
HAL Id: tel-00453394
https://pastel.hal.science/tel-00453394v1
Submitted on 4 Feb 2010 (v1), last revised 19 Mar 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonlinear Fluid-Structure Interaction: a Partitioned
Approach and its Application Through Component

Technology
Christophe Kassiotis

To cite this version:
Christophe Kassiotis. Nonlinear Fluid-Structure Interaction: a Partitioned Approach and its Appli-
cation Through Component Technology. Engineering Sciences [physics]. Université Paris-Est, 2009.
English. �NNT : �. �tel-00453394v1�

https://pastel.hal.science/tel-00453394v1
https://hal.archives-ouvertes.fr

École Doctorale MODES

Dissertation zur Erlangung

Thèse de Doctorat des akademischen Grades

Doktoringenieur (Dr.-Ing.)

Domaine:

Génie-Civil Wissenschaftlichesrechnen

Christophe Kassiotis

Nonlinear Fluid-Structure Interaction: a Partitioned Approach
and its Application Through Component Technology

Defense : November 20th, 2009.

Jury

J.-B. Colliat Encadrant ÉNS-Cachan

D. Duhamel Directeur de Thèse École des Ponts ParisTech

J.-M. Ghidaglia Examinateur ÉNS-Cachan

A. Ibrahimbegović Directeur de Thèse ÉNS-Cachan

P. Massin Examinateur ÉDF R&D
H. G. Matthies Directeur de Thèse TU-Braunschweig
D. Perić Rapporteur Swansea University
F.-X. Roux Rapporteur Onera/UPMC

UR-Navier École des Ponts - ParisTech
Institüt für Wissenschaftliches Rechen TU–Braunschweig

LMT-Cachan École Normale Supérieur de Cachan

À mon grand-père, Vasilli Kassiotis.

“Science is what we understand well enough to explain to a computer.

Art is everything else we do.”

— D. E. Knuth, 1996.

ii

Résumé

Interaction fluide-structure non-linéaire:
une approche partitionnée et son application
par la technologie des composants

Au cours de ces travaux de thèse, la résolution de problèmes non-linéaires

en interaction forte entre une structure et un fluide a été étudiée par une ap-

proche partitionnée. La stabilité, la convergence et les performances de différents

schémas de couplages explicites et implicites ont été explorées.

L’approche partitionnée autorise la réutilisation des codes existants dans un

contexte plus général. Un des objectifs de nos travaux est de les utiliser comme

des boites noires, dont on n’a pas le besoin de connaitre le fonctionnement

interne. A cette fin, la technologie des composants et le middleware CTL ont été

utilisés. Ainsi, deux composants basés sur des codes existants pour le fluide et la

structure ont été développés puis couplés par une approche de type code mâıtre.

Les performances de différentes architectures de composants aussi bien que la

communication entre composants parallélisés sont décrites dans ce document.

La réutilisation de codes existants permet de profiter au plus vite des modèles

avancés développés de manière spécifique pour nos sous-problèmes. Pour la par-

tie solide, par exemple, il est possible d’utiliser différents modèles Éléments Finis

en grandes déformations avec des matériaux non-linéaires. Pour la partie fluide,

nous avons choisi une approche Arbitrairement Lagrangienne-Eulérienne, et la

résolution par Volumes Finis. Différents régimes d’écoulements instationnaires –

aussi bien incompressibles (modélisés alors par les équations de Navier-Stokes)

qu’à surfaces libres – sont ici considérés. La description de phénomènes tels que

le déferlement des vagues et leur impact sur des structures est ainsi rendu pos-

sible.

Mots-clefs: Interaction fluide-structure, couplage fort, approche partitionnée,

couplage de codes, technologie des composants.

iii

iv

Zusammenfassung

Nichtlineare Fluid-Struktur-Interaktion:
Ein partitionierter Ansatz und dessen softwa-
rekomponentenbasierte Umsetzung

In dieser Doktorarbeit wird ein partiotionierter Ansatz zur Lösung nichli-

nearer stark gekoppelter Fluid-Struktur-Interaktionsprobleme behandelt. Dabei

werden die Stabilität, die Konvergenz und die Performanz expliziter und impli-

ziter Kopplungsalgorithmen untersucht.

Der partitionierte Ansatz ermöglicht die Wiederverwendung von existieren-

der Software in einem allgemeineren Kontext. Ein Ziel dieser Arbeit ist hierbei

die Nutzung dieser Software als Blackboxen. Hierzu verwenden wir das kom-

ponentenbasierte Framework CTL. Die existierenden Simulationscodes für das

Strömungs- und das Strukturproblem werden als CTL Komponenten umgesetzt

und über einen Mastercode gekoppelt. Die Performanz des Gesamtsystems wird

hinsichtlich unterschiedlicher Komponentenbindungen und der parallelen Imple-

mentierungen der Simulationskomponenten analysiert.

Existierende Simulationscodes weisen mitunter viele Mannjahre Entwick-

lungszeit auf, bieten auf die einzelnen Probleme abgestimmte numerische Verfah-

ren und unterstützen unterschiedliche Modelle des betrachteten physikalischen

Fachgebietes. Daher ist eine Wiederverwendung erstrebenswert. Der Struktur-

teil wird über die Finite Elemente Methode approximiert, wobei große Defor-

mationen und verschiedene nicht-lineare Materialmodelle unterstützt werden.

Auf der Strömungsseite werden Beispielprobleme (von instationären inkompres-

siblen Strömungen zu Strömungen mit freier Oberfläche) herangezogen, die mit

der Arbitrary Lagrangian Eulerian Methode formuliert und der Finite Volumen

Methode diskretisiert werden.

Schlagworte: Fluid-Struktur-Interaktion, starke Kopplung, partitionierter An-

satz, Softwarekopplung, Komponententechnologie.

v

vi

Abstract

Nonlinear Fluid-Structure Interaction:
a Partitioned Approach and its Application
Through Component Technology

A partitioned approach is studied to solve strongly coupled nonlinear fluid-

structure interaction problems. The stability, convergence and performance of

explicit and implicit coupling algorithms are explored.

The partitioned approach allows to re-use existing codes in a more general

context. One purpose of this work is to be able to couple them as black-boxes.

To that end, the scientific software component framework CTL is considered.

Therefore a fluid and a structure component based on existing software are de-

veloped and coupled with a master code approach. Computational performance

of different remote calls and parallel implementation of components are also

depicted herein.

The re-use of existing software allows to couple advanced models developed

for both sub-problems. In this work, the structure part is solved by the Finite

Element Method, with the possibility to use different non-linear and large de-

formation behaviors. For the fluid part, examples modeled with an Arbitrary

Lagrangian Eulerian formulation are considered, solved with a Finite Volume

Method. The models used are first transient incompressible flows described by

the Navier-Stokes equation, then free surface flows. With the latter, the impact

of sloshing and breaking waves on model structures can be computed

Keywords: Fluid-structure interaction, strong coupling, partitioned approach,

software coupling, component technology.

vii

Acknowledgments – Remerciements –

Danke

Je commencerai ces traditionnels remerciements par mes directeurs de thèse

Adnan Ibrahimbegović et Hermann Matthies qui m’ont permis de travailler

dans les meilleures conditions possibles : un encadrement scientifique de haut

niveau, des approches complémentaires des problèmes abordés, la possibilité de

réaliser cette thèse en cotutelle avec l’Allemagne et surtout leur passion bien

réelle pour la recherche. Je tiens aussi à remercier les responsables du Corps des

Ponts de m’avoir permis de continuer mes travaux de thèse déjà entamés, et par

la même occasion Denis Duhamel d’avoir accepté de m’encadrer.

Je suis extrêmement fier d’avoir eu des rapporteurs de la qualité de Djordje

Perić et François-Xavier Roux, qui ont accepté de lire attentivement cette

thèse (bien qu’écrite dans mon anglais parfois approximatif). Je remercie aussi

Patrick Massin d’avoir accepté de faire partie de mon jury, ainsi que Jean-

Michel Ghidaglia de m’avoir fait l’honneur de présider ce même jury.

Avoir fait une thèse en cotutelle m’oblige ici à massacrer la langue de Goethe.

Ich danke meinem deutschen Kollegen für ihre unschätzbare Hilfe während mei-

nes Aufenthalts in Braunschweig, und unter ihnen: Martin Krosche (for con-

versations in english and “broken german”, for office sharing and for the horse),

Rainer Niekamp (CTL master, so kind and helpfull with my C++ questions),

Cosima Meyer (for her kindness and help with all the administrative tasks),

Dominik Jürgens und Oliver Pajonk . . .

Je voudrais aussi remercier tous mes collègues du LMT-Cachan et amis de

France pour les trois années (modulo mes séjours en Allemagne) que j’ai pas-

sées avec eux, et notamment, par ordre alphabétique, pour ne pas faire de ja-

loux, et même si vous rêvez tous de connâıtre votre CK-index qui restera donc

secret : Carla Austruy (ma stagiaire préférée), Nathan Benkemoun (pour

ses petites poutres et m’avoir fait rêver à mon anniversaire), Benoit Blay-

sat, Amor Boulkertous, Pierre-Étienne Charbonnel (pour Poster Girl),

Jean-Baptiste Colliat (pour m’avoir initié aux composants en Master 2), Re-

naud Costadoat, Flavien Fremy (pour les résumé de l’Équipe au retour de

week-end), Martin Genet (pour le Journal Club où j’étais le troisième Mar-

tin), Louis Kovalesky, Martin Hautefeuille (pour tout ce que nous avons

programmé ensemble et bien plus), Thomas de Larrard (pour ses lasagnes au

cardon), Roxane Marull (pour sa rigueur typo- et orthographique), Ayman

Moussa (pour la relation formulation faible/volume finis), Elena Ourjoumt-

ix

x

seva, Florent Pled (pour son enthousiasme), Lavinia Stefan (pour les armes

de poing et le vin roumain), Vincent Thomas, Florian Thomines (camarade),

et Julien Waytens (pour le foot du mercredi). Si vous n’êtes pas un copain

du foot, un collègue, un élève de l’ENS-Cachan ou une des nombreuses autres

personnes à laquelle je pense en écrivant ces lignes tout en voulant éviter de

dépasser deux pages, vous survivrez à mon étourderie.

J’aimerais remercier profondément ma famille, mes sœurs, mon frère et mes

parents d’avoir supporté mes longues absences, mon discours abscons de 45 mi-

nutes le jour de ma soutenance et d’avoir organisé un pot si extraordinaire.

Enfin, je tiens à exprimer ma reconnaissance toute particulière à Julie Mu-

rat pour son soutien constant durant la période de rédaction et de préparation

à la soutenance, les corrections attentives qu’elle a pu apporter à mon anglais

douteux, et tout ce que je ne saurais mettre dans ces remerciements de thèse.

Chatou, Novembre 2009.

Contents

Introduction 1

1 Structure and fluid subproblems 5

1.1 Solving structure problems with FEM 8

1.1.1 Strong form of the structure problem 8

1.1.2 Weak forms of the structure problem and Finite Element

application . 9

1.1.3 Time integration of a discretized Finite Element problem 10

1.2 Incompressible flows solved by FVM 11

1.2.1 Strong form of the Navier-Stokes equations 11

1.2.2 Navier-Stockes equations discretization 12

1.2.3 Pressure-Implicit with Splitting of Operators (PISO) al-

gorithm . 15

1.2.4 Validating the CFD strategy 16

1.2.5 Two-dimensional numerical experiments 17

1.2.6 Three-dimensional numerical experiments 20

1.3 Flow in a moving shape domain 21

1.3.1 Arbitrary Lagrangian-Eulerian strategy 23

1.3.2 Free-surface flows . 26

Closure . 30

2 Partitioned Approach for FSI 33

2.1 Solving a coupled problem . 36

2.1.1 Monolithic strategy . 36

2.1.2 Partitioned strategy . 37

2.1.3 Partitioned strategy notations 38

2.2 Explicit coupling . 41

2.2.1 Generalized Conventional Serial Staggered algorithm . . . 41

2.2.2 Evaluation of interface energy for DFMT-GCSS 43

2.2.3 Enforcement of the Geometric Conservation Law 45

2.2.4 Improved Serial Staggered (ISS) algorithm 45

2.2.5 Conventional Parallel Staggered (CPS) algorithm 47

2.2.6 Explicit coupling with incompressible flows: the artificial

“Added-Mass Effect” . 47

2.3 Implicit coupling strategies . 48

2.3.1 Algebraic solvers based on Picard iterations 49

xi

xii CONTENTS

2.3.2 Relaxation techniques . 51

2.3.3 Newton and quasi-Newton based strategy 55

Closure . 58

3 Components for FSI 61

3.1 Component technology framework 64

3.1.1 Component Oriented Programming paradigm 64

3.1.2 Component-based implementation and its specifics 65

3.1.3 The middleware CTL . 65

3.2 Structure component based on FEAP 66

3.2.1 Interface definition of the structure component 67

3.2.2 Implementation of coFeap 68

3.2.3 Calling a service from the mechanical component 70

3.3 Fluid component based on OpenFOAM 71

3.3.1 Component interface and its implementation 71

3.3.2 RPC versus system calls and file reading performances . . 75

3.3.3 Parallel CFD Component Features 77

3.4 The master code cops . 87

3.4.1 Software coupling applied to fluid-structure interaction . . 87

3.4.2 Component architecture of cops 88

3.4.3 Field interpolation between solvers 88

Closure . 91

4 FSI numerical examples 93

4.1 Driven cavity with flexible bottom 95

4.1.1 The lid-driven cavity fluid problem 95

4.1.2 Modification for the FSI validation case 96

4.1.3 Subproblems discretization and numerical parameters . . 99

4.1.4 Tight coupling with the modified lid-driven cavity case . . 99

4.1.5 Implicit strong coupling and reference solution 99

4.1.6 On the impossibility to apply explicit coupling 101

4.2 Performances and fluid domain decomposition 104

4.3 Flexible appendix in a flow . 106

4.3.1 Problem description . 106

4.3.2 Implicit coupling and reference solution 109

4.3.3 Explicit coupling . 110

4.4 Three-dimensional flag in the wind 112

4.4.1 Problem description . 112

4.4.2 Fluid discretization . 113

4.4.3 Solid discretization . 114

4.4.4 Coupling . 114

4.4.5 Results . 115

4.5 Two-dimensional wave hitting a structure 116

4.5.1 Introduction and a first approach 116

4.5.2 Problem description . 117

4.5.3 Fluid discretization . 117

4.5.4 Structure discretization 118

4.5.5 Coupling . 118

CONTENTS xiii

4.5.6 Results . 119

4.6 Three-dimensional wave impacting a structure 121

4.6.1 Problem description . 121

4.6.2 Fluid discretization . 121

4.6.3 Solid discretization . 122

4.6.4 Coupling . 122

4.6.5 Results . 123

Closure . 125

Conclusion 127

A DFMT-BGS stability and convergence 129

A.1 Reformulation of the FSI problem in DAE 129

A.2 Error propagation, stability and convergence 130

A.3 Proofs for stable error propagation 132

References 139

xiv CONTENTS

Introduction

Contrary to the work of craftsmen which rely on pre-scientific rules based on

trial and error, the power of engineers is to provide models in order to study,

dimension and then build artifacts that will be used in a certain context. There-

fore, it is necessary to take into account the effects of a lot – if not all – the

environment physics on the studied object. However, one wants the computing

of models to take only a limited amount of time. The first step is to simplify

the studied object to a mechanical model – that often has to be simplified itself

in order to be computed, either analytically or by numerical techniques. The

multiphysics nature of the problem is taken into account by a given load – based

on other simplified models. For instance, one approach widely used in Civil En-

gineering is to infer the loading from rules provided by regulators (for instance

Eurocode [Comité Européen de Normalisation, 2009] in Europe). In such cases,

one can find, for instance, a model force for the loading of a building by wind

on the walls, snow on the roof, or fire inside.

This is the usual approach, even for complex models based, on numerical

techniques such as the Finite Element Method. For instance, in the first pub-

lication on FEM [Clough, 1960], the author wants to compute a dam. The

loading of water is there provided by a simple model. This was surely sufficient

for the precision required, but it is clear that the structural displacement of the

dam under the loading will influence the loading itself.

When it is required to compute more precisely the influence of at least one

of several possible physical field by more sophisticated model, the problem is

called multiphysics. When the influence of one of the subproblems is weak, the

coupling can be one way: a computation of the first field gives a loading applied

to the the second one. Neglecting the reaction of the second subproblem leads

to weak or tight coupling. When the loading of the model by another physic is

significantly and inseparably modified, the coupling is called strong.

This Ph. D. work is focused on the numerical modeling of strong coupled

problems between fluids and structures. Interaction of fluids and structures is

a key issue for a variety of physical systems. The range of examples that come

to mind easily in the engineering domain is vast and covers all the scales: from

bio- and medical- (where the scale of problems is often less than a millimeter)

[Nobile, 2001, Deparis, 2004] to Civil Engineering (where it can be hundreds of

meters) [Piperno, 1998, Frandsen, 2004].

As fluid and solid mechanics both belong to the general field of contin-

uum mechanics, it is possible to formulate each of them problem in the same

1

2 CONTENTS

framework [Germain and Muller, 1990]. However, the development of numeri-

cal strategies to solve intrinsically complex solid and fluid problems was mostly

carried out by different research communities. This lead to efficient but often

incompatible solvers.

So, the fluid-structure interaction problem is often approached with the in-

tention to extend one of the methods traditionally applied to one of the sub-

problems to the whole coupled system. For example, one can cite Eulerian de-

scriptions applied to solids [Mehl et al., 2008] or Lagrangian formulation applied

to the fluid flow [Idelsohn et al., 2003]. If those strategies often yield interest-

ing results and new points of view, they often necessitate tremendous software

implementation and basic testing. Furthermore, as one starts from more or less

“nothing” into a new domain, the time before reaching high-level model coupling

is often too long. Finally, since engineers habits are often hard to change, and

since their previous works, as imperfect as they may be, need to be conserved,

those methods are restricted to the research area.

In this work, we propose a totally different approach that relies on partitioned

strategies (which are often used for multiphysics problems) and their software

realization based on code coupling. The work herein proposes to couple in a

generic way a Finite Element Method code for the solid part and solver based

on the Finite Volume Method for the fluid part. From the first stage, this

allows to solve the complete Navier-Stokes equation in an Arbitrary Lagrangian

Eulerian framework, and a geometrically non-linear description of the structures.

As the coupled software provides different models it is also possible to model

more complex flows (with turbulence for instance, or free surface that will be

presented in this work) and solid materials like in plasticity or damaging for

instance.

The main goal of the present work is to perform fluid-structure interaction

computations with a focus on the possibility to use advanced model and on

numerical performances in order to compute three dimensional problems. The

aimed application is the representation of breaking wave interaction with an

academic model of protection structure. To reach this goal, it is first necessary

to choose the right models for the fluid and the structure, then to couple them

with stable and efficient enough algorithm, as well as to develop an adapted

software environment, and last to validate the proposed approach on numerical

examples.

Thus, the outline of the this dissertation is as follows:

Chapter 1: This chapter introduces the notations and the strategy chosen

for the fluid and the structure part. We choose here the traditional

Lagrangian formulation solved by the Finite Element Method for the

solid part [Ibrahimbegović, 2009]. The time integration is carried out

by implicit schemes. For the fluid part, an Arbitrary Lagrangian Eu-

lerian Method [Hirt et al., 1997], discretized by Finite Volume Method

[Ferziger and Perić, 2002] is used to perform the computation of the flow

on the moving domain determined by the fluid-structure interaction in-

terface. This strategy is widely used for incompressible flows, but not

familiar for people coming from the structure and Finite Elements word;

therefore, the validation of the numerical fluid strategy on benchmark

CONTENTS 3

problems [Schäfer and Turek, 1996] and the required extension to perform

free-surface flows [Dutykh, 2008] are detailed in Chapter 1.

Chapter 2: Once the way to solve the fluid and the structure problems de-

fined in Chapter 1, the way to perform strongly coupled fluid-structure

interaction problems is explained. After a general introduction on solving

strategies for multiphysics problems, their application to fluid-structure

interaction are recalled. The limitation of explicit coupling when coupling

incompressible flows [Causin et al., 2005] requires the introduction and the

use of implicit coupling algorithms. For its simplicity, a fixed-point strat-

egy is here chosen, and acceleration of the convergence is obtained using a

relaxation technique such as Aitken’s [Küttler and Wall, 2008]. The sta-

bility of this kind algorithm is conditional, and a proof of this limitation

is made and detailed in Appendix A.

Chapter 3: The partitioned coupling strategy defined in the previous Chapter

allows to re-use existing code in a more general context. Its implemen-

tation is performed in the component technology framework, using the

middleware CTL [Niekamp, 2005b]. A master-slave approach is used. It

requires the development of a coupling code (COupling COmponents by

a Partitioned Strategy: cops) that handles the data exchange and the

communication between the solid and the fluid components. These two

components are based on the re-use of existing codes. For the structure

part, the FEM code FEAP programmed in Fortran is used to build a com-

ponent. For the fluid part, the FVM code OpenFOAM programmed in C++

is embedded in the component framework with ofoam. The cost of fluid

computation justifies the development of a parallel version of the compo-

nent. The way to handle the communication between the several instances

of a parallel component are detailed herein.

Chapter 4: The development of components coupled with explicit and im-

plicit algorithms allows to compute various kinds of fluid-structure inter-

action problems. The strategy is first validated on a simple bi-dimensional

problem [Wall, 1999]. The necessity to use implicit coupling algorithm

is emphasized with this example. Long term computation, such as for

wind acting on structure are carried out. They are here two- and three-

dimension with a large number of d-o-f. Finally, the interaction of free-

surface flow – as in waves breaking – over structures is validated in two

dimensions [Walhorn et al., 2005] and performed in three dimensions.

4 CONTENTS

1Description and validation of the

structure and fluid subproblems

In this chapter the techniques used for both fluid and

structure parts of the coupled problem are presented. A

brief remainder of the equations for structural dynamic

problems as well as their solution thanks to the Finite

Element Method is followed by an introduction of the Fi-

nite Volume Method to solve incompressible flow prob-

lems associated with the fluid part. Some benchmarks

of the proposed strategy are validated here. In the last

section of this chapter methods used for fluid in moving

domain are introduced. The moving domain is bounded

either by the deformable structure or by a fluid free-

surface.

5

6 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

Contents

1.1 Solving structure problems with FEM 8

1.1.1 Strong form of the structure problem 8

1.1.2 Weak forms of the structure problem and Finite El-

ement application . 9

1.1.3 Time integration of a discretized Finite Element prob-

lem . 10

1.2 Incompressible flows solved by FVM 11

1.2.1 Strong form of the Navier-Stokes equations 11

1.2.2 Navier-Stockes equations discretization 12

1.2.3 Pressure-Implicit with Splitting of Operators (PISO)

algorithm . 15

1.2.4 Validating the CFD strategy 16

1.2.5 Two-dimensional numerical experiments 17

1.2.5.1 Problem description 17

1.2.5.2 Test case 2D-1 (steady) 18

1.2.5.3 Test case 2D-2 (unsteady) 18

1.2.5.4 Test case 2D-3 (unsteady) 19

1.2.6 Three-dimensional numerical experiments 20

1.3 Flow in a moving shape domain 21

1.3.1 Arbitrary Lagrangian-Eulerian strategy 23

1.3.1.1 Navier-Stokes equation in an ALE framework 23

1.3.1.2 Mesh motion equations 24

1.3.1.3 PISO algorithm for Navier-Stokes equation

discretized by Finite Volume in a moving

domain . 25

1.3.2 Free-surface flows . 26

1.3.2.1 Strategies for free-surface flows 26

1.3.2.2 A biphasic model for free surface flows . . . 27

1.3.2.3 Dam break example 29

Closure . 30

7

This chapter is dedicated to the introduction of the numerical resolution of

fluid flows and solid structures. This is an introductory Chapter, and the read-

ers who are well aware of the resolution of these problems can go directly to the

next Chapter that deals with the coupling of theses subproblems. These prob-

lems both belong to the general field of continuum mechanics [Salençon, 2005].

However, the descriptions generally used for each of the subproblems are dif-

ferent: for the structure part, it is natural to follow material point motion in

a Lagrangian formulation, while an Eulerian formulation is often preferred for

the fluid part. Naturally, there are bridges between this two formulations.

Ω f

ΩsΓ

t = t0

Ω f

ΩsΓ

t

Figure 1.1: A fluid-structure interaction problem

For the solid part, the method widely used since the sixties is the Finite

Element Method [Zienkiewicz and Taylor, 2001b, Ibrahimbegović, 2009], even

if it is possible to solve the Partial Differential Equations that describe the

continuum problem either by other discretization techniques such as Finite Vol-

ume [Slone et al., 2003]. In this work, a classic Finite Element Method is used

to solve the this part of the coupled problem. Its description is given in Sec. 1.1.

For the fluid part, two different methods are mainly used: either the Finite

Element Method [Zienkiewicz and Taylor, 2001a, Brooks and Hughes, 1990], or

the Finite Volume Method [Ferziger and Perić, 2002]. The first one has the ad-

vantages of a strong mathematical framework and well established convergence

properties, but requires special care to stabilize the solution when incompressible

flow are aimed at [Franca et al., 1993]. For the second one, the mathematical

framework is slightly more difficult to understand but the more physical foun-

dation allows to naturally get good conservative properties. There are bridges

that combine advantages of both formulations [Pascal and Ghidaglia, 2001].

In this work, the Finite Volume Method is chosen, since most of the com-

mercial and non-commercial CFD solvers used in the industry for engineering

problems rely on this technique. In Sec. 1.2 Validating a strategy used by

a CFD solver is not an easy task. Among the promising tools are the goal-

oriented error estimates, but most of them are developed for FEM-based strate-

gies [Becker and Rannacher, 2003, Hoffman and Johnson, 2007], and really few

are designed for the FVM based solver [Jasak, 1996, Bouche et al., 2006]. The

chosen approach is hereby validated on benchmarks [Schäfer and Turek, 1996].

The last Section of this Chapter is dedicated to solving fluid problems in a

moving domain. This is required when one aims at solving fluid-structure inter-

action problems, as the fluid domain shares at least one of its boundaries with

the structure that is undergoing deformation. It is possible to solve this kind

8 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

of problem with for instance the fictitious domain approach [Wang et al., 2008]

or with an Arbitrary Lagrangian-Eulerian approach [Demirdžić and Perić, 1988,

Hirt et al., 1997]. The latter requires to solve the deformations of the fluid un-

derlying grid, and is often not able to support too large deformation without

re-meshing, but is often the one chosen in existing tools to solve fluid problems

in moving domain, and was therefore used herein. The impossibility to represent

too large deformations without re-meshing makes the choice of another method

necessary when complex fluid domain deformations such as the ones observed

for the sloshing of a wave are represented. Here a biphasic approach is chosen

where both air and water are represented, and a characteristic function is used

to distinguish the two phases.

1.1 Solving structure problems with the Finite Element Method

1.1.1 Strong form of the structure problem

Ωs

t = t0

∂Ωs,D

∂Ωs,N Ωs

∂Ωs,D

∂Ωs,N

t

t

b

u

t

b

u

Figure 1.2: Solid problem

The structure is based on a Lagrangian description. Considering a structure

domain Ωs with imposed displacements u on its Dirichlet boundary ∂Ωs,N and

under the loading of traction forces t on its Neumann boundary ∂Ωs,N as well as

body load b on the whole domain Ωs (see Fig. 1.2). The problem is dynamic and

evolves in time on the segment [0, T]. The governing equation for a structure

describes the momentum conservation and is also known as the Cauchy equation.

The strong form of the structural problem written with respect to the deformed

configuration is as follows:

Given: u on ∂Ωs,D × [0, T], t on ∂Ωs,N × [0, T] and b in Ωs × [0, T].
Find: u ∈ Ωs × [0, T] so that:

∇ · σ + ρs

(

b− ∂2
t u
)

= 0 in Ωs × [0, T] (1.1)

where ρs denotes the material density of the solid domain, u its displacement

field, ∂2
t u the accelerations. The Cauchy stress tensor σ in the deformed config-

uration can be linked to the second Piola-Kirchhoff stress tensor S formulated

in the initial configuration through the gradient of the deformation and its Ja-

cobian.

1.1. SOLVING STRUCTURE PROBLEMS WITH FEM 9

To close this Partial Differential Equations system one needs to link the

displacements (or one of its derived field) and the stresses together with behavior

law:

σ = σ(E) (1.2)

For instance, an elastic material model can be assumed to link the stress Cauchy

tensor σ and the Green-Lagrange strain tensor E:

σ = C : E (1.3)

where C denotes the constitutive fourth-order tensor. The non-linearity of the

problem comes from the large displacement described by the following relation

between Green-Lagrange tensor E and the material deformation gradient F =
∇u:

E =
1

2

(

FTF− I
)

(1.4)

The displacement field and the imposed forces are defined respectively in the

Hilbert space H1 (Ωs) and Sobolev space L2 (∂Ωs,N) with dimensions d = 2 or

3. Therefore, the solution of the strong form problem is searched for in the

following spaces:

U =

{

u

∣
∣
∣
∣
u ∈

[

H1 (Ωs)
]d

, u|∂Ωs,D
= u

}

(1.5)

An associated vector space can be defined as such:

U0 =

{

u

∣
∣
∣
∣
u ∈

[

H1 (Ωs)
]d

, u|∂Ωs,D
= 0

}

(1.6)

1.1.2 Weak forms of the structure problem and Finite Element application

It is a priori impossible to find directly an exact solution in the solution space

Eq. (1.5) to the problem defined in Eq. (1.1). The idea is to find the best approx-

imation of the solution in a space where the solution can be found numerically.

The FEM formulations [Zienkiewicz and Taylor, 2001c, Ibrahimbegović, 2006]

derived from the equilibrium Eq. (1.1) rely on the associated weak forms of this

problem:

Given: t on ∂Ωs,N × [0, T] and b in Ωs × [0, T].
Find: u ∈ U such that,

For all: δu ∈ U0

Gs(u; δu) :=
∫

Ωs

ρs∂2
t u · δu +

∫

Ωs

σ : ∇δu−
∫

Ωs

b · δu−
∫

∂Ωs

t · δu

= 0

The solid domain Ωs is then discretized in a finite number of elements Th =
(κe)e=1,...,nel

so that the whole space is covered by the finite elements that do

not intersect. The research space associated with the solution is restrained to

10 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

the space of continuous piecewise polynomial functions on the Finite Elements.

This space is noted:

U h = U ∩
{

u ∈ C0 (Ωs)
∣
∣
∣u|κ ∈ P p (κ) , ∀κ ∈ Th

}

(1.7)

where P p (κ) is the space of polynomials of order p on κ. The same restriction

holds on the associated vector space. The FE problem is defined as:

Given: t on ∂Ωs,N × [0, T] and b in Ωs × [0, T].
Find: u ∈ U h such that,

For all: δu ∈ U h
0

Gs(u; δu) = 0 (1.8)

This semi-discrete problem can be written in a matrix form using the real

valued vectors u ∈ R
nd−o− f :

Msü + Ks (u) u = f (1.9)

with M the mass matrix, K the stifness matrix associated with a potentially non

linear problem, and f the projected loading forces. They are properly defined

by assembling locally computed matrix on each element with the polynomial

basis Ne of P (κe):

Ms,e =
∫

κe

ρsNT
e Ne dΩ

Ks,e(ue)ue =
∫

κe

∇N : σ (ueNe) dΩ

fs,e =
∫

κe

NT
e be dΩ +

∫

∂κe

NT
e te dΓ

(1.10)

1.1.3 Time integration of a discretized Finite Element problem

The time integration of the solid problem is here carried out by a Generalized-

α method [Chung and Hulbert, 1994]. In [Dettmer and Perić, 2003], the use of

Finite Elements in time for the structure part of a fluid-structure interaction

problem is shown to increase the computational cost of the overall problem for

no noticeable advantages. The Generalized-α method is shown to be sufficiently

robust and efficient for this range of application.

The time interval [0, T] is discretized into a finite number of time-steps tN

such as t0 = 0 and tNmax = T. The time step size is measured as ∆t = tN+1− tN

and the time derivative are approximated with:

uN+1 = uN + ∆tu̇N + ∆t2

[(
1

2
− β

)

üN + βüN+1

]

u̇N+1 = u̇N + ∆t [(1− γ)üN + γüN+1]
uN+α f

= (1− α f)uN + α f uN+1

üN+αm = (1− αm)üN + αmüN+1

(1.11)

In the semi-discrete form of the solid equilibrium Eq. (1.9), the acceleration

ü and the displacement u are evaluated at tN+α f
and tN+αm For the elastic linear

1.2. INCOMPRESSIBLE FLOWS SOLVED BY FVM 11

case, it is shown that there are optimum values for the parameters β, γ, α and

α for a given spectral radius ρ∞ ∈ [0, 1].

β =
(1 + αm − α f)

2

4
, γ =

1

2
+ αm − α f , α f =

1

1 + ρ∞
and αm =

2− ρ∞

1 + ρ∞
(1.12)

The spectral radius controls the numerical damping of the time integration

scheme. The damping decreases with smaller values of ρ∞ which is maximum

for ρ∞ = 0. For ρ∞ = 1 the method is the classic trapezoidal rule. Other

time integration schemes like α-HHT can be easily derived from this general

formulation [Hilber et al., 1977].

1.2 Incompressible viscous flows solved by Finite Volume

1.2.1 Strong form of the Navier-Stokes equations

We consider a fluid domain Ω f where an incompressible, viscous, isothermal

and isotropic Newtonian flow is taking place. The Eulerian description of this

flow in term of continuity (mass conservation) and momentum equilibrium gives

us the following equations:

∂tv +∇ · v⊗ v−∇ · 2ν f D(v) = −1

ρ
∇p in Ω f × [0, T]

∇ · v = 0 in Ω f × [0, T]
(1.13)

where p denotes the kinematic pressure field, v the velocity. The constitutive law

of the flow links the stress and the symmetric part of the velocity gradient D(v)
through the kinematic viscosity ν f which is the dynamic viscosity µ f divided by

the fluid density ρ f .

Added to these equations, one also has to consider boundary equations at

Γf = ∂Ω f . They can be of the Dirichlet or Neumann kind. One also has to set

the initial conditions for the velocity and pressure fields in the whole domain

Ω f . Traditionally, the following physical boundary condition can be considered

for the solving of a fluid problem:

No-slip boundary condition: can be chosen when viscosity is considered

for the Navier-Stokes equations. For all surfaces of this kind, the fluid

particles will be stuck, and therefore follow the motion if the boundary is

moving:

v = v on ∂Ω f ,D (1.14)

It typically leads to a so-called boundary layer where the flow is dominated

by internal friction.

Slip-boundary condition: are traditionally chosen if no viscosity is consid-

ered (Euler equations), or for symmetric purposes of the fluid problem in

the viscous case. In this case, only the normal flow is prescribed:

v · n = v · n on ∂Ω f ,D (1.15)

12 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

Outflow boundary condition: are a particular challenge. The need to

limit the computation domain to a finite size leads to consider “non-

physical” boundary conditions for some parts of the Eulerian grid. For

compressible flows, the well-known plane wave approximation can be used

[Graff, 1975]. For the incompressible cases outflow boundary conditions

are discussed in [Heywood et al., 1996]. In our case, the “do-nothing” is

used. More precisely, a zero gradient Neumann boundary condition is

applied for the fluid equation at the outflow:

∇v · n = 0 on ∂Ω f ,N (1.16)

At this stage, two remarks of importance, especially when one wants to con-

sider the fsi domain of application, can be made on the pressure p. First, in

Eq. (1.13), the pressure is divided by a constant density ρ. In most of the

CFD solvers, the field computed as pressure is in fact p/ρ f , and the only mate-

rial property required by the computation is the kinematic viscosity ν f . Thus,

both the pressure induced-forces pn and the viscous forces νD(v)n at the fluid-

structure interaction boundary condition obtained from fluid computation have

to be multiplied by the desired density ρ f . Second, in the Navier-Stokes equa-

tion, only the gradient of the pressure ∇p is required. Therefore, pressure is

determined when fixing the integration constant. To fix this value, either the

mean value of the pressure, or its value at a special point, or at a boundary has

to be imposed [Zienkiewicz and Taylor, 2001a]. The influence of this choice is

discussed in my first numerical example for fluid-structure interaction in Sec-

tion 4.1.

1.2.2 Navier-Stockes equations discretization

Three techniques are mainly used to solve these equations:

Finite Difference Method (FDM) starts from the conservation equations

written in differential forms. The solution domain is covered by a grid,

and at each point the differentials are approximated using the neighboring

values. Such a technique can be used for every kind of mesh, but is most

suitable for regular grids. Its main disadvantage is that conservation is

not enforced unless special care is taken.

Finite Volume Method (FVM) can be formulated using integral forms of

the conservation equations. Surface and volume integrals are approxi-

mated using suitable formulæ.

Finite Element Method (FEM) in which a predetermined base of functions

is used to enforce the conservation equation in a weak sense.

For all these techniques, the continuous equations are transformed into a set of

algebraic equations that can be solved numerically.

Finite Volume Methods is used here. Indeed, the goal of this Ph. D. work

is first to emphasize the possibility of coupling different codes, with different

methods (FEM for solid, FVM for fluid) and second to follow the trends of the

computational scientific software market. And, as FVM, contrary to FEM,

1.2. INCOMPRESSIBLE FLOWS SOLVED BY FVM 13

leads to intrinsically conservative methods they are often preferred in com-

mercial and non-commercial softwares (Phoenics, FLuent, FLow3D, Star-CD,

Code Saturne, OpenFOAM are FVM based, Adina is FEM based). Books of

reference on the topic are [Patankar, 1980, Ferziger and Perić, 2002].

The FV formulation can be written directly using an integrated form of the

conservation equation (1.13) [Jasak and Tuković, 2007]. Another possibility is

to consider the restriction of the solution space of weak form problems. For

uniformity with the solid method we chose to describe the FV strategy in this

framework. The weak form of the Navier-Stokes equation can be written as

follows [Glowinski et al., 2003]:

Find: (v, p) ∈ V ×P , such that,

For all: (δv, δp) ∈ V0 ×P0

G f (v, p; δv, δp) :=
∫

Ω f

∂tv · δv +
∫

Ω f

∇v⊗ v · δv−
∫

Ω f

∇ · ν f D(v) · δv

+

(
∫

Ω f

1

ρ f
p∇ · δv +

∫

Ω f

1

ρ f
∇ · vδp

)

= 0

The velocity field and the pressure are searched in V and P that denote the

restrictions of a Hilbert space
[
H1 (Ωs)

]d
and a Sobolev space

[
L2 (∂Ωs, N)

]d

with suitable boundary condition.

For this method, the whole volume Ω f is divided into a set of of discrete

elements, here called discrete volumes (κ f ,e)e=1,nel
so that the whole domain is

fulfilled (Ω f = ∪nel
e=1κ f ,e) without overlapping (∩nel

e=1κ f ,e = ∅). For a Finite

Element discretization, the solution space V and P are restricted to suitable

spaces of piecewise polynomial functions over the set of discrete elements. For

a Finite Volume discretization, the test functions are chosen in the space of

characteristic discrete volume functions:

Vh = V ∩
{

v
∣
∣
∣v|κ ∈ span(ικ), ∀κ ∈ T h(Ω f)

}

(1.17)

where ικ is the characteristic function of the element defined as:

ικ : Ω f −→ R

x −→
{

1 if x ∈ κ
0 if x ∈ Ω/κ

(1.18)

The same restriction holds for the pressure space P and the associated vector

spaces V0 and P0. Therefore, the function are piecewise constant by elements,

and the restriction of the weak formulation gives:

Find: (vh, ph) ∈ Vh ×Ph, such that,

For all: (δvh, δph) ∈ Vh
0 ×Ph

0
G f (vh, ph; δvh, δph) = 0 (1.19)

14 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

The divergence terms can be written in terms of flux at the boundary of

volume controls using Gauss’s theorem. Hence, the weak formulation restricted

to this search space gives:

G f (vh, ph; δvh, δph)

= ∑
κ

{

δvκ

(∫

κ
∂tv dΩ−

∮

∂κ
dΓ · v⊗ v +

∮

∂κ
dΓ · 2νD(v) +

∮

∂κ

1

ρ
p dΓ

)}

+ ∑
κ

{

δpκ

(
∮

δΓf

dΓ · v
)}

where dΓ is the elementary surface vector. As one can notice, there is no conti-

nuity requirement for the solution (contrary to classical FE), and therefore the

approached solutions vh, ph are not properly defined at the interface. Their flux

can be computed without being imposed by the restriction of the solution space

to the FV space. The whole difficulty is now to build an accurate representation

of the fluxes at the boundaries from a piecewise constant field.

On each control volume, three levels of numerical approximations are applied

to build the fluxes:

interpolation: to express variable values at the control volume surface in

terms of nodal values (depending on where the variable is stored).

differentiation: to build convective and diffusive fluxes the value of the gra-

dient of the quantity of interest – or at least its approximation – is required.

integration: to approximate surface and volume integral using quadrature

formulæ.

The details of building an accurate representation of the derived fields and es-

pecially of the convection terms (that require often special cares) will not be

exposed here. Some schemes propose to stabilize the solution at the expense

of accuracy (like the upwind scheme), others, such as the MUSCL (Monotone

Upstream-centered Schemes for Conservation Laws) exhibit good stability prop-

erties for a high-order scheme [Piperno, 2000, Ferziger and Perić, 2002].

The d components of velocity vi and pressure p are coupled through with

a set of non-linear equations. Another way to see the problem is to look at it

as a non-linear momentum equation under constraint. The pressure p is the

Lagrangian multiplier and needs to be corrected to satisfy continuity on v.

Written in a matrix forms, it gives the following semi-discrete problem for

the discretized velocity v and pressure p field:

M f v̇ + N f (v)v + K f v + B f p = f

BT
f v = 0

(1.20)

where M f is a positive definite mass matrix, N f is an unsymmetrical advection

matrix, K f describes the diffusion terms, and B f stands for the gradient matrix,

whereas f f is the discretized load on the flow. This matrix form takes also into

account the boundary conditions; special care has to be taken concerning the

discretization of boundary conditions – and especially normal flux – when using

the Finite Volume [Ghidaglia and Pascal, 2005].

1.2. INCOMPRESSIBLE FLOWS SOLVED BY FVM 15

A way to solve this problem is to consider a monolithic application. An

other way is to consider a split between the momentum and the continuity

equations, and to solve it thanks to an operator split-like procedure often termed

as the segregated approach [Patankar, 1980]. This approach is favored for its

computational efficiency compared to the monolithic one. Indeed, even with

a simple fixed point iteration strategy its cost is less important than that of

the monolithic approach for large size problems [Ferziger and Perić, 2002]. By

default, the Navier-Stokes equation in our OpenFOAM based component is solved

with the second one, and is detailed in the next Section.

1.2.3 Pressure-Implicit with Splitting of Operators (PISO) algorithm

The Finite Volume Method has good properties in term of conservation, but even

if high order derivatives can be built using suitable approximations, a precise

computation often requires a large number of d-o-f. For that reason, building

the Jacobian of the whole coupled (v, p) problem is rarely done. Traditional

algorithms rely on the splitting of operators associated with the velocity and

pressure parts, solved in an explicit, implicit or half-implicit way. Thus, the

SIMPLE (Semi-Implicit Method for Pressure Linked Equations) and the PISO

(Pressure Implicit with Splitting of Operators) algorithms are traditionally used

in CFD. The first one heavily relies on the use of suitable relaxation parame-

ters [Ferziger and Perić, 2002] in order to reach the same order of efficiency as

the latest. In [Barton, 1998], a comparison between the two algorithms show

the overall better performances of PISO-like algorithms over SIMPLE ones.

In this work, PISO-like algorithms are used to solve our CFD problem. The

semi-discrete form of the Navier-Stokes equation is discretized in time using

implicit or explicit integration schemes, such as Euler explicit and implicit, or

a second order Crank-Nicholson scheme. The discretized momentum Eq. (1.20)

is split in the following way when an implicit integration scheme is used:

A f (vN+1)vN+1 −H f (vN , vN+1) = −B f pN+1 (1.21)

where A f stands for time derivative terms in a cell (and is therefore diagonal)

and H f takes into account all neighboring velocity and source terms in elements.

The incompressibility condition can be re-written in a discrete form using the

previous split as:

BT
f

1

A f (vN+1)
B f pN+1 −BT

f

1

A f (vN+1)
H f (vN , vN+1) = 0 (1.22)

For the PISO algorithm, the coupling between the incompressibility con-

dition and the momentum equilibrium parts of the Navier-Stokes equation is

assured in an iterative way as detailed in Algorithm 1.

The PISO algorithm is not fully implicit, as corrective term of the velocity

is introduced explicitly. Hence, in the correction step, it is supposed that the

influence of the transported term is negligible compared to the pressure gradient

correction terms. Therefore, even with an implicit time integration scheme, the

stability of the PISO algorithm remains conditional, and when the Courant

Number becomes too large (it means that the transport due to the flow over a

cell is not well captured) the PISO algorithm fails to converge.

16 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

Algorithm 1 Pressure Implicit Splitting of Operators algorithm for fluid

1: Given: initial velocity v0 and pressure p0.

2: while T < Tmax do

3: Momentum predictor:

A f (v
(0)
N+1)v

(0)
N+1 −H f (vN , v

(0)
N+1) = −B f pN

4: for (k) = 0 to (k) < (kmax) do

5: Pressure correction:

BT
f ·

1

A f (v
(k)
N+1)

BT
f p

(k)
N+1 = BT

f ·
H f (vN , v

(k)
N+1)

A f (v
(k)
N+1)

6: Explicit velocity correction

v
(k+1)
N+1 = v

(k)
N+1 −

1

A(v
(k)
N+1)

B f p
(k)
N+1

7: end for

8: end while

Remark: in the algorithm given, the non-orthogonal correctors applied to build

more accurate flux terms when the mesh is not orthogonal grid are not detailed.

For further details, see [Jasak, 1996, Ferziger and Perić, 2002].

1.2.4 Validating the CFD strategy

Computational Fluid Dynamics aims at solving equations whose solution are not

reachable by analytical ways. Furthermore, comparing the results of numerical

simulations with experiments is not an easy task, as a result the equivalence

between the problems studied cannot be perfect. To know if a solver gives good

results, a first way can be to use an error estimate [Jasak, 1996]. A good way

remains however to perform simulations defined in benchmark and to compare

their results with the ones obtained by other teams.

In [Schäfer and Turek, 1996], benchmarks for steady/unsteady 2D/3D flow

simulations are proposed. The results from teams working independently from

one another are compared, and even for the presumed simple case proposed, it

was shown that solutions are not always in a close range. In this section, the

results obtained by a Finite Volume discretization of the Navier-Stokes equation,

and solved thanks to PISO algorithm are compared to the reference solution

from these benchmarks.

1.2. INCOMPRESSIBLE FLOWS SOLVED BY FVM 17

1.2.5 Two-dimensional numerical experiments

1.2.5.1 Problem description

The benchmark proposes to study the laminar flow around a cylinder. The di-

mension of the problem as well as the boundary condition are defined in Fig. 1.3.

x

y
0.2

0.21

0.2 2.0

0.1
xA xBb b

Figure 1.3: Fluid benchmark geometry and boundary conditions

For these bluff body problems, it is traditional to compute the fluid forces

acting on the obstacle coming from the deviatoric (pressure) part and its com-

plement (the viscous forces):

F f = ρ f

(

−p n + ν f D(v) n
)

(1.23)

with D(v) = 1
2

(
∇v +∇vT

)
the symmetric part of the velocity gradient tensor.

These forces can be projected along the main flow direction to obtain the drag

force:

FD =
∫

Γ
F f · ex dΓ (1.24)

and perpendiculary to get the lift force:

FL =
∫

Γ
F f · ey dΓ (1.25)

In fluid mechanics, it is traditional to work with dimensionless values. The

associated two non-dimensional values are the lift coefficient:

CL =
2FL

ρ f ‖v‖2D
(1.26)

and the drag coefficient:

CD =
2FD

ρ f ‖v‖2D
(1.27)

where D is a characteristic dimension for the flow (here the diameter of the

cylinder obstacle) and v the imposed velocity at the flow input.

The kind of flow is also characterized by its Reynolds number, that gives

the ratio between convective and diffusive part in the Navier-Stokes momentum

conservation equation:

Re =
D‖v‖

ν f
(1.28)

For a certain range of Reynolds numbers, the flow exhibits vortex shedding.

The vortex shedding frequency f , that can be measured with the lift and drag

18 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

coefficient oscillation around their mean values is also traditionally adimensioned

with the Strouhal number:

St =
D f

vx
(1.29)

The Finite Volume strategy used herein is second order in space (flux con-

struction) and a first order in time (Euler implicit time integrator). The flow

solver used is far from being optimum in terms of computational time, as no spe-

cial care is take for the pseudo time step-size, for the inverse algorithm (here the

default iterative algorithm like a Pre-conditioned Conjugate Gradient is used)

and for the parallelization. So, the CPU time TCPU is only given for indication,

but must not be considered as a good overall performance indicator of the fluid

solver.

1.2.5.2 Test case 2D-1 (steady)

The inflow condition is:

v(x = 0, y, t) =

(

Umax
4y(H − y)

H2
, 0

)

(1.30)

with Umax = 0.3m.s−1 leading to a Reynold number Re = 20. Such a Reynold

number characterizes a laminar and steady flow. For the coarse mesh cases,

less than 300 pseudo time-steps were necessary to converge to the solution. For

finer mesh cases, it becomes necessary to compute at initial time a potential

solution. The comparison with the benchmark is given for adimensional lift

and drag coefficients and for the pressure difference between the front and back

nodes of the obstacle.

Elements CD CL ∆p (in Pa) TCPU (in s)

528 5.589 0.0116 0.1109 1.37
2112 5.603 0.0132 0.1140 4.13
8448 5.597 0.0111 0.1169 16.59

33792 5.588 0.0107 0.1172 384.83

Ref. 5.560 0.0107 0.1174
±0.010 ±0.0003 ±0.0002

Table 1.1: Fluid benchmark test 2D-1: OpenFOAM results compare to reference

solution

In Tab. 1.1 some of the quantities obtained from the flow computation such

as lift coefficient CL, drag coefficient CD and pressure difference noted ∆p be-

tween the nodes xA and xB are given. The results obtained and summarized

on Tab. 1.1 converge to accordance with the benchmark reference values given

in [Schäfer and Turek, 1996].

1.2.5.3 Test case 2D-2 (unsteady)

For this second test case, the input velocity is increased in order to obtain an

unsteady flow:

v(x = 0, y, t) =

(

Umax
4y(H − y)

H2
, 0

)

(1.31)

1.2. INCOMPRESSIBLE FLOWS SOLVED BY FVM 19

with Umax = 1.5m.s−1 leading to a Reynold number Re = 100. Such flows

exhibit vortex shedding: drag coefficient CD, lift coefficient CL and pressure

difference ∆p become periodic functions of time t.

Elements CDmax CLmax St ∆p (in Pa) TCPU (in s)

528 3.25431 1.1216 0.2341 2.3667 14.65
2112 3.17842 1.0379 0.2830 129.15
8448 3.21425 0.9819 0.2929 2833.90

37792 3.23270 1.0152 0.3052 2.5156 35472.83

Ref. 3.2300 1.0000 0.3000 2.4800
±0.0100 ±0.0100 ±0.0050 ±0.0200

Table 1.2: Fluid benchmark test 2D-2: OpenFOAM results compared to reference

solution

The quantity used for comparison with the Benchmark are: maximum lift

coefficient CLmax, maximum drag coefficient CDmax, Strouhal number St and

pressure difference noted ∆p between the nodes xA and xB when the lift coeffi-

cient is minimum. The results obtained are summarized in Tab. 1.2 correspond

to the results of reference.

1.2.5.4 Test case 2D-3 (unsteady)

In the previous case, setting suitable initial condition can be a problem. Thus, in

this case, the flow is initially at rest and the input velocity is gradually increased

as follows:

v(x = 0, y, t) =

(

Umax
4y(H − y)

H2
sin

πt

8
, 0

)

(1.32)

with Umax = 1.5m.s−1 and for t ∈ [0, 8s]. This leads to a time dependant

Reynolds number from 0 to 100.

velocity pressure

2.
0

s
4.

0
s

6.
0

s
8.

0
s

Figure 1.4: Test 2D-3: Velocity (magnitude) and pressure fields

In Fig. 1.4, the velocity and pressure field for different times are represented.

The problem evolves from a quasi-steady state (e.g. t = 2.0s) to an unsteady

20 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

problem with vortex shedding (e.g. t = 4.0s). The quantity needed for compar-

ison with the Benchmark are : maximum lift coefficient CLmax, maximum drag

coefficient CDmax, and pressure difference at end time ∆p(t = 8s).

Elements CDmax CLmax ∆p (in Pa) TCPU (in s)

528 2.9571 0.3143 −0.1018 13.8
2112 2.8964 0.5099 −0.1045 101.4
8448 2.9354 0.4753 −0.1023 1915.07

37792 2.9469 0.4947 −0.1106 32250.88

Ref. 2.9500 0.4800 −0.1100
±0.0200 ±0.0100 ±0.0050

Table 1.3: Fluid benchmark test 2D-3: OpenFOAM results compared to reference

solution

In Tab. 1.3 the test results are displayed. Computation are carried out with

OpenFOAM-1.5 icoFoam solver – for Newtonian flows with a low Reynolds num-

ber – on only one processor (Intel Xeon X5365 3.00GHz). The time integration

scheme was Crank-Nicholson with α = 0.7 and the time step is decreased in

order to respect the CFL condition required by the PISO algorithm, and varies

from 0.01s for the coarsest mesh to 0.0005s for the finest one.

1.2.6 Three-dimensional numerical experiments

As one of our goals is to solve fluid-structure interaction problems in three

dimensions, the validation of the CFD approach in three dimensions is also

carried out for equivalent test cases. We present herein the results for the steady

state flow around a square basis (3D-1Q) and circular basis (3D-1Z) -shaped

cylinder. The dimensions on the (ex, ey) plane are the same as the one defined

in Fig. 1.3. The third dimension is chosen so that the inflow and outflow are

defined on square plane. One can notice that even in [Schäfer and Turek, 1996],

the results from the different teams for the three dimensional tests were not in

agreement for all of them. Some three dimensional meshes used for computation

are represented in Fig. 1.5.

The time integration scheme used was backward Euler with a pseudo time-

step of 1s and with initial condition at rest. The steady state is quickly reached,

and in Fig. 1.6 some characteristic streamlines are represented. The computa-

tions is carried out on four meshes, and the results are given in Tab. 1.4.

The results from Tab. 1.4 are not so much in agreement as the ones from

the reference. For the 3D cases, contrary to the 2D cases, the results from the

different teams benchmarked in [Schäfer and Turek, 1996] is more marked than

the one given in for 2D computations. The difference from the referring solutions

is most marked for the square cylinder, probably due to more sensitiveness of

the flow around this kind of shape.

Now that the Finite Volume Strategy used for the fluid is presented and

benchmarked, the range of application is extended in the next Section to flow

in moving domains.

1.3. FLOW IN A MOVING SHAPE DOMAIN 21

(a) 3D-1Q problem (b) 3D-1Z problem

Figure 1.5: Two meshes for the 3D-1Q and 3D-1Z test. Medium sized mesh

with around 50× 103 cells.

(a) 3D-1Q problem (b) 3D-1Z problem

Figure 1.6: Streamlines for the 3D-1Q and 3D-1Z test.

1.3 Flow in a moving shape domain

Fluid-Structure interaction problems lead to unsteady moving domains for the

fluid part, as the fluid-structure interface follows the deformations of the struc-

ture. Traditional Computational Fluid Dynamic programs solve the fluid equa-

tions on a fixed (Eulerian) grid.

t = t0 t

Figure 1.7: Fluid in a moving domain problem

A classic approach to overcome this difficulty is to consider the so-called

22 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

T
es

t
3
D

-1
Q

Elements CD CL ∆p (in Pa) TCPU (in s)

7760 6.09 0.0784 0.1121 2.88
26190 6.76 0.0734 0.1261 29.54
62080 6.57 0.0780 0.1204 102.09

209520 7.29 0.1653 0.1385 1244.89

Ref. 7.60 0.0700 0.1760
±0.10 ±0.0100 ±0.0040

T
es

t
3
D

-1
Z

Elements CD CL ∆p (in Pa) TCPU (in s)

6120 5.72 0.01143 0.1518 4.75
20655 5.95 0.01109 0.1587 21.43
48960 6.06 0.01046 0.1653 70.17

165240 6.14 0.01025 0.1683 925.19

Ref. 6.15 0.0090 0.1700
±0.10 ±0.0010 ±0.0050

Table 1.4: Fluid benchmark test 3D-1Q and 3D-1Z: OpenFOAM results compared

to reference solution

Arbitrary Lagrangian Eulerian (ALE) method where the grid is moved inside

the fluid domain, following the movement of the boundary (see Fig. 1.7).

However, this yields new difficulties: knowing the new shape of the boundary,

how can one keep the quality and the validity of the inner mesh? A traditional

and widely used method is to consider the mesh as a pseudo-structural system.

Mesh points are linked with kind of spring. Another solution is to describe the

mesh by analogy as a solid loaded at its boundary.

This pseudo-structural system is known to be unsuccessful with too large

motion cases. This is why one often has to consider non-linear pseudo struc-

tural systems and sometimes needs to couple them with re-meshing algorithms.

Even using additional concepts to reduce the computational cost, this procedure

remains expensive and does not solve all the problems. Recent methods rely-

ing on the use of linear Laplace equations, which can give bounded solutions,

present reliable mesh motion for a reasonable cost [Jasak and Tuković, 2007].

The ALE strategy leads in fact to a three field coupling (the fluid, the struc-

ture and the mesh motion). However, modern CFD codes often propose the im-

plementation of ALE. Furthermore, a fluid-structure interaction problem does

not only become a two-field (fluid and solid) but also a three-field coupling

problem (fluid, solid and fluid domain). Besides, the global solution must not

depend on the mesh motion, and this is naturally verified when the quality of

the mesh is preserved.

The limitation of some mesh motion algorithms are studied and highlighted

in [Kassiotis, 2008]1. From this work, one can recall that:

Laplace smoothing operator with a non constant diffusion coefficient can

handle large deformation of the mesh while the rotations remains small.

1See also the reference thread in http://www.cfd-online.com/Forums/openfoam-solving/

57916-moving-mesh-problem-openfoam-141-a.html OpenFOAM forum

http://www.cfd-online.com/Forums/openfoam-solving/57916-moving-mesh-problem-openfoam-141-a.html
http://www.cfd-online.com/Forums/openfoam-solving/57916-moving-mesh-problem-openfoam-141-a.html

1.3. FLOW IN A MOVING SHAPE DOMAIN 23

Pseudo-solid formulation is of interest when the motion of the mesh is

mainly governed by rotation.

1.3.1 Arbitrary Lagrangian-Eulerian strategy

1.3.1.1 Navier-Stokes equation in an Arbitrary Lagrangian-Eulerian frame-

work

For a given motion of the fluid domain Ω f described by its point displacement

um, the ALE formulation of the Navier-Stokes equation can be written as:

∂tv + (v− u̇m)∇ · v−∇ · 2ν f D(v) = −1

ρ
∇p in Ω f × [0, T]

∇ · v = 0 in Ω f × [0, T]
(1.33)

where v− u̇m is the convective term. The Eulerian or Lagrangian expression

of the total time derivative of v can be found setting u̇m = 0 or u̇m = v. In

the fluid-structure interaction framework, the motion of the interface near the

structure imposes a convective governed flow, and its description is Lagrangian.

Away from it, there is no reason to make the domain move, and the description

is still Eulerian.

There remains the question of building a suitable map for the domain motion

given its interface displacement. The fluid displacement um is arbitrary inside

the domain Ω f , but has to fulfill the condition:

um = um on ∂Ω f × [0, T] (1.34)

Thus, the fluid displacement is an arbitrary extension of um|∂Ω f
inside the fluid

domain Ω f :

um = Ext

(

um

∣
∣
∣
∂Ω f

)

(1.35)

The weak form of the ALE formulation can be written as follows:

Find: (v, p, um) ∈ V × P × U , such that,

For all: (δv, δp, δu) ∈ V0 ×P0 ×U0

GALE
f (v, p, um; δv, δp, δu) :=

∫

Ω f

(

um − Ext

(

um

∣
∣
∣
∂Ω f

))

· δu
∫

Ω f

∂tv · δv +
∫

Ω f

∇ (v− u̇m)⊗ v · δv−
∫

Ω f

∇ · ν f D(v) · δv+
∫

Ω f

1

ρ f
p∇ · δv +

∫

Ω f

1

ρ f
∇ · vδp

= 0

Written in a matrix forms, it gives the following semi-discrete problem for

24 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

the discretized velocity v and pressure p field:

Kmum = fm

M f v̇ + N f (v− u̇m)v + K f v + B f p = f f

BT
f v = 0

(1.36)

where Km is a stiffness matrix for the mesh deformation, M f is a positive def-

inite mass matrix, N f is an unsymmetrical advection matrix, K f describes the

diffusion terms, and B f stands for the gradient matrix, whereas f f is the dis-

cretized load on the flow. This matrix form takes also into account the bound-

ary conditions; special care has to be taken concerning the discretization of

boundary conditions – and especially normal flux – when using the Finite Vol-

ume [Ghidaglia and Pascal, 2005].

1.3.1.2 Mesh motion equations

Let us consider a domain T h
(

Ω f ,tN

)

which represent the mesh configuration

at a time tN. This domain is moving according to the imposed condition at

the boundaries like imposed displacement or velocity. The issue is to build a

new valid mesh T h
(

Ω f ,tN+1

)

at tN+1 = tN + ∆t knowing the initial valid mesh

T h
(

Ω f ,tN

)

and imposed boundary conditions.

It can be proved that the mesh motion problem is formally equivalent to a

solid body under large deformations. The cost to solve this non-linear equation

is tremendous and this strategy cannot be applied within an efficient 3D CFD

code. A traditional way to overcome this difficulty is to consider simplified solid

equations for the mesh motion:

The spring analogy aims at linking each point of the mesh by fictitious

spring. In [Jasak and Tuković, 2007], authors show this yields failure

modes. This failure modes can be avoided introducing non-linear and

torsional springs. However, the cost induced by the improvement of this

imperfect system can be deemed as too huge.

pseudo-solid equations can be considered as a simplification of the 3D non-

linear problem to the linear one; the analogy is a mechanical problem with

small deformations.

Laplacian smoothing operator

A totally different strategy is to consider the Laplace smoothing equation:

∇ · (γ∇u) = 0 in Ω f (1.37)

Where u is the mesh displacement so that the new points are defined with:

xN+1 = xN + ∆t u (1.38)

The Laplace smoothing equation does not allow to take into account cou-

pling the motion vector components due to rotation. These coupled motion are

handled by the pseudo-solid solver.

1.3. FLOW IN A MOVING SHAPE DOMAIN 25

1.3.1.3 PISO algorithm for Navier-Stokes equation discretized by Finite Vol-

ume in a moving domain

The coupling between the mesh motion problem and the Navier-Stokes momen-

tum equation is weak, in the sense that no variable like velocity v or pressure p
influences the fluid domain deformation under imposed boundary displacements.

The coupling between the mesh motion problem and the fluid momentum equa-

tion can therefore be ensured explicitly. In the PISO Algorithm 1, the only

modification is to compute the mesh motion for the current time step before

solving the semi-implicit coupled velocity-pressure system.

Algorithm 2 PISO algorithm for ALE formulated flows

1: Given: initial velocity v0 and pressure p0.

2: while T < Tmax do

3: Solve mesh motion:

Rm(um,N+1, um,N+1) = 0

4: Momentum predictor:

A f (˙um, v
(0)
N+1)v

(0)
N+1 −H f (vN , ˙um, v

(0)
N+1) = −B f pN

5: for (k) = 0 to (k) < (kmax) do

6: Pressure correction:

BT
f ·

1

A f (˙um, v
(k)
N+1)

BT
f p

(k)
N+1 = BT

f ·
H f (˙um, vN , v

(k)
N+1)

A f (˙um, v
(k)
N+1)

7: Explicit velocity correction

v
(k+1)
N+1 = v

(k)
N+1 −

1

A f (˙um, v
(k)
N+1)

B f p
(k)
N+1

8: end for

9: end while

The only remaining question is the choice of velocity in the time step ∆t =
tN+1 − tN. As the mesh motion is arbitrary and does not rely on any physical

phenomenon, it is a priori possible to take any velocity evolution on the window

[TN , TN+1] so that the initial mesh deformation is equal to um,N and the final

mesh deformation is equal to um,N+1.

The Geometric Conservation Law demands a numerical scheme to reproduce

exactly and independently from the mesh motion a constant solution. This

condition can be found in the literature for ALE formulation discretized either by

the Finite Volume [Demirdžić and Perić, 1988] or the Stabilized Finite Element

methods [Förster et al., 2006]. It is proved [Farhat et al., 2001] that the velocity

26 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

of the dynamic mesh needs to be computed for all first– and second–order time

accurate methods like implicit Euler or Crank-Nicholson so that:

u̇m =
um,N+1 − um,N

∆t
(1.39)

1.3.2 Free-surface flows

1.3.2.1 Strategies for free-surface flows

To model free surface flows, a traditional approach is to consider the Nonlinear

Shallow Water Equations first introduced by Saint-Venant in 1837. Extensive

literature on how to solve those equations analytically or numerically can be

found in the applied mathematics community [Stoker, 1992, Sobey, 1998]. If

this approach gives good results for the propagation phase of the wave, recent

results in [Dutykh and Mitsotakis, 2009] confirm that this model is unable to

represent accurately the impact process of the wave, as well as its sloshing

process (see Fig. 1.8(a)).

(a) Free surface flow (b) Moving grid method

b
bb

b

b

b

b b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b

(c) Meshless method

b

b
b b

b

b

b
b
b
b
b

(d) Tracking surface method

1.0

0.8

0.4

0.9

0.5

0.3

0.4

0.0

0.0

(e) Tracking volume method (VOF)

Figure 1.8: Techniques to solve a free-surface flow

For this reason, another appropriate model has to be chosen near a structure

1.3. FLOW IN A MOVING SHAPE DOMAIN 27

hit by water. To represent the complex flow an idea could be to consider a

moving fluid domain where the shape of the wave is described by the motion of

the domain. However, the domain motion is so complicated that this strategy

is not reachable with the traditional ALE formulation given above.

The following approaches are however used:

Lagrangian approaches: (see Fig. 1.8(a)) are used to represent the free sur-

face fluid flows. Such approaches often require re-meshing, and therefore

efficient mesh generators in order to compute the new topology at each

iteration. The PFEM method [Idelsohn et al., 2004] is for instance used

for this kind of problems.

Surface tracking methods (ALE): (see Fig. 1.8(d)) have the advantage

that the representation of the fluid domain and its free surface is inde-

pendent from the representation of the flow field. Hence, the resolution

of the surface and that of the flow field may be chosen independently one

from another. Of course, the level of details should be comparable in order

to resolve the fluid motion properly. However, this freedom is helpful, for

example, in order to improve the accuracy of the evaluation of the surface

tension force.

Meshless methods (see Fig. 1.8(b)) like the SPH have the advantage not to

require the re-meshing step of the previous strategies [Fries, 2005]. They

are however still quite expensive, and limited for the time being to local

computations.

Neither the first nor the second approaches are used herein. A Eulerian or

Arbitrary Lagrangian-Eulerian volume method formulation of a biphasic flow

modeling both water and surrounding air is used in the following [Ubbink, 1997,

Ghidaglia et al., 2001, Rusche, 2002]. In Volume of Fluid (V.O.F.) methods, an

indicator function (volume fraction, level set or phase-field) is used to represent

the interface (see Fig. 1.8(e)); the issue is how to convect the interface with-

out diffusing, dispersing or wrinkling it. This is particularly troublesome when

the volume fraction is chosen as an indicator function because the convection

scheme has to guarantee that the volume fraction stays bound, i.e. remains

within its physical bounds of 0 and 1. This problem has been addressed by

a number of authors and two distinct methodologies to convect the volume

fraction have emerged [Rusche, 2002]: Volume of Fluid (V.O.F.) methods use

convection schemes which reconstruct the interface from the volume fraction dis-

tribution before advecting it. On the other hand, interface-capturing techniques

use high-order convection schemes.

1.3.2.2 A biphasic model for free surface flows

For complex flows (with jets, cavitation and aeration in the sloshing wave)

it is natural to consider the Navier-Stokes equations for two immiscible and

incompressible flows (water and air for instance) occupying transient domains

Ωi(t) so that the whole domain considered Ω(t) = Ω1(t)∪Ω2(t). The interface

between the both domains Ω1 and Ω2 is denoted Γ

28 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

In each space-time domain Ωi × [0, T], the Navier-Stokes equations apply:

∇ · v = 0
ρi∂tv +∇ · (v⊗ v + pI− 2µiD(v)) = σκδΓn + ρig

(1.40)

where p denotes the kinematic pressure field, v the velocity. Fluid material

properties are the dynamic viscosities µi and the densities ρ f . We also introduce

g that depicts the gravity field, σ the surface tension, κ the curvature of the free-

surface and δΓ the mass distribution concentrated at the surface (equivalent to

a Dirac distribution).

Remark: The incompressible hypothesis can be discussed, especially for

highly aerated waves. For more details on compressible multiphasic simula-

tions, the reader is invited to follow the Ph. D. work of [Dutykh, 2008] or

[Dias et al., 2009].

For the Finite Volume approach, both fluid domains are computed with the

same Navier-Stokes models. It is advantageous to introduce the the character-

istic function ι:

ι(x, t) =

{
1, for x ∈ Ω1(t)
0, for x ∈ Ω2(t)

(1.41)

Thus, the characteristic function ι and the mass distribution δΓ are linked

by the relation:

∇ι = δΓn (1.42)

When no reaction between phases occurs, the characteristic function evolves

only by advection:

∂tι + v · ∇ι = 0 (1.43)

To write a unique formulation in the whole domain Ω we express the density

and the viscosity as the function of ι:

ρ = ιρ1 + (1− ι)ρ2 and µ = ιµ1 + (1− ι)µ2 (1.44)

The conservation equation system on the whole domain Ω can be written

as a function of the d + 2 unknowns p, vi and ι searched in their respective

spaces V , P and C that denote the restriction of Hilbert and Sobolev spaces

with suitable boundary condition:

Find: (v, p, ι) ∈ V ×P × C, such that,

∂tι + v · ∇ι = 0
ρ (∂tv + v · ∇v) +∇ · (pI− 2µD(v)) = σκδΓn + ρg

∇ · v = 0

(1.45)

Depicting the interface by a discontinuous characteristic function is not pos-

sible when using a continuum model for the two fluids. This function is replaced

by the piecewise continuous function which has the following properties:

ι(x, t) =







1, for x ∈ Ω1(t)
0, for x ∈ Ω2(t)
0 < ι(x, t) < 1, for x in the transition area

(1.46)

1.3. FLOW IN A MOVING SHAPE DOMAIN 29

The smoothness of ι allows to compute directly the curvature κ of the inter-

face. The gradient of ι gives a normal n that always point from fluid 2 (ι = 0)

to fluid 1 (ι = 1):

n = ∇ι (1.47)

Indeed, as ι is constant in Ω1(t) and Ω2(t), the gradient is zero everywhere

except in the transition area. From this normal n we can build the curvature

such as::

κ = ∇ ·
(

n

‖n‖

)

(1.48)

The discretization is handled by Finite Volume, and an explicit-implicit al-

gorithm strategy is used to couple the description of the two phases and their

evolution with the Navier-Stokes equations. The equation associated to the char-

acteristic function is solved with an explicit time integration scheme whereas the

other term can be solved with implicit time integration schemes. For more de-

tails on how the OpenFOAM CFD code, used herein as a component, handle this

problem, see [Ubbink, 1997, Rusche, 2002].

1.3.2.3 Dam break example

The dam break example is a classic example. It is studied from the experimen-

tal [Bullock et al., 2007], the analytical [Stoker, 1992] as well as the numerically

point of view [Ubbink, 1997, Dutykh and Mitsotakis, 2009], and describes the

collapse of a water column hiting a rigid structure. This example is also pro-

posed as a tutorial in OpenFOAM [OpenCFD LTD, 2009].

The geometry of the problem is exactly the same as the one taken in the

last reference and can be seen in Fig. 1.10. The high density fluid representing

water has the following density and kinematic viscosity: ρ1 = 1000kg.m−3 and

ν1 = 1 × 10−6m.s−2. The low density fluid – air – is described with a den-

sity ρ2 = 1kg.m−3 and a kinematic viscosity ν2 = 1.48× 10−5m.s−2. The flow

in each phase is considered to be Newtonian (no turbulence effect is taken into

account for instance). The surface tension between each phase is 0.07kg.s−2,

but regarding to the characteristic size of the problem, the surface tension is of

little influence and can be neglected.

At t = 0, the initial condition are at rest, and the water column starts to

collapse. Computation is run on window of size ∆t = 0.005, but in each window,

the time step for the flow time integration is dynamically determined in order to

maintain the Courant–Friedrichs–Lewy number under 0.5. At the end of each

window, the fluid force on the obstacle is obtained.

In Fig. 1.10, the evolution of the phases on two meshes are represented with

respectively 2268 cells for the coarse mesh and 9072 cells for the fine mesh.

The computation time are run on one 3.0Ghz Intel Opteron processor. For the

coarsest grid considered, no sub-iteration on the window is required to maintain

the Courant number under the imposed limit. For the finest grid, some sub-

iterations after the water column hit the rigid structure are required.

In Fig. 1.9 the forces acting upon the obstacle are also represented. We

observe for the two discretizations a spurious point when, for the first time, a

large air cavity is enclosed within a fluid tongue. However, regarding the value

30 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

-50

0

50

100

150

200

0.2 0.4 0.6 0.8 1

F
o
rc

e
(F

x
in

N
)

Time (s)

coarse
fine

-50

0

50

100

150

200

0.2 0.4 0.6 0.8 1

F
o
rc

e
(F

y
in

N
)

Time (s)

coarse
fine

Figure 1.9: Horizontal and vertical forces acting upon the obstacle for coarse

(2268 cells) and fine (9072 cells) grids

of the force along the ex direction, the same behavior is observed before the

tongue hits the right wall (t ≃ 0.3s). After that, the fine mesh is able to capture

the separation of the water phase in many sub-domains and to represent more

accurately their separated impact on the right side of the obstacle.

Closure

This first chapter was dedicated to the explanation of the solid and fluid strate-

gies used in this dissertation. As one of the goals of this Ph. D. work is to

emphasize the possibility to couple existing scientific computing methods and

software to solve multiphysics problems, we use herein the widely known FE

method for the structure and the FV method for the fluid. The way to solve

the incompressibility constraint in a semi-implicit segregated method with the

PISO algorithm is also described.

The FV capacity to solve the Navier-Stokes equation is illustrated by bench-

mark problems. Its extension to flows under moving domain, required for the

field of application of fluid-structure interaction is presented herein. For moving

domains where the shape remains regular an ALE framework is introduced. The

mesh motion is insured by a smoothing operator based on a Laplacian opera-

tor. For moving domains with complicated shape motions such as fluid domain

defined under a free-surface, a different approach is used. A biphasic modeling

using a five equation model is introduced: velocity and pressure for the two

phases as well as characteristic functions of the flow domain are solved with a

segregated method. This strategy is applied to the fall of a water column.

The two subproblems for the fluid and solid being introduced, remains the

question how to couple these problems. In the next chapter, the partitioned

1.3. FLOW IN A MOVING SHAPE DOMAIN 31

T
im

e
t
=

0.
1

s
T

im
e

t
=

0.
3

s
T

im
e

t
=

0.
5

s
T

im
e

t
=

0.
7

s

Figure 1.10: Evolution of the characteristic function ι depicting the density of

each phases in a cell for fine and coarse meshes

32 CHAPTER 1. STRUCTURE AND FLUID SUBPROBLEMS

approach used in this work is detailed.

2Partitioned approach for

fluid-structure interaction

In this chapter, different partitioned approaches to solve

multiphysics problems – especially fluid-structure inter-

action – are presented. The way to handle coupled prob-

lems is first introduced in a general framework. Nota-

tions are set in Section 2.1.3. Explicit (Sec. 2.2) and

Implicit coupling schemes (Sec. 2.3) based on Direct

Force-Motion Transfer strategies are then studied.

33

34 CHAPTER 2. PARTITIONED APPROACH FOR FSI

Contents

2.1 Solving a coupled problem 36

2.1.1 Monolithic strategy 36

2.1.2 Partitioned strategy 37

2.1.3 Partitioned strategy notations 38

2.2 Explicit coupling . 41

2.2.1 Generalized Conventional Serial Staggered algorithm 41

2.2.2 Evaluation of interface energy for DFMT-GCSS . . . 43

2.2.3 Enforcement of the Geometric Conservation Law . . 45

2.2.4 Improved Serial Staggered (ISS) algorithm 45

2.2.5 Conventional Parallel Staggered (CPS) algorithm . . 47

2.2.6 Explicit coupling with incompressible flows: the ar-

tificial “Added-Mass Effect” 47

2.3 Implicit coupling strategies 48

2.3.1 Algebraic solvers based on Picard iterations 49

2.3.2 Relaxation techniques 51

2.3.2.1 Fixed relaxation 51

2.3.2.2 Aitken’s relaxation 52

2.3.2.3 Steepest descent technique 54

2.3.2.4 Relaxation seen as an approximative New-

ton algorithm 55

2.3.3 Newton and quasi-Newton based strategy 55

2.3.3.1 Formulation as a root equation 55

2.3.3.2 Generalized Minimum Residual Algorithm . 56

Closure . 58

35

Solving multiphysics problems is a mainstream of current research in nu-

merical method for engineering. As shown in Fig. 2.1, two approaches can be

considered:

Monolithic strategy (see Section 2.1.1) where the coupled problem is stated

in the same framework, and traditionally discretized with the same tech-

niques. It leads to efficient solvers at the cost of a high development.

Furthermore, as the cost to solve most of the algebraic systems obtained

after discretization is non linear, this approach is not well suited for large

scale problems.

Partitioned strategy (see Section 2.1.2) will try to keep the independence

between solvers, and even full independence of their implementation in

the corresponding software products. With this approach, each solver can

be based on different discretization techniques (e.g. Finite Volume for

the fluid in OpenFOAM [OpenCFD LTD, 2009] versus Finite Element for

structure in FEAP [Taylor, 2008]) and employ different time-integration

schemes and even different time steps.

Coupling Methods

Monolithical Partitioned

Algbebraic Methods

Penalty Lagrange Multipliers

Differential Methods

Iterative

Block

Gauß-Seidel

Block

Jacobi

Block

Newton

Staggered

Figure 2.1: Main approaches to solve coupling problems [Jürgens, 2009]

The general coupling framework presented in Fig. 2.1, can be applied to fluid-

structure interaction. In the following, the “Differential methods” are termed

as Direct-Force Motion Transfer (DFMT) method, thus describing the data

exchange between partitions. The “staggered coupling” where subproblems are

solved one after another is here noted as explicit. The “iterative” coupling

strategy solve implicitly the multiphysics problem.

In this work, the partitioned approach is chosen, as one of the goals of this

work was to re-use existing software in a more general context. The methods

developed for fluids and structures are carried out by different research teams,

36 CHAPTER 2. PARTITIONED APPROACH FOR FSI

based on different methods and solved by different tools, the partitioned ap-

proach here is a natural choice. Furthermore, considering realistic applications

in fluid-structure interaction problems (namely, with turbulence) the time scales

to accurately depict the fluid flow is much smaller than the one required for the

solid part, which can be efficiently handled only by a partitioned approach that

will synchronize the motion of both components at chosen time steps.

In this work, the partitioned approach is chosen, as one of the goals of

this work was to re-use existing software in a more general context. Various

techniques can then be applied to solve the Partitioned problem. They will

be detailed in Sec. 2.2 and 2.3. The properties of the implemented algorithm

(Chapter. 3) are mathematically studied in Appendix A.

2.1 Solving a coupled problem

2.1.1 Monolithic strategy

In the monolithic approach, the whole coupled problem is mathematically for-

mulated in the same framework. For fluid structure interaction,this is, if not eas-

ily, generally well documented (See [Salençon, 2005] for a general introduction

to continuum mechanics). For instance, the weak forms for the structure (see

Sec. (1.1.2) and the fluid (see Sec. 1.3.1.1) subproblems can be summed up in

order to obtain a weak form of the coupled problem (with appropriate continuity

consideration at the interface). A numerical approach is then proposed to dis-

cretize this formulation in both space and time. It leads to an algebraic system

that can be solved by any direct or iterative known algorithm. Traditionally, in

this kind of approach, the numerical techniques proposed need to be the same

for each subproblem. Considering that a formulation leads to the definition of

two residuals r f and rs. A simplified form of the residual considered for the

coupled problem can be written as:

{
r f (u f , us) = 0

rs(u f , us) = 0
(2.1)

where u f and us are the field describing the evolution of each subproblem.

In a primal formulation for a structure, us is the displacement field, whereas

u f = (v, p) takes into account both velocity and pressure for an incompressible

flow.

Then, a Newton algorithm can be used to solve this non-linear residual

problem:
[

∂u f
r f ∂us r f

∂u f
rs ∂us rs

]

·
[

∆u f

∆us

](k)

= −
[

r f

rs

](k)

(2.2)

It is then required to access all the variables of each each subproblems,

and to both diagonal and cross derivatives. The latter are not easy to obtain,

and often necessitate numerical development in current software. Furthermore,

the system obtained is large (sum of subproblem unknown) and necessitate

to pay a high price for the storage and the inversion of the Jacobian. Thus,

in the author’s opinion, the advantages obtained in terms of order of conver-

gence do not often counterbalance these drawbacks. For instance, as described

2.1. SOLVING A COUPLED PROBLEM 37

in [Ferziger and Perić, 2002] for incompressible fluid problems, computing the

Jacobian is often so expensive that it is more advantageous to solve the coupled

velocity-pressure problems with a fixed-point iterative strategy that does not

rely on the exact computation of the tangent matrix. This remark applied to

fluid alone remains true for fluid-structure interaction problems.

It is clear that the partitioned approach, introducing new unknowns at the

interface, will lead to the storage of more variables. The size of the inter-

face is one of the main criteria that determines the efficiency of a partitioned

approach. For coupling problems (for instance thermo-mechanics, magneto-

mechanisms,. . .) regarding a whole space-domain, one normally applies a mono-

lithic approach [Felippa and Park, 2004]. Nevertheless, partitioned approach

can be used for these coupled problems in the special case of different dis-

cretization either on the space or time domains [Kassiotis et al., 2009a].

In the context of fluid-structure interaction, noticeable work based on mono-

lithical development can be found [Walhorn, 2002, Hübner et al., 2004]. All of

these approaches use a Finite Element Formulation for fluid, solid and mesh

motions. The Navier-Stokes equation is solved using a stabilized formulation

[Brooks and Hughes, 1990, Franca et al., 1993]. For the time integration, either

standard time integration techniques or Finite Elements in time can be used.

In fluid-structure interaction the use of implicit generalized α-HHT method is

recommended for its computational efficiency and its robustness, as studied

in [Dettmer and Perić, 2003]. Some other works apply techniques arising from

the research on computational fluid, and rely on the FV discretization of a

problem formulated on an Eulerian grid [Mehl et al., 2008].

Note that a major trend in these works is to compute the Jacobian inexactly,

and especially the cross terms of the tangent matrix one gets after lineariza-

tion and discretization by FEM in [Perić et al., 2006, Dettmer and Perić, 2007].

Another way to improve efficiency comes at the cost of an elaborate coding

adding with specially adapted“mixture”of explicit-implicit schemes as presented

in [Belytschko et al., 1979, Hughes et al., 1979, Felippa and Park, 2004].

2.1.2 Partitioned strategy

When the methods developed for fluids and structures are carried out by dif-

ferent research teams, based on different methods and solved by different tools,

the partitioned approach is a natural choice. Furthermore, considering realistic

applications in civil engineering, the time scales to accurately depict the fluid

flow is much smaller than the one required for the solid part.

The partitioned approach in fluid-structure interaction, first introduced in

[Felippa et al., 1977] to model the impact of cavitating acoustic fluid on sub-

marines, was mainly motivated by the lack of access to the code used to model

one of the fields. Even in this early and in many later publications, the difficulty

to keep a partitioned algorithm stable, even for stable and converging subprob-

lems, was noticed. Other then time synchronization, another difficulty that

arises from partitioned strategy is to transmit the most accurate information at

the subproblems interface for matching and non-matching space discretization.

In that respect, the partitioned methods can be divided into two large categories

(see Fig. 2.1):

38 CHAPTER 2. PARTITIONED APPROACH FOR FSI

Differential methods – Direct Force Motion Transfer (DFMT);

they were the first methods introduced to solve FSI in a partitioned man-

ner. In DFMT, no additional unknowns are introduced at the interface,

but the primal quantities (displacements or velocities) of one subproblem

and the dual of the other one (pressures or forces) are exchanged in an ex-

plicit or implicit (iterative) way. The interface condition is however never

strictly enforced until convergence of the methods. Then, the equality is

fullfilled at a certain tolerance.

Algebraic methods – (Localized) Lagrange Multipliers (LLM);

the general idea is to introduce a Lagrange multipliers field, in order

to fulfill the algebraic equation at the interface. In the mortar method

[Bernardi et al., 1990] the two subproblems are glued by one Lagrange

multiplier field. The choice of the discretization of the Lagrange multiplier

field can be a problem in itself. In the three-field method an additional dis-

placement field of the fictitious interface is introduced, and two Lagrange

multiplier fields glue each subproblem to the interface [Park et al., 1997].

LLM-based methods are known to give better convergence properties than

the DFMT method, allowing, for instance, the use of bigger window size without

loss of stability. However, in [Ross et al., 2009], a simplified comparison between

LLM and DFMT shows that at each iteration, solving an FSI problem using

the LLM is at least 4.5 times more expansive computationally speaking than

solving it with DFMT. This is the case even for non-matching interface with

a transfer operation of the interface field. The use of LLM is justified when

one aims at solving problems with large time steps. Furthermore, as noticed

in [Hautefeuille, 2009], the total equivalence between each subproblem allows

the introduction of a multiscale framework in an elegant way.

In the next Section 2.1.3 the notation for the partitioned are given in order

to get more into the details for the DMFT based methods.

2.1.3 Partitioned strategy notations

The interaction problem of motion of fluid (denoted further with f) and struc-

ture (denoted with s) is considered. For the sake of generality, it is supposed

that theses problems can be, and in the general are, nonlinear and time de-

pendent. It is also supposed that a Steklov-Poincaré operator can be built for

each:
Si : H 1

2 (Γ) → H− 1
2 (Γ)

ui → λi
(2.3)

that gives for an imposed primal quantity ui defined on the coupling space and

time domain Γ× [0, T], the evolution of its dual λi.

For the problems considered in this work, the Steklov-Poincaré operators are

not available analytically, but rather as the results of numerical approximations.

Hence they naturally not only depend on the chosen model, material properties

and boundary conditions, but also on discretization techniques, time integration

algorithms, inverse discrete equations solvers. . .

The coupling considered in the following is based on two classic mechanics

principles:

2.1. SOLVING A COUPLED PROBLEM 39

Continuity of primal quantities over the interface:

us = u f = u on Γ× [0, T] (2.4)

where u denotes the value of the primal variable at the interface. The

latter can be interpreted as the perfect matching condition. Note that

in the continuum space, the time derivatives of this condition give the

equivalent equations for velocity v = u̇:

vs = v f = v on Γ× [0, T] (2.5)

and acceleration a = v̇:

as = a f = a on Γ× [0, T] (2.6)

As a result of time discretization, these conditions are no longer equivalent.

Equilibrium of dual quantities (action-reaction principle): which implies

equilibrium of dual variables (stress) on the interface:

λ f + λs = 0 on Γ× [0, T] (2.7)

The action-reaction principle (Eq. 2.7) can be reformulated using the Steklov-

Poincaré operator defined in Eq. (2.3). Thus, the solution of the coupled problem

can be given as the so-called Steklov-Poincaré formulation:

Find: u on Γ× [0, T],
So that:

S f (u) + Ss (u) = 0 (2.8)

Using the inverse of the first Steklov-Poincaré operators allows to re-write

the equilibrium of dual quantities as the following fixed-point equation that

concerns only the unknown at the interface:

Find: u on Γ× [0, T],
So that:

u = Ss
−1
(

−S f (u)
)

(2.9)

It is recalled that the Steklov-Poincaré operator S is a priori as expensive to

compute as its associated inverse S−1, but not more.

The fixed-point equation can be reformulated in order to get a root equa-

tion:

Find: u on Γ× [0, T],
So that:

Ss
−1
(

−S f (u)
)

− u = 0 (2.10)

40 CHAPTER 2. PARTITIONED APPROACH FOR FSI

For the three formulations, the quantities requested are defined at the inter-

face of the problem and demand the proper definition of the Steklov-Poincaré

or Poincaré-Steklov operators for the fluid and the structure.

Algorithm 3 Steklov-Poincaré operator for fluid

Require: Fluid state variable at time TN

1: Impose displacement of mesh at fluid-structure interface:

u f = u on Γ× [TN , TN+1]
2: Solve mesh internal nodes displacement:

Rm(u f ; u) = 0 on Ω f × [TN , TN+1]
3: Solve fluid problem in ALE formulation:

R f (v f , p f ; u f) = 0 on Ω f × [TN , TN+1]
4: Get boundary traction force at the interface:

λ = −σ f n on Γ× [TN , TN+1]

Algorithm 4 Poincaré-Steklov operator for structure

Require: Solid state variable at time TN

1: Impose boundary traction force at fluid-structure interface:

σsn = λ on Γ× [TN , TN+1]
2: Solve structure problem:

Rs(us; λ) = 0 on Ωs × [TN , TN+1]
3: Get boundary displacement at the interface:

u = us on Γ× [TN , TN+1]

However, even if Steklov-Poincaré operators S are expressed only at the

interfaces, their computation concerns the whole problem on the sub-domains

which makes them quite expensive.

Furthermore, interface equilibrium equation is nonlinear, and an iterative

scheme has to be defined to compute its solution or at least a good approxi-

mation. For each of the formulation defined in Eq. (2.8)–(2.10), an associated

strategy is naturally defined:

Fixed-point formulation Eq. (2.9): the easiest way to solve this equation

is to consider Picard like iterative schemes (Section 2.3.1), whose stability

and convergence are conditional [Wall, 1999, Le Tallec and Mouro, 2001].

When they are not converging, the fixed-point equation Eq. (2.9) can be

re-written as a nonlinear root equation.

Root problem formulation Eq. (2.10): is the formulation to choose to in-

troduce in a natural way Newton algorithms [Matthies and Steindorf, 2003,

Fernández and Moubachir, 2005] or its approximation by quasi-Newton

techniques [Gerbeau and Vidrascu, 2003a]; The computation of the Ja-

cobian, and especially of its crossed terms, can be quite expensive, and

therefore the use of quasi-Newton techniques is often recommended.

Steklov-Poincaré formulation Eq. (2.8): is the choice when domain de-

composition techniques are applied to the fluid-structure interaction prob-

lem. Following the presentation made in [Deparis, 2004], the non-linear

2.2. EXPLICIT COUPLING 41

Richardson strategy can be applied to solve the interface equation of the

coupled problem [Deparis et al., 2006, Fernández et al., 2008].

Remark: Regarding discrete continuity condition, authors do not always agree

on whether the displacement or the velocity continuity should rather be enforced.

Generally, the continuity of displacements is seen a better choice for the ALE

formulation for the fluid subproblem since the interface motion (imposing the

mesh motion) is already described by Lagrangian equations.

2.2 Explicit coupling

Sometimes termed as the staggered approach it aims at getting a good approx-

imation of the coupled problem solving only one Steklov-Poincaré operator by

time step and by field.

2.2.1 Generalized Conventional Serial Staggered (GCSS) algorithm

Consider the evolution of the coupled problem in a window [TN , TN+1] of size ∆t.
The idea is to solve at each time step a single Picard-iteration of the fixed-point

equation in Eq. (2.9):

uN+1 = Ss
−1
(

−S f (uN)
)

(2.11)

However, this method has bad conservation properties at the interface. These

properties can be improved by the addition of a predictor P for the interface

displacements which results with the following algorithm:

Algorithm 5 Generalized Conventional Serial Staggered

1: Given: initial counter N = 0, initial time T = T0, final time Tmax, window

size ∆t, initial interface displacement u0.

2: while T < Tmax do

3: Predict displacement: uPN+1 = P(uN , u̇N , uN−1, . . .)

4: Solve problem f: λN+1 = S f (uPN+1)

5: Solve problem s: uN+1 = Ss
−1(λN+1)

6: N ← N + 1 and T ← T0 + N × ∆t
7: end while

Note that we do not impose the way the time integration is performed, but

only that the fluid and the structure part be collocated at the end of the same

time windows. When considering equal time step size for fluid and structure, this

Direct Force-Motion Transfer algorithm is named Conventional Serial Staggered

(DFMT-CSS) (see [Farhat et al., 1995]). We can also consider the so-called Sub-

cycled Conventional Staggered Scheme (DFMT-SCSS) with smaller time steps

selected for integration of one of the subproblems. Usually, the characteristic

time scale of the fluid is smaller, and it is natural to consider its integration

with many small time steps on the window [TN , TN+1] for the fluid part.

The displacements u seen by the structure subproblem s at time TN+1 is

therefore uN+1 whereas it remains a direct function of uN for the fluid subprob-

lem f . For that reason, the interface condition at TN+1 has no reason to be

42 CHAPTER 2. PARTITIONED APPROACH FOR FSI

fulfilled for the velocity:

us,N+1 − u f ,N+1 = uN+1 − uPN+1 6= 0 (2.12)

Therefore, an energy error is introduced by the exchanges at the interface with

this kind of algorithm. This energy transfer error can be estimated by computing

the energy seen at the interface for each subproblem [Piperno, 2000].

For a fluid point located at the interface (Ω f ∩ Γ), the energy estimate takes

the following general form (this formula is exact in one-dimension):

∆e f ,N+1 = −λ
⋆

f ·
(

u f ,N+1 − u f ,N

)

= −λ
⋆

f ·
(

uPN+1 − uN

)

(2.13)

where λ
⋆

f depends on the algorithm chosen for the time integration of the fluid

problem. For instance, this dual quantity takes the following value for:

First-order forward-Euler explicit integration scheme,

λ
⋆

f = λ f ,N (2.14a)

First-order backward-Euler implicit integration scheme,

λ
⋆

f = λ f ,N+1 (2.14b)

Second order time integration, a good approximation is given by:

λ
⋆

f ≃
λ f ,N + λ f ,N+1

2
(2.14c)

Fluid sub-cycling on the window [TN , TN+1]:

λ
⋆

f ≃
1

∆t

∫ TN+1

TN

λ f (t)dt (2.14d)

When sub-cycling is applied, the energy estimate given by the formula stated

in Eq. (2.13) assumes that fluid interface velocity is constant on the window

[TN , TN+1] and given by ∆t. Hence, the value of the dual at the interface after

the fluid computation λN+1 can take any of the values stated above.

Reciprocally, for a point of the structure at the interface Ωs ∩ Γ, the energy

transfered by the fluid is estimated with:

∆es,N+1 = λ
⋆

s · (us,N+1 − us,N) = λ
⋆

s · (uN+1 − uN) (2.15)

where λ
⋆

s depends also on the time integration scheme for the structure part.

For all kinds of schemes applied to the fluid domain described from Eq. (2.14a)

to (2.14d), the same results hold for the structure part. We consider here only

second order schemes that lead to:

λ
⋆

s ≃
λs,N + λs,N+1

2
(2.16)

2.2. EXPLICIT COUPLING 43

So, the behavior of coupling schemes is influenced by the way one computes

the flow induced load on the structure. It is natural to consider the following

choices proposed in [Piperno and Farhat, 2001]:

λs,N+1 =λN (2.17a)

λs,N+1 =λN+1 (2.17b)

λs,N+1 =
λN+1 + λN

2
(2.17c)

λs,N+1 =
1

∆t

∫ TN+1

TN

λ(t)dt (2.17d)

λs,N+1 =2λN − λs,N (2.17e)

λs,N+1 =2λN+1 − λs,N (2.17f)

λs,N+1 =
2

∆t

∫ TN+1

TN

λ(t)dt− λs,N (2.17g)

Clearly, as stated in Eq. (2.12) for the displacements, the exchanged energy in

Eq. (2.13) and Eq. (2.15) cannot exactly compensate each other as the predictor

uPN+1 has no reason to be equal to the exact displacement uN+1. This leads to

the following energy error at the interface:

∆eN+1 = ∆e f ,N+1 + ∆es,N+1 (2.18)

Thus energy is created or damped at the interface of the fluid-structure

interaction. This can deteriorate the accuracy expected from the integration

schemes chosen for the subproblems, and yield a poor estimation of the fluid-

structure interaction phenomena by numerical computation. On the one hand,

the creation of energy at the interface will lead to an unstable algorithm. Indeed,

if each of the subproblems considered is unconditionally stable, it is known

that the explicit coupling approach is conditionally stable. The stability of the

coupled problem is governed by the production of energy at the interface. On

the other hand, when energy produced is negative, it can overdamp the problem,

leading to an underestimation of the domain in which the coupling is crucial.

2.2.2 Evaluation of interface energy for DFMT-GCSS

In [Piperno and Farhat, 1997] an estimate of the energy error ∆e for most of the

fluid and structure time integration schemes and a predictor P is given. The

main results obtained are hereby recalled. The author extends the mathematical

study for a one-dimension oscillating piston problem proposed in [Piperno, 1995].

An asymptotic development for small window size ∆t shows that the energy

transfered after N time steps is proportional to

N

∑
i=1

∆ei ∼ δe× N for small window size: ∆t (2.19)

In the following, an explicit coupling scheme is of order n if δe ∼ C(∆t)n

when ∆t −→ 0. The higher n is, the less energy produced or damped at the

interface.

44 CHAPTER 2. PARTITIONED APPROACH FOR FSI

In the coupling component (Chapter 3) a component of the following form

is implemented:

uPN+1 = P(uN , u̇N , u̇N−1) = uN + α0∆tu̇N + α1∆t (u̇N − u̇N−1) (2.20)

The discussion on the order of the coupling procedure is now stated as the

function of the order of the predictor.

Consistent predictor for α0 = 0 and α1 = 0. The coupling algorithm is

then first order for most of the fluid integration schemes and input interface

forces. The only way not to get a first order scheme is to consider the Euler

explicit integration scheme for the fluid (see Eq. (2.14a)) and no correction

of upload force on the solid (see Eq. (2.17a)). In that case, the energy error

is at least of fourth order. But this algorithm is very stringent, as explicit

computing in fluids has to verify the CFL condition. Furthermore, even if

the energy error at the interface is small, the momentum equation is not

verified well.

First order predictor for α0 = 1 and α1 = 0. The algorithm is proved to be

second order accurate for most of integration schemes in the subproblems.

For most of the cases, this leads to

δe = −1

2
Cd

(
∆t

Tchar

)2

+O
((

∆t

Tchar

)3
)

(2.21)

where Cd is a constant which depends on the problem treated, and rep-

resents added damping effects due to the coupling problem. An optimum

error energy can however be obtained with:

δe = − 5

12
Cd

(
∆t

Tchar

)2

+O
((

∆t

Tchar

)3
)

(2.22)

This smallest energy error at the interface is obtained for second order

time-accurate flow integration λ
⋆

f ≃
λ f ,N+λ f ,N+1

2 and averaged induced

load 2
∆t

∫ TN+1
TN

λ(t)dt− λs,N. For that case, the energy error is found to

be 16, 6% smaller than when the force term is considered to be the same

as in the fluid computation.

Second order predictor for α0 = 1 and α1 = 1
2 . The highest order for

expected is the third one, and is obtained when considering λ f ,N+1 =
λs,N+1, whatever the expression, that depends of the flow time integrator,

of λs,N+1. The momentum is then conserved and the energy error is

governed by:

δe =
5

12
Ck

(
∆t

Tchar

)3

+O
((

∆t

Tchar

)4
)

(2.23)

where Ck is a constant that depends on the problem treated, and represents

the effects of stiffness and added mass.

2.2. EXPLICIT COUPLING 45

2.2.3 Enforcement of the Geometric Conservation Law (GCL)

In order to be mathematically consistent, the computational method for the flow

has to predict exactly a uniform flow on a moving grid. It was proved that the

velocity of the dynamic mesh has to be computed for all first– and second–order

time accurate methods as:

u̇ f =
u f ,N+1 − u f ,N

∆t
(2.24)

This condition can be found in the literature for ALE formulations dis-

cretized either by Finite Volume [Demirdžić and Perić, 1988] or Stabilized Fi-

nite Element methods [Förster et al., 2006]. It is usually termed Geometric

Conservation Law (GCL) and sometimes the Space Conservation Law (SCL).

In [Farhat et al., 2001], the advantages in strictly enforcing the GCL for any flow

computation on a moving domain are recalled. GCL enforcing on the specific

contexts of FSI was introduced in [Lesoinne and Farhat, 1996]. Thus, the use

of an algorithm that enforces the GCL allows for instance the use of a time step

ten times bigger than its inappropriate counterpart [Farhat and Lesoinne, 2000].

Even worse, error in the GCL can lead to an underestimation of the flutter speed

in aeroelastic problems.

The previous DFMT-GCSS algorithm was collocated. It means that the

window for computation on the fluid and solid parts were the same: [TN , TN+1].
It implies that both continuity and Geometric Conservation Law (GCL) cannot

be satisfied simultaneously. Indeed, even for a perfect prediction uPN+1 = uN+1

that has really little chance to occur, the velocity of the mesh on the fluid side

is computed as such:

u̇ f =
u f ,N+1 − u f ,N

∆t
=

uN+1 − uN

∆t
(2.25)

and cannot be equal to the velocity on the solid side, since for second order

schemes such as the midpoint or the trapezoidal rule, velocity is computed as:

uN+1 − uN

∆t
=

u f ,N+1 − u f ,N

∆t
6= u̇s (2.26)

In order to be accurate, the DFMT-GCSS has to be used with small time

steps.

2.2.4 Improved Serial Staggered (ISS) algorithm

To improve the explicit algorithm presented above, a natural idea is to consider

a non-collocated algorithm where the displacements u and the forces λ are not

computed at the same moment. This idea is summarized in Algorithm 6.

As shown in [Farhat and Lesoinne, 2000], this algorithm enforces both the

continuity equation (Eq. (2.4)) and the GCL (Eq. (2.24)) for second order time

integration schemes on the solid part. The idea behind this is to consider the

following equality:

u̇ f ,N =
u f ,N+ 1

2
− u f ,N− 1

2

∆t

=
1

∆t

(

us,N +
∆t

2
u̇s,N − us,N−1 −

∆t

2
u̇s,N−1

) (2.27)

46 CHAPTER 2. PARTITIONED APPROACH FOR FSI

Algorithm 6 Improved Serial Staggered

1: Given: initial counter N = 0, initial time T = T0, final time Tmax, window

size ∆t, initial interface displacement u0 and velocity u̇0.

2: Compute: initial fluid mesh with: u− 1
2

= u0 − ∆t
2 u̇0

3: while T < Tmax do

4: Predict displacement: uP
N+ 1

2

= uN + ∆t
2 u̇N

5: Solve problem f: λN+ 1
2

= S f (uP
N+ 1

2

)

6: Solve problem s: uN+1 = Ss
−1(λN+ 1

2
)

7: N ← N + 1 and T ← T0 + N × ∆t
8: end while

and to introduce the midpoint rule that states for the solid part:

us,N = us,N−1 +
∆t

2
(u̇s,N + u̇s,N−1) (2.28)

It leads to:

u̇ f ,N = u̇s,N (2.29)

Note that the same kind of remarks holds when coupling together nonlinear

structures. In [Ibrahimbegović and Mamouri, 2002], an algorithm that dissi-

pate spurious high frequency for geometrically exact coupled beams is proposed.

In [Piperno and Farhat, 2001], the interface energy produced by the DFMT-ISS

is shown to be potentially of second or third order.

Second order accuracy coupling schemes are obtained for many com-

binations of the flow integrator and the evaluation of force. The most

efficient second order DFMT-ISS is obtained for highly subcycled flows

(Eq. (2.14d)) and corrected forces evaluated in the last instant of the flow

integrator (Eq. (2.17e)). In this case, the energy produced at the interface

can be approximated with:

δe = − 1

12
Cd

(
∆t

Tchar

)2

+O
((

∆t

Tchar

)3
)

(2.30)

One can notice that the coefficient behind the second order term is smaller

than for any collocated coupling scheme.

Third order accuracy coupling schemes are obtained by considering sec-

ond order flow integrators without any sub-cycling (Eq. (2.14c)), and ap-

plying a corrected force evaluated at the end of the fluid window TN+ 1
2

(Eq. (2.17e)). This is the efficient scheme proposed in [Farhat et al., 1995].

For both second- and third-order accuracy schemes the attention of the

reader is focused the size of the coefficient behind the term of lowest order.

Compared to the collocated scheme like DFMT-GCSS, the non-collocated cou-

pling scheme DFMT-ISS exhibits smaller coefficients that explains the better

properties observed for this scheme.

2.2. EXPLICIT COUPLING 47

2.2.5 Conventional Parallel Staggered (CPS) algorithm

The algorithms proposed are naturally not parallel, in the sense that the struc-

ture problem cannot be solved on a window without knowing the computed

evolution of the fluid that the same window. In FSI, this is sometimes proposed

in order to gain time computation, but often yields interface.

However, in most computations, the time spent for the fluid solver is much

longer that the one spent for the solid one. It seems more relevant to propose to

take advantage of the fluid solver parallelization. More time was dedicated to

the proposition of a parallel version of our fluid components (see Section 3.3.3

for more details) than a deep study of the DFMT-CPS algorithm and their

implicit extensions.

2.2.6 Explicit coupling with incompressible flows: the artificial “Added-Mass

Effect”

In the first analysis of explicit DFMT partitioned algorithms applied to fluid-

structure interaction [Felippa et al., 1977], an upper limit on the time step size

is obtained for which each numerical simulation of structure explicitly coupled

to an acoustic flow diverges. The maximum time step size reported depends on

the fluid/structure density ratio and on the speed of sound in the fluid medium.

Such a criterion directly applied to incompressible flow where exist infinite wave

speed, predicts immediate instability, whatever the coupling time step chosen.

This effect is termed artificial “Added-Mass Effect”, since major parts of the

fluid act as an extra mass moving with the structure [Le Tallec and Mouro, 2001].

In staggered schemes, the computed fluid forces acting on the structure depend

on the predicted displacements instead of the exact ones which eventually lead to

instabilities observed for all explicit coupling schemes for incompressible flows

and structures. Those instability phenomenon are mentioned in [Wall, 1999,

Le Tallec and Mouro, 2001, Mok, 2001]. In [Causin et al., 2005], a simplified

model is proposed in order to predicts the instabilities. In [Förster et al., 2007,

Förster, 2007], an added discrete mass operator is given in terms of matrices

obtained with stabilized FEM discretization for the fluid part.

The added mass effect depends on some parameters of the discrete fluid-

structure interaction problem. The influence of some of those parameters is

now established, the influence of some parameters is as follows:

Coupling time step size: the smaller the time step is, the earlier the insta-

bility occurs;

Mass ratio between fluid and solid: the larger ρ f /ρs, the earlier the in-

stability occurs;

Temporal discretization precision order: the higher order the time in-

tegration scheme is, the earlier the instability occurs;

Fluid velocity: higher velocity has been numerically experimented to in-

crease the instability;

Solid stiffness: stiff structure leads to better stability properties than soft

ones.

48 CHAPTER 2. PARTITIONED APPROACH FOR FSI

The instability of explicit coupling algorithm is here emphasized by the nu-

merical examples in Sec. 4.1 and 4.3.

2.3 Implicit coupling strategies

For some fluid-structure interaction problems, and especially for aero-elastic

problems at high Mach number (compresssible flows), the explicit coupling

strategies detailed in Sec. 2.2 are widely used. Such strategies, where the re-

sults from one computation are given to the next one without any “come-back”,

favor of simplicity small cost, but even if the error propagation at each data

exchange can be estimated, it can lead to the over- or underestimation of phys-

ical instability phenomena. For coupled problems with incompressible flows,

strictly enforcing the interface continuity is often much more stringent in order

to avoid the added mass effect as explained in Sec. 2.2.6. By enforcing the con-

tinuity of primal variables at the interface the energy error can be eliminated

(see Eq. (2.12)). This can be done by iterating on the following residual hoping

to reduce it below a chosen tolerance:

rN+1 := us,N+1 − u f ,N+1 ≃ 0 ≤ TOL (2.31)

t

t

∆ts

∆t fP f

Ps

TN TN+1
×(kN)

p f |[TN,TN+1]

vs|[TN,TN+1]

Figure 2.2: Block Gauß-Seidel coupling algorithm for fluid (P f) structure (Ps)
interaction problems; this iterative scheme is applied (kN) times until conver-

gence on a window [TN , TN+1].

In this way we recover an implicit coupling solution. For each implicit cou-

pling algorithm the main questions to address are:

• which data (physical quantities) to exchange, and in which order? In

Fig. 2.2 the Block-Gauß-Seidel algorithm for fluid-structure interaction

problem is presented.

• is the coupling algorithm stable? In fact, even if each subproblem is com-

puted by a stable and converging scheme, a coupling algorithm can still

diverge [Matthies et al., 2006, Arnold and Gunther, 2001].

Fig. 2.2 gives an illustration of the results obtained by independent time

integration solvers in a window (i.e. t ∈ [TN , TN+1]), where not only the value

2.3. IMPLICIT COUPLING STRATEGIES 49

at synchronization points TN or TN+1, but also the interpolated evolution of

considered variables on the whole window have to be exchanged. Note that

one of the great advantages of the proposed algorithms is the possibility to use

different time steps and integration schemes for the two subproblems considered.

For example, the segregated approach with a PISO scheme in the VF-based code

OpenFOAM can be chosen, and is only half-implicit and requires small time step

in order to fulfill the CFL stability condition, along with an implicit scheme

for the structure that allow bigger time steps. It is possible to run a coupled

simulation that takes advantage of the natural time stepping arising from the

fluid and solid subproblems and their discretization.

2.3.1 Algebraic solvers based on Picard iterations

Contrary to explicit coupling algorithms which introduce spurious energy at the

interface, implicit ones will thus enforce the same evolution of the primal variable

at the fluid-structure interface. This is carried out by solving iteratively the fixed

point equation in (2.9) by the Picard iterative strategy like, which reads:

u
(k+1)
N+1 = G

(

u
(k)
N+1

)

; G = Ss
−1 ◦ −S f (2.32)

where the fixed-point function is based upon the Steklov-Poincaré operators

defined previously. The Picard iterations are carried out until convergence of

interface residual is achieved:

r
(k)
N+1 = u

(k)
s,N+1 − u

(k)
f ,N+1 = G

(

u
(k)
N+1

)

− u
(k)
N+1 (2.33)

Such a Picard iterative strategy can be recognized as the Block-Gauß-Seidel

algorithm, further denoted as DFTM-BGS, which is a natural generalization of

the explicit algorithms depicted above; It can be formally written as in Algo-

rithm 7.

Algorithm 7 Direct Force-Motion Transfer Block-Gauß-Seidel

1: Given: initial counter N = 0, initial time T = T0, final time Tmax, window

size ∆t, initial interface displacement u0.

2: while T < Tmax do

3: (k) = 0

4: Predict displacement: u
(0)
N+1 = P(u

(kmax)
N , u̇

(kmax)
N , u

(kmax)
N−1 , . . .)

5: repeat

6: Perform a Picard iteration: G
(

u
(k)
N+1

)

7: Compute residual: r
(k)
N+1 = G

(

u
(k)
N+1

)

− u
(k)
N+1

8: Update interface primal variable: u
(k+1)
N+1 = u

(k)
N+1 + r

(k)
N+1

9: do (k)← (k) + 1

10: until ‖r(k−1)
N ‖ ≥ TOL

11: N ← N + 1 and T ← T + ∆t
12: end while

The fixed-point algorithm based on Picard iterations for the time step N + 1
is represented in Fig. 2.3. Here, the main drawback of this simple algorithm is

50 CHAPTER 2. PARTITIONED APPROACH FOR FSI

that the search direction for u and λ variables does not exploit any information

from the fixed-point function G and the Steklov-Poincaré operators S f and

Ss that compose it. Therefore, many iterations can be required to reach the

convergence and even sometimes the algorithm can show unstable behavior.

e(k)

uu(k−2) u(k−1) u(k) u(k+1)

λ

λ
(k−1)

λ
(k)

λ
(k+1)

−S f

Ss

Figure 2.3: Strong Coupling algorithm by non-linear Block Gauß-Seidel.

The convergence of the coupling algorithm can be carried out using amplifica-

tion matrices, and are therefore based on linear stability [Felippa and Park, 2004].

In Appendix A, a non-linear stability proof using the Differential Algebraic

framework is proposed [Arnold and Gunther, 2001].

To improve the convergence and stability behavior of the DFMT-BGS method

we can try a more accurate update:

u
(k+1)
N+1 = u

(k)
N+1 +H r

(k)
N+1 (2.34)

where H is a matrix that improves the method convergence. Such a matrix can

be built with different methods:

Secant methods are used when the number of iterations is not the major

issue, but rather trying to maintain the cost of each iteration as low as

possible.

• traditional Block-Gauß-Seidel algorithm considers H to be the iden-

tity matrix. No more inverse at the interface level is required to

compute the increment. However, the convergence rate is low and the

stability domain of this algorithm is limited, especially when coupling

incompressible flows and structures.

• To overcome those last difficulties, approximating H by a scalar ω
can be proposed. It can be either constant – depending of the problem

treated – or chosen at each iteration ω(k) by methods such as Aitken

relaxation or steepest descent (gradient method). In this latter case,

the convergence rate (decreasing of the residual norm) is proved to

be able to reach α ≃ 1.6. The relaxation techniques are detailed in

Sec. 2.3.2.

2.3. IMPLICIT COUPLING STRATEGIES 51

Tangent methods require less iterations than secant methods but imply build-

ing tangent matrices and solve linear systems of equations.

• Newton-based algorithms consider the use of the Jacobian of the

residual equation (2.10): J (u(k)) = ∂ur(k) The search direction is

then given by H =
[

J (u(k))
]−1

This approach exhibits a monoton-

ically decreasing residual norm of order α = 2. Unfortunately the

computational cost of building this tangent matrix can be very high,

and, more problematic, some of the cross terms between fluid and

structure subproblems are often not reachable in codes.

• quasi-Newton based algorithms are based on an approximate of the

Jacobian and especially the cross terms. Newton and quasi-Newton

methods for fluid-structure interaction are described in Sec. 2.3.3.

Remark: The stability domain of fluid-structure interaction problems is mainly

governed by the ratio between fluid and solid density (see Appendix A). For Civil

Engineering based problems where we consider water and air against construc-

tion materials, this is not a major issue. However, when coupling incompressible

flows with structure, the stability region remains limited. A way to extend it is

to consider relaxation techniques [Joosten et al., 2009].

2.3.2 Relaxation techniques

Relaxation of the interface displacements can be considered as the equivalent

to the line-search step of a nonlinear solver [Golub and van Loan, 1996]. Ac-

cordingly, all the known line-search techniques can be applied here. The classic

update process of the interface displacements is improved by the introduction

of a simple scalar, the relaxation, noted ω:

u
(k+1)
N+1 = u

(k)
N+1 + ω r

(

u
(k)
N+1

)

(2.35)

A good relaxation parameter is:

∥
∥
∥r
(

u
(k+1)
N+1

)∥
∥
∥ ≤

∥
∥
∥r
(

G
(

u
(k)
N+1

))∥
∥
∥ (2.36)

i.e.the residual of the improved interface displacements that than the residual

of the displacement obtained without relaxation.

2.3.2.1 Fixed relaxation

The simplest idea is to apply a fixed value to the relaxation parameter ω.

A balance has to be found between the large relaxation parameters that are

faster but can lead to divergence of the suite of residuals, and small relaxation

parameters that allow to control convergence but trigger more iterations.

There is an optimum but it is not known a priori. Furthermore, the op-

timum relaxation parameter is problem-dependent. Last but not least, for

nonlinear problems, the optimum value is different at each time step and it-

eration [Joosten et al., 2009].

52 CHAPTER 2. PARTITIONED APPROACH FOR FSI

Remark: However, this fixed relaxation technique remains widely used in the

domain of Computational Fluid Dynamics. The classic semi-implicit algorithm

SIMPLE [Patankar, 1980], used in steady or in large time-step transient compu-

tations, in order to enforce the incompressibility condition of discretized Navier-

Stokes equations (see Section 1.2.2) converges for a certain range of fixed relax-

ation parameters [Ferziger and Perić, 1996, Jasak, 1996].

2.3.2.2 Aitken’s relaxation

Principle of Aitken’s relaxation is to use the last two values of residual to improve

of the current solution. Consider, for the sake of education, that the interface

displacement u and residual r are scalars. The suite of Picard’s iterations defined

by:

u
(k+1)
N+1 = G

(

u
(k)
N+1

)

(2.37)

is supposed to converge to a solution, as the G function has a fixed-point. This

suite is then improved by simply using the secant method.

I(u)

uu(k−1)u(k) G(u(k))u(k+1)

u

G(u) = S−1s (−S f (u))

b

b

b

b
b

b

1

2

3

4
5

6

L
eg

en
d

b

b

b

b

b

b

1

2

3

4

5

6

(

u(k−1),G (u(k−1))
)

(

u(k),G (u(k))
)

tangent/bisectrix intersection
(

u(k+1),G (u(k+1))
)

(

G (u(k+1)),G ◦ G (u(k+1))
)

solution:
(
u⋆ ,G (u⋆) = u⋆

)

Aitken’s and no relaxation

Figure 2.4: Building an improved solution by a secant method: geometric illus-

tration of Aitken’s relaxation.

The improved point is defined as the intersection of the secant between

points
(

u
(k−1)
N+1 ,G

(

u
(k−1)
N+1

))

and
(

u
(k)
N+1,G

(

u
(k)
N+1

))

and the bisectrix y = x. In

Fig. 2.4 a geometrical construction of the improved solution at the intersection

of the secant and identity functions is given. Mathematically speaking, it yields

the following identity:

u
(k+1)
N+1 = G

(

u
(k)
N+1

)

+
G
(

u
(k)
N+1

)

− G
(

u
(k−1)
N+1

)

u
(k)
N+1 − u

(k−1)
N+1

(

u
(k+1)
N+1 − u

(k)
N+1

)

(2.38)

The intersection equation above gives the improved value of the interface dis-

placements with:

u
(k+1)
N+1 =

u
(k)
N+1G

(

u
(k−1)
N+1

)

− u
(k−1)
N+1 G

(

u
(k)
N+1

)

G
(

u
(k−1)
N+1

)

− u
(k−1)
N+1 − G

(

u
(k)
N+1

)

+ u
(k)
N+1

(2.39)

2.3. IMPLICIT COUPLING STRATEGIES 53

Looking for an expression of the improved displacements of the form:

u
(k+1)
N+1 = u

(k)
N+1 + ω(k)

(

G
(

u
(k)
N+1

)

− u
(k)
N+1

)

(2.40)

gives the following value for Aitken’s relaxation parameter ω(k) from Eq. (2.39):

ω(k) =
u

(k)
N+1 − u

(k−1)
N+1

G
(

u
(k−1)
N+1

)

− u
(k−1)
N+1 − G

(

u
(k)
N+1

)

+ u
(k)
N+1

(2.41)

Supposing that the point u
(k)
N+1 was also built by Aitken’s relaxation, the fol-

lowing recurrence formula evolves into:

ω(k) = ω(k−1)
G
(

u
(k−1)
N+1

)

− u
(k−1)
N+1

G
(

u
(k−1)
N+1

)

− u
(k−1)
N+1 − G

(

u
(k)
N+1

)

+ u
(k)
N+1

(2.42)

From the definition of the residual in Eq. (2.33), it is quite straightforward to

compute the relaxation parameter from the last two values of the residual. The

only difficulty is to build an equivalent formula for the vector suite of interface

displacements
(

u
(k)
N+1

)

. In [Irons and Tuck, 1969], it is suggested to use the

inverse vector:
r
(k)
N+1 − r

(k−1)
N+1

∥
∥
∥r

(k)
N+1 − r

(k−1)
N+1

∥
∥
∥

2
(2.43)

which is equivalent to projecting in the direction r
(k)
N+1− r

(k−1)
N+1 and to doing the

inverse with the scalar projected value.

From the scalar definition of Aitken’s relaxation parameter Eq. (2.42), and

the definition of the inverse vector given in Eq. (2.43) we can build the relaxation

parameter for the interface displacements as:

ω(k) = −ω(k−1)
r
(k−1)
N+1 ·

(

r
(k)
N+1 − r

(k−1)
N+1

)

∥
∥
∥r

(k)
N+1 − r

(k−1)
N+1

∥
∥
∥

2
(2.44)

The Aitken’s relaxation parameter is exact for linear scalar cases. For vector

cases, the optimum efficiency of such relaxation parameter is not proved. How-

ever, using Aitken’s relaxation has shown tremendous performances in terms

of convergence rate and computation stabilization for a small computational

cost and its easy implementation. Strong arguments can be found in favor

of the use of the dynamic Aitken relaxation for fluid-structure interaction in

the [Wall, 1999] and associated works [Küttler and Wall, 2008, Mok, 2001].

In [Deparis et al., 2006], slightly different definition of the Aitken relaxation

parameter is given, using a vector expression close to Eq. (2.41). The latter

is preferred in Eq. (2.44) as only previous residual and relaxation parameter

values are used, that seems a little more consistant than mixing them with

direct displacements interface. However, the performance seems to be close.

Note that in [Küttler and Wall, 2008], authors highlight that the recurrent terms

54 CHAPTER 2. PARTITIONED APPROACH FOR FSI

in Eq. (2.44) are sometimes missing. That naturally leads to a less efficient

relaxation parameter.

The last problem to solve with Aitken’s relaxation parameter is the guess

of the initial relaxation at the beginning of the iterative process for each time-

window computation. As can be seen by Eq. (2.44), ω(k) is built with a di-

vision by a difference of residual r
(k)
N+1 and r

(k−1)
N+1 . When the convergence is

reached at a certain tolerance, the residual can be considered as zero and the

division will trigger numerical problems. To avoid this, it is proposed to use

as an initial guess ω
(0)
N = ω0 = 0.1 [Wall, 1999]. We propose here to use

ω
(0)
N+1 = max(ω

(kmax)
N , ω0). This initial guess seems to have better convergence

properties, especially for the first iterations.

2.3.2.3 Steepest descent technique

Contrary to Aitken’s relaxation, the steepest descent technique aims at building

an optimum relaxation parameter ω(k) that will minimize a certain cost function

in the direction r
(k)
N+1. For a certain merit function φ, it follows:

ω(k) = arg min
ω(k)

φ
(

u
(k)
N+1 + ω r

(k)
N+1

)

(2.45)

Assuming a smooth merit function φ and small residual r
(k)
N+1, it is possible

to build an optimum relaxation parameter ω(k) using a Taylor expansion at the

second order:

ω(k) =
∂uφ · r(k)

N+1

r
(k)
N+1 · [∂2

uφ] r
(k)
N+1

(2.46)

At this point, the merit function has to be determined. It is often proposed

to choose a merit function so that:

∂uφ
(

u
(k)
N+1

)

= r
(k)
N+1 (2.47)

This assumption only holds if the residual r is the gradient of an unknown scalar

function. It leads to a symmetric Jacobian:

∂2
uφ
(

u
(k)
N+1

)

= ∂ur
(

u
(k)
N+1

)

= J (k)
N+1 (2.48)

However, as noted in [Küttler and Wall, 2008] the convection phenomenon tak-

ing place in the fluid part of the coupled fluid-structure interaction problem

invalidat the last assumption. But an optimum relaxation parameter associated

can be built as such:

ω(k) =
r
(k)
N+1 · r

(k)
N+1

r
(k)
N+1 · J

(k)
(N+1)

r
(k)
N+1

(2.49)

It shows good performance in terms of number of iterations.

The added difficulty compared to the Aitken’s relaxation presented above

is the need to compute the vector matrix products J (k)
N+1r

(k)
N+1. To do so, two

calculations can be proposed:

2.3. IMPLICIT COUPLING STRATEGIES 55

finite difference where the derivative in the direction r is evaluated through

the use a small numerical numerical parameter.

approximated fluid derivatives where some part of the fluid derivative are

neglected in order to build an approximation of the Jacobian.

This two numerical methods can be used in a more general context to build

an approximation of the Jacobian for all quasi-Newton techniques applied to

fluid-structure interaction presented in Section 2.3.3. This is the reason why

the steepest descent method does not really make sense in the fluid-structure

interaction context. There are far better options than building a scalar approx-

imation of the search direction if one is able to produce an approximation of the

Jacobian!

2.3.2.4 Relaxation seen as an approximative Newton algorithm

Relaxation techniques are usually only seen as a way to improve the convergence

of a fixed-point iteration solver, disconnected from solver techniques that rely

on the evaluation of the Jacobian. The steepest descent method have no actual

practical interest for the fluid-structure interaction. However it makes clear the

link between the relaxation parameter and the inverse of the Jacobian.

The preeminence is given to the fact that relaxation gives a scalar approx-

imation of the inverse of the Jacobian interface. Aitken’s relaxation can be

considered as a secant method, and Steepest descent method builds the best

scalar approximation of this Jacobian.

The BGS algorithm with relaxation from Eq. (2.9) and Eq. (2.35) can be

re-written as follows:

− 1

ω(k)

(

u
(k+1)
N+1 − u

(k)
N+1

)

= −
(

Ss
−1
(

−S f

(

u
(k)
N+1

))

− u
(k+1)
N+1

)

(2.50a)
[

J̃ (k)
N+1

]

∆u(k) = −r
(k)
N+1 (2.50b)

where the approximation of the Jacobian J̃ = −ω−1I is clearly stated.

It is clear that if one builds a scalar approximation of the Jacobian, the

computational cost should be small as the search direction is not the good one.

So, the fault of this approximation is that it requires more iteration than Newton

or quasi-Newton methods.

In the next section we discuss the methods that propose to build either a

better approximation or exact Jacobian inverse in order to improve the rate of

convergence of the iterative process.

2.3.3 Newton and quasi-Newton based strategy

2.3.3.1 Formulation as a root equation

As noted in the previous section, algorithms based on fixed point strategy are

known to have a slow convergence rate. As shown in Fig. 2.3, this is mainly due

to the lack of search direction when the fixed point Eq. (2.9) is being solved. A

good way to overcome this difficulty is to give as search direction the tangent of

56 CHAPTER 2. PARTITIONED APPROACH FOR FSI

the nonlinear equation solved, and in this framework, we rewrite this equation

as a root equation:

Given: state variable at TN at the fluid-structure interface Γ and on the

fluid Ω f and structure domain Ωs

Find: uN+1 on Γ× [TN , TN+1],
Such as:

r (uN+1) = Ss
−1
(

−S f (uN+1)
)

− uN+1 = 0 (2.51)

This equation can be solved with a classic Newton scheme that is known to

be quadratically convergent in the neighborhood of the solution:

J (k)∆u
(k)
N+1 = −r

(

u
(k)
N+1

)

(2.52)

where the Jacobian J is computed as:

J = ∂ur = ∂u

(

S−1
s ◦ (−S f)

)

− I (2.53)

Thus, the Jacobian has to be computed at each nonlinear iteration. To be a

little more precise, Sec. 2.1.3 has established that the Steklov-Poincaré operators

can be depicted as compositions between mesh solver Rm, fluid solver R f and

solid solverRs and restriction operators for the primal Tu and dual Tλ quantities

at the interface:

S−1
s ◦ (−S) = Tu ◦ Rs ◦ Tλ ◦ R f ◦ Rm (2.54)

The derivative of these compositions of different operators has to be built,

or at least evaluated in some perturbation direction when a GMRES solver is

used [Heil, 2004]. In Algorithm 8 the Schur-Newton-Krylov algorithm is given:

The solving in Algorithm 8 can be carried out by an iterative free-matrix

method such as GMRES. In this case the Jacobian operator J = [∂ur] only

needs to be evaluated several times against the perturbation of the primal at

the interface state perturbation p. The GMRES algorithm for fluid-structure

interaction is given in the next section.

Note also that the evaluation of the residual amounts to perform an iteration

of the DFMT-BGS algorithm and therefore has the same computational cost.

2.3.3.2 Generalized Minimum Residual Algorithm

Solving the tangent problem by a GMRES solver requires several evaluations of

the Jacobian operator against the perturbation of the primal at the interface p.

A way to perform this task is to follow the Algorithm 9 given above.

This Schur-Newton-Krylov strategy is more robust than the block-Gauß-

Seidel one. This is due to the use of a Newton solver and it appears that no

relaxation is required. However, the main difficulty of the proposed algorithm

is to compute the fluid tangent subproblem as it requires the evaluation of the

cross derivative of the fluid problem in its moving domain. This task can be

performed with the following strategies:

2.3. IMPLICIT COUPLING STRATEGIES 57

Algorithm 8 Schur-Newton-Krylov algorithm for fluid-structure interaction

1: Given: initial counter N = 0, initial time T = T0, final time Tmax, window

size ∆t, initial interface displacement u0.

2: while T < Tmax do

3: (k) = 0

4: Predict displacement: u
(0)
N+1 = P(u

(kmax)
N , u̇

(kmax)
N , u

(kmax)
N−1 , . . .)

5: repeat

6: Perform a Picard iteration: G
(

u
(k)
N+1

)

7: Compute residual: r
(k)
N+1 = G

(

u
(k)
N+1

)

− u
(k)
N+1

8: Solve:
[

∂ur
(k)
N+1

]

∆u
(k)
N+1 = −r

(

u
(k)
N+1

)

9: Update interface primal variable: u
(k+1)
N+1 = u

(k)
N+1 + ∆u

(k)
N+1

10: do (k)← (k) + 1

11: until ‖r(k−1)
N ‖ ≥ TOL

12: N ← N + 1 and T ← T + ∆t
13: end while

Algorithm 9 Matrix vector product of the Jacobian with a Krylov vector

1: Perform the fluid tangent subproblem:

[

∂u f
Tλ ◦ R f ◦ Rm

]

δp̃ = −
[

∂usTλ ◦ R f ◦ Rm

]

p

2: Perform the solid tangent subproblem:

[∂usTu ◦ Rs] δp = −
[

∂u f
Tu ◦ Rs

]

δp̃

3: Evaluate the Jacobian as:

J p = [∂ur] p = δp− p

58 CHAPTER 2. PARTITIONED APPROACH FOR FSI

Finite difference approximation: The cross-Jacobians of the fluid tangent

operator are built with a Finite Difference approximation in the direc-

tion of interest [Matthies and Steindorf, 2003, Matthies et al., 2006], and

therefore, only the evaluation of state operators is required. However,

there is no a priori rule to select an infinitesimal finite difference step.

Thus, non-consistent Jacobian can be build, which leads to decrease the

overall performances of the algorithm.

Exact Newton evaluation: In [Fernández and Moubachir, 2005] as well as

in [Dettmer and Perić, 2008], the cross-Jacobians of the fluid and solid

operators are computed exactly using shape derivative calculus in order

to differentiate the integral of the weak state operators with respect to

their supports. This method requires modification of the solvers associated

with the fluid and solid subproblems. Furthermore, it was developed for

coupling problems relying on a weak-formulation, and can not be applied

to FV for fluids without developing the corresponding associated theory.

Quasi-Newton evaluation: Some terms of the shape derivatives are ne-

glected in order to build the Jacobian matrix and inverse it more eas-

ily [Dettmer and Perić, 2008, Gerbeau and Vidrascu, 2003b]. This method

is also used in the monolithic approach to reduce the cost of building the

tangent matrix for the whole coupling problem. It is also possible to build

an approximation of the Jacobian using an associated simplified problem

whose evaluation gives an accurate approximation of the fluid on moving

domain tangent operators [Fernández et al., 2007].

Even if SNK is supposed to converge in less iterations than the block-Gauß-

Seidel solver, the cost of computing the Jacobian computing often counters this

advantage, and it is a priori not possible to say which of the two solvers is least

CPU demanding. In [Barcelos et al., 2006], SNK is shown to be faster than BGS

when the structure becomes softer, and in [Deparis et al., 2006] the advantage is

made obvious when applied to problems coupled with small time steps. However,

in [Küttler and Wall, 2008], the maximum gain observed in CPU time for the

DFMT-SNK algorithm is around 33% of the CPU time observed for DFMT-

BGS.

Closure

This second chapter was dedicated to the introduction of different possible

strategies for coupled fluid-structure interaction problems. The monolithic ap-

proach is briefly recalled thanks to main references, but the partitioned approach

is here preferred for its modularity and the possibility to re-use existing soft-

ware (eee Chapter 3). The partitioned approach used here is based on the

Direct Force-Motion Transfer. Explicit and implicit coupling algorithms for

multiphysics problems are detailed.

In the previous Chapter 1, the ALE formulation of the fluid flows as well as

the Lagrangian formulation of the structure part are given. The ALE formula-

tion of the Navier-Stokes equations detailed previously apply to incompressible

flow in a moving domain. For this range of application, coupling with an explicit

2.3. IMPLICIT COUPLING STRATEGIES 59

strategy leads to the so-called “Added Mass effect”, and for that justifies the use

of more costly implicit solvers.

Implicit solvers can use either a fixed-point strategy that is known to be

rather slow to converge, or a Newton strategy that requires building up and

evaluating the costly Jacobian. In this work, the fixed-point strategy with an

adaptive relaxation parameter shows sufficient performances for the aimed com-

putations (see Chapter 4). The stability of the implicit coupling DFMT-BGS

algorithms used here is detailed in Appendix A.

60 CHAPTER 2. PARTITIONED APPROACH FOR FSI

3Building components for

fluid-structure interaction

In this chapter we discuss how to build the software tool

for fluid-structure interaction problem by re-using exist-

ing software for solid and fluid mechanics in a compo-

nent technology framework. The solid component calls

compiled Fortran subroutines of FEAP computer code.

The fluid component is based on direct linking with an

existing C++ library OpenFOAM, and allows paralleliza-

tion through some CTL features. The coupling between

components is ensured by a master-code approach, which

allows for the second layer parallelization.

61

62 CHAPTER 3. COMPONENTS FOR FSI

Contents

3.1 Component technology framework 64

3.1.1 Component Oriented Programming paradigm 64

3.1.2 Component-based implementation and its specifics . 65

3.1.3 The middleware CTL 65

3.2 Structure component based on FEAP 66

3.2.1 Interface definition of the structure component 67

3.2.2 Implementation of coFeap 68

3.2.3 Calling a service from the mechanical component . . 70

3.3 Fluid component based on OpenFOAM 71

3.3.1 Component interface and its implementation 71

3.3.1.1 Interface defintion of the fluid component . 71

3.3.1.2 Implementation of ofoam-2 73

3.3.2 RPC versus system calls and file reading performances 75

3.3.2.1 Two implementations of the fluid component 75

3.3.2.2 Performance Comparison between ofoam

and ofoam-2 75

3.3.3 Parallel CFD Component Features 77

3.3.3.1 Parallel CFD Component Implementation . 79

3.3.3.2 Parallel CFD Component Performances . . 81

3.3.3.3 Parallelization on the same multi-processor

machine . 81

3.3.3.4 Parallelization on a cluster 84

3.4 The master code cops 87

3.4.1 Software coupling applied to fluid-structure interaction 87

3.4.2 Component architecture of cops 88

3.4.3 Field interpolation between solvers 88

Closure . 91

63

Scientific computing software for a particular domain is often programmed

by domain experts themselves. Indeed, a deep understanding of both physical

phenomena and of numerical analysis is required to produce a successful piece

of scientific software. It implies that in a certain number of research centers,

and far more than in any domains where software are used, only one person

takes up the roles of domain expert, software designer, programmer, tester and

final-user.

Unfortunately, there are few programmers of scientific computing programs

who receive a formal eduction in software engineering – and I was not one of

them. It implies that when they want to validate new algorithms and numerical

methods or to understand physical phenomena, they often choose to start from

scratch. As attractive as this idea may be, it often requires tremendous effort of

development, and therefore, scientists remains stuck with low d-o-f problems.

The problem is even a little more different in the domain of scientific comput-

ing in engineering, where the ultimate goal of scientists is to propose method

adapted to software eventually programmed and used by engineers. For this

category of problem, discretization on large meshes with many d-o-f are re-

quired [Feyel et al., 1997] – e.g. prizes given to [Adams et al., 2004]’s first work

reaching the half-billion d-o-f in Finite Element Method. Another illustration

of this phenomenon is the role taken by large CFD computations in the de-

velopment and use of the most powerful computers for meteorological and cli-

matic [Fosdick et al., 1996] as well as oceanic computations [Guyon et al., 1999].

In order to facilitate the development of algorithms, general computational

type of software such as Matlab or Octave can be used. If they are relatively

efficient for prototyping, it is known that their generality leads to relatively poor

efficiency for the domain of our interest.

Another important point to underline is the importance of reliability in the

development of new software. As no known human programmer is able to de-

velop a bug-free program, testing and validating a piece of code is often the

most time consuming task in the development of scientific computing programs.

Furthermore, as the developer is often the tester, it is really rare that systematic

proof of the reliability of the program is made. The only solution for tracking

bugs is therefore to use and re-use software in different contexts.

Hence, the re-use of existing tools – software or library – is a major trend

in computing. In this work, the component-oriented framework that allows

to re-use existing codes for the fluid-structure interaction paradigm that was

mathematically set in the previous Chapters is described. The first steps are to

develop a Structure and a Fluid components of their respective subproblems.

For the structure component, the idea is to re-use the existing Fortran-based

FEM code FEAP. Its implementation and particularly the couping between the

Fortran part and the C++ part of the component is given in Sec. 3.2. The fluid

component ofoam is based on the C++ programmed libraries of OpenFOAM. Its

implementation as well as performance comparison are detailled in Sec. 3.3. The

performances of the Remote Process Execution is compared to file reading/writ-

ing and program execution. The tremendous cost of some fluid computations

justify the development of an ofoam version that re-use the parallel features

of the existing program in the way components would use it. The coupling

64 CHAPTER 3. COMPONENTS FOR FSI

of the components is ensured by a master-slave approach, developing a C++

component that implements the coupling algorithms defined in Chapter 2. The

interpolation of fields between the two solvers is insured by a specific component

developed by [Jürgens, 2009].

3.1 Scientific computing design in the component Technology Frame-

work

3.1.1 Component Oriented Programming paradigm

As described below, the need to re-use existing software products and tools

in a more general context is a major trend of software engineering. In the

famous Garmish (Germany) NATO conference that took place in 1968, the first

stones of modern software engineering where laid, and some answers to the

problems described previously, and more generally, to the so-called Software

Crisis were given [O’Regan, 2008]. In [Mac Ilroy, 1968] for instance, the notion

of components and their role in software re-use was introduced for the first

time, but a proper definition is yet to be accepted by everybody. For instance,

a loose definition of components as entities which can be used, possibly with

modifications, in a new software development can be found in [Coulange, 1998,

Berti, 2002]. With a more specific meaning, in [Szyperski, 1998] ones defines a

component as a piece of software capable of performing certain tasks prescribed

within its interface and which it is able to communicate with other components.

In the present case, latter definition is considered as the more stringent .

This paradigm somehow extends the concept of object in object-oriented

programming with the notion of communication between components. The

generalization of the definition of class methods – for the oriented-object pro-

gramming – equals here an interface listing the tasks it can execute on input

data or on its attribute. This interface can be seen as the contract that links the

two parties: components and clients. Another important feature of components

is that they are deployed on a system. Or as stated in [Szyperski, 1998]:

Software components are binary units of independent production,

acquisition, and deployment that interact to form a functioning sys-

tem

Thus, in order to be considered as a component, binaries should obey the

five following criteria as specified in [Niekamp, 2005b]:

Multi-usability: several components should be instantiated on the same CPU

or on different machines; this feature allows parallel processing.

Non-context specific implementation: two components that fit the same

interface can be used by a service without any modification. For exam-

ple, in this work, the structure component coFeap based on the FEM

code FEAP [Taylor, 2008], can also be replaced by the component based on

ParaFEP software product [Niekamp and Stein, 2002].

Composability: it is possible to make components out of components. We

propose to couple the fluid and structure components with a master com-

3.1. COMPONENT TECHNOLOGY FRAMEWORK 65

ponent cops (COupling COmponents by a Partitioned Strategy). A ver-

sion of this component is used to perform stochastic computations on

fluid-structure interaction problems [Austruy, 2008, Austruy et al., 2008].

Encapsulation: it is not possible to access the inner structure or details of a

component via an interface. Hence, the implementation of the algorithm

defined by the interface and the implementation of the communication

method are strictly separated.

Development and version independent: a component defined through its

interface should be independent from its version, programming language

and even of the compiler used. It means that once deployed on a ma-

chine, it can be called by any service knowing only its interface and the

middleware until it is erased.

More details can be found in the following conversation [Broy et al., 1998].

3.1.2 Component-based implementation and its specifics

From a scientific computing point of view, the implementation based on compo-

nent technology relies on the definitions of API (Application Program Interface).

Indeed, both clients – those that call a method – and services – those that ex-

ecute the task – have to share the knowledge of classes, functions and methods

available. The API allows the Remote Procedure Call (RPC), or yet called Re-

mote Method Invocation (RMI), to access libraries, procedures or stored object

throughout a network or on the same machine.

In a component-based implementation, a strict separation is made between

the algorithm and the method implementation on one side, and the communi-

cation handled by the middleware on the other side. Ideally, the client side is

totally independent from the way the clients are called, and it does not matter

whether they are available locally or remotely called.

In scientific computing, RPC are rivaled by explicit Message Passing API.

The main drawback of Explicit Message based programs is that they mix what

concerns the algorithm with what concerns the communication between pieces

of software. However, from a historical point of view, they were the first to

be used in this domain. Thus, MPI [Gropp et al., 1994] or PVM [Geist, 2007]

initially only allowed Explicit Message Passing. Nevertheless, the advantages of

RPC is now generally admitted, as confirmed by the growing number of types

of middleware products available for scientific computing.

3.1.3 The middleware CTL

As depicted in Section 3.1.3, component based development requires a middle-

ware layer between clients and services. More precisely, in [Orenstein, 2000], a

middleware is defined as:

Middleware works by providing a standardized, API-like interface

that can allow applications on different platforms or written in dif-

ferent languages to interoperate.

66 CHAPTER 3. COMPONENTS FOR FSI

Many free and non-free middleware are currently available on the market;

The most well known are, CORBA (Common Object Request Broker Archi-

tecture), Java™RMI or Microsoft® .NET. However, the field of scientific com-

puting requires very high performance in communication, which implies that

only a few of the available middleware are of interest for extensive computation.

In fact, according to information on performance computing between different

types of middleware in [Niekamp, 2005b], only CORBA – among the quoted

environments – fulfills the cost requirement, but is known for its complicated

syntax.

In the last ten years, new components like CCA [Kohl and Bernholdt, 2002],

Charm++ [Lawlor and Zheng, 1999] or CTL where specifically developed for

the need of scientific computing and with the aim of simplifying the syntax. In

this work following in the steps of earlier development [Niekamp et al., 2009],

we will use the CTL as middleware.

Initially a part of ParaFEP [Niekamp and Stein, 2002], the Component Tem-

plate Library (CTL) was developed by Dr. R. Niekamp at the Institute für Wis-

senschaftliches Rechnen (TU-Braunschweig). It is a C++ template library, like

the STL, that builds a wrapper or a communication layer around a software,

and thus allows so to build components from existing piece of code. This layer

ensures a serialization of the data to be exchanged over a network, and im-

plements, via code generation, an interface defined in a particular header file.

Unlike complicated CORBA syntax, the API is here written in C-preprocessor

language, often in a *.ci (for Component Interface) file.

The two main advantages of CTL are [Bügling, 2006]:

• providing a lightweight that can be used on top of several local (library and

thread) or remote communication methods (TCP/IP, MPI and others).

• making the process of writing an application or a service which uses the

CTL protocol as transparent as possible. Developers of a service can

write its implementation like they would write a normal local class, with

the exception that they need to give the CTL a method to serialize the

contained data. Developers of a client only needs then to choose a service

within the CTL API and how it starts. They can use the objects provided

by CTL services as if they were standard local objects.

3.2 Structure component based on FEAP

Building a CTL component based on FEAP was the first contact of the research

group of Adnan Ibrahimbegović at LMT-Cachan/Civil Engineering with the

component technology. The first prototype was designed by Pr. R. L. Taylor

and Dr. R. Niekamp and co-workers [Niekamp et al., 2009] to match a generic

interface that every “mechanical simulator” should fulfill (see Section 3.2.1).

This first prototype has been fully re-written, extended and maintained by Dr.

M. Hautefeuille and myself, and the architecture and its implementation is de-

scribed in Section 3.2.2. For more details, the reader is however invited to read

coFeap’s manual [Kassiotis and Hautefeuille, 2008].

3.2. STRUCTURE COMPONENT BASED ON FEAP 67

3.2.1 Interface definition of the structure component

Building a component requires first to define the list of methods that it should

perform. The methods are defined by their names and a list of inputs and

outputs (I/O). To this method, one (or more) constructors and optionally one

destructor are added. This defines the component interface that is written in a

file in C-prepocessor language when the CTL is used (other middleware often

proposing their own interface definition langage). For CTL component, the

interface file is often marked by the extension .ci for Component Interface.

In a weak sense, defining an interface is really close to declaring a class in

all object oriented languages. Thus, the .ci file can be seen as equivalent to an

.hpp file that contains the declaration of a C++ class [Stroustrup, 1986].

The interface design was first seen as a general abstraction of what defines

all simulators in the field of mechanical engineering. Subtle distinction between

Fluid and Structure domains lead to the introduction of a simulator interface:

the simu.ci for mechanical components detailed below, and the CFDSimu.ci

described in Section 3.3. The simu.ci interface is made to match any FEM

code. Once the connect process via CTL is done, the relying code behind is

used as a black box by the client calling this service. For instance, our coupling

component can call for solid mechanics indifferently either coFeap or the CTL

component based on ParaFEP [Niekamp and Stein, 2002] that matches the same

interface.

The simu.ci looks like the following: the method and constructor declara-

tions lie between the CTL_ClassBegin and the CTL_ClassEnd.

#ifndef __SIMU_CI_

#define __SIMU_CI_

#include <ctl.h>

#define CTL_ClassTmpl SimuCI , (scalar1), 1

#include CTL_ClassBegin

// Constructors and methods declaration

include CTL_ClassEnd

#endif // __SIMU_CI_

Basically, the methods can be split into three generic distinctions:

Pre-treatment focuses on the definition and set times up of the discretized

problem. Defining the geometry and zone of interest, getting the nodes,

the elements and their connectivity and applying loadings to the structure.

For instance, the set_load applies a vector of load to the structure nodes.

This loading can be primal (imposed displacement), dual (imposed forces)

or both.

#define CTL_Method6 void , set_load , (const array <scalar1 >/*value*/), 1

Treatment build residual and solve linear and non-linear problems defined in

the component. For instance the method solve performs the resolution

of a linear or non-linear set of equations to a tolerance previously given to

the component for one time step.

68 CHAPTER 3. COMPONENTS FOR FSI

#define CTL_Method10 int4 , solve , (), 0

Post-treatment is there to get the desired variables (primal, dual or internal

variables for the case of non-linear solid mechanics problem) either in the

form of field that can then be manipulated by a client, or saved into files to

be plotted with a visualization tool such as Paraview [Kitware Inc., 2009].

The get_state allows to get variables of different kind (defining by the

character chain disp, velo or acce for instance) in the region of interest.

#define CTL_Method25 void , get_state ,

(const string /*name*/, array <scalar1 >/*value*/) const , 2

Therefore developing a component such as coFeap means giving an imple-

mentation to the method declared in the component interface simu.ci in a way

such as the existing FEAPlibrary is called. The next subsection deals with this

problem.

3.2.2 Implementation of coFeap

The Finite Element Application Program (FEAP) has been developed by Pr.

R. L. Taylor and his co-workers since late 70’s. At that time, Fortran 77

was the most widely used programming language in the field of computational

science. Thus, most of the FEAP code was developed in that language, with some

more recent parts written in Fortran 90 for specific issues, and in C for all that

concerns dynamic memory allocations. Since 7.5 version of FEAP supported

compilation on 32 or 64 bit machines, and we retain this version to build our

component. Therefore, one of the challenges when building coFeap is to connect

a Fortran based code in the CTL middleware programmed in meta-template

C++, which has been addressed in [Niekamp et al., 2009]

Despite the language small heterogeneities described above, the inner struc-

ture of FEAP is rather simple, which made it an interesting code for the develop-

ment of coupled software product. The left part of Fig. 3.1 describes the way the

compilation of FEAP is done. The header files contain the global variables used

in the subroutines. Most of those are implemented in Fortran *.f files. They

are compiled and gathered in the archive Feap7_5.a which is the only library

as well as the core of the code. A main routine, feap75.f is then compiled and

linked to this archive in order to build up the executable file FEAP that can then

be called to performs Finite Element computations.

Once the FEAParchive is built, the building of the component can be per-

formed following the central part of Fig. 3.1:

Methods compilation: Each method that is declared in the simu.ci file

needs to be implemented in a Fortran subroutine file. These files bear

the prefix simu_ and the suffix _impl in order to allow the connection to

the interface. All the routines in the simu_*_impl.f files are compiled

independently.

Interface connection: When a component is based on a C++ class, the con-

nection to the interface is made by binding each method defined within

3.2. STRUCTURE COMPONENT BASED ON FEAP 69

cl
ie

n
t.
ex

e

D
is

tr
ib

u
te

d
a
p
p
li
ca

ti
o
n

cl
ie

n
t.
o

cl
ie

n
t.
cp

p

si
m

u
.c

i

co
n
n
ec

t.
o

co
n
n
ec

t.
cp

p

si
m

u
∗

im
p
l.
o

si
m

u
∗

im
p
l.
f

li
co

fe
a
p
.s

o

co
fe

a
p
.e

x
e

C
o
m

p
o
n
en

t

C
T

L
F
.h

F
ea

p
7

5
.a

v
er

7
5
/
[.
..
]/
∗.

f

v
er

7
5
/
in

cl
u
d
e/
∗.

h

fe
a
p
7
5
.o

fe
a
p
7
5
.f

fe
a
p

M
o
n
o
li
th

ic
a
p
p
li
ca

ti
o
n

d
ir

ec
t

ca
ll

co
m

m
u
n
ic

a
ti
o
n

#
in

cl
u
d
e

co
m

p
il
in

g

li
n
k
in

g

Figure 3.1: coFeap dependencies graph

the interface to a public method of the class. In Fortran, as there is

no difference between the declaration and the actual implementation of

a method, another approach has to be used. The CTL behaves like if

a virtual header CTL_F.h was created for the Fortran subroutines. The

connect.cpp files take the following form

#define CTL_ConnectF

#define CTL_ClassPrefix simu

#include <simu.ci>

void CTL_connect ()

{ ctl::connectF <SimuCI <double >, ctl:: Extern ::SimuCI >(); }

70 CHAPTER 3. COMPONENTS FOR FSI

The default behavior is handled by the CTL_connectF library that pro-

poses to connect all methods whose names begin by the CTL_ClassPrefix,

here simu, as mentioned in the previous paragraph.

Linkage to the archive: The last step is the linkage of the binaries obtained

from the method simu_*_impl.o, the connection step connect.o and the

FEAP’s archive file Feap7_5.a. Two output files are built from this linkage

process: first a library libcofeap.so that can be used through CTL with

dynamic linkage or thread calls; then a remote executable cofeap.exe

that can be called via TCP through sockets of a network, via pipe to

avoid firewall or via MPI or PVM if this protocols are installed.

Once those two steps done, it is possible to call coFeap as a service by any

of the direct calls (dynamic linkage, thread. . .) or communication processes

(TCP, pipe. . .) supported by the CTL. Examples will be shown in the next

Section 3.2.3.

3.2.3 Calling a service from the mechanical component

The right part of Fig. 3.1 depicts the compilation process of a client that may

use the RPC of any SimuCI service that fits the simu.ci interface, and es-

pecially coFeap. In this particular case, the client is a C++ code, client.cpp,

which includes simu.ci. After compilation and linkage, the resulting executable

client.exe can directly call the shared library libcofeap.so, via dynamic link-

age or thread on the same machine, or communicate with the remote executable

cofeap.exe, via tcp call on a remote host.

Thus the initialisation process is carried out as follows:

include <simu.ci>

int main () {

ctl:: location loc;

ctl::link link (loc);

SimuCI < double > cofeap(link , "Cfile");

return 0;

}

The string "Cfile" describes the name of the control file. It is in charge

of the behavior of the component (deciding for instance, whether the boundary

condition that are send to the component correspond to force loading or imposed

displacement). For using the shared library, string loc has to take the following

value:

loc = "<path >/ libcofeap.so -l lib";

On the contrary, calling a remote process on a machine named retsina has

to be:

loc = "retsina:<path >/ cofeap.exe -l tcp";

Once the component is instantiated, the client does not have to know how

the CTL handles the communication, and each method of the component is

called as if it were a classic class. Thus, it is possible to build the Poincaré–

Steklov operator described in Algorithm 4 using the pre- and post-treatment

methods described above.

3.3. FLUID COMPONENT BASED ON OPENFOAM 71

double dt = 0.1;

std::vector <double > l, u;

l = [...];

cofeap.set_load(l);

cofeap.time_step(dt);

cofeap.solve ();

cofeap.get_state("disp", u);

Another choice could have been to build directly the Poincaré–Steklov oper-

ator at the level of the component, defining it in the interface. However, for the

sake of modularity, it has been chosen to declare and implement only elementary

methods at this level. In our implementation, the Poincaré–Steklov operator is

implemented in the form of a template class PoincareSteklov that accepts any

simu component that fits some of the requirement of their interfaces. For more

details, see Sec. 3.4.2

3.3 Fluid component based on OpenFOAM

Building a component based on existing CFD solver is not an easy task. First,

one has to choose a discretization strategy. As stated in [Ferziger and Perić, 2002],

among all the CFD software disposable on the market, many more are FV-

rather than FE-based.

Thus, to illustrate the generality of the coupling approach, we choose to

couple an FE code for the structure to an FV code for the fluid. As I was not

specialist of CFD, another criterion was to choose a software with an active

community. Last but not least, developing components is easier when one has

access to the source code.

All these reasons make that OpenFOAM was first chosen to develop a CFDsimu

component.

3.3.1 Component interface and its implementation

3.3.1.1 Interface defintion of the fluid component

As for the structure component, building the CTL CFD component requires

first to define the list of methods that it should perform (Section 3.2.1) in C-

preprocessor language.

The CFDSimu.ci could have been seen as a specialization of the generic

simu.ci interface that defines a structure component, and more generally, of any

continuum mechanic solver. However, as the development of the CFDSimu.ci

and simu.ci were made in parallel, based on two very different software prod-

ucts, this was not noticed at first glance.

The simu.ci looks like the following: the methods declaration and the con-

structor lie between the CTL_ClassBegin and the CTL_ClassEnd.

#ifndef __CFDSIMU_CI_

#define __CFDSIMU_CI_

#include <ctl.h>

#define CTL_Class CFDSimuCI

#include CTL_ClassBegin

72 CHAPTER 3. COMPONENTS FOR FSI

#define CTL_Constructor1 (const string /* controlFile */), 1

// methods declaration

#include CTL_ClassEnd

#endif

Here, the constructor accepts as an argument a string that contains the path

to a control file, read by the boost_program_option library [Schäling, 2009].

This control file contains information such as the dimension of the problem, the

name of the solver invoked, that of the interface and the way to get values when

sub-iteration time steps are performed.

Basically, CFD component methods can be split into three generic groups:

Pre-treatment focuses on the definition and set up of the discretized prob-

lem. Basically, it concerns the application of boundary conditions on the

CFD problem. The boundary conditions can be of Dirichlet (primal, i.e.

domain displacements or fluid velocity at the interface) or von Neumann

(dual, i.e. pressure at the interface).

#define CTL_Method1 void , set ,

(const string /*name*/, const array <real8 > /*v*/), 2

Treatment methods build residual and solve linear and non-linear problems

defined in the component. For instance the method solve work out the

non-linear transient Navier-Stokes equation on a moving domain on a win-

dow of size δt.

#define CTL_Method3 int4 , solve , (const real8 /* timeStep */), 1

As the time integration on the window can be performed with many small

time steps, we also define a goback method that allows to goback in time

to the beginning of the window, where the state of the computation was

previously saved. This method is useful for implicit coupling and conver-

gence difficulty in the given step.

#define CTL_Method4 void , goback , (), 0

Post-treatment is there to get the desired variables (primal or dual) in the

form of an array that can then be manipulated by a client. It allows to

get variables of different kind (defined by the character chain disp, velo

or forc for instance). The interface of interest is defined in the control

file according to the boundary names of the OpenFOAM case treated.

#define CTL_Method2 void , get ,

(const string /*name*/, array <real8 > /*v*/) const , 2

We also propose an error estimate that evaluates the discretization error

with a residual based technique [Jasak and Tuković, 2007].

#define CTL_Method6 void , error , (real8 /*err*/) const , 1

3.3. FLUID COMPONENT BASED ON OPENFOAM 73

Therefore developing a component such as ofoam means implementing to

the method declared in the component interface CFDSimu.ci in the same way

as the existing OpenFOAM libraries are called. The next subsection deals with

this problem.

3.3.1.2 Implementation of ofoam-2

Open Source Field Operation and Manipulation [OpenCFD LTD, 2009] (OpenFOAM)

is first and foremost a C++ library. It is used primarly to build executables,

known here as applications. Applications are mainly of two kinds: solvers –

designed to solve a specific continuum mechanics problem – and utilities – de-

signed to manipulate data, mainly during the pre- and postprocessing phases.

The development of OpenFOAM was both held by academics (London Imperial

College) and a company named OpenCFD LTD. It started at the beginning of

the 90’s and made this library one of the first entirely developed in C++ in the

field of computational mechanics. The code was made freely available during

the 2000’s. For more details, the reader is invited to the following publica-

tions [Jasak, 1996, Weller et al., 1998] and refered to the active forum1.

Despite being entirely programmed in C++ in a clear and consistent style,

the extensive use of object-oriented advanced features makes the deep under-

standing of OpenFOAM quite obscure at first. However, the programming of

new applications is really facilitated by the clear syntax that allows to write

solvers and utilities in a style really close to the continuum mechanics formula-

tion [Weller et al., 1998]. The left part of Fig. 3.2 describes the way the compi-

lation of solvers and utilities is done. Classes are declared in various *.H files,

implemented in *.C in order to build different libraries lib*.so associated to the

various ranges of applications (e.g.: general FV libraries, moving mesh libraries

or fluid model from laminar stationary to turbulent dynamic flow libraries. . .).

Applications for each kind of finite volume solvers desired are implemented in

different *.C main routine, dynamically linked to the compiled libraries.

From the OpenFOAM general overview given above, we decide to build a com-

ponent following the idea given in the central part of Fig. 3.2.

Method implementation: A template wrapper class, named ofoam, that im-

plements the methods required by CFDSimu.ci is written. The methods

are implemented in in *.inl files.

Interface connection: Contrary to what is explained for coFeap’s compo-

nent based on the Fortran software FEAP, the CTL does not deal with

the connecting process. However, it is obvious that each public method

of the ofoam template class corresponds to a method of the CFDSimu.ci

interface. The connect thus takes the following form:

#define CTL_Connect

#include <cfdsimu.ci >

#include <ofoam.hpp >

#include "connectDetails.hpp"

1http://www.cfd-online.com/

http://www.cfd-online.com/

74 CHAPTER 3. COMPONENTS FOR FSI

cl
ie

n
t.
ex

e

D
is

tr
ib

u
te

d
a
p
p
li
ca

ti
o
n

cl
ie

n
t.
o

cl
ie

n
t.
cp

p

C
F
D

si
m

u
.c

i

co
n
n
ec

tO
fo

a
m

.o

co
n
n
ec

tO
fo

a
m

.c
p
p

O
fo

a
m

*
.i
n
l

li
b
o
fo

a
m

.s
o

o
fo

a
m

.e
x
e

C
o
m

p
o
n
en

t

O
fo

a
m

.h
p
p

li
b
/
li
b
*
.s

o

sr
c/

*
.C

sr
c/

*
.H

a
p
p
li
ca

ti
o
n
s/

*
.o

a
p
p
li
ca

ti
o
n
s/

*
.C

a
p
p
li
ca

ti
o
n
s/

b
in

/
*

M
o
n
o
li
th

ic
a
p
p
li
ca

ti
o
n

d
ir

ec
t

ca
ll

co
m

m
u
n
ic

a
ti
o
n

#
in

cl
u
d
e

co
m

p
il
in

g

li
n
k
in

g

Figure 3.2: ofoam-2 dependencies graph

void CTL_connect () {

ctl::connect <CFDSimuCI , Ofoam <>, connectDetailsCI >();

}

where connectDetailsCI binds each ofoam public method to its interface

declaration.

Linkage to archive: The last step is the linkage of the result of the connec-

tion step with the OpenFOAM shared objects. Special care has to be taken

in handling dynamic libraries, both in OpenFOAM and in the CTL compo-

nent. We here choose to follow what is done with OpenFOAM, and to use

dlopen with RTLD_LAZY‖RTLD_GLOBAL opening options.

3.3. FLUID COMPONENT BASED ON OPENFOAM 75

Once these two steps are done, it is possible to call ofoam-2 as a service by

any of the direct calls (dynamic linkage, thread. . .) or communication processes

(tcp, pipe. . .) that are supported by the CTL.

3.3.2 RPC versus system calls and file reading performances

3.3.2.1 Two implementations of the fluid component

The first version of quick implementation was implemented by M. Krosche,

in a collaborative project between the Institut für Wissenschafltiches Rechnen

(TU-Braunschweig) and BMBF. As explained in [Krosche, 2009], the first ofoam

component architecture is based on file reading and system calls. Behind the

CFDSimu.ci interface is implemented a class that reads output files from Open-

FOAM and uses system calls in order to perform computation. This has the ad-

vantage of being not intrusive at all, and this version of the component depends

neither on header files nor on OpenFOAM libraries. So, it is allowed to distribute

this component in any Licence (here LGPL was used) even if OpenFOAM is GPL.

We chose in 2008 to develop the new version of ofoam described above in

Section 3.3.1.1. As the distribution and licensing of the component was not a

major issue, it was decided to develop a component directly linked to OpenFOAM.

As seen in Section 3.3.2.2, this has the major advantage of working faster.

To evaluate the performance gain obtained with the new implementation,

we propose to compare the CPU time required by the call of methods of each

component on the same test case.

3.3.2.2 Performance Comparison between ofoam and ofoam-2

The tests are performed on a Newtonian flow in a cylinder for the two architec-

ture of components: ofoam– based on file reading – and ofoam-2 – the wrapper

class and component build around OpenFOAM.

The dimensions of the tube are a 5m diameter and a 10m length, and the

computation pertains to fully three dimensions flow. The input velocity on

the inlet is imposed as being uniform (10m.s−1), whereas at the outlet, the

pressure gradient is set to 0. Perfect wall conditions (zero velocity) are applied

to tube walls. We consider as material properties the following values for the

density ρ = 1.0kg.m−3 and dynamic viscosity µ = 0.01m2.s−1. The numerical

simulation spans from time t = 0s to time t = 0.01s.

The discretization in space is carried out by second order Finite Volume

approximation. In time, an implicit Euler scheme with dt = 0.001s is applied.

The algorithm chosen is based on PISO [Ferziger and Perić, 2002, Jasak, 1996].

At each time step, two outer corrections are performed to ensure the pressure

velocity coupling. The solvers for the fluid velocity and pressure fields are based

on PBiCG and PCG respectively.

The study is performed for meshes with 9× 103, 72× 103 and 576× 103 cells

(the number of d-o-f equals roughly 4 times the number of cells). In Fig. 3.3,

the coarsest mesh is given. The velocity field magnitude for the final time step

is represented in Fig. 3.4, indicating that the parabolic profile expected away

from the inlet is well represented.

76 CHAPTER 3. COMPONENTS FOR FSI

Figure 3.3: Cylinder discretized with 9× 103 cells

Figure 3.4: Velocity field magnitude in the cylinder in m.s−1

The overall performance of components is the one that was expected. The

methods can be divided into two classes:

• methods that require intrinsically a lot of data exchange compared to the

computation cost – get (nodes, pressure, velocity) and set (velocity, mesh

displacements)

• methods for which most of the time is spent for computations – solve,

init.

For the former, a component based on file reading will be intrinsically less

efficient, since the speed of access to data by opening and reading files written

on the hard drive cannot compete with a direct access to the memory. For

the latter, the performance mainly depends on the implementation of OpenFOAM

3.3. FLUID COMPONENT BASED ON OPENFOAM 77

cells 9× 103 72× 103

version ofoam-2 ofoam-1 ofoam-2 ofoam-1

m
et

h
o
d
s

init 5.03× 10−01 5.50× 10−01 3.96× 10+00 3.79× 10+00

getnodes 1.44× 10−04 1.75× 10−02 3.10× 10−04 1.34× 10−01

set 5.07× 10−05 5.27× 10−04 8.92× 10−05 1.46× 10−03

solve 6.10× 10−01 9.66× 10−01 1.60× 10+01 1.73× 10+01

get 2.00× 10−04 3.48× 10−02 6.29× 10−04 2.68× 10−01

total 1.17× 10+00 1.89× 10+00 2.00× 10+01 2.19× 10+01

cells 576× 103 4608× 103

version ofoam-2 ofoam-1 ofoam-2 ofoam-1

m
et

h
o
d
s

init 4.52× 10+01 4.13× 10+01 5.79× 10+02 5.50× 10+02

getnodes 8.81× 10−04 1.10× 10+00 3.18× 10−03 8.41× 10+00

set 2.06× 10−04 4.74× 10−03 6.33× 10−04 1.78× 10−02

solve 1.89× 10+02 1.98× 10+02 1.87× 10+03 1.94× 10+03

get 2.22× 10−03 2.09× 10+00 8.64× 10−03 1.77× 10+01

total 2.35× 10+02 2.44× 10+02 2.45× 10+03 2.53× 10+03

Table 3.1: Performance comparison between ofoam and ofoam-2 in terms of

CPU time for each method given in seconds; the latter has been measured using

the CTL profiler (CTL_Profile).

itself, as the time spent in data exchange is very little compared to the one spent

in the computation, especially for a huge number of d-o-f.

In Fig. 3.5, the bottleneck of a fluid computation pertains, as expected, to

the problem solving (matrix inversion for any method used). Note that the

solve method is a bit faster for ofoam-2 implementation since there is no need

for the software to reload data before performing computation. Thus, the slight

advantages offered in terms of CPU time does not alone justify the choice of

building a new component ofoam-2. Rather the possibility of reusing any class

developed in the OpenFOAM project provides a better argument in favor of the

new implementation

Note also that the perfomances of the goback, which allows to go-back to

the beginning of the coupling time window considered, is somewhat faster on

the first implementation. Indeed, in ofoam-1 it is allowed to go back in time to

values previously saved in files, whereas ofoam-2 needs to double the memory

allocation size in order to save the values at the beginning of the time windows.

3.3.3 Parallel CFD Component Features

For most fluid-structure interaction problems, especially in the development

phase of the coupling software, the bottleneck of models are flow computations.

Therefore, even if the parallelization of the coupling algorithm (See for instance

Sec. 2.2.5) is of interest, this is only the case if the fluid and the structure com-

putations require the same CPU time. The implementation of parallel coupling

algorithms can be then accomplished with CTL in a quite straightforward man-

78 CHAPTER 3. COMPONENTS FOR FSI

T
im

e
(s

)

10−1

101

103

105

7 · 103 7 · 104 7 · 105 7 · 106

ofoam 1

rs

rs

rs

rs

rs

ofoam 2

bc

bc

bc

bc

bc

i
n
i
t

T
im

e
(s

)

10−4

10−2

100

102

7 · 103 7 · 104 7 · 105 7 · 106

ofoam 1

rs

rs

rs

rs

rs

ofoam 2

bc
bc

bc

bc

bc

g
e
t

(n
o
d
es

)

T
im

e
(s

)

10−4

10−2

100

102

7 · 103 7 · 104 7 · 105 7 · 106

ofoam 1

rs

rs

rs

rs
rs

ofoam 2

bc

bc

bc

bc

bc

g
e
t

(p
re

ss
u
re

)

T
im

e
(s

)

10−5

10−3

10−1

101

7 · 103 7 · 104 7 · 105 7 · 106

ofoam 1

rs
rs

rs

rs

rs

ofoam 2

bc
bc

bc

bc

bc

s
e
t

(v
el

o
ci

ty
)

T
im

e
(s

)

10−1

101

103

105

7 · 103 7 · 104 7 · 105 7 · 106

ofoam 1

rs

rs

rs

rs

rs

ofoam 2

bc

bc

bc

bc

bc

difference

b

b

b

b

b

s
o
l
v
e

Number of cells

Figure 3.5: Performance comparison between some ofoam and ofoam-2 methods

for different mesh refinements.

3.3. FLUID COMPONENT BASED ON OPENFOAM 79

ner. For instance, in [Hautefeuille, 2009], a parallel implementation of the three

field coupling strategy based on LLM is proposed using CTL.

We will only present in detail, the inner parallelism of the fluid component,

and how the CTL handles this feature, as explained in the next section.

Remark: for the computations carried out in this work, it is not required to

consider parallelization of the structure subproblem [Farhat and Roux, 1994],

but the same considerations can hold when one builds a component based upon

a FEM code with parallel features.

3.3.3.1 Parallel CFD Component Implementation

Most of current CFD codes, if not all, propose parallel computations feature. It

is true that flow simulations is known to be one of the most challenging domains

of scientific computations, therefore these problems were among the first to run

on clusters (meteorological simulations for weather forecast run every day on

some of the most powerful computers in the world to mention only one).

Taking advantage of the inner parallelization of the underlying code is an

important requirement when one calls upon a time consuming component. For

a client calling a service, it should make no difference to call an ordinary se-

quential or a parallelized version of the component. It is however challeng-

ing to implement such a feature, since the inner parallelization of the existing

software often relies on Explicit Message Passing via PVM, MPI or MPCCI.

Such implementations thus requires additional level of communication that leads

to [Niekamp, 2005b]:

inserting of communication points into source code: thus not only the

source code but also an expertise for each parallelized program is needed.

no separation of communication and algorithm: increases the difficultly

of code maintenance.

new pair of coupling: this produces additional amount of programming.

However, as the CTL supports the concepts of processes and process groups

with intra- and inter-communication [Niekamp, 2005a], we propose to build a

parallel version of the ofoam-2 component in a generic way.

Considering that the implementation of the serial component based on Open-

FOAM has been performed and matches the CFDSimu.ci interface described in

Sec. 3.3.1.1. A new wrapper class, the CFDSimuMPI class is built and glued to

the same CFDSimu.ci interface by another connect. This wrapper class does

not see directly the wrapper class ofoam-2, but calls components and is therefore

independent from implementation.

The first step is to derive from the current CFDSimuCI interface a new

Parallel Interface, CFDSimuPI with a specific contructor where parallelization

features is indicated by a non-zero value of the switch bool:

#include <cfdsimu.ci>

#define CTL_Class CFDSimuPI

#define CTL_Extends (CFDSimuCI), 1

#define CTL_Constructor1 (const std::string , const bool), 2

80 CHAPTER 3. COMPONENTS FOR FSI

#include CTL_ClassBegin

#include CTL_ClassEnd

This Parallel Interface is then connected to the implementation of ofoam-

2 by a connectDetailsPI structure that binds the Parallel Interface to the

implementation of the wrapper class ofoam-2.

#include <cfdsimu.ci>

#include "connectDetails.hpp"

void CTL_connect ()

{

ctl::connect <CFDSimuPI , Ofoam <>, connectDetailsPI >();

}

It is now possible to declare and implement the new wrapper class CFD-

SimuMPI, that only sees the CFDSimuPI interface and to propose a parallel

implementation of all the methods required by the Component Interface CFD-

Simu.ci. Hereby is introduced a shortened version of the CFDSimuMPI class,

where only the constructor and the solver are implemented (other methods being

less demanding, mainly requiring concatenation of results obtained from each

worker).

class CFDSimuMPI{

ctl::group G;

ctl::vector <CFDSimuPI > worker;

public:

// constructor

CFDSimuMPI(const std:: string& cFile){

G = ctl:: getMainGroup ();

worker.resize(G.size ());

ofoamPreTreatment <std::string > preTreat(cFile);

for(int p=G.size ()-1; p >=0 ; p--)

new (& worker[p]) CFDSimuPI(G[p], cFile , true);

}

// method solve implemented in parallel

int solve(const double timeStep){

std::vector < ctl::result <int > > res(G.size ());

for(size_t p=1; p < G.size (); p++) res[p] = worker[p].solve(timeStep);

int resSolve = worker [0]. solve(timeStep);

return resSolve;

}

// other methods

[...]

};

The connection of this class to the CI CFDSimu.ci is then straightforward

for classes whose methods match the interface. Some important features of the

CTL are here used:

ctl::group is the base for any CTL application. It keeps track of open com-

munication channels, stores info for all group members and does the initial

handshake. The CTL gives a size for the group that equals the number of

MPI processes that one wants to instantiate a parallel run.

vector<CFDSimuPI> is a vector of worker where each component is an

instance of CFDSimuPI. The number of worker corresponds to the number

of MPI processes required for a parallel run.

3.3. FLUID COMPONENT BASED ON OPENFOAM 81

ctl::result is used to cope with received results of a call. Results are handled

by the CTL. Here, the ctl::result<int> allows to receive the results of

a solve in a non-blocking way. On the contrary, the master (worker[0])

is called in a classic blocking way as their results are carried out by classic

instantiation of an integer.

The separation between the implementation of the method and its paral-

lelization is again highlighted. Furthermore, any protocol supported by both

CTL and OpenFOAM – MPI but also PVM – can here be used in this parallel

version of the component.

3.3.3.2 Parallel CFD Component Performances

The performance of the parallel version of the ofoam-2 component is vali-

dated on the same problem of flow in a tube. For discretization the meshes

are split via METIS [Karypis and Kumar, 1998] in subdomains with the same

weight (Fig. 3.6).

For each computation, the bottleneck is the time where the evolution of the

flow between two time steps is computed. The computational time measured

in this section and in the two following ones is the average time TCPU required

to solve one iteration of the given problem and to write the associated results

at the end of the time step. The initialization time is therefore not taken into

account.

We consider two quantities to measure the quality of the parallelization; the

speed-up χ measures the absolute clock time gain defined as:

χ =
TCPU

1

TCPU
N

(3.1)

where TCPU
1 is the computational time for the problem solved on one processor

and TCPU
N for N processors. A linear speed-up cannot be obtained: it means

that taking N processors, one cannot expect to divide the computational time

by N. Indeed, the communication between processes, that is highly linked to

size of interfaces, has to be taken into account. For this reason, the notion of

efficiency can be introduced:

ξ =
TCPU

1

N × TCPU
N

(3.2)

The parallel computations can be performed on the same multi-processor

machine or on a cluster architecture where computers communicate throughout

a network.

3.3.3.3 Parallelization on the same multi-processor machine

For this case we consider a rather coarse mesh with 72× 103 cells (≃ 216× 103

d-o-f). Computations are run with the same parameters as the one used for the

comparison between ofoam and ofoam-2 (see Sec. 3.3.2.2). The results in terms

of CPU time are given in Tab. 3.2.

82 CHAPTER 3. COMPONENTS FOR FSI

(a) 3 sub-domains decomposition

(b) 8 sub-domains decomposition

Figure 3.6: Cylinder meshed with 9× 103 cells split via METIS in sub-domains

for parallel runs

1

2

3

4

5

6

7

1 2 3 4 5 6 7

S
p
ee

d
-u

p
(χ

)

Processor number (N)

rs

rs
rs

rs

rs

rs

rs

Figure 3.7: Parallel speed-up on a multi-processor machine

For this example, the results shown in Fig. 3.8 that efficiency of parallel

3.3. FLUID COMPONENT BASED ON OPENFOAM 83

number of method solve method init

processor N TCPU
N in (s) TCPU

N in (s)

1 5.18× 100 9.57
2 2.92× 100 10.75
3 2.34× 100 10.17
4 1.74× 100 9.52
5 1.46× 100 9.24
6 1.16× 100 10.15
7 1.03× 100 9.86

Table 3.2: CPU Time for two methods handle by ofoam-2 component paral-

lelized on the same machine with 2 Intel Quad cores at 3.0Ghz.

computing maintained around 0.7, even for 7 processors. Thus, in parallelization

on 7 processors one can observe a Speed-up (Fig. 3.7) of around 5 times.

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

E
ffi

ci
en

cy
(ξ

)

Processor number (N)

rs

rs

rs rs
rs

rs
rs

Figure 3.8: Parallel efficiency on a multi-processor machine

However, the question of the representativeness of this computation can be

raised, as the serial case takes only 5.16s on one 3.0Ghz processor and, compared

to that time, the communication cost between processes may not be negligible.

number of reference compact transfer standard transfer

cells TCPU
1 in (s) TCPU

6 in (s) TCPU
6 in (s)

9× 103 3.91× 10−1 1.38× 10−1 4.52× 10−1

30375 1.54× 100 5.27× 10−1 7.39× 10−1

72× 103 5.18× 100 1.16× 100 1.27× 100

243× 103 2.84× 101 8.14× 100 6.97× 100

576× 103 1.07× 102 4.13× 101 3.17× 101

4608× 103 1.66× 103 8.42× 102 7.13× 102

Table 3.3: CPU Time for the solve for different meshes 3.0Ghz with standard

and compact transfert

For that reason, we compute the flow in a tube problem for different mesh

refinements – from 27× 103 to ≃ 18× 106 d-o-f – on one processor, and then re-

peat parallel computations on 6 processors. Here we present the computational

time spent for the solve method with direct and compressed transfers between

84 CHAPTER 3. COMPONENTS FOR FSI

the processes. In compressed transfer, each double is converted into a float,

leading to a small loss of accuracy.

Those results are illustrated in Fig. 3.9. We represent there the efficiency

of the parallel computation on 6 processors as a function of the mesh refine-

ment. One observes a decrease in the performance for coarser grids, as for these

cases the communication between processes is not negligible. This is even more

emphsized when one chooses not to compress the double into float.

0.2

0.4

0.6

0.8

1

7 · 103 7 · 104 7 · 105 7 · 106

E
ffi

ci
en

cy
(ξ

)

Number of cells

compact transfer

rs rs

rs

rs

rs

rs

rs

standard transfer

bc

bc

bc
bc

bc

bc

bc

Figure 3.9: Parallel computation performance for different mesh sizes

For finer meshes, we also observe a decrease in the performance. Namely,

imposing the incompressibility conditions in a parallel run requires more itera-

tions than for a serial one. Indeed, it is known that state solver convergence is

affected by running in parallel as the preconditioning and smoothing operations

in the cells adjacent to the boundaries are less effective, and lead to a small

increase in the number of iterations2. In those cases, decreasing the accuracy

when the values between processes are transmitted is not a good choice: the gain

obtained on the MPI communication process (especially on the same machine)

does not justify the loss of precision and so forces an increase of the number of

iterations.

Finally, for the finest meshes, the performance of the parallel computation

drops significantly. This phenomenon seems to be due to the architecture of one

cluster node where not only the processor velocity but also the bus communica-

tion speed for exchanging data between processors limit the overall performance,

especially when huge transfer of data is required. This difficulty can be over-

come with parallel computations on a cluster with several machines (see next

section).

Note that for the cases in which the quantity transmitted between data is

huge, special care has to be taken. Indeed, the CTL allocates the buffer size

for MPI process with a default value that is quite small in order to minimize

the memory requirement. This value naturally has to be increased when it is

required.

3.3.3.4 Parallelization on a cluster

For the parallelization on several nodes (machines) of a cluster, a finer grid with

4.608 × 106 cells (≃ 18 × 106 d-o-f) is considered. Each node is linked with

2For more details, the reader is invited to see: http://www.cfd-online.com/Forums/

openfoam-bugs/62430-difference-between-parallel

http://www.cfd-online.com/Forums/openfoam-bugs/62430-difference-between-parallel
http://www.cfd-online.com/Forums/openfoam-bugs/62430-difference-between-parallel

3.3. FLUID COMPONENT BASED ON OPENFOAM 85

the other via a fast network, and possesses 8 Intel processors with a 3.0GHz
frequency. Computations are run on eleven nodes of the cluster. The load of

each node is maintained at the same level as much as possible. For instance,

for the parallel computing on 32 processors, the first ten nodes were loaded on

3 of their processors whereas those on the last one two processors were used.

The results obtained for the solve method are represented in Tab. 3.4. The

time spent for other methods like initialization is not presented, as Tab 3.2 has

shown that the parallelization is of little influence for these methods.

number of method solve

processor N TCPU
N in (s)

1 1.55× 103

2 7.10× 102

4 3.85× 102

8 2.33× 102

16 1.31× 102

32 9.64× 101

64 8.26× 101

Table 3.4: CPU Time for the solve method parallelized on 11 cluster nodes.

Fig. 3.10 represents the real speed-up observed to solve one time-step and

the theoretical linear speed-up. An almost linear speed-up is observed until

more than 4 processors of each node are loaded. The same value was observed

in the previous section, when the parallelization was done on the processors of

the same machine. This is probably due to some limitation of the architecture

of the cluster nodes.

1

2

4

8

16

32

1 2 4 8 16 32 64

S
p
ee

d
-u

p
(χ

)

Processor Number (N)

rs

rs

rs

rs

rs

rs
rs

Figure 3.10: Parallel computation speed-up for runs on different cluster nodes

The efficiency of the parallel computing, as seen in Fig. 3.11 is therefore

around optimum value of 1 before it starts decreasing. Note that the efficiency

for parallelization on a small number of cluster nodes is above the theoretical

optimum. This is due to the fact that less data need to be handled by the

memory on each nodes.

It is also of interest to compute the CPU time for the same range of mesh

size as the one choosen in Sec. 3.3.3.3. Tab. 3.5 gives the results obtained using

the CTL_Profile tool that shows the characteristic times spent on each process

of a CTL component.

86 CHAPTER 3. COMPONENTS FOR FSI

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64

E
ffi

ci
en

cy
(ξ

)

Processor Number (N)

rs

rs

rs

rs

rs

rs

rs

Figure 3.11: Parallel computation efficiency for runs on different cluster nodes

number of reference standard transfer compact transfer

cells TCPU
1 in (s) TCPU

6 in (s) TCPU
6 in (s)

9× 103 3.83× 10−1 2.74× 10−1 3.33× 10−1

30× 103 1.55× 100 5.44× 10−1 6.38× 10−1

72× 103 4.38× 100 1.16× 100 1.29× 100

243× 103 2.45× 101 4.02× 100 4.58× 100

576× 103 8.11× 101 1.28× 101 1.57× 101

4608× 103 1.55× 103 2.59× 102 2.90× 102

Table 3.5: CPU Time for the solve for different meshes 3.0Ghz with standard

and compact transfert

Also is represented the efficiency of the computation obtained for different

mesh sizes (see Fig. 3.12). Here, each grid is split into 6 sub-domains, then solved

on 6 different machines. Contrary to the phenomenon observed for parallel

runs on the same machine (Fig. 3.9), the expected behavior is observed when

increasing the number of d-o-f and parallelizing on different machines.

The bigger is the mesh, the more efficient is the parallel computation, since

the communication between MPI processes then remains small compared to the

time spent for solving the problem.

0.2

0.4

0.6

0.8

1

7 · 103 7 · 104 7 · 105 7 · 106

E
ffi

ci
en

cy
(ξ

)

Number of cells

compact transfer

rs

rs

rs

rs rs rs

rs

standard transfer

bc

bc

bc

bc
bc

bc
bc

Figure 3.12: Parallel computation performance on six different cluster nodes for

increasing mesh sizes from 216× 103 to 18× 106 d-o-f

For all computations of the studied flow case, handling compressed data

from double to float for the exchanged values is not advantageous. For the

fast communication between cluster nodes, the speed-up in MPI communication

3.4. THE MASTER CODE COPS 87

is countered by the loss in accuracy that leads to more iterations to smooth the

values and precondition the solvers, especially near the sub-domain boundaries.

3.4 The master code cops

3.4.1 Software coupling applied to fluid-structure interaction

Coupling a fluid code and a structure code in order to solve fluid-structure

interaction problem is often done in agreement with the coupling algorithm to

be implemented. There are two main way to couple a fluid and a structure code

in a partitioned way:

The master coupling approach. where a master code sends request and re-

ceive data from the coupled software. Traditionally this approach is quite

intrusive, and imposes new developments inside the software. However,

this problem is solved by the use of component technology, as described

above, which makes modifications of the piece of software to accept the

coupling and the development of the master code totally independent.

Another point to underline is the possible bottleneck effect at the master

code. Namely, if sequential coupling with blocking calls for each compo-

nent is not a major problem when one develops a software used on a single

processor machine, special care has to be taken for parallel computing.

The autonomous coupling approach. where there is no master code, but

the coupled codes directly communicate through an interpretor. It is there-

fore required to define a certain number of conventions that will make the

dialogue between codes intelligible. Then the coupling algorithm is im-

plemented in a dissociated way. At the end, a system equivalent to the

piles and stacks of the processors will carry out the data received by each

subproblem.

In [Garaud, 2008], the autonomous coupling approach is chosen in a fluid-

structure interaction context. This approach is made possible by the use of

a highly abstract C++ code as the solid mechanics elementary brick (Zebu-

lon [Foerch, 1996]). This idea is not easily applicable to functional codes

programmed in Fortran. The main advantage of the autonomous coupling

approach concerns a less intrusive (if the software can be coupled to a cou-

pling engine library) and more easily communication processes for parallel

computing (but this advantage is not clearly seen in [Garaud, 2008], since

parts of the coupling engine were not supporting parallelism).

The use of component technology with the middleware CTL eliminates the

difficulties in the Master coupling approach. We will here insist on two points:

the development of a component based upon an existing code requires a very

good understanding of its architecture, and a deep knowledge of the physics

behind. Hence, once the component is developed, it can actually be used as a

black box.

In the following, the master coupling approach is chosen, and the architecture

of the master code cops (for COupling COmponents by a Partitioned Strategy).

88 CHAPTER 3. COMPONENTS FOR FSI

3.4.2 Component architecture of cops

The COupling COmponents by a Partitioned Strategy (cops) proposes a generic

implementation of the explicit and implicit DFMT algorithms detailed in Chap-

ter 2 for fluid-structure interaction. Note in passing that the same algorithm

applies to any coupled problem with two sub-domains and an interface. The

key idea is to re-use existing codes, such as FEAP or OpenFOAM, as elementary

bricks to build upon the CTL components (see Sec. 3.3 for the fluid part and

Sec. 3.2 for the structure part).

For the sake of generality, cops itself is a component and has been suc-

cessfully re-used, for instance in [Austruy et al., 2008]: a sequential multi-scale

approach [Feyel and Chaboche, 2001] to solving fluid-structure interaction prob-

lem. Dependency graph of cops component will not be detailed here, as the idea

is really simple, but rather presented by a general overview of its architecture

given in UML syntax in Fig. 3.13.

The interface, defined in a .ci file, is realized by a C++ class named cops.

The main routine calls the coupling component, providing the path where the

control file associated to cops lies. The coupling component cops instantiates

two sub-solvers, the one of coFeap for the structure and another of ofoam-2 for

the fluid problem and with a partitionedSolver binding the two subproblems.

PartitionedSolver is a template class that couples any component matching a

SimuCI or a CFDSimuCI where method is necessary to build the Steklov-Poincaré

operators, and optionally goback in time if sub-iterations of one subproblem in

implicit computations is asked.

The PartitionedSolver instantiates a Picard method that is in charge of

one Picard iteration of the coupled subproblem (see Eq. (2.32)). One Picard

iteration allows to determine the new residual. Thus the computation will con-

tinue convergence of a BGS solver. The Picard class itself relies on a template

SteklovPoincare class. Improving the solver can be done adding a Schur class

that proposes to compute the Jacobian of each subproblems.

3.4.3 Field interpolation between solvers

The use of different different solvers, for the fluid and the structure part, do

not provide in general a matching mesh at the interface. Furthermore, even for

matching meshes, as the geometries of the domains are not the same on both

sides of the interface, an optimal numbering of the nodes can lead to differ-

ent orders for the interface nodes. Last but not least, different discretization

techniques (Finite Element versus Finite Volume) or different order p of the

polynomials can be used for constructing solution to fluid-structure interaction

problem. In the domain of FE applied to mechanical engineering, extensive

literature can be found on how to build a consistent interpolation for both sub-

problems at the interface [Felippa and Park, 2004]. For the fluid-structure in-

teraction problems, an interesting review can be found in [de Boer et al., 2007].

For the sake of simplicity, the use of Dirac functions has sometimes been pro-

posed [Ibrahimbegović and Markovič, 2003, Hautefeuille, 2009].

In our framework, it was decided not to favor any mesh-based representation

of the interface, since the fluid problem can also be solved by a meshfree-based

3.4. THE MASTER CODE COPS 89

≪interface≫
CopsCI

Cops(String)

solve()::int

≪component≫
cops

≪component≫
coFeap

≪component≫
ofoam

≪interface≫
SimuCI

...

≪interface≫
CFDSimuCI

goback()::void

Solver
≪policy≫

SimulationPolicy

get(String,Vector):void

set(String,Vector):void

solve(double):int

≪class≫
PartitionedSolver

PartitionedSolver(SimuT1,SimuT2,String)

solve(Field,Field,double):void

≪class≫
Picard

Picard(SimuT1,SimuT2,String)

iteration(Vector,Vector,double):void

SimuT1

SimuT2

SimuT1

SimuT2

S
o
li
d

F
lu

id

≪realise≫

≪realise≫
≪realise≫

≪preservative≫
1

1

≪Bind≫
(SimuT1→ CFDSimuCI)

(SimuT2→ SimuCI)

Figure 3.13: A simplified UML class diagram for cops

method [Fries, 2005]. Namely, an interpolation strategy relying on radial ba-

sis function is here chosen [Beckert and Wendland, 2001]. This fits well with

the current work where, both sides of the problem are based on different ap-

proximation methods. First, for the structure we employ the FE solver which

requires values that are imposed at the nodes and gives in return nodal values

90 CHAPTER 3. COMPONENTS FOR FSI

as answers. Second, in the FV discretization for the fluid part, the fields at the

interface are defined at the center of the cells, and not at the nodes as it is done

for FE. However, as the client has no reason to know the connectivity table

of the coupled component nor the faces centers coordinates, it was decided to

interpolate the fields internally in ofoam-2 and to set or get them at the points

of the interface.

The Steklov-Poincaré operators for the fluid and the structure request im-

posed boundary values at the nodes placed interface, and provide the values, for

potentially different nodal points x f and xs. The interpolation step from fluid

to structure consist in solving a linear system as explained in the following.

Let us consider that the displacement at the Ns solid nodes (xs,i)i=1...Ns
is

given as (us,i)i=1...Ns
. We want to build the interpolation of this displacement

field at the N f fluid nodes in order to impose the fluid mesh motion as needed

in ALE fluid computations. An interpolant for each scalar field of the projected

displacements in one of the Cartesian directions has then to be built. This scalar

field is denoted as ui = u(xs,i) at each points, and the interpolation has to be

performed d times for each vector field of dimension d.

Then the interpolant at a point x takes the form:

u(x) =
Ns

∑
i=1

ciΦ(x− xs,i) (3.3)

where Φ is a fixed basis function which is radial with respect to the Euclidian

distance, i.e.:

Φ(x) = Φ(‖x‖2) = Φ





√
√
√
√

d

∑
i=1

x2
i



 (3.4)

The coefficients ci are determined by the interpolation condition:

uj =
Ns

∑
i=1

ciΦ(xs,j − xs,i) (3.5)

Thus, for interpolation of any field to interpolate, the coefficients ci have

first to be computed by inverting the following relation:

Mijcj = uj (3.6)

where the interpolation matrix entries are computed as:

Mij = Φ(xs,j − xs,i)

The last step is to compute the interpolated field by using the expression given

in Eq. (3.3).

The choice of the radial basis function is governed by the requirement that

the influence of a center has to be smaller when the distance to an evaluation

node increases. Elsewhere, the global character of the radial basis function tends

to smooth out all local effects. Another desirable property is to use the func-

tions with compact support which results with a sparse interpolation matrix.

3.4. THE MASTER CODE COPS 91

In [Beckert and Wendland, 2001], a comparison between different smooth com-

pact radial basis functions for field transfer at the interface is given. In this

work, global radial basis function are used in the exponential form:

Φ(x) = exp−‖x‖
h

(3.7)

where h is a characteristic distance between points.

The Interpolator component was implemented by D. Jürgens [Jürgens, 2009]

from the TU-Braunscwheig. The advantage of the component use is the pos-

sibility to plug-in any interpolation software to the fluid-structure interaction

framework that matches the Component Interface. The inverse problem of the

full matrix Mij is here relying on the lapack or the Intel Math Kernel Library;

the cost of such an operation is around N3, but as the interface d-o-f are by far

less than number of d-o-f for each subproblem, this cost cannot be the bottle-

neck of the computations. One of the advantages of the proposed approach is

that the interpolation is exact for matching nodes. It can be used without any

lack of precision in a generic way for matching meshes where the ordering is not

the same for both subproblems.

Closure

In this Chapter, a general fluid-structure interaction framework based on ex-

isting software was presented. This framework was built using the middleware

CTL which offers good performances, and can therefore be used for scientific

computing of large systems. From the point of view of software engineering, the

following properties of the components where used:

Multi-usability: several components can be instantiated in order to perform

parallel computation. The building of a parallel component for the fluid

part based on the existing paralleling feature of a CFD code was explained.

Non-context specific implantation: two components fitting the same in-

terface can be used in the framework proposed. For instance, a structure

component based on Parafep as well as a fluid component based on files

reading and system calls for OpenFOAM can be plugged in cops.

Composability: cops, that handles the coupling of components, can be used

as a component in a more general framework computation [Austruy, 2008].

Encapsulation: the inner structure of the component is not accessible. That

allows to separate algorithms from their implementation and to implement

components independently from the communication method.

Another important feature is the possibility to couple software products that

were initially not programmed to be coupled, even if they are based on different

discretization techniques (respectively FV for the fluid and FE for the structure)

and were programmed in different languages C++ and Fortran. The possibility

to re-use components developed for other contexts is also emphasized: coFeap

was used to build a multi-scale FEM-based code MuscaD [Hautefeuille, 2009],

and the Interpolator was not initially built for this particular context.

92 CHAPTER 3. COMPONENTS FOR FSI

4Fluid-Structure interaction

numerical examples

In this chapter the fluid-structure interaction framework

previously presented is applied to solve some numerical

cases. The first part of this part deals with the vali-

dation of the presented implementation on a an aca-

demic case. The artificial “Added-Mass effect” and its

cure using implicit solvers is experimentally observed.

Then, long terms runs are presented for both two and

tri-dimensions. The parallelization of the fluid part is

used. Finally, the interaction between a structure and a

free surface flow representing the breaking of a wave is

explored.

93

94 CHAPTER 4. FSI NUMERICAL EXAMPLES

Contents

4.1 Driven cavity with flexible bottom 95

4.1.1 The lid-driven cavity fluid problem 95

4.1.2 Modification for the FSI validation case 96

4.1.3 Subproblems discretization and numerical parame-

ters . 99

4.1.4 Tight coupling with the modified lid-driven cavity case 99

4.1.5 Implicit strong coupling and reference solution 99

4.1.6 On the impossibility to apply explicit coupling 101

4.2 Performances and fluid domain decomposition . . 104

4.3 Flexible appendix in a flow 106

4.3.1 Problem description 106

4.3.2 Implicit coupling and reference solution 109

4.3.3 Explicit coupling . 110

4.4 Three-dimensional flag in the wind 112

4.4.1 Problem description 112

4.4.2 Fluid discretization 113

4.4.3 Solid discretization 114

4.4.4 Coupling . 114

4.4.5 Results . 115

4.5 Two-dimensional wave hitting a structure 116

4.5.1 Introduction and a first approach 116

4.5.2 Problem description 117

4.5.3 Fluid discretization 117

4.5.4 Structure discretization 118

4.5.5 Coupling . 118

4.5.6 Results . 119

4.6 Three-dimensional wave impacting a structure . . 121

4.6.1 Problem description 121

4.6.2 Fluid discretization 121

4.6.3 Solid discretization 122

4.6.4 Coupling . 122

4.6.5 Results . 123

Closure . 125

4.1. DRIVEN CAVITY WITH FLEXIBLE BOTTOM 95

Building a software environment for fluid-structure interaction problems over

existing computational codes requires, as in any scientific computing develop-

ment, testing and validating the environment. One of the major problems en-

countered is to design sufficiently simple FSI problems. For instance, we started

by trying to validate the environment with the example of a rigid cylinder oscil-

lating in a fluid-flow [Dettmer and Perić, 2007], and thought the problem was

simple enough to identify the source of mistakes during the development. After

many trials, it appeared that the problem was not simple enough to distinguish

the different sources of error.

After some trials, it becomes clear for that the lid-driven cavity problem with

a flexible bottom [Wall, 1999] is a really good way to validate an fluid-structure

interaction strategy . . . when the boundary conditions are properly defined (see

Sec. 4.1). This problem shows the convergence properties of the implemented

DFMT-FSI algorithm with dynamic relaxation, and illustrates the impossibility

to use an explicit coupling method due to the added-mass effect. Furthermore,

it allows to validate the coupling with a parallel version of the fluid component.

In the following, the application of the coupling environment for two distinct

flow regimes is presented. The models here chosen have an academic geome-

try. They are simplified representation of long term computation suitable to

represent structures interacting with wind, and structures impacted by sloshing

waves.

Long run flutter examples: (Sec 4.3 and 4.4) Two- and three-dimensional

problems of thin structures interacting with vortices shedded behind a

rigid bluff body . The two-dimensional problem presented herein, first

introduced in [Wall and Ramm, 1998] is widely used as a validating ex-

ample (see [Mok, 2001, Matthies and Steindorf, 2003, Hübner et al., 2004]

and [Dettmer and Perić, 2007]). An FSI example in a three-dimensional

space was recently introduced [von Scheven, 2009]. It allows to show the

development capacity in terms of expensive computation with an impor-

tant number of d-o-f and many time steps.

Sloshing wave hitting a structure: (Sec 4.5 and 4.6) It is an original ap-

plication when coupling an FV CFD solver with a FEM structural one.

A few examples can be found in the literature [Walhorn, 2002], and they

are based on monolithic approaches or use different fluid-strategies. A

fully three-dimensional computation for this range of application is also

presented.

4.1 Driven cavity with flexible bottom

Having recognized the value of this problem for establishing the standard bench-

mark in FSI, a sufficiently detailed presentation of the problem and results ob-

tained is provided in order to promote the comparison.

4.1.1 The lid-driven cavity fluid problem

The driven cavity consider 2D fluid flow problem in a square domain. The im-

posed boundary conditions at three out of four sides are the zero value of velocity.

96 CHAPTER 4. FSI NUMERICAL EXAMPLES

Only at the top of the cavity has a nonzero velocity imposed. The geometry

and boundary conditions are also depicted in further details in Fig. 4.1(a).

The flow is governed by Navier-Stokes equations, with a dominant convec-

tive term, which is usually the most difficult to solve with accuracy. Further-

more, when the imposed velocity is sufficiently small, the flow is laminar and

incompressible. In fact, the driven cavity is traditionally solved as a valida-

tion example for CFD codes, especially for its convective dominance features.

Therefore extensive literature is dedicated to its study, ever since the early

works in computational fluid dynamics [Ghia et al., 1982] to more recent re-

views [Bruneau and Saad, 2006] using different fluid solvers [Hortmann et al., 1990,

Ferziger and Perić, 2002]. It is also proposed as a tutorial case for the fluid

solver OpenFOAM [OpenCFD LTD, 2009] employed herein. In the present test,

the cavity is discretized by finite volume 32× 32 FV cells.

v(y = 1m, t)

(a) Lid-driven fluid flow in cavity

v(y = 1m, t)

(b) Modified lid-driven cavity for FSI

Figure 4.1: The lid-driven cavity example

4.1.2 Modification for the FSI validation case

For the case of fluid-structure interaction benchmark, introduced for the first

time in [Wall and Ramm, 1998], the flexible membrane is placed at the bottom

boundary (see Fig. 4.1(b)). The material properties are chosen as follows: the

flow is solved with Navier-Stokes equations and we consider a Saint-Venant

Kirchoff material able to undergo finite deformation for the solid part. The

density for the fluid is ρ f = 1kg ·m−3 and the kinematic velocity ν f = 0.01m ·
s−2. The structure is really soft, with a Young modulus Es = 250Pa, no Poisson

ratio νs = 0 and a density of ρs = 500kg ·m−3.

For the lid-driven cavity flow in Fig 4.1(a), all boundary nodes constraint by

Dirichlet condition on velocity, and pressure field remains undetermined up to a

constant. If this does not lead to any problem when only fluid flow is considered

with no interaction with the structure, a special care has to be taken for the fluid-

structure interaction case where the imposed velocity condition should satisfy

incompressibility condition and where the exact value of pressure is needed to

4.1. DRIVEN CAVITY WITH FLEXIBLE BOTTOM 97

define structure boundary conditions. It is studied in [Küttler et al., 2006].

Fluid-structure interaction problems with pure Dirichlet boundary condi-

tions are subjected to the so-called incompressibility dilemma. Therefore, none

of the partitioned DFMT strategies presented previously – neither explicit nor

implicit – will succeed to solve such a problem. Three remedies are proposed

in [Küttler et al., 2006]:

Volume constraint applied to the structure equations of motion:

an additional volume constraint of the fluid domain equations is added to

traditional structure equations.

Neumann-Dirichlet Partitioned: the traditional Dirichlet-Neumann DFMT

partitioned strategy, in which primal fields from the structure and dual

ones from the fluid part are exchanged, is inverted; and, the structure is

moved under imposed velocity and the fluid boundary is solved at imposed

pressure.

Artificial compressibility: The incompressibility constraint is temporarily

removed from fluid computation. Hence an algorithmic compressibility is

introduced.

One way to overcome this difficulty in the fluid-structure interaction lid-

driven cavity problem, and not to consider such subtleties, is to release two

nodes on each size of the cavity (see Fig. 4.1(b) and [Wall, 1999]). A subtle point

to be mentioned concerns the chosen discretization techniques: the stabilized

FE approximation used in [Wall, 1999, Küttler et al., 2006] allows to remove

constraints at the nodes, whereas the FV method used herein requires that the

corresponding velocity values at the boundary face of cells be left free. Another

modification of lid-driven cavity for fluid-structure interaction concerns the time-

dependent velocity boundary condition defined as:

v · ex = 1− cos

(

2π
t

Tchar

)

where Tchar = 5s. For such harmonic function, the solution of the fluid and of

the fluid-structure interaction problem will exhibit an oscillating behavior, after

a short transition period. At its maximum, the Reynolds number in the cavity

reaches Re = 200, and thus the flow can be considered as laminar.

This example has a great potential of becoming a perfect benchmark test for

the following reasons:

mesh simplicity: as the Reynolds number is not more than Re = 200, a 32x32

cells with a second order FV solver is sufficient to get an accurate solu-

tion [Ghia et al., 1982, Hortmann et al., 1990].

computational time: due to the small mesh size, computations are fairly

inexpensive, especially for a fluid-structure interaction problem. Indeed,

for each time step of ∆t = 0.1s, the flow computation takes 1.08× 10−1s
and the solid one 2.95× 10−3s when run on a single processor.

98 CHAPTER 4. FSI NUMERICAL EXAMPLES

harmonic solution: the problem quickly reaches a harmonic solution, which

provides a perfect platform to test the energy creation or dissipation in

staggered or iterative fluid-structure interaction algorithms.

We thus arrive to a problem where only boundary conditions of the velocity

field are imposed, and there are no condition on the pressure field p. In the

vocabulary of CFD, these boundary conditions are called zero gradient (or Neu-

mann zero). Thus, any constant can be added to the pressure field computed.

This is not a difficulty when considering a only fluid sub-problem, since the gra-

dient of the pressure field (see Eq. (1.13)) will filter out any constant pressure.

It can lead to an non-unique solution of the pressure, and most of the iterative

solver will fail for such a problem if no remedy is proposed. Furthermore, this

no longer applies to fluid-structure interaction, where exact pressure is needed

to impose the structural motion.

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0 2 4 6 8 10 12 14

F y
(0
.5
,0
.0

)
(i
n
N

)

Time (in s)

p(0.0, 0.0) = 0
p(1.0, 0.0) = 0
p(0.0, 1.0) = 0

p = 0

Figure 4.2: Force acting at the center of the flexible bottom for some fixing

pressure strategies

As noted in [Ferziger and Perić, 2002] for the fluid flow case, there are two

ways to specify a unique pressure field when only zero gradient boundary con-

ditions are specified. For example, the pressure in a arbitrary cell is fixed (for

instance to zero), or one can consider a pressure field with the mean value equal

to an imposed constant.

For the present version of the lid-driven cavity dealing with fluid-structure

interaction problem, the issue of pressure computation becomes more stringent

since not only the gradient of the pressure field, but also its actual must be

known at the interface. Unfortunately, the imposed condition on the pressure

field are not clearly specified, neither in the first work [Wall and Ramm, 1998],

nor in the following works of the same team [Mok, 2001, Küttler et al., 2006] or

other teams [Gerbeau and Vidrascu, 2003b]. In [Bathe and Zhang, 2009], the

pressure field is imposed at the flow input and output, the obtained result is

totally different from the one given by the previous works predicting a high

pressure at the bottom of the cavity leading to an average negative displacement

of the structure in the ey direction, and requiring the use of a stiffer material in

order to remain in the acceptable displacement range.

In order to illustrate the importance of the chosen pressure condition in

fluid-structure interaction analysis we take the case of a very stiff (potentially

rigid) structure at the bottom and compute the total force (from pressure and

viscosity) applied to its center (nodal force at (0.5, 0.0)). All these results are

4.1. DRIVEN CAVITY WITH FLEXIBLE BOTTOM 99

presented in Fig. 4.2, showing quite different time evolutions of pressure force

on the structure for different choices of pressure conditions. In the following,

the pressure was fixed to zero at the out flow. Other boundaries are considered

to be Neumann zero for the pressure.

4.1.3 Subproblems discretization and numerical parameters

The fluid domain is discretized with fourth order FV in space, and the time

integration is handled by implicit Euler. The momentum equation is solved by

PBiCG, with a DILU preconditioner whereas the pressure correction problem is

worked out by iterative PCG, with DIC preconditioner. Two iterations of the

PISO correction algorithm are performed at each time step, and the precision re-

quired for the iterative algorithms for pressure and velocity is 10−8 As the mesh

is initially orthogonal, there is no reason to require initially non-orthogonal cor-

rectors. However, as the deformation of the bottom will eventually produce non-

orthogonal meshes, it is specified that two non-orthogonal corrections should be

performed at each time step.

Indeed, the fluid domain is then subject to structure imposed motion as

the bottom of the domain (assuming no cavitation takes place and fluid follows

the deformation of the structure), and the mesh deformation is handled by a

smoothing process. The Laplacian equation is solved with the coefficient that

depends on the distance to the bottom. On vertical walls, the points are allowed

to move vertically ; elsewhere, the boundary nodes are fixed.

For the structure FE model a spatial discretization with 16×Q8 (quadratic)

elements is chosen. The time integration is carried out by a implicit generalized

α-HHT schemes, with a zero spectral radius as in [Förster et al., 2007], in order

to maximize numerical damping. The non-linear algebraic equations are solved

at each time step by the Newton iterative algorithm with a prescribed tolerance

of 10−8. A non-symmetrical direct solver is used at each iteration.

4.1.4 Tight coupling with the modified lid-driven cavity case

In Fig 4.3 the displacement is displayed when no interaction is considered.

Namely, the forces are computed by the CFD-based component, and applied

to the structure, but the structure motion is not imposed on the fluid domain,

and thus there is no need to compute any mesh motion. The pressure value is

fixed to zero at the outflow boundary.

4.1.5 Implicit strong coupling and reference solution

The computation is run with a coupling window size of ∆t = 0.1s and the

coupling scheme used is DFMT-BGS either with fixed or Aitken’s relaxation.

The absolute tolerance considered is:

‖r(k)
N ‖2 ≤ 1× 10−7

The typical results for the pressure field, streamlines and domain deformation

are plotted in Fig. 4.4.

100 CHAPTER 4. FSI NUMERICAL EXAMPLES

0.000

0.005

0.010

0 20 40 60 80 100

F
o
rc

e
(λ
·e

y
in

N
)

Time (s)

(a) Force applied on the structure at the middle of the interface: Fy(0.5, 0).

-0.500

0.000

0.500

0 20 40 60 80 100

D
is
p
la

ce
m

en
t

(m
)

Time (s)

uy(0.50, 0)
uy(0.25, 0)

(b) Displacements at the fluid-structure interaction interface at the middle and the quarter
lengths: u(0.5, 0) and u(0.25, 0).

Figure 4.3: The lid-driven: forces applied at the bottom of the domain and

displacement obtained from their application to the the flexible domain thanks

to a weak coupling strategy

The same kind force and displacement at the center of the flexible bottom

are presented in Fig. 4.5 The results largely differ from the one obtained with

a weak interaction model (see Fig. 4.3). In the strong coupled case, the inertia

of the flexible bottom leads to a positive mean deformation. This deformation

of the fluid domain induces a large decrease in the pressure and accordingly in

the force amplitude.

Note that the displacement remains exactly the same for all predictors and

relaxation techniques, once convergence to a residual norm less than 10−7 is

obtained. The results in term of displacement are also compared to the one

obtained in [Wall, 1999] and [Gerbeau and Vidrascu, 2003b] (see Fig. 4.5(c)).

Note that the inertia of the flexible bottom leads to a positive mean value of

structure displacement. Moreover, this further induces a large decrease in the

pressure and accordingly in the force amplitude. The characteristic solution is

represented in Fig. 4.4, with the domain deformation, streamlines and pressure

field.

With a fixed under-relaxation of ω = 0.25, a constant decrease of the residual

with a low order is observed (see Fig. 4.8). Aitken’s relaxation allows to reduce

the mean number of iterations required from 30 to 17 (see Fig. 4.6).

Aitken’s relaxation does allow to improve the order of convergence. The

convergence exhibits a less smooth behavior, with a larger decrease of the resid-

ual when the relaxation parameters increase (for instance the 4th iteration in

4.1. DRIVEN CAVITY WITH FLEXIBLE BOTTOM 101

T
im

e
t
=

2.
5

s

T
im

e
t
=

5.
0

s

T
im

e
t
=

12
.5

s

T
im

e
t
=

15
.0

s

T
im

e
t
=

22
.5

s

T
im

e
t
=

25
.0

s

Figure 4.4: Lid driven cavity with a flexible bottom: snapshots with pressure

field and streamlines for different time steps

Fig. 4.10(a) and 4.8(a)). The relaxation parameter value is given in Fig. 4.10 for

two chosen times 39.0s and 41.0s used in Fig. 4.8 to represent the convergence of

the residual; The characteristic oscillations depicted in [Küttler and Wall, 2008]

are observed.

The use of predictors does not change the order of convergence, but reduces

the initial error in terms of residual (see Fig. 4.9). Thus, the characteristic

number of iterations to reach required precision decreases from 17 iterations for

a zero order to 7 for a second order predictor (Fig. 4.7).

4.1.6 On the impossibility to apply explicit coupling

At the end of this section the results are presented for explicit DFMT coupling

algorithms applied to the lid-driven cavity with flexible structure at the bottom.

The added mass effects characteristic of explicit algorithms for the case of an

incompressible flow is observed in Fig. 4.11, with each computation sooner or

later diverging

Our result divergence was not in agreement with the results convergence

102 CHAPTER 4. FSI NUMERICAL EXAMPLES

0.000

0.002

0.004

0.006

0 20 40 60 80 100

F
o
rc

e
(λ
·e

y
in

N
)

Time (s)

(a) Force applied on the structure at the middle of the interface: Fy(0.5, 0).

0.000

0.100

0.200

0 20 40 60 80 100

D
is
p
la

ce
m

en
t

(m
)

Time (s)

uy(0.50, 0)
uy(0.25, 0)

(b) Displacements at the fluid-structure interaction interface at the middle and the quarter
lengths: u(0.5, 0) and u(0.25, 0).

0.000

0.100

0.200

0 20 40 60 80 100

D
is
p
la

ce
m

en
t

(m
)

uy(0.50, 0)
[Gerbeau and Vidrascu, 2003b]

[Wall, 1999]

(c) Displacement of the flexible bottom center compared with results from [Wall, 1999] and
[Gerbeau and Vidrascu, 2003b]

Figure 4.5: Implicit computation of the lid-driven cavity with flexible bottom

solved with BGS and relaxation.

presented in [Förster et al., 2007] for the least accurate predictors. The main

reason, we believe, is due to the way the enforcement of the incompressibility

condition for the fluid problem is performed (with FV and PISO algorithm used

herein to indeed enforce this condition versus stabilized FE discretization used

in [Förster et al., 2007]).

In [Förster et al., 2006], parameters are recognized as important for trigger-

ing earlier instability of explicit coupling:

Predictor order: (see Fig. 4.11(a)) the higher the order of the predictor,

the sooner the instability occurs.

Window size for synchronization: (see Fig. 4.11(b)) for small coupling

4.1. DRIVEN CAVITY WITH FLEXIBLE BOTTOM 103

0

10

20

30

0 20 40 60 80 100

It
er

a
ti
o
n

n
u
m

b
er

Time (s)

ω = 0.25
Aitken

Figure 4.6: Number of iterations per time step for the BGS solver with fixed

and Aitken’s relaxation (order 0 predictor)

0

10

20

30

0 20 40 60 80 100

It
er

a
ti
o
n

n
u
m

b
er

Time (s)

O(1)O(∆t)
O(∆t2)

Figure 4.7: Number of iterations per time step for the BGS solver with predictor

of order 0, 1 and 2 (Aitken’s relaxation)

time steps, the divergence of the explicit coupling algorithm quickly occurs.

Order of fluid time integration: (see Fig. 4.11(c)) More precise fluid in-

tegration (order of the time integrator for the fluid subproblem or time

steps size when sub-cycling) degrades the stability behavior of the explicit

coupling scheme.

Non collocated algorithm: (Fig. 4.11(d)) Non-collocated algorithms (like

DFMT-ISS) are more sensitive to the added-mass effect than collocated

ones (DFMT-CSS). The use of correctors for the force does not improve

the sensitivity collocated and non-collocated algorithms.

In accordance to our theoretical developments, it is clear (and has been con-

firmed by numerical examples) that the added mass effect also depends on: Mass

ratio between fluid and solid with larger ρ f /ρs, the instability occurs earlier;

larger fluid velocities also trigger and more flexible structure instability more

quickly. The phenomena observed are in agreement with the theoretical obser-

vations made in the App. A and in [Causin et al., 2005, Förster et al., 2007].

The general conclusion is that accurate time integration of the subproblem and

coupling algorithms are more sensitive to the artificial “Added-Mass Effect” and

diverge more easily.

104 CHAPTER 4. FSI NUMERICAL EXAMPLES

-8

-7

-6

-5

-4

-3

-2

0 10 20 30R
es

id
u
a
l
(l
o
g
10
‖r

(k
)

39
‖ 2

)

Iteration number – (k)

ω = 0.25
Aitken

(a) Time t = 39.0s

-8

-7

-6

-5

-4

-3

-2

0 10 20 30R
es

id
u
a
l
(l
o
g
10
‖r

(k
)

41
‖ 2

)

Iteration number – (k)

ω = 0.25
Aitken

(b) Time t = 41.0s

Figure 4.8: Residual convergence for fixed and Aitken’s relaxation with order 0

predictor

4.2 Performances and fluid domain decomposition

The lid-driven cavity displays the typical order of magnitude for the computa-

tional costs of the fluid and structure parts, as well as the interpolation between

fields for a problem of the “flow around a structure” kind. Looking into fur-

ther details, the CTL_Profile tool gives the distribution of the computational

time for each component. Hence, in the first 25s of the computations, with a

second order predictor and Aitken’s relaxation, the results given in Tab. 4.1

are obtained. Most of the time is spent on the fluid part, which justifies the

importance accorded to the inner parallelization of the fluid component. Also

note that more than 250 calls are required to solve the first 25s with a time step

of 0.1s as the implicit scheme requires some iterations. Finally, the Interpolator

is called three times at each iteration, since the displacements and velocities

(even if those are not required by the fluid component) from the structure as

well as the forces at the interface are translated. Also note that the number of

iterations required to reach the convergence criterion is slightly different for the

standard and the parallel versions.

Fig. 4.12 represents the deformation of the fluid domain and the stream lines

over the pressure field. The splitting of the fluid domain by METIS can lead

(as it is the case here) to intersecting domain decomposition interface and fluid-

structure interface. The new points (two points with the same coordinates in

2D, but it can be more in 3D) are naturally handled by the Interpolator. For the

fluid to structure interpolation, the values from the coinciding points are added

4.2. PERFORMANCES AND FLUID DOMAIN DECOMPOSITION 105

-8

-7

-6

-5

-4

-3

-2

0 10 20 30R
es

id
u
a
l
(l
o
g
10
‖r

(k
)

39
‖ 2

)

Iteration number – (k)

O(1)O(∆t)
O(∆t2)

(a) Time t = 39.0s

-8

-7

-6

-5

-4

-3

-2

0 10 20 30R
es

id
u
a
l
(l
o
g
10
‖r

(k
)

41
‖ 2

)

Iteration number – (k)

O(1)O(∆t)
O(∆t2)

(b) Time t = 41.0s

Figure 4.9: Residual convergence with Aitken’s relaxation and predictor of order

0, 1 and 2

Component Time (s) by call Number of calls Total time (s)

Fluid solved on one processor

Interpolator 1.77× 10−4 2586 0.46
coFeap(solid) 2.95× 10−3 862 2.54

ofoam-2 (fluid) 1.08× 10−1 862 93.20

Fluid solved in parallel on two processors

Interpolator 1.83× 10−4 2574 0.47
coFeap(solid) 2.96× 10−3 858 2.54

ofoam-2 (fluid) 8.27× 10−2 858 71.00

Table 4.1: Performance comparison for the first 25s of simulations with and

without parallel run of the fluid flow.

to build the interpolated field. They are naturally interpolated in accordance

with the number of coinciding points.

The efficiency of the paralleling for a problem with so few d-o-f on the fluid

part is far from being satisfying. Indeed, as explained in Sec. 3.3.3, for such

a small problem, the time spent on communication can compare in magnitude

with the time spent on computation.

106 CHAPTER 4. FSI NUMERICAL EXAMPLES

0

0.2

0.4

0.6

0.8

1

0 5 10 15

R
el

a
x
a
ti
o
n

(ω
)

Iteration number – (k)

Aitken and predictor O(∆1)
Aitken and predictor O(∆t)

Aitken and predictor O(∆t2)
Fixed relaxation ω = 0.25

(a) Time t = 39.0s

0

0.2

0.4

0.6

0.8

1

0 5 10 15

R
el

a
x
a
ti
o
n

(ω
)

Iteration number – (k)

Aitken and predictor O(∆1)
Aitken and predictor O(∆t)

Aitken and predictor O(∆t2)
Fixed relaxation ω = 0.25

(b) Time t = 41.0s

Figure 4.10: The lid-driven: evolution of relaxation parameter for two charac-

teristic time steps

4.3 Flexible appendix in a flow

4.3.1 Problem description

This problem was introduced in [Wall and Ramm, 1998], and rapidly gained

popularity, subsequently it was also studied in [Hübner et al., 2004] and used

by [Steindorf, 2002] to validate their fluid-structure solution algorithms. In

[Dettmer and Perić, 2006, Perić et al., 2006, Dettmer and Perić, 2007], among

all the fluid-structure interaction cases studied numerically, some results con-

cerning this example are given. It can be considered as one of the standard

benchmark for fluid-structure interaction. Some modifications are proposed

in [Turek and Hron, 2006], in order to link this study case to the fluid bench-

mark proposed in [Schäfer and Turek, 1996] and used in Sec. 1.2.4 to validate

the FV approach, but these are not used herein.

A fixed square bluff body, with a flexible appendix attached to it, is im-

mersed in an incompressible flow (see Fig. 4.13) filling the whole domain. At a

sufficiently long distance from this body, the flow is uniform with an imposed

velocity v so that the Reynolds number with respects to the characteristic size

of the obstacle is 330. For such a Reynolds number, the flow exhibits a transient

behavior with vortices separating from the corner of the square and leading to

the well-known von Kármán street. The vortices induce alternative drop and

increase in the pressure field behind the rigid bluff body at a frequency that de-

pends on the Reynolds number and the shape of the bluff body [Roshko, 1952].

The vortex shedding induces oscillations of the flexible appendix.

4.3. FLEXIBLE APPENDIX IN A FLOW 107

0.000

0.100

0.200

0 1 2 3 4 5

D
is
p
la

ce
m

en
t

(m
)

refO(1)O(∆t)
O(∆t2)

(a) Explicit coupling: influence of the predictor order

0.000

0.100

0.200

0 1 2 3 4 5

D
is
p
la

ce
m

en
t

(m
)

ref
dt = 0.1

dt = 0.01

(b) Explicit coupling: influence of the window (coupling time step) size

0.000

0.100

0.200

0 1 2 3 4 5

D
is
p
la

ce
m

en
t

(m
)

ref
First order implicit

Second order implicit

(c) Explicit coupling: influence of the fluid time integration

0.000

0.100

0.200

0 1 2 3 4 5

D
is
p
la

ce
m

en
t

(m
)

ref
non-collocated, no-corrector

non-collocated, corrector

(d) Explicit coupling: influence of non-collocated schemes

Figure 4.11: Divergence of the explicit coupling for different coupling algorithm

and time integration schemes

The thickness of the beam as well as the material properties are chosen so

that its first eigen-frequency is close to the frequency of the vortex shedding. The

108 CHAPTER 4. FSI NUMERICAL EXAMPLES

T
im

e
t
=

12
.5

s

T
im

e
t
=

22
.5

s

[a] Velocity field and structure with interface forces

T
im

e
t
=

12
.5

s

T
im

e
t
=

22
.5

s
[b] Pressure field and fluid deformed mesh

Figure 4.12: Lid driven cavity with fluid computation parallelized on two pro-

cessors. The fluid domain is split by METIS.

x

y

12.0
1.0

1.0 6.0

0.06

5.5 14.0

slip: v · n = 0

outflow p = 0

ρs, Es, νs

v = v f

ρ f , ν f

slip: v · n = 0

Figure 4.13: The benchmark used for FSI problems

material parameters are respectively ρ f = 1.18× 10−3kg.m−3 for the density

and ν f = 1.54× 10−1m2.s−1 for the for the fluid (air at 20℃). The imposed

velocity of v = (51.3m.s−1, 0) at the left hand side yields a Reynolds number of

Re = 330.

For the solid part, consider a density ρs = 0.1kg.m−3, Young modulus is

of Es = 2.5× 106N.m−2 and the Poisson ratio coefficient of νs = 0.35. The

4.3. FLEXIBLE APPENDIX IN A FLOW 109

first eigen-frequency of the problem f = 3.03s−1 obtained considering a linear

material is closed to the natural frequency of vortex shedding behind a square

bluff body at Reynolds Re = 330.

The fluid discretization contains 5080 cells (i.e. around 20× 103 d-o-f), that

is perfectly sufficient to get an accurate representation of the flow, and therefore

of the fluid loading on the structure. Thereby, in [Dettmer and Perić, 2006],

4300 elements are shown to give a converged representation of the fluid flow.

The time step size for the time integration by a Euler implicit scheme is ∆t =
0.004s A PISO algorithm solves the FV discretized Navier-Stokes equation. The

solvers used are PCG for pressure correction step and mesh motion equations

and PBiCG for the momentum predictor.

The structure part is discretized with 20 nine-node elements, with poly-

nomial description of large structural displacement. Neo-Hookean and Saint-

Venant–Kirschoff materials are used. The time discretization is carried out by

a Generalized-α scheme with the following parameters:

ρ∞ =
1

2
; β =

4

9
; γ =

5

3
; and α =

2

3
.

At each iteration, the linear system is solved by a direct generic solver for

asymmetric matrices with real values.

4.3.2 Implicit coupling and reference solution

The coupling is insured with a DFMT-BGS solver. The tolerance on the inter-

face displacement residual is set to:

‖r(k)
N ‖2 ≤ 1× 10−7

The Aitken relaxation technique is used with an initial value of 0.5. The conver-

gence is very rapid (no more than 4 iterations are required to reach the required

tolerance) and the relaxation parameter rapidly increases to 1. The charac-

teristic results for some time steps are given in Fig. 4.14 in terms of velocity

and pressure field. The deformation of the structure reveals the oscillations

dominated by the first mode.

The displacement at the free-end of the structure is plotted in Fig. 4.15 for

both Saint-Venant–Kirschoff and Neo-Hookean solid materials. The two results

are very close, since the deformation remain sufficiently small. The long term

response (see Fig. 4.16) indicates an almost harmonic response dominated by

the first eigen-frequency of the structure.

In Fig. 4.16 the results obtained are also compared to the maximum ampli-

tude of motion obtained from other works. Despite a well-known sensitivity of

the computed result with respect to the initial condition [Hübner et al., 2004],

we get the answers obtained very close to those many results from the literature

obtained either by a monolithic approach or a partitioned approach [Wall, 1999]

and [Dettmer and Perić, 2007, Steindorf, 2002] which are both based upon a FE

discretization for both fluid and solid parts.

110 CHAPTER 4. FSI NUMERICAL EXAMPLES

velocity pressure

T
im

e
t
=

1.
60

s
T

im
e

t
=

3.
99

s
T

im
e

t
=

7.
87

s
T

im
e

t
=

12
.1

1
s

Figure 4.14: Oscillating appendix in flow: velocity and pressure field snapshots

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

0 2 4 6 8 10

D
is
p
la

ce
m

en
t

(m
)

Time (s)

St-Venantneo-hookean

Figure 4.15: Implicit coupling: displacement of the appendix extremity for two

non-linear materials (Saint-Venant and Neo-Hookean)

4.3.3 Explicit coupling

Contrary to the lid-driven cavity with a flexible bottom, the small number of

iterations required to solve the fluid-structure interaction problem of the os-

4.3. FLEXIBLE APPENDIX IN A FLOW 111

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

0 2 4 6 8 10 12 14

D
is
p
la

ce
m

en
t

(m
)

Time (s)

Figure 4.16: Implicit coupling: long term response with implicit cou-

pling. Amplitude comparison with [Dettmer and Perić, 2007] (dotted line),

[Steindorf, 2002] (solid line), [Wall, 1999] (dashed line).

cillating appendix suggests that an explicit coupling is capable of solving this

problem. The results from explicit DFMT algorithm presented in Fig. 4.17

for the free-end displacement compare to a reference solution obtained with an

implicit computation.

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

0 1 2 3 4 5

T
im

e
(m

)

implicitexplicit 0

Figure 4.17: Comparison between explicit and implicit computations for the

displacement of the appendix.

Using better predictors is supposed to reduce the errors made in term of

residual and energy. In Fig. 4.18(b), the energy error function depending on

time is represented for the zero, first and second order predictor. All the results

confirm the trends we expected, with a decrease of errors when the predictor

order increases.

The final study is then considered with respect to the size of time steps.

In Fig 4.19, the maximum residual error on the time interval t ∈ [0, 15s] is

presented as a function of the time step size. The error is observed to decrease

with a decreasing time step size. However, when the time steps become too

small, the added mass effect triggers the divergence of the computation. Thus,

only the less sensitive schemes with a zero order predictor are able to solve the

coupled problem with the smallest time step.

112 CHAPTER 4. FSI NUMERICAL EXAMPLES

-9
-8
-7
-6
-5
-4
-3
-2
-1
0

-1 0 1

E
n
er

g
y

(l
o
g
10
|e|

)

Time (log10(t) with t in s)

∆t

b
b b

b
b

b
b

b

b

b

b
b
b
b

b

b

b

b
b
b

b

b

b

b

b
b
b
b
b
b b b

b

b
b b

b

b
b b

b b

b

b

b

b

b b b
b

b

b
b

b

b
b b
b
b
b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b
b

b
b

b b

b

b

b b

b b

b b

b b

b
b

b

b
b

b

b

b
b

b

b b

b
b

b b

b b

b

b

b
b

b

b

b

b

b

b b

b

b

b
b

b

b

b
b

b

b

b b

b

b

b
b

b

b

b b

b

b

b b

b b

b b

b
b

b b

b
b

b b

b
b

b b

b

b

b b

b

b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b
b

b b

b

b
b b

b

b

b

b

b

b
b b

b

b b
b

b

b b
b

b

b
b
b

b

b b

b

b

b b

b

b

b b

b b

b b

b

b

b b

b

b

b b

b

b

b b

b

b

b b

b

b

b b

b

b

b b

b

b

b b

b
b

b b

b b

b b

b
b

b b

b

b

b b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b
b

b

b b

b

b

b b

b

b

b b

b

b

b b

b
b

b b

b b

b b

b
b

b b

b

b

b b

b b

b b

b

b

b b

b

b

b b

b

b

b b

b b

b b

b

∆t/10

b

b

b b b
b

b
b

b

b

b

b

b

b
b

b

b
b
b

b

b

b

b
b b

b
b

b

b b

b
b

b

b

b

b
b b b

b

b
b

b b

b

b b

b

b

b

b
b

b

b

b
b b
b

b

b

b
b
b
b b b
b
b

b b b
b
b b b b
b b b b
b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b
b b b b b b b b b b b b b b b b b b b b

b b b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b

b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b
b b b b b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b
b b b b b b b b
b b b b b b b b b b b b b b b b b
b b

b
b
b
b b b
b
b b b
b
b b b
b
b
b
b b b b b b b b b b b b b b b b

b

∆t/100

b
b b

b
b b

b
b

b

b

b

b

b

b

b

b

b

b b b

b
b

b
b

b

b

b

b
b
b
b
b

b
b

b
b

b

b

b
b

b

b

b

b

b b

b

b

b

b

b

b

b
b b b
b

b

b

b

b
b
b b

b

b
b

b

b

b b b

b
b b

b

b

b
b

b

b

b b b

b b

b
b

b

b

b
b

b b

b
b

b

b

b

b

b

b

b

b
b

b
b b b
b

b

b

b
b

b

b

b b

b

b
b
b

b
b

b

b b b

b b
b

b
b

b b

b

b

b

b
b
b b

b b

b

b

b
b

b
b

b

b b

b
b

b
b

b

b

b

b
b
b

b

b
b b

b

b
b

b
b
b b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b
b

b

b b
b

b

b

b
b

b
b

b
b

b b

b

b
b

b

b

b

b

b b

b b

b

b
b b

b

b

b

b b

b b

b

b
b b

b
b

b
b b

b

b

b
b

b

b
b

b

b

b
b
b b b

b

b

b

b

b

b

b b

b

b
b

b

b

b

b

b

b
b

b b

b

b
b

b

b

b

b b

b

b

b
b
b

b
b

b

b

b

b

b b

b

b

b
b b

b b

b

b
b

b b

b
b

b b

b b

b
b

b b
b

b b

b
b

b

b

b b

b

b

b b

b

b

b

b

b

b

b

b
b

b

b

b
b b

b

b b

b

b

b

b b

b b

b

(a) Energy error for different time step size

-9
-8
-7
-6
-5
-4
-3
-2
-1
0

-1 0 1

E
n
er

g
y

(l
o
g
10
|e|

)

Time (log10(t) with t in s)

P : O(1)

b

b

b b

b

b
b
b

b
b
b

b

b

b b b

b

b

b b
b

b b

b

b

b

b

b

b

b

b
b
b

b
b
b b
b b

b

b
b b

b b
b

b

b
b

b b

b

b
b

b

b

b
b b

b

b b
b

b

b

b

b

b

b

b b
b
b b b
b b

b

b

b

b
b
b

b b

b

b

b
b

b
b

b

b

b b

b

b

b
b

b

b

b b

b

b

b
b

b

b

b b

b

b
b
b

b

b b

b

b

b b

b

b

b b
b

b

b
b
b
b

b b

b
b
b b

b

b b

b

b b

b b

b b

b

b
b b

b
b

b
b

b

b b
b
b

b

b b

b

b

b

b

b
b

b
b

b
b

b

b

b b

b

b

b b

b

b

b b

b

b
b b

b

b
b b

b

b
b
b

b

b
b
b

b

b b
b

b

b b

b b

b b

b

b
b b

b

b b
b b
b
b
b
b
b

b
b

b b

b b

b
b

b

b
b b b

b

b b

b

b

b

b

b
b

b
b

b
b

b
b

b b

b

b

b b

b

b

b b

b

b
b b

b

b
b b

b

b
b b

b

b
b
b

b

b b
b

b

b b

b
b

b b

b

b
b b

b

b
b
b
b
b b b
b
b
b

b

b
b

b

b

b
b

b

b b b
b

b
b b
b

b

b
b

b
b

b

b

b
b

b

b

P : O(∆t)

b
b b

b
b

b
b

b

b

b

b
b
b
b

b

b

b

b
b
b

b

b

b

b

b
b
b
b
b
b b b

b

b
b b

b

b
b b

b b

b

b

b

b

b b b
b

b

b
b

b

b
b b
b
b
b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b
b

b
b

b b

b

b

b b

b b

b b

b b

b
b

b

b
b

b

b

b
b

b

b b

b
b

b b

b b

b

b

b
b

b

b

b

b

b

b b

b

b

b
b

b

b

b
b

b

b

b b

b

b

b
b

b

b

b b

b

b

b b

b b

b b

b
b

b b

b
b

b b

b
b

b b

b

b

b b

b

b

b b

b b

b b

b b

b b

b b

b b

b b

b b

b
b

b b

b

b
b b

b

b

b

b

b

b
b b

b

b b
b

b

b b
b

b

b
b
b

b

b b

b

b

b b

b

b

b b

b b

b b

b

b

b b

b

b

b b

b

b

b b

b

b

b b

b

b

b b

b

b

b b

b

b

b b

b
b

b b

b b

b b

b
b

b b

b

b

b b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b
b

b

b b

b

b

b b

b

b

b b

b

b

b b

b
b

b b

b b

b b

b
b

b b

b

b

b b

b b

b b

b

b

b b

b

b

b b

b

b

b b

b b

b bb

P : O(∆t2)

b

b

b

b

b
b

b

b

b

b
b b b b

b

b
b
b

b b b

b

b
b

b

b
b b

b

b

b

b

b

b

b

b

b
b
b

b

b

b

b

b

b b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b b
b
b b b
b

b
b b

b

b b
b b

b
b
b

b

b

b

b
b

b
b

b
b

b
b

b

b
b b

b

b
b

b
b

b

b

b

b

b

b

b

b
b

b b

b

b

b
b

b

b
b

b

b

b b

b

b

b
b b

b

b

b b

b b
b
b

b

b

b

b

b
b

b

b
b b
b

b
b b

b

b

b
b

b

b

b

b

b

b
b

b

b
b b
b

b

b
b b

b

b

b b

b
b

b b

b

b

b
b

b b
b

b

b b
b

b
b

b

b
b b

b

b
b
b

b

b
b
b

b
b

b
b

b

b

b
b

b b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b
b

b

b

b

b

b

b

b

b

b

b
b
b

b
b b
b

b

b
b
b

b b

b
b

b

b

b
b

b

b

b
b

b b

b
b

b b

b
b
b

b

b
b
b

b

b
b b

b

b
b b

b
b

b b

b b

b
b

b

b

b
b

b b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b

b
b b
b

b

b b
b

b b
b
b

b

b

b

(b) Energy error for different predictors

Figure 4.18: Energy error at the interface for different explicit coupling schemes.

-6

-5

-4

-3

-2

-1

0

-5 -4 -3 -2

R
es

id
u
a
l
lo
g
10
‖e
s‖

Time step log10(∆t)

Predictor 0
b

b

b

b

b

b

Predictor 1

b

b

b

b

Predictor 2

b

b
b

b

Figure 4.19: Maximum residual error for explicit coupling schemes with different

time step sizes and predictors.

4.4 Three-dimensional flag in the wind

4.4.1 Problem description

This problem was recently introduced in [von Scheven, 2009], as a 3D general-

ization of the oscillating appendix problem discussed in the previous section. It

can be thought of as a simplified three-dimensional model for the interaction of

a flag with an incompressible viscous flow. All dimensions and the geometry of

the problem, defined in Fig. 4.20, are given in cm.

4.4. THREE-DIMENSIONAL FLAG IN THE WIND 113

5.0
1.0

4.0

10.0

5.0

1.0

5.0

3.0

4.0

3.0

b

b

b

inflow

outflow

slip

flexible A

B

C

ri
g
id

Figure 4.20: Flag in the wind: geometry and boundary conditions

(a) Fluid domain decomposed (b) Zoom on the deformed mesh

Figure 4.21: Flag in the wind: Decomposed fluid domain and zoom on the

structure

4.4.2 Fluid discretization

The fluid problem is discretized with FV method, and then split in 6 sub-

domains by METIS in order to performs parallel runs (see Fig. 4.21). The

material properties are taken from [von Scheven, 2009]: the mass density ρ f =

1.18× 10−3kg.cm−3 and fluid kinematic viscosity ν f = 0.1542cm.s−2.

The boundary conditions are specified in Fig. 4.20. For lateral walls of

the fluid domains, the velocity boundary condition allows the slipping. At the

inflow, a constant velocity is imposed with v = (100cm.s−1, 0, 0)
In order to smooth the first steps, the fluid-structure interaction computa-

tions is not started from the rest, but rather follow the fluid only computation

is carried out from t = −2s to t = 0s, with the inflow velocity increase in a

smooth way the velocity defined as:

v · ex =
1

2

(

sin

(

π

(
t + 1

2

))

+ 1

)

v0 with v0 = 100cm.s−1

114 CHAPTER 4. FSI NUMERICAL EXAMPLES

The structure motion and fluid-structure interaction wall start at t = 0s.
All the points of the fluid mesh will move in the ALE strategy, with their

motion governed by a smoothing process based on a Laplacian operator and

a diffusivity coefficient whose value depends on the distance to the flag. The

fluid discretization techniques and solvers are equivalent to the one used in the

two-dimensional example described in Sec. 4.3.

4.4.3 Solid discretization

In the original problem [von Scheven, 2009], the discretization of the solid prob-

lem is performed by shell finite elements. Herein three-dimensional elements

with quadratic shape functions are used, with each elements therefore contain-

ing 27 nodes. Two mesh grading are used: the coarse mesh with 663 nodes,

and the fine mesh with 2475 nodes. The material properties used for the solid

are: a neo-Hookean elastic material with Young modulus Es = 2× 106Pa and

Poisson’s coefficient νs = 0.35 and a density ρs = 2.0kg ·m−3. The model can

undergo finite deformation.

The time integration is handled by a generalized-α scheme with the same

parameters as the one used for the two-dimensional case. At each iteration, the

linearized system of solid equations of motion is solved by a direct solver for real

value asymmetric matrices.

4.4.4 Coupling

The total number of d-o-f for the coupled problem is recalled in Table 4.2.

fluid solid time

Discretization cells d-o-f nodes d-o-f steps

Coarse 37× 103 149× 103 663 1989 6× 103

Fine 290× 103 1159× 103 2475 7425 6× 103

Table 4.2: Number of d-o-f for coarse and fine discretization of the three-

dimensional oscillating appendix

The total number of d-o-f for the coupled problem are recalled in Table 4.2.

The computation is run with a coupling time step of 1× 10−3s for both the

coarse and the fine mesh. The coupling scheme used is DFMT-BGS with

Aitken’s relaxation. The initial parameter is ω = 1.0. The absolute tolerance

considered is:

‖r(k)
N ‖2 ≤ 1× 10−7

As for the two-dimensional example, it should have been possible to consider

explicit coupling, since the convergence of implicit scheme with the predictor

of second order is fast and it does not require more than 4 to 5 iterations per

time step. But in this work, only results obtained with implicit DFMT-BGS

algorithm are given.

4.4. THREE-DIMENSIONAL FLAG IN THE WIND 115

T
im

e
t
=

4.
35

s
T

im
e

t
=

5.
10

s
T

im
e

t
=

5.
95

s

Figure 4.22: Flag in the wind: motion of the structure and stream-tube snap-

shots for some time steps.

4.4.5 Results

It is rather difficult to select the most pertinent results for three-dimensional flow

problems, and even more for coupled problems. For start, in order to obtain a

qualitative picture Fig 4.23 represents the stream-tubes going through the two

lines (x = 6.0, y, z = 3.0) and (x = 6.0, y, z = 7.0) along with the deformed

shape of the flag.

The displacement of three points at the free-end represented in Fig. 4.23,

show that the motion of the flag corresponds to the first flexural mode. It is in-

teresting to note that the results in [von Scheven, 2009] indicate that, after a cer-

tain time, some torsion modes occur on the flag, that could not be confirmed here

at the same Reynolds number. Consequently, the motion amplitude presented

herein is around 4 times bigger than the one obtained in [von Scheven, 2009].

Our results are more in agreement with the ones provided for 2D version of the

same problem (see [Wall, 1999]) with a flexible beam. It is hard to predict the

exact result and to say a priori which results are closer to the exact solution,

for such a complex flow in three-dimensions with a relatively high Reynolds

number.

116 CHAPTER 4. FSI NUMERICAL EXAMPLES

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6D
is
p
la

ce
m

en
t

(d
y

in
m

)

Time (s)

A
B
C

Figure 4.23: Oscillating three-dimensional flag: extremity displacements for

points A = (10.0, 5.5, 3.0), B = (10.0, 5.5, 5.0) and C = (10.0, 5.5, 7.0).

4.5 Two-dimensional sloshing wave hitting a flexible structure

4.5.1 Introduction and a first approach

In [Kassiotis et al., 2008], a partitioned strategy based on a three-software cou-

pling is proposed to model the propagation of a tsunami wave and its impact

on a submerged structure. For this approach, the coupling between a Boundary

Element Method (BEM) based software solving the non-linear equations used to

model a free-surface flow [Srisupattarawanit et al., 2006]. The flow is supposed

to be inviscid, and the solve the linear Laplace equation is only required inside

the fluid domain while the kinematics and dynamic boundary conditions at the

free-surface are fully non-linear [Dias and Dutykh, 2006, Fochesato et al., 2007].

This approach is able to represent flow propagation at a large scale, but fail to

represent the flow near the structure accurately. For that reason, near the

submerged structure, the Navier-Stokes equation is used. However the repre-

sentation of the free-surface flow is not able to handle complex flow such as the

breaking of the wave.

For such a problem, a promising approach is based on mesh-less meth-

ods [Fries, 2005] that are able to represent any domain deformation. The

SPH is for instance used to achieve that aim. However, this approach re-

quires to take special care at the fluid-structure interaction interface and to

handle the transition between mesh-less and mesh-based methods with caution.

In [Idelsohn et al., 2003], another approach based on fast re-meshing of a La-

grangian representation of a flow discretized by FEM is proposed to deal with

the wide deformation of the free-surface fluid domain.

Use of a multiphase representation of the fluid domain to model the free-

surface flow is chosen herein (See Sec 1.3.2.2 for a short description of the

method). The drawback of such an approach is that it requires to model the

two sides of the free-surface flow (here water and air). However, the meshing is

simplified, and a Euler approach can be used when the domain is not moving.

For the fluid-structure interaction, an ALE approach generalizes the previous

approach.

4.5. TWO-DIMENSIONAL WAVE HITTING A STRUCTURE 117

292

146 140 12 286

80

73

Ω f ,1

ρ f ,1, µ f ,1

Ω f ,2

ρ f ,2, µ f ,2

ρs, Es, νs

Ωs

g

Figure 4.24: Dam break interacting with an obstacle: geometry and boundary

conditions

4.5.2 Problem description

The problem solved is a modification of the dam-break problem presented in

Sec. 1.3.2.2. At initial time t = 0s, the same water column starts to fall un-

der the gravity loading. Instead of hitting a rigid structure, its geometry is

modified in order to get a more slender obstacle (Fig. 4.24). Furthermore,

the material properties of the obstacle are modified in order to obtain a flex-

ible elastic structure. This problem was studied experimentally and numeri-

cally [Walhorn et al., 2005] by a monolithic approach based upon discontinuous

Galerkin FE [Walhorn, 2002, Hübner et al., 2004].

4.5.3 Fluid discretization

At all boundaries a non-slip boundary condition is applied, except for the upper

boundary z = H where the tank is open and a total pressure condition is used:

p +
1

2
ρ‖v‖2 = patm (4.1)

with patm = 0.

The material properties are imposed as follows: for the high density fluid

the density and the kinematic viscosity are ρ f ,1 = 1× 103kg.m−3 and ν f ,1 =

1× 106m.s−1, whereas ρ f ,2 = 1kg.m−3 and ν f ,2 = 1× 105m.s−1 are considered

for the low density domain. Due to the scale of the simulation no surface tension

need to be considered.

Mesh motions based on smoothing operator like the Laplacian equation fails

for the used meshes since the points around the obstacle have difficulties to

118 CHAPTER 4. FSI NUMERICAL EXAMPLES

follow the large displacement and rotations of the mesh around the structure.

For this reason, the mesh motion problem is solved by using a pseudo-elastic

model where the stiffness is a quadratic inverse function of the distance to the

interface between solid and fluid.

The fluid problem is discretized with Finite Volume method. The results for

two meshes with respectively 3340 and 13760 cells are presented. The fluid is

handled by second order space discretization and a Van Leer limiter is used for

the advected terms. The time integration scheme is implicit Euler. The fluid

domain was not split and parallelized, but acceleration of the computational

time was obtained using a Generalized Algebraic-MultiGrid (GAMG) linear

solver.

Small time steps are required by the explicit nature of the coupling between

the phase function indicator problem, the momentum prediction and the pres-

sure correction step.

4.5.4 Structure discretization

For this problem, it is proposed herein to use two dimensional elements with

quadratic shape functions. Each element therefore contains 9 nodes. For the

coarse grid, 51 nodes are considered while 165 nodes are used to discretize the

fine grid. The material properties used for the solid are: a neo-Hookean elastic

material with Young’s modulus Es = 1× 106Pa and Poisson’s coefficient νs = 0
and density ρs = 2500kg ·m−3.

The model can endure finite deformation and the time integration is handled

by a Generalized-α scheme with:

ρ∞ =
1

2
; β =

4

9
; γ =

5

3
and α =

2

3
(4.2)

At each iteration, the linear system is solved by a direct solver for real value

asymmetric matrices.

4.5.5 Coupling

fluid solid time

Discretization cells d-o-f nodes d-o-f steps

Coarse 3440 17.2× 103 51 102 1× 104

Fine 13760 68.8× 103 165 330 5× 104

Table 4.3: Number of d-o-f for coarse and fine discretization of the two-

dimensional dam-break problem

The computation (with total number of d-o-f given in Tab. 4.4) is run with a

time step of 1× 10−4 for the coarse discretization and 2× 10−5 for the fine one.

The coupling scheme used here is DFMT-BGS with Aitken’s relaxation, and the

initial parameter is ω = 0.25. The predictor is of order 1, since computations

with second order predictor fails for the finest grid. The absolute tolerance

considered is:

‖r(k)
N ‖ ≤ 1× 10−6

4.5. TWO-DIMENSIONAL WAVE HITTING A STRUCTURE 119

In Fig. 4.25 the number of iteration required to reach the convergence criteria

is given. Note that their is no iteration required before the water hits the

structure (the effect of air flow can almost be deemed as negligible for this

structure). Then, the number of iteration depends on the discretization density.

After the breaking of the dam, the finest scale is able to represent fine water

slosh that affects the convergence of the implicit coupling.

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

It
er

a
ti
o
n

n
u
m

b
er

Time (s)

fine mesh
coarse mesh

Figure 4.25: Number of iteration in order to make the DFMT-BGS algorithm

converge for the two-dimensionnal dam-break example

4.5.6 Results

In Fig. 4.27, the high density fluid domain is represented, as well as the stream-

lines for the high and low density fluid domains. During the first 0.1s of the

simulations, the water column falls under the gravity loading. There is no

effect whatsoever on the structure until the high density fluid reaches it. The

maximum amplitude of the motion is obtained at t = 0.25s, before the solid

comes back to its initial position due to flow friction.

-2

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

D
is
p
la

ce
m

en
t

(c
m

)

Time (s)

fine mesh
coarse mesh

[Walhorn et al., 2005]

bb
bbbbbb

bbbbbb

bbbbbbbbb
b

bbbbbbbb

bbbbbbbb

bbbbbbbb

bbbbbb

bbbb
bbbbbb
bbbb
bbbb
b b b b b b b bb

bb
bb
bb
bb
bb
bb
bb
bb
bb
bb bb
bb
bb
bb
bb
bb
bb bb
bb
bb
b b b b bb b

b bb b b bb bb b b bb b b b b b bb b b b b b b b b b b b
b b b

bb bb
bb
bb
bb
bb
bb
bb
bb
bb bb
bb
bb
bb b b b b bb bb

bb
bb
bbbb
bbbb
bbbb
bbbb
bbbbbb
bbbb

bbbb
bbbb

bbbb
bb bb bb b b b

bb
bbbb
bbbb
bbbb
bbbb
bbbb
bbbb
bbbb
bb
bb
bb b
b b b bb

b
bbbb
bb

b

[Baudille and Biancolini, 2006]

b b b b b b b b bb bbbbb
b
bbbbbbbbbbb bbbbbb
bbbbbb bbbbbbbbbbbbb

bbbbbbbbb bbbbbbbbbbbbb

bbb b bbbbbbbbbbbbbb

bb bbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbb bb

bbbbbbbbbb b
bbbbbbbbbb bbb
bbbbbbbbbb b bb
bbbb bb
bb bb b
b b b b b b b b b b bb bb bb bb bb bb bb bbbb bb bb bbbb bb bb bb bb bb bb bb bb bbb bb bb bb bb b b b b bb bb bb b b b bb b bb b b b b b b bb b b b b b b b b b b b b b b b b b bb bb

bbbb b
bbbb bbb
bb bbbbbbbbbbbb
b bbbbbbbb b bb b b b b b b b b b b b b bb b b

bb b b
b b bb b b b

b b

b

Figure 4.26: Obstacle extremity for different meshes and comparison with results

from literature

After one second of simulation, the fluid is not entirely at rest, but its main

effects on the structure were captured. Note that before the flow goes back from

hitting the right-hand wall, all the numerical results are somehow in agreement.

After, the impact high density fluid is highly fragmented (see Fig. 4.27 for time

greater than 0.3s), and the results depend on the ability of the fluid part to

represent these fine effects. However, one can notice, the main effect on the

structure is when the wave first hits the structure, and this is captured well.

120 CHAPTER 4. FSI NUMERICAL EXAMPLES

T
im

e
t
=

0.
1

s

T
im

e
t
=

0.
2

s

T
im

e
t
=

0.
3

s

T
im

e
t
=

0.
4

s

T
im

e
t
=

0.
5

s

T
im

e
t
=

0.
6

s

Figure 4.27: Bi-dimensional dam break problem. Evolution of the free surface,

structure motion and streamlines for water and air.

4.6. THREE-DIMENSIONAL WAVE IMPACTING A STRUCTURE 121

4.6 Three-dimensional sloshing wave impacting a flexible struc-

ture

4.6.1 Problem description

The problem solved in this example is a simplified representation of the dam-

breaking event that brings about a sloshing wave impact on a flexible structure

presented in Fig. 4.28. At initial time t = 0s, a three-dimensional water column

starts to fall down under the gravity loading and eventually hits the obstacle

placed in the way. The obstacle is a slender plate-like body made of elastic

material that can undergo large deformation.

g

Ω
f ,1

Ω
f ,2

Ω
s

146
140

12

286

146

292

146

80

80

292

292

Figure 4.28: Three-dimensional wave impacting an obstacle: geometry and

boundary conditions

The dimensions of the problem are given in Fig. 4.28 as well as the boundary

conditions.

4.6.2 Fluid discretization

We do not want that the water bounce-back and again hit the structure after

breaking on the walls. For that reason, only the left and bottom planes of the

fluid domain are defined as non-slipping walls, while the others are defined with

atmosphere boundary condition for the pressure as defined in Eq. (4.1).

122 CHAPTER 4. FSI NUMERICAL EXAMPLES

The material properties are chosen as follows: for the high density fluid

(water in the reservoir) the density and the kinematic viscosity are ρ f ,1 = 1×
103kg.m−3 and ν f ,1 = 1× 106m.s−1, whereas for the low density fluid (air in

the remaining part of the domain) ρ f ,2 = 1kg.m−3 and ν f ,2 = 1× 105m.s−1

. The mesh motion problem is solved using a Laplacian smoothing in which

the diffusion coefficient is a quadratic inverse function of the distance to the

interface between solid and fluid.

The fluid problem is discretized with Finite Volume cells. The results are

computed for two meshes with the chosen discretization and the number of cells

given in Tab. 4.4. The fluid is handled by second order space discretization and

a Van Leer limiter is used for the advection terms. The time integration scheme

is implicit Euler. For such a scale of modelling it is not required to consider

surface tension between the two fluids. For this problem the fluid domain was

not split and parallelized, but reduction of the computational time was obtained

by using a Generalized Algebraic-MultiGrid (GAMG) linear solver.

Note that small time steps are required for the explicit solution of the phase

function indicator equation, as well as the half-implicit nature of the coupling

between the momentum predictor and the pressure corrector.

4.6.3 Solid discretization

We propose here to use three-dimensional elements with quadratic shape func-

tions, where each element has 27 nodes. The material properties used for the

solid are: a neo-Hookean elastic material with Young modulus Es = 1× 106Pa
and Poisson’s coefficient νs = 0 and a density ρs = 2500kg ·m−3, which can rep-

resent finite deformation. The time integration is carried out by a Generalized-

α scheme with the same parameters as the one used for the previous two-

dimensional dam-break case (see Sec. 4.5).

4.6.4 Coupling

fluid solid time

Discretization cells d-o-f nodes d-o-f steps

Coarse 13× 103 63× 103 363 1.1× 103 1× 105

Fine 104× 103 520× 103 2205 6.6× 103 1× 105

Table 4.4: Number of d-o-f for coarse and fine discretization of the three-

dimensional dam-breaking problem

The computation of the coupled problem (with total number of d-o-f given

in Tab. 4.4), is carried out by an implicit iterative scheme. The results of

fluid and solid computations are matched for a time step of 1× 10−4 for the

coarse discretization and 2× 10−5 for the fine one. The coupling scheme used

is DFMT-BGS with Aitken’s relaxation. The initial parameter is ω = 0.25 and

the predictor is of order 1. The absolute tolerance considered is:

‖r(k)
N ‖ ≤ 1× 10−6 (4.3)

4.6. THREE-DIMENSIONAL WAVE IMPACTING A STRUCTURE 123

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

It
er

a
ti
o
n

n
u
m

b
er

Time (s)

Figure 4.29: Number of iterations in order to make the DFMT-BGS algorithm

converge for the three-dimensional dam-breaking problem

In Fig. 4.29 the number of iterations required to reach the convergence cri-

teria is given. Note that there is no iteration required before the water hits the

structure (the effect of air flow can almost be deemed negligible with respect

to the structure). Then, the number of iteration depends on the discretization

density. In reaching the opposite wall, the water does not rebound on the wall

but simply flows away.

4.6.5 Results

In Fig. 4.31, the high density fluid domain is represented, as well as some part of

the fluid mesh and the structure displacement. The first 0.1s of the simulations,

the water column falls under the gravity loading. There is no effect whatsoever

on the structure until the high density flow reaches its bottom. The maximum

amplitude of the motion is obtain at t = 0.25s, before the solid comes back to

its initial position and oscillates after the shock.

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

D
is
p
la

ce
m

en
t

(c
m

)

Time (s)

coarse mesh
fine mesh

Figure 4.30: Three-dimensional dam break example: obstacle extremity dis-

placement

In Fig. 4.30 the motion of the top of the obstacle is plotted. Contrary of the

two-dimensional example, smaller drops of high density fluid are not interacting

with the obstacle after the main interaction. Therefore, the motion of the solid

part is rather well described with the coarsest grid.

124 CHAPTER 4. FSI NUMERICAL EXAMPLES

T
im

e
t
=

0.
1

s

T
im

e
t
=

0.
2

s

T
im

e
t
=

0.
3

s

T
im

e
t
=

0.
4

s

T
im

e
t
=

0.
5

s

T
im

e
t
=

0.
6

s

Figure 4.31: Tri-dimensional dam break problem. Evolution of the free surface

and motion of the structure.

4.6. THREE-DIMENSIONAL WAVE IMPACTING A STRUCTURE 125

Closure

The main goal of this chapter was to present the capacities of the presented

partitioned framework for fluid-structure interactionproblems. For some cases it

is possible to compare the results obtained with those obtained by other authors.

All the results presented hereby are within a comparable order of magnitude.

The added-mass effect does not allow explicit computation for some geome-

tries, flows and mass ratio-between solid and fluid. In this cases, iterations with

DMFT-BGS need to be performed. Aitken’s relaxation is required to insure the

convergence or accelerate the iterative process. In order to improve error made

at the initial step, the use of predictors is possible. When explicit coupling is

sufficient, the errors made at the interface depends on the size of the time step

as well as the order of the predictor.

The middleware CTL and the coupling of existing codes allow good perfor-

mances, and therefore, problems with large numbers of d-o-f can be reached

(more than a billion on the fluid side). Concerning fluids, the coupling with

free-surface flow is also explored. The three-dimensional applications in this

context is an original application of the proposed strategy.

126 CHAPTER 4. FSI NUMERICAL EXAMPLES

Conclusion

The present dissertation deals with a partitioned strategy for multiphysics prob-

lems specifically applied to the fluid-structure interaction. More precisely this

strategy is part of the Direct Force-Motion Transfers algorithm framework be-

tween two sub-problems, solved implicitly by a fixed-point iterative strategy

and combined with a dynamic relaxation parameter in order to accelerate con-

vergence. The algorithm used is known to be conditionally stable; the corre-

sponding criterion of the proposed DFMT-BGS algorithm in the context of fully

nonlinear analysis is hereby demonstrated (see App. A). In particular, the rig-

orous proof is given for a coupling algorithm where the data exchanges between

iterations are primal (and not dual, or in terms of Lagrangian multipliers).

The method allows to perform coupled simulations with existing codes that

were not initially developed to support a multiphysics approach. The component

technology presented in this work is used to allow the coupling between soft-

ware products. The communication between the components is insured by the

CTL [Niekamp, 2005b], where the use of RPC and no file exchange, are found to

give excellent performances. Furthermore, an important cost of CFD subprob-

lem make it interesting to employ parallel computation for the fluid component

itself. Therefore, for the first time, a CTL component was built herein using the

parallel features of an existing engineering software. The overall performances

of the programmed component allow to solve problems with a large number

of d-o-f, many time steps, fully three-dimensional coupled problems, as well as

further extending the solution capabilities with two level parallelization.

The coupled problems solved herein utilize very different numerical strate-

gies: FE for the solid part, FV for the fluid part. The use of these popular

methods for the fluid and solid parts allows to benefit from the advanced fea-

tures of the two families of methods, each developed by the experts from the

corresponding domain. Accordingly, on the fluid side, it is possible to use a very

efficients semi-implicit solver for incompressible flow (PISO), solution techniques

(Algebraic Multigrid) or advanced flow models. For instance, it is referred to

the interaction between a structure and a sloshing wave where free-surface flow

is modeled by a two-phase solver.

Several development presented in this work can further be improved. The

current implementation explores the DFMT-BGS solver, only one among im-

plicit coupling solvers that are known to be conditionally stable. All the numer-

ical simulations presented in this dissertation concern the density ratios between

the structure and the fluid parts that are sufficient to ensure the convergence of

127

128 CHAPTER 4. FSI NUMERICAL EXAMPLES

the computations in the spirit of the presented proof. The need to implement

a more elaborate iterative schemes for coupled problems such as quasi-Newton

strategy might be necessary to tackle light-weight structures interacting with

flows. Furthermore, the interpolation between the fluid and the structure parts

is handled by a meshless method that is quite expensive (O(N3) with N the

number of nodes at the interface). Improving the interpolation using a basis of

compact support radial functions could be an interesting first step.

The perspectives broadened by this work are numerous. It would be chal-

lenging to use turbulence models in order to represent more realistic wind flows

interacting with structures. Another interesting point would be to simulate

the whole process of a tsunamis wave hitting a structure (from its generation

to its propagation). In this case, the importance of the free-surface repre-

sentation problem would require three-software coupling, with one of them a

BEM code able to represent non-linear shallow water equations briefly explored

in [Kassiotis et al., 2008].

From the structure point of view, the use of more advanced models would

also be of interest. For instance in [Hautefeuille, 2009], a multiscale framework is

proposed to model the mechanical behavior of concrete from its micro-scale. For

other physical properties (e.g. porosity, thermal conductivity. . .) the interaction

with liquid, which is known to be crucial for process such as cement hydration,

concrete drying and other phenomenon typical of its behavior at young age.

Therefore it would be interesting to develop a multiscale/multiphysics models

both for solid and fluid by using the tools presented in this thesis.

AStability and convergence of the

Direct Force-Motion Transfert

Block-Gauß-Seidel algorithm

A.1 Reformulation of the fluid-structure interaction problem

in a Differential Algebraic Equation framework

The main goal of this section is to confirm the stability of the partitioned ap-

proach for coupled fluid-structure interaction problems by showing a stable error

propagation of the DFMT-BGS algorithm. To that end, it is assumed that the

most suitable choice of integration schemes is made to solve each partition and

that each scheme used for the fluid and the structure sub-problem is convergent

and stable1. By further considering the DFMT-BGS algorithm, formulated

in the general framework of differential-algebraic equations (DAE), a proof of

nonlinear stability of the partitioned algorithm can be provided, following the

general procedure provided in [Arnold and Gunther, 2001].

The first sub-problem related to the fluid flow on a moving domain dis-

cretized by Finite Volume (Eq. (1.33)) can be written as:

0 = r f (x f (t), xs(t), y f (t), λ(t))

=






Kmum −Dmus

M f v̇ f + N f (v f − u̇m)v + K f v f + B f p f − f f −DT
f ˘

BT
f v f






(A.1)

where fluid velocities v f and the mesh displacements um are gathered in x f =
(v f , um), while their time derivatives as well as the pressure field are denoted

y f = (v̇ f , p, u̇m). The force at the interface are denoted with λ and matrix

D f denotes the result of their interpolation across the interface from the fluid

side. The residual r f gathers the mesh motion for ALE, the coupled discretized

momentum equation and incompressibility condition. Rewriting the incompress-

ibility condition using the acceleration in order to reduce the order of the DAE

1 It is also assumed that each sub-problem, fluid and structure, is solved by the corre-
sponding software product, which should to solve a fluid-structure interaction problem; The
details of software coupling are discussed in Chapter 3 of this work.

129

130 APPENDIX A. DFMT-BGS STABILITY AND CONVERGENCE

associated to the fluid problem leads to:

0 = r f (x f (t), xs(t), y f (t), λ(t))

=






Kmu̇m −Dmu̇s

M f v̇ f + N f (v f − u̇m)v + K f v f + B f p f − f f −DT
f ˘

−BT
f M
−1
f

(

N f (v f − u̇m)v + K f v f + B f p f − f f −DT
f ˘
)






(A.2)

Considering now the structure sub-problem, the primal variables, the solid

displacements and velocities, are gathered together in the same vector xs =
(us, u̇s) and the acceleration is denoted ys = üs. The residual form of the

equation of motion can then be written:

0 = rs(xs(t), x f (t), ys(t), λ(t)) (A.3)

The last equation can be written as:

rs(xs(t), x f (t), ys(t), λ(t)) :=
[

Msüs + f int
s (us)− fext

s −DT
s ˘
]

(A.4)

where the Ds indicates the force distribution at the interface on the structure

side.

The interface continuity equation, connecting two sub-problems can then be

stated in terms of acceleration:

0 = rλ(x f (t), xs(t), y f (t), ys(t)) := −Dsüs + D f v̇ f (A.5)

With this notation in hand, the proposed DFMT-BGS algorithm can be

stated as follows: first solve the fluid sub-problem associated together with the

continuity equation at the interface:

∂tx f
(k) = fr f

(x f
(k), xs

(k−1), y f
(k))

0 = r f (x f
(k), xs

(k−1), y f
(k), λ

(k))

0 = rλ(x f
(k), xs

(k−1), y f
(k), ys

(k−1))

(A.6)

The structure sub-problem is then solved with imposed forces at the inter-

face:
∂txs

(k) = frs(x f
(k), xs

(k), ys
(k))

0 = rs(x f
(k), xs

(k), ys
(k), λ

(k))
(A.7)

A.2 Error propagation, stability and convergence of DFMT-BGS

algorithm

Note that each nonlinear sub-problem is solved by a different solver: Newton’s

algorithm for the solid part, a segregated approach like PISO for the fluid part;

the final stability results remain valid in a more general context as long as

sub-problem computation remains table and convergent. Thus we only need to

confirm the convergence of the iterative DFMT-BGS procedure.

The following notations are introduced: the subscript N for the restriction

of the function of time t to the interval [TN−1, TN], h = TN − TN−1, the su-

perscripts (k) for the iteration counter of the DFMT-BGS procedure and the ∆

A.2. ERROR PROPAGATION, STABILITY AND CONVERGENCE 131

symbol denoting the distance of numerical approximation from the exact solu-

tion ∆x
(k)
N = x

(k)
N − x⋆.

Moreover, the same time step for each sub-problem of the fluid-structure

interaction are not needed, for instance the fluid problem can be solved with

many small time steps on the window N. For many case, the time interpolation

of the evolution has to be considered a priori.

The stability of DFMT-BGS operator split procedures is mainly governed by

error propagation from one window N to the following N + 1. The partitioned

approach is studied in the differential-algebraic equations (DAE) framework

in [Arnold and Gunther, 2001]. The cited work is applied to multi-body dy-

namics systems and several interesting results are given including the stability

proof where the Lagrange multipliers, and not a primal variable values define at

the interface are exchanged from one iteration to the next. In [Arnold, 2001],

the stability criterion corresponding to the block-Gauß-Seidel algorithm such as

the one used herein is given, but without any proof. These results are valid,

and sucessfully applied to the DFMT-BGS algorithm for fluid-structure interac-

tion [Matthies and Steindorf, 2002, Steindorf, 2002] used herein. In the follow-

ing a detailed proof that cannot be found in the literature for the fluid-structure

interaction context is given.

Same kind of results can be used for other coupled problems where the time

integration schemes of the sub-problems are different, such as thermomechan-

ics [Kassiotis et al., 2009a] or with different time scales for mechanics and ther-

mal component and a generalized non-linear operator split for problems with

internal variables [Kassiotis et al., 2009b].

Theorem 1

There exists C ∈ R+ such that for all (k) > 1

max
n

(

‖∆x f
(k)
n
‖+ ‖∆xs

(k)
n ‖+ ‖∆y f

(k)
n
‖+ ‖∆ys

(k)
n ‖+ ‖∆λ

(k)
n ‖

)

<

C ·max
n

(

µk−2
(

‖∆x f
(0)
n
‖+ ‖∆xs

(0)
n ‖

)

+ µk−1‖∆ys
(0)
n ‖

)

where: µ = α + O(H) and α the contraction constant characterizing the

operator split procedure employed to solve the coupled problems, which is

written as:

α = max
n

∥
∥
∥
∥

[

∂ys
rλ

[
∂ys

rs

]−1
∂λrs

]−1
∂y f

rλ

[

∂y f
r f

]−1
∂λr f

∥
∥
∥
∥

The main condition of contractive properties, α < 1, guarantees the conver-

gence of the operator split procedure for the given time window when (k) −→ ∞.

We set now to apply this stability criterion to the DFMT-BGS for fluid-structure

interaction presented in the previous section. We thus obtain:

i - Fluid sub-problem on a moving domain solved with FV method:

∂y f
r f =






Km 0 0

∂u̇m(N f (v f − u̇m)v) M f B f

−BT
f M
−1
f ∂u̇m(N f (v f − u̇m)v) 0 −BT

f M
−1
f B f




 (A.8)

132 APPENDIX A. DFMT-BGS STABILITY AND CONVERGENCE

and

∂λr f =






0

−DT
f

BT
f M
−1
f DT

f




 (A.9)

ii - Coupling condition that corresponds to the continuity at the FSI interface:

∂ys
rλ = −Ds (A.10)

and

∂y f
rλ =

[

0 D f 0
]

(A.11)

iii - Structural problem solved with a FEM method:

∂ys
rs = Ms (A.12)

and

∂λrs = −DT
s (A.13)

Combining the given corresponding values of Jacobian computed for all these

equations leads to the corresponding value of the contraction constant α, that

can be written after simplification:

α = max
n

∥
∥
∥
∥
∥

[

∂ys
rs

]−1
∂λrs

[

∂y f
rλ

[

∂y f
r f

]−1
∂λr f

]−1

∂ys
rλ

∥
∥
∥
∥
∥

=

max
n

∥
∥
∥
∥
∥
M−1

s DT
s

[

D f M
−1
f

(

1 + B f

(

BT
f M
−1
f B f

)−1
BT

f M
−1
f

)

DT
f

]−1

Ds

∥
∥
∥
∥
∥

This criterion shows that the numerical computation is highly linked to the

material properties and more generally to the model chosen for the fluid and

the structure sub-problems. In the first approximation an estimate for α can

be provided by the mass ratio between the fluid M f and the solid part Ms

weighted by some geometrical conditions for the field transfer defined in D f

and Ds. When the mass ratio increase, the scheme can become unstable. The

terms in B f show the influence of the incompressibility condition, and therefore

accounts for the added-mass effect. The fact this behave like and added mass

to the fluid problem is clearly stated in the formula. For implicit strategy, to

stabilize the iterative DFMT-BGS procedure, Aitken’s relaxation can be used

as presented in the previous section. The stability of the stabilized algorithm

can be then proofed following the steps of [Arnold and Gunther, 2001] for pre-

conditioned algorithm. It will not be given herein, and only explored in the

numerical examples.

A.3 Proofs for stable error propagation

The proof of the stability error propagation theorem is as follows:

A.3. PROOFS FOR STABLE ERROR PROPAGATION 133

i - The error bound for one iteration of the operator split procedure for an

approximation in the neighborhood of the solution is given in Lemma 1.

ii - In Lemma 2, a recursive application of Lemma 1 gives a bound for (k)
iteration of the operator split procedure.

iii - The proof is concluded by the application of the two Lemmas with suitable

arguments.

Lemma 1

Consider Uγ0 a neighborhood of the solution
(

x f
⋆, xs

⋆, ys
⋆

)

:

Uγ0 =
{(

x f , xs, ys

) ∣
∣
∣

∥
∥
∥x f − x f

⋆

∥
∥
∥+ ‖xs − xs

⋆‖+ ‖ys − ys
⋆‖ 6 γ0

}

There exists (C, H0, γ0) ∈ R
3
+ such that:

∀
(

(x f
(0), xs

(0), ys
(0)), (x̃ f

(0), ỹs
(0), λ̃

(0)
)
)

∈ Uγ0
2, ∀H < H0,






‖δx f
(1)‖

‖δxs
(1)‖

‖δys
(1)‖




 6





CH CH CH
CH CH CH
C C α̂ + CH










‖δx f
(0)‖

‖δxs
(0)‖

‖δys
(0)‖




+





‖δx f
(0)(Tn)‖

‖δxs
(0)(Tn)‖

0





with δ denoting the distance between two approximations, i.e. δx(k) = x(k)−
x̃(k) and

α̂ = α +

O(1)
(

‖∆x f
(0)‖+‖∆xs

(0)‖+‖∆xs
(0)‖+‖∆x̃ f

(0)‖+‖∆x̃s
(0)‖+‖∆x̃s

(0)‖
)

Proof of Lemma 1 : By inserting (x f
(0), xs

(0), ys
(0)) ∈ Uγ0 in the proposed

algorithm, is obtained the evolution equation of the fluid sub-problem

(A.6) as the first step of the staggered scheme:







∂tx f
(1) = fr f

(x f
(1), xs

(0), y f
(1))

0 = r f (x f
(1), xs

(0), y f
(1), λ

(1))

0 = rλ(x f
(1), xs

(0), y f
(1), ys

(0))

with x f
(1)(TN) = x f

(0)(TN)

(A.14)

For the second sub-system in (A.7), the evolution of the structure prob-

lem under the loading λ
(k) is considered:

{

∂txs
(1) = frs(x f

(1), xs
(1), ys

(1))

0 = rs(x f
(1), xs

(1), ys
(1), λ

(1))

with xs
(1)(TN) = xs

(0)(TN)

(A.15)

The same evolution holds for any other initial value in the neighborhood

of the solution: (x̃ f
(0), x̃s

(0), ỹs
(0)) ∈ Uγ0 .

134 APPENDIX A. DFMT-BGS STABILITY AND CONVERGENCE

We make a regularity assumption which guarantees that fr f
and frs

satisfy Lipschitz conditions w.r.t. to their arguments (x f , xs, y f , ys)
2. So

the following bound after one time integration over the window N + 1 is

considered for δx f
(1) = x f

(1) − x̃ f
(1) and δxs

(1) = xs
(1) − x̃s

(1):

{

‖δx f
(1)‖ 6 ‖δx f

(0)(TN)‖+O(H)(‖δx f
(0)‖+ ‖δy f

(1)‖)
‖δxs

(1)‖ 6 ‖δxs
(0)(TN)‖+O(H)(‖δxs

(0)‖+ ‖δys
(1)‖) (A.16)

Our goal is now to provide a bound to the difference in the primal

unknown that will be imposed at the next iteration ‖δys
(1)‖. For a fixed

time t, the algebraic equations are summarized to F(0) = F(1) = 0 with:

F(θ) =






r f (x f
(1),θ , xs

(0),θ , y f
(1),θ , λ

(1),θ)

rλ(x f
(1),θ , xs

(0),θ , y f
(1),θ , ys

(0),θ)

rs(x f
(1),θ , xs

(1),θ , ys
(1),θ , λ

(1),θ)




 , θ ∈ {0, 1} (A.17)

where xθ can be written as xθ = (1− θ)x + θx̃.

The identity F(1)− F(0) =
∫ 1

0 F′(θ) dθ = 0 further gives:

∫ 1

0

independent of θ
︷ ︸︸ ︷










∂y f
r f ∂λr f 0

∂y f
rλ 0 0

0 ∂λrs ∂ys
rs











δy f
(1)

δλ
(1)

δys
(1)




+





0
∂ys

rλ

0



δys
(0)




dθ

+ O(1)
(

‖δxs
(0)‖+ ‖δx f

(1)‖+ ‖δxs
(1)‖

)

= 0

In the equation above the arguments x f
(1) and xs

(1) of the Jacobian

that are placed in the neighborhood Uγ0 of size O(γ0) of the solution

(x f
⋆, xs

⋆) are neglected. If γ0 is sufficiently small, then we can easily

solve the previous equation, provided the algebraic equations give a non-

singular matrix3.

−






∂y f
r f ∂λr f 0

∂y f
rλ 0 0

0 ∂λrs ∂ys
rs






−1 



0
∂ys

rλ

0





=





 [

∂ys
rs

]−1
∂λrs

[

∂y f
rλ

[

∂y f
r f

]−1
∂λr f

]−1

∂ys
rλ







(A.18)

thus the contractivity coefficient α can be introduced, defined as:

α = max
n

∥
∥
∥
∥
∥

[

∂ys
rs

]−1
∂λrs

[

∂y f
rλ

[

∂y f
r f

]−1
∂λr f

]−1

∂ys
rλ

∥
∥
∥
∥
∥

2On the regularity assumption, see the remark at the end of this proof.
3This requires non-singular Jacobians, see [Arnold and Gunther, 2001, Brenan et al., 1996]

for more details

A.3. PROOFS FOR STABLE ERROR PROPAGATION 135

Using this inverse calculation in A.18 gives the following bounds for

the difference between the two coupled problems after one iteration:

‖δy f
(1)‖ 6 O(1)

(

‖δx f
(0)‖+‖δxs

(0)‖+‖δys
(0)‖+‖δx f

(1)‖+‖δxs
(1)‖

)

‖δys
(1)‖ 6 α̂‖δys

(0)‖+O(1)
(

‖δx f
(0)‖+‖δxs

(0)‖+‖δx f
(1)‖+‖δxs

(1)‖
)

where:

α̂ = α +O(1)
(

‖∆x f
(0)‖+‖∆xs

(0)‖+‖∆λ
(0)‖+‖∆x̃ f

(0)‖+‖∆x̃s
(0)‖+‖∆λ̃

(0)‖
)

Inserting the inequality above in the Lipschitz condition Eq. (A.16) gives:

‖δx f
(1)‖ 6 O(H)

(

‖δx f
(0)‖+ ‖δxs

(0)‖+ ‖δys
(0)‖

)

+ ‖δx f
(0)(TN)‖

‖δxs
(1)‖ 6 O(H)

(

‖δx f
(0)‖+ ‖δxs

(0)‖+ ‖δys
(0)‖

)

+ ‖δxs
(0)(TN)‖

‖δys
(1)‖ 6 (α̂ +O(H)) ‖δy f

(0)‖+O(1)
(

‖δx f
(0)‖+ ‖δxs

(0)‖
)

Rewriting the equation above in matrix form completes the proof of

Lemma 1.

Lemma 2

Provided that the assumptions of the previous Lemma are satisfied and as-

sume that α̂ < 1 and C > α̂, one can write:

∃Ĉ ∈ R+ such that ∀k > 1, ∀H 6 H0






‖δx f
(k)‖

‖δxs
(k)‖

‖δys
(k)‖




 6






1 + ĈH‖δx f
(0)(TN)‖

1 + ĈH‖δxs
(0)(TN)‖

Ĉ




+





Ĉ(4Ĉ + 1)Hµ̂k−2 Ĉ(4Ĉ + 1)Hµ̂k−2 4ĈHµ̂k−1

Ĉ(4Ĉ + 1)Hµ̂k−2 Ĉ(4Ĉ + 1)Hµ̂k−2 4ĈHµ̂k−1

4Ĉµ̂k−1 4Ĉµ̂k−1 µ̂k + (µ̂− α̂)k










‖δx f
(0)‖

‖δxs
(0)‖

‖δys
(0)‖






with µ̂ = α̂ + 2CH
α̂

2C +
√

H

Proof of Lemma 2 : Although the successive values of (x f
(k), xs

(k), ys
(k))

remain in the neighborhood Uγ0 of the solution, Lemma 1 shows that

iteration error is mainly governed by the matrix:

J =





CH CH CH
CH CH CH
C C α̂ + CH



 (A.19)

Recursive application of Lemma 1 leads to:






‖δx f
(k)‖

‖δxs
(k)‖

‖δys
(k)‖




 6 Jk






‖δx f
(0)‖

‖δxs
(0)‖

‖δys
(0)‖




+

k−1

∑
i=0

Ji





‖δ∆x f
(0)(TN)‖

‖δ∆xs
(0)(TN)‖
0



 (A.20)

136 APPENDIX A. DFMT-BGS STABILITY AND CONVERGENCE

Hence, the goal is to express in a relatively simple way the bounds

for the elements of Jk and for the first column of ∑ Ji. The classical

method used to obtain such bounds seeks to first transform the matrix

into corresponding diagonal form J and then to bound the power of the

eigenvalues. This leads to tedious but straight-forward calculations; for

more details the reader is invited to consider [Arnold and Gunther, 2001],

Lemma 3.2.

Proof of Theorem 1 : The errors on the interest variables like ǫx f ,N on

x f for the fluid part, ǫxs ,N on xs for the structure part, and ǫys ,N on ys
used for the coupling, are split in two terms: e.,N+1 representing error

propagation from one window N (t ∈ [TN−1, TN]) to the next N + 1 (t ∈
[TN , TN+1]); d.,N+1 corresponds to local error contribution on the window

of interest N + 1.

The proof is organized as follows: applying Lemma 2 with suitable

arguments, yields estimates for error propagation e (see proof (i)) and lo-

cal error d (see proof (ii)). Then these estimates are combined to bounds

set for the global errors ǫ (see proof(iii)). We can then show by induction

that the global error bound is always verified (see proof (iv)). The con-

stants µ and α are explicitly stated at the end of the proof of Theorem

1 (v).

i - Estimate of propagation error contribution is the first part of the

proof, where Lemma 2 with the following suitable arguments is

applied:






x̃ f
(0)

x̃s
(0)

ỹs
(0)




←−






x f
(kmax)
N

xs
(kmax)
N

ys
(kmax)
N




 and






x f
(0)

xs
(0)

ys
(0)




←−





x f
⋆

N
xs

⋆

N
ys

⋆

N



 (A.21)

The symbol, ‘←−’ indicates the initial guesses (obtained with zero-

th, first or second order predictors) from one window N to the next

one N + 1. For instance, in the simplest predictor is the constant

function that leads to an error of size O(H):

(x f
(0)
N+1, xs

(0)
N+1, ys

(0)
N+1) = (x f

(kmax)
N , xs

(kmax)
N , 0)

The values (x f
(kmax)
N , xs

(kmax)
N , ys

(kmax)
N), in equation (A.21) above, ob-

tained by numerical integration on the previous window N, can be

considered as the best representation of the exact solution of the

problem (x f
⋆

N
, xs

⋆

N , ys
⋆

N) on this window. The choice of initial val-

ues (A.21) gives by definition the propagation error in the N + 1-th

windows for the (k)-th iteration: δx f
(k) = ex f ,N+1, δxs

(k) = exs ,N+1

and δys
(k) = eys ,N+1.

It is assumed that the chosen initial guess operator ←− satisfies

A.3. PROOFS FOR STABLE ERROR PROPAGATION 137

Lipschitz condition:

∃L∗ ∈ R such that







‖∆x f
(0)‖ 6 L∗‖ǫx f ,N‖

‖∆xs
(0)‖ 6 L∗‖ǫxs ,N‖

‖∆ys
(0)‖ 6 L∗‖ǫys ,N‖

(A.22)

It will extrapolate x f and xs continuously from one window to an-

other: ‖δx f
(0)(TN)‖ 6 ‖ǫx f ,N‖ and ‖δxs

(0)(TN)‖ 6 ‖ǫxs ,N‖. There-

fore, the application of Lemma 2 to the (k)-th iteration on window

N with α < 1 and a window size H small enough so that µ < 1 leads

to:




‖ex f ,N+1‖
‖exs ,N+1‖
‖eys ,N+1‖



 6





1 + C∗1 H 1 + C∗1 H C∗1 H
1 + C∗1 H 1 + C∗1 H C∗1 H

C∗1 C∗1 α∗









‖ǫx f ,N‖
‖ǫxs ,N‖
‖ǫys ,N‖





(A.23)

with C∗1 ∈ R+ and α∗ := L∗(µ̂k + (µ̂− α̂)k).

ii - Estimate of local error contribution consists again in applying Lemma

2 with suitable arguments:





x̃ f
(0)

x̃s
(0)

ỹs
(0)




←−





x f
⋆

N
xs

⋆

N
ys

⋆

N



 and






x f
(0)

xs
(0)

ys
(0)




 =





x f
⋆

N+1
xs

⋆

N+1
ys

⋆

N+1



 (A.24)

Since the solution of the problem (x f
⋆

n
, xs

⋆

n, λ
⋆

n) is a fixed-point of

the iteration sequence, the local error contributions are measured

by (δx f
(k), δxs

(k), δys
(k)) = (dx f ,N+1, dxs ,N+1, dλ,N+1). Furthermore,

the use of the solution of the problem as the initialization of the iter-

ative sequence yields (δx f
(0), δxs

(0), δys
(0)) = (∆x f

(0), ∆xs
(0), ∆ys

(0)),

x̃ f
(0)(TN)− x f

(0)(TN) = 0 and x̃s
(0)(TN)− xs

(0)(TN) = 0. Thus the

application of Lemma 2 then gives:





‖dx f ,N+1‖
‖dxs ,N+1‖
‖dys ,N+1‖



 6

(

µ̂k−2
(

‖∆x f
(0)‖+‖∆xs

(0)‖
)

+µ̂k−1‖∆λ
(0)‖
)





C∗2 H
C∗2 H
C∗2





(A.25)

with a positive constant C∗2 .

iii - these estimates are combined with the bounds set for the global

errors ‖ǫN+1‖ 6 ‖eN+1‖+ ‖dN+1‖:




‖ǫx f ,N+1‖
‖ǫxs ,N+1‖
‖ǫys ,N+1‖



 6





1+C∗1 H 1+C∗1 H C∗1 H
1+C∗1 H 1+C1H∗ C∗1 H

C∗1 C∗1 α∗









‖ǫx f ,N‖
‖ǫxs ,N‖
‖ǫys ,N‖





+
(

µ̂k−2
(

‖∆x f
(0)‖+ ‖∆xs

(0)‖
)

+ µ̂k−1‖∆ys
(0)‖

)





C∗2 H
C∗2 H
C∗2





(A.26)

138 APPENDIX A. DFMT-BGS STABILITY AND CONVERGENCE

If the contraction condition α∗ < 1 is fulfilled, the behavior of

such coupled error recursions is known (see [Deuflhard et al., 1987],

Lemma 2) and can be written as follows:

max
N

(

‖ǫx f ,N‖+ ‖ǫxs ,N‖+ ‖ǫys ,N‖
)

6 C ·max
N

(

µ̂k−2
(

‖∆x f
(0)‖+ ‖∆xs

(0)‖
)

+ µ̂k−1‖∆ys
(0)‖

) (A.27)

with a positive constant C.

As the total error is the expressed by the sum ‖ǫx f ,N‖+ ‖ǫxs ,N‖+

‖ǫys ,N‖, the last expression completes the proof of Theorem 1.

iv - As the initial guess operator ←− leads to initial errors ‖∆x f
(0)‖,

‖∆xs
(0)‖ and ‖∆ys

(0)‖ of size O(H), the right-hand side of the last

equation remains bounded for all H < H0, if H0 is sufficiently small:

max
N

(

‖ǫx f ,N‖+ ‖ǫxs ,N‖+ ‖ǫys ,N‖
)

6 C ·max
N

(

µ̂k−2
(

‖∆x f
(0)‖+ ‖∆xs

(0)‖
)

+ µ̂k−1‖∆λ
(0)‖

)

6 γ0

(A.28)

This further shows that errors is bounded by γ0, and that approx-

imate numerical solution remains in the neighborhood Uγ0 of the

solution.

v - The constants α̂ and µ̂ which appear in proofs of Lemma 1 and

Lemma 2 are given as follows:

α̂ = α +O(1) max
n

(‖ǫx f ,N‖+ ‖ǫxs ,N‖+ ‖ǫλ,N‖)+O(H) = α +O(H)

and

µ̂ = α̂ +O(H)

These results give the following order of magnitude for α∗:

α∗ = L∗(µ̂k + (µ̂− α̂)k) = L∗((α +O(H)k +O(Hk)) (A.29)

The expression above confirms the criterion of stable error propaga-

tion for α∗ < 1. For the iterative DFMT-BGS with an appropriate

guess operator, the stability is guaranteed when α < 1 and when

the window size is small enough.

Bibliography

[Adams et al., 2004] Adams, M. F., Bayraktar, H. H., Keaveny, T. M., and

Panayiotis, P. (2004). Ultrascalable implicit finite element analyses in solid

mechanics with over a half billion degrees of freedom. SC2004 High perfor-

mance computing, networking and storage conference, Pittsburg, PA. (Cited

on page 63.)

[Arnold, 2001] Arnold, M. (2001). Constraint partitioning in dynamic iteration

methods. Zeitschrift fur Angewandte Mathematik und Mechanik, 81:735–738.

(Cited on page 131.)

[Arnold and Gunther, 2001] Arnold, M. and Gunther, M. (2001). Precondi-

tioned dynamic iteration for coupled differential-algebraic systems. BIT Nu-

mer. Math., 41:1–25. (Cited on pages 48, 50, 129, 131, 132, 134 and 136.)

[Austruy, 2008] Austruy, C. (2008). Approches multi-échelles et multi-physiques

pour quantifier l’amortissement d’une vague par des obstacles. Mémoire de

Master 2-R MIS, parcours Génie-civil, École Normale Supérieure de Cachan,

Cachan, France. Encadrants : J.-B. Colliat, C. Kassiotis. Mention TB,

Rang 1. (Cited on pages 65 and 91.)

[Austruy et al., 2008] Austruy, C., Kassiotis, C., Colliat, J.-B., Ibrahimbegović,

A., Matthies, H. G., and Dias, F. (2008). A multiscale and multiphysic ap-

proach to quantify waves damping by structures. In Ibrahimbegović, A. and

Zlatar, M., editors, NATO–ARW 983112 Damage assessments and recon-

struction after natural disasters and previous military activities, Sarajevo,

Bosnia-Herzegovina. (Cited on pages 65 and 88.)

[Barcelos et al., 2006] Barcelos, M., Bavestrello, H., and Maute, K. (2006). A

Schur–Newton–Krylov solver for steady-state aeroelastic analysis and design

sensitivity analysis. Computer Methods in Applied Mechanics and Engineer-

ing, 195:2050–2069. (Cited on page 58.)

[Barton, 1998] Barton, I. E. (1998). Comparison of SIMPLE- and PISO-type

algorithms for transient flows. International Journal for Numerical Methods

in Fluid, 26(4):459–483. (Cited on page 15.)

[Bathe and Zhang, 2009] Bathe, K.-J. and Zhang, H. (2009). A mesh adap-

tivity procedure for CFD and fluid-structure interactions. Computers and

Structures, 87(11-12):604–617. (Cited on page 98.)

139

140 BIBLIOGRAPHY

[Baudille and Biancolini, 2006] Baudille, R. and Biancolini, M. E. (2006). Mod-

elling FSI problems in FLUENT: a general purpose approach by means of

UDF programming. Unknwown. http://www.colorado.edu/engineering/

CAS/courses.d/FSI.d/FSI.CISM.d/Ross.Thesis.pdf.

[Becker and Rannacher, 2003] Becker, R. and Rannacher, R. (2003). An opti-

mal control approach to a posteriori error estimation in finite element meth-

ods. Acta numerica, 10:1–102. (Cited on page 7.)

[Beckert and Wendland, 2001] Beckert, A. and Wendland, H. (2001). Multi-

variate interpolation for fluid-structure-interaction problems using radial ba-

sis functions. Aerospace Science and Technology, 5(2):125–134. (Cited on

pages 89 and 91.)

[Belytschko et al., 1979] Belytschko, T., Yen, H. J., and Mullen, R. (1979).

Mixed methods for time integration. Computer Methods in Applied Mechanics

and Engineering, 17(18):259–275. (Cited on page 37.)

[Bernardi et al., 1990] Bernardi, C., Maday, Y., and Patera, A. T. (1990). A

new nonconforming approach to domain decomposition: the mortar element

method. Technical report, Université Pierre at Marie Curie, Paris, France.

(Cited on page 38.)

[Berti, 2002] Berti, G. (2002). Generic Software Components for Scientific

Computing. Ph.D. Thesis, Technische Universität Cottbus, Germany. (Cited

on page 64.)

[Bouche et al., 2006] Bouche, D., Ghidaglia, J. M., and Pascal, F. (2006). Error

estimate and the geometric corrector for the upwind finite volume method ap-

plied to the linear advection equation. SIAM Journal on Numerical Analysis,

43(2):578–603. (Cited on page 7.)

[Brenan et al., 1996] Brenan, K. E., Campbell, S. L. V., and Petzold, L. R.

(1996). Numerical solution of initial-value problems in Differential-Algebraic

Equations. Society for Industrial and Applied Mathematics. (Cited on

page 134.)

[Brooks and Hughes, 1990] Brooks, A. N. and Hughes, T. J. R. (1990). Stream-

line upwind/Petrov-Galerkin formulations for convection dominated flows

with particular emphasis on the incompressible Navier-Stokes equations.

Computer methods in applied mechanics and engineering, pages 199–259.

(Cited on pages 7 and 37.)

[Broy et al., 1998] Broy, M., Deimel, A., Henn, J., Koskimies, K., Plášil, F.,

Pomberger, G., Pree, W., Stal, M., and Szyperski, C. (1998). What char-

acterizes a (software) component? Software – Concept & Tools, 19:49–56.

(Cited on page 65.)

[Bruneau and Saad, 2006] Bruneau, C.-H. and Saad, M. (2006). The 2D lid-

driven cavity problem revisited. Computers and Fluids, 35:326–348. (Cited

on page 96.)

http://www.colorado.edu/engineering/CAS/courses.d/FSI.d/FSI.CISM.d/Ross.Thesis.pdf
http://www.colorado.edu/engineering/CAS/courses.d/FSI.d/FSI.CISM.d/Ross.Thesis.pdf

BIBLIOGRAPHY 141

[Bügling, 2006] Bügling, B. (2006). The Component Template Library Pro-

tocol and its Java Implementation. Master Thesis, Technische Universität

Braunschweig, Institut for Scientific Computing. http://www.wire.tu-bs.

de/forschung/projekte/ctl/files/ctl_spec.pdf. (Cited on page 66.)

[Bullock et al., 2007] Bullock, G., Obhrai, C., Peregrine, D., and Bredmose, H.

(2007). Violent breaking wave impacts. Part I: Results from large-scale regular

wave tests on vertical and sloping walls. Coastal Engineering, 54(8):602–617.

(Cited on page 29.)

[Causin et al., 2005] Causin, P., Gerbeau, J.-F., and Nobile, F. (2005). Added-

mass effect in the design of partitioned algorithms for fluid-structure prob-

lems. Computer Methods in Applied Mechanics and Engineering, 194(42-

44):4506–4527. (Cited on pages 3, 47 and 103.)

[Chung and Hulbert, 1994] Chung, J. and Hulbert, G. M. (1994). A family of

single-step houbolt time integration algorithms for structural dynamics. Com-

puter Methods in Applied Mechanics and Engineering, 118(1-2):1–11. (Cited

on page 10.)

[Clough, 1960] Clough, R. W. (1960). The finite element method in plane stress

analysis. ASCE conference on electronic computation, Pittsburg, PA. (Cited

on page 1.)

[Comité Européen de Normalisation, 2009] Comité Européen de Normalisation

(1971–2009). Eurocode home page. http://eurocodes.jrc.ec.europa.eu/.

(Cited on page 1.)

[Coulange, 1998] Coulange, B. (1998). Software reuse. Springer Verlag, London.

(Cited on page 64.)

[de Boer et al., 2007] de Boer, A., van Zuijlen, A. H., and Bijl, H. (2007). Re-

view of coupling methods for non-matching meshes. Computer Methods in

Applied Mechanics and Engineering, 196(8):1515–1525. (Cited on page 88.)

[Demirdžić and Perić, 1988] Demirdžić, I. and Perić, M. (1988). Space conser-

vation law in finite volume calculations of fluid flow. International Journal

for Numerical Methods in Fluid, 8(9). (Cited on pages 8, 25 and 45.)

[Deparis, 2004] Deparis, S. (2004). Numerical Analysis of Axisymmetric Flows

and Methods for Fluid-Structure Interaction Arising in Blood Flow Simula-

tion. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Swiss. (Cited

on pages 1 and 40.)

[Deparis et al., 2006] Deparis, S., Discacciati, M., Fourestey, G., and Quar-

teroni, A. (2006). Fluid-structure algorithms based on Steklov-Poincaré op-

erators. Computer Methods in Applied Mechanics and Engineering, 195(41-

43):5797–5812. (Cited on pages 41, 53 and 58.)

http://www.wire.tu-bs.de/forschung/projekte/ctl/files/ctl_spec.pdf
http://www.wire.tu-bs.de/forschung/projekte/ctl/files/ctl_spec.pdf
http://eurocodes.jrc.ec.europa.eu/

142 BIBLIOGRAPHY

[Dettmer and Perić, 2003] Dettmer, W. G. and Perić, D. (2003). An analysis

of the time integration algorithms for the Finite Element solution of incom-

pressible Navier-Stokes equations based on a stabilised formulation. Com-

puter Methods in Applied Mechanics and Engineering, 192:1177–1226. (Cited

on pages 10 and 37.)

[Dettmer and Perić, 2006] Dettmer, W. G. and Perić, D. (2006). A computa-

tional framework for fluid–structure interaction: finite element formulation

and applications. Computer Methods in Applied Mechanics and Engineering,

195(41-43):5754–5779. (Cited on pages 106 and 109.)

[Dettmer and Perić, 2007] Dettmer, W. G. and Perić, D. (2007). A fully implicit

computational strategy for strongly coupled fluid-solid interaction. Archives

of Computational Methods in Engineering, 14:205–247. (Cited on pages 37,

95, 106, 109 and 111.)

[Dettmer and Perić, 2008] Dettmer, W. G. and Perić, D. (2008). On the cou-

pling between fluid flow and mesh motion in the modelling of fluid-structure

interaction. Computational Mechanics, 43(1):81–90. (Cited on page 58.)

[Deuflhard et al., 1987] Deuflhard, P., Hairer, E., and Zugck, J. (1987). One-

step and extrapolation methods for differential-algebraic systems. Numerische

Mathematik, 51:501–516. (Cited on page 138.)

[Dias and Dutykh, 2006] Dias, F. and Dutykh, D. (2006). Dynamics of tsunami

waves. NATO Advanced Research Workshop, ARW-981641, pages 35–64.

(Cited on page 116.)

[Dias et al., 2009] Dias, F., Dutykh, D., and Ghidaglia, J.-M. (2009). A two-

fluid model for violent aerated flows. Computers and Fluids, In Press, Ac-

cepted Manuscript. (Cited on page 28.)

[Dutykh, 2008] Dutykh, D. (2008). Modélisation Mathématique des Tsunamis.

Thèse de Doctorat, Centre de Mathématiques et Leurs Applications, École

Normale Supérieure de Cachan, France. (Cited on pages 3 and 28.)

[Dutykh and Mitsotakis, 2009] Dutykh, D. and Mitsotakis, D. (2009). On the

relevance of the dam break problem in the context of nonlinear shallow water

equations. Discrete and Continous Dynamical System – Series A, Accepted.

(Cited on pages 26 and 29.)

[Farhat et al., 2001] Farhat, C., Geuzaine, P., and Grandmont, C. (2001). The

discrete geometric conservation law and the nonlinear stability of ale schemes

for the solution of flow problems on moving grids. Journal of Computational

Physics, 174(2):669–694. (Cited on pages 25 and 45.)

[Farhat and Lesoinne, 2000] Farhat, C. and Lesoinne, M. (2000). Two efficient

staggered algorithms for the serial and parallel solution of three-dimensional

nonlinear transient aeroelastic problems. Computer Methods in Applied Me-

chanics and Engineering, 182:499–515. (Cited on page 45.)

BIBLIOGRAPHY 143

[Farhat et al., 1995] Farhat, C., Lesoinne, M., and Maman, N. (1995). Mixed

explicit/implicit time integration of coupled aeroelastic problems: three-field

formulation, geometric conservation and distributed solution. International

Journal for Numerical Methods in Engineering, 21(10). (Cited on pages 41

and 46.)

[Farhat and Roux, 1994] Farhat, C. and Roux, F.-X. (1994). Implicit paral-

lel processing in structural mechanics. Computational Mechanics Advances,

2(1):1–124. (Cited on page 79.)

[Felippa and Park, 2004] Felippa, C. and Park, K. (2004). Synthesis tools for

structural dynamics and partitioned analysis of coupled systems. NATO Ad-

vanced Research Workshop (eds. A. Ibrahimbegović and B. Brank), pages 50–

111. (Cited on pages 37, 50 and 88.)

[Felippa et al., 1977] Felippa, C. A., Park, K. C., and de Runtz, J. A. (1977).

Stabilization of staggered solution procedures for fluid-structure interaction

analysis. In Computational methods for fluid-structure interaction problems,

pages 95–124. (Cited on pages 37 and 47.)

[Fernández et al., 2008] Fernández, M. Á., Gerbeau, J.-F., Gloria, A., and

Vidrascu, M. (2008). Domain decomposition based Newton methods for fluid-

structure interaction problems. In ESAIM: Proceedings, volume 22, pages

67–82. edpsciences.org. (Cited on page 41.)

[Fernández et al., 2007] Fernández, M. Á., Gerbeau, J.-F., and Grandmont, C.

(2007). A projection semi-implicit scheme for the coupling of an elastic struc-

ture with an incompressible fluid. International Journal for Numerical Meth-

ods in Engineering, 69(4):794–821. (Cited on page 58.)

[Fernández and Moubachir, 2005] Fernández, M. Á. and Moubachir, M. (2005).

A Newton method using exact Jacobians for solving fluid–structure coupling.

Computers and Structures, 83(2-3):127–142. (Cited on pages 40 and 58.)

[Ferziger and Perić, 1996] Ferziger, J. H. and Perić, M. (1996). Further discus-

sion of numerical errors in CFD. International Journal for Numerical Methods

in Fluid, 23:1263–1274. (Cited on page 52.)

[Ferziger and Perić, 2002] Ferziger, J. H. and Perić, M. (2002). Computational

Methods for Fluid Dynamics. Springler-Verlag, Berlin, Germany, 3rd edition.

(Cited on pages 2, 7, 13, 14, 15, 16, 37, 71, 75, 96 and 98.)

[Feyel and Chaboche, 2001] Feyel, F. and Chaboche, J.-L. (2001). Multi-scale

non-linear FE2 analysis of composite structures: damage and fiber size ef-

fects. Revue européenne des Éléments Finis: NUMDAM’00 issue, 10:449–472.

(Cited on page 88.)

[Feyel et al., 1997] Feyel, F., Kruch, S., Roux, F.-X., and Cailletaud, G. (1997).

Application of parallel computing to models with large numbers of internal

variables. In 3ème Colloque National en Calcul de Structure, number 83, pages

309–314, Giens, France. (Cited on page 63.)

144 BIBLIOGRAPHY

[Fochesato et al., 2007] Fochesato, C., Grilli, S., and Dias, F. (2007). Numerical

modeling of extreme rogue waves generated by directional energy focusing.

Wave Motion, 44:395–416. (Cited on page 116.)

[Foerch, 1996] Foerch, R. (1996). Un environement orienté objet pour la modéli-

sation numérique des matériaux en calcul de structures. Ph.D. Thesis, École

Nationale Supérieure des Mines de Paris, France. (Cited on page 87.)

[Förster, 2007] Förster, C. (2007). Robust methods for fluid-structure interac-

tion with stabilised finite elements. Ph.D. Thesis, Institut für Baustatik und

Baudynamik, Universität Stuttgart, Germany. (Cited on page 47.)

[Förster et al., 2007] Förster, C., Ramm, W. A., and Ramm, E. (2007). Arti-

ficial added mass instabilities in sequential staggered coupling of nonlinear

structures and incompressible viscous flows. Computer Methods in Applied

Mechanics and Engineering, 196:1278–1291. (Cited on pages 47, 99, 102

and 103.)

[Förster et al., 2006] Förster, C., Wall, W. A., and Ramm, E. (2006). On the

geometric conservation law in transient ow calculations on deforming domains.

International Journal for Numerical Methods in Fluid, 50:1369–1379. (Cited

on pages 25, 45 and 102.)

[Fosdick et al., 1996] Fosdick, L. D., Jessup, E. R., Schauble, C. J. C., and

Domik, G. (1996). An introduction to high-performance scientific computing.

The MIT Press. (Cited on page 63.)

[Franca et al., 1993] Franca, L. P., Hughes, T. J. R., and Stenberg, R. (1993).

Stabilized finite element methods. Incompressible Computational Fluid Dy-

namics, pages 87–107. (Cited on pages 7 and 37.)

[Frandsen, 2004] Frandsen, J. B. (2004). Numerical bridge deck studies using

finite elements. part i: flutter. Journal of Fluids and Structures, 19(2):171–

191. (Cited on page 1.)

[Fries, 2005] Fries, T.-P. (2005). A Stabilized and Coupled MeshfreeMeshbased

Method for Fluid-Structure Interaction Problems. Ph.D. Thesis, Technis-

chen Universität Carolo-Wilhelmina zu Braunschweig, Germany. (Cited on

pages 27, 89 and 116.)

[Garaud, 2008] Garaud, J.-D. (2008). Développement de Méthodes de couplage

aéro-thermo-mécanique pour la prédiction des instabilités dans les structures

aérospatiales chaudes. Thèse de Doctorat, Université Pierre et Marie Curie,

France. (Cited on page 87.)

[Geist, 2007] Geist, a. (2007). Pvm official home page. http://www.csm.ornl.

gov/pvm. (Cited on page 65.)

[Gerbeau and Vidrascu, 2003a] Gerbeau, J. and Vidrascu, M. (2003a). A quasi-

Newton algorithm based on a reduced model for fluid-structure interaction

problems in blood flows. Rapport de Recherche 4691, Institut National de

Recherche en Informatique et Automatique, Rocquencourt, France. (Cited

on page 40.)

http://www.csm.ornl.gov/pvm
http://www.csm.ornl.gov/pvm

BIBLIOGRAPHY 145

[Gerbeau and Vidrascu, 2003b] Gerbeau, J. and Vidrascu, M. (2003b). A quasi-

Newton algorithm based on a reduced model for fluid-structure interaction

problems in blood flows. Mathematical Modelling and Numerical Analysis,

37(4):631–647. (Cited on pages 58, 98, 100 and 102.)

[Germain and Muller, 1990] Germain, P. and Muller, P. (1990). Introduction à

la mécanique des milieux continus. 2ème édition. (Cited on page 2.)

[Ghia et al., 1982] Ghia, U., Ghia, K. N., and Shin, C. T. (1982). High-Re

solutions for incompressible flow using the Navier-Stokes equations and a

multigrid method. Journal of Computational Physics, 48:387–411. (Cited on

pages 96 and 97.)

[Ghidaglia et al., 2001] Ghidaglia, J.-M., Kumbaro, A., and Le Coq, G. (2001).

On the numerical solution to two fluid models via a cell centered finite volume

method. European Journal of Mechanics/B Fluids, 20(6):841–867. (Cited on

page 27.)

[Ghidaglia and Pascal, 2005] Ghidaglia, J.-M. and Pascal, F. (2005). The nor-

mal flux method at the boundary for multidimensional finite volume approxi-

mations in cfd. European Journal of Mechanics/B Fluids, 24(1):1–17. (Cited

on pages 14 and 24.)

[Glowinski et al., 2003] Glowinski, R., Ciarlet, P., and Lions, J. (2003). Numer-

ical methods for fluids (part 3). Handbook of numerical analysis, 9(3). (Cited

on page 13.)

[Golub and van Loan, 1996] Golub, G. H. and van Loan, C. F. (1996). Ma-

trix computations. The Johns Hopkins University Press, Baltimore, London.

(Cited on page 51.)

[Graff, 1975] Graff, K. (1975). Wave Motions in Elastic Solids. Oxford Press.

(Cited on page 12.)

[Gropp et al., 1994] Gropp, W., Lusk, E., and Skjellum, A. (1994). Using MPI:

Portable Parallel Programming with the Message-Passing Interface. MIT

Press. (Cited on page 65.)

[Guyon et al., 1999] Guyon, M., Madec, G., Roux, F.-X., and Imbard, M.

(1999). A parallel ocean model for high resolution studies. In Proceedings

of the 5th International Euro-Par Conference on Parallel Processing, pages

603–607. Springer-Verlag London, UK. (Cited on page 63.)

[Hautefeuille, 2009] Hautefeuille, M. (2009). Numerical Modeling strategy for

Heterogeneous Materials: A FE Multi-scale and Component-based Approach.

Ph.D. Thesis, Université Technologique de Compiègne, Technische Univer-

sität Braunschweig and École Normale Supérieure de Cachan, France and

Germany. (Cited on pages 38, 79, 88, 91 and 128.)

[Heil, 2004] Heil, M. (2004). An efficient solver for the fully coupled solution of

large-displacement fluid–structure interaction problems. Computer Methods

in Applied Mechanics and Engineering, 193(1-2):1–23. (Cited on page 56.)

146 BIBLIOGRAPHY

[Heywood et al., 1996] Heywood, J., Rannacher, R., and Turek, S. (1996). Ar-

tificial boundaries and flux and pressure conditions for the incompressible

Navier-Stokes equations. International Journal for Numerical Methods in

Fluid, 22(5):325–352. (Cited on page 12.)

[Hilber et al., 1977] Hilber, H. M., Hughes, T. J. R., and Taylor, R. L. (1977).

Improved numerical dissipation for time integration algorithms in structural

dynamics. Earthquake Engineering & Structural Dynamics, 5(3). (Cited on

page 11.)

[Hirt et al., 1997] Hirt, C. W., Amsden, A. A., and Cook, J. L. (1997). An

arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal

of Computational Physics, 135(2):203–216. (Cited on pages 2 and 8.)

[Hoffman and Johnson, 2007] Hoffman, J. and Johnson, C. (2007). Computa-

tional turbulent incompressible flow. (Cited on page 7.)

[Hortmann et al., 1990] Hortmann, M., Perić, M., and Scheuerer, G. (1990). Fi-

nite volume multigrid prediction of laminar natural convection: Bench-mark

solutions. International Journal for Numerical Methods in Fluid, 11:189–207.

(Cited on pages 96 and 97.)

[Hübner et al., 2004] Hübner, B., Walhorn, E., and Dinkler, D. (2004). A mono-

lithic approach to fluid-structure interaction using space-time finite elements.

Computer Methods in Applied Mechanics and Engineering, 193:2087–2014.

(Cited on pages 37, 95, 106, 109 and 117.)

[Hughes et al., 1979] Hughes, T. J. R., Pister, K. S., and Taylor, R. L. (1979).

Implicit-explicit finite elements in nonlinear transient analysis. Computer

Methods in Applied Mechanics and Engineering, 17:159–182. (Cited on

page 37.)

[Ibrahimbegović, 2006] Ibrahimbegović, A. (2006). Mécanique non linéaire des

solides déformables : Formulation théorique et résolution numérique par élé-

ments finis. Hermès Sciences – Lavoisier, Paris. (Cited on page 9.)

[Ibrahimbegović, 2009] Ibrahimbegović, A. (2009). Nonlinear solid mechanics:

Theoretical formulations and finite element solution methods. Springer. (Cited

on pages 2 and 7.)

[Ibrahimbegović and Mamouri, 2002] Ibrahimbegović, A. and Mamouri, S.

(2002). Energy conserving & decaying implicit time-stepping scheme for non-

linear dynamics of three-dimensional beams undergoing finite rotations. Com-

puter Methods in Applied Mechanics and Engineering, 191:4241–4258. (Cited

on page 46.)

[Ibrahimbegović and Markovič, 2003] Ibrahimbegović, A. and Markovič, D.

(2003). Strong coupling methods in multi-phase and multi-scale modeling

of inelastic behavior of heterogeneous structures. Computer Methods in Ap-

plied Mechanics and Engineering, 192:3089–3107. (Cited on page 88.)

BIBLIOGRAPHY 147

[Idelsohn et al., 2003] Idelsohn, S., Onate, E., and Del Pin, F. (2003). A la-

grangian meshless finite element method applied to fluid-structure interaction

problems. Computers and Structures, 81(8-11):655–671. (Cited on pages 2

and 116.)

[Idelsohn et al., 2004] Idelsohn, S. R., Onate, E., and Del Pin, F. (2004). The

particle finite element method: a powerful tool to solve incompressible flows

with free-surfaces and breaking waves. International Journal for Numerical

Methods in Engineering, 61:964–989. (Cited on page 27.)

[Irons and Tuck, 1969] Irons, B. M. and Tuck, R. C. (1969). A version of the

aitken accelerator for computer iteration. International Journal for Numerical

Methods in Engineering, 1(3):275–277. (Cited on page 53.)

[Jasak, 1996] Jasak, H. (1996). Error Analysis and Estimation for the Finite

Volume Method with Applications to Fluid Flows. Ph.D. Thesis, Depart-

ment of Mechanical Engineering, Imperial College of Science, Technology and

Medicine, London, G.-B. (Cited on pages 7, 16, 52, 73 and 75.)

[Jasak and Tuković, 2007] Jasak, H. and Tuković, Z. (2007). Automatic mesh

motion for the unstructured finite volume method. Transactions of FAMENA,

30(2):1–18. (Cited on pages 13, 22, 24 and 72.)

[Joosten et al., 2009] Joosten, M. M., Dettmer, W. G., and Perić, D. (2009).

Analysis of the block gauss-seidel solution procedure for a strongly coupled

model problem with reference to fluid-structure interaction. International

Journal for Numerical Methods in Engineering, 78(7). (Cited on page 51.)

[Jürgens, 2009] Jürgens, D. (2009). Survey on software engineering for scientific

applications. Informatikbericht, Institute for Scientific Computing, Braun-

schweig, Germany. (Cited on pages 35, 64 and 91.)

[Karypis and Kumar, 1998] Karypis, G. and Kumar, V. (1998). METIS, A

Software Package for Partitioning Unstructured Graphs, Partitioning Meshes,

and Computing Fill-Reducing Orderings of Sparse Matrices. University of

Minnesota, Department of Computer Science, Minneapolis, MN, USA. http:

//www.cs.umn.edu/~karypis. (Cited on page 81.)

[Kassiotis, 2008] Kassiotis, C. (2008). Which strategy to move the mesh in the

Computational Fluid Dynamic code OpenFOAM? Technical report, WiRe

/ LMT–Cachan, Germany / France. http://perso.crans.org/kassiotis/

openfoam/movingmesh.pdf. (Cited on page 22.)

[Kassiotis et al., 2009a] Kassiotis, C., Colliat, J.-B., Ibrahimbegović, A., and

Matthies, H. G. (2009a). Multiscale in time and stability analysis of operator

split solution procedure applied to thermomechanical problems. Engineering

Computations, 1-2:205–223. (Cited on pages 37 and 131.)

[Kassiotis and Hautefeuille, 2008] Kassiotis, C. and Hautefeuille, M. (2008).

coFeap’s Manual. LMT-Cachan, École Normale Supérieure de Cachan,

Cachan, France. http://www.lmt.ens-cachan.fr/cofeap. (Cited on

page 66.)

http://www.cs.umn.edu/~karypis
http://www.cs.umn.edu/~karypis
http://perso.crans.org/kassiotis/openfoam/movingmesh.pdf
http://perso.crans.org/kassiotis/openfoam/movingmesh.pdf
http://www.lmt.ens-cachan.fr/cofeap

148 BIBLIOGRAPHY

[Kassiotis et al., 2008] Kassiotis, C., Ibrahimbegović, A., and Matthies, H. G.

(2008). Model tsunami on coastal protections by a multi-scale partitioned

strategy. In Schrefler, B. A. and Perego, U., editors, 8th World Concress

on Computational Mechanics (WCCM8) 5th European Congress on Compu-

tational Methods in Applied Sciences and Engineering (ECCOMAS), Venice,

Italy. (Cited on pages 116 and 128.)

[Kassiotis et al., 2009b] Kassiotis, C., Ibrahimbegović, A., Matthies, H. G., and

Brank, B. (2009b). Stable splitting scheme for general form of associated

plasticity including different scales of space and time. Computer Methods in

Applied Mechanics and Engineering, In Press, Corrected Proof. (Cited on

page 131.)

[Kitware Inc., 2009] Kitware Inc. (2008–2009). Paraview home page. http:

//www.paraview.org/. (Cited on page 68.)

[Kohl and Bernholdt, 2002] Kohl, J. A. and Bernholdt, D. E. (2002). CCA

home page. http://www.csm.ornl.gov/cca/. (Cited on page 66.)

[Krosche, 2009] Krosche, M. (2009). Ofoam’s manual. Informatikbericht, In-

stitute for Scientific Computing, Braunschweig, Germany. (In Preparation).

(Cited on page 75.)

[Küttler et al., 2006] Küttler, U., Förster, C., and Wall, W. A. (2006). A solu-

tion for the incompressibility dilemma in partitioned fluid-structure interac-

tion with pure Dirichlet fluid domains. Computational Mechanics, 38:417–429.

(Cited on pages 97 and 98.)

[Küttler and Wall, 2008] Küttler, U. and Wall, W. A. (2008). Fixed-point fluid-

structure interaction solvers with dynamic relaxation. Computational Me-

chanics, 43(1):61–72. (Cited on pages 3, 53, 54, 58 and 101.)

[Lawlor and Zheng, 1999] Lawlor, O. S. and Zheng, G. (1999). Charm++ home

page. http://charm.cs.uiuc.edu/research/charm/. (Cited on page 66.)

[Le Tallec and Mouro, 2001] Le Tallec, P. and Mouro, J. (2001). Fluid structure

interaction with large structural displacements. Computer Methods in Ap-

plied Mechanics and Engineering, 190(24-25):3039–3067. (Cited on pages 40

and 47.)

[Lesoinne and Farhat, 1996] Lesoinne, M. and Farhat, C. (1996). Geometric

conservation laws for flow problems with moving boundaries and deformable

meshes, and their impact on aeroelastic computations. Computer Methods in

Applied Mechanics and Engineering, 134(1-2):71–90. (Cited on page 45.)

[Mac Ilroy, 1968] Mac Ilroy, M. D. (1968). Mass produced software compo-

nents. NATO Software engineering conference, Garmish, Germany. (Cited on

page 64.)

[Matthies et al., 2006] Matthies, H. G., Niekamp, R., and Steindorf, J. (2006).

Algorithms for strong coupling procedures. Computer Methods in Applied

Mechanics and Engineering, 195:2028–2049. (Cited on pages 48 and 58.)

http://www.paraview.org/
http://www.paraview.org/
http://www.csm.ornl.gov/cca/
http://charm.cs.uiuc.edu/research/charm/

BIBLIOGRAPHY 149

[Matthies and Steindorf, 2002] Matthies, H. G. and Steindorf, J. (2002). Strong

coupling methods. Informatikbericht, Institut für Wissenschaftliches Rech-

nen, Germany. (Cited on page 131.)

[Matthies and Steindorf, 2003] Matthies, H. G. and Steindorf, J. (2003). Parti-

tioned strong coupling algorithms for fluid-structure interaction. Computers

and Structures, 81:805–812. (Cited on pages 40, 58 and 95.)

[Mehl et al., 2008] Mehl, M., Brenk, M., Bungartz, H. J., Daubner, K.,

Muntean, I., and Neckel, T. (2008). An Eulerian approach for partitioned

fluid-structure simulations on Cartesian grids. Computational Mechanics,

43(1):115–124. (Cited on pages 2 and 37.)

[Mok, 2001] Mok, D. P. (2001). Partitionierte Lösungsansätze in der Struktur-

dynamik und der Fluid-Struktur-Interaktion. Ph.D. Thesis, Institut für Baus-

tatik und Baudynamik, Universität Stuttgart, Germany. (Cited on pages 47,

53, 95 and 98.)

[Niekamp, 2005a] Niekamp, R. (2005a). CTL Manual for Linux/Unix for the

usage with C++. Institut fur Wissenschaftliches Rechnen – TU Braun-

schweig. http://www.wire.tu-bs.de/forschung/projekte/ctl/files/

manual.pdf. (Cited on page 79.)

[Niekamp, 2005b] Niekamp, R. (2005b). Software component architecture. Lec-

ture note, Institut für Wissenschaftliches Rechnen, Germany. http://www.

wire.tu-bs.de/forschung/projekte/ctl/files/ctl_course.pdf. (Cited

on pages 3, 64, 66, 79 and 127.)

[Niekamp et al., 2009] Niekamp, R., Markovič, D., Ibrahimbegović, A.,

Matthies, H. G., and Taylor, R. L. (2009). Multi-scale modelling of het-

erogeneous structures with inelastic constitutive behavior: Part II–software

coupling implementation aspects. Engineering Computations, 26:6–28. (Cited

on pages 66 and 68.)

[Niekamp and Stein, 2002] Niekamp, R. and Stein, E. (2002). An object-

oriented approach for parallel two- and three-dimensional adaptive finite

element computations. Computers and structures, 80:317–328. (Cited on

pages 64, 66 and 67.)

[Nobile, 2001] Nobile, F. (2001). Numerical Analysis of Axisymmetric Flows

and Methods for Fluid-Structure Interaction Arising in Blood Flow Simula-

tion. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Swiss. (Cited

on page 1.)

[OpenCFD LTD, 2009] OpenCFD LTD (2000–2009). Openfoam home page.

http://www.opencfd.co.uk/openfoam. (Cited on pages 29, 35, 73 and 96.)

[O’Regan, 2008] O’Regan, G. (2008). A Brief History of Computing. Springer-

Verlag, London, Great-Britain. (Cited on page 64.)

[Orenstein, 2000] Orenstein, D. (2000). Quickstudy: Application Programming

Interface (API). http: // www. computerworld. com . (Cited on page 65.)

http://www.wire.tu-bs.de/forschung/projekte/ctl/files/manual.pdf
http://www.wire.tu-bs.de/forschung/projekte/ctl/files/manual.pdf
http://www.wire.tu-bs.de/forschung/projekte/ctl/files/ctl_course.pdf
http://www.wire.tu-bs.de/forschung/projekte/ctl/files/ctl_course.pdf
http://www.opencfd.co.uk/openfoam
http://www.computerworld.com

150 BIBLIOGRAPHY

[Park et al., 1997] Park, K. C., Justino, Jr, M. R., and Felippa, C. A. (1997).

An algebraically partitioned FETI method for parallel structural analysis:

algorithm description. International Journal for Numerical Methods in Engi-

neering, 40:2717–2737. (Cited on page 38.)

[Pascal and Ghidaglia, 2001] Pascal, F. and Ghidaglia, J.-M. (2001). Foot-

bridges between finite volumes and finite elements with applications to CFD.

International Journal for Numerical Methods in Fluid, 37:951–986. (Cited on

page 7.)

[Patankar, 1980] Patankar, S. V. (1980). Numerical heat transfer and fluid flow.

Hemisphere Publishing Corporation, Washington, DC. (Cited on pages 13,

15 and 52.)

[Perić et al., 2006] Perić, D., Dettmer, W. G., and Saksono, P. H. (2006). Mod-

elling fluid-induced structural vibrations: reducing the structural risk for

stormywinds. In Ibrahimbegović, A., editor, NATO Advanced Research Work-

shop, ARW 981641, pages 239–268, Opatija, Croatia. (Cited on pages 37

and 106.)

[Piperno, 1995] Piperno, S. (1995). Simulation numérique de phénomènes

d’interaction fluide-structure. Thèse de Doctorat, École Nationale des Ponts

et Chaussées. (Cited on page 43.)

[Piperno, 1998] Piperno, S. (1998). Numerical simulation of aeroelastic insta-

bilities of elementary bridge decks. Rapport de Recherche 3549, Institut

National de Recherche en Informatique et Automatique, Sophia-Antipolis,

France. (Cited on page 1.)

[Piperno, 2000] Piperno, S. (2000). Contribution à l’étude mathématique et à

la simulation numérique de phénomènes d’interaction fluide-structure. Ha-

bilitation à Diriger les Recherches, Université Paris 6. (Cited on pages 14

and 42.)

[Piperno and Farhat, 1997] Piperno, S. and Farhat, C. (1997). Design and eval-

uation of staggered partitioned procedures for fluid-structure interaction sim-

ulations. Rapport de Recherche 3241, Institut National de Recherche en

Informatique et Automatique, Sophia-Antipolis, France. (Cited on page 43.)

[Piperno and Farhat, 2001] Piperno, S. and Farhat, C. (2001). Partitioned pro-

cedures for the transient solution of coupled aeroelastic problems–Part II:

energy transfer analysis and three-dimensional applications. Computer Meth-

ods in Applied Mechanics and Engineering, 190:3147–3170. (Cited on pages 43

and 46.)

[Roshko, 1952] Roshko, A. (1952). Of the Development of Turbulent Wakes from

Vortex Streets. Ph.D. Thesis, California Institute of Technology, Pasadena,

California. (Cited on page 106.)

[Ross et al., 2009] Ross, M. R., Sprague, M. A., Felippa, C. A., and Park, K. C.

(2009). Treatment of acoustic fluid-structure interaction by localized La-

grange multipliers and comparison to alternative interface-coupling methods.

BIBLIOGRAPHY 151

Computer Methods in Applied Mechanics and Engineering, 198(9-12):986–

1005. (Cited on page 38.)

[Rusche, 2002] Rusche, H. (2002). Computational Fluid Dynamics of Dispersed

Two-Phase Flows at High Phase Fractions. Ph.D. Thesis, Department of Me-

chanical Engineering, Imperial College of Science, Technology and Medicine,

London, G.-B. (Cited on pages 27 and 29.)

[Salençon, 2005] Salençon, J. (2005). Mécanique des milieux continus, volume

Tome 1: Concepts généraux. Ecole Polytechnique, Palaiseau. (Cited on

pages 7 and 36.)

[Schäfer and Turek, 1996] Schäfer, M. and Turek, S. (1996). Benchmark compu-

tations of laminar flow around a cylinder. Notes on numerical fluid mechanics,

52:547–566. (Cited on pages 3, 7, 16, 18, 20 and 106.)

[Schäling, 2009] Schäling, B. (2009). Die Boost C++ Bibliotheken. http://

www.highscore.de/cpp/boost/. (Cited on page 72.)

[Slone et al., 2003] Slone, A. K., Bailey, C., and Cross, M. (2003). Dynamic

solid mechanics using finite volume methods. Applied Mathematical Mod-

elling, 27(2):69–87. (Cited on page 7.)

[Sobey, 1998] Sobey, R. J. (1998). Linear and Nonlinear Wave Theory. Lecture

note, Leichtweiß-Institut für Wasserbau, Braunschweig. (Cited on page 26.)

[Srisupattarawanit et al., 2006] Srisupattarawanit, T., Niekamp, R., and

Matthies, H. G. (2006). Simulation of nonlinear random finite depth waves

coupled with an elastic structure. Computer Methods in Applied Mechanics

and Engineering, 195:3072–3086. (Cited on page 116.)

[Steindorf, 2002] Steindorf, J. (2002). Partitionierte Verfahren für Probleme

der Fluid-Struktur Wechselwirkung. Ph.D. Thesis, Technischen Universität

Carolo-Wilhelmina zu Braunschweig, Germany. (Cited on pages 106, 109,

111 and 131.)

[Stoker, 1992] Stoker, J. J. (1992). Water Waves: The Mathematical Theory

and Applications. Wiley-Interscience, New-York. (Cited on pages 26 and 29.)

[Stroustrup, 1986] Stroustrup, B. (1986). The C++ Programming Language.

Addison-Wesley and ACM Press, Reading, Massachusetts. (Cited on

page 67.)

[Szyperski, 1998] Szyperski, C. (1998). Component Software – Beyond Object-

Oriented Programming. Addison-Wesley and ACM Press, Reading, Mas-

sachusetts. (Cited on page 64.)

[Taylor, 2008] Taylor, R. L. (March 2008). FEAP – A Finite Element Analy-

sis Program Version 8.2 User Manual. Departement of Civil and Environe-

mental Engineering – University of California at Berkeley. http://www.ce.

berkeley.edu/~rlt/feap/manual.pdf. (Cited on pages 35 and 64.)

http://www.highscore.de/cpp/boost/
http://www.highscore.de/cpp/boost/
http://www.ce.berkeley.edu/~rlt/feap/manual.pdf
http://www.ce.berkeley.edu/~rlt/feap/manual.pdf

152 BIBLIOGRAPHY

[Turek and Hron, 2006] Turek, S. and Hron, J. (2006). Proposal for numerical

benchmarking of fluid-structure interaction between an elastic object and

laminar incompressible flow. Lecture Notes in Computational Science and

Engineering, 53:371. (Cited on page 106.)

[Ubbink, 1997] Ubbink, O. (1997). Numerical prediction of two Fluid Systems

with sharp interfaces. Ph.D. Thesis, Department of Mechanical Engineering,

Imperial College of Science, Technology and Medicine, London, G.-B. (Cited

on pages 27 and 29.)

[von Scheven, 2009] von Scheven, M. (2009). Effiziente Algorithmen für die

Fluid-Struktur-Wechselwirkung. Ph.D. Thesis, Institut für Baustatik und

Baudynamik, Universität Stuttgart, Germany. (Cited on pages 95, 112, 113,

114 and 115.)

[Walhorn, 2002] Walhorn, E. (2002). Ein simultanes Berechnungsverfahren für

Fluid-Struktur-Wechselwirkungen mit finiten Raum-Zeit-Elementen. Ph.D.

Thesis, Fachbereich für Bauingenieurwesen, Technischen Universität Carolo-

Wilhelmina zu Braunschweig, Germany. (Cited on pages 37, 95 and 117.)

[Walhorn et al., 2005] Walhorn, E., Kölke, A., Hübner, B., and Dinkler, D.

(2005). Fluid-structure coupling within a monolithic model involving free

surface flows. Computers and Structures, 83(25-26):2100–2111. (Cited on

pages 3 and 117.)

[Wall, 1999] Wall, W. A. (1999). Fluid-Struktur Interaktion mit stabilisierten

Finiten Elementen. Ph.D. Thesis, Institut für Baustatik und Baudynamik,

Universität Stuttgart, Germany. (Cited on pages 3, 40, 47, 53, 54, 95, 97,

100, 102, 109, 111 and 115.)

[Wall and Ramm, 1998] Wall, W. A. and Ramm, E. (1998). Fluid-structure

interaction based upon a stabilized (ALE) finite element method. Sonder-

forschungsbereich 404, Institut für Baustatik und Baudynamik, Germany.

(Cited on pages 95, 96, 98 and 106.)

[Wang et al., 2008] Wang, H., Chessa, J., Liu, W., and Belytschko, T. (2008).

The immersed/fictitious element method for fluid-structure interaction: Vol-

umetric consistency, compressibility and thin members. International Journal

for Numerical Methods in Engineering, 74(1). (Cited on page 8.)

[Weller et al., 1998] Weller, H. G., Tabora, G., Jasak, H., and Fureby, C. (1998).

A tensorial approach to computational continuum mechanics using object-

oriented techniques. Computers in physics, 12(6):620–631. (Cited on page 73.)

[Zienkiewicz and Taylor, 2001a] Zienkiewicz, O. C. and Taylor, R. L. (2001a).

The Finite Element Method, Fluid Mechanics, volume 3. Butterworth Heine-

mann, Oxford, 5 edition. (Cited on pages 7 and 12.)

[Zienkiewicz and Taylor, 2001b] Zienkiewicz, O. C. and Taylor, R. L. (2001b).

The Finite Element Method, Solid Mechanics, volume 2. Butterworth Heine-

mann, Oxford, 5 edition. (Cited on page 7.)

BIBLIOGRAPHY 153

[Zienkiewicz and Taylor, 2001c] Zienkiewicz, O. C. and Taylor, R. L. (2001c).

The Finite Element Method, The Basis, volume 1. Butterworth Heinemann,

Oxford, 5 edition. (Cited on page 9.)

	Introduction
	Structure and fluid subproblems
	Solving structure problems with FEM
	Strong form of the structure problem
	Weak forms of the structure problem and Finite Element application
	Time integration of a discretized Finite Element problem

	Incompressible flows solved by FVM
	Strong form of the Navier-Stokes equations
	Navier-Stockes equations discretization
	Pressure-Implicit with Splitting of Operators (PISO) algorithm
	Validating the CFD strategy
	Two-dimensional numerical experiments
	Three-dimensional numerical experiments

	Flow in a moving shape domain
	Arbitrary Lagrangian-Eulerian strategy
	Free-surface flows

	Closure

	Partitioned Approach for FSI
	Solving a coupled problem
	Monolithic strategy
	Partitioned strategy
	Partitioned strategy notations

	Explicit coupling
	Generalized Conventional Serial Staggered algorithm
	Evaluation of interface energy for DFMT-GCSS
	Enforcement of the Geometric Conservation Law
	Improved Serial Staggered (ISS) algorithm
	Conventional Parallel Staggered (CPS) algorithm
	Explicit coupling with incompressible flows: the artificial ``Added-Mass Effect"

	Implicit coupling strategies
	Algebraic solvers based on Picard iterations
	Relaxation techniques
	Newton and quasi-Newton based strategy

	Closure

	Components for FSI
	Component technology framework
	Component Oriented Programming paradigm
	Component-based implementation and its specifics
	The middleware CTL

	Structure component based on FEAP
	Interface definition of the structure component
	Implementation of coFeap
	Calling a service from the mechanical component

	Fluid component based on OpenFOAM
	Component interface and its implementation
	RPC versus system calls and file reading performances
	Parallel CFD Component Features

	The master code cops
	Software coupling applied to fluid-structure interaction
	Component architecture of cops
	Field interpolation between solvers

	Closure

	FSI numerical examples
	Driven cavity with flexible bottom
	The lid-driven cavity fluid problem
	Modification for the FSI validation case
	Subproblems discretization and numerical parameters
	Tight coupling with the modified lid-driven cavity case
	Implicit strong coupling and reference solution
	On the impossibility to apply explicit coupling

	Performances and fluid domain decomposition
	Flexible appendix in a flow
	Problem description
	Implicit coupling and reference solution
	Explicit coupling

	Three-dimensional flag in the wind
	Problem description
	Fluid discretization
	Solid discretization
	Coupling
	Results

	Two-dimensional wave hitting a structure
	Introduction and a first approach
	Problem description
	Fluid discretization
	Structure discretization
	Coupling
	Results

	Three-dimensional wave impacting a structure
	Problem description
	Fluid discretization
	Solid discretization
	Coupling
	Results

	Closure

	Conclusion
	DFMT-BGS stability and convergence
	Reformulation of the FSI problem in DAE
	Error propagation, stability and convergence
	Proofs for stable error propagation

	References

