strong approximation Monte Carlo schemes for stochastic volatility models, Quantitative Finance, vol.5, issue.6, pp.513-536, 2006.
DOI : 10.1214/aoms/1177699916

C. Kahl and H. Schurz, Balanced Milstein Methods for Ordinary SDEs, Monte Carlo Methods and Applications, vol.12, issue.2, pp.143-170, 2006.
DOI : 10.1515/156939606777488842

I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, 1991.
DOI : 10.1007/978-1-4612-0949-2

D. Kavvathas, Estimating Credit Rating Transition Probabilities for Corporate Bonds. Working paper series, 2000.
DOI : 10.2139/ssrn.252517

A. Kebaier, Statistical Romberg extrapolation : a new variance reduction method and applications to option pricing. The Annals of Applied Probability, pp.2681-2705, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00693106

S. C. Keenan, J. R. Sobehart, and D. T. Hamilton, Predicting Default Rates: A Forecasting Model for Moody's Issuer-Based Default Rates, SSRN Electronic Journal, 1999.
DOI : 10.2139/ssrn.1020303

A. Kemna and A. Vorst, A pricing method for options based on average asset values, Journal of Banking & Finance, vol.14, issue.1, pp.113-129, 1990.
DOI : 10.1016/0378-4266(90)90039-5

J. Kim, A way to condition transition matrix on wind. Working paper, 1999.

A. Kohatsu-higa, Weak approximations. A Malliavin calculus approach, Mathematics of Computation, vol.70, issue.233, pp.135-172, 2001.
DOI : 10.1090/S0025-5718-00-01201-1

V. Konakov and E. Mammen, Edgeworth type expansions for Euler schemes for stochastic differential equations., Monte Carlo Methods and Applications, vol.8, issue.3, pp.271-285, 2002.
DOI : 10.1515/mcma.2002.8.3.271

S. J. Koopman, A. Lucas, and A. Monteiro, The multi-state latent factor intensity model for credit rating transitions. Working paper, Tinbergen Institute, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00501799

H. U. Koyluoglu and A. Hickman, A generalized framework for credit risk portfolio models. Working paper, 1998.

H. U. Koyluoglu and A. Hickman, Reconcilable differences, Risk, vol.11, issue.10, pp.56-62, 1998.

H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, Lecture Notes in Math, vol.47, pp.143-303, 1984.
DOI : 10.1007/BF00535284

T. G. Kurtz and P. Protter, Wong-Zakai corrections, random evolutions, and simulation schemes for SDEs, Stochastic analysis, pp.331-346, 1991.

S. Kusuoka, Approximation of expectation of diffusion process and mathematical finance, Taniguchi Conference on Mathematics Nara '98, pp.147-165, 2001.

S. Kusuoka, Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus, In Advances in mathematical economics. Adv. Math. Econ, vol.6, issue.6, pp.69-83, 2004.
DOI : 10.1007/978-4-431-68450-3_4

S. Kusuoka and D. Stroock, Applications of the Malliavin calculus. I. In Stochastic analysis, Katata/Kyoto, vol.32, pp.271-306, 1982.

D. Lando, On cox processes and credit risky securities, Review of Derivatives Research, vol.2, issue.2, pp.99-120, 1998.
DOI : 10.1007/BF01531332

D. Lando and T. M. Skødeberg, Analyzing rating transitions and rating drift with continuous observations, Journal of Banking & Finance, vol.26, issue.2-3, pp.423-444, 2002.
DOI : 10.1016/S0378-4266(01)00228-X

B. Lapeyre and E. Temam, Competitive Monte Carlo methods for the pricing of Asian options, The Journal of Computational Finance, vol.5, issue.1, 2001.
DOI : 10.21314/JCF.2001.061

P. Lee, L. Wang, and A. Kerim, Index volatility surface via moment-matching techniques, Risk, pp.85-89, 2003.

E. Levy, Pricing European average rate currency options, Journal of International Money and Finance, vol.11, issue.5, pp.474-491, 1992.
DOI : 10.1016/0261-5606(92)90013-N

F. A. Longstaff and E. S. Schwartz, Valuing American Options by Simulation: A Simple Least-Squares Approach, Review of Financial Studies, vol.14, issue.1, pp.113-147, 2001.
DOI : 10.1093/rfs/14.1.113

R. Lord, Partially exact and bounded approximations for arithmetic Asian options, Journal of Computational Finance, vol.10, issue.2, 2006.

R. Lord, R. Koekkoek, and D. J. Van-dijk, A Comparison of Biased Simulation Schemes for Stochastic Volatility Models. SSRN eLibrary, 2008.

T. Lyons and N. Victoir, Cubature on Wiener space, Stochastic analysis with applications to mathematical finance, pp.169-198, 2004.
DOI : 10.1098/rspa.2003.1239

G. J. Mclachlan and T. Krishnan, The EM algorithm and extensions. Wiley Series in Probability and Statistics : Applied Probability and Statistics, 1997.

S. Méléard, Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, Probabilistic models for nonlinear partial differential equations (Montecatini Terme, pp.42-95, 1995.
DOI : 10.1007/BF01055714

R. C. Merton, On the pricing of corporate debt : The risk structure of interest rates, The Journal of Finance, vol.29, issue.2, pp.449-470, 1974.

B. Metayer, Semi-parametric cox type regression model for credit rating transition probabilities estimation. Working paper, 2004.

G. N. Milstein, Numerical Integration of Stochastic Differential Equations, volume 313 of Mathematics and its Applications, 1995.

E. A. Nadaraya, On estimating regression. Theory of Probability and its Applications, pp.141-142, 1964.

P. Nickell, W. Perraudin, and S. Varotto, Stability of rating transitions, Journal of Banking & Finance, vol.24, issue.1-2, pp.216-216, 2001.
DOI : 10.1016/S0378-4266(99)00057-6

S. Ninomiya, A new simulation scheme of diffusion processes: application of the Kusuoka approximation to finance problems, Mathematics and Computers in Simulation, vol.62, issue.3-6, pp.3-6479, 2003.
DOI : 10.1016/S0378-4754(02)00251-3

S. Ninomiya, A partial sampling method applied to the Kusuoka approximation, Monte Carlo Methods and Applications, vol.9, issue.1, pp.27-38, 2003.
DOI : 10.1163/156939603322587443

S. Ninomiya and M. Ninomiya, A new higher-order weak approximation scheme for??stochastic differential equations and??the??Runge???Kutta method, Finance and Stochastics, vol.8, issue.3???6, pp.415-443, 2009.
DOI : 10.1007/s00780-009-0101-4

S. Ninomiya and N. Victoir, Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing, Applied Mathematical Finance, vol.29, issue.2, pp.107-121, 2008.
DOI : 10.1016/0020-7225(65)90045-5

M. C. Paik, W. Tsai, and R. Ottman, Multivariate Survival Analysis Using Piecewise Gamma Frailty, Biometrics, vol.50, issue.4, pp.975-988, 1994.
DOI : 10.2307/2533437

S. T. Rachev and L. Rüschendorf, Mass transportation problems, Probability and its Applications, 1998.

S. T. Rachev and L. Rüschendorf, Mass transportation problems, II. Probability and its Applications, 1998.

D. Revuz and M. Yor, Continuous martingales and Brownian motion, 1991.

C. P. Robert and G. Casella, Monte Carlo statistical methods. Springer Texts in Statistics, 1999.

L. C. Rogers and Z. Shi, The value of an Asian option, Journal of Applied Probability, vol.314, issue.04, pp.1077-1088, 1995.
DOI : 10.1111/j.1467-9965.1993.tb00092.x

M. Romano and N. Touzi, Contingent Claims and Market Completeness in a Stochastic Volatility Model, Mathematical Finance, vol.7, issue.4, pp.399-412, 1997.
DOI : 10.1111/1467-9965.00038

W. J. Runggaldier and C. Fontana, Credit risk and incomplete information : linear filtering and em parameter estimation, 2009.

W. J. Runggaldier and R. Frey, Credit risk and incomplete information : a nonlinear-filtering approach, Finance and Stochastics, 2009.

T. H. Rydberg, A note on the existence of unique equivalent martingale measures in a Markovian setting, Finance and Stochastics, vol.1, issue.3, pp.251-257, 1997.
DOI : 10.1007/s007800050024

P. Schönbucher, Factor models for credit portfolio credit risk. Working paper, 2000.

P. Schönbucher, Information-driven default contagion, 2003.

L. O. Scott, Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application, The Journal of Financial and Quantitative Analysis, vol.22, issue.4, pp.419-438, 1987.
DOI : 10.2307/2330793

P. and S. Tonou, Méthodes numériques probabilistes pour la résolution d'´ equations du transport et pour l'´ evaluation d'options exotiques, 1997.

W. F. Sharpe, Capital asset prices : A theory of market equilibrium under conditions of risk, The Journal of Finance, vol.19, issue.3, pp.425-442, 1964.

E. M. Stein and J. C. Stein, Stock Price Distributions with Stochastic Volatility: An Analytic Approach, Review of Financial Studies, vol.4, issue.4, pp.727-752, 1991.
DOI : 10.1093/rfs/4.4.727

A. Sznitman, Topics in propagation of chaos, Lecture Notes in Math, vol.22, issue.1, pp.165-251, 1991.
DOI : 10.1070/SM1974v022n01ABEH001689

D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Analysis and Applications, vol.20, issue.4, pp.483-509, 1990.
DOI : 10.1080/07362999008809220

URL : https://hal.archives-ouvertes.fr/inria-00075490

D. Talay and O. Vaillant, A stochastic particle method with random weights for the computation of statistical solutions of McKean-Vlasov equations. The Annals of Applied Probability, pp.140-180, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00072260

H. Tanaka and A. Kohatsu-higa, An operator approach for Markov chain weak approximations with an application to infinite activity L??vy driven SDEs, The Annals of Applied Probability, vol.19, issue.3, 2009.
DOI : 10.1214/08-AAP568

]. E. Tanré, ´ Etude probabiliste deséquationsdeséquations de Smoluchowski ; Schéma d'Euler pour des fonctionnelles ; Amplitude du mouvement brownien avec dérive, 2001.

E. Temam, Couverture approchée d'options exotiques -Pricing des options asiatiques, 2001.

S. Turnball and L. Wakeman, A Quick Algorithm for Pricing European Average Options, The Journal of Financial and Quantitative Analysis, vol.26, issue.3, pp.377-389, 1991.
DOI : 10.2307/2331213

J. Vecer, A new PDE approach for pricing arithmetic average Asian options, The Journal of Computational Finance, vol.4, issue.4, 2001.
DOI : 10.21314/JCF.2001.064

C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol.58, 2003.
DOI : 10.1090/gsm/058

T. Vorst, Prices and hedge ratios of average exchange rate options, International Review of Financial Analysis, vol.1, issue.3, pp.179-193, 1992.
DOI : 10.1016/1057-5219(92)90003-M

W. Wagner, Unbiased monte carlo evaluation of certain functional integrals, Journal of Computational Physics, vol.71, issue.1, pp.21-33, 1987.
DOI : 10.1016/0021-9991(87)90017-9

W. Wagner, Monte carlo evaluation of functionals of solutions of stochastic differential equations. variance reduction and numerical examples, Stochastic Analysis and Applications, vol.753, issue.4, pp.447-468, 1988.
DOI : 10.1016/0021-9991(87)90017-9

W. Wagner, Unbiased multi-step estimators for the Monte Carlo evaluation of certain functional integrals, Journal of Computational Physics, vol.79, issue.2, pp.336-352, 1988.
DOI : 10.1016/0021-9991(88)90020-4

W. Wagner, Undiased monte carlo estimators for functionals of weak solutions of stochastic diffretial equations, Stochastics and Stochastic Reports, vol.71, issue.1, pp.1-20, 1989.
DOI : 10.1080/17442508908833581

G. S. Watson, Smooth regression analysis Sankhy¯ a (Statistics) The Indian Journal of, Statistics . Series A, vol.26, pp.359-372, 1964.

J. B. Wiggins, Option values under stochastic volatility: Theory and empirical estimates, Journal of Financial Economics, vol.19, issue.2, pp.351-372, 1987.
DOI : 10.1016/0304-405X(87)90009-2

T. C. Wilson, Portfolio credit risk i. Risk, pp.111-117, 1997.

T. C. Wilson, Portfolio credit risk ii, Risk, pp.56-61, 1997.

B. Wong and C. C. Heyde, On the martingale property of stochastic exponentials, Journal of Applied Probability, vol.300, issue.03, pp.654-664, 2004.
DOI : 10.1093/rfs/4.4.727

K. K. Yau and C. A. Mcgilchrist, ML and REML estimation in survival analysis with time dependent correlated frailty, Statistics in Medicine, vol.44, issue.11, pp.1201-1213, 1998.
DOI : 10.1002/(SICI)1097-0258(19980615)17:11<1201::AID-SIM845>3.0.CO;2-7

F. Yu, Correlated defaults in intensity-based models. Working paper, 2002.

F. Yu, Default correlation in reduced-form models. Working paper, 2003.

H. Yue and K. S. Chan, A Dynamic Frailty Model for Multivariate Survival Data, Biometrics, vol.53, issue.3, pp.785-793, 1997.
DOI : 10.2307/2533542