Etude de la stabilité de l’écoulement de Poiseuille de fluides viscoélastiques. Application au procédé de coextrusion des polymères

Rudy Valette

To cite this version:

HAL Id: tel-00480359
https://pastel.archives-ouvertes.fr/tel-00480359
Submitted on 4 May 2010
ECOLE DES MINES
DE PARIS

Collège doctoral

THESE
pour obtenir le grade de
Docteur de l’Ecole des Mines de Paris
Spécialité “Sciences et Génie des Matériaux”

Présentée publiquement par

Rudy VALETTE

le 14 mai 2001

ETUDE DE LA STABILITE DE L’ECOULEMENT DE
POISEUILLE DE FLUIDES VISCOELASTIQUES.
APPLICATION AU PROCEDE DE COEXTRUSION DES
POLYMÈRES.

Jury :

M. Pierre CARREAU Rapporteur
M. François CHARRU Rapporteur
M. Jean-François AGASSANT Directeur
M. Yves DEMAY Directeur
M. André FORTIN Examineur
M. Patrick HUERRE Examineur
M. Gérard IOOSS Examineur
M. Patrice LAURE Examineur
M. Pierre ROUCHON Examineur
M. David SILAGY Examineur
Table des matières

1 Introduction.
 1.1 Le procédé de coextrusion et ses limites
 1.2 Étude des instabilités interfaciales

2 Vers une approche “produit” : la transition stable/instable dans le procédé.
 2.1 Le procédé de coextrusion : étude bibliographique
 2.2 Caractérisation rhéologique en cisaillement des produits
 2.2.1 Méthodes de mesure
 2.2.2 Le polyéthylène 1003 FE 23
 2.2.3 Le polystyrène 1240
 2.2.4 Propriétés rhéologiques relatives des produits
 2.3 Les dispositifs expérimentaux
 2.3.1 La filière multicanaux
 2.3.2 La filière à bloc de répartition
 2.4 Caractérisation des défauts
 2.4.1 Le film recueilli en filière multicanaux
 2.4.2 Analyse du film en filière porte-manteau
 2.5 Résumé des résultats expérimentaux
 2.5.1 Approche deux couches en filière multicanaux
 2.5.2 Approche deux couches en filière porte-manteau
 2.6 Conclusions

3 Une première modélisation de l’instabilité : l’étude asymptotique.
 3.1 Modélisation du problème
 3.1.1 Les équations
 3.1.2 La solution de base
 3.1.3 La stabilité linéaire
 3.2 L’étude asymptotique
 3.2.1 Fluides de Carreau-Yasuda
 3.2.2 Fluides de White-Metzner
 3.2.3 Loi de comportement multi-Maxwell
 3.2.4 Choix d’une loi de comportement pour le couple de produits utilisé
 3.3 Comparaison à l’étude expérimentale
 3.3.1 Approche deux couches en filière multicanaux
 3.3.2 Approche deux couches en filière à bloc de répartition
 3.4 Conclusion
4 Vers une approche plus analytique : mise en évidence du développement de l’instabilité dans la filière.
4.1 Mise en évidence de l’instabilité dans la filière par figeage de l’écoulement . . . 68
4.1.1 Présentation de l’expérience .. 68
4.1.2 Le déroulement des essais .. 70
4.1.3 Les résultats expérimentaux ... 70
4.1.4 Conclusion .. 74
4.2 Étude d’une perturbation en filière transparente 79
4.2.1 Étude bibliographique .. 79
4.2.2 Le dispositif expérimental ... 85
4.2.3 Les essais .. 89
4.2.4 Le dépouillement des essais ... 91
4.2.5 Observation d’une configuration fortement instable 95
4.2.6 Perturbation d’une configuration “stable” 98
4.2.7 Perturbation d’une configuration faiblement instable 98
4.2.8 Conclusion .. 100
4.3 Conclusions .. 103
4.3.1 Influence de la longueur de la filière 104
4.3.2 Sélection d’un nombre d’onde ... 104
4.3.3 Reculer les limites du procédé ... 104

5 Simulation directe de l’écoulement bicouche de fluides de Maxwell. 105
5.1 Objectif .. 106
5.2 Formulation du problème ... 106
5.2.1 Équations de conservation .. 107
5.2.2 Traitement des conditions aux limites 108
5.3 Stratégie numérique .. 108
5.4 Génération de paquets d’ondes .. 108
5.5 Effets de la viscoélasticité ... 110
5.5.1 Effet déstabilisant de la viscoélasticité 111
5.5.2 Effet de la stratification d’élasticité 111
5.5.3 Effet stabilisant de la viscoélasticité 112
5.6 Conclusion .. 112

6 Modélisation de l’instabilité convective. 117
6.1 L’étude de la stabilité spatiale ... 118
6.1.1 Principe de l’étude ... 118
6.1.2 La relation de Gaster ... 119
6.1.3 Bibliographie ... 120
6.1.4 Le calcul de la stabilité temporelle à nombre d’onde fixé 122
6.1.5 Exemple d’utilisation de la transformation de Gaster 123
6.1.6 Validation de l’approche de Gaster : confrontation aux résultats expéri-
mentaux ... 125
6.1.7 Confrontation aux résultats de simulation directe 130
6.1.8 Conclusion ... 134
6.2 Relecture des expériences bicouche ... 135
6.2.1 Méthodologie ... 135
TABLE DES MATIÈRES

6.2.2 Campagne d’essais en filière multicanaux 135
6.2.3 Campagne d’essais en filière porte-manteau 139
6.2.4 Conclusion .. 139

7 Conclusion. .. 147

8 Annexes. .. 151

8.1 Caractérisation rhéologique en cisaillement des produits 152
8.1.1 Objectifs ... 152
8.1.2 Lois de comportement .. 152
8.1.3 Méthodes de mesure .. 153
8.1.4 Le polyéthylène 1003 FE 23 .. 154
8.1.5 Le polystyrène 1240 .. 159
8.1.6 Conclusions ... 162
8.2 Équations du problème bicouche .. 165
8.2.1 Ecoulement bicouche de fluides de White-Metzner 165
8.2.2 L’étude de la stabilité 167
8.3 Étude expérimentale en configuration tricouche 171
8.3.1 Déroulement des essais 171
8.3.2 Analyse du film .. 171
8.3.3 Résumé des résultats expérimentaux 176
8.4 Résultats de stabilité asymptotique en configuration tricouche 181
8.4.1 L’étude de stabilité asymptotique 181
8.4.2 Comparaison à l’expérience 183
8.5 Méthode de la puissance inverse 188

Bibliographie .. 190
Chapitre 1

Introduction.
1.1 Le procédé de coextrusion et ses limites

L’extrusion est le procédé de mise en forme des thermoplastiques le plus utilisé. Ses applications couvrent un large domaine allant de la fabrication de films à la réalisation de profils [1]. Lorsque l’on extrude simultanément dans une même filière plusieurs fluides à partir de plusieurs extrudes, on parle de coextrusion : on réalise un écoulement multimatière et le produit obtenu en sortie de filière est dit multicouche.

L’intérêt d’un tel procédé est qu’il permet de conférer au produit les propriétés spécifiques de chacune des couches qui le composent. Associer ainsi les qualités des différents polymères permet de réaliser un gain de matière important (donc réduire le coût et/ou le poids) par rapport au produit monocouche présentant les mêmes caractéristiques. Dans le cas de feuilles d’emballage, par exemple, on fabrique des complexes de dix couches qui vont résister à l’impact, avoir une rigidité suffisante et éviter les phénomènes de diffusion aux gaz.

On distingue deux grands procédés de coextrusion :
- le procédé multicanaux où plusieurs filières plates distribuent chacune un polymère et ont une partie finale commune,
- le procédé à bloc de répartition où les polymères sont rassemblés dans une boîte de coextrusion avant d’être répartis dans la même filière.

On observe en général trois types de défauts sur le produit solidifié :
- une mauvaise adhésion entre les couches,
- une mauvaise répartition des produits dans le sens de la largeur due au contournement d’un produit par un autre (phénomène d’enrobage apparaissant surtout dans le procédé à bloc de répartition),
- une irrégularité de l’interface, qui présente un aspect allant de l’oscillant au chaotique. C’est ce type de défaut que nous étudions ici.

Ce dernier défaut est la conséquence d’instabilités interfaciales qui se développent dans la partie finale de la filière. La variation d’épaisseur des différentes couches altère les propriétés esthétiques et optiques du produit. Si l’une des interfaces disparaît localement, le produit perd ses propriétés barrieres et devient inutilisable.

Aujourd’hui, les industriels ne disposent pas d’outils fiables permettant de prévoir l’apparition de tels défauts. Quelques règles sont utilisées comme, par exemple, augmenter la température d’extrusion pour diminuer les contraintes aux interfaces ou réaliser un profil de vitesse convexe. Mais dans le cas général le transformateur a souvent recours à une stratégie “essais-erreurs” pour concevoir le produit.

1.2 Étude des instabilités interfaciales

Dans notre étude, nous avons restreint notre investigation au cas de deux polymères bien caractérisés. Dans un premier temps nous avons adopté une approche “produit” c’est-à-dire que nous avons exploré, d’une façon un peu systématique, les conditions dans lesquelles apparaît l’instabilité de coextrusion. Cela nous a amené à développer des outils de quantification du défaut qui n’existaient pas jusqu’alors dans la littérature.

Dans le but de proposer un outil très simple de prédiction du défaut, nous avons développé une analyse de stabilité linéaire aux grandes ondes (dite asymptotique) qui a donné des résultats cohérents avec l’expérience dans certaines situations et des résultats mitigés voire contradictoires dans d’autres.
1.2. Étude des instabilités interfaciales

Cela nous a amenés à développer, dans un deuxième temps, une approche “procédé” des instabilités. Nous avons utilisé à cet effet deux montages de coextrusion originaux :
- une filière d’essais industriels de très grande longueur démontable qui nous permet, après arrêt des extrudeuses, d’extraire le polymère contenu dans la filière et d’examiner le développement des instabilités,
- une filière de laboratoire transparente qui nous permet d’observer en temps réel le développement de l’instabilité le long de l’écoulement.

Ces montages nous ont apporté la preuve que l’instabilité était de nature convective c’est-à-dire qu’elle se développait progressivement, dans les situations réputées instables, à partir du point de convergence des flux de polymères.

Nous avons développé deux outils numériques pour rendre compte de ces instabilités convectives :
- une modélisation directe, utilisant pour les deux polymères une loi de comportement de Maxwell, a bien mis en évidence la nature convective de l’instabilité,
- une étude de stabilité linéaire spatiale nous a permis de prendre en compte le comportement réel des polymères et de rendre compte de l’essentiel des phénomènes observés ; en particulier un certain nombre de paradoxes soulevés lors de l’étude de stabilité linéaire aux grandes ondes ont été levés.
Chapitre 2

Vers une approche “produit” : la transition stable/instable dans le procédé.
2.1 Le procédé de coextrusion : étude bibliographique

La première étude expérimentale d’instabilités d’interface dans le procédé de coextrusion est due à Lee et al. [34]. Les auteurs ont montré que pour certaines conditions opératoires il apparaît une transition stable/instable dans le procédé. L’instabilité est caractérisée par un défaut se présentant sous la forme de vaguelettes à l’interface entre les deux produits. Dans la zone où les conditions opératoires engendrent une instabilité, plus la configuration étudiée est éloignée de la transition, plus le défaut présente une amplitude prononcée (figure 2.1).

![Diagram of flow direction and stable/instable flow](image)

Fig. 2.1 – Instabilités d’interface en coextrusion schématisées par Schrenk et al. [47]

Cette démarche sera ensuite développée par Han et al. [20] au cours d’une campagne d’essais de coextrusion bicouche très fouillée dans laquelle ils utilisent douze produits différents.

En extrudant ces produits deux à deux, les auteurs aboutissent à dix-sept combinaisons pour lesquelles ils mettent en évidence une transition stable/instable. A partir de la connaissance des propriétés rhéologiques en cisaillement des produits, les auteurs calculent ensuite le champ de contrainte à l’interface pour chaque configuration étudiée.

Han et al. montrent alors qu’il est possible de regrouper les résultats expérimentaux, indépendamment du couple de produits utilisés, dans un graphe représentant le rapport des viscosités à l’interface fonction du rapport des hauteurs des couches (figure 2.2) ou un graphe représentant le saut de première différence de contraintes normales à l’interface fonction du rapport des hauteurs des couches (figure 2.3).

De tels résultats montrent l’influence déterminante du champ de contraintes à l’interface entre les deux produits sur l’apparition d’instabilités.

Nous présentons dans la suite une étude rhéométrique du couple de produits que nous utilisons dans notre étude expérimentale et nous montrons que leurs propriétés rhéologiques relatives autorisent une exploration étendue du champ de contraintes de l’écoulement de coextrusion.
Fig. 2.2 – Configurations stables (en blanc) et instables (en noir) pour un couple de produits A-B regroupées sur un graphe η_A/η_B à l'interface en fonction du rapport des hauteurs des couches, les différents symboles représentent chacun des couples A-B utilisés [20]
Fig. 2.3 – Configurations stables (en blanc) et instables (en noir) pour un couple de produits A-B regroupées sur un graphe $N_1 \times N_2$ à l’interface en fonction du rapport des hauteurs des couches, les différents symboles représentent chacun des couples A-B utilisés [20]
2.2 Caractérisation rhéologique en cisaillement des produits

Deux polymères thermoplastiques commerciaux ont été utilisés dans l’étude expérimentale. Il s’agit du polyéthylène 1003 FE 23 et du polystyrène 1240 d’Elk-Atochem. Ces deux polymères sont incompatibles, c’est-à-dire qu’ils ne se mélangent pas à l’état fondu et peuvent se séparer l’un de l’autre à l’état solide après avoir été coextrudés. L’objet de cette partie est de caractériser le comportement rhéologique à l’état fondu de ces polymères.

2.2.1 Méthodes de mesure

Nous avons utilisé un rhéomètre plan-plan en mode dynamique à différentes températures : de 140°C à 240°C pour le polyéthylène et de 180°C à 240°C pour le polystyrène, par intervalles de 20°C. Ces mesures nous donnent les modules $G’$ et G'' à chaque fréquence pour les différentes températures.

On vérifie que les propriétés viscoélastiques des fluides obéissent au principe de superposition temps-température (principe de Boltzmann) [36]. En particulier on constate qu’on peut déduire des mesures en rhéométrie oscillatoire une courbe maîtresse à la température T_0 (on a choisi 200°C) en faisant glisser les courbes expérimentales d’un facteur a_T et trouver l’énergie d’activation E de la loi d’Arrhénius.

Le principe de superposition de Boltzmann permet de montrer que le module complexe $G^*(\omega, T)$, la viscosité complexe $\eta^*(\omega, T)$ et le temps de relaxation $\lambda(\omega, T)$ qu’on calcule grâce à la relation $\lambda = \eta^*/G^*$ varient avec la température selon :

$$G^*(\omega, T) = G^*(a_T \omega, T_0),$$

$$\eta^*(\omega, T) = \frac{a_T}{T} \eta^*(a_T \omega, T_0),$$

$$\lambda(\omega, T) = \frac{a_T}{T} \lambda(a_T \omega, T_0),$$

avec $a_T = e^{\frac{E}{k} \left(\frac{1}{T} - \frac{1}{T_0} \right)}$ et $b_T = \frac{a_T T_0}{T} \simeq 1$

On dispose ainsi de courbes maîtresses $G'(\omega)$ et $G''(\omega)$ ou $\eta(\omega)$ et $\lambda(\omega)$. Pour compléter les courbes maîtresses dans les faibles taux de cisaillement on effectue des mesures en continu sur un rhéomètre cône-plan ainsi que des mesures en fluage d’autre part et on utilise le principe empirique de Cox-Merz [11], c’est-à-dire que l’on postule que la pulsation en régime dynamique est assimilable au taux de cisaillement en régime permanent. Les mesures en continu donnent la contrainte de cisaillement et la première différence de contraintes normales en fonction du taux de cisaillement. On peut donc en déduire la viscosité et le temps de relaxation. Les mesures en fluage donnent une courbure R de la déformation après cessation de la contrainte de cisaillement τ obtenue au taux de cisaillement $\dot{\gamma}$. On déduit la viscosité η et le temps de relaxation λ par les formules $\eta = \tau / \dot{\gamma}$ et $\lambda = R / \dot{\gamma}$.

On décrit en annexe le détail des résultats de l’étude rhéométrique des produits utilisés. Les deux paragraphes suivants montrent un résumé des résultats obtenus.

2.2.2 Le polyéthylène 1003 FE 23

En mode dynamique, le balayage en fréquence se fait de 10^{-2} à 10^2 rad/s. Après élimination des points irréalistes (à basse fréquence et haute température), le principe de superposition temps-température s’applique bien pour toutes les fonctions viscométriques et on trouve une énergie d’activation de l’ordre de 62, 5kJ/molK. Les figures 2.4 et 2.5 montrent les courbes maîtresses
à 200°C de viscosité η et de temps de relaxation λ en fonction du taux de cisaillement $\dot{\gamma}$ et de la fréquence ω.

![Graphique](image)

Fig. 2.4 – Courbe maîtresse à 200°C de la viscosité du polyéthylène 1003 FE 23 en fonction du taux de cisaillement et de la fréquence : rhéométrie oscillatoire (○), continue (□) et fluage (×)

Même si le principe de Cox-Merz n’est pas remarquablement respecté (les courbes en continu et en oscillatoire ne se superposant pas exactement) on conserve comme référence les courbes obtenues par les mesures en dynamique, réputées plus précises. Les mesures en fluage sont les moins fiables et ont pour unique intérêt de mettre en évidence l’existence d’un plateau à faible taux de cisaillement aussi bien pour la viscosité que pour le temps de relaxation.

2.2.3 Le polystyrène 1240

En mode dynamique, le balayage en fréquence se fait de 10^{-2} à 10^2 rad/s. Ici aussi le principe de superposition temps-température s’applique bien et on trouve une énergie d’activation de l’ordre de 123,16kJ/mol. Les figures 2.6 et 2.7 montrent les courbes maîtresses à 200°C de viscosité η et de temps de relaxation λ en fonction du taux de cisaillement $\dot{\gamma}$ et de la fréquence ω.

On remarque que le principe de Cox-Merz est mieux respecté dans le cas du temps de relaxation que pour le polyéthylène. Ces résultats confirment l’existence du plateau en $\eta(\dot{\gamma})$ amorté en rhéométrie oscillatoire. Le temps de relaxation ne présente pas d’amorce de plateau dans la fenêtre de mesures expérimentales.

2.2.4 Propriétés rhéologiques relatives des produits

Pour étudier les propriétés rhéologiques relatives des produits, on compare, a taux de cisaillement égal pour chaque produit (dans la gamme des taux de cisaillement atteints en coextrusion),
Fig. 2.5 – Courbe maîtresse à 200°C du temps de relaxation du polyéthylène 1003 FE 23 en fonction du taux de cisaillement et de la fréquence : rhéométrie oscillatoire (◇), continue (□) et fluage (×)

Fig. 2.6 – Courbe maîtresse à 200°C de la viscosité du polystyrène 1240 en fonction du taux de cisaillement et de la fréquence : rhéométrie oscillatoire (◇), continue (□) et fluage (×)

![Diagram](image)

Fig. 2.7 - Courbe maîtresse à 200°C du temps de relaxation du polystyrène 1240 en fonction du taux de cisaillement et de la fréquence : rhéométrie oscillatoire (○), continue (□) et fluage (×).

La valeur de la contrainte de cisaillement et de la première différence de contraintes normales. On trace à la figure 2.8 la courbe représentant le rapport des contraintes de cisaillement τ_{PS}/τ_{PE} en fonction du taux de cisaillement pour les températures 180°C, 200°C et 220°C. Cette courbe montre que les deux produits ont une sensibilité à la vitesse de déformation très différente. À 180°C le polystyrène peut être considéré comme “plus visqueux” que le polystyrène dès que le taux de cisaillement est supérieur à 0,1s⁻¹. À 220°C on considère, inversement, que c’est le polyéthylène qui est le “plus visqueux”, dès que le taux de cisaillement est inférieur à 20s⁻¹.

On trace à la figure 2.9 la courbe représentant le rapport des premières différences de contraintes normales $N1_{PS}/N1_{PE}$ en fonction du taux de cisaillement pour les températures 180°C, 200°C et 220°C. Les mêmes effets de sensibilité relative à la vitesse de déformation sont retrouvés sur cette courbe. À 220°C le polystyrène peut être considéré comme “moins viscoélastique” que le polystyrène dès que le taux de cisaillement est inférieur à 100s⁻¹. Pour les températures inférieures, les propriétés relatives des produits varient fortement.

Finalement, en imposant des débits très dissymétriques aux produits coextrudés, on est capable de générer un champ de contraintes présentant, à l’interface entre les deux produits, des sauts relativement importants. Nous montrons dans la suite qu’il est alors possible de mettre en évidence expérimentalement une transition stable/instable.

2.3 Les dispositifs expérimentaux

Dans cette partie, nous présentons les différents dispositifs utilisés au cours de notre étude expérimentale du procédé de coextrusion, ainsi que la procédure suivie.
Fig. 2.8 – Rapport des contraintes de cisaillement τ_{PS}/τ_{PE} en fonction du taux de cisaillement pour les températures $180^\circ C$ (---), $200^\circ C$ (-- --) et $220^\circ C$ (- - -)

Fig. 2.9 – Rapport des premières différences de contraintes normales N_{1PS}/N_{1PE} en fonction du taux de cisaillement pour les températures $180^\circ C$ (---), $200^\circ C$ (-- --) et $220^\circ C$ (- - -)

Le premier est un dispositif de laboratoire qui utilise une filière multicanaux : les expériences se sont déroulées au CEMEF.
Le second dispositif fait partie de la ligne “Collin” du CERDATO : il s’agit d’un dispositif de production qui utilise une filière porte-manteau couplée à un bloc de répartition.

2.3.1 La filière multicanaux

Cette étude expérimentale en filière multicanaux a été précédemment menée par L. Gavrus et B. Vergnes [48] [54]. Nous avons repris cette série d’expériences pour en vérifier la reproductibilité.

Description

Le montage se compose schématiquement de deux extrudeuses monovis (une extrudeuse Kaufmann de capacité moyenne utilisée pour le PS et un dispositif Haake-Rheocord de faible capacité utilisé pour le PE), d’un bloc de répartition et d’une filière plate régulée thermiquement à l’aide de cartouches chauffantes. Ce montage permet de contrôler le débit d’entrée des deux fluides dans la filière. Un rouleau métallique refroidi par jet d’eau assure le refroidissement du film biquiche et l’entraîne à une vitesse de ligne constante. Le schéma donné à la figure 2.10 montre le dispositif utilisé.

![Diagramme de la filière multicanaux](image)

Fig. 2.10 – Coextrusion, dispositif expérimental (CEMEF).

La figure 2.11 montre un plan détaillé de la filière multicanaux : la partie finale d’entrefer 1mm a une longueur de 40mm et une largeur de 100mm.

La procédure expérimentale

Pour chaque température on fixe le régime de rotation de chaque extrudeuse et on recueille un échantillon du film solidifié lorsque l’écoulement est établi.
En faisant varier la température du système, on contrôle le rapport de viscosités des deux fluides, car leurs énergies d’activation sont distinctes. Les expériences ont été effectuées à 180°C, 200°C et 220°C pour des gammes de débits allant de 5 mm³/s à 1300 mm³/s pour le PE et de 50 mm³/s à 200 mm³/s pour le PS. La mesure des débits de chaque produit était effectuée par pesée des deux parties séparées du film solidifié.

2.3.2 La filière à bloc de répartition

Dispositif expérimental

Nous avons étudié le même couple de produits c’est-à-dire le polyéthylène PE 1003 FE 23 et le polystyrène PS 1240. Dans le cas tricouche, des structures PE/PS/PE et PS/PE/PS ont été étudiées.

Le dispositif se compose de deux extrudeuses monovis : une extrudeuse Battenfeld de diamètre de vis 45mm (débit maximum 13kg/h, soit environ 4800mm³/s) et une extrudeuse Collin de diamètre de vis 25mm (débit maximum 5kg/h, soit environ 2300mm³/s).

Ces extrudeuses sont reliées à un bloc de répartition qui permet de conférer au produit une structure à deux ou trois couches, les deux couches externes étant dans ces cas composées du même produit. En aval du bloc de répartition est fixée une filière de type porte-manteau dont la partie finale est d’entrefer réglable (300μm à 1000μm), de longueur 12mm et de largeur 250mm. Un rouleau régulé à une température de 30°C assure le refroidissement du film plaqué par une lame d’air et l’entraîne à une vitesse de ligne V_L fixée à 5m/min.

Un schéma du dispositif est donné à la figure 2.12.

Le schéma donné à la figure 2.13 montre les coupes longitudinales du dispositif bloc d’alimentation + filière. Le produit débité par l’extrudeuse Collin (le PS dans ce cas) passe dans la partie centrale du bloc. En configuration tricouche le produit débité par l’extrudeuse Battenfeld (le PE) vient s’écouler de part et d’autre de la couche du premier produit lorsque les barres d’étranglement représentées sur la figure 2.13 sont ouvertes. À régime de rotation de l’extrudeuse
Battenfeld constant, on modifie la répartition des couches périphériques en réglant l'ouverture des barres d'étranglement. Pour obtenir un film bicouche il suffit de fermer une des deux barres. On remarque que les produits coexistent sur une longueur d'environ 140mm dans le bloc d'alimentation avant leur entrée dans la filière.

Déroulement des essais

Pour chaque température on fixait le régime de rotation de chaque extrudeuse et on recueillait un échantillon du film solidifié lorsque l'écoulement était établi.

Dans le cas bicouche, les essais se sont déroulés aux températures 180°C, 200°C et 220°C, l'entrefil final était réglé à 400μm.

Aux températures 200°C et 220°C, on a choisi les régimes des extrudeuses dans une gamme allant de 20% à 80% de leur capacité maximale. À 180°C, quand les fluides étaient très visqueux, le régime de l'extrudeuse Collin était limité à 50% de sa capacité maximale par une trop forte pression en sortie de fourneau.

Les débits approximatifs de chaque polymère étaient mesurés à chaque température. La méthode adoptée était la suivante : on pesait deux fois chaque produit extrudé seul pendant une minute pour différents régimes de rotation de l'extrudeuse et on en déduisait le débit fonction du régime de rotation. On a pu vérifier que la relation était approximativement linéaire et variait faiblement avec la température.

On résume sur le tableau 2.1 les débits approximatifs étudiés pour chaque température.
Fig. 2.13 – Schéma de l’ensemble bloc d’alimentation + filière
180°C

<table>
<thead>
<tr>
<th>Débits ((mm^3/s))</th>
<th>PE :</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS : 1307</td>
<td>1307</td>
</tr>
<tr>
<td>606 X</td>
<td>X</td>
</tr>
<tr>
<td>440 X</td>
<td>X</td>
</tr>
<tr>
<td>310 X</td>
<td>X</td>
</tr>
</tbody>
</table>

200°C

<table>
<thead>
<tr>
<th>Débits ((mm^3/s))</th>
<th>PE :</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS : 1470</td>
<td>1470</td>
</tr>
<tr>
<td>1189 X</td>
<td>X</td>
</tr>
<tr>
<td>1003 X</td>
<td>X</td>
</tr>
<tr>
<td>837 X</td>
<td>X</td>
</tr>
<tr>
<td>651 X</td>
<td>X</td>
</tr>
<tr>
<td>471 X</td>
<td>X</td>
</tr>
<tr>
<td>324 X</td>
<td>X</td>
</tr>
</tbody>
</table>

220°C

<table>
<thead>
<tr>
<th>Débits ((mm^3/s))</th>
<th>PE :</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS : 1716</td>
<td>1716</td>
</tr>
<tr>
<td>1334 X</td>
<td>X</td>
</tr>
<tr>
<td>959 X</td>
<td>X</td>
</tr>
<tr>
<td>523 X</td>
<td>X</td>
</tr>
</tbody>
</table>

Tab. 2.1 – Couples de débits estimés étudiés pour chaque température
2.4 Caractérisation des défauts

2.4.1 Le film recueilli en filière multicanaux

Pour certains couples de débits, nous avons observé, en sortie de filière, des variations plus ou moins prononcées de répartition des deux couches de polymères. De telles configurations sont considérées comme “instables”. La figure 2.14 montre une photographie d’un tel film. Les configurations donnant un film présentant un aspect lisse sont considérées comme “stables” (figure 2.15).

Fig. 2.14 – Film instable en sortie de filière.

Les films présentant un aspect lisse en sortie de filière gardent le même aspect une fois solidifiés (figure 2.16a). Dans le cas des configurations “instables” obtenues pour des conditions opéra- toires proches de la transition stable/instable, on peut estimer la périodicité du défaut observé sur le film solidifié (figure 2.16b). En divisant la vitesse de tirage du film par la périodicité spatiale du défaut, on a accès à la fréquence d’apparition du défaut en sortie de filière.

On a pu observer une transition franche entre des configurations stables et instables, notamment dans le cas où les débits sont très dissymétriques.

Une première analyse montre que plus le rapport \(Q_{PE} / Q_{PS} \) est grand et plus la température faible, plus le film recueilli est instable.

On résumera ces résultats sur des diagrammes \((Q_{PE}, Q_{PS}) \) au paragraphe 2.5.1 en schématisant simplement les configurations stables par des carrés blancs et instables par des carrés noirs.

L’étude expérimentale de L. Gavrus et B. Vergnes nous a servi de référence pour mener nos campagnes d’essais sur le dipositif bloc de répartition + filière porte-manteau.

2.4.2 Analyse du film en filière porte-manteau

Aspect extérieur

De la même manière que précédemment, on observe une transition stable/instable dans le procédé lorsque les débits et la température varient :

- Pour chaque température, on a pu recueillir des échantillons présentant un aspect lisse. Ces échantillons sont qualifiés de “stables”. Une photographie d’un tel échantillon est donnée figure 2.17.
- En modifiant les paramètres expérimentaux, il apparaît des “vagues” visibles par transparence dans la partie centrale du film solidifié. Vues de dessus, ces vagues ont une forme en chevrons. On dira que plus ces chevrons sont marqués, plus l’amplitude du défaut est grande. La surépaisseur induite par une tel défaut est de l’ordre de 10μm (répartie à 50% sur chaque produit) sur un film épaisseur 160μm au centre.

On peut estimer, sur l’échantillon, une périodicité spatiale de ce défaut dans la direction de l’écoulement. De tels échantillons sont qualifiés de “légèrement instables”. La figure 2.18 est une photographie d’un échantillon dont le défaut présente une grande périodicité spatiale (≈ 20cm) et une faible amplitude.

Remarquons que la périodicité spatiale des vagues observées sur l’échantillon dépend de la vitesse de tirage du film (vitesse de ligne). Afin de disposer d’une valeur intrinsèque à l’écoulement de coextrusion, il faut ramener ces mesures à une fréquence temporelle d’apparition du défaut : il suffit alors de diviser la vitesse de ligne par la périodicité spatiale de la vague. Ici, cette fréquence est approximativement 0,40Hz.

- L’amplitude du défaut augmente et sa périodicité spatiale diminue lorsque l’on s’éloigne encore des configurations expérimentales stables. La figure 2.19 en montre un exemple : la périodicité spatiale vaut 4cm et la fréquence d’apparition du défaut 2,1Hz.
Fig. 2.16 – Echantillons recueillis en sortie de filière multicanaux : stable (a) et instable (b), estimation de la périodicité du défaut

Fig. 2.17 – Photo d’un échantillon “stable” recueilli en sortie de filière porte-manteau ; débits approximatifs $Q_{PE} = 2775 mm^3/s$, $Q_{PS} = 651 mm^3/s$ à 200°C.
Fig. 2.18 – Photo d’un échantillon “légèrement instable” recueilli en sortie de filière portemanteau ; débits approximatifs $Q_{PE} = 1928\text{m}^3/s$, $Q_{PS} = 440\text{m}^3/s$ à $180^\circ C$
Fig. 2.19 – Photo d’un échantillon “légèrement instable” recueilli en sortie de filière portemanteau; débits approximatifs $Q_{PE} = 3467\, mm^3/s$, $Q_{PS} = 471\, mm^3/s$ à 200°C
2.4. Caractérisation des défauts

- Au-delà d’un certain seuil, il apparaît d’autres vagues et on ne peut plus observer de périodicité particulière. En outre, on observe que ces défauts occupent une plus grande largeur sur le film soli didifié. Dans ce cas, on qualifie l’échantillon de “très instable” (figure 2.20).
- Dans les cas extrêmes un défaut “chaotique” envahit la partie centrale du film et de nombreuses vagues se rapprochent des bords (figure 2.21). Une schématisation des échantillons stables, légèrement instables (avec vagues) et très instables est donnée à la figure 2.22.
Cette schématisation donnant les caractéristiques du film recueilli est utilisée au paragraphe 1.5.2 pour résumer les résultats expérimentaux obtenus en filière porte-manteau sur des diagrammes \((Q_{PE}, Q_{PS})\). Ici encore il semble que plus le rapport \(Q_{PE}/Q_{PS}\) est grand et plus la température est faible, plus le film recueilli est instable.
Cette analyse qualitative sur l’influence du rapport des débits doit être approfondie pour la raison suivante. Dans le cas des échantillons recueillis en filière multicanaux nous avons observé que l’instabilité est uniformément développée dans la largeur du film. Ce n’est pas le cas pour les échantillons recueillis en filière porte-manteau. Dans la suite, nous tentons d’expliquer ce phénomène par le fait que les débits par unité de largeur ne sont pas uniformes dans la partie finale de la filière. Cet argument est motivé par les résultats de Puissant et al. [43] [44] [45], qui ont montré que le bloc de répartition et le porte-manteau ne distribuent pas les deux polymères de façon uniforme dans la partie finale de la filière.

Coupe transversale du film présentant de l’enrobage

Afin de pouvoir estimer les débits de polymères dans chaque couche, il est tout d’abord nécessaire d’étudier leur répartition sur toute la largeur de l’échantillon.
On a pu observer qu’à 180°C le polyéthylène enrobe beaucoup le polystyrène. Ce phénomène est d’autant plus marqué que le débit de polyéthylène augmente. Il diminue par contre quand la température augmente, et on n’observe quasiment plus d’enrobage à 220°C. Cette tendance s’explique en remarquant, sur la figure 2.8 (paragraphe rhéologie), que la viscosité du polystyrène chute très vite devant celle du polyéthylène lorsque la température croît.
La figure 2.23 montre la répartition des deux produits sur une demi-largeur d’un échantillon “stable” pour des débits approximatifs \(Q_{PE} = 2512 \text{ mm}^3/\text{s}\) et \(Q_{PS} = 606 \text{ mm}^3/\text{s} \) à 180°C.
On constate que la répartition des produits est approximativement uniforme sur 50% de la largeur du film. Près des bords, on observe un défaut “os de chien” qui est dû à l’étirage du film en sortie de filière. Aux bords, le polyéthylène occupe toute l’épaisseur du film sur une “largeur d’enrobage” égale à 2cm (pouvant s’élérer à 20% de la demi-largeur du film dans les cas les plus extrêmes).

Coupe transversale du film ne présentant pas d’enrobage

La figure 2.24 montre la répartition des deux produits sur une demi-largeur d’un échantillon “stable” pour des débits approximatifs \(Q_{PE} = 3181 \text{ mm}^3/\text{s}\) et \(Q_{PS} = 1334 \text{ mm}^3/\text{s} \) à 220°C.
La répartition des deux produits est uniforme sur une plus grande largeur que précédemment puisque on n’observe plus d’enrobage. On remarque par contre une légère surépaisseur du film au centre. On peut expliquer l’existence de cette surépaisseur par le phénomène suivant : les débits étant plus importants, la pression dans l’écoulement devient suffisamment élevée pour engendrer un cédisage de la filière, non négligeable devant son entropy. Les débits des produits au centre de l’écoulement sont donc supérieurs au débit moyen.
Fig. 2.20 – Photo d’un échantillon “très instable” recueilli en sortie de filière porte-manteau ; débits approximatifs $Q_{PE} = 3467 \text{mm}^3/s$, $Q_{PS} = 324 \text{mm}^3/s$ à 200$^\circ$C
Fig. 2.21 – Photo d’un échantillon “très instable” recueilli en sortie de filière porte-manteau; débits approximatifs $Q_{PE} = 4169 \text{mm}^3/s$, $Q_{PS} = 324 \text{mm}^3/s$ à 200$^\circ$C

Film “stable”

Film “légèrement instable”
- \(e \approx \) amplitude du défaut
- \(d \approx \) périodicité spatiale du défaut
- \(N \) (Hz) = fréquence d’apparition du défaut

Film “très instable”
- \(L \approx \) largeur de la zone affectée

Fig. 2.22 – Schématisation des défauts caractérisés.

Fig. 2.23 – Répartition des deux produits sur une demi-largeur d’échantillon à 180°C
Fig. 2.24 – Répartition des deux produits sur une demi-largeur d’échantillon à 220°C

On observe en outre que l’effet “os de chien” est beaucoup moins prononcé. La vitesse de ligne étant fixée à 5m/min pour toutes les expériences, l’augmentation du débit entraîne une diminution du taux d’étirage. Or l’effet “os de chien” est d’autant moins prononcé que le taux d’étirage est faible [49], il est donc naturel que cet effet diminue pour les grands débits.

Estimation des débits : hypothèses de calcul

Il faut estimer les débits des deux produits en tout point de la largeur de la filière afin d’être capable de corrélérer la répartition des défauts sur la largeur du film avec un débit “local” (débit par unité de largeur).

On dispose de la relation débit/vitesse de rotation de l’extrudeuse pour chaque produit extrudé seul, dont on peut déduire un débit approximatif. On sait en revanche que la contre-pression engendrée par l’autre produit dans un écoulement de coextrusion modifie la relation débit/vitesse de rotation de l’extrudeuse pour le produit seul.

On doit donc vérifier dans quelle mesure ces valeurs de débits peuvent nous renseigner sur les débits réels dans la filière. Pour y parvenir, on doit estimer les débits en tout point de la largeur de l’échantillon : le procédé étant continu, on peut supposer que le débit par unité de largeur de chaque polymère peut être obtenu en tout point par le produit de la hauteur qu’il occupe dans la section du film par la vitesse de ligne.

On a pu constater que la répartition des produits dans le film n’est pas uniforme, principalement en raison du débit “os de chien” et de l’enrobage :

- le débit “os de chien” apparaît en sortie de filière et n’affecte que les bords du film ; on peut formuler l’hypothèse que ce débit n’affecte pas le rapport des hauteurs des produits,

- le phénomène complexe d’enrobage progresse dans toute la longueur des écoulements de grands entrefers ; on supposera donc que le polyéthylène enrobe le polystyrène principalement dans le bloc de répartition et que l’enrobage ne progresse plus à l’intérieur de la filière.

Finalement, on peut estimer le rapport des débits par unité de largeur en tout point de la largeur du film (en calculant le rapport des hauteurs) et le débit de chaque produit dans toute
la largeur (produit de la vitesse de ligne par la somme des hauteurs sur toute la largeur).

Estimation des débits : film ne présentant pas d’enrobage

La figure 2.25 montre la répartition du rapport des hauteurs des produits dans la demi-largeur du film obtenu à 220°C présenté à la figure 2.24.

![Graphique de répartition des hauteurs des produits](image)

Fig. 2.25 – Répartition du rapport des hauteurs des deux produits sur une demi-largeur d’échantillon à 220°C

Le débit de polyéthylène ainsi calculé est de 2500 mm3/s et le débit de polystyrène est de 1100 mm3/s. L’approximation via la relation débit/vitesse de rotation donne un débit de polyéthylène de 3181 mm3/s et un débit de polystyrène de 1334 mm3/s. Les débits sont donc surestimés de 20% à cause de la contre-pression engendrée par l’écoulement bicouche.

Le rapport des débits Q_{PS}/Q_{PE} varie de 0,34 à 0,39 du centre à 80% de la largeur du film. Au-delà, on constate que ce rapport augmente sensiblement pour atteindre 0,7 aux bords. Le polystyrène (qui est le fluide le moins visqueux à 220°C) enrobe donc légèrement le polyéthylène. Ce résultat montre bien que le bloc de répartition ne distribue pas les deux polymères de façon uniforme. Le cédage de la filière doit aussi participer à ce phénomène dont nous n’avons donc pas d’explication claire.

L’approximation via la relation débit/vitesse de rotation donne un rapport des débits égal à 0,42. On surestime donc le rapport des débits dans la partie centrale de la filière.

Il est important de souligner le fait que le rapport Q_{PS}/Q_{PE}, déduit du rapport des épaisseurs des produits sur le film, serait plus faible dans la partie centrale de la filière. En effet, nous avons constaté que l’instabilité est d’autant plus importante que ce rapport est faible (réciproquement, que le rapport Q_{PE}/Q_{PS} est grand). Cette constatation permettrait d’expliquer que l’instabilité apparaît au centre de l’échantillon dans les configurations “légèrement instables” et qu’elle est plus développée au centre dans les configurations “très instables”.
Estimation des débits : film présentant de l’enrobage

On s’intéresse maintenant à la figure 2.26 qui montre la répartition du rapport des hauteurs dans la demi-largeur du film enrobé obtenu à 180° C (présenté à la figure 2.24).

![Diagram](image)

Fig. 2.26 – Répartition du rapport des hauteurs des deux produits sur une demi-largeur d’échantillon à 180° C

Le débit de polyéthylène est de 2300 mm³/s et le débit de polystyrène est de 630 mm³/s. L’approximation via la relation débit/vitesse de rotation donne un débit de polyéthylène de 2512 mm³/s et un débit de polystyrène de 606 mm³/s. La contre-pression étant moins importante dans cette configuration où les débits des deux fluides sont plus faibles, on peut les estimer plus précisément.

Le rapport des débits Q_{PS}/Q_{PE} varie de 0,37 à 0,47 du centre à 70% de la largeur du film. Au delà, il ne reste plus que du polyéthylène et ce rapport est nul.

On constate encore, si l’on exclut la partie enrobée du film, que le rapport Q_{PS}/Q_{PE} est minimum au centre. On supposera donc, pour résumer toutes les configurations étudiées dans les diagrammes Q_{PE}, Q_{PS}, qu’une zone de l’écoulement sera d’autant plus susceptible d’être instable qu’elle sera proche du centre.

L’approximation via la relation débit/vitesse de rotation donne un rapport des débits égal à 0,24. Cette approximation ne prend pas en compte la perte de polyéthylène due à l’enrobage dans l’écoulement bicouche proprement dit.

Les formules de correction sont donc :

$$Q_{PE}^C = Q_{PE}^A - \frac{2e}{L - 2e} Q_{PS}^A$$ et $$Q_{PS}^C = \frac{L}{L - 2e} Q_{PS}^A$$

On obtient un rapport des débits égal à 0,29. La relation corrigée permet donc de diminuer l’erreur sur le rapport des débits.
Finalement, on utilisera la relation débit/vitesse de rotation corrigée pour donner une valeur du débit de chaque fluide dans l’écoulement bicouche et aussi être capable de placer les schématisations de tous les échantillons obtenus sur des diagrammes \((Q_{PE}, Q_{PS})\).

2.5 Résumé des résultats expérimentaux

2.5.1 Approche deux couches en filière multicanaux

On regroupe les résultats expérimentaux pour chaque température dans un graphe \((Q_{PE}, Q_{PS})\), où \(Q\) est le débit de chaque polymère. On représente les configurations stables par des rectangles blancs et les configurations instables par des rectangles noirs. Lorsque la configuration est instable, on note la fréquence d’apparition du défaut.
La figure 2.28 présente les résultats obtenus à 180°C : à débit de polystyrène constant, on observe un écoulement stable à faible débit de polyéthylène. En augmentant le débit de polyéthylène, on observe une transition vers une zone instable.
La figure 2.29 présente les résultats obtenus à 200°C : la transition stable/instable observée précédemment à débit de polystyrène constant est repoussée vers les grands débits de polyéthylène. En augmentant le débit de polystyrène, on observe que la zone stable s’étend pour les grands débits de polyéthylène.
La figure 2.30 présente les résultats obtenus à 220°C : de la même manière que précédemment, la transition stable/instable est repoussée vers les grand débits de polyéthylène et on n’observe qu’une configuration très légèrement instable pour cette température, à un rapport de débits \(Q_{PE}/Q_{PS}\) très grand. Dans cette configuration le défaut est très peu développé et n’est localisé que sur une faible bande dans la largeur de l’extrudat.
Fig. 2.28 – Résultats expérimentaux bicouche en filière multicanaux à 180 °C : □ (stable), ■ (instable)

Fig. 2.29 – Résultats expérimentaux bicouche en filière multicanaux à 200 °C : □ (stable), ■ (instable)

2.5.2 Approche deux couches en filière porte-manteau

On regroupe les résultats obtenus dans un graphe \((Q_{PE}, Q_{PS}) \) en utilisant la relation débit/vitesse de rotation corrigée. Les figures 2.31, 2.32 et 2.33 montrent les schématisations sous forme de rectangles de tous les échantillons obtenus pour, respectivement, les températures 180°C, 200°C et 220°C.

Ces rectangles sont centrés sur le couple de débits \((Q_{PE}, Q_{PS}) \) corrigés. On ne représente qu’une demi-largeur d’échantillon. Le centre de ces échantillons est dirigé vers les grands débits de polyéthylène puisque nous supposons que le rapport \(Q_{PE}/Q_{PS} \) est le plus grand au centre. De la même manière que précédemment, on note la fréquence d’apparition du défaut lorsque la configuration est instable.

On peut alors résumer ces expériences de la manière suivante : à 180°C on observe des instabilités de plus en plus prononcées quand le rapport des débits \(Q_{PE}/Q_{PS} \) croît, lorsque \(Q_{PS} \) augmente la transition est repoussée à des débits \(Q_{PE} \) plus élevés ; à 200°C la transition stable/instable se déplace vers les grands débits de polyéthylène (vers la droite sur les figures) ; à 220°C on n’observe presque plus d’instabilités, comme si cette transition sortait du domaine d’investigation.

Les défauts observés sur le film sont caractérisés par une amplitude et une fréquence d’apparition qui croissent avec le rapport des débits \(Q_{PE}/Q_{PS} \). Ces défauts sont observés dans la partie centrale de l’échantillon où le rapport des débits dépasse la valeur de transition stable/instable. Ces configurations sont dites “légerement instables”.

Lorsque le rapport \(Q_{PE}/Q_{PS} \) croît, plusieurs vagues apparaissent et le défaut s’étend en largeur sur l’échantillon et devient “chaotique” au centre. La valeur du rapport \(Q_{PE}/Q_{PS} \) augmente vers le centre, de la même manière que l’importance du défaut. Ces configurations sont dites “très instables”.

![Graphique](image.png)

Fig. 2.30 – Résultats expérimentaux bicouche en filière multicanaux à 220°C : □ (stable), ■ (instable)
Fig. 2.31 – Résumé des résultats expérimentaux en filière porte-manteau à 180° C : échantillons stables, instables avec vagues et très instables
Fig. 2.32 – Résumé des résultats expérimentaux en filière porte-manteau à 200°C : échantillons stables, instables avec vagues et très instables.
Fig. 2.33 – Résumé des résultats expérimentaux en filière porte-manteau à 220°C : échantillons stables et instables avec vagues
2.6 Conclusions

Nous avons pu mettre en évidence une transition stable/instable pour l’écoulement bicouche polyéthylène/polystyrène en filière multicanaux. Pour des configurations instables proches de la transition, on observe une périodicité spatiale du défaut sur le film solidifié.

Le rapport des débits Q_{PE}/Q_{PS} et la température semblent être des paramètres déterminants pour l’apparition des instabilités. Lorsque la température croît, la transition stable/instable est repoussée vers les rapports de débits Q_{PE}/Q_{PS} plus grands.

De la même manière, on peut supposer que l’absence de canal de relaxation en amont du point de convergence des flux joue en faveur des instabilités puisque le bruit provenant des extrudeuses n’est pas filtré.

Dans l’étude expérimentale bicouche en filière porte-manteau couplée à un bloc de répartition, nous avons pu observer que l’instabilité des ces écoulements peut être quantifiée. Lorsque le défaut est peu développé, on peut observer une “vague” et sa périodicité spatiale. Lorsque le défaut s’amplifie, il semble qu’il y ait “sélection” d’un ensemble de vagues instables. Lorsque le défaut est très développé, l’amplitude de ces vagues augmente jusqu’à destruction de l’interface (défaut “chaotique”).

On peut corrélérer l’augmentation de l’instabilité à une variation du rapport des débits approximatifs, mais on pourrait aussi imaginer que les échantillons qualifiés de stables proviennent d’écoulements instables dont les “vagues” ne sont pas suffisamment amplifiées en sortie de filière pour être mesurables. La longueur de l’écoulement serait alors un paramètre décisif à prendre en compte.

La localisation du défaut au centre dans les configurations “légèrement instables” et son extension en largeur dans les configurations “très instables” peut être corrélée à une augmentation du rapport des débits Q_{PE}/Q_{PS} dans l’écoulement “local”. Cette explication repose cependant sur un grand nombre d’hypothèses.

Au cours d’une étude expérimentale en configurations tricouches symétriques et non-symétriques, les mêmes phénomènes ont été observés (voir annexe) : nous avons mis en évidence l’apparition d’instabilités. Sur la plupart des échantillons instables, l’instabilité est en revanche moins développée et nous n’avons observé que très peu de défauts “chaotiques”. De la même manière qu’en configuration bicouche, le passage des deux produits dans le bloc de répartition ainsi que le tirage du film en sortie de filière ne permettent pas de déduire précisément les conditions de l’écoulement “local” dans la filière.

Finalement, on peut conclure que la transition entre écoulements stables et écoulements instables n’est pas franche : l’instabilité d’un écoulement de coextrusion n’est pas provoquée par le passage d’un paramètre de contrôle à une valeur critique comme on l’observe sur d’autres défauts du procédé de fabrication de films (instabilité d’étirage, rupture d’extrudat) et la mise en évidence des paramètres de contrôle de l’instabilité est dépendante du dépouillement des échantillons recueillis.
Chapitre 3

Une première modélisation de l’instabilité : l’étude asymptotique.
Nous allons dans ce chapitre mettre en œuvre les méthodes classiques de la stabilité hydrodynamique temporelle. L’écoulement de base considéré est un écoulement de Poiseuille bidimensionnel à deux fluides. Cette hypothèse est naturelle dans la configuration expérimentale de la fûrière multicanaux (expériences de laboratoire) puisque dans ce cas les deux fluides s’écoulent, après leur entrée en contact, dans une fûrière plate d’épaisseur 1mm, de longeur 40mm et de largeur 100mm. Cette hypothèse est réaliste mais plus discutable dans le cas de la fûrière porte-manteau puisque cela revient dans ce cas à faire l’hypothèse que l’instabilité se développe dans la partie finale (plate) de la fûrière (alors que les fluides sont en contact depuis leur rencontre dans le bloc de répartition).

L’idée générale est d’étudier la croissance temporelle de petites perturbations spatialement périodiques dans un domaine supposé infini. Cette méthode classique a été utilisée avec succès dans de nombreux domaines de l’hydrodynamique (instabilité de Taylor-Couette [10], instabilité de Rayleigh-Bénard [46] ...) et a été introduite par Yih [61] pour l’écoulement de Poiseuille de deux fluides newtoniens.

3.1 Modélisation du problème

Considérons l’écoulement dans une fûrière plate, dont la hauteur est petite devant la largeur et la longueur (rapport 20 ou supérieur), de deux fluides viscoélastiques. On engendre cet écoulement en imposant le débit de chaque fluide. L’écoulement de Poiseuille, invariant dans la direction x de l’écoulement, est formé des couches 1 et 2 d’épaisseurs d_1 et d_2. Dans la suite, on appelle cet écoulement écoulement de base en opposition à l’écoulement perturbé.

![Diagramme de l'écoulement de Poiseuille plan avec deux couches](image)

Fig. 3.1 – Ecoulement de Poiseuille plan deux couches.

3.1.1 Les équations

Intéressons-nous au cas deux couches. Les deux fluides sont supposés non miscibles et incompressibles et l’écoulement est considéré comme isotherme.

Les équations du problème sont de trois types. Dans chaque couche on exprime la relation fondamentale de la dynamique, la loi de comportement et la conservation de la matière ; aux
bords on écrit la condition de vitesse nulle et à l’interface on écrit l’équation de non-miscibilité et les relations de continuité des vecteurs contrainte et vitesse.

- Nous utilisons une loi de comportement de type différentiel. On écrit le tenseur des contraintes \(\sigma_k \) dans chaque couche \(k \) comme la somme d’un tenseur sphérique et d’un tenseur des extra-contractantes \(\tau_k \) :

\[
\sigma = -pI + \tau
\]

Les polymères fondus ont un comportement viscoélastique qui peut être modélisé par une loi de Maxwell [26] :

\[
\tau + \lambda (\partial_t \tau + u \nabla \tau - \nabla u \tau - \tau^T \nabla u) = 2 \eta \dot{\varepsilon},
\]

où \(\dot{\varepsilon} \) est la partie symétrique du gradient de vitesses, \(\eta \) est la viscosité et \(\lambda \) le temps de relaxation. Dans le cas d’un modèle multimode, le tenseur des extra-contractantes s’écrit \(\tau = \sum \tau_i \) où chaque mode satisfait une équation du type Maxwell. Nous utiliserons aussi dans la suite une loi de comportement du type White-Metzner qui suppose que le temps de relaxation et la viscosité sont des fonctions du taux de cisaillement \(\dot{\gamma} \) défini par \(\dot{\gamma} = 2(\sum_{ij} \dot{\varepsilon}_{ij})^{1/2} \).

On note \(u_k = (u_k, v_k) \) le champ de vitesse, l’incompressibilité est donnée, pour chaque fluide, par :

\[
\nabla \cdot u = 0
\]

La relation fondamentale de la dynamique qui traduit l’équilibre du système s’exprime dans chaque couche \(k = 1, 2 \) par (on note \(ge_y \) le vecteur accélération de la pesanteur) :

\[
\nabla \cdot \tau = \rho (\partial_t u + \nabla u \cdot u) + \nabla p + \rho ge_y
\]

- Les conditions aux bords satisfont les hypothèses de non-glissement à la paroi :

\[
u_1(x, 0) = u_2(x, d_1 + d_2) = 0
\]

- On note, dans le cas général, \(y = h(x, t) \) l’équation de l’interface \((h \equiv d_1 \) pour l’écoulement de Poiseuille). La continuité de la vitesse à l’interface s’écrit :

\[
u_1(x, h) = u_2(x, h)
\]

L’équation cinématique qui décrit la condition de non-miscibilité des deux fluides (une particule fluide se trouvant à l’interface reste dessus, c’est-à-dire qu’elle se déplace avec l’interface) s’écrit :

\[
\partial_t h(x, t) + \partial_x h(x, t)u(x, h) = v(x, h)
\]

En présence de tension superficielle \(S \) (\(H \) est la somme des courbures principales de l’interface et \(n \) sa normale) le saut de contrainte s’écrit, avec la convention \([[f]]_y = f_2(y) - f_1(y) \) :

\[
[[\sigma]]_y n(x) = -2HSn(x) \quad (3.1)
\]

\[
n(x) = (\partial_x h, -1) \quad (3.2)
\]

On choisit pour l’adimensionnement les grandeurs caractéristiques suivantes (on en donne entre parenthèses une estimation pour les expériences réalisées) :
-pour l’échelle de longueur, la hauteur de la filière \(d^* = d_1 + d_2 \ (\simeq 1\text{mm}) \),
-pour l’échelle de vitesse, la vitesse moyenne dans la filière \(U^* = \frac{Q}{d^* L} \ (\simeq 1\text{cm/s}) \), où \(Q \) est le débit total et \(L \) est la longueur de la filière,
-\(\text{l'échelle de temps est donc } t^* = \frac{d^*}{U^*} \ (\simeq 0.1\text{s}) \),
-pour l’échelle de contrainte, \(p^* = \frac{\eta_0}{d^*} \ (\simeq 1\text{MPa}) \), où \(\eta_0 \) est une valeur caractéristique de la viscosité du fluide 1.

L’adimensionnement des équations du problème permet d’introduire les paramètres sans dimension qui admettent les expressions suivantes :
-le nombre de Reynolds dans chaque couche \(Re_k = \frac{\rho_k U^* d^*}{\eta_0} \ (\simeq 10^{-6}) \),
-le rapport des masses volumiques \(\rho_k = \frac{\rho}{\rho_k} \ (\simeq 1) \),
-le nombre de Weissenberg dans chaque couche \(We_k = \frac{\lambda_k}{\rho_k} \ (\simeq 10) \),
-la hauteur adimensionnée d’interface pour l’écoulement de base \(\tilde{h} = \frac{d^*_i}{d^*} \),
-le rapport des hauteurs des deux couches \(\epsilon = \frac{d^*_2}{d^*} \),

\(\lambda_k \) étant une valeur caractéristique du temps de relaxation du fluide \(k \).

3.1.2 La solution de base

La solution de base (écoulement de Poiseuille) du problème est la solution invariante par translation. On cherche donc \(\tilde{u} \) sous la forme \(\tilde{u} = (\tilde{u}_y(y),0) \). Dans la suite, le symbole \(\tilde{\cdot} \) sera utilisé pour les variables associées à l’écoulement de base. On note donc

\[
\tilde{\tau} = \begin{pmatrix}
\tilde{\sigma} \\
\tilde{\tau} \\
\tilde{\gamma}
\end{pmatrix}
\]

le tenseur des extracontraintes, \(\tilde{\gamma} = |\tilde{u}'(y)| \) le taux de cisaillement et \(\tilde{h} \) la position de l’interface.

On vérifie de manière classique que \(\tilde{\tau} \) ne dépend que de \(y \) et que le profil de pression est linéaire en \(x \) (\(p = p_0 + \zeta x \)). Pour les lois de comportement de type Maxwell que nous utilisons, on obtient le problème suivant pour la vitesse et la contrainte de cisaillement de l’écoulement de base :

\[
\begin{aligned}
\tilde{\tau}' &= \zeta \\
\tilde{\tau} &= \tilde{\eta} \tilde{u}' \\
\tilde{u}(0) &= \tilde{u}(1) = 0 \\
\|\tilde{u}\|_H &= 0 \\
\|\tilde{\tau}\|_H &= 0
\end{aligned}
\]

où \(\tilde{\eta} \) est une fonction de \(\tilde{\gamma} = |\tilde{u}'| \). Les autres termes du tenseur des contraintes sont donnés explicitement.

La méthode de résolution est numérique pour la plupart des lois de comportement. La solution est analytique pour des fluides de Maxwell.

3.1.3 La stabilité linéaire

Le principe de l’étude est d’introduire dans l’écoulement de Poiseuille des perturbations périodiques en espace et d’amplitude suffisamment petite pour que les termes non linéaires soient négligeables. On étudie ensuite l’évolution temporelle de ces perturbations qui peuvent s’amortir ou s’amplifier. L’étude de stabilité linéaire permet de déterminer si le système se comporte ou non comme un amplificateur de bruit en fonction des conditions opératoires.
Fig. 3.2 – Perturbation de l’interface.

En adoptant le formalisme des systèmes dynamiques [24], on écrit formellement les équations du problème de la manière suivante :

\[
\frac{\partial \Psi}{\partial t} = F(\Psi) \text{ avec } \Psi = (u_k, \tau_k, p_k, h)
\]

Nous avons précisé que la longueur de l’écoulement est grande et elle est (mathématiquement) supposée infinie. Il n’y a donc pas de conditions aux bords naturelles aux extrémités en \(x \). On note \(\Psi(y) \) la solution de base (écoulement de Poiseuille) puis on introduit des perturbations de la forme \(\Psi = \tilde{\Psi}(y)e^{i(kx-\omega t)} \) avec \(k \) réel et \(\omega \) complexe. De cette manière, on décompose le bruit introduit en ondes se déplaçant dans la direction \(x \) dont la pulsation est donnée par \(\omega_r = \text{Re}(\omega) \) et la longueur d’onde est \(2\pi/k \) (figure 3.2), où \(k \) est appelé nombre d’onde de la perturbation. En posant \(\Psi = \tilde{\Psi}(y) + \Psi \) dans les équations précédentes et en linéarisant autour de la solution de base, on obtient :

\[
-i\omega \tilde{\Psi} e^{i(kx-\omega t)} = \mathcal{D} \tilde{\Psi} (\tilde{\Psi} e^{i(kx-\omega t)}) ,
\]

qui s’écrit aussi :

\[
-i\omega \tilde{\Psi} = e^{-ikx} \mathcal{D} \tilde{\Psi} (\tilde{\Psi} e^{ikx}) = L_k (\tilde{\Psi})
\]

On obtient donc une équation du type Orr-Sommerfeld “viscoélastique” dans chaque couche avec des conditions de vitesse nulle aux bords et les équations de continuité à l’interface.

On appelle phase de l’onde le terme \(\phi = kx - \omega t \) et on définit la vitesse de phase par \(V_\phi = \omega_r/k \)

(la phase est constante si l’on se déplace le long d’une trajectoire telle que \(x/t = V_\phi \)).

La pulsation et le nombre d’onde ne vérifient pas, a priori, une relation de proportionnalité, c’est-à-dire que la vitesse de phase dépend du nombre d’onde. Le milieu dans lequel les ondes se propagent est alors dit dispersif.

Nous allons étudier la stabilité temporelle de ces perturbations. Il faut donc déterminer le taux d’amplification temporel \(\omega_1 = \text{Im}(\omega) \) de ces perturbations. Cela conduit, en pratique, à résoudre le problème aux valeurs propres généralisées suivant :

\[
A \Psi = \omega(k, \text{Re}, W e_1, W e_2, ...) B \Psi ,
\]

où \(A \) et \(B \) sont deux matrices carrées. Il existe des vecteurs \(\Psi \) non nuls solutions de cette équation (vecteurs propres) si \(k \) et \(\omega \) sont solutions de la relation de dispersion :

\[
D(k, \omega) = 0 ,
\]

pour \(k \) réel. Dans le cas d’un opérateur scalaire, la relation de dispersion n’est autre que le symbole de l’opérateur linéarisé qui s’écrit \(D[i \partial_t, -i \partial_x] \). On dira que l’écoulement de base est stable si toutes les racines \(\omega \) de la relation de dispersion sont de partie imaginaire négative.

Ce problème peut être résolu numériquement en faisant varier le nombre d’onde \(k \) et en fixant les autres paramètres. L’étude numérique de la stabilité linéaire d’écoulements bicouches a été menée par de nombreux auteurs dans le cas de fluides d’Oldroyd-B [52] et dans le cas de fluides d’Oldroyd-B “rhéofluidiants” [60] [50] [51] [2] [3]. La figure 3.3 résume les résultats obtenus par ces auteurs. Les valeurs propres 2 et 3 sont dites shortwave car elles ne déstabilisent pas l’écoulement aux faibles nombres d’onde (vagues de grande longueur d’onde) mais peuvent changer de signe pour des nombres d’onde plus grands. La valeur propre 1 est appelée longwave par opposition et correspond à un mode neutre asymptotiquement. La valeur propre longwave peut déstabiliser l’écoulement pour des ondes modérées, comme dans le cas 1' où sa valeur maximum est obtenue pour le nombre d’onde \(k_{LW} \).

Un tel calcul est en général très lourd puisqu’il faut chercher pour chaque valeur de \(k \) la valeur propre de plus grande partie réelle pour un problème dont la dimension est assez importante (\(X \) est un vecteur ayant plus de 300 composantes). Sachant que les vagues qui apparaissent lorsque le procédé est instable ont une périodicité spatiale pouvant être grande devant l’entrefer \(d^* \) (voir chapitre 2), il devient naturel d’utiliser l’analyse asymptotique qui permet d’obtenir un critère de stabilité plus limité correspondant aux perturbations de grandes longueurs d’onde.
3.2 L’étude asymptotique

L’étude asymptotique consiste à étudier le comportement d’une solution ω(k) de l’équation de
dispersion au voisinage de k = 0. On développe donc chaque variable du problème par rapport à
k et, en particulier, on suppose que ω s’écrit : ω = k(ω₀ + kω₁ + k²ω₂ + ...) (voir [38] et annexe).
Ces expressions sont substituées dans les équations du problème linéarisé et on identifie les
différentes puissances de k.
On montrera que la stabilité aux grandes ondes est donnée par le signe de la partie imaginaire
de ω₁ (car ω₀ est réel). Soulignons qu’un écoulement instable au sens asymptotique est instable
mais qu’un écoulement stable au sens asymptotique peut être instable aux ondes modérées.
Remarquons que considérer une interface de la forme h = h₀ + ĥₑi(kx−ωt) pour k petit revient
to considérer une interface variant faiblement dans la direction x, cela revient donc à formuler
des hypothèses de type “lubrification hydrodynamique” car les dérivées suivant x sont petites
devant les dérivées en y d’un facteur k d’où ∂ₓū ≈ 0, ∂ₓv ≪ ∂ᵧū.
Dans la suite nous présentons les différentes étapes du calcul de stabilité asymptotique pour les
différentes lois de comportement que nous utilisons. Nous présentons tout d’abord le modèle
de Carreau-Yasuda [8] [59] qui décrit le comportement newtonien généralisé des polymères.
Puis nous présentons les modèles viscoélastiques de White-Metzner [55] et multi-Maxwell [26]
[25]. Nous montrons ensuite, à l’aide d’une comparaison des résultats de calcul pour un cas
expérimental modèle, que nous retenons la loi de comportement de White-Metzner pour
notre étude de la stabilité des écoulements de coextrusion.

3.2.1 Fluides de Carreau-Yasuda

Écoulement de base

La loi de comportement de Carreau-Yasuda s’écrit :

\[
\begin{align*}
\sigma &= -pI + \tau \\
\tau &= 2\eta(\dot{\gamma}) \dot{\varepsilon} \\
\eta(\dot{\gamma}) &= \eta_0 [1 + (k\dot{\gamma})^m]^{\frac{1}{m-1}}
\end{align*}
\]

où \(\dot{\varepsilon} \) est la partie symétrique du gradient de vitesses et \(\eta \) la viscosité. La loi de comportement de
Carreau-Yasuda suppose que la viscosité est une fonction du taux de cisaillement \(\dot{\gamma} \) défini par \(\dot{\gamma} = 2(\sum_{ij} \dot{c}^2_{ij})^{1/2} \). Le paramètre \(m \) est compris entre 0 et 1, cela traduit le fait qu’aux faibles taux de
cisaillement la viscosité présente un plateau newtonien \(\eta_0 \) et qu’aux forts taux de cisaillement elle
décroit suivant une loi puissance. On parle alors de comportement rhéofluidifiant. Les paramètres
\(k \) et \(a \) permettent de décrire la transition entre ces deux comportements.
On choisit pour l’adimensionnement : la hauteur de la filière pour l’échelle de longueur \(d^* \), la
vitesse moyenne dans la filière pour l’échelle de vitesse \(U^* \) (et on note \(t^* \) l’échelle de temps) et
pour l’échelle de contrainte on utilise la viscosité plateau du fluide 1.

On a : \(U^* = \frac{\eta_0^*}{\mu^*} \); \(t^* = \frac{1}{\omega^*} = \frac{d^*}{\eta^*} \); \(p^* = \frac{\eta_0^*}{\mu^*} \).
L’adimensionnement permet d’introduire les paramètres suivants : le nombre de Reynolds \(Re_k \)
dans chaque couche, la hauteur adimensionnée d’interface pour l’écoulement de base \(h \) et les
viscosités plateau \(m_k \). Le caractère rhéofluidifiant (dépendance en \(\dot{\gamma} \) de la viscosité) est décrit
par la fonction \(\eta_k(\dot{\gamma}) \). Ces paramètres admettent les expressions suivantes :

\[\tilde{c} = \frac{d^*}{d^*}; \quad m_k = \frac{\eta_k^*}{\eta_0^*}; \quad \eta_k(\tilde{\gamma}) = \left[1 + \left(k^* \omega^* \tilde{\gamma} \right)^{a_k} \right]^{\frac{m_k - 1}{a_k}} \]

\[Re_k = \frac{\rho^*_k U^* d^*}{\eta^*_0}; \quad (p_k, \tau, H) = \frac{d^*}{\eta^*_0 U^*} (p^*_k, \tau^*_k, H^* T^*) \]

La relation de comportement et la relation fondamentale de la dynamique deviennent :

\[
\begin{cases}
\sigma = -p I + \tau \\
\tau = 2\nu \eta \dot{\varepsilon} \\
Re (\partial \varepsilon + \nabla \varepsilon) + \nabla p = \nabla \tau
\end{cases}
\]

On cherche \(\mathbf{u} \) sous la forme \(\tilde{\mathbf{u}} = (\tilde{u}(y), 0) \). On obtient :

\[\tilde{\mathbf{\tau}} = \left(\begin{array}{cc} 0 & \tilde{\mathbf{\tau}} \\ \tilde{\mathbf{\tau}} & 0 \end{array} \right), \quad \tilde{\mathbf{u}} = \left(\begin{array}{c} \tilde{u}(y) \\ 0 \end{array} \right), \]

où \(\tilde{\mathbf{\tau}} \) s'écrit \(\mathbf{\tau} = m \tilde{\eta} \tilde{\mathbf{u}}' \). Le taux de cisaillement \(\tilde{\gamma} \) vaut \(|\tilde{\mathbf{u}}'| \). La pression \(\tilde{p} \) ne dépendant que de \(x \), l'équilibre entraîne que son gradient \(\tilde{\mathbf{p}}'(x) \) est constant et on le note \(\tilde{\zeta} \). La solution de base est obtenue à partir de l'équation d'équilibre :

\[
\begin{cases}
\tilde{\mathbf{\tau}}' = m(\tilde{\mathbf{\eta}} \tilde{\mathbf{u}}')' = \tilde{\zeta} \\
\tilde{\eta} = \left[1 + \left(k \tilde{\mathbf{u}}' \right)^{a_k} \right]^{\frac{m_k - 1}{a_k}} \\
\tilde{\mathbf{u}}(0) = \tilde{\mathbf{u}}(1) = 0 \\
[\tilde{\mathbf{u}}] \tilde{\mathbf{\eta}} = 0 \\
[\tilde{\mathbf{\tau}}] \tilde{\mathbf{\eta}} = 0
\end{cases}
\]

Equations aux perturbations

On introduit dans les équations du problème des perturbations (notées ‘’) et on néglige les termes non-linéaires. La perturbation en pression est donnée par le gradient de pression \(\partial_x \tilde{p} = \tilde{\zeta} \) et \(\partial_y \tilde{p} = \tilde{\delta} \):

\[(u_k, v_k, \tau_k, \eta_k, p_k, \zeta_k, \delta_k, h) = (\tilde{u}_k + \tilde{u}_k, \tilde{v}_k, \tilde{\tau}_k + \tilde{\tau}_k, \tilde{\eta}_k + \tilde{\eta}_k, \tilde{p}_k + \tilde{p}_k, \tilde{\zeta}_k + \tilde{\zeta}_k, \tilde{\delta}_k, \tilde{h} + \tilde{h})\]

Le taux de cisaillement et la viscosité deviennent :

\[
\begin{cases}
\tilde{\gamma} \simeq \tilde{\gamma} + \frac{\partial \tilde{\gamma}}{\partial \mathbf{u}} \mathbf{a} (\partial_x \tilde{u} + \partial_x \tilde{v}) \text{ avec } \frac{\partial \tilde{\gamma}}{\partial \mathbf{u}} \mathbf{a} = \frac{\mathbf{a}'}{\mathbf{a}} \\
\eta(\tilde{\gamma}) \simeq \eta + \frac{\partial \eta}{\partial \mathbf{u}} \mathbf{a} (\partial_y \tilde{u} + \partial_y \tilde{v}) \text{ avec } \frac{\partial \eta}{\partial \mathbf{u}} \mathbf{a} = \frac{\eta}{\mathbf{a} (1 + k \tilde{\gamma})^n} \\
\text{on pose } \dot{\eta} = \tilde{\eta} + \frac{\partial \tilde{\gamma}}{\partial \mathbf{u}} \mathbf{a} \tilde{\mathbf{u}}
\end{cases}
\]

Les équations aux perturbations sont :
\begin{equation}
\begin{aligned}
\dot{\mathbf{e}} &= \\
&= \begin{pmatrix}
\partial_y \mathbf{u} & \frac{1}{2}(\partial_y \mathbf{v} + \partial_x \mathbf{u}) \\
\frac{1}{2}(\partial_y \mathbf{v} + \partial_x \mathbf{u}) & \partial_x \mathbf{v}
\end{pmatrix} \\
R &\partial_t \mathbf{u} + \nabla \mathbf{u} \cdot \mathbf{u} + \nabla \mathbf{u} \cdot \mathbf{u} + \nabla \mathbf{p} = \nabla \cdot \mathbf{\tau} \\
\dot{\mathbf{\tau}} &= 2m(\ddot{\mathbf{\eta}} + \dot{\mathbf{\eta}}) \\
\partial_x \mathbf{u} + \partial_y \mathbf{v} &= 0
\end{aligned}
\end{equation}

A l’interface, on obtient :

\begin{equation}
\begin{aligned}
[\mathbf{\bar{u}}]_n &= 0 \\
[\mathbf{\bar{\sigma}}]_n + S\mathbf{\bar{\eta}} &= 0 \\
\partial_h \mathbf{\bar{h}} + \partial_{\bar{h}} \mathbf{\bar{h}}(\mathbf{\bar{h}}) &= \mathbf{\bar{v}}(\mathbf{\bar{h}})
\end{aligned}
\end{equation}

où \(S \) est la tension de surface que l’on supposera négligeable [33]. Les perturbations vérifient les conditions de vitesse nulle aux bords.

Equations obtenues à l’ordre zéro

On introduit des perturbations de la forme \(\mathbf{\bar{\Psi}} = \bar{\Psi} e^{i(kx - \omega t)} \). On trouvera en annexe le détails des développements des équations aux perturbations où l’on montré, en particulier, que \(\omega \) et \(\mathbf{\bar{v}} \) s’écrivent \(\omega = k(\omega_0 + k\omega_1 + \ldots) \) et \(\mathbf{\bar{v}} = ik(\mathbf{\bar{v}}_0 + k\mathbf{\bar{v}}_1 + \ldots) \). Le système d’équations suivant est obtenu en identifiant les puissances de \(k \) à l’ordre zéro (\(D \) est la dérivée par rapport à \(y \)). Il exprime dans chaque couche les équations d’équilibre, de comportement (sur les composantes \(\sigma, \tau \) et \(\gamma \) du tenseur \(\mathbf{\tau} \)) ainsi que les conditions aux bords et d’interface.

Les équations dynamiques et de comportement sont découpées de l’équation cinématique qui va donner le coefficient \(\omega_0 \).

Dans chaque couche :

\begin{equation}
\begin{aligned}
D\mathbf{\bar{\tau}}_0 &= \mathbf{\bar{\zeta}}_0 \\
\dot{\mathbf{\bar{\delta}}}_0 &= 0 \\
\mathbf{\bar{\sigma}}_0 &= 0 \\
\mathbf{\bar{\tau}}_0 &= m\mathbf{\bar{\gamma}}D\mathbf{\bar{u}}_0 \\
\mathbf{\bar{\gamma}}_0 &= 0 \\
\mathbf{\bar{u}}_0 + D\mathbf{\bar{v}}_0 &= 0 \\
D\mathbf{\bar{\zeta}}_0 &= 0
\end{aligned}
\end{equation}

A l’interface :

\begin{equation}
\begin{aligned}
[[\mathbf{\bar{\sigma}}_0 + \mathbf{\bar{v}}_0]]_n &= 0 \\
[[\mathbf{\bar{\tau}}_0]]_n &= 0 \\
[[\mathbf{\bar{\xi}}_0]]_n &= 0 \\
-\omega_0 \mathbf{\bar{h}}_0 + \mathbf{\bar{h}}_0 \mathbf{\bar{u}}(\mathbf{\bar{h}}) &= \mathbf{\bar{v}}_0(\mathbf{\bar{h}})
\end{aligned}
\end{equation}

\(\omega_0 \) est réel et n’affecte pas la stabilité (car on a posé \(\omega = k(\omega_0 + \ldots) \)) mais donne la pulsation de la perturbation. Les termes \(\mathbf{\bar{u}}_0, \mathbf{\bar{\sigma}}_0, \) et \(\mathbf{\bar{\gamma}}_0 \) sont donnés explicitement. On doit alors résoudre le système :

\[
\begin{pmatrix}
0 & D^2 \\
m\Re D^2 & 1
\end{pmatrix}
\begin{pmatrix}
\ddot{v}_0 \\
\ddot{\tau}_0
\end{pmatrix} =
\begin{pmatrix}
0 \\
0
\end{pmatrix}
\]

La résolution numérique de ce système d’équations est analogue au calcul de l’écoulement de base.

Equations obtenues à l’ordre un

De la même manière on obtient par identification le système d’équations dans chaque couche :

\[
\begin{align*}
D\ddot{\tau}_1 - \ddot{\zeta}_1 &= i\Re(-\omega_0\ddot{u}_0 + \dddot{\nu}_0 + \dddot{u}_0) \\
\ddot{\delta}_1 - D\ddot{\gamma}_1 &= i\dddot{\nu}_0 \\
\dddot{\sigma}_1 &= 2im\dddot{\nu}_0 \\
\dddot{\bar{\tau}}_1 - m\Re D\dddot{\bar{u}}_1 &= 0 \\
\dddot{\bar{\gamma}}_1 &= 2i\dddot{\nu}_0 \\
\dddot{\bar{u}}_1 + D\dddot{\bar{v}}_1 &= 0 \\
D\dddot{\bar{\zeta}}_1 &= 0
\end{align*}
\]

Et à l’interface :

\[
\begin{align*}
[[\dddot{\nu}_1 + \dddot{u}_1]]_{\bar{h}} &= 0 \\
[[\dddot{\bar{v}}_1]]_{\bar{h}} &= 0 \\
[[\dddot{\bar{\tau}}_1]]_{\bar{h}} &= 0 \\
[[\dddot{\bar{\zeta}}_1]]_{\bar{h}} &= 0 \\
-\omega_0\dddot{h}_1 - \omega_1\dddot{h}_0 + \dddot{h}_1\dddot{u}(\bar{h}) &= \dddot{v}_1(\bar{h})
\end{align*}
\]

Le système à résoudre est alors :

\[
\begin{pmatrix}
0 & D^2 \\
m\Re D^2 & 1
\end{pmatrix}
\begin{pmatrix}
\dddot{v}_1 \\
\dddot{\tau}_1
\end{pmatrix} =
\begin{pmatrix}
-i\Re((-\omega_0 + \dddot{u})D^2 - \dddot{\nu})\dddot{v}_0 \\
0
\end{pmatrix}
\]

Ce système est du même type que le précédent (le second membre comporte des termes d’ordre zéro calculés précédemment). Dans ce cas aussi, l’équation cinématique donnant la valeur propre
3.2 L'étude asymptotique

Est découpée des autres équations qui sont résolues numériquement comme dans le cas stationnaire. Comme \(\omega_1 \) est imaginaire pur, son signe détermine la stabilité.

Le terme de droite dans le problème est en facteur du nombre de Reynolds. L'instabilité est alors de type hydrodynamique. Si les nombres de Reynolds sont nuls, la perturbation est uniquement transportée sans être amplifiée. Pour deux fluides newtoniens la partie imaginaire de \(\omega_1 \) est du signe de \((m - c^2)(m - 1)\), où \(m \) est le rapport \(\eta_2/\eta_1 \), donc l'écoulement est asymptotiquement stable si la couche la plus visqueuse est majoritaire (l'autre couche est dite lubrifante). Charrau et Fabre [9] ont montré que cette fonction est du même signe que le saut de taux de cisaillement à l'interface, autrement dit que l'écoulement est stable si le profil de vitesse de l'écoulement de base est convexe. Pinarbasi et Liakopoulos [42] ont étudié la stabilité asymptotique de deux fluides rhéo-fluidifiants sans trouver de critère simple sur l'écoulement de base.

3.2.2 Fluides de White-Metzner

Écoulement de base

La loi de comportement de White-Metzner s'écrit :

\[
\begin{aligned}
\sigma &= -pI + \tau \\
\tau + \lambda(\dot{\gamma}) \left(\partial_\gamma \tau + u \nabla \tau - \nabla u \tau - \tau^T \nabla u \right) &= 2\eta(\dot{\gamma})\dot{\gamma} \\
\eta(\dot{\gamma}) &= \eta_0 [1 + (k\dot{\gamma})^n]^\frac{n+1}{n} \\
\lambda(\dot{\gamma}) &= \lambda_0 [1 + (k\dot{\gamma})^b]^\frac{n+1}{n}
\end{aligned}
\]

La loi de comportement de White-Metzner décrit le comportement de visqueux des polymères fondus comme la loi de Carreau-Yasuda et le comportement viscoélastique est introduit par l'intermédiaire d'une équation reliant le tenseur des extracontraintes et sa dérivée surconvectée.

Il apparaît alors un temps de relaxation du polymère. Le modèle de White-Metzner suppose que le temps de relaxation est une fonction du taux de cisaillement \(\dot{\gamma} \). La paramètre \(n \) est compris entre 0 et 1, cela traduit le fait qu'aux faibles taux de cisaillement le temps de relaxation présente un plateau et qu'aux forts taux de cisaillement il décroit suivant une loi puissance. Les paramètres \(k \) et \(b \) permettent de décrire la transition entre ces deux comportements.

On choisit les mêmes échelles que précédemment pour l'adimensionnement qui fait apparaître les nombres de Weissenberg \(\text{We}_1 \) et \(\text{We}_2 \) comme paramètres supplémentaires. La dépendance en \(\dot{\gamma} \) du temps de relaxation de chaque fluide est décrite par la fonction \(\lambda_k(\dot{\gamma}) \).

Ces paramètres admettent les expressions suivantes :

\[
\text{We}_k = \frac{\lambda_k U^*}{d^*}; \quad \lambda_k(\dot{\gamma}) = [1 + (l_k \omega^* \dot{\gamma})^b]^{\frac{n+1}{n}}
\]

La relation de comportement et la relation fondamentale de la dynamique deviennent :

\[
\begin{aligned}
\sigma &= -pI + \tau \\
\tau + \lambda \text{We} \left(\partial_\gamma \tau + u \nabla \tau - \nabla u \tau - \tau^T \nabla u \right) &= 2m\eta\dot{\gamma} \\
\text{Re} \left(\partial_\gamma u + \nabla u \cdot u \right) + \nabla p &= \nabla \tau
\end{aligned}
\]

On cherche \(u \) sous la forme \(\tilde{u} = (\tilde{u}(y), 0) \). On obtient :

\[
\tilde{\sigma} = \begin{pmatrix} \tilde{\sigma} & \tilde{\tau} \\ \tilde{\tau} & 0 \end{pmatrix}, \quad \tilde{u} = \begin{pmatrix} \tilde{u}(y) \\ 0 \end{pmatrix}
\]
Le taux de cisaillement vaut $\dot{\tilde{\gamma}} = |\tilde{\gamma}'|$. Les différentes composantes du tenseur des extracontraintes s’écrit : $\tilde{\sigma} = 2m \lambda \tilde{W} e \tilde{\eta} \tilde{\bar{u}}^2, \tilde{\tau} = m \tilde{\eta} \tilde{\bar{u}}, \tilde{\gamma} = 0$. La première différence de contraintes normales est donnée par le terme $\tilde{\sigma}$.

La pression \tilde{p} ne dépendant que de x, l’équilibre entraîne que son gradient $\tilde{p}'(x)$ est constant et on le note $\dot{\tilde{c}}$. La solution de base est obtenue à partir de l’équation d’équilibre :

$$
\begin{cases}
\dot{\tilde{\tau}}' = m(\tilde{\eta} \tilde{\bar{u}}')' = \dot{\tilde{c}} \\
\dot{\tilde{\eta}} = \left[1 + \left(k |\tilde{\gamma}'| \right)^{m-1} \right]^{-\frac{m-1}{m}} \tilde{\eta}(0) = \tilde{\eta}(1) = 0 \\
|\tilde{\eta}|_H = 0 \\
|\tilde{\tau}|_H = 0
\end{cases}
$$

Équations linéarisées

On introduit dans les équations du problème des perturbations de la même manière que précédemment, en ajoutant les termes viscoélastiques :

$$(u_k, v_k, \tau_k, \eta_k, \lambda_k, \rho_k, \zeta_k, \delta_k, \bar{h}, \tilde{h}) = (\bar{u}_k + \dot{u}_k, \dot{v}_k, \dot{\tau}_k, \dot{\eta}_k, \dot{\lambda}_k, \dot{\rho}_k, \dot{\zeta}_k, \dot{\delta}_k, \dot{\bar{h}} + \dot{\tilde{h}})$$

Le temps de relaxation devient :

$$\lambda(\gamma) \simeq \lambda + \frac{\partial \lambda}{\partial |\gamma'|} |\gamma'| \left(\partial_y \dot{u} + \partial_x \dot{v} \right)$$

on pose $\dot{\lambda} = \ddot{\lambda} + \frac{\partial \lambda}{\partial |\gamma'|} |\gamma'| \ddot{\gamma}'$

Les équations aux perturbations sont :

$$
\dot{\epsilon} = \left(\begin{array}{cc}
\partial_x \dot{u} & \frac{\dot{\lambda}}{2} \left(\partial_y \dot{u} + \partial_x \dot{v} \right) \\
\frac{\dot{\lambda}}{2} \left(\partial_y \dot{u} + \partial_x \dot{v} \right) & \partial_y \dot{v}
\end{array} \right)
\right)
$$

$$
\begin{cases}
Re(\partial_x \dot{u} + \nabla \dot{\bar{u}} \cdot \dot{u} + \nabla \dot{u} \cdot \dot{\bar{u}}) + \nabla \dot{\tau} = \nabla \dot{\tau}
\\
\dot{\tau} + \tilde{\lambda} \tilde{W} e (\partial_x \dot{\tau} + \tilde{u} \nabla \cdot \dot{\tau} + \dot{u} \nabla \cdot \dot{\tau} - 2(\nabla \tilde{u} \cdot \dot{\tau} + \nabla \tilde{u} \cdot \dot{\tau})_S) - 2 \tilde{\lambda} \tilde{W} e (\nabla \tilde{u} \cdot \dot{\tau})_S = 2m(\dot{\tilde{\eta}} \dot{\epsilon} + \dot{\tilde{c}})
\\
\partial_x \dot{\tilde{\tau}} + \partial_y \dot{\tilde{\tau}} = 0
\end{cases}
$$

où $(\mathbf{T})_S$ désigne la partie symétrique du tenseur \mathbf{T}.

À l’interface, on obtient :

$$
\begin{cases}
|\dot{\mathbf{u}}|_H = 0 \\
|\dot{\mathbf{\sigma}}|_H \dot{\mathbf{n}} + |\dot{\mathbf{\sigma}}|_H \dot{\mathbf{n}} = -S\dot{h} \dot{\mathbf{n}}
\\
\partial_x \dot{h} + \partial_y \dot{\tilde{h}} \dot{\mathbf{n}} = \dot{v}(\dot{\mathbf{n}})
\end{cases}
$$

Les perturbations vérifient les conditions de vitesse nulle aux bords.
Equations obtenues à l’ordre zéro

On procède de la même manière, c’est-à-dire que l’on pose $\omega = k(\omega_0 + \ldots)$ et $\tilde{v} = i k(\tilde{v}_0 + \ldots)$. Les équations dynamiques et de comportement sont encore découpées de l’équation cinématique qui va donner le coefficient ω_0.

Dans chaque couche :

$$\begin{cases}
D\ddot{\pi}_0 = \ddot{\xi}_0 \\
\ddot{\xi}_0 = 0 \\
\sigma_0 - 2\lambda W e\pi' \overline{\pi}_0 - 2\lambda W e\pi D\ddot{u}_0 = 0 \\
\pi_0 = m\eta D\ddot{u}_0 \\
\dot{\gamma}_0 = 0 \\
\ddot{u}_0 + D\ddot{v}_0 = 0 \\
D\ddot{\xi}_0 = 0
\end{cases}$$

A l’interface :

$$\begin{cases}
\left[[\pi' \overline{h}_0 + \ddot{u}_0] \right]_{\overline{h}} = 0 \\
[\ddot{v}_0]_{\overline{h}} = 0 \\
[\ddot{\pi}_0]_{\overline{h}} = 0 \\
[\ddot{\xi}_0]_{\overline{h}} = 0 \\
-\omega_0 \ddot{h}_0 + \ddot{h}_0 \ddot{u}(\overline{h}) = \ddot{v}_0(\overline{h})
\end{cases}$$

Le système à résoudre à l’ordre zéro ne change pas puisqu’il fait intervenir uniquement les termes visqueux de la relation de comportement. En revanche il apparaît un terme σ_0 non nul.

Le système à résoudre est donc :

$$\begin{pmatrix}
0 & D^2 \\
\eta D^2 & 1
\end{pmatrix} \begin{pmatrix}
\ddot{u}_0 \\
\ddot{v}_0
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix}$$

Equations obtenues à l’ordre un

De la même manière on obtient par identification le système d’équations dans chaque couche :

$$\begin{cases}
\left[[\pi' \overline{h}_0 + \ddot{u}_0] \right]_{\overline{h}} = 0 \\
[\ddot{v}_0]_{\overline{h}} = 0 \\
[\ddot{\pi}_0]_{\overline{h}} = 0 \\
[\ddot{\xi}_0]_{\overline{h}} = 0 \\
D\ddot{v}_{00}(0) = D\ddot{v}_{20}(1) = 0 \\
\ddot{v}_{00}(0) = \ddot{v}_{20}(1) = 0 \\
-\omega_0 + \ddot{u}(\overline{h}) \ddot{h}_0 = \ddot{v}_0(\overline{h})
\end{cases}$$

\[
\begin{align*}
D\tilde{\tau}_1 - \tilde{\zeta}_1 &= iRe(-\omega_0 \tilde{u}_0 + \tilde{u}' \tilde{v}_0 + \tilde{u}'' \tilde{u}_0) - i\tilde{\sigma}_0 \\
\tilde{\sigma}_1 - D\tilde{\gamma}_1 &= i\tilde{\tau}_0 \\
\tilde{\sigma}_1 - 2\lambda W e^{\alpha} \tilde{\tau}_1 - 2\lambda W e^{\alpha} D\tilde{u}_1 &= -i\lambda W e[-\omega_0 \tilde{\sigma}_0 + \tilde{u}'' \tilde{v}_0 + \tilde{u}'' \tilde{v}_0 - 2\tilde{\sigma}_0] + 2im\tilde{\nu}_0 \\
\tilde{\gamma}_1 - m\nu D\tilde{u}_1 &= -i\lambda W e[-\omega_0 \tilde{\gamma}_0 + \tilde{u}'' \tilde{v}_0 + \tilde{u}'' \tilde{v}_0] \\
\tilde{\gamma}_1 - 2im\tilde{\nu}_0 D\tilde{v}_0 &= 0 \\
\tilde{u}_1 + D\tilde{v}_1 &= 0 \\
D\tilde{\zeta}_1 &= 0
\end{align*}
\]

Et à l'interface :

\[
\begin{align*}
[[\tilde{u}' \tilde{h}_1 + \tilde{u}_1]]_{\tilde{h}} &= 0 \\
[[\tilde{v}_1]]_{\tilde{h}} &= 0 \\
[[-i\tilde{u}_0 \tilde{\sigma} + \tilde{\tau}_1]]_{\tilde{h}} &= 0 \\
[[\tilde{\gamma}_1]]_{\tilde{h}} &= 0 \\
-\omega_0 \tilde{h}_1 + \omega_1 \tilde{h}_0 + \tilde{h}_1 \tilde{u}(\tilde{h}) &= \tilde{v}_1(\tilde{h})
\end{align*}
\]

Le système à résoudre est alors :

\[
\begin{pmatrix}
0 & D^2 \\
m\nu D^2 & 1
\end{pmatrix}
\begin{pmatrix}
\tilde{v}_1 \\
\tilde{\tau}_1
\end{pmatrix}
= \begin{pmatrix}
-2im\lambda W e^{\alpha} \tilde{\nu}_0 D\tilde{v}_0 - i\lambda W e(-\omega_0 \tilde{\gamma}_0 + \tilde{u}'' \tilde{v}_0 + \tilde{u}'' \tilde{v}_0) \\
2im\lambda W e^{\alpha} \tilde{u}_0 D\tilde{v}_0 - i\lambda W e(-\omega_0 \tilde{\gamma}_0 + \tilde{u}'' \tilde{v}_0 + \tilde{u}'' \tilde{v}_0)
\end{pmatrix}
\]

Dans ce cas aussi \(\omega_1 \) est imaginaire pur et son signe détermine la stabilité.

On note que la solution est la somme d’une solution d’origine hydrodynamique issue des termes où \(Re \) est en facteur et d’une solution d’origine viscoélastique issue des termes où \(We \) est en facteur. L’additivité des deux contributions a été montrée par Laure et al. [33] dans le cas Oldroyd-B. Dans ce cas, les solutions sont analytiques et Laure et al. ont montré que les valeurs propres s’écrivent :

\[
\begin{align*}
\omega_0 &= f(\epsilon, m) = 1 + \frac{\epsilon(m^2)}{m^4 + 2m^3 - 3m^2 + 2m + 1} \\
\omega_1 &= i \left(Re_1 J_1(\epsilon, m) + (Re_2 - Re_1) \left(J_2(\epsilon, m) + \frac{J_1(\epsilon, m)}{m^2}\right) \right) + i \left(We_1 J_4(\epsilon, m) + (We_2 - We_1) J_5(\epsilon, m) \right)
\end{align*}
\]

où \(\epsilon \) est le rapport des hauteurs des couches et les \(J_k \) des polynômes et \(\epsilon \) et \(m \).

3.2.3 Loi de comportement multi-Maxwell

La loi de comportement multi-Maxwell dérive de modèles physiques. On suppose que le polymère possède une distribution de temps de relaxation qui dépend de la distribution de masses moléculaires et un paramètre de glissement \(a \) qui décrit la non-affinité de la déformation du réseau.
macromoléculaire. On étudie l’écoulement de deux fluides multi-Maxwell définis, pour chaque fluide, par le spectre \((\eta^i, \lambda^i)\) et le paramètre de glissement \(a\) (voir, en annexe, le paragraphe consacré à l’identification des lois de comportements).

La loi de comportement multi-Maxwell s’écrit :

\[
\begin{align*}
\sigma &= -p I + \tau \\
\tau &= \sum \tau_i \\
\tau^i + \lambda^i \left(1 - \frac{a^i}{2} \frac{\partial \tau_i}{\partial t} + \frac{a^i}{2} \frac{D \tau_i}{D t} \right) &= 2 \eta^i \dot{\epsilon}
\end{align*}
\]

Les dérivées \(\frac{\partial}{\partial t}\) et \(\frac{D}{D t}\) sont respectivement les dérivées doublement covariante et doublement contravariante.

On impose les débits \(Q^s_1\) et \(Q^s_2\) pour chaque fluide. On adimensionne les équations par les grandeurs caractéristiques suivantes : la hauteur de l’enterrer \(d^s\), le débit total \(Q^s\) (et on déduit la vitesse caractéristique \(U^s = Q^s/d^s\)) et la viscosité \(\eta_1^s\) du fluide 1 définie par \(\eta_1^s = \sum \eta_i^s\).

Les paramètres sans dimensions sont le nombre de Reynolds \(Re_k\) dans chaque fluide \(k\) et les nombres de Weissenberg \(Wc_k^i\) et les viscosités \(\eta_k^i\) pour chaque mode \(i\) du fluide \(k\). Ces paramètres s’écrivent :

\[Re_k = \rho_k \frac{U^s d^s}{\eta^s}; \quad Wc_k^i = \frac{\lambda_k^i U^s}{d^s}; \quad \eta_k^i = \frac{\eta_k^i}{\eta^s} \]

La relation de comportement est, pour chaque fluide :

\[
\begin{align*}
\tau &= \sum \tau_i \\
\tau^i + Wc_k^i \left(\frac{\partial \tau_i}{\partial t} + u \cdot \nabla \tau_i \right) - \left(1 - \frac{a}{2} \right) \left(\nabla u \cdot \tau_i + \tau_i \cdot \nabla u \right) + \\
&\left(\frac{a}{2} \tau_i \cdot \nabla u + \tau_i \cdot \nabla u \cdot \tau_i \right) &= 2 \eta^i \dot{\epsilon}
\end{align*}
\]

Écoulement de base

On cherche la solution en vitesse sous la forme \(\vec{u} = (\vec{a}(y), 0)\). Le tenseur des extracontraintes est :

\[
\vec{\tau} = \sum_i \left(\begin{array}{cc}
\tilde{\sigma}^i & \vec{\tau}^i \\
\vec{\tau}^i & \tilde{\tau}^i
\end{array} \right)
\]

On résout numériquement le problème :

\[
\begin{align*}
\vec{\tau}' &= (\vec{\eta} \vec{a}')' = \vec{\zeta} \\
\vec{\tau} &= \vec{\eta} \vec{a}' \\
\vec{a}(0) &= \vec{a}(1) = 0 \\
[\vec{a}]_{\vec{h}} &= 0 \\
[\vec{\tau}]_{\vec{h}} &= 0
\end{align*}
\]

où \(\vec{\zeta}\) est le gradient de pression et \(\vec{\eta}\) la viscosité en cisaillement donnée par la formule :

\[
\vec{\eta} = \sum_i \frac{\eta^i}{1 + a(2 - a)(Wc_k^i)^2}
\]

La solution est calculée en imposant le débit, le tenseur des contraintes est obtenu par les formules :

\[
\begin{align*}
\tau &= \sum_i \tau^i = \sum_i \frac{\eta^i}{1 + a(2 - a)(We \tau')^2} \tilde{u}'
\end{align*}
\]

\[
\bar{\sigma} = \sum_i \bar{\sigma}^i = \sum_i (2 - a) We \tau' \bar{u}^i
\]

\[
\bar{\gamma} = \sum_i \bar{\gamma}^i = \sum_i -a We \tau' \bar{u}^i
\]

Le terme \(\bar{\gamma} \) est non nul, la première différence de contraintes normales est donnée par \(\bar{\sigma} - \bar{\gamma} \).

Equations aux perturbations

Les équations aux perturbations sont uniquement modifiées dans la relation de comportement qui s’écrit :

\[
\begin{align*}
\dot{\tau}^i + We \tau^i \frac{\partial \tau^i}{\partial t} + \dot{u} \nabla \tau^i + \tilde{u} \tau^i - (1 - a) \tau \nabla \dot{u}^i + \nabla \bar{u} \cdot \tau^i \nabla \bar{u} + \frac{\partial}{\partial t} (\tau \nabla \bar{u} + \tau \nabla \bar{u} + \nabla \bar{u} \cdot \tau^i \nabla \bar{u}) = 2 \eta^i \dot{\bar{e}}
\end{align*}
\]

Equations asymptotiques à l’ordre zéro

On garde les mêmes notations qu’auparavant (les \(\bar{f} \) désignent l’écoulement de base, les \(f_0 \) l’écoulement à l’ordre zéro et \(D^n \) la dérivée \(n \)ième suivant \(y \)) et les équations à résoudre à l’ordre zéro sont :

\[
\begin{align*}
\left\{
\begin{array}{cc}
0 & D^2 \\
\eta D^2 & 1 \\
\left[D\bar{\tau}_0 \right] & \bar{h} \\
\left[\bar{\tau}_0 \right] & 0 \\
\left[D\bar{v}_0 \right] & \bar{h}_0 \left[\bar{\tau}' \right] \\
\left[\bar{v}_0 \right] & 0 \\
D\bar{v}_0(0) & D\bar{v}_0(1) = 0 \\
\bar{v}_0(0) & \bar{v}_0(1) = 0 \\
[-\omega_0 + \bar{u}(\bar{h})] & \bar{h}_0 = \bar{v}_0(\bar{h})
\end{array}
\right.
\end{align*}
\]

\[
\dot{T} = \eta + \dot{\tilde{u}} \frac{\partial \eta}{\partial u} \tilde{u}' = \sum_i \frac{1 - a(2 - a)(We \tau')^2}{1 + a(2 - a)(We \tau')^2} \eta^i
\]

Les équations à l’ordre zéro font uniquement intervenir les termes visqueux de l’écoulement de base et sont les mêmes que celles obtenues pour les relations de comportement précédentes. On s’attend donc à ce que les résultats de calcul pour la valeur propre \(\omega_0 \) donnent les mêmes résultats.

Equations asymptotiques à l’ordre un

Les équations à résoudre à l’ordre un sont :

\[
\begin{align*}
\end{align*}
\]
\[
\begin{pmatrix}
0 & D^2 \\
\bar{\eta}D^2 & 1
\end{pmatrix}
\begin{pmatrix}
\bar{\nu}_1 \\
\bar{\tau}_1
\end{pmatrix} = \begin{pmatrix}
-iRe((-\omega_0 + \bar{\alpha})D^2 - \bar{\alpha}''\bar{\nu}_0 - iD(\bar{\sigma}_0 - \bar{\gamma}_0) \\
\bar{\eta}D^2 & 1
\end{pmatrix} \sum_i \bar{\tau}_1^i
\]
\[
[D\bar{\tau}_1]\bar{\eta} = -i[Re((-\omega_0 + \bar{\alpha})D + \bar{\alpha}'\bar{\nu}_0 + \bar{\sigma}_0)]\bar{\eta}
\]
\[
[D\bar{\nu}_1]|\bar{\eta} = 0
\]
\[
[D\bar{\nu}_1]|_{\bar{\eta}} = 0
\]
\[
\bar{D}\bar{\nu}_{11}(0) = \bar{D}\bar{\nu}_{21}(1) = 0
\]
\[
\bar{\nu}_{11}(0) = \bar{\nu}_{21}(1) = 0
\]
\[
-\omega_1\bar{\eta}_0 = \bar{\nu}_1(\bar{\eta})
\]
avec
\[
\bar{\tau}_1^i = 2We^i\bar{\pi}D\bar{\nu}_0
\]
\[
-\frac{We^i\bar{\eta}_0 - \frac{1}{2}We^i\bar{\alpha}'(a\bar{\sigma}_0 + (a-2)\bar{\gamma}_0)}{(1+a[2-a]/|We^i\bar{\alpha}'|^2)}(\bar{\omega}_0 + \bar{\alpha})
\]

Les équations à l’ordre un sont identiques à celles obtenues pour le modèle de White-Metzner, à l’exception de \(\bar{\tau}_1^1\) qui diffère du modèle précédent à cause des termes :
\[
-\frac{We^i\bar{\eta}_0 - \frac{1}{2}We^i\bar{\alpha}'(a\bar{\sigma}_0 + (a-2)\bar{\gamma}_0)}{(1+a[2-a]/|We^i\bar{\alpha}'|^2)}(\bar{\omega}_0 + \bar{\alpha})
\]
et
\[
-\frac{We^iD\bar{\tau} - \frac{1}{2}We^i\bar{\alpha}'(aD\bar{\sigma} + (a-2)D\bar{\gamma})}{(1+a[2-a]/|We^i\bar{\alpha}'|^2)}\bar{\nu}_0
\]

Pour le modèle de White-Metzner, ces termes étaient \(-We\bar{\pi}_0(-\omega_0 + \bar{\alpha})\) et \(-WeD\bar{\pi}\bar{\nu}_0\). Pour un paramètre de glissement \(a\) petit (il est de l’ordre de \(10^{-1}\) pour les deux fluides) on obtient un problème équivalent pour les deux modèles.

3.2.4 Choix d’une loi de comportement pour le couple de produits utilisé

Identification des paramètres des lois de comportement

Nous donnons dans la suite les différents paramètres des lois de comportement étudiées. La méthodologie adoptée pour identifier ces paramètres est détaillée en annexe.

Les énergies d’activation de chaque produit sont 62,5 \(kJ/molK\) pour le polyéthylène et 123,16 \(kJ/molK\) pour le polystyrène.

- **Loi de comportement de White-Metzner**

On présente dans les tableaux 3.1 et 3.2 les paramètres rhéologiques de la loi de comportement de White-Metzner à la température maîtresse de 200 °C pour, respectivement, le polyéthylène 1003 FE 23 et le polystyrène 1240. Ces paramètres sont identifiés via le principe de Cox-Merz, c’est-à-dire en postulant que la pulsation en régime dynamique est assimilable au taux de cisaillement en régime permanent. On complète les courbes maîtresses dans les faibles taux de cisaillement par des mesures en rhéométrie cône-plan continue et des mesures en fluage (voir annexe). La viscosité et le temps de relaxation du modèle sont ajustés aux données rhéométriques et on montre

\[
\begin{array}{c|c|c}
\eta(\dot{\gamma}) &=& \eta_0 [1 + (k \dot{\gamma})^a]^{\frac{n-1}{m}}, \\
\lambda(\dot{\gamma}) &=& \lambda_0 [1 + (k \dot{\gamma})^b]^{\frac{n-1}{b}}.
\end{array}
\]

\begin{tabular}{|c|c|c|c|}
\hline
\eta_0 (Pa.s) & k (s) & a & m \hline
1.58 \times 10^4 & 13.472 & 0.3817 & 0.29444 \hline
\hline
\hline
\lambda_0 (s) & l (s) & b & n \hline
80.192 & 131.27 & 0.68705 & 0.11076 \hline
\end{tabular}

Tab. 3.1 – Coefficients de la loi de White-Metzner du polyéthylène 1003 FE 23 à 200°C

\begin{tabular}{|c|c|c|c|}
\hline
\eta(\dot{\gamma}) &=& \eta_0 [1 + (k \dot{\gamma})^a]^{\frac{n-1}{m}}, \\
\lambda(\dot{\gamma}) &=& \lambda_0 [1 + (k \dot{\gamma})^b]^{\frac{n-1}{b}}.
\end{array}

\begin{tabular}{|c|c|c|c|c|}
\hline
\eta_0 (Pa.s) & k (s) & a & m & \lambda_0 (s) & l (s) & b & n \hline
3.14 \times 10^5 & 0.60362 & 0.55061 & 0.17314 & 87.487 & 40.058 & 0.23229 & 0.064293 \hline
\end{tabular}

Tab. 3.2 – Coefficients de la loi de White-Metzner du polystyrène 1240 à 200°C

que la loi de White-Metzner permet de décrire avec précision le comportement rhéologique en cisaillement des produits utilisés.

- Loi de comportement multi-Maxwell

On identifie le spectre \((\eta_i, \lambda_i) \) dans le domaine linéaire en utilisant les courbes maitresses donnant les modules \(G' \) et \(G'' \) obtenues par le principe de Boltzmann. On choisit le nombre de modes de relaxation (classiquement 1,5 modes par dixième de mesure) et on ajuste les valeurs théoriques de la loi multimode aux données rhéométriques. Les tableaux 3.3 et 3.4 montrent les spectres de relaxation obtenus à 200 °C pour, respectivement, le polyéthylène 1003 FE 23 et le polystyrène 1240.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\lambda_i & 0.0012 & 0.014 & 0.122 & 1.011 & 7.913 & 100.02 \\
\eta_i & 165.887 & 740.572 & 3203.917 & 11263.757 & 26988.078 & 78282.653 \\
\end{array}
\]

Tab. 3.3 – Spectre de relaxation du polyéthylène 1003 FE 23 à 200°C

Pour identifier le paramètre de glissement \(a \), on a choisi d’ajuster la courbe théorique de viscosité en cisaillement à la courbe \(\eta(\dot{\gamma}) \) déduite de la règle de Cox-Merz. Le paramètre \(a \) est déterminé en minimisant l’écart entre ces deux courbes.

On trouve un paramètre de glissement \(a = 0.142 \) pour le polyéthylène 1003 FE 23 et \(a = 0.1399 \) pour le polystyrène 1240. Lorsque ce paramètre est fixé, on montre alors (voir annexe) que le modèle multimode surestime les valeurs mesurées de première différence de contraintes normales, en particulier pour le polyéthylène 1003 FE 23.

Confrontation des différentes lois de comportement

Pour mettre en évidence les différents résultats obtenus pour chaque loi de comportement retenue nous présentons une série de courbes de stabilité neutre correspondant aux gammes de débits utilisées à 200°C par L. Gavrus et B. Vergnes au cours de leurs travaux expérimentaux. Une courbe de stabilité neutre dans le plan \((Q_1, Q_2) \) représente les régions où l’écoulement est calculé asymptotiquement stable et instable.

Étudions tout d’abord la courbe de stabilité neutre pour une loi de Carreau-Yasuda (figure 3.4). On distingue deux régions stables (notées S) et deux régions instables (notées U) dont les frontières sont données par un taux d’amplification nul. Ces frontières coïncident avec les
3.2. L'étude asymptotique

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\(\lambda_i\) & 0.0006 & 0.0108 & 0.1068 & 0.8642 & 7.268 & 276.88 \\
\(\eta_i\) & 60.026 & 652.352 & 4132.306 & 11443.736 & 10740.0714 & 8457.853 \\
\hline
\end{tabular}
\caption{Spectre de relaxation du polystyrène 1240 à 200°C}
\end{table}

\textbf{Fig. 3.4} – Courbes de stabilité neutre (polyéthylène 1003 FE 23/polystyrène 1240, 200°C) obtenues en utilisant une loi de Carreau-Yasuda aux débits caractéristiques des expériences de L. Gavrus et B. Vergnes.
configurations où le saut de taux de cisaillement à l’interface est nul, c’est-à-dire les configurations où le profil de vitesse de l’écoulement de base change de convexité. Lorsqu’il est convexe, l’écoulement est asymptotiquement stable. Dans le cas contraire il est instable.

Nous avons retrouvé ce critère dans tous nos calculs. Le critère est donc le même que celui donné par Charru et Fabre [9] pour des fluides newtoniens. On peut remarquer d’une part que la frontière au centre correspond au cas où les dérivées de vitesses dans les deux fluides sont nulles à l’interface donc que le maximum de vitesse est à l’interface ; d’autre part que les deux autres frontières correspondent au cas où les viscosités à l’interface sont égales et il en est de même pour les dérivées des vitesses (en effet le continuité de la contrainte s’écrit $\eta_1 u'_1 = \eta_2 u'_2$ et puisque $\eta_1 = \eta_2$ alors le saut de taux de cisaillement est nul). On peut généraliser ces observation et dire que l’écoulement est asymptotiquement stable si et seulement si le profil de vitesse de l’écoulement de base est convexe, c’est-à-dire plus “physiquement” si le fluide “entrainant” a un taux de cisaillement inférieur au fluide “entrainé” à l’interface (figure 3.5).

![Diagramme de profil convexe et non convexe](image_url)

Fig. 3.5 – Critère de stabilité/convexité

La figure 3.6 montre la courbe de stabilité neutre obtenue dans le cas de fluides de White-Metzner. Les frontières du cas précédent (loi de comportement de Carreau-Yasuda) sont conservées pour le cas où l’interface coïncide avec le maximum de vitesse et déplacées d’autant plus que le rapport des élasticités à l’interface est grand pour le cas où $u'_1 = u'_2 \neq 0$. A ces courbes neutres viennent s’ajouter deux frontières, l’une pour les grands débits de polyéthylène (bord inférieur droit de la figure) et l’autre pour les grands débits de polystyriène (partie quasiment tangente à l’axe vertical, bord supérieur gauche de la figure). La première constatation est que le fait d’introduire l’élasticité dans le calcul de stabilité renverse les résultats obtenus dans le cas visqueux : le critère de convexité donnant la stabilité asymptotique est invalidé dans la majeure partie des régions étudiées. L’influence de l’élasticité est d’autant plus évidente que les taux d’accroissement calculés dans le cas visqueux sont de l’ordre de 10^{-10} alors que pour l’étude viscoélastique il est 10^8 fois plus important. Dans tous nos calculs utilisant la loi de comportement de White-Metzner, les mêmes frontières sont obtenues en prenant un nombre de Reynolds nul.

On peut conclure que l’élasticité est un facteur déterminant que l’on ne peut pas négliger dans l’étude de la stabilité des écoulements de coextrusion.
Fig. 3.6 – Courbes de stabilité neutre (polyéthylène 1003 FE 23/polystyrène 1240, 200°C) obtenues en utilisant une loi de White-Metzner aux débits caractéristiques des expériences de L. Gavrus et B. Vergnes
Remarque

On étudie maintenant les courbes de stabilité neutres pour les mêmes configurations en utilisant une loi de comportement multi-Maxwell (figure 3.7). Dans le cas de fluides multi-Maxwell, les fonctions \(\eta(\dot{\gamma}) \) et \(N_1(\dot{\gamma}) \) sont la somme des contributions \(\eta_i(\dot{\gamma}) \) et \(N_{1_i}(\dot{\gamma}) \) de chaque mode de relaxation. Ces fonctions présentent des oscillations (voir annexe) qui ne permettent pas de calculer avec précision les frontières donnant la stabilité de l’écoulement. Lorsque les débits sont grands les résultats de calcul n’ont alors plus de sens, même si l’on devine une similitude entre les résultats des deux calculs viscoélastiques.

La méthode de calcul que nous avons adoptée est de type Chebyshev-Collocation et suppose une bonne régularité des fonctions discrétisées pour être précise [39]. Cette méthode de résolution numérique n’est donc pas adaptée à la loi de comportement multi-Maxwell car elle induit des oscillations sur ces fonctions.

![Figure 3.7 - Courbes de stabilité neutre (polyéthylène 1003 FE 23/polystyrène 1240, 200°C) obtenues en utilisant une loi multimaxwell aux débits caractéristiques des expériences de L. Gavrus et B. Vergnes](image)
En conclusion la loi de White-Metzner est retenue pour modéliser les écoulements de coextrusion au cours de cette étude car elle est mieux adaptée à notre méthode de résolution.

3.3 Comparaison à l’étude expérimentale

3.3.1 Approche deux couches en filière multicanaux

Les figures 3.8, 3.9 et 3.10 montrent les courbes de stabilité neutres obtenues pour la loi de White-Metzner superposées aux résultats expérimentaux en filière multicanaux pour, respectivement, les températures 180°C, 200°C et 220°C.

À 180°C et 200°C l’étude de stabilité montre l’existence d’une transition entre des écoulements stables et des écoulements instables lorsque le débit de polyéthylène croît. Cette transition est déplacée vers les grands débits de polyéthylène quand la température augmente.

On observe par contre qu’à 220°C le calcul donne une transition stable/instable dans le sens des débits de polyéthylène décroissants.

La comparaison à l’expérience montre une bonne corrélation pour les températures de 180°C et 200°C. On note cependant que le calcul prévoit, à 200°C, une région instable à fort débit de polystyrène qu’on ne retrouve pas expérimentalement. Les résultats de l’étude de stabilité sont en revanche en complète contradiction avec les résultats de l’étude expérimentale à 220°C puisque la seule configuration expérimentale stable est obtenue à fort débit de polyéthylène.

![Diagram](image.png)

Fig. 3.8 – Comparaison de l’étude de stabilité asymptotique aux résultats expérimentaux en filière multicanaux pour l’écoulement bicoche à 180°C

3.3.2 Approche deux couches en filière à bloc de répartition

Les figures 3.11, 3.12 et 3.13 montrent les courbes de stabilité neutres obtenues pour la loi de White-Metzner superposées aux résultats expérimentaux en filière porte-manteau pour, respectivement, les températures 180°C, 200°C et 220°C.

Fig. 3.9 - Comparaison de l’étude de stabilité asymptotique aux résultats expérimentaux en filet multicanaux pour l’écoulement bicouche à 200°C.

Fig. 3.10 - Comparaison de l’étude de stabilité asymptotique aux résultats expérimentaux en filet multicanaux pour l’écoulement bicouche à 220°C.
On retrouve qualitativement le même comportement que précédemment, c'est-à-dire que les
calculs mettent en évidence une transition stable/instable à 180°C et 200°C (qui se déplace par
contre vers les faibles débits de polyéthylène quand la température décroît) et prévoient des
configurations instables dans toute la fenêtre expérimentale à 220°C.
La corrélation avec les résultats expérimentaux est bonne pour une température de 200°C bien
qu’ici encore on ne retrouve pas expérimentalement la région instable calculée à fort débit de
polystyrène. A 180°C la frontière donnée par le calcul ne donne que qualitativement le compor-
tement expérimental de la transition puisqu’il la prévoit à des débits de polyéthylène surestimés.
Les calculs donnent instables toutes les configurations étudiées à 220°C alors qu’on n’a presque
pas observé d’instabilités expérimentalement à cette température.
On retrouve donc les mêmes comportements que dans l’étude en filière multicanaux.

3.4 Conclusion

A ce stade de l’étude, nous avons rendu compte dans le chapitre 2 des résultats d’une série
d’expériences de coextrusion à deux et trois couches. Nous avons mis en évidence l’apparition de
différentes transitions de configurations stables vers des configurations instables en fonction des
paramètres du procédé. Nous avons montré que les débits de chaque produit et la température
sont, pour un couple de produits donné, des paramètres déterminants.
Nous avons dans ce chapitre modélisé ce problème en supposant que l’écoulement de base est
un écoulement de Poiseuille bidimensionnel. Nous avons ensuite mené une étude de stabilité
asymptotique aux grandes ondes de cet écoulement de base. Le choix d’une loi de comporte-
ment qui permet de décrire le comportement viscoélastique en cisaillement des produits est
indispensable dans cette étude car la viscoélasticité est le facteur déterminant de la stabilité.
Le modèle choisi est celui de White-Metzner.
Cette étude nous a permis d’obtenir des régions asymptotiquement stables et instables aux
grandes ondes dans un plan \((Q_{PE}, Q_{PS})\) (ce qui ne permet pas d’évaluer l’importance du défaut).
La comparaison à l’expérience montre qu’il est dans certains cas possible de décrire la transition
stable/instable observée grâce à cette approche. Les résultats montrés aux figures 3.8, 3.9, 3.11,
3.12, sont bien expliqués par l’étude de stabilité asymptotique.
Il subsiste néanmoins deux types de contradictions :
- les prédictions du modèle sont plus discutables en ce qui concerne la figure 3.11 puisqu’on ob-
serve un écoulement instable dans une zone prédite comme stable par le calcul. Une explication
possible est que l’écoulement perd sa stabilité aux ondes modérées alors qu’il est stable dans le
cas de grandes ondes.
- les résultats expérimentaux à 220°C des figures 3.10 et 3.13 sont en désaccord avec les résultats
du modèle puisqu’on observe des écoulements stables dans une zone prédite comme instable par
le calcul.
Cette seconde contradiction remet en cause plus profondément les hypothèses faites pour mo-
déliser l’instabilité. Le critère de stabilité retenu dans ce chapitre est l’étude de la croissance
temporelle de perturbations périodiques en espace. Cela nous conduit dans la suite à étudier
expérimentalement (chapitre 4), numériquement (chapitre 5) et théoriquement (chapitre 6) la
croissance spatiale du défaut. Nous montrerons que ce désaccord observé à 220°C résulte en fait
d’une faible croissance spatiale du défaut.
FIG. 3.11 – Comparaison de l'étude de stabilité asymptotique aux résultats expérimentaux en filière porte-manteau pour l'écoulement bicouche à 180°C
Fig. 3.12 – Comparaison de l’étude de stabilité asymptotique aux résultats expérimentaux en filière porte-manteau pour l’écoulement bicouche à 200°C.
Fig. 3.13 – Comparaison de l’étude de stabilité asymptotique aux résultats expérimentaux en filière porte-manteau pour l’écoulement bicouche à 220°C.
Chapitre 4

Vers une approche plus analytique : mise en évidence du développement de l’instabilité dans la filière.
Jusqu'à présent, nous nous sommes intéressés au produit fini, c’est-à-dire à l’extrudat recueilli en sortie de filière. Nous avons observé des conditions dans lesquelles l’interface était stable et d’autres dans lesquelles elle était instable. Ces conditions dépendent, pour un couple de polymères donnés, de la géométrie de l’écoulement, de la température et des débits.

Une analyse de stabilité asymptotique procure des résultats contrastés : dans certains cas l’accord avec l’expérimentation est bon, dans d’autres il est peu satisfaisant voire contradictoire. C’est la raison pour laquelle nous avons analysé plus finement le développement de l’instabilité en coextrusion par deux méthodes différentes :
- une méthode “statique” qui consiste à figer l’écoulement de coextrusion depuis le point de convergence des flux jusqu’à la sortie de la filière dans des conditions stables et instables grâce à une filière originale conçue à cet effet,
- une méthode “dynamique” qui consiste à réaliser une filière de coextrusion partiellement transparente et à analyser le développement des instabilités le long de la filière, à la fois dans des conditions de fonctionnement “normal” (c’est-à-dire à des débits imposés) et dans des conditions de forçage périodique.

On montre, dans la suite, les résultats obtenus au cours de ces études expérimentales.

4.1 Mise en évidence de l’instabilité dans la filière par figeage de l’écoulement

4.1.1 Présentation de l’expérience

Le principe

L’objectif de cette campagne d’essai est d’étudier comment l’instabilité se développe dans la filière. La méthode consiste à utiliser un dispositif permettant l’extraction d’une structure solidifiée de la filière. Ce dispositif, élaboré conjointement par le CERDATO et le CEMEF, a été utilisé par J. Mauffrey au cours de son travail de thèse [37] : la distribution des deux polymères présents dans la filière est supposée “capturée” lorsque l’on stoppe les deux extrudeuses. Un refroidissement rapide assure le figeage de la structure qui est extraite de la filière démontable.

Le dispositif

On présente les différents éléments du dispositif expérimental à la figure 4.1.

Les deux polymères du chapitre 1 sont débités par deux extrudeuses identiques (diamètre de vis 30mm, débit maximum d’environ 200g/min).

Un système à guillotine permet d’amener, en position ouverte, les produits dans le bloc de répartition. En position fermée les produits sont aiguillés sur la purge située à l’arrière du bloc.

Le bloc de répartition à lamelles donne en entrée de filière un écoulement bicoche.

La filière, constituée de quatre blocs indépendants démontables, est fixée au bloc de répartition et autorise l’extraction des carottes. L’étanchéité est assurée par serrage. La figure 4.2 montre en détail les différents composants de la filière démontable. Les dimensions de la filière sont 600 mm x 57 mm x 13,5 mm.

Tous les modules du montage sont équipés de colliers ou de plaques chauffantes à pilotage individuel. Pour figer la matière dans la filière on utilise un circuit de refroidissement par circulation d’huile.
FIG. 4.1 – Vue générale du dispositif expérimental

- **canaux d’aménée**
- **bloc de répartition**
- **commande de guillotine amont**
- **guillotine aval**
- **600 mm**

FIG. 4.2 – Vue éclatée des différents composants de la filière démontable (coupe)

- **plaques chauffantes**
- **plateau supérieur**
- **parois latérales amovibles**
- **orifice pour capteurs**
- **circuit de refroidissement**
- **(13.5 mm)**
- **(57 mm)**
- **cannelures de réglage**
- **plateau inférieur**

4.1.2 Le déroulement des essais

Recherche d’un régime stationnaire

La première étape de l’expérience consiste à obtenir un extrudat “stable” ou “instable” dont l’aspect ne varie pas avec le temps.
La forte inertie thermique du dispositif ainsi que la section importante de l’écoulement rendent difficile le contrôle de la température. Au delà de 190°C et pour un débit total $Q_{PE} + Q_{PS}$ supérieur à 200g/min il n’est pas possible d’obtenir une température homogène dans l’extrudat. Les expériences ont donc été conduites en deçà de ces limites.

Capture de la structure

Lorsque le régime établi est atteint l’opérateur stoppe les extrudeuses et ferme la guillotine située en sortie de filière. La fermeture de la guillotine amont n’est possible que lorsque la pression dans le bloc de répartition est suffisamment faible pour être vaincue. Quelques secondes d’attente suffisent pour réaliser cette opération.
La guillotine aval présente quelques fuites. Il en résulte que quelques grammes d’extrudat parviennent à sortir de la filière après l’arrêt des extrudeuses.
Lorsque les guillotines sont fermées la régulation en température est stoppée et l’opérateur met en route le circuit de refroidissement. Après une dizaine de minutes il est possible de démonter la filière et d’extraire la structure solidifiée de la filière démontée.

4.1.3 Les résultats expérimentaux

Configurations étudiées

Les configurations étudiées ont été choisies en fonction de l’aspect de l’extrudat en sortie de filière. Nous voulons étudier comment varie la morphologie de la structure solidifiée dans la filière près d’une transition stable/instable.
Cette transition d’états stables vers des états instables est encore une fois observée lorsque le polyéthylène est majoritaire.
Nous avons retenu trois configurations à 185°C. La première configuration donne un extrudat “stable” dont on présente une photographie à la figure 4.3a. Cette configuration (a) est donnée pour les débits $Q_{PE} = 110$ g/min et $Q_{PS} = 47$ g/min.
Lorsque le rapport Q_{PE}/Q_{PS} augmente il apparaît sur l’extrudat une instabilité en forme de chevrons réguliers dont on peut estimer une périodicité spatiale. La figure 4.3b en montre une photographie. Cette configuration (b) est donnée par $Q_{PE} = 112$ g/min et $Q_{PS} = 35$ g/min.
Lorsque le rapport des débits Q_{PE}/Q_{PS} augmente encore les chevrons observés sur l’extrudat sont “étirés” dans la direction aval à l’écoulement (figure 4.3c). On observe encore une périodicité spatiale des chevrons. Cette configuration (c) est donnée par $Q_{PE} = 136$ g/min et $Q_{PS} = 35$ g/min.

Analyse de la structure

On extrait de la filière la structure solidifiée pour chaque configuration étudiée. On obtient une barre parallélépipédique de dimensions approximatives 600 mm x 57 mm x 13,5 mm.
La figure 4.4 montre une photographie de la structure solidifiée obtenue dans le cas (a) “stable” vue face à la couche de polystyrène.
FIG. 4.3 - Vues de dessus, face à la couche de polystyrène, de l’extrudat recueilli pour les configurations obtenues aux couples de débits : $Q_{PE} = 110 \ g/min$ et $Q_{PS} = 47 \ g/min$ (a), $Q_{PE} = 112 \ g/min$ et $Q_{PS} = 35 \ g/min$ (b) et $Q_{PE} = 136 \ g/min$ et $Q_{PS} = 35 \ g/min$ (c)
Fig. 4.4 – Vue de dessus, face à la couche de polystyrène, de la structure solidifiée extraite pour la configuration (a)
On observe que l'aspect extérieur de la structure ne présente pas de chevrons. On note que le polyéthylène subit beaucoup de retrait au cours de son refroidissement. Ce phénomène a pour effet, d'une part de faire naître des bulles d'air dans la structure, et d'autre part d'engendrer des variations à grande échelle de l'épaisseur de polyéthylène sur la longueur de la structure. La figure 4.5 montre une coupe anamorphosée dans la direction longitudinale de la structure solidifiée (selon son axe de symétrie) en regard d'une vue de dessus. L'interface entre les deux polymères est identifiée par détection du contour de la couche de polystyrène (qui ne subit que peu de retrait) représenté en clair. Le polyéthylène est représenté en sombre.

On déduit qu'il n'y a effectivement pas d'instabilité d'interface observable après refroidissement. En début de filet on observe la trace de la phase d'établissement de l'écoulement bicouche en sortie du bloc répartiteur.

Fig. 4.5 - Coupe anamorphosée (échelle 5 :1 dans la direction horizontale) de la structure solidifiée (a) en regard de la vue de dessus, l'interface est identifiée par détection de contour

Une photographie d’une coupe transversale de la structure donnée à la figure 4.6 montre que le polyéthylène enrobe légèrement le polystyrène. Cet enrobage est plus prononcé vers la sortie de la filière [37]. On note une variation de hauteur de l’échantillon en fin de filière due au retrait. Dans cette configuration le phénomène de retrait n’est pas homogène, ce qui explique qu’on ne l’observe pas sur la coupe transversale en début de filière.

Fig. 4.6 – Coupe transverse de la structure solidifiée (a), en haut : à une distance de 10mm du point de rencontre des deux fluides, en bas : à une distance de 590mm

La figure 4.7 montre une photographie de la structure solidifiée obtenue dans le cas (b) “instable” vue face à la couche de polystyrène. On observe que l’instabilité est caractérisée par des chevrons espacés régulièrement, visibles en fin de filière à partir d’une distance de 525 mm du point de rencontre des deux produits. Le défaut apparaît au centre de l’écoulement et s’élargit au fur et à mesure qu’il progresse vers l’aval. On montre aussi sur une photographie de la coupe longitudinale de la structure (figure 4.8) que l’amplitude des vagues formant les chevrons grandit vers l’aval : la première vague observée a une amplitude de 0.3 mm et les suivantes subissent une légère extension.

La figure 4.9 montre une photographie de la structure solidifiée obtenue dans le cas (c) “instable” vue face à la couche de polystyrène. Les chevrons sont ici aussi visibles dans la partie finale de la filière et leur importance croît vers l’aval. La distance d’apparition est en revanche nettement plus courte (330 mm) et on note que le défaut peut envahir toute la largeur de la structure dans cette configuration. La figure 4.10 montre une photographie d’une coupe longitudinale de la structure solidifiée selon son axe de symétrie. Dans cette configuration on observe très clairement que le défaut généré en fin de filière voit son importance grandir avec sa position en aval. Au delà d’une certaine amplitude la vague caractéristique du défaut déferle probablement sous l’effet du cisaillement et subit une forte elongation dans la direction de l’écoulement. En fin de filière cette elongation est supérieure à la période spatiale des chevrons et on observe une superposition de plusieurs vagues.

4.1.4 Conclusion

Cette étude expérimentale a permis de mettre en évidence le fait que, dans les cas instables, un défaut se développe au cours du temps au fur et à mesure qu’il progresse vers l’aval de l’écoulement. Il en résulte une croissance spatiale des perturbations. Cette croissance spatiale est clairement mise en évidence sur les échantillons (b) et (c) : le défaut n’est visible qu’au delà
Fig. 4.7 – Vue de dessus, face à la couche de polystyrène, de la structure solidifiée extraite pour la configuration (b)
Fig. 4.8 – Coupe anamorphosée (échelle 5 :1 dans la direction horizontale) de la partie finale de
la structure solidifiée (b) en regard de la vue de dessus, l’interface est identifiée par détection
de contour

d’une certaine distance du point de rencontre des deux produits et son intensité croît dans la
direction de l’écoulement.
On constate plusieurs phénomènes :
- le défaut est caractérisé par une périodicité spatiale clairement déterminée,
- lorsqu’il est peu développé, le défaut apparaît sous la forme d’une vague dont l’amplitude croît
avec sa position en aval de l’écoulement,
- ce défaut se localise d’abord sur l’axe de symétrie de la filière puis “contamine” progressivement
l’écoulement dans sa largeur lorsque son intensité augmente,
- au-delà d’une certaine amplitude la vague caractéristique du défaut subit une extension sous
l’effet du cisaillement et engendre une forte interpenetration des deux produits.
Cette première étude expérimentale permet de conclure que, pour les mêmes conditions opéra-
toires “instables”, on observerait un extrudat “stable” si la filière était suffisamment courte.
Plusieurs questions restent cependant ouvertes : comment est sélectionnée la périodicité spatiale
du défaut et quelle est la réponse du système à une perturbation contrôlée ?
Dans le paragraphe suivant on présente l’étude expérimentale conduite pour tenter d’y ré-
pondre : on étudie la réponse du système à un forçage périodique obtenu en introduisant dans
l’écoulement une perturbation de débit de fréquence et d’amplitude contrôlées.
FIG. 4.9 – Vue de dessus, face à la couche de polystyrène, de la structure solidifiée extraite pour la configuration (c)
Fig. 4.10 – Coupe anamorphosée (échelle 5 :1 dans la direction horizontale) de la structure solidifiée (c) en regard de la vue de dessus, l’interface est identifiée par détection de contour.
4.2 Étude d’une perturbation en filière transparente

4.2.1 Étude bibliographique

Les premières études expérimentales modèles

L’étude expérimentale de Wilson et Khomami [56]

Seuls Wilson et Khomami [56] ont mené une étude expérimentale dans des conditions proches de celles d’un écoulement de coextrusion en introduisant des perturbations contrôlées. Ils ont utilisé deux fluides incompatibles : un polypropylène et un polyéthylène basse densité. Ces produits sont débités par deux extrudeuses monovis dans une filière plate multicanaux. Les dimensions de la partie finale de la filière sont une longueur d’écoulement de 180mm, une largeur de 25mm et un entretier de 2,5mm, soit un rapport d’aspect de la section de 1 :10.

Une des extrudeuses débitant les produits a été modifiée pour pouvoir introduire une perturbation d’amplitude et de longueur d’onde contrôlées : une pulsation de débit est générée dans l’écoulement à chaque tour de vis de l’extrudeuse modifiée. Le débit de cette extrudeuse est contrôlé par un système de purge relié à une vanne régulée par la mesure de hauteur de l’interface en début de filière.

Leur dispositif d’observation est représenté figure 4.11 : quatre fenêtres placées le long de la filière permettent de filmer l’évolution de l’interface entre les deux fluides grâce à une caméra vidéo. Une source lumineuse placée de l’autre côté de la filière est nécessaire pour visualiser l’écoulement. Un des polymères étant opaque, il est possible de déterminer la hauteur d’interface avec précision.

Un ordinateur relié à une carte d’acquisition permet d’enregistrer en un temps donné le comportement spatial de l’interface (diagramme $h(x)$). Le comportement temporel de l’interface en un point donné est représenté par une image dite “composite”. Une telle image représente un diagramme $h(t)$ construit à partir de bandes verticales de largeur 1 pixel extraites de l’image vidéo à une fréquence de 20Hz. La figure 4.12 illustre cette méthode d’analyse d’image.

Leur première expérience consiste à observer, sans pertuber l’écoulement, le comportement de l’interface dans un cas instable. La figure 4.13 montre une image vidéo de l’interface déformée filmée à travers la quatrième fenêtre.

La figure 4.14 montre l’image composite représentant évolution de la position de l’interface en un point donné pendant 40s. Les auteurs ont ensuite déterminé le spectre de Fourier de cette perturbation intrinsèque (figure 4.15). Il est intéressant de constater que le bruit de l’appareillage
Fig. 4.11 – Dispositif expérimental utilisé par Wilson et Khomami [56]
Fig. 4.12 – Création d’une image “composite” à partir d’une image vidéo [56]

Fig. 4.13 – Image vidéo de l’interface déformée filmée à travers la quatrième fenêtre, dans une configuration instable ; on repère la position des bords supérieur (haut) et inférieur (bas) de la filière [56]

Fig. 4.14 – Variation dans le temps de la position d’interface sous l’effet du bruit en configuration instable ; on repère la position des bords supérieur (haut) et inférieur (bas) de la filière [56]

couvre un large spectre et qu’il présente un maximum, mais les auteurs n’ont pas précisé s’ils avaient relié ce mode principal avec la rotation d’une des vis d’extrudeuses.

Pour étudier l’effet d’une perturbation forcée sur une telle configuration, les auteurs ont utilisé des filtres placés en entrée de filière pour atténuer les perturbations observées précédemment.
Lorsqu’une perturbation est introduite, Wilson et Khomami ont alors observé que l’interface présentait des oscillations d’amplitude croissante suivant la direction de l’écoulement, ce qui prouve la nature convective de l’instabilité. La figure 4.16 montre les courbes $h(t)$ déduites de l’observation du défaut à travers les deux premières fenêtres pendant une durée de 30s. Les auteurs montrent sur cet exemple que le défaut généré croît en espace. Lorsque son amplitude devient suffisamment grande Wilson et Khomami indiquent que le défaut devient tridimensionnel. Les auteurs étaient cette hypothèse en suggérant que le défaut observé dans la deuxième fenêtre de la figure 4.16 présente une courbure dans la direction transverse à l’écoulement.
Wilson et Khomami calculent un taux d’amplification spatial β de la perturbation générée car ils supposent que l’amplitude du défaut s’écrit sous la forme $A = A_0 e^{\beta x}$. Le taux d’amplification spatial β est calculé en mesurant l’amplitude A_1 de défaut en début de filière et son amplitude A_2 avant qu’il ne devienne tridimensionnel.
La figure 4.17 montre comment les auteurs procèdent à une régression exponentielle pour calculer ce taux d’amplification spatial à partir des points expérimentaux. Selon les auteurs cette figure présente le comportement de vagues parmi les plus grandes observées dans leur étude. Ces vagues atteignent donc une amplitude de 0,04mm après une longueur d’écoulement de 100mm.
Les auteurs spécifient que leur dispositif leur permet de mesurer une variation d’amplitude en fonction d’une variation de position dans l’écoulement, c’est-à-dire le coefficient $A_0 \beta$, aussi petit que 0,0002cm/cm.
Ils ont pu ainsi reconstituer, pour plusieurs configurations à des débits relativement équilibrés, un graphe représentant le taux d’amplification spatial de la perturbation fonction du nombre d’onde. Leurs résultats sont regroupés sur la figure 4.18.
Ce graphe montre clairement l’influence du nombre d’onde de la perturbation sur le taux d’am-
4.2. Étude d’une perturbation en filière transparente

Fig. 4.15 – Analyse de Fourier du bruit du dispositif en configuration instable [56]

Fig. 4.16 – Variation temporelle de la hauteur d’interface observée dans les deux premières fenêtres d’observation [56]

Fig. 4.17 – Amplitude de la vague fonction de la position dans la filière pour de grandes vagues observées par Wilson et Khomami en configuration perturbée [56]

Fig. 4.18 – Taux d’amplification spatial de la perturbation fonction du nombre d’onde pour plusieurs configurations perturbées [56]
plification spatial du défaut généré. Les auteurs utilisent par la suite ces résultats dans une comparaison à une étude de stabilité que nous détaillerons dans le chapitre 6.

Conclusions

Wilson et Khomami ont montré expérimentalement que les défauts d’interface en coextrusion croissent spatialement dans l’écoulement.
Cette étude a été conduite dans les conditions suivantes :
- un couple de polymères industriel est utilisé,
- une filière de rapport d’aspect 1 :10 munie de parois transparentes permet d’observer l’écoulement,
- les débits des fluides utilisés sont relativement équilibrés,
- la méthode d’observation permet, selon les auteurs, de capter de très faibles variations de hauteur d’interface,
- les taux d’amplification mesurés sont relativement faibles.
Une étude très complète de l’influence d’une perturbation et de son nombre d’onde permet aux auteurs de disposer de courbes de stabilité expérimentales riches d’informations. D’autres études expérimentales utilisant ce même dispositif ont permis aux auteurs de montrer l’effet d’une perturbation contrôlée sur d’autres couples de produits [57] [58] [29]. Ce dispositif a été étendu à des configurations tricouches par Khomami et Ranjbaran [28]. A notre connaissance, il n’existe pas dans la littérature d’études expérimentales utilisant un autre dispositif de perturbation et d’observation d’un écoulement de coextrusion.
Notre volonté est de s’inspirer de l’étude expérimentale de Wilson et Khomami pour étudier quantitativement l’effet d’une perturbation contrôlée sur un écoulement de coextrusion.
Cette étude sera conduite dans des conditions modèles du procédé industriel c’est-à-dire avec un rapport d’aspect proche d’une filière cast-film et une forte dissymétrie des débits de produits.

4.2.2 Le dispositif expérimental

Le dispositif utilisé est une évolution du montage expérimental en filière multicanaux utilisé par L. Gavrus et B. Vergnes (voir chapitre 1) :
- le moteur de l’extrudeuse Kaufmann est piloté par un générateur de tension qui permet d’introduire une perturbation contrôlée dans l’écoulement lorsque sa tension de sortie varie avec le temps,
- la filière est munie de parois latérales en verre au travers desquelles il est possible d’observer l’écoulement,
- les polymères utilisés sont les mêmes. Dans le but de pouvoir les distinguer, nous avons coloré en noir le polystyrène fondu grâce à un mélange-maître.
Le polystyrène et le polyéthylène sont maintenant débités par, respectivement, l’extrudeuse Haake-Rhéocord et l’extrudeuse Kaufmann. En raison de la taille très réduite de l’entrefar, nous avons utilisé une caméra CCD reliée à un objectif macroscopique et/ou un doubleur de focale. Le signal provenant de la caméra est enregistré à l’aide d’un magnétoscope U-matic.
La figure 4.19 montre un schéma simplifié de ce nouveau montage.
Dans la suite, nous présentons en détail les différentes caractéristiques du dispositif.

Fig. 4.19 – Dispositif expérimental d’observation de l’écoulement

Le dispositif de perturbation

Une boucle d’asservissement a été introduite en entrée du moteur de l’extrudeuse Kaufmann. La consigne est donnée par un générateur de tension. La tension imposée peut être continue ou sinusoidale et on contrôle son amplitude et sa fréquence. La boucle de régulation de l’extrudeuse n’est pas supprimée car le système de filtrage qu’elle comporte n’affecte pas la fréquence imposée en deçà de 2Hz.

En faisant varier la fréquence de rotation de la vis de l’extrudeuse on génère, dans l’écoulement, une perturbation du débit de fréquence et amplitude contrôlées.

La filière transparente

Nous avons remplacé chacune des parois latérales de la filière par un hublot en pyrex recuit. L’assemblage est réalisé grâce à deux brides vissées sur la filière et l’étanchéité est assurée par un joint haute température.

Une vue des différents éléments de la filière transparente est donnée à la figure 4.20.

La largeur de l’écoulement dans la filière vaut 100mm. La partie finale de faible entretien a une longueur de 40mm. L’entretien final initial (1 mm) peut être augmenté à 2 mm pour assurer une meilleure mise au point du dispositif d’observation (figure 4.21). Le facteur de forme est donc très supérieur à celui de la filière utilisée par Wilson et Khomami.

Le dispositif d’observation de l’écoulement

La filière est placée entre la caméra et une source lumineuse (variateur + lampe halogène + filtre diffuseur). La caméra est fixée sur un plateau micrométrique qui autorise une translation du dispositif dans la direction longitudinale de la filière. La position du point de vue est donc connue avec précision. Le plateau micrométrique est relié à un pied dont on contrôle la position verticale et normale au bord de la filière. L’inclinaison du pied est réglable dans toutes les directions de l’espace.
Fig. 4.20 – Vue des différents éléments de la filière transparente

Un objectif macroscopique est fixé sur la caméra. Utilisé seul, il permet d’observer l’écoulement sur une fenêtre d’environ 20mm de large qui correspond à la moitié de la longueur de l’écoulement d’entraîner final. Un tel grossissement permet d’observer le comportement global de l’écoulement mais n’autorise pas une mesure précise de l’interface puisque la résolution de la caméra CCD est de 760×570 pixels.

En ajoutant un double de focale entre la caméra et l’objectif, on est capable d’obtenir une image de 6,33mm de large et 4,75mm de haut. La résolution est telle que 120 pixels correspondent à 1mm, ce qui permet une mesure précise de la hauteur d’interface. On filme alors l’écoulement à partir de neuf positions d’observation distantes l’une de l’autre de 5mm. On notera x l’abscisse repérant la position d’observation. On repère par x=0mm le début de la partie de faible entrer et par x=40mm la sortie de la filière. La figure 4.21 montre les différentes régions observables dans la filière.

L’expérimentateur utilise un moniteur pour visualiser l’image filmée. Cette image est enregistrée sur bande par un magnétoscope U-matic.

![Diagram](image)

Fig. 4.21 – Taille des régions observables dans la filière

La procédure expérimentale

L’expérience consiste à observer et enregistrer une séquence animée de l’écoulement dans la filière. On s’intéresse en particulier aux configurations instables sans perturbations ainsi qu’aux configurations obtenues sous l’effet d’une perturbation.

Dans le premier cas, l’expérimentateur ne contrôle pas les fluctuations de hauteur d’interface dans l’écoulement. L’écoulement est alors “spontanément” instable : on observe le défaut tel qu’il apparaît dans le procédé de coextrusion.

Dans le second cas, il faut faire en sorte que les perturbations “spontanées” du système n’interfèrent pas avec la perturbation introduite par l’expérimentateur. Une solution à ce problème serait de placer des filtres entre chaque extruduse et la filière. Nous avons préféré procéder de la manière suivante : la configuration à perturber sera choisie à la limite de la transition stable/instable “spontanée”. Ainsi les perturbations générées en amont, qui sont de très faible
amplitude, ne donneront pas naissance à un défaut observable. Nous verrons que dans ce cas on observe effectivement un écoulement instable puisque le défaut introduit est amplifié. Nous parlerons alors d’écoulement “déstabilisé”.
Nous vérifierons en outre qu’une perturbation introduite ne donnera pas naissance à un défaut en sortie de filière lorsque la configuration est choisie dans une région stable loin de la transition stable/instable “spontanée”.

4.2.3 Les essais

Mise en route

Dans le but d’éviter un recouvrement des parois transparentes par le polystyrène (teint en noir) au cours de la mise en route de l’expérience, on laisse s’écouler seul le polyéthylène (transparent à l’état fondu) dans la filière. Le polyéthylène se dépose alors sur les parois transparentes. On procède ensuite à la mise en route de l’extrudeuse Haake-Rhöcord débitant le polystyrène. Nous savons que le phénomène d’enrobage du produit “le plus visqueux” par le produit “le moins visqueux” intervient dès que la longueur d’écoulement est suffisamment grande. Dans le cas du couple polyéthylène 1003 FE 23 / polystyrène 1240, il n’y a pas d’enrobage à 200°C. À 180°C, le polyéthylène enrobe légèrement le polystyrène et inversement à 220°C. Les expériences seront conduites à une température de 180°C pour que le polyéthylène recouvrant les parois transparentes de la filière ne soit pas chassé par le polystyrène.

Réglages du dispositif d’observation

La méthode utilisée pour régler le dispositif d’observation est la suivante. On désire obtenir un déplacement longitudinal de la caméra parallèle au bord de la filière. On s’assure alors que l’image mise au point reste nette sur toute la course du plateau micrométrique. La perpendicularité de l’axe de visée au bord de la filière est contrôlée à l’aide d’un niveau à bulle.
On obtient une image nette de l’écoulement depuis le bord de la filière jusqu’à une profondeur de quelques millimètres. Une fois la mise au point effectuée dans la filière, on ne modifie plus les réglages du dispositif d’observation.

Perturbation de l’écoulement

Pour introduire une perturbation dans l’écoulement, on superpose au signal de commande du moteur de l’extrudeuse Kaufmann une tension sinusoidale. On fixe l’amplitude de ce signal à une valeur telle que la pression mesurée dans le convergent oscille entre 98% et 102% de la pression mesurée avant d’ajouter la perturbation. Cette oscillation de pression est prise arbitrairement petite pour que les valeurs des débits de chaque produit ne varient pas en moyenne quand la fréquence de la perturbation change. Nous étudions ainsi, comme nous le faisons dans l’étude théorique, la réponse du système à une “petite” perturbation.

Acquisition d’images

Lorsque la configuration désirée est obtenue, on procède à l’enregistrement d’une séquence sur bande.
La figure 4.22 montre une image “brute” obtenue pour une configuration perturbée à 0,64 Hz où $Q_{PE} = 87,4 \text{ g/min}$ et $Q_{PS} = 7,4 \text{ g/min}$. L’entreport est fixé à 2 mm.

\[\text{Fig. 4.22} – \text{Image “brute” obtenue pour une configuration perturbée à } 0,64Hz, \ Q_{PE} = 87,4 \ g/min, \ Q_{PS} = 7,4 \ g/min, \ \text{entrefer fixé à } 2mm; \ \text{on note la position des bords supérieur et inférieur de la filière}\]

4.2.4 Le dépouillement des essais

Analyse d’image

Chaque séquence obtenue est convertie, pour chaque fenêtre d’observation, en une série de fichiers au format \textit{Joint Photographic Experts Group} (jpeg) à la fréquence de 24 fichiers par secondes d’enregistrement à l’aide du logiciel Adobe Première.

A partir de l’ensemble des images échantillonnées en temps dans une même fenêtre d’observation on est donc capable de reconstruire une image donnant, pour tout \(x \) (où \(x \) est la position dans la filière), la hauteur d’interface \(h \) en fonction du temps. On vérifie que l’amplitude maximale du défaut généré varie peu, à \(x \) fixé, pendant la durée d’enregistrement.

La figure 4.23 montre un tel diagramme \(h(t) \) construit à partir d’une configuration perturbée à une fréquence 0,49Hz pour l’abscisse \(x=31mm \), \(Q_{PE} = 87,4 \ g/min \) et \(Q_{PS} = 7,4 \ g/min \). L’entrefer est fixé à 2mm.

\[\text{Fig. 4.23} – \text{Diagramme } h(t) \text{ construit à partir d’une configuration perturbée à une fréquence } 0,49Hz \text{ pour l’abscisse } x=31mm, \ Q_{PE} = 87,4 \ g/min, \ Q_{PS} = 7,4 \ g/min, \ \text{entrefer fixé à } 2mm; \ \text{on note la position des bords supérieur et inférieur de la filière}\]
Mesure de la hauteur d’interface

Sur un diagramme \(h(t) \) on est capable de mesurer la hauteur d’interface en fonction du temps avec une précision de l’ordre de 2 pixels (soit 0,01\(\mu \)m) qui correspond au nombre de pixels mesuré pour un passage d’un bas niveau de gris à un haut niveau de gris, caractéristique de la position de l’interface.

Mesure de la fréquence du défaut

La fréquence du défaut est mesurée de la manière suivante : c’est le nombre de crêtes comptées sur une grande période divisé par la durée de cette période. On vérifie que la fréquence mesurée est indépendante du nombre de périodes choisis, pourvu qu’il soit suffisamment grand afin de réduire les erreurs de mesure.

Estimation de la vitesse du défaut

La mesure de la vitesse du défaut sur une fenêtre d’observation s’effectue en localisant le passage à zéro de la déviation d’interface (la déviation d’interface est la hauteur d’interface à laquelle on soustrait sa valeur moyenne) sur un diagramme \(h(t) \) pris en début et en fin de fenêtre. Sur chaque diagramme on note le temps pour lequel le passage à zéro est atteint et la vitesse est donnée par la relation \(V = \Delta x / \Delta t \), où \(\Delta x \) est la distance entre le début et la fin de la fenêtre et \(\Delta t \) la différence des temps mesurés.

On vérifie que la vitesse mesurée est indépendante de la vague choisie dans la fenêtre d’observation.

On donne une illustration de la méthode de mesure de la vitesse du défaut à la figure 4.24.

Estimation du nombre d’onde du défaut

On a vérifié que le défaut observé est périodique, on calcule alors sa périodicité spatiale en divisant sa vitesse par sa fréquence. La relation donnant le nombre d’onde du défaut (en rad/mm) est \(k = 2\pi N / V \), où \(N \) est la fréquence du défaut en Hz et \(V \) sa vitesse.

4.2.5 Observation d’une configuration fortement instable

Nous avons étudié en premier lieu le comportement de l’écoulement pour une configuration spontanément instable apparaissant loin de la transition stable/instable. L’entrefer est fixé à 1 mm, les débits des produits valent \(Q_{PE} = 58.2 \text{ g/min} \) et \(Q_{PS} = 5.8 \text{ g/min} \) et la température est de 180°C.

La figure 4.25 montre l’aspect de l’extrudat recueilli en sortie de filière. On constate que l’intensité de la coloration de la couche de polystyrène varie selon son épaisseur : lorsqu’elle est très fine, le film est quasiment transparent. Ce phénomène nous permet d’estimer une périodicité spatiale du défaut.

La figure 4.26 montre une séquence obtenue, à faible grossissement, à travers les parois transparentes de la filière. La vue est prise en sortie de filière entre les abscisses \(x=32 \) et \(x=40 \), l’intervalle de temps séparant la prise de chaque cliché est de 0,08s. On constate que la position de l’interface varie fortement au cours du temps. En particulier, un défaut apparaît à l’abscisse \(x=32\text{mm} \) au temps \(t=0\text{s} \). Ce défaut est transporté et atteint la sortie de filière après un

Fig. 4.24 – Estimation de la vitesse du défaut par localisation du passage à zéro de la valeur de la déviation d’interface
4.2. Etude d’une perturbation en filière transparente

Fig. 4.25 – Photographie de l’extrudat obtenu pour $Q_{PE} = 58.2 \, g/min, \, t \, Q_{PS} = 5.8 \, g/min$ à $180^\circ C$, entrefer fixé à $1 \, mm$

temps égal à $0.96 \, s$ et on observe que son amplitude grandit au cours de son déplacement. Cette séquence montre donc clairement que l’instabilité est de nature convective.

La figure 4.27 montre une vue à fort grossissement de la même configuration. La vue est prise entre les abscisses $x=26$ et $x=31$. On distingue sur cette image deux vagues. La vague située sur la gauche est placée dans un plan en arrière de l’autre vague. Ce cliché montre que l’instabilité “spontanée” n’a pas une forme bidimensionnelle dans l’écoulement et engendre des défauts non uniformes sur la largeur de l’extrudat.

Les conclusions précédentes sont confirmées par les diagrammes $h(t)$ présentés sur les figures 4.28a et 4.28b. Ces figures montrent respectivement le diagramme $h(t)$ reconstitué pour cette configuration pendant 15 secondes pour les abscisses $x = 5$ (début de filière) et $x = 35$ (fin de filière). La nature convective de l’instabilité est manifeste puisque la hauteur d’interface est stationnaire en début de filière et varie fortement avec le temps en fin de filière. La forme non bidimensionnelle de l’instabilité “spontanée” entraîne qu’il n’est pas possible de déterminer une périodicité temporelle de la variation de hauteur d’interface sur le diagramme 4.28b bien qu’on puisse estimer une périodicité spatiale du défaut sur l’extrudat.

4.2.6 Perturbation d’une configuration “stable”

Nous avons étudié le comportement, sous l’effet d’une perturbation, d’une configuration “spontanément stable”. L’entrefer est fixé à $1 \, mm$, les débits des produits valent $Q_{PE} = 19.1 \, g/min$ et $Q_{PS} = 15.1 \, g/min$ et la température est de $180^\circ C$. Lorsque l’on n’impose pas de perturbation à l’écoulement, l’extrudat recueilli ne présente pas de défauts. Nous avons ensuite perturbé l’écoulement à différentes fréquences de $0.2 \, Hz$ à $1.0 \, Hz$. Dans tous les cas étudiés nous n’avons observé aucun défaut sur l’extrudat.

Les figures 4.29a et 4.29b montrent respectivement un exemple de diagramme $h(t)$ reconstitué

Figure 4.26 – Séquence observée en fin de filière ($32\text{mm} \leq x \leq 40\text{mm}$) d'un écoulement “spontanément” instable, l'intervalle de temps entre chaque photographie vaut $\Delta t=0,08\text{s}$; une schématisation des bords et de la sortie de la filière est ajoutée.

Figure 4.27 – Vue à fort grossissement d'un écoulement “spontanément” instable.
Fig. 4.28 – Diagrammes $h(t)$ construits pour une configuration “spontanément” instable, (a) : abscisse $5mm$, (b) : abscisse $35mm$; durée $15s$

pendant 15 secondes pour les abscisses $x = 5$ (début de filière) $x = 35$ (fin de filière) pour cette configuration soumise à une perturbation de $0,3Hz$. On constate que l’interface reste stationnaire en fin de filière. Remarquons aussi que la trace de la perturbation introduite n’est que très peu visible en début de filière. Plusieurs configurations “spontanément” stables ont été étudiées de cette manière, loin de la transition stable/instable observée lorsque le polyéthylène est majoritaire. D’une manière générale, on peut conclure que ces configurations sont insensibles aux “petites” perturbations, c’est-à-dire que ces perturbations ne sont pas amplifiées et ne donnent naissance à aucun défaut observable sur l’extrudat.

4.2.7 Perturbation d’une configuration faiblement instable

Configuration étudiée

Nous avons étudié l’effet d’une perturbation sur l’écoulement au voisinage de la transition stable/instable observée lorsque le polyéthylène est majoritaire. L’entrelage a été augmenté à $2mm$ pour assurer une meilleure précision dans les mesures.

Cette configuration est obtenue à $180^\circ C$ pour $Q_{PE} = 87,4 g/min$ et $Q_{PS} = 7,4 g/min$ et donne un extrudat exempt de défauts présenté à la figure 4.30.

L’interface est mesurée en différents points sur les diagrammes $h(t)$ et sa hauteur est comprise entre $1,73mm$ et $1,76mm$ (entre 208pixels et 211pixels). On suppose que les perturbations intrinsèques au système ne sont pas suffisamment amplifiées pour être observables dans la configuration étudiée. Cette configuration est donc “faiblement instable”. Cette hypothèse est confirmée par le fait qu’augmenter le rapport Q_{PE}/Q_{PS} près de cette configuration engendre un défaut sur l’extrudat.

Analyse de l’écoulement perturbé

On introduit ensuite dans l’écoulement une perturbation de fréquence contrôlée. Le tableau 4.1 résume les différentes valeurs imposées de la fréquence.

Fig. 4.29 – Diagrammes \(h(t) \) construits pour une configuration stable perturbée à 0,3 Hz, (a) : abscisse 5 mm, (b) : abscisse 35 mm ; durée 15 s

Fig. 4.30 – Photographie de l’extrudat obtenu à 180° C pour les débits \(Q_{FE} = 87,4 \) g/min et \(Q_{PS} = 7,4 \) g/min, entrefer fixé à 2 mm

<table>
<thead>
<tr>
<th>Fréquence (Hz)</th>
<th>0.26</th>
<th>0.49</th>
<th>0.64</th>
<th>0.85</th>
<th>1.26</th>
</tr>
</thead>
</table>

Tab. 4.1 – Valeurs des différentes fréquences de la perturbation imposée au système
Grâce à cette technique de contrôle de la perturbation on engendre un défaut périodique quasi bidimensionnel sur l’extrudat. La figure 4.31 en montre un exemple : il s’agit d’une photographie de l’extrudat recueilli en sortie de filière lorsque la fréquence de la perturbation imposée vaut 0,49Hz.

Fig. 4.31 – Photographie de l’extrudat recueilli en sortie de filière pour la configuration obtenue à 180°C, avec $Q_{PF} = 87,4$ g/min, $Q_{PS} = 7,4$ g/min, entrefixé fixé à 2mm, la partie supérieure de l’extrudat vient d’être coupée de la sortie de la filière

On rappelle que l’amplitude de la perturbation est fixée à une valeur telle que la pression mesurée dans le convergent oscille entre 98% et 102% de la pression mesurée avant d’ajouter la perturbation. Nous avons alors constaté que l’amplitude initiale de la perturbation (observée en entrée de canal) est trop faible pour être observable, ce n’est donc qu’au delà d’une certaine longueur d’écoulement qu’il est possible de mesurer les différentes caractéristiques du défaut. On constate que cette longueur dépend de la fréquence de forçage ; elle est relativement grande (de l’ordre de 20mm) pour les fréquences 0,26Hz et 1,26Hz et relativement faible (entre 5mm et 10mm) pour les fréquences 0,49Hz, 0,64Hz et 0,85Hz.

La figure 4.32 montre une séquence obtenue, à fort grossissement, pour un forçage périodique à la fréquence 0,49Hz. La vue est entre les abscisses $x=30$ et $x=35$, l’intervalle de temps séparant la prise de chaque cliché est de 0,08s.

A l’aide d’une telle séquence, il est possible de mesurer avec précision les caractéristiques spatio-temporelles de la perturbation car la résolution de l’image est telle que 1mm correspond à 120pixels. On observe ici que le défaut généré est transporté en aval de la filière, on vérifiera au paragraphe suivant que toutes les perturbations introduites sont amplifiées spatialement dans l’écoulement. Dans cette phase de croissance, on applique, pour chaque valeur de la fréquence imposée, les méthodes de mesure des différentes caractéristiques du défaut généré dans l’écoulement, c’est-à-dire :
Fig. 4.32 – Séquence observée entre les abscisses $x=30\,mm$ et $x=35\,mm$ d’une configuration “légèrement” instable perturbée à la fréquence $0.49\,Hz$, l’intervalle de temps entre chaque photographie vaut $\Delta t=0.08\,s$; une schématisation des bords de la filière est ajoutée.
4.2. Etude d’une perturbation en filière transparente

- mesure de la fréquence du défaut,
- calcul de sa période temporelle,
- estimation de sa vitesse,
- estimation du nombre d’onde,
- calcul de sa période spatiale.

Les différentes valeurs mesurées sont regroupées sur le tableau 4.2.

<table>
<thead>
<tr>
<th>Attr.</th>
<th>(N (Hz))</th>
<th>0.26</th>
<th>0.49</th>
<th>0.64</th>
<th>0.85</th>
<th>1.26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulsation</td>
<td>(\omega_f (rad/s))</td>
<td>1.63</td>
<td>3.08</td>
<td>4.02</td>
<td>5.34</td>
<td>7.92</td>
</tr>
<tr>
<td>Période temporelle</td>
<td>(T(s))</td>
<td>3.92</td>
<td>2.06</td>
<td>1.56</td>
<td>1.17</td>
<td>0.80</td>
</tr>
<tr>
<td>Vitesse</td>
<td>(V_0 (mm/s))</td>
<td>5.68</td>
<td>6.22</td>
<td>5.40</td>
<td>5.08</td>
<td>4.97</td>
</tr>
<tr>
<td>Nombre d’onde</td>
<td>(k_f (rad/mm))</td>
<td>0.28</td>
<td>0.50</td>
<td>0.74</td>
<td>1.05</td>
<td>1.59</td>
</tr>
<tr>
<td>Longueur d’onde</td>
<td>(\lambda (mm))</td>
<td>22.27</td>
<td>12.69</td>
<td>8.44</td>
<td>5.98</td>
<td>3.95</td>
</tr>
</tbody>
</table>

Tab. 4.2 – Résumé des différentes caractéristiques du défaut

Ces résultats montrent que les différentes caractéristiques de la perturbation sont très dépendantes de la fréquence de forçage. Ces caractéristiques sont conservées tant que le défaut n’est pas trop développé, c’est-à-dire (et c’est ici une hypothèse que nous formulons) tant que le défaut subit une amplification linéaire. En revanche, lorsque le défaut est très développé (en particulier pour les forçages à 0,49 Hz, 0,64 Hz et 0,85 Hz qui engendrent une forte déviation d’interface), il apparaît un défaut “secondaire” ce qui a pour conséquence de modifier la fréquence mesurée sur les diagrammes \(h(t) \) (figure 4.33). Ce défaut “secondaire” est clairement identifiable sur l’extrudat (figure 4.34).

![Figure 4.33 - Apparition d’un défaut “secondaire” : diagramme \(h(t) \) en \(x=37 mm \) obtenu pour un forçage périodique à la fréquence 0,64 Hz](image)

Mise en évidence d’une amplification spatiale

Pour chaque fréquence imposée en construit des diagrammes \(h(t) \) en différents points distants de 1 mm en exploitant la séquence d’images obtenue. Cette séquence est choisie dans la fenêtre d’observation où le défaut est en phase de croissance linéaire (par hypothèse). La figure 4.35 montre les différents diagrammes \(h(t) \) construits à partir de la séquence présentée à la figure 4.32. On constate clairement que la perturbation subit une amplification spatiale : l’amplitude de la déviation d’interface grandit en aval de l’écoulement.
Fig. 4.34 – Identification des défauts principal (1) et “secondaire” (2) sur l’extrudat obtenu pour un forçage périodique à la fréquence 0,64 Hz

On mesure alors l’amplitude de la déviation d’interface en fonction de la position dans la filière \(x\) avec une incertitude de mesure de ±0,017 mm (±1 pixel). Pour une perturbation de fréquence donnée on construit ensuite un graphe \((x, \ln(h(x)))\), où \(h\) est l’amplitude de la déviation de l’interface au point étudié. Le graphe obtenu peut être interpolé par une droite, conformément à l’hypothèse d’une croissance exponentielle du défaut. La pente de cette droite est obtenue par un calcul de régression linéaire.

La figure 4.36 illustre un exemple de la méthode utilisée pour la perturbation de fréquence 0,49 Hz.

Les incertitudes de mesure sur l’amplitude de la déviation de l’interface permettent de déduire une incertitude sur le calcul du taux d’amplification spatial de la perturbation. La valeur de cette incertitude est donnée par la différence entre les pentes maximale et minimale des droites passant à l’intérieur de la région délimitée par les barres d’erreurs dans le graphe \((x, \ln(h(x)))\).

On construit ensuite un graphe représentant le taux d’amplification spatial calculé en fonction du nombre d’onde de la perturbation.

Ce graphe est représenté à la figure 4.37. Il fait clairement apparaître la dépendance du taux d’amplification en fonction du nombre d’onde de la perturbation : aux faibles nombres d’onde, l’amplification reste relativement faible puis croît et atteint un maximum pour un nombre d’onde de l’ordre de 1 rad/m. L’allure du graphe nous permet de supposer que le taux d’amplification est faible aux grands nombres d’onde. Un tel comportement est donc cohérent avec ce qu’ont observé Wilson et Khomami (figure 4.18).

Rappelons que, pour les fréquences 0,26 Hz et 1,26 Hz, nous avons vu que la perturbation initiale est de faible amplitude. On ne mesure donc que de faibles déviations d’interface, c’est la raison pour laquelle l’incertitude de mesure est relativement grande à ces deux fréquences de forçage.

4.2.8 Conclusion

Cette étude expérimentale a permis de montrer la nature convective de l’instabilité d’interface de l’écoulement de coextrusion bicouche polyéthylène/polystyrène apparaissant à faible débit
Fig. 4.35 – Ensemble des diagrammes $h(t)$ construits, en différents points distants de 1mm, à partir de la séquence présentée à la figure 4.32 (forçage périodique à $0.49 Hz$)

Fig. 4.36 – Illustration de la méthode utilisée pour estimer le taux d’amplification spatial du défaut : tracé du logarithme de l’amplitude de la déviation de l’interface mesurée en pixels fonction de la position dans la filière du point de mesure, fréquence imposée 0,49 hz, pente de la courbe 0,1544/mm.
Fig. 4.37 – Taux d’amplification spatial calculé fonction du nombre d’onde de la perturbation de polystyrène.

Lorsque l’écoulement est “spontanément” instable il apparaît un défaut dont la périodicité spatiale peut être estimée sur l’extrudat. L’observation de l’écoulement à travers les parois transparentes de la filière montre que le défaut naît de perturbations infinitésimales intrinsèques au système et croît en même temps qu’il est advecté dans la direction aval de l’écoulement. Nous avons montré que la périodicité du défaut n’est pas mesurable dans l’écoulement car il n’a pas une forme bidimensionnelle.

Les configurations stables observées loin de la transition semblent insensibles aux perturbations. On peut conclure que ces configurations éliminent les perturbations amont. De telles configurations seront donc stables sans qu’on ait recours à des dispositifs filtrants.

L’étude expérimentale menée sur une configuration proche de la transition stable/instable prouve qu’il est possible de générer un défaut bidimensionnel dans l’écoulement. Ce défaut croît en espace de manière exponentielle. Nous avons montré que le taux d’amplification spatial est fortement dépendant du nombre d’onde de la perturbation imposée.

On conclut que l’instabilité observée présente un caractère structurel : c’est-à-dire qu’une perturbation, aussi petite qu’elle soit, peut être transportée et amplifiée par le système. L’écoulement dans la filière peut être considéré comme un filtre “passe-bande” du bruit introduit en entrée.

4.3 Conclusions

Nous avons montré expérimentalement que l’instabilité est de nature convective : dans des conditions d’écoulement réputées instables (au sens asymptotique du terme) une perturbation

périodique de faible amplitude, invisible au point de rencontre des flux, se développe le long de la filière pour atteindre dans certains cas une amplitude considérable à son extrémité.

4.3.1 Influence de la longueur de la filière

Les défauts sont issus d’une croissance exponentielle en espace de perturbations infinimentimales intrinsèques au procédé. Ce phénomène peut être interprété comme la combinaison d’une croissance propre du défaut dans le temps combinée à son temps de séjour dans l’écoulement.

Il est difficile de mettre en évidence les différents facteurs responsables de la croissance propre du défaut. En revanche, il est clair qu’une situation instable peut n’engendrer aucun défaut observable si la longueur de la filière est telle que le défaut n’ait pas le temps de se développer.

Il devient alors évident que la longueur de la filière joue un rôle fondamental dans l’aspect de l’extrudat recueilli en configurations instables.

On peut supposer en outre qu’une augmentation du débit total des produits réduirait le temps de séjour des défauts en développement. Il faudrait cependant vérifier qu’une telle manoeuvre n’améliorerait pas la croissance propre du défaut.

4.3.2 Sélection d’un nombre d’onde

Nous avons montré que dans un grand nombre de configurations instables apparaissant à faible débit de polystyrène il est possible de déterminer une périodicité spatiale du défaut sur l’échantillon.

L’étude d’une perturbation contrôlée nous a montré que le taux d’amplification spatial des perturbations dépend significativement de leur nombre d’onde. Ce taux d’amplification spatial peut présenter un maximum, il semble alors naturel que l’instabilité, près de la transition, se traduise par la sélection du nombre d’onde associé au taux d’amplification maximum dans le spectre des perturbations “aléatoires” du système.

La périodicité spatiale du défaut observée sur l’extrudat résulterait donc davantage des propriétés intrinsèques de l’écoulement que de la nature du “bruit” amont.

Lorsque le rapport \(Q_{PE}/Q_{PS}\) augmente nous avons observé, en particulier au cours de l’étude expérimentale en filière porte-manteau, que d’autres “vagues” se superposaient au défaut initial. Une explication serait que les perturbations sont amplifiées sur une plus large bande passante. Cette hypothèse reste cependant à vérifier.

4.3.3 Reculer les limites du procédé

A la lumière des résultats obtenus nous pouvons dégager une règle simple en vue de l’optimisation du procédé de coextrusion : la longueur de la filière exacerbe les défauts d’interface.

L’étude de stabilité asymptotique menée repose sur une modélisation très simple du défaut. Cette étude ne prend pas en compte la totalité du spectre des perturbations du système ni leur temps de séjour dans l’écoulement et ne révèle pas la possibilité, pour les défauts, de se développer.

On ressent donc le besoin d’une modélisation plus pertinente de l’instabilité des écoulements de coextrusion dans le but de reculer les limites du procédé. On présente dans le chapitre suivant une nouvelle approche dans la modélisation de l’instabilité.
Chapitre 5

Simulation directe de l’écoulement bicouche de fluides de Maxwell.
5.1 Objectif

Le but de cette étude est de montrer par le calcul numérique que l’écoulement de Poiseuille bicouche de deux fluides viscoélastiques peut devenir convectivement instable. Nous avons donc mis en oeuvre une simulation temporelle par éléments finis de l’évolution de l’interface entre les deux fluides afin d’analyser la réponse à une petite perturbation de débit imposée à l’entrée de la filetère.

Le calcul numérique par éléments finis des écoulements de fluides viscoélastiques suivant une loi de comportement différentielle (Maxwell ou Oldroyd-B par exemple) est un problème réputé difficile qui a donné lieu à une abondante littérature depuis les années 80. Le système d’équation obtenu couvre des termes elliptiques (du type Stokes) avec des termes hyperboliques (terme de transport intervenant dans l’équation de la loi de comportement). Malgré les progrès effectués dans ce domaine, cette résolution numérique reste délicate car très sensible aux singularités géométriques et la convergence de la solution avec le maillage n’est pas toujours obtenue. Les cas de singularité du type stick-slip, coin rentrant ou gonflément en sortie de filetère ont par exemple été largement étudiés. Nous ajoutons à cette difficulté connue pour un écoulement monomatière celle d’étudier l’évolution dynamique de l’interface.

Les calculs effectués ont donc pour vocation de montrer que selon les paramètres rhéologiques des deux fluides une perturbation de débit imposée à l’entrée du capillaire peut rapidement disparaître ou au contraire générer une importante perturbation sous la forme d’un paquet d’onde. Ces calculs sont effectués pour des fluides viscoélastiques suivant une loi de comportement différentielle de Maxwell.

L’état actuel des performances des méthodes numériques utilisées ne permet pas de dresser des cartes des zones stable/instable dans le plan des débits de chaque fluide pour des lois de comportement du type White-Metzner (qui rendent bien compte du comportement des produits utilisés dans l’étude expérimentale).

La condition imposée à la sortie de la filetère est aussi délicate. Puisque nous étudions la croissance d’une instabilité d’interface dans la filetère nous ne pouvons pas imposer le champ de vitesse. Nous ne pouvons pas non plus imposer une condition du type surface libre puisque celle-ci correspond à une forte singularité géométrique qui compromet fortement la qualité de la solution. Nous avons donc opté pour une transition douce vers un écoulement “bouchon” dans la partie terminale de la filetère. Cette condition non physique a le mérite d’autoriser des variations d’interface arbitraires en sortie de filetère. Elle permet donc d’étudier la croissance de l’instabilité dans la zone de non glissement (environ 80% de la filetère).

Le code du calcul par éléments finis utilisé a été développé par A. Fortin [18] et il a été adapté à l’étude d’écoulements multifluides par P. Laure [32].

5.2 Formulation du problème

On étudie le problème bidimensionnel de l’écoulement isotherme entre deux plaques parallèles de deux fluides de Maxwell supposées non miscibles et incompressibles.

On note d la distance entre les deux plaques et \(L \times d \) la longueur de l’écoulement (\(L \) est donc le rapport d’aspect). Les débits volumiques unitaires de largeur imposés des deux fluides sont notés \(Q_1 \) et \(Q_2 \) et le débit total est noté \(Q = Q_1 + Q_2 \). On choisit pour l’adimensionnement des équations les grandeurs caractéristiques suivantes : la distance \(d \), le temps \(d^2 / Q \) et la contrainte \(\eta_i Q / d^2 \), où \(\eta_i \) est la viscosité du fluide \(i \).
Les équations du problème admettent comme paramètres sans dimensions le rapport des viscosités m, le rapport des débits q et les nombres de Reynolds Re_i et de Weissenberg We_i dans chaque couche. Ces paramètres sont définis par (on note λ_i et ρ_i le temps de relaxation et la densité du fluide i):

$$m = \eta_2/\eta_1 ; q = Q_2/Q_1 ; Re_i = \rho_i Q/\eta_1 ; We_i = \lambda_i Q/d^2$$

5.2.1 Équations de conservation

La figure 5.1 montre un schéma reproduisant la géométrie de l’écoulement modélisé dans le domaine $\Omega = [0,L] \times [0,1]$.

![Schéma de la géométrie de l’écoulement](image)

Fig. 5.1 – Schema de la géométrie de l’écoulement : l’écoulement de Poiseuille bicouche est imposé en entrée, entre L_S et L on impose une condition de glissement et en sortie on impose une condition de surface libre.

On note Ω_i le domaine occupé par le fluide i et h la hauteur d’interface. La relation de comportement de Maxwell s’écrit dans chaque domaine Ω_i, avec u le champ de vitesse et $\dot{\varepsilon}$ le tenseur des taux de déformation :

$$\begin{align*}
\begin{cases}
\sigma_i &= -p_i I + \tau_i \\
\tau_i + We_i (\partial_t \tau_i + u_i \nabla \tau_i - \nabla u_i \tau_i - \tau_i^T \nabla u_i) &= 2m_i \dot{\varepsilon}_i
\end{cases}
\end{align*}$$

où $m_1 = 1$ et $m_2 = m$. On néglige les effets de masse et la tension de surface. La relation fondamentale de la dynamique et l’incompressibilité s’écrivent pour chaque fluide i :

$$\begin{align*}
\begin{cases}
\nabla \cdot \tau_i &= Re_i (\partial_t u_i + \nabla u_i u_i) + \nabla p_i \\
\nabla \cdot u_i &= 0
\end{cases}
\end{align*}$$

On prend en compte l’équation d’équilibre de l’interface en exprimant la relation fondamentale de la dynamique dans tout le domaine Ω car on suppose la continuité du tenseur des contraintes en l’absence de tension superficielle.

L’interface entre les deux fluides est identifiée à l’aide d’une fonction caractéristique s définie par $s = 1$ dans Ω_1 et $s = 0$ dans Ω_2. Cette fonction, aussi appelée fonction de pseudo-concentration, exprime la non-miscibilité des deux fluides et vérifie l’équation de transport :

$$\partial_t s + u_i . \nabla s = 0$$
5.2.2 Traitement des conditions aux limites

La frontière \(\partial \Omega \) du domaine \(\Omega \) est représentée à la figure 5.1. \(\partial \Omega \) est partitionnée en deux régions où l’on impose respectivement un champ de vitesse et une condition de surface libre.

En entrée de canal on impose le champ de vitesse de l’écoulement de Poiseuille bicouche noté \(\mathbf{u}_P = (u_P(y), 0) \).

Le tenseur des extracontraintes \(\mathbf{\tau} \) et la fonction de pseudo-concentration \(s \) obéissent chacun à une équation de transport qui requiert une condition aux limites exprimée en entrée de canal.

Les valeurs imposées en \((x = 0, y) \) correspondent à l’écoulement de Poiseuille :

\[
s(t, 0, y) = H(h_P - y) ; \quad \mathbf{\tau}(t, 0, y) = \mathbf{\tau}_P(0, y)
\]

où \(H \) est la fonction de Heaviside.

On impose à l’écoulement des conditions aux limites de type glissement en sortie de canal : au delà d'une longueur d'écoulement \(L_S \) le polymère glisse sur les parois et sa vitesse de glissement est progressivement amenée à 1 (vitesse moyenne de l'écoulement) en sortie de canal.

La transition entre un contact collant à la paroi et un glissement en sortie de canal est obtenue en imposant entre \(x = L_S \) et \(x = L \) une condition aux bords de la forme \(\mathbf{u} = (u_S(x), 0) \) avec :

\[
u_S(L_S) = 0 ; \quad u_S(L) = 1 ; \quad \frac{d u_S}{d x}(L_S) = \frac{d u_S}{d x}(L) = 0
\]

où \(u_S(x) \) est de la forme \(u_S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \).

5.3 Stratégie numérique

Nous utilisons la méthode DEVSS (Discrete Elastic Viscous Stress Splitting) proposée par Guénette et Fortin [18, 12] pour stabiliser la discrétisation des différentes variables. On utilise pour la vitesse et la pression les éléments \(Q^2_0 - P_1 \) (continus et du second ordre en vitesse) qui donnent de bons résultats pour le problème de Stokes. Une formulation du type Galerkin discontinue (ou Lesaint-Raviart) \(Q_1^4 \) est utilisée pour les composantes du tenseur des contraintes \(\mathbf{\tau} \) et la fonction de pseudo-concentration \(s \). Cette discrétisation permet une résolution locale (élément par élément) de l'équation discrète de comportement. Un préconditionnement du type Jacobi par blocs est utilisé comme décrit dans [14].

Les calculs sont effectués sur un maillage régulier de 2000 éléments quadrilatéraux obtenus par une discrétisation en \(x \) et en \(y \) de pas \(\Delta x = 0.025 \) et \(\Delta y = 0.05 \). Un autre maillage correspondant à \(\Delta x = 0.033 \) et \(\Delta y = 0.025 \) a été utilisé pour vérifier la précision des résultats obtenus. Un schéma implicite de Gear à deux pas de temps (two-step backward scheme) inconditionnellement stable et de précision en \(\Delta t^2 \) est utilisé pour la dérivée en temps. Ce schéma est connu pour donner une bonne précision en temps (voir [13]).

5.4 Génération de paquets d’ondes

Les distances \(L_S \) et \(L \) sont respectivement fixées à 8 et 10. On étudie l’écoulement de deux fluides de Maxwell de rapport de viscosités \(m = 0, 1 \) pour un rapport de débits \(q = 9 \). Les niveaux d’élasticité des deux fluides sont déterminés par leur nombre de Weissenberg \(\text{We}_1 \) et \(\text{We}_2 \).
La première étape de l’étude consiste à calculer l’écoulement stationnaire. Pour les distances à l’entrée inférieures à L_S on obtient l’écoulement de Poiseuille bicouche et l’interface est plane. Entre les distances L_S et L le champ de vitesse devient progressivement homogène dans la hauteur du canal et le rapport des hauteurs des couches est égal au rapport des débits (figure 5.1).

La hauteur de l’interface de l’écoulement stationnaire vaut $\bar{h} = 0, 346$ et sa vitesse, $0, 515$. Une particule située à l’interface met un temps de trajet $t_0 = 4, 12$ pour passer de $x = 0$ à $x = L_S$.

Le tableau 5.1 résume les différentes caractéristiques de l’écoulement de base.

<table>
<thead>
<tr>
<th>$m = \eta_2/\eta_1$</th>
<th>$q = Q_2/Q_1$</th>
<th>\bar{h}</th>
<th>$V(\bar{h})$</th>
<th>t_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>9</td>
<td>0,346</td>
<td>0,515</td>
<td>4,12</td>
</tr>
</tbody>
</table>

Tab. 5.1 – Caractéristiques de l’écoulement de base, \bar{h} est la hauteur d’interface, $V(\bar{h})$ sa vitesse, t_0 vaut $V(\bar{h}) \times L_S$

La solution stationnaire est introduite comme condition initiale dans le calcul instationnaire. Au temps $t = 0$ on impose une perturbation à l’écoulement sous la forme d’un saut instantané de débit du fluide 1 d’une valeur de 10%. Pour $t > 0$ le débit du fluide 1 est imposé à sa valeur initiale.

Laure et al. [32] ont montré, avec ce même code de calcul utilisé pour deux fluides newtoniens, que la perturbation introduite entraîne derrière elle un défaut qui se développe sous la forme d’un paquet d’ondes dans les configurations instables. Ce paquet d’ondes est un ensemble de “vagues” dont on peut déterminer une fréquence et un nombre d’onde. L’enveloppe du paquet d’onde est finie en espace, présente un maximum et possède une vitesse d’avancement et une vitesse de disparition. Le maximum de l’enveloppe du paquet d’onde est transporté en aval de l’écoulement à une vitesse appelée vitesse de groupe et grandit au cours du temps. Après un temps fini, le paquet d’ondes est évacué du canal et l’écoulement retourne à son état initial. Ce comportement est caractéristique de la nature convective de l’instabilité [23].

La figure 5.2 présente l’évolution de la forme de l’interface après introduction de la perturbation dans le cas où $W_{e1} = W_{e2} = 0$, $m = 0$, $q = 9$, $L_S = 8$ et $L = 10$ pour différents nombres de Reynolds (égaux pour chaque fluide).

Laure et al. montrent que, dans cette configuration et pour $Re_1 = Re_2 = 0$, la perturbation est uniquement transportée dans l’écoulement sans être amplifiée et on n’observe pas de déviation significative de l’interface (figure 5.2a). On mesure la déviation maximale de l’interface δ_x en $x = L_S$ par la formule $\delta_x = \max_t(\|h(L_S,t) - h_0\|)$ où h_0 est la hauteur d’interface de l’écoulement stationnaire. Dans cette configuration δ_x vaut 0, 006.

Pour un nombre de Reynolds égal à 10 la perturbation est amplifiée et un paquet d’ondes s’étend en espace (figure 5.2b). Un calcul de transformée de Fourier par FFT donne la fréquence et le nombre d’onde de la perturbation qui valent respectivement 3, 95 et 6, 28. On note que la vitesse d’avancement de la perturbation est telle que l’interface est déviée en $x = L_S$ après un temps $t_A = 7$, c’est-à-dire que la vitesse de la perturbation est plus faible $V(\bar{h})$ (vitesse interfaciale de l’écoulement de base). La disparition du paquet d’ondes est effective après un temps très grand. Dans cette configuration la déviation maximale de l’interface δ_x vaut 0, 052.

La figure 5.3 montre l’évolution de la déviation d’interface en $x = L_S$ en fonction du temps t calculée pour $Re = 10$ et $Re = 1$.

Pour $Re = 10$ on retrouve sur la figure 5.3a le temps $t_A = 7$ mis par la perturbation pour
atteindre le point \(x = L_S \). Après la disparition d’un transitoire le paquet d’ondes passe puis disparaît après un temps \(t_D \simeq 55 \). Dans le cas où \(Re = 1 \) (figure 5.3b) le temps \(t_A \) n’est pas modifié mais la déviation maximale de l’interface est beaucoup plus faible \((\delta_x = 0,020) \) et le paquet d’ondes disparaît après un temps plus court \((t_D \simeq 37) \). La fréquence du défaut diminue \((2,78) \) ainsi que son nombre d’onde \((4,69) \).

L’étude de stabilité asymptotique donne ces deux configurations instables mais ne nous renseigne pas sur la déviation maximale de l’interface en sortie de canal. Cette étude met donc clairement en évidence les limites d’une étude de stabilité ne prenant pas en compte les dimensions finies de la filière. On résume au tableau 5.2 les résultats obtenus pour chaque configuration.

<table>
<thead>
<tr>
<th>(Re_1 = Re_2)</th>
<th>nombre d’onde</th>
<th>pulsation</th>
<th>(\delta_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6,28</td>
<td>3,95</td>
<td>0,052</td>
</tr>
<tr>
<td>1,0</td>
<td>4,69</td>
<td>2,78</td>
<td>0,020</td>
</tr>
<tr>
<td>0,0</td>
<td>nc</td>
<td>nc</td>
<td>0,006</td>
</tr>
</tbody>
</table>

Tab. 5.2 – Analyse de Fourier du défaut et déviation maximale d’interface en sortie de canal pour différentes valeurs de \(Re_1 = Re_2 \) dans le cas de deux fluides newtoniens ; le symbole \(nc \) indique que le défaut est d’amplitude trop faible pour pouvoir estimer sa fréquence et son nombre d’onde.

5.5 Effets de la viscoélasticité

Dans le cas d’un écoulement de coextrusion le nombre de Reynolds est très faible \((<10^{-6}) \). On peut alors négliger les effets d’inertie dans le calcul, c’est-à-dire poser \(Re = 0 \), et n’étudier que
l’influence des nombres de Weissenberg $W e_1$ et $W e_2$ sur l’instabilité.
L’étude de stabilité asymptotique prévoit que l’écoulement déterminé par $m = 0,1$, $q = 9$ et $Re = 0$ est instable dès que le rapport des nombres de Weissenberg $W e_2/W e_1$ est inférieur à 0,84. Nous avons étudié l’influence du couple de valeurs de $W e_1$ et $W e_2$ sur la stabilité de cet écoulement et les résultats montrent encore que l’elasticité y joue un rôle majeur. On résume dans les paragraphes suivants les différents effets auxquels contribue la viscoélasticité.

5.5.1 Effet destabilisant de la viscoélasticité

La figure 5.4a montre l’évolution de la déviation d’interface en $x = L_S$ en fonction du temps t calculée pour $W e_1 = 0,5$ et $W e_2 = 0$. La perturbation met un temps $t_A = 7$ pour atteindre le point $x = L_S$ et un paquet d’ondes est généré. La déviation maximale de l’interface atteint $\delta_x = 0,056$. On précise que la saturation non-linéaire du paquet d’ondes intervient dès l’abscisse $x = 2,5$. Le temps de disparition du paquet d’ondes est très grand ($t_D > 140$). La déviation maximale est comparable à celle obtenue dans le cas d’un nombre de Reynolds très grand ($Re = 10$). On note en outre que le temps de disparition du paquet d’ondes dépasse largement celui du cas newtonien où $Re = 10$, l’instabilité engendrée par les effets viscoélastiques est alors plus “sèvre”.

La figure 5.4b montre l’évolution de la déviation d’interface en $x = L_S$ en fonction du temps t calculée pour $W e_1 = 0,1$ et $W e_2 = 0$. Selon le critère de stabilité asymptotique cette configuration est donnée instable au même titre que la précédente puisque le rapport $W e_2/W e_1$ est le même. Il apparaît ici aussi un paquet d’ondes derrière la perturbation qui met le même temps $t_A = 7$ pour atteindre le point $x = L_S$ mais la déviation maximale de l’interface ne vaut plus que $\delta_x = 0,015$ et le temps de disparition du paquet d’ondes est nettement inférieur ($t_D \approx 40$).

5.5.2 Effet de la stratification d’élasticité

En fixant le niveau d’élasticité de la couche 1 à $W e_1 = 0,5$ et en faisant varier $W e_2$ on étudie l’influence de la stratification d’élasticité sur la stabilité de l’écoulement. Le tableau 5.3 présente, pour les différentes valeurs de $W e_2$ étudiées, le fréquence et le nombre d’onde de la perturbation ainsi que δ_x, déviation maximale de l’interface en $x = L_S$.

<table>
<thead>
<tr>
<th>$W e_1$</th>
<th>$W e_2$</th>
<th>$W e_2/W e_1$</th>
<th>nombre d’onde</th>
<th>pulsation</th>
<th>δ_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>0,0</td>
<td>0,0</td>
<td>4,69</td>
<td>2,33</td>
<td>0,056</td>
</tr>
<tr>
<td>0,5</td>
<td>0,1</td>
<td>0,2</td>
<td>3,93</td>
<td>2,03</td>
<td>0,048</td>
</tr>
<tr>
<td>0,5</td>
<td>0,2</td>
<td>0,4</td>
<td>2,35</td>
<td>1,42</td>
<td>0,029</td>
</tr>
<tr>
<td>0,5</td>
<td>0,3</td>
<td>0,6</td>
<td>2,35</td>
<td>1,19</td>
<td>0,016</td>
</tr>
<tr>
<td>0,5</td>
<td>0,4</td>
<td>0,8</td>
<td>nc</td>
<td>nc</td>
<td>0,014</td>
</tr>
<tr>
<td>0,5</td>
<td>0,5</td>
<td>1,0</td>
<td>nc</td>
<td>nc</td>
<td>0,013</td>
</tr>
</tbody>
</table>

Tab. 5.3 - Analyse de Fourier du défect et déviation maximale d’interface en sortie de canal pour différentes valeurs de $W e_1$ and $W e_2$ dans le cas de deux fluides de Maxwell ; le symbole nc indique que le défect est d’amplitude trop faible pour pouvoir estimer sa fréquence et son nombre d’onde

On précise que la saturation non-linéaire du paquet d’ondes intervient dès les abscisses $x = 2,5$ et $x = 5,3$ pour, respectivement, les rapports $W e_2/W e_1 = 0,0$ et $W e_2/W e_1 = 0,2$. Dans les configura-
tions instables on observe que lorsque le rapport \(W_e_2/W_e_1 \) augmente la déviation maximale de l’interface en sortie de canal, la fréquence et le nombre d’onde du défaut diminuent. La figure 5.5 montre sur des diagrammes \(h(x) \) fonction du temps \(t \) l’influence de la stratification d’élasticité. Lorsque le rapport \(W_e_2/W_e_1 \) atteint 0,6 la perturbation génère un paquet d’ondes très étroit (figure 5.5c) dont on ne peut plus calculer la fréquence et le nombre d’onde (configurations marquées \(nc \)). La déviation maximale de l’interface devient alors relativement faible.

5.5.3 Effet stabilisant de la viscoélasticité

Lorsque le rapport \(W_e_2/W_e_1 \) croît encore un paquet d’ondes est encore généré mais il ne s’étend plus en espace et son amplitude ne grandit pas. La déviation d’interface en sortie de canal reste alors faible (<0,014).

Lorsque le rapport \(W_e_2/W_e_1 \) est relativement grand la valeur de la déviation d’interface reste de l’ordre de la valeur mesurée pour le cas où \(W_e_1 = W_e_2 = Re = 0 \). La figure 5.5d montre un exemple d’une telle configuration où \(W_e_1 = 0,5 \) et \(W_e_2 = 0,4 \) : la déviation d’interface vaut \(\delta_x = 0,008 \).

5.6 Conclusion

Nous avons montré qu’une transition stable/instable prévue par l’étude de stabilité asymptotique peut être retrouvée par simulation directe de l’écoulement.

Les calculs montrent que l’instabilité est de nature convective : la perturbation entraîne un paquet d’ondes qui croît et se propage de telle sorte que l’écoulement retourne à son état initial après un temps fini. L’écoulement est donc convectivement instable mais absolument stable. Le temps de séjour du paquet d’ondes est très grand devant le temps de séjour d’une particule située à l’interface.

Nous avons alors montré que la stratification d’élasticité a un effet majeur sur la déviation d’interface observée en sortie de canal. Cette étude met donc en évidence les limites d’une étude de stabilité temporelle qui ne prend pas en compte la dimension finie de la longueur de l’écoulement.

Il convient donc de mener une étude de stabilité “convective” pour être capable de prédire avec plus de pertinence les limites du procédé de coextrusion. Dans la suite nous présentons la méthode utilisée pour y parvenir.
Fig. 5.3 – Evolution de la déviation d’interface en fin de filière pour deux fluides newtoniens où $m = \frac{\eta_2}{\eta_1} = 0,1$ et $q = Q_2/Q_1 = 9$: (a) $Re = 10$; (b) $Re = 1$
FIG. 5.4 – Evolution de la déviation d’interface en fin de filière pour deux fluides de Maxwell où \(m = \eta_2/\eta_1 = 0,1 \), \(q = Q_2/Q_1 = 9 \) et \(Re = 0 \) : (a) \(We_1 = 0,5, We_2 = 0,0 \); (b) \(We_1 = 0,1, We_2 = 0,0 \)
Fig. 5.5 - Effet de la stratification d’élasticité sur l’évolution de la forme de l’interface pour deux fluides de Maxwell où $m = \eta_2/\eta_1 = 0,1$, $q = Q_2/Q_1 = 9$ et $Re = 0$: (a) $We_1 = 0,5$, $We_2 = 0,0$; (b) $We_1 = 0,5$, $We_2 = 0,1$; (c) $We_1 = 0,5$, $We_2 = 0,3$; (d) $We_1 = 0,4$, $We_2 = 0,5$
5. Simulation directe de l'écoulement bicouche de fluides de Maxwell.
Chapitre 6

Modélisation de l’instabilité convective.
6.1 L’étude de la stabilité spatiale

6.1.1 Principe de l’étude

Jusqu’à présent nous avons étudié le problème de stabilité sous la forme temporelle, c’est-à-dire que nous avons cherché des modes propres en $e^{i(kx-\omega t)}$, avec k réel et étudié le signe de la partie imaginaire de ω. Cela signifie que l’on étudie le devenir de perturbations de forme homogène en espace : à la relation de dispersion $D(k, \omega) = 0$ nous avons associé des solutions en modes propres au problème $D[i \partial_t - i \partial_x] \tilde{\Psi} e^{i(kx-\omega t)} = 0$, où $\tilde{\Psi}$ représente l’ensemble des inconnues du problème (voir chapitre 3.1.3). Ces solutions sont obtenues sans tenir compte des conditions initiales du problème : elles n’ont ni début ni fin.

Nous avons pourtant montré expérimentalement et par simulation directe que l’instabilité de l’écoulement est de nature convective, c’est-à-dire que les perturbations se développent en espace depuis le point de rencontre des flux et non en temps. Il faudrait donc prendre en compte le fait que ce problème est un problème aux conditions initiales.

En théorie (Huerre et Monkewitz [23]) il faut étudier la réponse impulsionnelle (ou fonction de Green $G(x, t)$) qui correspond à la réponse du système à une perturbation localisée en $x = 0$ et $t = 0$:

$$D[i \partial_t - i \partial_x] G(x, t) = \delta(t) \delta(x)$$

Plus généralement, on peut étudier la réponse $S(x, t)$ du système sous l’effet d’un terme source des perturbations extérieures $P(x, t)$ quelconque :

$$D[i \partial_t - i \partial_x] S(x, t) = P(x, t) ,$$

et on pourra décomposer le terme source $P(x, t)$ à l’aide d’un double produit de convolution :

$$P(x, t) = \int \int P(x - \xi, t - \tau) \delta(\tau) \delta(\xi) d\tau d\xi ,$$

et la réponse finale est reconstruite par sommation des réponses impulsionnelles.

Lorsque le système est linéairement instable, c’est-à-dire qu’il existe des racines ω de partie imaginaire positive, on détermine la nature convective ou absolue de l’instabilité en étudiant la croissance temporelle de la réponse impulsionnelle au point d’application de la perturbation $x = 0$:

- si elle tend vers zéro (c’est-à-dire si $\lim_{t \to +\infty} G(0, t) = 0$), l’écoulement sera alors convectivement instable,
- si elle croît, l’écoulement sera absolument instable.

Un telle approche appliquée à l’écoulement de Poiseuille multicoche de fluides viscoélastiques n’entre pas dans le cadre de notre étude. Nous avons en revanche montré, par simulation directe, plusieurs exemples de configurations où se développent un paquet d’ondes convectivement instable.

Nous avons en outre mis en évidence expérimentalement la nature convective de l’instabilité et mesuré le taux d’amplification d’ondes spatialement amplifiées lorsque le système est soumis à un forçage périodique. Nous pouvons alors tenter de mener une étude spatiale de la stabilité, c’est-à-dire étudier la réponse du système lorsqu’il est soumis à un forçage périodique en entrée.

En supposant que la partie transitoire du forçage est advectée vers l’aval et qu’on n’observe plus que le signal périodique forcé, cela revient à étudier les racines de la relation de dispersion
\(D(k, \omega) = 0\) où \(k\) est complexe et \(\omega\) réel. Le taux d’amplification spatial sera alors donné par
\[-k_i = -Im(k)\].
Une telle étude a été menée par Brevo \textit{et al.} \cite{6} pour le cas de l’écoulement d’un fluide newtonien sur un plan incliné et Laure \textit{et al.} \cite{32} pour le cas de l’écoulement de Poiseuille bicouche de fluides newtoniens. L’étude temporelle est néanmoins techniquement plus simple à mettre en œuvre que le problème spatial car les équations sont posées sous la forme d’un problème d’évolution.
Les auteurs montrent qu’il est alors possible de relier, près de la transition stable/instable, le problème spatial au problème temporel en utilisant la relation de Gaster \cite{17}.

6.1.2 La relation de Gaster

On note \(k = k_r(T)\) et \(\omega = \omega_r(T) + i\omega_i(T)\) les solutions du problème temporel (où \(k_i = 0\)) et \(k = k_r(S) + ik_i(S)\) et \(\omega = \omega_r(S)\) les solutions du problème spatial (où \(\omega_i = 0\)). La relation de Gaster permet de montrer que, pour une perturbation de nombre \(k_r\) donné, il existe une relation entre les pulsations \(\omega_r(S)\) et \(\omega_r(T)\) d’une part et les taux d’amplification \(\omega_i(S)\) et \(-k_i(T)\) d’autre part.

On obtient ces relations de la manière suivante. Dans le cas général où \(k\) et \(\omega\) sont complexes et en supposant que \(\omega\) est une fonction analytique de \(k\), on peut appliquer la relation de Cauchy-

\[\frac{\partial \omega_r}{\partial k_i} = -\frac{\partial \omega_i}{\partial k_r}\] et
\[\frac{\partial \omega_r}{\partial k_r} = \frac{\partial \omega_i}{\partial k_i}\]

En intégrant la première équation entre \(k_i(T)\) (nul par définition) et \(k_i(S)\) le long du chemin où \(k_r\) est constant, on obtient :

\[\omega_r(S) - \omega_r(T) = -\int_{k_0}^{k_i(S)} \frac{\partial \omega_i}{\partial k_r} dk_i\]

Près de la transition stable/instable le taux d’amplification spatial \(-k_i\) est suffisamment petit et on suppose que le taux d’amplification temporel \(\partial \omega_r / \partial k_i\) varie peu avec le nombre d’onde \(k_r\). On peut alors conclure que \(\omega_r(S) - \omega_r(T) = 0\) c’est-à-dire que la pulsation associée au nombre d’onde \(k_r\) est la même dans les cas spatial et temporel.

En intégrant la seconde équation entre \(k_i(T)\) et \(k_i(S)\) le long du chemin où \(k_r\) est constant, on obtient (sachant que \(\omega_i(S) = 0\) par définition) :

\[\omega_i(T) = -\int_{k_0}^{k_i(S)} \frac{\partial \omega_r}{\partial k_r} dk_i\]

et à l’ordre dominant, on déduit que \(\omega_i(T) = -(\partial \omega_i / \partial k_r)k_i(S)\).

Finalement on est capable de relier le taux d’amplification spatial \(-k_i(S)\) aux taux d’amplification temporel \(\omega_i(T)\) de perturbations de nombre d’onde \(k_r\) grâce à la relation :

\[-k_i(S) = \frac{\omega_i(T)}{V_g}\]

où, pour un nombre d’onde \(k_r\) donné, \(V_g\) est la vitesse de groupe qui lui est associé (vitesse de propagation du paquet d’ondes \cite{35}). Tout se passe donc comme si les perturbations étaient absolument instables dans le référentiel se déplaçant à la vitesse de groupe.

Notons que la vitesse de groupe \(\partial \omega_i / \partial k_r\) est différente de la vitesse de phase \(V_g = \omega_r / k_r\) car le milieu est dispersif (c’est-à-dire que la relation entre \(\omega_r\) et \(k_r\) n’est pas linéaire). D’une manière simplifiée on peut considérer que la vitesse de groupe correspond à la vitesse de transport du
nombre d’onde alors que la vitesse de phase correspond à la vitesse de transport de la phase. En effet, si on considère la phase \(\phi = k_r x - \omega_r t \) d’une onde monochromatique, elle sera constante le long d’un rayon \(x/t = V_\phi \). En revanche, pour un paquet d’onde qui comporte une groupe d’ondes distribuées autour du nombre d’onde \(k_r^* \), on peut considérer ce nombre d’onde comme un nombre d’onde “local” \(k_r^* = \partial \phi/\partial x \) associé à une pulsation “locale” \(\omega_r^* = -\partial \phi/\partial t \). Et finalement on a :

\[
\frac{\partial k_r^*}{\partial t} + \frac{\partial \omega_r^*}{\partial x} = 0 ,
\]

et, puisque la pulsation \(\omega_r \) dépend du nombre d’onde \(k_r \), on obtient :

\[
\frac{\partial k_r^*}{\partial t} + V_g \frac{\partial k_r^*}{\partial x} = 0 ,
\]

qui peut s’interpréter comme une équation de conservation du nombre d’onde \(k_r^* \).

Dans la suite nous présentons les résultats obtenus par quelques auteurs dans une étude spatiale faisant intervenir la relation de Gaster, puis nous décrirons les différentes étapes du calcul de stabilité spatial utilisant cette relation. Nous montrons ensuite, à l’aide des résultats expérimentaux sur forçage périodique de l’écoulement et des résultats de simulation directe que cette méthode nous permet de rendre compte du comportement convectif de l’instabilité.

6.1.3 Bibliographie

Référence aux travaux de Ganpule et Khomami

Ganpule et Khomami [16] [15] ont développé une étude de stabilité utilisant la transformation de Gaster pour rendre compte des résultats expérimentaux de Wilson et Khomami [56]. Les auteurs ont utilisé différentes lois de comportement pour étudier la stabilité spatiale des configurations présentées par Wilson et Khomami. Ces lois de comportement sont :

- un modèle de type Oldroyd-B noté M-OLDB où la viscosité suit une loi de Carreau-Yasuda,
- un modèle de type Phan-Thien-Tanner noté MPTT où la viscosité et le temps de relaxation suivent une loi de Carreau-Yasuda,
- un modèle de Giesekus,
- un modèle de Giesekus à quatre modes.

Selon les auteurs, la comparaison à l’étude expérimentale donne un bon accord quantitatif lorsqu’ils utilisent un modèle MPTT ou Giesekus à quatre modes. Leur conclusion est basée sur le fait que les diagrammes expérimentaux et théoriques donnant le taux d’amplification spatial fonction du nombre d’onde de la perturbation coïncident raisonnablement. On montre, à la figure 6.1, les résultats obtenus par les auteurs.

La figure 6.1 montre que les modèles M-OLDB et Giesekus sont beaucoup plus loin de la réalité. Les auteurs indiquent que ces deux modèles ne permettent pas de rendre compte du comportement en cisaillement simple des produits, ce qui explique leur faiblesse à décrire le comportement spatial des perturbations. Ganpule et Khomami concluent leur publication en indiquant que si les modèles MPTT et Giesekus ne rendent pas plus précisément compte du comportement spatial des perturbations, c’est parce qu’ils ne décrivent probablement pas correctement le comportement rhéologique transitoire des produits. Notre opinion est que le modèle rhéologique doit d’abord rendre compte du comportement élongationnel des produits puisque dans l’étude aux ondes modérées, contrairement à l’étude asymptotique, on ne néglige plus les termes d’élongation.
Fig. 6.1 – Taux d’amplification spatial fonction du nombre d’onde pour les différentes lois utilisées par Ganpule et Khomami, comparaison aux résultats expérimentaux de Wilson et Khomami : x résultats expérimentaux, ——— M-OLDB, ——— Giesekus 4 modes, ——— MPTT, □ □ □ Giesekus, ε est le rapport de hauteur des couches [16]
La relation de Gaster dans le cas de fluides newtoniens

L'étude menée par Brevdo et al. [6] dans le cas de l'écoulement d'un fluide newtonien sur un plan incliné montre que la courbe \(k_i(k_r) \) obtenue grâce à la transformation de Gaster est confondue avec la courbe issue d'une étude de stabilité spatiale proprement dit, c'est-à-dire lorsque \(k \) est calculé en fixant la pulsation \(\omega_p \).

Laure et al. [32] ont étudié la stabilité de l'écoulement de Poiseuille bicouche de fluides newtoniens par simulation directe. En imposant un forçage périodique en entrée de canal, ils ont mis en évidence que l'instabilité se caractérise par une croissance spatiale des perturbations. Les auteurs ont alors montré que la transformation de Gaster permet de retrouver le taux d'amplification spatial \(-k_i\) et le nombre d'onde \(k_r \) des perturbations en fonction de la pulsation \(\omega_p \).

6.1.4 Le calcul de la stabilité temporelle à nombre d'onde fixé

La première étape de l'étude consiste à déterminer la stabilité temporelle de l'écoulement, c'est-à-dire chercher les racines de la relation de dispersion \(D(k, \omega) = 0 \) où \(k \) est réel et \(\omega \) complexe. Nous avons vu au chapitre 2 que cela revient à résoudre un problème aux valeurs propres généralisées de la forme :

\[
A \Psi = \omega(k, \text{Re}, \text{We}, ... \text{B} \Psi ,
\]

où \(\Psi \) est un vecteur représentant l'ensemble des inconnues du problème et \(A \) et \(B \) sont deux matrices carrées complexes. L'équation de divergence nulle de la vitesse entraine que la matrice \(B \) est singulière.

Nous étudions la stabilité linéaire de l'écoulement bicouche de fluides de White-Metzner. Le problème aux valeurs propres généralisées s'exprime dans chaque couche (en conservant les notations du chapitre 2) :

\[
(1 + ikW e\bar{\lambda}u)\sigma - 2W e\bar{\lambda}u' \tau - 2ik(W e\bar{\lambda}\bar{\sigma} + m\bar{\eta}u) = i\omega W e\bar{\lambda}\sigma
\]

\[
-2W e(\bar{\lambda} + \frac{\partial}{\partial \tau} u') Du + W e\bar{\lambda}\bar{\sigma} v - 2ikW e\frac{\partial}{\partial \tau} u' \bar{\sigma}v = i\omega W e\bar{\lambda}\tau
\]

\[
(1 + ikW e\bar{\lambda}u)\gamma - W e\bar{\lambda}u' \gamma - m(\bar{\eta} + \frac{\partial}{\partial \tau} u') Du
\]

\[-ik(W e\bar{\lambda}\bar{\sigma} + m(\bar{\eta} + \frac{\partial}{\partial \tau} u')) v + W e\bar{\lambda}\bar{\sigma} v = i\omega W e\bar{\lambda}\gamma
\]

ik\sigma + D\tau - ikRe\bar{\eta}u - Re\bar{\eta}' v - ikp = -i\omega Reu

ik\tau + D\gamma - ikRe\bar{\eta}v - Dp = -i\omega Rev

iku + Dv = 0

v(\bar{h}) - ik\bar{u}(\bar{h})h = -i\omega h

Les conditions de continuité à l'interface se traduisent par :
\[
\begin{align*}
\|\sigma\|_h & = 0 \\
\|u\|_h + h\|\sigma'\|_h & = 0 \\
\|\tau\|_h - ikh\|\sigma\|_h & = 0 \\
-\|\psi\|_h + \|\gamma\|_h & = k^2Sh
\end{align*}
\]

où \(S \) est la tension de surface que l’on suppose négligeable [33]. Les conditions aux limites du problème sont une vitesse \(u = (u, v) \) nulle aux bords.

Ces équations sont discrétisées à partir d’une méthode Tau-Chebyshev [7]. L’étude numérique consiste à rechercher la valeur propre \(\omega \) du problème de plus grande partie imaginaire. On suppose que cette valeur propre est donnée, pour \(k_r = 0 \), par la solution asymptotique \(\omega(0) = 0 \).

On “suitra” donc numériquement cette branche de solution en faisant croître le nombre d’onde \(k_r \). La méthode utilisée est l’algorithme de la puissance inverse, qui est repris de l’étude menée par Laure et al. [33] sur la stabilité linéaire d’écoulements multicouches de fluides d’Oldroyd-B. On présente le principe de cette méthode en annexe.

6.1.5 Exemple d’utilisation de la transformation de Gaster

Considérons l’écoulement étudié au chapitre 4.2.7 au voisinage de la transition stable/instable. Cette configuration est obtenue à 180°C pour \(Q_{PE} = 87,4 \text{ g/min} \) et \(Q_{PS} = 7,4 \text{ g/min} \) et un entrefiler de 2mm. Nous avons montré que cette configuration est légèrement instable : en l’absence de perturbation de débit imposé l’extrudat est régulier mais un forçage périodique génère un train d’ondes d’amplitude croissant spatialement.

Nous allons montrer les différentes étapes de calcul qui nous permettent, en partant des résultats de l’analyse de stabilité temporelle, de déterminer un taux d’amplification spatial des perturbations grâce à la transformation de Gaster.

- On suit, pour chaque valeur du nombre d’onde \(k = k_r \), la branche \(\omega(k) = \omega_r + ik_r \) partie de la solution asymptotique \(\omega(0) = 0 \). Cette branche de solution de la relation de dispersion est celle qui donne la stabilité de l’écoulement puisqu’elle correspond à la solution \(\omega(k) \) de plus grande partie imaginaire. On obtient donc la pulsation \(\omega_r \) et le taux d’amplification spatial \(\omega_i \) en fonction du nombre d’onde \(k_r \).

La figure 6.2 montre la courbe représentant la fréquence \(\omega_r/2\pi \) de la perturbation en fonction du nombre d’onde \(k_r \). Dans le cas général la fréquence croît de façon quasi linéaire avec le nombre d’onde.

La figure 6.3 montre la courbe représentant le taux d’amplification temporel \(\omega_i \) de la perturbation en fonction du nombre d’onde \(k_r \). C’est ce taux d’amplification temporel qui est responsable de la stabilité de l’écoulement. Cette configuration est asymptotiquement instable et le taux d’amplification temporel présente un maximum positif pour un nombre d’onde modéré. Ce graphe est représentatif du comportement général des configurations étudiées en coextrusion : dans le cas général, lorsque l’écoulement est instable, la courbe \(\omega_i(k_r) \) présente un maximum et l’écoulement se stabilise aux grands nombres d’ondes. Si l’on inclut la tension superficielle \(\omega_i \) décroit plus vite aux très grands nombres d’onde.

Il existe néanmoins d’autres configurations qui ne se déstabilisent qu’aux ondes modérées (elles sont alors asymptotiquement stables). Nous n’avons calculé que trois configurations instables présentant deux maxima positifs, elles font partie des configurations étudiées en filière portemanteau à 200°C.

- On calcule la vitesse de phase \(\omega_r/k_r \) de la perturbation en fonction de son nombre d’onde. Les résultats présentés à la figure 6.4 montrent qu’elle est de l’ordre de la vitesse de l’interface.
Fig. 6.2 – Fréquence de la perturbation fonction de son nombre d’onde pour la configuration étudiée expérimentalement au chapitre 4.2.7 où l’on impose un forçage périodique à l’écoulement.

Fig. 6.3 – Taux d’amplification temporel fonction du nombre d’onde de la perturbation pour la configuration étudiée expérimentalement au chapitre 4.2.7 où l’on impose un forçage périodique à l’écoulement.
(8.27 mm/s dans ce cas). Tous nos calculs ont montré que la vitesse de phase varie peu tant que le nombre d’onde est inférieur à \(1/e\) où \(e\) est l’entrelacement de la filière \((e=1 \text{ mm dans ce cas})\). Au delà de cette valeur la vitesse de phase diminue ou augmente selon la configuration étudiée mais reste du même ordre de grandeur.

\[\text{Fig. 6.4 – Vitesse de phase de la perturbation fonction de son nombre d’onde pour la configuration étudiée expérimentalement au chapitre 4.2.7 où l’on impose un forçage périodique à l’écoulement}\]

- La vitesse de groupe \(V_g = \partial \omega / \partial k_r\) est calculée comme fonction du nombre d’onde \(k_r\) de la perturbation par dérivation numérique. Les résultats sont représentés à la figure 6.5. Tous nos calculs ont montré que la vitesse de groupe est positive, c’est-à-dire que les perturbations sont transportées en aval de l’écoulement, et qu’elle est de l’ordre de grandeur de la vitesse d’interface.

- On calcule le taux d’amplification spatial \(-k_i\) fonction du nombre d’onde de la perturbation grâce à la formule de Gaster \(-k_i = \omega_i / V_g\). Les résultats sont présentés à la figure 6.6. Bien que le taux d’amplification temporel soit responsable de la stabilité de l’écoulement, c’est le taux d’amplification spatial qui nous renseigne sur l’importance du défaut en géométrie de longueur finie. Remarquons que dans ce cas on peut obtenir une estimation du taux d’amplification spatial en remplaçant la vitesse de groupe par la vitesse d’interface.

6.1.6 Validation de l’approche de Gaster : confrontation aux résultats expérimentaux

Dans le but de valider l’approche de Gaster, il convient de comparer les résultats expérimentaux obtenus par forçage périodique de l’écoulement aux résultats théoriques présentés précédemment. Nous montrons dans la suite que nos résultats donnant le taux d’amplification spatial fonction du nombre d’onde de la perturbation sont en accord avec nos résultats expérimentaux.
Fig. 6.5 – Vitesse de groupe de la perturbation fonction de son nombre d’onde pour la configuration étudiée expérimentalement au chapitre 4.2.7 où l’on impose un forçage périodique à l’écoulement.

Fig. 6.6 – Taux d’amplification spatial fonction du nombre d’onde de la perturbation pour la configuration étudiée expérimentalement au chapitre 4.2.7 où l’on impose un forçage périodique à l’écoulement.
Nous montrons ensuite que la comparaison à l’expérience met néanmoins en évidence certaines limites de l’étude théorique.

Taux d’amplification spatial fonction du nombre d’onde

Dans l’étude expérimentale par forçage périodique de l’écoulement nous avons mesuré la hauteur de la couche de polyéthylène : les valeurs sont comprises entre 1,73\(\text{mm}\) et 1,76\(\text{mm}\) La solution de base donne numériquement la hauteur de polyéthylène à 1,70\(\text{mm}\) et la vitesse d’interface à 8,27\(\text{mm/s}\).

Nous avons mis en évidence (cf. chapitre 4.2.7), de la même manière que Wilson et Khomami, la dépendance du taux d’amplification spatial des perturbations en fonction de leur nombre d’onde. Rappelons que notre étude a permis de montrer qu’il était possible de contrôler des perturbations dans des configurations où leur taux d’amplification spatial est nettement supérieur à celui mesuré par Wilson et Khomami.

Si maintenant nous comparons la courbe théorique donnant le taux d’amplification spatial fonction du nombre d’onde de la perturbation forçée au diagramme expérimental que nous avons obtenu, nous constatons que les résultats coïncident de manière évidente (figure 6.7).

![Graphique](image)

Fig. 6.7 - Taux d’amplification spatial fonction du nombre d’onde de la perturbation, comparaison à l’expérience de forçage périodique de l’écoulement

Pour des perturbations de grands nombres d’onde, le modèle est capable de rendre compte de l’expérience. En revanche nous constatons que la courbe théorique sous-estime les taux d’amplification aux faibles nombres d’ondes (\(k_r = 0, 28\text{rad/mm}\) et \(k_r = 0, 50\text{rad/mm}\)). On peut néanmoins relativiser cette erreur car les perturbations introduites ont alors une périodicité spatiale égale, respectivement, à 22,27\(\text{mm}\) et 12,69\(\text{mm}\). La longueur de l’écoulement valant 40\(\text{mm}\), on est en droit de supposer que l’étude théorique ne peut rendre compte précisément du comportement de perturbations de telles longueurs d’ondes.
Nous montrons donc, comme l’ont fait Ganpule et Khomami, que l’approche utilisant la transformation de Gaster est très pertinente dès que l’on utilise un modèle rhéologique capable de décrire le comportement en cisaillement des produits.

Ecart entre théorie et expérience

Nous avons cependant constaté qu’il existe une apparente contradiction avec l’expérience. En effet, si nous comparons les points expérimentaux à la courbe théorique donnant la fréquence ω_r de la perturbation en fonction de son nombre d’onde k_r (figure 6.8), nous observons que le calcul surestime la fréquence d’un facteur 2.

![Graphique](image)

Fig. 6.8 – Fréquence de la perturbation fonction de son nombre d’onde, comparaison à l’expérience de forçage périodique de l’écoulement

On retrouve cette même contradiction sur la courbe théorique donnant la vitesse de phase de la perturbation fonction de son nombre d’onde (figure 6.9) car la vitesse de phase vaut $V_\phi = \omega_r/k_r$. Le calcul prévoit une vitesse de phase supérieure à la vitesse de l’interface de l’écoulement de base (qui vaut, par calcul, 8,27 mm/s) alors qu’elle lui est toujours inférieure expérimentalement.

Wilson et Khomami [56], dans leur étude expérimentale, ont mesuré de la même manière une vitesse de phase inférieure à la vitesse de l’interface. Malheureusement, Ganpule et Khomami n’ont pas précisé si leur étude théorique permet de retrouver les vitesses de phase et les fréquences mesurées expérimentalement. Nous ne pouvons donc pas vérifier s’ils ont constaté ce phénomène.

Il faut souligner que cette apparente contradiction n’est pas qu’anecdotique : nous avons soumis l’écoulement à un forçage périodique en temps, c’est donc la fréquence de la perturbation qui est imposée au système. Même si le nombre d’onde de la perturbation peut être considéré comme le paramètre du forçage, il n’est imposé qu’indirectement par l’expérimentateur. Si maintenant
6.1. L’étude de la stabilité spatiale

Fig. 6.9 – Vitesse de phase de la perturbation fonction de son nombre d’onde, comparaison à l’expérience de forçage périodique de l’écoulement

On trace la courbe théorique donnant le taux d’amplification spatial en fonction de la fréquence de la perturbation (figure 6.10), on montre que la courbe théorique est rejetée vers les grandes fréquences et les résultats de calculs ne coïncident plus avec l’expérience.

Si l’on ne remet pas en cause la pertinence de la transformation de Gaster dans cette configuration, ce phénomène pourrait s’expliquer de deux manières différentes :
- L’expérimentateur impose un forçage périodique \(\omega_T \) à l’écoulement mais la perturbation générée n’est pas parfaitement sinusoidale. Elle comporte donc des harmoniques d’ordre supérieur. Si la première harmonique \(2\omega_T \) est associée à un taux d’amplification plus important, le mode instable alors activé est associé à cette pulsation \(2\omega_T \). Le système répond donc à la première harmonique du forçage en termes de nombre d’onde et d’amplification spatiale : le mode \(\omega_T \) est “porté” par le mode \(2\omega_T \) dominant. La courbe donnant le taux d’amplification théorique associé à cette pulsation double est alors comparable à la courbe expérimentale (figure 6.11).
- Une autre explication serait que la longueur finie de la filetage agisse comme un filtre envers les longueurs d’onde trop grandes. Lorsque l’expérimentateur impose le forçage \(\omega_T \) le système n’est pas capable de générer la longueur d’onde associée à cette pulsation. C’est alors la longueur d’onde de la première harmonique qui est générée et amplifiée.

On pourrait aussi supposer, à l’inverse, que l’expérience est conforme aux prédictions d’une étude spatiale proprement dite (où \(\omega_T \) est imposée et \(k = k_T + ik_i \) calculé) mais que dans cette configuration les hypothèses sous-jacentes à l’application de la transformation de Gaster ne sont que partiellement vérifiées. Nous avons montré au paragraphe 6.1.2 que la transformation de Gaster permet de relier, pour un nombre d’onde \(k_T \) fixé, les pulsations \(\omega_T(S) \) et \(\omega_T(T) \) d’une part et les taux d’amplification \(\omega_T(S) \) et \(-k_i(T) \) d’autre part (où \(S \) et \(T \) désignent respectivement le problème spatial et le problème temporel) lorsque certaines hypothèses sont vérifiées :
Fig. 6.10 – Taux d’amplification spatial de la perturbation fonction de sa fréquence, comparaison à l’expérience de forçage périodique de l’écoulement

- $-k_i(T) = \omega_i(S)/(\partial \omega_r/\partial k_r)$ si $\partial \omega_r/\partial k_r$ varie faiblement avec le nombre d’onde, ce qui est une hypothèse raisonnable dans cette configuration (voir figure 6.9),
- $\omega_r(S) = \omega_r(T)$ si le taux d’amplification spatial est petit et le taux d’amplification temporel varie peu avec le nombre d’onde, hypothèses qui sont en revanche discutables (voir figures 4.37 et 6.3).

Les fortes valeurs de $-k_i$ (comprises entre $0,12/mm$ et $0,30/mm$, mesurées expérimentalement) et de $\partial \omega_i/\partial k_r$ (obtenues par le calcul ou l’on observe une forte variation du taux d’amplification temporel lorsque le nombre d’onde atteint $1rad/mm$) remettraient alors en cause les hypothèses donnant accès à la pulsation $\omega_r(k_r)$ dans le problème spatial proprement dit.

6.1.7 Confrontation aux résultats de simulation directe

Nous allons comparer les résultats obtenus au chapitre 5.5 par simulation directe de l’écoulement de fluides de Maxwell aux résultats donnés par l’étude spatiale utilisant la transformation de Gaster.

Rappelons que l’approche par simulation directe a consisté à étudier la stabilité de l’écoulement de Poiseuille de deux fluides de Maxwell soumis à une perturbation appliquée en entrée de canal durant un pas de temps. Pour comparer les résultats de simulation directe à une étude de stabilité, il faudrait donc étudier la réponse impulsionnelle du système. Or, dans l’étude spatiale utilisant la relation de Gaster, on suppose que le système est soumis à un forçage périodique. Nous allons alors simplement vérifier dans quelle mesure une telle étude permet de rendre compte du comportement observé au cours de l’étude par simulation directe.

L’écoulement de base est déterminé par le rapport des viscosités $m = \eta_2/\eta_1 = 0,1$ et le rapport des débits $q = Q_2/Q_1 = 0,9$. En négligeant les effets d’inertie et en fixant le nombre de Weis-
Figure 6.11 - Taux d’amplification spatial de la perturbation fonction de sa fréquence, activation de la pulsation $2\omega_r$, comparaison à l’expérience de forçage périodique de l’écoulement.

Senberg du premier fluide à $We_1 = 0.5$ nous avons étudié l’influence du nombre de Weissenberg du second fluide (We_2) sur la stabilité de cette configuration. On notera dans la suite w le rapport des nombres de Weissenberg We_2/We_1. L’étude de stabilité asymptotique prévoit que ces configurations sont instables dès que le rapport We_2/We_1 est inférieur à 0,84.

Nous avons montré qu’un paquet d’ondes est généré lorsqu’une perturbation localisée est introduite. Il est possible de déterminer, lorsque la déviation d’interface est suffisamment importante, une pulsation et un nombre d’onde dans ce paquet d’ondes. Cette pulsation et ce nombre d’onde caractérisent le mode “dominant” de l’instabilité. Nous avons en outre mesuré la déviation d’interface maximale en sortie de filière. Cette déviation est importante dès que le rapport We_2/We_1 est inférieur à 0,8. Au-delà de cette valeur, le paquet d’ondes généré est uniquement transporté en aval de l’écoulement. Les résultats de l’étude par simulation directe sont regroupés au tableau 5.3.

La première étape de la comparaison consiste à vérifier, pour chaque rapport $w = We_2/We_1$ étudié, si la pulsation associée au nombre d’onde du mode “dominant” déterminé par simulation directe est retrouvée par l’étude linéaire. En notant S les valeurs données par simulation directe et L les valeurs données par l’étude linéaire, on compare donc la pulsation $\omega_r^S(k_r^S)$ à la pulsation $\omega_r^L(k_r^L)$. Le tableau 6.1 présente les résultats de cette comparaison.

Ces résultats montrent que l’étude linéaire permet de retrouver, bien qu’elle soit légèrement sur-estimée dans chaque cas, la pulsation associée au nombre d’onde du mode “dominant” déterminé via l’étude par simulation directe.

Nous allons vérifier si le mode “dominant” déterminé par simulation directe est le mode pour lequel le taux d’amplification déterminé par l’étude spatiale est maximum. La figure 6.12 montre les courbes issues de l’étude spatiale utilisant la relation de Gaster donnant, pour chaque rapport $w = We_2/We_1$, le taux d’amplification spatial $-k_i$ fonction du nombre d’onde k_r de la pertur-
Tab. 6.1 – Nombre d’onde k_r^S du mode “dominant” déterminé par simulation directe et pulsation associée ω_r^S ; comparaison à la valeur de la pulsation $\omega_r^S(k_r^S)$ donnée par l’étude linéaire.

<table>
<thead>
<tr>
<th>We_2/We_1</th>
<th>k_r^S</th>
<th>ω_r^S</th>
<th>$\omega_r^S(k_r^S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>4,69</td>
<td>2,33</td>
<td>2,57</td>
</tr>
<tr>
<td>0,2</td>
<td>3,93</td>
<td>2,03</td>
<td>2,21</td>
</tr>
<tr>
<td>0,4</td>
<td>2,35</td>
<td>1,42</td>
<td>1,51</td>
</tr>
<tr>
<td>0,6</td>
<td>2,35</td>
<td>1,19</td>
<td>1,49</td>
</tr>
</tbody>
</table>

On repère par une croix la valeur de $-k_i$ associée au mode “dominant” k_r^S déterminé par simulation directe. La figure 6.13 montre les courbes issues de l’étude temporelle donnant, pour chaque rapport $w = We_2/We_1$, le taux d’amplification ω_i fonction du nombre d’onde k_r de la perturbation. On repère par une croix la valeur de ω_i associée au mode “dominant” k_r^S déterminé par simulation directe. Les figures 6.12 et 6.13 sont très comparables puisque la vitesse de groupe varie peu avec le nombre d’onde.

Fig. 6.12 – Taux d’amplification spatial $-k_i$ fonction du nombre d’onde de la perturbation donné par l’étude spatiale utilisant la relation de Gaster pour chaque rapport $w = We_2/We_1$; on repère par une croix la valeur de $-k_i$ associée au mode “dominant” k_r^S déterminé par simulation directe.

On constate que la comparaison entre la simulation directe et l’étude linéaire donne de bon résultats en ce qui concerne les rapports $w=0,0$ et $w=0,4$. Lorsque w vaut 0,2 le mode dominant déterminé par simulation directe n’est pas retrouvé et lorsque w vaut 0,6 le taux d’amplification associé au mode sélectionné dans le paquet d’ondes est négatif. On pourrait expliquer cette contradiction par le fait que le paquet d’ondes n’est pas suffisamment amplifié et qu’il est dans
Fig. 6.13 – Taux d’amplification temporel ω_t fonction du nombre d’onde k_r de la perturbation donné par l’étude temporelle pour chaque rapport $w = W_{e2}/W_{e1}$; on repère par une croix la valeur de ω_t associée au mode “dominant” k_r^2 déterminé par simulation directe.

cel cas superposé au transitoire généré par le forçage initial. On n’est donc pas capable de déterminer ses caractéristiques avec précision.

Une étude linéaire ne permet donc pas de prédire précisément quel mode sera sélectionné lorsqu’une perturbation localisée est introduite dans l’écoulement.

Nous cherchons maintenant à vérifier si une étude linéaire permet de mettre en évidence l’influence du rapport $w = W_{e2}/W_{e1}$ sur la déviation d’interface δ_x mesurée en sortie de canal. Le tableau 6.2 montre, pour chaque rapport $w = W_{e2}/W_{e1}$ étudié, la valeur de δ_x ainsi que la valeur maximale des taux d’amplification ω_t et $-k_i$ calculés via, respectivement, l’étude temporelle et l’étude spatiale.

<table>
<thead>
<tr>
<th>W_{e2}/W_{e1}</th>
<th>déviation δ_x</th>
<th>ω_t maximal</th>
<th>$-k_i$ maximal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>0,056</td>
<td>0,204</td>
<td>0,424</td>
</tr>
<tr>
<td>0,2</td>
<td>0,048</td>
<td>0,084</td>
<td>0,188</td>
</tr>
<tr>
<td>0,4</td>
<td>0,029</td>
<td>0,040</td>
<td>0,076</td>
</tr>
<tr>
<td>0,6</td>
<td>0,016</td>
<td>0,013</td>
<td>0,021</td>
</tr>
<tr>
<td>0,8</td>
<td>0,014</td>
<td>3.10^{-4}</td>
<td>4.10^{-4}</td>
</tr>
<tr>
<td>1,0</td>
<td>0,013</td>
<td><0</td>
<td><0</td>
</tr>
</tbody>
</table>

Tab. 6.2 – Déviation d’interface δ_x mesurée en sortie de canal, valeur maximale du taux d’amplification temporel ω_t et valeur maximale du taux d’amplification spatial $-k_i$ pour chaque rapport $w = W_{e2}/W_{e1}$ étudié
Ces résultats montrent que la valeur de δ_x est très corrélée aux valeurs maximales des taux d’amplification obtenus par les études linéaires, bien que le pâquet d’ondes ne soit plus dans une phase de croissance pour $w=0,0$ et $w=0,2$. On conclut donc que, lorsque l’instabilité n’est pas trop développée, une étude linéaire permet de prédir qualitativement le comportement du système soumis à une perturbation localisée.

6.1.8 Conclusion

Nous avons mis clairement en évidence les capacités d’une étude “convective” à rendre compte du taux d’amplification spatial d’une perturbation en fonction de son nombre d’onde : nos résultats expérimentaux sont décrits avec précision par le calcul.

Nous avons ainsi montré que l’approche de Ganpule et Khomami s’applique à des configurations présentant un taux d’amplification spatial des perturbations relativement grand. Il semble néanmoins que l’étude de stabilité ne rende pas compte quantitativement des résultats expérimentaux en termes de fréquences car il apparaît un phénomène d’activation des harmoniques supérieures. En considérant que c’est le mode double qui est activé, les résultats théoriques et expérimentaux sont alors cohérents. On gardera donc à l’esprit que le système ne sélectionne pas de manière systématique le nombre d’onde associé à la pulsation qu’il reçoit.

Un tel phénomène n’a pas été mentionné par Ganpule et Khomami. Laure et Fortin [32] n’observent pas cet effet, dans le cas newtonien, lorsqu’ils comparent le calcul utilisant la transformation de Gaster et les résultats par simulation directe de l’effet d’un forçage périodique sur l’écoulement.

Dans la suite nous comparons les résultats obtenus au cours des campagnes d’essais en configuration bicouche aux résultats prédits par l’étude de stabilité “convective”.
6.2 Relecture des expériences bicouche

6.2.1 Méthodologie

Nous allons comparer les résultats expérimentaux obtenus au cours des campagnes expérimentales en filière multicanaux et filière porte-manteau aux résultats donnés par notre étude de stabilité “convective”.

La fréquence du défaillance observée sur l’échantillon est reportée sur le diagramme expérimental. En regard de ce diagramme nous présentons le diagramme obtenu par le calcul où est reporté le taux d’amplification spatial maximal et la fréquence associée pour chaque configuration. Les courbes marquant les frontières entre les configurations asymptotiquement stables et instables ont été conservées pour mettre en évidence les résultats de calcul donnant les configurations instables uniquement aux ondes modérées. Lorsque le calcul donne deux maxima, on note aussi le plus faible de ces maxima et la fréquence qui lui est associée. Lorsque le calcul donne une configuration stable, on la note CS.

6.2.2 Campagne d’essais en filière multicanaux

La figure 6.14 montre les résultats expérimentaux obtenus pour les configurations étudiées en filière multicanaux à 180°C en regard des résultats de calcul de stabilité.

Le calcul montre que les configurations expérimentalement stables sont données stables par le calcul. Les configurations expérimentalement instables sont données instables par le calcul et le taux d’amplification spatial maximal est supérieur à 0,4/mm. Le calcul de stabilité convective donne donc les mêmes résultats que l’étude asymptotique. La fréquence associée au taux d’amplification maximal est de l’ordre du triple de la fréquence du défaillance observé sur l’échantillon.

La figure 6.15 montre les résultats expérimentaux obtenus pour les configurations étudiées en filière multicanaux à 200°C en regard des résultats de calcul de stabilité.

Le calcul montre que les configurations expérimentalement stables à grand débit de polystyrene sont données stables par le calcul. Les configurations expérimentalement stables observées à faible débit de polystyrene sont données instables par le calcul mais le taux d’amplification spatial maximal qui leur correspond est inférieur ou égal à 0,22/mm.

Les configurations expérimentalement instables à faible débit de polystyrene sont données instables par le calcul convectif et le calcul asymptotique. A ces configurations correspond un taux d’amplification spatial supérieur ou égal à 0,33/mm. La configuration stable observée expérimentalement à petit débit de polystyrene est donnée instable par le calcul convectif mais est asymptotiquement stable. La taux d’amplification spatial calculé vaut 0,35/mm.

Ici encore la fréquence associée au taux d’amplification spatial maximal est de l’ordre de trois fois la fréquence du défaillance observé sur l’échantillon.

La figure 6.16 montre les résultats expérimentaux obtenus pour les configurations étudiées en filière multicanaux à 220°C en regard des résultats de calcul de stabilité.

Les configurations expérimentalement stables observées à faible débit de polyéthylène sont données instables par le calcul mais le taux d’amplification spatial associé à ces configurations est très faible (> 0,04/mm). Lorsque le débit de polyéthylène augmente le calcul donne ces configurations stables et elles sont effectivement expérimentalement stables.

Seule la configuration étudiée à très fort débit de polyéthylène est expérimentalement instable. Le calcul prévoit en revanche que cette configuration est stable, il apparaît donc une contradiction. On peut cependant préciser d’une part que le défaillance observé sur l’échantillon est très peu

développé et qu’il n’est localisé que sur une faible bande dans la largeur de l’échantillon. D’autre part, des calculs annexes montrent qu’il existe des configurations théoriquement instables à plus fort débit de polyéthylène. On peut donc expliquer cette apparente contradiction par le fait que le rapport des débits “local” dans l’écoulement aurait atteint, dans une partie de la filière, la valeur critique où l’écoulement est instable.

Figure 6.14 – Comparaison entre résultats expérimentaux et calculs de stabilité convective, configurations étudiées à 180°C en filière multicanaux
Fig. 6.15 – Comparaison entre résultats expérimentaux et calculs de stabilité convective, configurations étudiées à 200°C en filière multicanaux
Fig. 6.16 – Comparaison entre résultats expérimentaux et calculs de stabilité convective, configurations étudiées à 220°C en filière multicanaux.
6.2.3 Campagne d’essais en filière porte-manteau

La figure 6.17 montre les résultats expérimentaux obtenus pour les configurations étudiées en filière porte-manteau à 180°C et la figure 6.18 montre les résultats de calcul de stabilité. À 180°C une transition stable/instable apparaît expérimentalement dès que le polyéthylène est majoritaire. La figure 6.18 montre que les zones calculées instables sont situées à des débits de polyéthylène supérieurs. Le calcul ne rend pas compte des résultats expérimentaux car seules les configurations calculées instables sont retrouvées et le calcul prévoit une majorité de configurations stables alors qu’elles sont en majorité instables expérimentalement. On note en outre que la zone théoriquement instable n’est plus délimitée par la frontière donnant la stabilité asymptotique : lorsque le débit de polystyrène est grand, la zone théoriquement instable s’étend vers les faibles débits de polyéthylène.

La figure 6.19 montre les résultats expérimentaux obtenus pour les configurations étudiées en filière multicanaux à 200°C et la figure 6.20 montre les résultats de calcul de stabilité. À 200°C, nous avons vu que la transition stable/instable qui apparaît expérimentalement est déplacée vers les grands débits de polyéthylène. L’étude asymptotique permet de retrouver cette transition. La figure 6.20 montre que le calcul convectif respecte une logique différente de celle de l’expérience : une zone calculée instable apparaît à forts débits de polyéthylène et polystyrène, de la même manière qu’à 180°C.

Hors de cette zone, le calcul rend compte de l’expérience de manière qualitative puisque les configurations expérimentalement instables sont retrouvées. Les configurations expérimentalement stables mais prévues instables à faible débit de polyéthylène et fort débit de polystyrène correspondent à des taux d’amplification très faibles. Dans la zone calculée instable à forts débits de polyéthylène et polystyrène les taux d’amplification sont plus faibles que dans la zone où le calcul rend compte de l’expérience mais atteignent 0,26/mm. Il apparaît ainsi une contradiction car les configurations étudiées sont expérimentalement stables. L’étude linéaire n’est donc pas capable de rendre compte de l’expérience dans cette zone.

La figure 6.21 montre les résultats expérimentaux obtenus pour les configurations étudiées en filière multicanaux à 220°C et la figure 6.22 montre les résultats de calcul de stabilité. Lorsque la température atteint 220°C on n’observe plus qu’une configuration légèrement instables dans le cas où le rapport des débits \(Q_{PE}/Q_{PS} \) est le plus grand. On peut considérer que le calcul rend quantitativement compte de l’expérience puisque toutes ces configurations sont instables mais seule la configuration où le rapport des débits \(Q_{PE}/Q_{PS} \) est le plus grand correspond à un taux d’amplification relativement grand. Les autres configurations sont associées à un taux d’amplification maximal inférieur à 0,13/mm.

Finalement, pour ces trois températures, nous remarquons qu’il n’existe pas de relation simple reliant la fréquence du défaut observée sur l’extrudat à la fréquence associée aux taux d’amplification maximal de la perturbation.

6.2.4 Conclusion

Nous avons montré dans quelle mesure la relation de Gaster est capable de rendre compte des défauts observés sur l’échantillon dans le procédé de coextrusion des polymères.

Dans le cas d’expériences effectuées en filière multicanaux, le calcul permet de retrouver de manière quantitative les résultats expérimentaux. On est capable de définir un taux d’amplification critique au-delà duquel la configuration donne un extrudat présentant des défauts. La fréquence
du défaut observée sur l’extrudat est reliée à la fréquence associée au taux d’amplification maximal calculée par un facteur trois.
Dans le cas d’expériences effectuées en filière porte-manteau, une telle règle peut être appliquée pour une partie des configurations étudiées. Nous avons cependant constaté que le calcul peut parfois être contredit par l’expérience : à 180°C il existe des configurations calculées stables observées instables, et inversement à 200°C.
Dans le chapitre 2, nous avons montré que la répartition des couches dans l’écoulement n’est pas homogène dans la largeur de la filière. Nous avons alors rencontré des difficultés pour déterminer un débit “local” de chacun des produits. Or, l’étude de stabilité repose sur l’hypothèse d’un écoulement bidimensionnel. Par conséquent, une explication des apparentes contradictions observées serait que l’inhomogénéité de l’écoulement dans la largeur de la filière est supérieure à nos prévisions. Considérer un écoulement de Poiseuille plan est en outre très réducteur de la géométrie réelle d’une filière porte-manteau.
De plus, le fait que l’entrefer de la filière porte-manteau soit très faible (400µm) laisse penser qu’un défaut naissant dans une configuration calculée instable garderait des dimensions réduites lorsque les parois de la filière saturent son amplitude. Le comportement non-linéaire de l’instabilité entrerait alors en compte.
Fig. 6.17 – Résultats expérimentaux obtenus pour les configurations étudiées à 180°C en filière porte-manteau
Fig. 6.18 – Résultats des calculs de stabilité convective obtenus pour les configurations étudiées à 180°C en filière porte-manteau
Fig. 6.19 – Résultats expérimentaux obtenus pour les configurations étudiées à 200°C en filière porte-manteau
Fig. 6.20 – Résultats des calculs de stabilité convective obtenus pour les configurations étudiées à 200°C en filière porte-manteau
Fig. 6.21 – Résultats expérimentaux obtenus pour les configurations étudiées à 220°C en filière porte-manteau
Fig. 6.22 – Résultats des calculs de stabilité convective obtenus pour les configurations étudiées à 220°C en filière porte-manteau
Chapitre 7

Conclusion.
Nous avons, dans cette thèse, étudié la stabilité du procédé industriel de coextrusion qui met en jeu des écoulements multicouches de polymères fondus dans des géométries complexes. Ce procédé est très technique puisqu’on rencontre fréquemment, dans les conditions réelles de production (emballage alimentaire par exemple), des configurations à plus de cinq couches comportant des liaisons d’épaisseurs très fines. La stratification est obtenue en sortie des extrudeuses par l’intermédiaire de blocs de répartition. Les polymères s’écoulent ensuite dans une filière porte-manteau (cas du procédé *cast-film*) ou annulaire (cas du procédé de soufflage de gaine). Ce problème n’a pu être abordé que dans une configuration modèle : notre attention s’est donc portée principalement sur une configuration à deux couches polyéthylène et polystyrène dans des géométries d’écoulement simplifiées (au laboratoire).

Notre étude, qui montre que le procédé de coextrusion peut dans certaines conditions expérimentales se comporter comme un amplificateur de “bruit” engendrant des défauts rendant le produit fini inutilisable, s’est articulée de la manière suivante :

- Nous avons d’abord observé dans le chapitre 2 l’apparition de défauts sur le produit solidifié, à la fois dans des conditions industrielles et des conditions de laboratoire. Ces défauts conduisent rapidement à des variations d’épaisseur de chaque couche importantes qui rendent le produit inutilisable. Nous avons ainsi obtenu une cartographie des zones stables et instables à plusieurs températures dans le plan (Q_{PE}, Q_{PS}).

- Le chapitre 3 est consacré à une analyse de stabilité asymptotique qui n’est qu’une analyse préliminaire des phénomènes d’instabilités en coextrusion puisqu’une configuration stable aux ondes longues peut perdre sa stabilité aux ondes modérées. Nous avons ensuite confronté ces résultats de calcul aux résultats expérimentaux du chapitre 2. Cette analyse s’est avérée pertinente dans la majorité des configurations étudiées. Nous nous sommes néanmoins heurtés à une contradiction puisque, à $220^\circ C$, le calcul prévoit une large zone instable asymptotiquement (donc instable) alors que les résultats expérimentaux montrent un extrudat exempt de défauts.

- Cela nous a conduit, dans la suite, à observer la croissance spatiale du défaut dans la direction de l’écoulement. L’observation de l’interface dans une filière transparente (chapitre 4) met clairement en évidence la croissance spatiale du défaut d’interface à la fois dans des configurations faiblement instables (par forçage périodique) ou dans des configurations fortement instables (bruit environnant). Des résultats analogues ont été obtenus par démoulage de la filière après solidification. Le même type de résultat a été obtenu par simulation numérique directe (chapitre 5) dans une configuration idéalisée (fluides viscoélastiques suivant une loi de Maxwell).

- Nous avons donc affiné l’analyse de stabilité afin de prédire la croissance spatiale des défauts en utilisant la relation de Gaster. Ce travail est assez délicat puisqu’il faut tout d’abord calculer le taux d’amplification temporel pour des perturbations de nombre d’onde k_r donné. Ce travail n’avait été fait au chapitre 3 que dans le cadre de la stabilité asymptotique c’est-à-dire uniquement pour des perturbations de petit nombre d’onde ($k_r \to 0$). Puis nous avons utilisé la relation de Gaster qui permet de relier les taux d’amplification spatial et temporel.

Cette stratégie a été validée par comparaison aux résultats expérimentaux obtenus en filière transparente. Cela nous a permis de montrer que, pour les résultats obtenus à $220^\circ C$ (observés stables mais prédits instables par la stabilité temporelle), le taux d’amplification spatial est en réalité très faible : le défaut généré par le bruit naturel de l’ensemble de l’appareillage (extrudeuses par exemple) n’a pas le temps de se développer durant le séjour dans la filière plate.
Ces résultats originaux intéressent les industriels de la transformation des polymères :
- l’extension de cette analyse au cas multicouches peut permettre de guider le transformateur
dans le choix des produits utilisés, en particulier des liants qui assurent l’adhésion entre des
couches ayant un rôle mécanique ou chimique. En effet, le choix de leur rhéologie (viscosité et
temps de relaxation) joue un rôle décisif sur la stabilité de l’écoulement et donc sur la qualité
du produit final.
- le concepteur de filière devra, pour éviter le développement de défauts, diminuer le plus possible
le niveau de contraintes dans la filière ce qui était déjà connu auparavant, mais également réaliser
eventuellement les filières les plus courtes possibles pour réduire le temps de séjour et inhiber
le développement de l’instabilité.

Par la suite les enseignements tirés de l’étude linéaire devront être étendus au cas multicouche.
Des développements préliminaires en trois couches ont été initiés (ils sont présenté en annexe)
mais une exploration plus approfondie de l’influence de la rhéologie du liant est nécessaire.
D’autre part, il peut être utile d’étudier en quoi un écoulement convergent (ou divergent) peut
inhiber ou exacerber le développement des instabilités.
Chapitre 8

Annexes.
8.1 Caractérisation rhéologique en cisaillement des produits

8.1.1 Objectifs

L'objet de cette annexe est de caractériser le comportement rhéologique à l'état fondu du polyéthylène 1003 FE 23 et du polystyrène 1240. En particulier, on désire identifier les paramètres de lois de comportement représentant le comportement en cisaillement du polyéthylène 1003 FE 23 et du polystyrène 1240.

8.1.2 Lois de comportement

Il existe un nombre important d'équations constitutives permettant de décrire le comportement rhéologique des polymères fondues. Il existe, dans la bibliographie, de nombreux ouvrages présentant les principaux modèles mathématiques utilisés : Tanner [53], Larson [31] et Bird [5] présentent une analyse complète des relations de comportement établies à partir de théories moléculaires et/ou en utilisant le formalisme de la mécanique des milieux continus.

Les polymères fondues sont considérés comme incompressibles. On écrit alors le tenseur des contraintes sous la forme :

\[\sigma = -pI + \tau, \]

où \(pI \) est un tenseur sphérique et \(\tau \) le tenseur des extracontraintes viscoélastiques. Le comportement viscoélastique des polymères fondues est dépendant de l'histoire des déformations subies par le matériau. Les modèles rhéologiques peuvent être classés en deux catégories :

- les modèles intégraux dans lesquels la relation qui lie \(\tau \) à l'histoire de la déformation se présente sous une forme intégrale,

- les modèles différentiels dans lesquels l'équation d'évolution de \(\tau \) s'écrit sous la forme d'une équation différentielle.

Les modèles intégraux présentent l'avantage d'être proches des formes de lois de comportement prédites par les équations de la dynamique moléculaire mais leur simulation numérique nécessite le calcul des trajectoires, ce qui rend le problème plus complexe. Nous allons donc nous intéresser aux modèles différentiels.

La loi de comportement multi-Maxwell dérive de modèles physiques. On suppose que le polymère possède une distribution de temps de relaxation qui dépend de la distribution de masses moléculaires et qu'on identifie dans le domaine de la viscoélasticité linéaire. Dans le domaine des grandes déformations, il intervient un paramètre de glissement \(a \) qui décrit la non-affinité de la déformation du réseau macromoléculaire.

Pour chaque loi de comportement on utilisera une méthode spécifique d'identification dont on justifiera l'utilisation.

Loi de comportement de White-Metzner

La loi de comportement de White-Metzner s'écrit :
\[
\begin{align*}
\sigma &= -pI + \tau \\
\tau &= \lambda(\dot{\gamma}) \left(\partial_{\text{T}} + u \nabla \tau - \nabla u \tau - \tau^T \nabla u \right) = 2\eta(\dot{\gamma}) D \\
\eta(\dot{\gamma}) &= \eta_0 [1 + (k\dot{\gamma}^m)^n]^{\frac{1}{m}} \\
\lambda(\dot{\gamma}) &= \lambda_0 [1 + (l\dot{\gamma})^n]^{\frac{1}{n}}
\end{align*}
\]

On cherche donc à identifier les paramètres \(\eta_0, k, m, \lambda_0, l, b \) et \(n\) pour chaque produit à une température donnée.

Loi de comportement multi-Maxwell

La loi de comportement multi-Maxwell s’écrit :

\[
\begin{align*}
\sigma &= -pI + \tau \\
\tau &= \sum_i \tau^i \\
\tau^i + \lambda^i \left(1 - \frac{\dot{\gamma}}{2} \frac{\partial \tau^i}{\partial \gamma} + \frac{\dot{\gamma}}{2} \frac{\partial \tau^i}{\partial \gamma} \right) = 2\eta^i D
\end{align*}
\]

Les dérivées \(\frac{\partial \tau^i}{\partial \gamma}\) et \(\frac{\partial \tau^i}{\partial \gamma}\) sont respectivement les dérivées doublement covariante et doublement contravariante. On cherche dans ce cas un jeu de paramètres \((\eta^i, \lambda^i)\) et le paramètre de glissement \(a\).

8.1.3 Méthodes de mesure

On a utilisé un rhéomètre plan-plan en mode dynamique à différentes températures : de 140°C à 240°C pour le polyéthylène et de 180°C à 240°C pour le polystyrène, par intervalles de 20°C. Ces mesures nous donnent les modules \(G^\prime\) et \(G^\prime\prime\) à chaque fréquence pour les différentes températures.

On vérifie que les propriétés viscoélastiques des fluides obéissent au principe de superposition temps-température (principe de Boltzmann) [36]. En particulier on constate qu’on peut déduire des mesures en rhéométrie oscillatoire une courbe maitresse à la température \(T_0\) (on a choisi 200°C) en faisant glisser les courbes expérimentales d’un facteur \(a_T\) et trouver l’Énergie d’activation \(E\) de la loi d’Arrhénius.

Loi de comportement de White-Metzner

Le principe de superposition de Boltzmann permet de montrer que la viscosité complexe \(\eta^*(\omega, T)\) et le temps de relaxation \(\lambda(\omega, T)\) qu’on calcule grâce à la relation \(\lambda = \frac{\eta^\prime}{G^\prime}\) varient avec la température selon :

\[
\begin{align*}
G^*(\omega, T) &= G^*(a_T \omega, T_0) , \\
\eta^*(\omega, T) &= \frac{\partial}{\partial \omega} \eta^*(a_T \omega, T_0) , \\
\lambda(\omega, T) &= \frac{\partial}{\partial \omega} \lambda(a_T \omega, T_0) , \\
\text{avec } a_T &= e^{\frac{E}{R} \left(\frac{1}{T_0} - \frac{1}{T} \right)} \text{ et } b_T = \frac{a_T T_0}{\partial T} \simeq 1
\end{align*}
\]

On dispose ainsi de courbes maîtresses \(\eta(\omega)\) et \(\lambda(\omega)\). Pour compléter les courbes maîtresses dans les faibles taux de cisaillement on effectue des mesures en continu sur un rhéomètre cône-plan ainsi que des mesures en fluage et on utilise le principe empirique de Cox-Merz [11], c’est-à-dire que l’on postule que la pulsation en régime dynamique est assimilable au taux de cisaillement en
régime permanent. Les mesures en continu donnent la contrainte de cisaillement et la première différence de contraintes normales en fonction du taux de cisaillement. On peut donc en déduire la viscosité et le temps de relaxation. Les mesures en fluage donnent une recouvrance R de la déformation après cessation de la contrainte de cisaillement τ obtenue au taux de cisaillement $\dot{\gamma}$. On déduit la viscosité η et le temps de relaxation λ par les formules $\eta = \frac{\tau}{\dot{\gamma}}$ et $\lambda = \frac{R}{\dot{\gamma}}$.

On identifie les paramètres de la loi de comportement en ajustant chaque courbe théorique (viscosité et temps de relaxation) à la courbe maîtresse associée.

Loi de comportement multi-Maxwell

On doit d’abord identifier le spectre (η^i, λ^i) dans le domaine linéaire. On utilise donc les courbes maîtresses en G' et G'' obtenues via le principe de Boltzmann. La méthode de résolution utilisée consiste à choisir le nombre de modes de relaxation (classiquement 1,5 modes par décennie de mesure) et ajuster les valeurs du spectre qui vérifient les équations :

$$\begin{align*}
G'(\omega) &= \sum \frac{\eta_i \lambda_i \omega^2}{1 + \lambda_i \omega^2} \\
G''(\omega) &= \sum \frac{\eta_i \omega}{1 + \lambda_i \omega^2}
\end{align*}$$

Le calcul des (η^i, λ^i) est résolu par une procédure de Marquardt-Levenberg et les temps de relaxation sont ajustés de manière à minimiser la fonction χ^2 [4]. Cet outil numérique est intégré au logiciel RHIOS.

Pour identifier le paramètre de glissement a, on a choisi d’ajuster la courbe théorique de viscosité en cisaillement à la courbe $\eta(\dot{\gamma})$ déduite de la règle de Cox-Merz. On trouve donc le paramètre a en minimisant l’écart entre ces deux courbes. On rappelle que la viscosité en cisaillement vaut :

$$\eta(\dot{\gamma}) = \sum \frac{\eta^i}{1 + a(2 - a) \lambda^i \dot{\gamma}^2}$$

Finalement, la connaissance de tous ces paramètres et de l’énergie d’activation permet de donner chaque loi de comportement pour toute température dans le domaine de validité de la loi d’Arrhénius.

Les deux paragraphes suivants montrent en détail les résultats obtenus pour chaque produit. Tous les paramètres obtenus ont été identifiés grâce au logiciel RHIOS.

8.1.4 Le polyéthylène 1003 FE 23

En mode dynamique, le balayage en fréquence se fait de 10^{-2} à 10^2 rad/s. On obtient pour chaque température l’évolution de G' et G'' en fonction de la fréquence ω.

Après élimination des points irréalistes (à basse fréquence et haute température), le principe de superposition temps-température s’applique bien pour toutes les fonctions viscométriques et on trouve une énergie d’activation de l’ordre de 62,5 kJ/molK (qui peut paraître grande pour un polyéthylène). La figure 8.1 montre les courbes maîtresses pour les modules G' et G'' à 200°C.

Loi de comportement de White-Metzner

Sur les courbes maîtresses de viscosité η (figure 8.2) et de temps de relaxation λ (figure 8.3) en fonction du taux de cisaillement $\dot{\gamma}$ à 200°C, on rajoute les résultats déduits des mesures en rhéométrie cône plan continu et en fluage (tableau 8.1).
Fig. 8.1 – Courbes maîtresses à 200° C des modules G' et G'' en fonction du taux de cisaillement du polyéthylène 1003 FE 23 : G' (◊) et G'' (■)

<table>
<thead>
<tr>
<th>Continu</th>
<th>Fluage</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dot{\gamma}$ (s⁻¹)</td>
<td>η (Pa.s)</td>
</tr>
<tr>
<td>0.02</td>
<td>6.90×10^3</td>
</tr>
<tr>
<td>0.03</td>
<td>6.40×10^4</td>
</tr>
<tr>
<td>0.04</td>
<td>5.85×10^4</td>
</tr>
<tr>
<td>0.05</td>
<td>5.46×10^4</td>
</tr>
</tbody>
</table>

Tab. 8.1 – Résultats de mesures en rhéométrie cône-plan et fluage du polyéthylène 1003 FE 23 à 200° C
Fig. 8.2 – Courbe maîtresse à 200°C de la viscosité du polyéthylène 1003 FE 23 en fonction du taux de cisaillement : rhéométrie oscillatoire (◊), continue (□) et flouage (×) Courbe $\eta(\dot{\gamma})$ déduite du modèle de White-Metzner (—)

Fig. 8.3 – Courbe maîtresse à 200°C du temps de relaxation du polyéthylène 1003 FE 23 en fonction du taux de cisaillement : rhéométrie oscillatoire (◊), continue (□) et flouage (×) Courbe $\lambda(\dot{\gamma})$ déduite du modèle de White-Metzner (—)
Même si le principe de Cox-Merz n’est pas remarquablement respecté (les courbes en continu et en oscillatoire ne se superposant pas exactement) on conserve comme référence les courbes obtenues par les mesures en dynamique, réputées plus précises. Les mesures en fluage sont les moins fiables et ont pour unique intérêt de mettre en évidence l’existence d’un plateau mais ne sont pas directement prises en compte dans le calcul des coefficients. Sur les courbes maîtresses \(\eta(\dot{\gamma}) \) et \(\lambda(\dot{\gamma}) \) à 200°C on trace les courbes théoriques obtenues (figures 8.2 et 8.3). On remarque que les plateaux ne sont pas atteints en rhéométrie oscillatoire et le plateau en \(\lambda(\dot{\gamma}) \) est presque grâce aux mesures de fluage.

Les coefficients pour la loi théorique sont donnés au tableau 8.2.

\[
\begin{array}{|c|c|c|c|}
\hline
\eta(\dot{\gamma}) = \eta_0 [1 + (k\dot{\gamma})^a]^{\frac{b}{m}} & \lambda(\dot{\gamma}) = \lambda_0 [1 + (l\dot{\gamma})^b]^{\frac{b}{n}} \\
\hline
\eta_0 (\text{Pa.s}) & k (s) & a & m & \lambda_0 (s) & l (s) & b & n \\
1.58 \times 10^5 & 13.472 & 0.3817 & 0.29444 & 80.192 & 131.27 & 0.68705 & 0.11076 \\
\hline
\end{array}
\]

Energie d’activation : 62,5 kJ/molK

Tab. 8.2 – Coefficients de la loi de White-Metzner du polyéthylène 1003 FE 23 à 200°C

Loi de comportement multi-Maxwell

Les mesures ont été effectuées sur 4 décades de fréquences. Le spectre recherché comprend donc 6 temps de relaxation. Les résultats du calcul sont donnés au tableau 8.3.

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\lambda_\tau & 0.0012 & 0.014 & 0.122 & 1.011 & 7.913 & 100.02 \\
\eta_\tau & 165.887 & 740.572 & 3203.917 & 11263.757 & 26988.078 & 78282.653 \\
\hline
\end{array}
\]

Energie d’activation : 62,5 kJ/molK

Tab. 8.3 – Spectre de relaxation du polyéthylène 1003 FE 23 à 200°C

La figure 8.4 montre les courbes \(G' \) et \(G'' \) reconstituées à partir de ces résultats.

On identifie le paramètre de glissement \(a = 0,142 \) en ajustant la courbe théorique de viscosité en cisaillement à la courbe \(\eta(\dot{\gamma}) \) déduite de la règle de Cox-Merz.

La figure 8.5 montre la courbe \(\tau(\dot{\gamma}) \) (contrainte en cisaillement simple) obtenue avec cette valeur du paramètre de glissement. Si on la compare à la courbe que donne le modèle de White-Metzner, on peut conclure que les deux modèles décrivent identiquement le comportement visqueux en cisaillement simple dans la gamme de taux de cisaillement étudiée. Si maintenant on s’intéresse au comportement viscoélastique et qu’on trace la première différence de contraintes normales en cisaillement simple (figure 8.6), on constate qu’il n’y a plus similitude entre les deux lois puisque le modèle multimode prévoit une valeur presque dix fois plus grande que celle du modèle de White-Metzner. On peut imputer cette apparente contradiction au modèle multimode car on n’ajuste qu’un seul paramètre \((a) \) pour décrire deux comportements (visqueux et viscoélastique).

Il semble que seul un modèle de Phan-Thien-Tanner multimode puisse décrire aussi précisément que le modèle de White-Metzner le comportement viscoélastique en cisaillement simple. On rappelle que le modèle de PTT comporte un paramètre supplémentaire \(\epsilon \) rendant compte du taux de création et de destruction des jonctions macromoléculaires et théoriquement destiné à décrire le comportement d’élongation.
Fig. 8.4 – Courbes à 200°C des modules G' et G'' du polyéthylène 1003 FE 23 en fonction du taux de cisaillement reconstituées via le modèle multi-Maxwell (—) Données expérimentales : G' (◊) et G'' (■)

Fig. 8.5 – Comparaison des contraintes de cisaillement du polyéthylène 1003 FE 23 à 200°C en fonction du taux de cisaillement déduites des modèles de White-Metzner (—) et multi-Maxwell (—) et mesures en rhéométrie continue (◊)
8.1. Caractérisation rhéologique en cisaillement des produits

![Graph](image)

Fig. 8.6 – Comparaison des premières différences de contraintes normales du polyéthylène 1003 FE 23 à 200°C en fonction du taux de cisaillement déduites des modèles de White-Metzner (—) et multi-Maxwell (—•) et mesures en rhéométrie continue (○)

8.1.5 Le polyestyrène 1240

En mode dynamique, le balayage en fréquence se fait de 10^{-2} à 10^2 rad/s. Ici aussi le principe de superposition temps-temperatur s’applique bien et on trouve une énergie d’activation de l’ordre de 123, 16kJ/molK. La figure 8.7 montre les courbes maîtresses pour les modules G' et G'' à 200°C.

Loi de comportement de White-Metzner

Sur les courbes maîtresses de viscosité η (figure 8.8) et de temps de relaxation λ (figure 8.9) en fonction du taux de cisaillement $\dot{\gamma}$ à 200°C, on rajoute les résultats déduits des mesures en rhéométrie cône plan continu et en fluage (tableau 8.4).

On remarque que le principe de Cox-Metzner est mieux respecté dans le cas du temps de relaxation que pour le polyéthylène. Encore une fois on n’utilise pas les résultats de fluage pour ajuster la courbe théorique dans sa totalité. Par contre ces résultats confirment l’existence du plateau en $\eta(\dot{\gamma})$ amorcé en rhéométrie oscillatoire. Le temps de relaxation ne présente pas d’amorçage de plateau dans la fenêtre de mesures expérimentales et la valeur obtenue de λ_0 est peut-être irréaliste. Les courbes théoriques sont tracées sur les figures 8.8 et 8.9.

Les coefficients pour la loi théorique sont donnés au tableau 8.5.

Loi de comportement multi-Maxwell

On calcule le spectre de la même manière que pour le polyéthylène, les résultats sont donnés au tableau 8.6.
Fig. 8.7 – Courbes maîtresses à 200°C des modules G' et G'' en fonction du taux de cisaillement du polystyrène 1240 : G' (◇) et G'' (■)

<table>
<thead>
<tr>
<th>Continu</th>
<th>Fluage</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dot{\gamma} (s^{-1})$</td>
<td>$\eta (Pa.s)$</td>
</tr>
<tr>
<td>0.02</td>
<td>2.58×10^4</td>
</tr>
<tr>
<td>0.025</td>
<td>2.60×10^4</td>
</tr>
<tr>
<td>0.03</td>
<td>2.50×10^4</td>
</tr>
<tr>
<td>0.035</td>
<td>2.50×10^4</td>
</tr>
<tr>
<td>0.05</td>
<td>2.41×10^4</td>
</tr>
<tr>
<td>0.06</td>
<td>2.36×10^4</td>
</tr>
<tr>
<td>0.07</td>
<td>2.30×10^4</td>
</tr>
</tbody>
</table>

Tab. 8.4 – Résultats de mesures en rhéométrie cône-plan et fluage du polystyrène 1240 à 200°C (valeurs non mesurées : —)

<table>
<thead>
<tr>
<th>$\eta(\dot{\gamma}) = \eta_0 [1 + (k\dot{\gamma})^a]^{\frac{m-a}{m}}$</th>
<th>$\lambda(\dot{\gamma}) = \lambda_0 [1 + (\dot{\gamma}b)^{\frac{m-b}{m}}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta_0 (Pa.s)$</td>
<td>$k (s)$</td>
</tr>
<tr>
<td>3.14 $\times 10^4$</td>
<td>0.60362</td>
</tr>
</tbody>
</table>

Energie d’activation : 123,16kJ/molK

Tab. 8.5 – Coefficients de la loi de White-Metzner du polystyrène 1240 à 200°C

<table>
<thead>
<tr>
<th>λ_0</th>
<th>η_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0006</td>
<td>60.026</td>
</tr>
<tr>
<td>0.0108</td>
<td>652.352</td>
</tr>
<tr>
<td>0.1068</td>
<td>4132.306</td>
</tr>
<tr>
<td>0.8642</td>
<td>11443.736</td>
</tr>
<tr>
<td>7.268</td>
<td>10740.714</td>
</tr>
<tr>
<td>276.88</td>
<td>8457.853</td>
</tr>
</tbody>
</table>

Energie d’activation : 123,16kJ/molK

Tab. 8.6 – Spectre de relaxation du polystyrène 1240 à 200°C
Fig. 8.8 – Courbe maîtresse à 200°C de la viscosité du polystyrène 1240 en fonction du taux de cisaillement : rhéométrie oscillatoire (◊), continue (□) et fluage (×) Courbe $\eta(\dot{\gamma})$ déduite du modèle de White-Metzner (—)

Fig. 8.9 – Courbe maîtresse à 200°C du temps de relaxation du polystyrène 1240 en fonction du taux de cisaillement : rhéométrie oscillatoire (◊), continue (□) et fluage (×) Courbe $\lambda(\dot{\gamma})$ déduite du modèle de White-Metzner (—)
La figure 8.10 montre les courbes G' et G'' reconstituées à partir de ces résultats. Ici aussi le domaine de validité du modèle est limité à celui de la fenêtre expérimentale.

![Diagramme de courbes de viscosité](image)

Fig. 8.10 – Courbes à 200°C des modules G' et G'' du polystyrène 1240 en fonction du taux de cisaillement reconstituées via le modèle multi-Maxwell (—) Données expérimentales : G' (○) et G'' (■).

On identifie le paramètre de glissement $a = 0,1309$ en ajustant la courbe théorique de viscosité en cisaillement à la courbe $\eta(\dot{\gamma})$ déduite de la règle de Cox-Merz.

La figure 8.11 montre la courbe $\tau(\dot{\gamma})$ (contrainte en cisaillement simple) obtenue avec cette valeur du paramètre de glissement. Ici aussi on peut conclure que les deux modèles décrivent identiquement le comportement visqueux en cisaillement simple dans la gamme de taux de cisaillement étudiée.

La première différence de contraintes normales en cisaillement simple peut ici être considérée comme identiquement décrite par les deux modèles (fig. 8.12), même si les valeurs sont encore légèrement surévaluées par la loi multimode.

8.1.6 Conclusions

Le modèle de White-Metzner permet de décrire le comportement viscoélastique des deux polymères en cisaillement simple. Les mesures complémentaires en continu et fluage permettent d’estimer un plateau pour la viscosité et le temps de relaxation. Ce modèle est peu utilisé dans la littérature mais il reste néanmoins, selon nous, un bon candidat à la modélisation des écoulements de coextrusion.

La loi de comportement multi-Maxwell est issue de la physique macromoléculaire. On peut rendre compte du comportement visqueux des produits en cisaillement simple via ce modèle mais il reste limité pour décrire le comportement viscoélastique du polyéthylène en grandes déformations. On peut imaginer qu’étendre ce modèle à celui de Phan-Thien-Tanner multimode.
8.1. Caractérisation rhéologique en cisaillement des produits

Fig. 8.11 – Comparaison des contraintes de cisaillement du polystyrène 1240 à 200°C en fonction du taux de cisaillement déduites des modèles de White-Metzner (—) et multi-Maxwell (- -) et mesures en rhéométrie continue (◊)

Fig. 8.12 – Comparaison des premières différences de contraintes normales du polystyrène 1240 à 200°C en fonction du taux de cisaillement déduites des modèles de White-Metzner (—) et multi-Maxwell (- -) et mesures en rhéométrie continue (◊)
(en ajoutant le paramètre ϵ) [41] permettrait une meilleure description de tous les phénomènes de cisaillement. Cette utilisation de la loi de Phan-Thien-Tanner n’a pas été envisagée dans cette étude.
8.2 Equations du problème bicouche

8.2.1 Écoulement bicouche de fluides de White-Metzner

Les équations

- La loi de comportement de White-Metzner suppose que le temps de relaxation et la viscosité dépendent du taux de cisaillement suivant une loi de Carreau-Yasuda. Pour chaque fluide K ($K = 1, 2$) :

\[
\begin{align*}
\sigma &= -\mu I + \tau \\
\tau + \lambda(\dot{\gamma}^\alpha) \left(\partial_t \tau + \mathbf{u} \nabla \tau - \nabla \mathbf{u} \tau - \tau^T \nabla \mathbf{u} \right) &= 2\eta(\dot{\gamma}) \dot{\gamma} \\
\eta &= \eta_0 \left[1 + \left(\frac{k_{\lambda} \dot{\gamma}^{\alpha}}{\dot{\gamma}} \right)^{\frac{\alpha-1}{\alpha}} \right] \\
\lambda &= \lambda_0 \left[1 + \left(\frac{k_{\lambda} \dot{\gamma}^{\alpha}}{\dot{\gamma}} \right)^{\frac{\alpha-1}{\alpha}} \right]
\end{align*}
\]

- L’incompressibilité s’écrit : $\nabla \cdot \mathbf{u} = 0$
- La relation fondamentale de la dynamique s’écrit dans chaque couche K (on néglige la pesanteur) :

\[
\nabla \cdot \mathbf{u} = \rho \left(\partial_t \mathbf{u} + \nabla \cdot \mathbf{u} \right) + \nabla p
\]

- Les conditions de non-glissement à la paroi sont :

\[
\mathbf{u}_1(x,0) = \mathbf{u}_2(x,d_1 + d_2) = 0
\]

- On note $y = h(x,t)$ l’équation de l’interface ($h \equiv d_1$ pour le Poiseuille). L’équation de continuité de la vitesse à l’interface est :

\[
\mathbf{u}_1(x,h) = \mathbf{u}_2(x,h)
\]

- L’équation cinématique décrit la non-miscibilité des deux fluides :

\[
\partial_t h(x,t) + \partial_x h(x,t).u(x,h) = v(x,h)
\]

- En présence de tension superficielle S (H est la somme des courbures principales de l’interface et $\mathbf{n}(x) = (\partial_x h, -1)$ sa normale) le saut de contrainte s’écrit, avec la convention $[f]_y = f_2(y) - f_1(y) :

\[
[[\sigma_K]]_h \mathbf{n}(x) = -2HT\mathbf{n}(x)
\]

- On choisit pour l’adimensionnement : la hauteur de la filière pour l’échelle de longueur d^*, la vitesse moyenne dans la filière pour l’échelle de vitesse U^* (et on note t^* l’échelle de temps) et pour l’échelle de contrainte on utilise la viscosité plateau du fluide 1.

On a : $U^* = \frac{\partial_y^*}{\partial_x^*} ; t^* = \frac{\partial_y^*}{\partial_x^*} ; p^* = \frac{\eta_0^*}{\dot{\gamma}^*}$

- L’adimensionnement permet d’introduire les paramètres suivants : le nombre de Reynolds Re_k et le nombre de Weissenberg We_K dans chaque couche, la hauteur adimensionnée d’interface pour l’écoulement de base \tilde{h} et les viscosités plateau m_k. Les fonctions $\eta_k(\dot{\gamma})$ et $\lambda_k(\dot{\gamma})$ décrivent la dépendance en $\dot{\gamma}$ de la viscosité et du temps de relaxation.

Ces paramètres admettent les expressions suivantes :
\[
\bar{h} = \frac{d^2 \tilde{h}}{d^2 s}; \quad m_k = \frac{\eta^{*}_{0_k}}{\eta^{*}_{0_1}}; \quad Re_k = \frac{\rho_k U^* d^*}{\eta^{*}_{0_1}}; \quad We_k = \frac{\lambda^{*}_{0_k} U^*}{d^*}
\]

\[
\eta_k (\dot{\gamma}) = \left[1 + (k_k(\omega^*) \dot{\gamma})^{\alpha_k} \right]^{\frac{\alpha_k - 1}{\alpha_k}}; \quad \lambda_k (\dot{\gamma}) = \left[1 + (l_k(\omega^*) \dot{\gamma})^{\beta_k} \right]^{\frac{\beta_k - 1}{\beta_k}}
\]

\[
(p_k, \tau, H, S) = \frac{d^*}{\eta^{*}_{0_1}} (p^*_k, \tau^*_k, H^* T^*)
\]

Les équations sans dimension

- Le problème sans dimensions devient, pour la loi de comportement :

\[
\begin{cases}
\sigma = -p I + \tau \\
\tau + \lambda W e (\partial_t \tau + u \nabla \tau - \nabla u \tau - \tau \nabla^T u) = 2m \eta \dot{\epsilon}
\end{cases}
\]

- L’incompressibilité s’écrit : \(\nabla \cdot u = 0 \)
- La relation fondamentale de la dynamique :

\[
Re (\partial_t u + \nabla \cdot u) + \nabla p = \nabla \tau
\]

- L’équation cinématique devient :

\[
\partial_t h + \partial_x h(u(h)) = v(h)
\]

- Les conditions aux limites et à l’interface sont :

\[
\begin{cases}
u_1(0) = u_2(1) = 0 \\
u_1(h) = u_2(h) \\
\| \sigma \| h \cdot n = -2 \text{HS} n
\end{cases}
\]

La solution de base

La solution de base du problème est la solution de Poiseuille stationnaire et invariante par translation donc on cherche \(u \) sous la forme \(\bar{u} = (\bar{u}(y), 0) \). Dans la suite, les \(\bar{U} \) correspondent à l’écoulement de base. On obtient :

\[
\bar{\tau} = \begin{pmatrix}
\bar{\sigma} \\
\bar{\tau}
\end{pmatrix}, \quad \bar{u} = \begin{pmatrix}
\bar{u}(y) \\
0
\end{pmatrix}
\]

Le taux de cisaillement vaut \(\dot{\gamma} = |\bar{u}'| \) et on appelle \(\bar{h} \) l’ordonnée de l’interface. On a \(\bar{\gamma} = 0 \), \(\bar{\sigma} = 2m \bar{\lambda} W e \bar{\eta} \bar{u}^2 \), \(\bar{\tau} = m \bar{\eta} \bar{u}' \). La pression \(\bar{p} \) ne dépendant que de \(x \), l’équilibre entraîne que son gradient \(\bar{p}'(x) \) est constant et on note \(\bar{\xi} \). La solution de base est obtenue à partir de l’équation d’équilibre :

\[
\begin{cases}
\bar{\tau}' = m(\bar{\eta} \bar{u}')' = \bar{\xi} \\
\bar{\eta} = \left[1 + \left(k \bar{u}' \right)^{\alpha} \right]^{\frac{\alpha - 1}{\alpha}} \\
\bar{u}(0) = \bar{u}(1) = 0 \\
\| \bar{u}_K \| h = 0 \\
\| \bar{\tau}_K \| h = 0
\end{cases}
\]
8.2.2 L’étude de la stabilité

Perturbation de l’écoulement

On introduit dans l’écoulement de base des perturbations d’amplitude suffisamment petite pour que les termes non linéaires soient négligeables. La perturbation en pression est donnée par le gradient de pression \(\partial_x \hat{p} = \dot{\gamma} \) et \(\partial_y \hat{p} = \delta \) (on note les perturbations) :

\[
(u_K, v_K, \tau_K, p_K, \zeta_K, \delta_K, \xi) = (\bar{u} + \hat{u}, \bar{v} + \hat{v}, \bar{\tau} + \hat{\tau}, \bar{p} + \hat{p}, \bar{\zeta} + \hat{\zeta}, \bar{\delta} + \hat{\delta})
\]

- Le taux de cisaillement équivalent, la viscosité et le temps de relaxation deviennent :

\[
\begin{align*}
\dot{\gamma} & \simeq \frac{\partial \gamma}{\partial \sigma} (\partial_y \hat{u} + \partial_x \hat{v}) \quad \text{avec} \quad \frac{\partial \gamma}{\partial \sigma} |_{\sigma'} = \frac{\sigma'}{\sigma} \\
\eta(\dot{\gamma}) & \simeq \frac{\eta}{\partial \sigma} (\partial_y \hat{u} + \partial_x \hat{v}) \quad \text{avec} \quad \frac{\eta}{\partial \sigma} |_{\sigma'} = \frac{\sigma'}{\sigma (1 + (k\dot{\gamma})^n)} \\
on \text{on pose} \quad \eta &= \frac{\partial \lambda}{\partial \sigma} |_{\sigma'} \hat{u} \\
\lambda(\dot{\gamma}) & \simeq \frac{\lambda}{\partial \sigma} (\partial_y \hat{u} + \partial_x \hat{v}) \quad \text{avec} \quad \frac{\lambda}{\partial \sigma} |_{\sigma'} = \frac{(n-1)(k\dot{\gamma})^{n-2}}{\sigma^{1+(k\dot{\gamma})^n}} \\
on \text{on pose} \quad \lambda &= \frac{\partial \lambda}{\partial \sigma} |_{\sigma'} \hat{u}'
\end{align*}
\]

- Les équations aux perturbations s’écrivent :

\[
\begin{align*}
\dot{\gamma} & = \left(\begin{array}{cc}
\frac{1}{2} (\partial_y \hat{u} + \partial_x \hat{v}) \\
\frac{1}{2} (\partial_y \hat{v} + \partial_x \hat{u})
\end{array} \right) \\
Re(\partial_x \hat{u} + \nabla \hat{u} \cdot \hat{v} + \nabla \hat{v} \cdot \hat{u}) + \nabla \hat{p} & = \nabla \hat{\tau} \\
\hat{\tau} + \hat{\lambda} W e (\partial_x \hat{\tau} + \hat{u} \nabla \cdot \hat{\tau} + \hat{v} \nabla \cdot \hat{\tau} - 2(\nabla \hat{u} \cdot \hat{\tau} + \nabla \hat{v} \cdot \hat{\tau})_S) - 2\hat{\lambda} W e (\nabla \hat{u} \cdot \hat{\tau})_S &= 2m(\eta \dot{\gamma} + \dot{\gamma} \xi) \\
\partial_x \hat{u} + \partial_y \hat{v} &= 0
\end{align*}
\]

où \((T)_S\) désigne la partie symétrique du tenseur \(T\).

- A l’interface, on obtient :

\[
\begin{align*}
\partial \hat{h} + \partial \hat{h} \nbar{h}(\bar{h}) &= \dot{\hat{h}}(\bar{h}) \\
\llbracket \hat{u} \rrbracket_{\bar{h}} &= 0 \\
\llbracket \sigma_K \rrbracket_{\bar{h}} \nbar{h} + \llbracket \sigma_K \rrbracket_{\bar{h}} \nbar{h} &= -S \hat{h} \nbar{h}
\end{align*}
\]

- En projection sur \(x\) et \(y\) on obtient, dans chaque couche :

\[
\begin{align*}
Re(\partial_x \hat{u} + \hat{u} \dot{\hat{v}} + \hat{u} \partial_2 \hat{v}) + \dot{\gamma} &= \partial_x \sigma + \partial_y \dot{\tau} \\
Re(\partial_x \hat{v} + \hat{v} \partial_2 \hat{v}) + \delta &= \partial_x \dot{\tau} + \partial_y \dot{\gamma} \\
\hat{\sigma} + \hat{\lambda} W e [\partial \sigma + \hat{u} \partial_2 \sigma + \sigma' \dot{\hat{v}} - 2\hat{u} \dot{\tau} - 2(\sigma \partial_x \hat{u} + \tau \partial_y \hat{u})] - 2\hat{\lambda} W e (\partial_y \hat{u} + \partial_x \hat{v}) &= 2m\eta \partial_x \hat{u} \\
\hat{\tau} + \hat{\lambda} W e [\partial x \hat{\tau} + \hat{u} \partial_2 \tau + \tau \dot{\hat{v}} - \hat{u} \dot{\hat{v}} - \hat{u} \gamma - \sigma \partial_x \hat{v}] &= m\dot{\gamma} (\partial_y \hat{u} + \partial_x \hat{v}) \\
\dot{\gamma} + \hat{\lambda} W e [\partial \gamma + \hat{u} \partial_2 \gamma - 2\tau \partial_x \hat{v}] &= 2m\dot{\gamma} \partial_x \hat{v} \\
\partial_x \hat{u} + \partial_y \hat{v} &= 0 \\
\partial_y \dot{\gamma} - \partial_x \dot{\tau} &= 0
\end{align*}
\]
- A l’interface :

\[
\begin{align*}
\partial_t \hat{h} + \partial_x \hat{h} \overline{\sigma}(\hat{h}) &= \hat{v}(\hat{h}) \\
||\overline{\sigma}_K \hat{h} + \hat{u}_K||_\hat{h} &= 0 \\
||\overline{\hat{v}}_K||_\hat{h} &= 0 \\
||- \partial_x \hat{h} \overline{\sigma}_K + \overline{\tau}_K||_\hat{h} &= 0 \\
||- \hat{p}_K + \overline{\gamma}_K||_\hat{h} &= -S \partial_x \hat{h}
\end{align*}
\]

- Les perturbations sont de la forme :

\[
(\hat{u}_K, \hat{v}_K, \overline{\tau}_K, \overline{\gamma}_K, \hat{\delta}_K, \hat{h}) = (\bar{u}_K, \bar{v}_K, \overline{\tau}_K, \overline{\gamma}_K, \bar{\delta}_K, \bar{h})(y) e^{i(kx - \omega t)}
\]

- On l’écrit dans chaque couche :

\[
\begin{align*}
Re(-i\omega \bar{u} + \bar{u}' \bar{v} + ik \bar{u} \bar{u}) + \bar{\varsigma} &= ik \bar{\sigma} + D \bar{\tau} \\
Re(-i\omega \bar{v} + ik \bar{u} \bar{v}) + \bar{\delta} &= ik \bar{\tau} + D \bar{\gamma} \\
\bar{\sigma} + \bar{\lambda} \bar{W} e[-i\omega \bar{\sigma} + ik \bar{\sigma} + \bar{\sigma}' \bar{v} - 2\bar{\sigma}' \bar{\tau} - 2(ik \bar{\sigma} \bar{u} + \bar{\tau} \bar{D} \bar{u})] - 2\bar{\lambda} \bar{W} e \bar{\tau} (D \bar{u} + i \bar{v}) &= 2ikm \bar{u} \\
\bar{\tau} + \bar{\lambda} \bar{W} e[-i\omega \bar{\tau} + ik \bar{\sigma} + \bar{\sigma}' \bar{v} - \bar{\sigma}' \bar{\tau} - ik \bar{\sigma} \bar{v}] &= m \bar{\gamma} (D \bar{u} + i \bar{v}) \\
\bar{\gamma} + \bar{\lambda} \bar{W} e[-i\omega \bar{\gamma} + ik \bar{\gamma} - 2ik \bar{\tau} \bar{v}] &= 2m \bar{\gamma} D \bar{v} \\
\bar{u} \bar{v} + \bar{D} \bar{v} &= 0 \\
D \bar{\gamma} - ik \bar{\delta} &= 0
\end{align*}
\]

- Et à l’interface :

\[
\begin{align*}
-i\omega \bar{h} + ik \bar{h} \bar{u}(\bar{h}) &= \bar{v}(\bar{h}) \\
||\overline{\sigma}_K \bar{h} + \bar{u}_K||_\bar{h} &= 0 \\
||\overline{\bar{v}}_K||_\bar{h} &= 0 \\
||- ik \bar{h} \overline{\sigma}_K + \overline{\tau}_K||_\bar{h} &= 0 \\
||- \bar{p}_K + \overline{\gamma}_K||_\bar{h} &= k^2 S \bar{h}
\end{align*}
\]

Développement de ω en $\omega = k(\omega_0 + k \omega_1 + ...) $

- On écrit les équations obtenues à l’ordre zéro dans chaque couche :

\[
\begin{align*}
Re(-i\omega_0 \bar{u}_0 + \bar{u}' \bar{v}_0) + \bar{\varsigma}_0 &= D \bar{\tau}_0 \\
-i Re\omega_0 \bar{v}_0 + \bar{\delta}_0 &= D \bar{\gamma}_0 \\
\bar{\sigma}_0 + \bar{\lambda} \bar{W} e[-i\omega_0 \bar{\sigma}_0 + \bar{\sigma}' \bar{v}_0 - 2\bar{\sigma}' \bar{\tau}_0 - 2\bar{\tau} \bar{D} \bar{u}_0] - 2\bar{\lambda} \bar{W} e \bar{\tau}_0 \bar{D} \bar{u}_0 &= 0 \\
\bar{\tau}_0 + \bar{\lambda} \bar{W} e[-i\omega_0 \bar{\tau}_0 + \bar{\tau}' \bar{v}_0 - \bar{\tau}' \bar{\tau}_0] &= m \bar{\gamma}_0 \bar{D} \bar{u}_0 \\
\bar{\gamma}_0 - i\bar{\lambda} \bar{W} e \bar{\omega}_0 \bar{\gamma}_0 &= 2m \bar{\gamma}_0 \bar{D} \bar{v}_0 \\
\bar{D} \bar{v}_0 &= 0 \\
D \bar{\gamma}_0 &= 0
\end{align*}
\]

- A l’interface :

\[
\begin{align*}
-i\omega_0 \bar{h} + ik \bar{h} \bar{u}(\bar{h}) &= \bar{v}(\bar{h}) \\
||\overline{\sigma}_K \bar{h} + \bar{u}_K||_\bar{h} &= 0 \\
||\overline{\bar{v}}_K||_\bar{h} &= 0 \\
||- ik \bar{h} \overline{\sigma}_K + \overline{\tau}_K||_\bar{h} &= 0 \\
||- \bar{p}_K + \overline{\gamma}_K||_\bar{h} &= k^2 S \bar{h}
\end{align*}
\]
\[\begin{align*}
&\begin{cases}
\dot{\omega}_0 \ddot{h}_0 = -\ddot{v}_0(\ddot{h}) \\
\|\dddot{\varphi}_{\text{K}_0} \dddot{h}_0 + \dddot{u}_{\text{K}_0}\|_{\ddot{h}} = 0 \\
\|\dddot{\varphi}_{\text{K}_0}\|_{\ddot{h}} = 0 \\
\|\dddot{\xi}_{\text{K}_0}\|_{\ddot{h}} = 0 \\
\|\dddot{\zeta}_{\text{K}_0}\|_{\ddot{h}} = 0
\end{cases}
\end{align*}\]

- Remarques :
\(\ddot{v}_0 \) est nul donc \(\dddot{\gamma}_0 - i\dddot{\lambda}W e\omega_0 \dddot{\gamma}_0 = 0 \). Puisque \(\dddot{\lambda} \) varie on obtient que \(\dddot{\gamma}_0 \) est nul et que \(\omega_0 = -i/\dddot{\lambda}W e \) n’est pas solution. \(\omega_0 \) est donc nul. \(\rho_0 \) est indeterminée, on dérive suivant \(x \) les équations à l’interface pour faire intervenir \(\zeta \). On peut réécrire le système en posant :
\[
\omega = k(\omega_0 + k\omega_1 + \ldots) \quad \ddot{v} = ik(\ddot{v}_0 + k\ddot{v}_1 + \ldots)
\]

Equations obtenues à l’ordre zéro :

- Dans chaque couche :
\[
\begin{cases}
D\dddot{\varphi}_0 = \dddot{\zeta}_0 \\
\dddot{\delta}_0 = 0 \\
\dddot{\sigma}_0 - 2\dddot{\lambda}W e\dddot{\varphi}_0 - 2\dddot{\lambda}W e\dddot{\varphi} D\dddot{u}_0 = 0 \\
\dddot{\tau}_0 = m\dddot{\eta} D\dddot{u}_0 \\
\dddot{\gamma}_0 = 0 \\
\dddot{u}_0 + D\dddot{v}_0 = 0 \\
D\dddot{\zeta}_0 = 0
\end{cases}
\]

- A l’interface :
\[
\begin{cases}
-\omega_0 \dddot{h}_0 + \dddot{h}_0 \dddot{u}(\ddot{h}) = \ddot{v}_0(\ddot{h}) \\
\|\dddot{\varphi}_{\text{K}_0} \dddot{h}_0 + \dddot{u}_{\text{K}_0}\|_{\ddot{h}} = 0 \\
\|\dddot{\varphi}_{\text{K}_0}\|_{\ddot{h}} = 0 \\
\|\dddot{\zeta}_{\text{K}_0}\|_{\ddot{h}} = 0 \\
\|\dddot{\xi}_{\text{K}_0}\|_{\ddot{h}} = 0
\end{cases}
\]

Equations obtenues à l’ordre un :

- Dans chaque couche :
\[
\begin{cases}
D\dddot{\varphi}_1 - \dddot{\zeta}_1 = i\text{Re}(\omega_0\dddot{u}_0 + \dddot{u}_0 \dddot{v}_0 + \dddot{u}_{\text{K}_0} + i\dddot{\sigma}_0) \\
\dddot{\delta}_1 - D\dddot{\gamma}_1 = i\dddot{\tau}_0 \\
\dddot{\sigma}_1 - 2\dddot{\lambda}W e\dddot{\varphi}_1 - 2\dddot{\lambda}W e\dddot{\varphi} D\dddot{u}_1 = -i\dddot{\lambda}W e[-\omega_0\dddot{\sigma}_0 + \dddot{\sigma}_0 + \dddot{\varphi}_0 - 2\dddot{\sigma}_{\text{K}_0} + 2\dddot{\sigma}_{\text{K}_0}] + 2im\dddot{\eta}_0 D\dddot{u}_0 \\
\dddot{\tau}_1 - \dddot{\lambda}W e\dddot{\varphi}_1 - m\dddot{\eta} D\dddot{u}_1 = -i\dddot{\lambda}W e[-\omega_0\dddot{\tau}_0 + \dddot{\tau}_0 + \dddot{\varphi}_0 - \dddot{\eta}_0 - \dddot{\varphi}_0] \\
\dddot{\gamma}_1 - 2im\dddot{\eta} D\dddot{v}_0 = 0 \\
\dddot{u}_1 + D\dddot{v}_1 = 0 \\
D\dddot{\zeta}_1 = 0
\end{cases}
\]

- A l’interface :
\[
\begin{align*}
\begin{cases}
-\omega_0 \tilde{h}_1 - \omega_1 \tilde{h}_0 + \tilde{h}_1 \tilde{u}(\tilde{h}) = \tilde{v}_1(\tilde{h}) \\
[\alpha' \tilde{h}_1 + \bar{u} \tilde{K}_1] = 0 \\
[\bar{v} \tilde{K}_1] = 0 \\
[-i \tilde{h}_0 \bar{\sigma}_K + \bar{\sigma}_K \tilde{K}_1] = 0 \\
[\bar{\zeta} \tilde{K}_1] = 0
\end{cases}
\end{align*}
\]

Système à résoudre à l'ordre zéro :

\[
\begin{align*}
\begin{cases}
\left(\begin{array}{cc}
0 & D^2 \\
\frac{m\mu D^2}{1} & 0
\end{array} \right)
\left(\begin{array}{c}
\tilde{v}_0 \\
\tilde{\tau}_0
\end{array} \right) = \left(\begin{array}{c}
0 \\
0
\end{array} \right)
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
[D\bar{\tau}_K 0] = 0 \\
[D\bar{\sigma}_K] = 0 \\
[D\bar{\sigma}_K 0] = \tilde{h}_0[D\bar{\alpha}' 0] \\
[D\bar{v}_K 0] = 0 \\
[D\bar{v}_1 0] = D\bar{v}_{x0}(1) = 0 \\
[D\bar{v}_{x0}(0)] = \tilde{v}_{20}(1) = 0 \\
[-\omega_0 + \bar{u}(\bar{h})] \tilde{h}_0 = \tilde{v}_0(\bar{h})
\end{cases}
\end{align*}
\]

Système à résoudre à l'ordre un :

\[
\begin{align*}
\begin{cases}
\left(\begin{array}{cc}
0 & D^2 \\
\frac{m\mu D^2}{1} & 0
\end{array} \right)
\left(\begin{array}{c}
\tilde{v}_1 \\
\tilde{\tau}_1
\end{array} \right) = \left(\begin{array}{c}
iRe(-\omega_0 D\bar{u}_0 + \bar{u}' \tilde{v}_0 + \bar{u} D\bar{u}_0) - iD\bar{\sigma}_0 \\
2im\lambda \bar{W} \bar{\eta} D\bar{v}_0 - i\bar{\lambda} \bar{W} e(-\omega_0 \bar{u}_0 + \bar{u} \bar{\tau}_0 + \bar{\tau}' \tilde{v}_0)
\end{array} \right)
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
[D\bar{\tau}_K 1] = \bar{\mu}[\bar{\tau}_K 0] \\
[D\bar{\sigma}_K] = \bar{h}_0[\bar{\sigma}_K 0] \\
[D\bar{v}_K 1] = 0 \\
[D\bar{v}_1 1] = 0 \\
[D\bar{v}_{x1}(0)] = D\bar{v}_{x21}(1) = 0 \\
[D\bar{v}_{x21}(0)] = \tilde{v}_{21}(1) = 0 \\
-\omega_1 \tilde{h}_0 = \tilde{v}_1(\bar{h})
\end{cases}
\end{align*}
\]
8.3 Étude expérimentale en configuration tricouche

8.3.1 Déroulement des essais

De la même manière que dans le cas bicouche, on explore différentes zones de paramètres en faisant varier les débits et la température pour un enlever final diminué à 300\mu m.
Le tableau 8.7 résume les structures symétriques étudiées dans le cas PE/PS/PE à 200°C, on note la somme des débits de polyéthylène et le débit de polystyrène.

<table>
<thead>
<tr>
<th>PE/PS/PE symétrique 200°C</th>
<th>PE1+PE2 :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débits (mm³/s)</td>
<td></td>
</tr>
<tr>
<td>PS :</td>
<td>158 315 706 1098 1489</td>
</tr>
<tr>
<td>1172</td>
<td>X X X X X</td>
</tr>
<tr>
<td>845</td>
<td>X X X X X</td>
</tr>
<tr>
<td>517</td>
<td>X X X X X</td>
</tr>
<tr>
<td>190</td>
<td>X</td>
</tr>
</tbody>
</table>

Tab. 8.7 – Débits estimés étudiés pour les configurations PE/PS/PE symétriques à 200°C

Le tableau 8.8 résume les structures symétriques étudiées dans le cas PS/PE/PS à 200°C et 220°C, on note la somme des débits de polystyrène et le débit de polyéthylène.
Nous avons étudié une configuration non symétrique PS/PE/PS à 200°C. En fixant le débit de polyéthylène à 1820mm³/s, on faisait varier l'ouverture d'une des barres d'étirage ainsi que le débit total de polystyrène. On estima le rapport des débits entre les deux couches de polystyrène en mesurant le rapport des épaisseurs des deux couches périphériques au centre et aux trois quart de la largeur du film. On a pu vérifier qu'il ne variait pas sensiblement entre ces deux points de mesure.
Le tableau 8.9 résume les différentes configurations étudiées.

8.3.2 Analyse du film

Aspect extérieur

Les quatre séries d’expériences en configuration tricouche ont permis de mettre en évidence l’apparition d’instabilités dans tous les cas.
D’une manière générale, on peut dire que l’aspect extérieur du film est semblable à celui observé en configuration bicouche. La majorité des instabilités observées sont en revanche moins développées dans la largeur du film et on n’observe que rarement un défaut dit “chaotique”.
Pour chaque configuration étudiée, on résume les résultats expérimentaux dans des diagrammes (Q₁, Q₂) à l’annexe 8.3.3, où Q₁ et Q₂ sont les débits dont on faisait varier la valeur. Nous utiliserons la même schématisation des films recueillis pour cette étude.
PS/PE/PS symétrique 200°C

<table>
<thead>
<tr>
<th>Débits (mm³/s)</th>
<th>PS1+PS2 :</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE :</td>
<td>665</td>
</tr>
<tr>
<td>2019</td>
<td>X</td>
</tr>
<tr>
<td>1820</td>
<td>X</td>
</tr>
<tr>
<td>1620</td>
<td>X X</td>
</tr>
<tr>
<td>1421</td>
<td>X X</td>
</tr>
<tr>
<td>1222</td>
<td>X X</td>
</tr>
<tr>
<td>1023</td>
<td>X X</td>
</tr>
<tr>
<td>823</td>
<td>X X X</td>
</tr>
<tr>
<td>624</td>
<td>X X X</td>
</tr>
<tr>
<td>425</td>
<td>X X X</td>
</tr>
<tr>
<td>225</td>
<td>X X X</td>
</tr>
</tbody>
</table>

PS/PE/PS symétrique 220°C

<table>
<thead>
<tr>
<th>Débits (mm³/s)</th>
<th>PS :</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE :</td>
<td>665</td>
</tr>
<tr>
<td>3650</td>
<td>X</td>
</tr>
<tr>
<td>2617</td>
<td>X X</td>
</tr>
<tr>
<td>2218</td>
<td>X</td>
</tr>
<tr>
<td>2019</td>
<td>X</td>
</tr>
<tr>
<td>1820</td>
<td>X</td>
</tr>
<tr>
<td>1421</td>
<td>X</td>
</tr>
<tr>
<td>1023</td>
<td>X</td>
</tr>
<tr>
<td>624</td>
<td>X X</td>
</tr>
<tr>
<td>225</td>
<td>X</td>
</tr>
</tbody>
</table>

PS/PE/PS non symétrique 200°C

<table>
<thead>
<tr>
<th>Débits (mm³/s)</th>
<th>PS1+PS2 :</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS2/PS1 :</td>
<td>245 665 1085 1504 1925</td>
</tr>
<tr>
<td>2,2</td>
<td>X X X X</td>
</tr>
<tr>
<td>1,7</td>
<td>X X X X</td>
</tr>
<tr>
<td>1,3</td>
<td>X X X X</td>
</tr>
<tr>
<td>1,0</td>
<td>X X X X</td>
</tr>
</tbody>
</table>

Tab. 8.8 – Débits estimés étudiés pour les configurations PS/PE/PS à 200°C et 220°C

Tab. 8.9 – Débit total de polystyrène et rapport des débits estimés étudiés pour chaque température
8.3. Étude expérimentale en configuration tricouche

Coupe transversale du film

Une étude approfondie de l'influence des conditions opératoires sur la répartition du défaut n’a pas été menée.

Dans le but toutefois d’estimer les débits de chaque produit, nous avons analysé quelques échantillons pour étudier leur répartition dans la largeur du film et être capable de donner un intervalle de confiance aux valeurs de débits estimées.

On trace, aux figures 8.15 et 8.16, la répartition du rapport des hauteurs relatives des couches périphériques sur la largeur de l’échantillon pour ces mêmes films. On note qu’il peut atteindre 40% sur les bords du film dans le cas de la figure 8.16. Au centre la variation relative de hauteur entre la couche inférieure et supérieure atteint 20%. Remarquons que les différentes couches mesurées sont très fines (de l’ordre de la dizaine de μm). La précision de la mesure (de l’ordre du μm) n’est donc pas négligeable dans ce résultat puisqu’elle atteint 10%.

De la même manière que dans le cas bicouche nous pensons que l’inhomogénéité de la répartition des couches de polymères sur le produit solidifié prouve que les débits par unité de largeur dans la filière n’étaient pas uniformes.

Ces observations pourraient encore une fois expliquer le fait que le défaut observé est localisé au centre de l’échantillon. En outre, le défaut de symétrie du film tricouche devra être pris en compte dans la suite de l’étude.

![Graphique de répartition des produits sur la largeur de l’échantillon à 200°C, structure PE/PS/PE](image.png)

Fig. 8.13 – Répartition des produits sur la largeur de l’échantillon à 200°C, structure PE/PS/PE
FIG. 8.14 – Répartition des produits sur la largeur de l’échantillon à 220°C, structure PS/PE/PS

FIG. 8.15 – Répartition du rapport des hauteurs des couches périphériques sur la largeur de l’échantillon à 200°C, structure PE/PS/PE
Fig. 8.16 – Répartition du rapport des hauteurs des couches périphériques sur la largeur de l’échantillon à 220°C, structure PS/PE/PS
8.3.3 Résumé des résultats expérimentaux

Structure PE/PS/PE symétrique à 200°C

Nous avons pu mettre en évidence une transition stable/instable pour cette série d’expérience. Lorsque le débit de polyéthylène est grand, le film recueilli est stable. Plus le rapport Q_{PE}/Q_{PS} diminue, plus on s’approche d’une transition stable/instable. Lorsque le polyéthylène est minoritaire, le film recueilli est très instable. La figure 8.17 résume les résultats expérimentaux.

Structure PS/PE/PS symétrique à 200°C et 220°C

Dans toutes les configurations étudiées, le film recueilli présente une légère instabilité. Cette instabilité est plus prononcée pour une température de 200°C et des grands débits de polyéthylène. Toutes les configurations étudiées sont donc schématisées par un symbole montrant une “légère instabilité”. Les figures 8.18 et 8.19 résument les résultats expérimentaux.

Structure PS/PE/PS non symétrique à 200°C

Nous avons pu mettre en évidence une transition stable/instable pour cette série d’expériences (figure 8.20). Il semble que la paramètre machine responsable de la transition stable/instable soit la valeur du débit total de polyéthylène devant celle du débit de polystyrène : lorsque le débit total de polyéthylène est inférieur à 1800mm3/s, l’écoulement présente une légère instabilité. L’amplitude des vagues observées augmente lorsque le polyéthylène devient minoritaire. La dissymétrie de débit entre les couches périphériques de polyéthylène n’entre que faiblement en compte dans l’apparition d’instabilités.
Fig. 8.17 – Résumé des résultats expérimentaux tricouches (structure PE/PS/PE symétrique à 200°C)
Fig. 8.18 – Résumé des résultats expérimentaux tricouches (structure PS/PE/PS symétrique à 200°C)
Fig. 8.19 – Résumé des résultats expérimentaux tricouches (structure PS/PE/PS symétrique à 220°C)
Fig. 8.20 – Résumé des résultats expérimentaux tricouches (structure PS/PE/PS non-symétrique à 200°C)
8.4 Résultats de stabilité asymptotique en configuration tricouche

8.4.1 L’étude de stabilité asymptotique

Dans la suite nous étudions la stabilité asymptotique de l’écoulement tricouche pour des fluides de White-Metzner. Il existe donc deux interfaces polymère/polymère dans l’écoulement. Nous présentons les équations du problème dans le cas général à N couches et nous précisons les particularités du calcul tricouche.

Écoulement de base

Le champ de vitesse et le champ de contraintes ont la même forme :

$$\tau = \left(\begin{array}{c} \sigma' \\ \tau \\ 0 \end{array} \right), \quad \tilde{u} = \left(\begin{array}{c} \tilde{u}(y) \\ 0 \end{array} \right)$$

il y a $N - 1$ interfaces et le problème s’écrit :

$$\begin{cases}
\tau' = m(\eta\tilde{u}') = \zeta \\
\eta = \left[1 + \left(\frac{k}{\tilde{u}'} \right)^a \right]^{\frac{m-1}{a}} \\
\tilde{u}(0) = \tilde{u}(1) = 0 \\
\left[||\tilde{u}||_{\tilde{h}_k} \right] = 0 \\
\left[||\tilde{\sigma}||_{\tilde{h}_k} \right] = 0
\end{cases}$$

où \tilde{h}_k est la position de la $k^{\text{ème}}$ interface, k varie de 1 à $N - 1$.

Équations obtenues à l’ordre zéro

Les équations aux perturbations sont identiques au problème bicouche avec k conditions de continuité (une par interface) :

$$\begin{cases}
\left[||\tilde{u}||_{\tilde{h}_k} \right] = 0 \\
\left[||\tilde{\sigma}||_{\tilde{h}_k} \right] = 0 \\
\partial_t \tilde{h}_k + \partial_x \tilde{h}_k \tilde{u}(\tilde{h}_k) = \dot{\tilde{v}}(\tilde{h}_k)
\end{cases}$$

On obtient alors le problème à résoudre à l’ordre zéro :

$$\begin{pmatrix}
0 & D^2 \\
mjD^2 & 1
\end{pmatrix}
\begin{pmatrix}
\tilde{v}_0 \\
\tilde{\sigma}_0
\end{pmatrix} =
\begin{pmatrix}
0 \\
0
\end{pmatrix}$$

A l’ordre zéro \tilde{v}_0 s’écrit :

$$[-\alpha_0 + \tilde{u}(\tilde{h}_k)] \tilde{h}_0 = \tilde{v}_0(\tilde{h}_k)$$
\[\tilde{v}_0 = \sum_{j=1}^{N-1} \tilde{h}_{0j} \Phi_j, \]

où \(\Phi_j \) vérifie le système à l’ordre zéro pour \(\|[\tilde{D}\tilde{v}_0]||_{\tilde{h}_k} = \delta_{kj} \|[\tilde{v}']||_{\tilde{h}_k} \).

\(\omega_0 \) et \(\tilde{h}_{k0} \) sont solution du problème aux valeurs propres :

\[A\tilde{h}_0 = -\omega_0 \tilde{h}_0, \]

où \(A = (a_{ij}) \) est une matrice carrée de dimension \(N - 1 \) définie par

\[a_{ij} = \Phi_j(\bar{h}_i) - \delta_{ij} \bar{a}_k(\tilde{h}_j) \]

et \(\tilde{h}_0 \) le vecteur \(\tilde{h}_0 = (\tilde{h}_{0k}) \).

En trois couches si \(\omega_0 \) est complexe l’écoulement est instable puisque son conjugué est aussi solution.

Equations obtenues à l’ordre un

Le système à résoudre est :

\[
\begin{pmatrix}
0 & D^2 \\
\bar{m}jD^2 & 1
\end{pmatrix}
\begin{pmatrix}
\tilde{v}_1 \\
\bar{\tau}_1
\end{pmatrix}
= \begin{pmatrix}
-i\text{Re}((-\omega_0 + \bar{a})D^2 - \bar{a}'\bar{v}_0 - iD\bar{\sigma}_0) \\
2im\Lambda e^{\bar{a}_k} D\bar{v}_0 - i\Lambda \bar{e}(-\omega_0\bar{v}_0 + \bar{a}\bar{\tau}_0 + \bar{\tau}'\bar{v}_0)
\end{pmatrix}
\]

\[
\begin{cases}
[[\tilde{D}\bar{\tau}_1]]_{\tilde{h}_k} = -i[\text{Re}((-\omega_0 + \bar{a})D + \bar{a}')\bar{v}_0 + \bar{\sigma}_0]_{\tilde{h}_k} \\
[[\tilde{D}\tilde{v}_1]]_{\tilde{h}_k} = \bar{h}_{k1}[\bar{\sigma}]_{\tilde{h}_k} \\
[\tilde{v}_{k1}]_{\tilde{h}_k} = 0 \\
\tilde{D}\tilde{v}_{11}(0) = \tilde{D}\tilde{v}_{N1}(1) = 0 \\
\tilde{\tau}_{11}(0) = \tilde{\tau}_{N1}(1) = 0 \\
[-\omega_0 + \bar{a}(\tilde{h}_k)] \bar{h}_{k1} - \omega_1 \bar{h}_{k0} = \bar{v}_1(\tilde{h}_k)
\end{cases}
\]

A l’ordre un \(\tilde{v}_1 \) s’écrit :

\[\tilde{v}_1 = i\bar{\Psi} + \sum_{j=1}^{N-1} \tilde{h}_{1j} \Phi_j, \]

où \(\bar{\Psi} \) vérifie le système à l’ordre un sans \(i \) en facteur pour \(\|[\tilde{D}\tilde{v}_1]||_{\tilde{h}_k} = 0 \).

On pose \(\tilde{h}_{1k} = i\bar{h}_{1k} \), on trouve \(\omega_1 \) en résolvant l’alternative de fredholm :

\[(A + \omega_0 I)h_1 = -\omega_1 h_0 - \bar{\Psi}, \text{ avec } h_1 = (h_{1k}), \bar{\Psi} = (\bar{\Psi}(\tilde{h}_k)). \]

En trois couches on résoud le problème lorsque \(\omega_0 \) est réel en cherchant pour chaque \(\omega_1 \) les(s) \(\omega_1 \) correspondant(s) :

\[\forall \tilde{h}^* \in Ker(\text{tr}(A + \omega_0 I)), \langle \omega_1 \tilde{h}_0 + \bar{\Psi}, \tilde{h}^* \rangle = 0 \]

La méthode numérique utilisée est la même que dans le cas bicouche.
8.4.2 Comparaison à l'expérience

Structure PE/PS/PE symétrique

La figure 8.21 montre la courbe de stabilité neutre obtenue pour la loi de White-Metzner superposée aux résultats expérimentaux en filière porte-manteau pour la température 200°C.

Le calcul fait apparaître une zone instable qui occupe la moitié de la fenêtre expérimentale. Une transition vers des configurations stables est donnée pour des faibles débits de polystyrène et des grands débits de polystyrène. Si on impose au calcul une dissymétrie de 20% sur les débits des couches périphériques cette frontière n’est que peu déplacée.

La comparaison à l’expérience montre ici que l’étude de stabilité asymptotique ne permet pas de décrire la transition observée expérimentalement puisque celle-ci apparaît lorsque les débits de polystyrène diminuent pour des grands débits de polystyrène. On obtient donc des résultats opposés à l’expérience.

Structures PS/PE/PS symétriques

Les figures 8.22 et 8.23 montrent les courbes de stabilité neutres obtenues pour la loi de White-Metzner superposées aux résultats expérimentaux en filière porte-manteau pour, respectivement, les températures 200°C et 220°C.

A 200°C le calcul donne une zone stable pour des débits équilibrés de polystyrène et de polystyrène. Lorsque l’un des deux polymères est majoritaire l’écoulement est donné stable par le calcul.

A 220°C la zone stable disparaît et le calcul donne des configurations instables dans toute la fenêtre expérimentale.

La comparaison à l’expérience montre qu’à 220°C il existe une relativement bonne corrélation entre les résultats même s’il existe une configuration expérimentalement stable à faible débit de polystyrène.

A 200°C en revanche, l’expérience montre que l’écoulement reste instable majoritairement donc les résultats de calcul sont en contradiction avec l’observation expérimentale.

Structure PS/PE/PS non symétrique

On reporte sur la figure 8.24 la courbe de stabilité neutre obtenue pour la loi de White-Metzner superposée aux résultats expérimentaux en filière porte-manteau pour la température 200°C.

Le calcul fait apparaître une transition entre des configurations stables (lorsque le débit total de polystyrène est grand) et instables (dès que le débit d’une des couches de polystyrène diminue). Ce graphe présente bien sûr une symétrie autour de l’axe $Q_{PE_1} = Q_{PE_2}$ puisque on peut intervertir les couches périphériques de polymères sans modifier le résultat de calcul.

Dans ce cas on retrouve une bonne corrélation avec l’étude expérimentale puisque les frontières théoriques séparent bien les configurations stables des configurations instables observées expérimentalement.
Fig. 8.21 – Comparaison de l'étude de stabilité asymptotique aux résultats expérimentaux en filière porte-manteau pour l'écoulement tricouche PE/PS/PE symétrique à 200° C
Fig. 8.22 – Comparaison de l'étude de stabilité asymptotique aux résultats expérimentaux en filière porte-manteau pour l'écoulement tricouche PS/PE/PS symétrique à 200°C
Fig. 8.23 – Comparaison de l’étude de stabilité asymptotique aux résultats expérimentaux en filière porte-manteau pour l’écoulement tricouche PS/PE/PS symétrique à 220°C
Fig. 8.24 – Comparaison de l’étude de stabilité asymptotique aux résultats expérimentaux en filière porte-manteau pour l’écoulement tricouche PS/PE/PS non-symétrique à 200°C
8.5 Méthode de la puissance inverse

Nous étudions la stabilité linéaire de l’écoulement bicouche de fluides de White-Metzner. Le problème aux valeurs propres généralisées s’exprime dans chaque couche (en conservant les notations du chapitre 2) :

\[(1 + i kW e \lambda \tilde{a}) \sigma - 2 W e \lambda \tilde{a'} \tau - 2 ik(W e \lambda \tilde{a} + m \tilde{h}) u \\
- 2 W e(\tilde{\lambda} + \frac{\partial \tilde{a}}{\partial \tilde{u}}) \tau D u + W e \lambda \tilde{a'} \tau - 2 ikW e \frac{\partial \tilde{a}}{\partial \tilde{u}} \tau v = i \omega W e \lambda \sigma \]

\[(1 + i kW e \lambda \tilde{a}) \tau - W e \lambda \tilde{a'} \gamma - m(\tilde{\gamma} + \frac{\partial \tilde{a}}{\partial \tilde{t}}) Du \\
- ik(W e \lambda \tilde{a} + m(\tilde{\gamma} + \frac{\partial \tilde{a}}{\partial \tilde{t}})) \gamma v + W e \lambda \tilde{a'} v = i \omega W e \lambda \tau \]

\[(1 + i kW e \lambda \tilde{a}) \gamma + 2 ikm \tilde{h} u - 2 ikW e \lambda \tilde{a} v = i \omega W e \lambda \gamma \]

\[ik \sigma + D \tau - ik Re \tilde{u} - Re \tilde{a} \gamma - ikp = -i \omega Re \]

\[ik \tau + D \gamma - ik Re \tilde{v} - Dp = -i \omega Rev \]

\[iku + Dv = 0 \]

\[v(\tilde{h}) - ik \tilde{a}(\tilde{h}) \tilde{h} = -i \omega h \]

Les conditions de continuité à l’interface se traduisent par :

\[\left[|v|\right]_{\tilde{h}} = 0 \]
\[\left[|u|\right]_{\tilde{h}} + h\left[|\tilde{a'}|\right]_{\tilde{h}} = 0 \]
\[\left[|\sigma|\right]_{\tilde{h}} - ikh\left[|\sigma|\right]_{\tilde{h}} = 0 \]
\[-\left[|\rho|\right]_{\tilde{h}} + \left[|\gamma|\right]_{\tilde{h}} = k^2 Sh \]

où \(S\) est la tension de surface que l’on suppose négligeable [33]. Les conditions aux limites du problème sont une vitesse \(u = (u, v)\) nulle aux bords.

Ces équations sont discrétisées à partir d’une méthode Tau-Chebyshev [7]. L’étude numérique consiste à rechercher la valeur propre \(\omega\) du problème de plus grande partie imaginaire. Nous avons utilisé l’algorithme de la puissance inverse, qui est repris de l’étude menée par Laure et al. [33] sur la stabilité linéaire d’écoulements multicouches de fluides d’Oldroyd-B.

Cette méthode est une variante de la méthode de la puissance itérée qui permet de déterminer d’une seule valeur propre du problème \(Ax = \lambda x\) et qui consiste à choisir un vecteur initial \(v_1 = \sum \alpha_i \tilde{u}_i\) (où \((\lambda_i, \tilde{u}_i)\) sont les couples valeurs-vecteurs propres et on suppose que \(\lambda_1\) est la seule valeur propre de plus grand module) et construire la séquence :

\[v_{k+1} = Av_k\]

\[v_{k+1} = v_{k+1} / \| v_{k+1} \| \]

Cette séquence converge vers le vecteur propre associé à la valeur propre de plus grand module de \(A\), car on a avant normalisation :

\[v_{k+1} = \lambda_1^k (\alpha_1 \tilde{u}_1 + \sum_{i=2}^{n} \frac{\lambda_i}{\lambda_1}^k \alpha_i \tilde{u}_i)\]
La méthode de la puissance inverse n’est rien d’autre que la méthode de la puissance itérée, appliquée à la matrice \((A - \omega_0 I)^{-1}\) où \(\omega_0\) est la partie réelle de la valeur propre recherchée. Ainsi, la séquence

\[
\begin{align*}
(A - \omega_0 I)v_{k+1} &= v_k \\
v_{k+1} &= v_{k+1} / \| v_{k+1} \|
\end{align*}
\]

converge vers le vecteur propre, \(v_{sol}\) de \(A\), associé à la valeur propre \(\omega\) la plus proche de \(\omega_0\), où \(\omega = \omega_0 + \frac{1}{\lambda}\) et \(\lambda = v_{sol}^*(A - \omega_0 I)^{-1}v_{sol} / v_{sol}^*v_{sol}\). En effet, dans ce cas,

\[
v_{k+1} = \frac{1}{(\lambda_1 - \omega_0)^k} (\alpha_1 u_1 + \sum_{i=2}^{\lambda} (\frac{\lambda_i - \omega_0}{\lambda_1 - \omega_0})^k \alpha_i u_i)
\]

où \(1/(\lambda_1 - \omega_0)\) est la seule valeur propre de plus grand module.

On peut adapter cet algorithme au cas où l’on a un problème aux valeurs propres généralisées \(Ax = \lambda Bx\), \(B\) étant une matrice singulière. Pour cela, on utilise la séquence suivante

\[
\begin{align*}
(A - \omega_0 B)v_{k+1} &= Bv_k \\
v_{k+1} &= v_{k+1} / \| v_{k+1} \|
\end{align*}
\]

qui revient à appliquer la puissance inverse à la matrice \((B^{-1}A - \omega_0 I)\), mais sans calculer explicitement l’inverse de la matrice \(B\).

Notons que si le décalage \(\omega_0\) est très proche d’une valeur propre du problème, la matrice \((A - \omega_0 B)\) est presque singulière et appliquer la technique de la puissance inverse nécessite la résolution d’un système mal conditionné. Toutefois, bien que la solution du système linéaire soit entachée d’importantes erreurs, Peters et Wilkinson [40] ont montré que la direction du vecteur solution était correcte et que, dans une telle méthode, seule la direction du vecteur importe et donc, non seulement la singularité de la matrice \((A - \omega_0 B)\) ne gêne en rien la bonne marche de l’algorithme, mais présente en plus certains avantages comme la rapidité de la convergence.
Bibliographie

191

