B. Graham, J. Talent, and G. T. Allison, World at risk : the report of the Commission on the Prevention of WMD Proliferation and Terrorism. Vintage, 2008.

E. Hernandez, F. Ramisse, Y. Gauthier, P. Baylac, D. Vidal et al., R??le du laboratoire de bact??riologie dans la prise en compte du risque biologique agressif, Revue Fran??aise des Laboratoires, vol.2002, issue.343, p.20027180, 2002.
DOI : 10.1016/S0338-9898(02)80222-0

D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, Electrochemical biosensors : recommended denitions and classication, Biosensors and Bioelectronics, vol.16, issue.12, p.121131, 2001.

B. B. Haab, Antibody Arrays in Cancer Research, Molecular & Cellular Proteomics, vol.4, issue.4, pp.377-383, 2005.
DOI : 10.1074/mcp.M500010-MCP200

S. Fodor, . Read, L. Mc-pirrung, . Stryer, D. Lu et al., Light-directed, spatially addressable parallel chemical synthesis, Science, vol.251, issue.4995, p.251767773, 1991.
DOI : 10.1126/science.1990438

C. Weisbuch, M. Rattier, L. Martinelli, H. Choumane, J. C. Avarre et al., Towards portable, real-time, integrated uorescence microarray diagnostics tools, ITBM-RBM, vol.28, pp.5-6216223, 2007.
DOI : 10.1016/j.rbmret.2007.11.015

J. Homola, Present and future of surface plasmon resonance biosensors, Analytical and Bioanalytical Chemistry, vol.377, issue.3, p.528539, 2003.
DOI : 10.1007/s00216-003-2101-0

M. Kanso, Modélisation, réalisation et caractérisation d'un capteur plasmonique à bre optique : Eets de la rugosité, des réactions de surface et de la cinétique dans un système microuidique, 2008.

B. Cherif, A. Roget, C. L. Villiers, R. Calemczuk, V. Leroy et al., Clinically Related Protein-Peptide Interactions Monitored in Real Time on Novel Peptide Chips by Surface Plasmon Resonance Imaging, Clinical Chemistry, vol.52, issue.2, p.255262, 2006.
DOI : 10.1373/clinchem.2005.058727

URL : https://hal.archives-ouvertes.fr/inserm-00089356

R. H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplication, and DNA microarray detection, Anal. Chem, issue.7, p.7618241831, 2004.

C. Sullivan and G. Guilbault, Commercial quartz crystal microbalancestheory and applications, Biosensors and Bioelectronics, vol.14, issue.8-9, p.663670, 1999.

A. Shons, F. Dorman, and J. Najarian, An immunospecic microbalance, Journal of Biomedical Materials Research, vol.6, issue.6, 1972.
DOI : 10.1002/jbm.820060608

N. Fawcett, J. Evans, N. Lc-chien, and . Flowers, A piezoelectric biosensor for gene-probe assay, Anal. Lett, vol.21, p.1114, 1099.

M. Rodahl, F. Höök, A. Krozer, P. Brzezinski, and B. Kasemo, ???factor measurements in gaseous and liquid environments, Review of Scientific Instruments, vol.66, issue.7, p.3924, 1995.
DOI : 10.1063/1.1145396

T. Alava, N. Berthet-duroure, C. Ayela, E. Trévisiol, M. Pugnière et al., Parallel acoustic detection of biological warfare agents surrogates by means of piezoelectric immunochips, Sensors & Actuators : B. Chemical, 2009.
DOI : 10.1016/j.snb.2009.02.060

URL : https://hal.archives-ouvertes.fr/hal-00406164

J. Fritz, . Baller, H. Lang, P. Rothuizen, E. Vettiger et al., Translating Biomolecular Recognition into Nanomechanics, Science, vol.288, issue.5464, p.288316, 2000.
DOI : 10.1126/science.288.5464.316

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote et al., Bioassay of prostate-specic antigen (PSA) using microcantilevers, Nature Biotechnology, vol.19, issue.9, pp.856-860, 2001.
DOI : 10.1038/nbt0901-856

P. S. Waggoner and H. G. Craighead, Micro- and nanomechanical sensors for environmental, chemical, and biological detection, Lab on a Chip, vol.75, issue.2, p.12381255, 2007.
DOI : 10.1039/b707401h

B. Ilic, Y. Yang, K. Aubin, R. Reichenbach, S. Krylov et al., Enumeration of DNA Molecules Bound to a Nanomechanical Oscillator, Nano Letters, vol.5, issue.5, p.925929, 2005.
DOI : 10.1021/nl050456k

K. S. Hwang, J. H. Lee, J. Park, D. S. Yoon, J. H. Park et al., In-situ quantitative analysis of a prostate-specic antigen (PSA) using a nanomechanical PZT cantilever, Lab on a Chip, vol.4, issue.6, p.547552, 2004.

J. H. Lee, K. S. Hwang, J. Park, K. H. Yoon, D. S. Yoon et al., Immunoassay of prostate-specic antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever, Biosensors and Bioelectronics, issue.10, p.2021572162, 2005.

A. Gupta, D. Akin, and R. Bashir, Single virus particle mass detection using microresonators with nanoscale thickness, Applied Physics Letters, vol.84, issue.11, 1976.
DOI : 10.1063/1.1667011

N. Jarezic-renault, C. Marterlet, and P. Clechet, Capteurs chimiques et biochimiques, p.360360, 1994.

W. K. Ward, L. B. Jansen, E. Anderson, G. Reach, J. C. Klein et al., A new amperometric glucose microsensor: in vitro and short-term in vivo evaluation, Biosensors and Bioelectronics, vol.17, issue.3, p.181189, 2002.
DOI : 10.1016/S0956-5663(01)00268-8

S. J. Park, T. A. Taton, and C. A. Mirkin, Array-based electrical detection of DNA with nanoparticle probes, 2002.

G. Durand and . Potentiométrie, Techniques de l'ingénieur. Analyse et caractérisation, 1983.

H. Nilsson, K. Akerlund, and . Mosbach, Determination of glucose, urea and penicillin using enzyme-pH-electrodes, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.320, issue.2, p.529, 1973.
DOI : 10.1016/0304-4165(73)90333-4

P. Bergveld, Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements, IEEE Transactions on Biomedical Engineering, vol.17, issue.1, p.7071, 1970.
DOI : 10.1109/TBME.1970.4502688

S. Caras and J. Janata, Field eect transistor sensitive to penicillin, Analytical Chemistry, vol.52, issue.12, p.19351937, 1980.

K. Besteman, J. O. Lee, F. G. Wiertz, H. A. Heering, and C. Dekker, Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors, Nano Letters, vol.3, issue.6, p.727730, 2003.
DOI : 10.1021/nl034139u

A. Star, J. C. Gabriel, K. Bradley, and G. Gruner, Electronic detection of specic protein binding using nanotube FET devices, Nano Letters, vol.3, issue.4, p.459463, 2003.

R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. Wong-shi-kam, M. Shim et al., Noncovalent functionalization of carbon nanotubes for highly specic electronic biosensors, Proceedings of the National Academy of Sciences, p.49844989, 2003.

H. R. Byon and H. C. Choi, Network single-walled carbon nanotube-eld eect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications, J. Am. Chem. Soc, issue.7, p.12821882189, 2006.

I. Heller, A. M. Janssens, J. Mannik, E. D. Minot, S. G. Lemay et al., Identifying the Mechanism of Biosensing with Carbon Nanotube Transistors, Nano Letters, vol.8, issue.2, p.591595, 2008.
DOI : 10.1021/nl072996i

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, vol.293, issue.5533, p.29312891292, 2001.
DOI : 10.1126/science.1062711

J. Hahm and C. M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors, Nano Letters, vol.4, issue.1, p.5154, 2004.
DOI : 10.1021/nl034853b

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nature Biotechnology, vol.249, issue.10, pp.1294-1301, 2005.
DOI : 10.1021/ac049479u

F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang et al., Electrical detection of single viruses, Proceedings of the National Academy of Sciences, pp.14017-14022, 2004.
DOI : 10.1073/pnas.0406159101

A. Lahmani, P. Houdy, P. Boisseau, P. Pugetun, and I. , Les nanosciences Tome 3 : nanobiotechnologies et nanobiologie, Collection Echelles. Belin, 2007. 2.1.1 Fonctionnement d', p.46

.. Extension-À-la-détection-biologique, 50 2.1.2.1 Cas des biorécepteurs catalytiques, p.51

.. Etat-de-l-'art-des-performances, 55 2.2.1 Transistors pour la détection d'ions (ISFETs) 55 2.2.2 Transistors planaires pour la détection biologique, p.56

.. Etat-de-l-'art-technologique, 60 2.3.1 L'approche bottom-up (Vapeur-Liquide-Solide), p.62

P. Bergveld, Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements, IEEE Transactions on Biomedical Engineering, vol.17, issue.1, p.7071, 1970.
DOI : 10.1109/TBME.1970.4502688

R. Van-hal and P. Bergveld, A novel description of ISFET sensitivity with the buer capacity and double-layer capacitance as key parameters, Sensors & Actuators : B. Chemical, vol.24, pp.1-3201205, 1995.

A. Bard and L. Faulkner, Electrochemical Methods : Fundamentals and Applications Wiley, 1980.

D. E. Yates, S. Levine, and T. W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.70, issue.0, p.18071818, 1974.
DOI : 10.1039/f19747001807

J. Janata and S. Moss, Chemically sensitive eld-eect transistors, Biomedical engineering, vol.11, issue.7, p.241245, 1976.
DOI : 10.1016/0003-2670(86)80014-9

A. Poghossian, A. Cherstvy, S. Ingebrandt, A. Oennäusser, and M. Schöning, Possibilities and limitations of label-free detection of DNA hybridization with eld-eect-based devices

P. Bergveld, A critical evaluation of direct electrical protein detection methods, Biosensors and Bioelectronics, vol.6, issue.1, p.5572, 1991.
DOI : 10.1016/0956-5663(91)85009-L

. Real-time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs, IEEE Transactions on Nanotechnology, vol.7, issue.6, p.651667, 2008.

T. Matsuo and M. Esashi, Methods of isfet fabrication, Sensors and Actuators, vol.1, p.7696, 1981.
DOI : 10.1016/0250-6874(81)80006-6

S. D. Moss, J. Janata, and C. C. Johnson, Potassium ion-sensitive eld eect transistor, Analytical Chemistry, issue.13, p.4722382243, 1975.

I. Humenyuk, Développement des microcapteurs chimiques CHEMFETs pour l'analyse de l'eau, LAAS, 2005.

S. Caras and J. Janata, Field eect transistor sensitive to penicillin, Analytical Chemistry, vol.52, issue.12, p.19351937, 1980.

E. Souteyrand, . Cloarec, C. Martin, I. Wilson, S. Lawrence et al., Direct detection of the hybridization of synthetic homo-oligomer DNA sequences by eld eect, J. Phys. Chem. B, vol.101, issue.15, p.29802985, 1997.

D. S. Kim, Y. T. Jeong, H. J. Park, J. K. Shin, P. Choi et al., An FET-type charge sensor for highly sensitive detection of DNA sequence, Biosensors and Bioelectronics, vol.20, issue.1, p.6974, 2004.
DOI : 10.1016/j.bios.2004.01.025

P. Bataillard, F. Gardies, N. Jarezic-renault, C. Martelet, B. Colin et al., Direct detection of immunospecies by capacitance measurements, Analytical Chemistry, vol.60, issue.21, p.6023742379, 1988.
DOI : 10.1021/ac00172a011

M. Klein, R. Kates, N. Chucholowski, M. Scmitt, and C. Lyden, Monitoring of antibodyantigen reacions with anity sensors : experiments and models, Sensors & Actuators : B. Chemical, vol.27, pp.1-3474476, 1995.

Y. S. Sohn and Y. Kim, Field-effect-transistor type C-reactive protein sensor using cysteine-tagged protein G, Electronics Letters, vol.44, issue.16, p.955, 2008.
DOI : 10.1049/el:20080720

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, vol.293, issue.5533, p.29312891292, 2001.
DOI : 10.1126/science.1062711

F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang et al., Electrical detection of single viruses, Proceedings of the National Academy of Sciences, pp.14017-14022, 2004.
DOI : 10.1073/pnas.0406159101

J. Hahm and C. M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors, Nano Letters, vol.4, issue.1, p.5154, 2004.
DOI : 10.1021/nl034853b

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nature Biotechnology, vol.249, issue.10, pp.1294-1301, 2005.
DOI : 10.1021/ac049479u

Z. Li, Y. Chen, X. Li, K. Kamins, R. Nauka et al., Sequence-specic label-free DNA sensors based on silicon nanowires, Nano Letters, vol.4, issue.2, p.245247, 2004.
DOI : 10.1021/nl034958e

G. J. Zhang, A. Agarwal, K. D. Buddharaju, N. Singh, and Z. Gao, Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide-semiconductor-compatible silicon nanowires, Applied Physics Letters, vol.90, issue.23, p.233903, 2007.
DOI : 10.1063/1.2746962

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-evans et al., Label-free immunodetection with CMOScompatible semiconducting nanowires, Nature, issue.7127, p.445519522, 2007.

L. Luo, J. Jie, W. Zhang, Z. He, J. Wang et al., Silicon nanowire sensors for Hg and Cd ions, Applied Physics Letters, vol.94, 2009.

C. Li, M. Curreli, H. Lin, B. Lei, R. Fn-ishikawa et al., Complementary detection of prostate-specic antigen using In2O3 nanowires and carbon nanotubes, J. Am. Chem. Soc, vol.127, p.1248412485, 2005.

M. Law, H. Kind, B. Messer, F. Kim, and P. Yang, NO2 photochemical sensing with oxide nanoribbon at room temperature, Angew. Chem. Int. Edit, vol.41, p.24052408, 2002.

A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek et al., Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors, Applied Physics Letters, vol.91, issue.10, p.103901, 2007.
DOI : 10.1063/1.2779965

N. Elfström, J. Karlström, and . Linnros, Silicon Nanoribbons for Electrical Detection of Biomolecules, Nano Letters, vol.8, issue.3, p.945, 2008.
DOI : 10.1021/nl080094r

G. J. Zhang, J. H. Chua, R. E. Chee, A. Agarwal, S. M. Wong et al., Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors, Biosensors and Bioelectronics, vol.23, issue.11, p.2317011707, 2008.
DOI : 10.1016/j.bios.2008.02.006

R. S. Wagner, Whisker Technology, AP Levitt, p.47119, 1970.

A. M. Morales and C. M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science, vol.279, issue.5348, p.279208, 1998.
DOI : 10.1126/science.279.5348.208

W. Lu and C. M. Lieber, Semiconductor nanowires, Journal of Physics D: Applied Physics, vol.39, issue.21, p.387, 2006.
DOI : 10.1088/0022-3727/39/21/R01

Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell et al., Controlled Growth and Structures of Molecular-Scale Silicon Nanowires, Nano Letters, vol.4, issue.3, p.433436, 2004.
DOI : 10.1021/nl035162i

C. Mouchet, Croissance de nanols de silicium et de Si/SiGe, 2008.

S. W. Chung, J. Y. Yu, and J. R. Heath, Silicon nanowire devices, Applied Physics Letters, vol.76, issue.15, p.2068, 2000.
DOI : 10.1063/1.126257

F. Patolsky, G. Zheng, and C. M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species, Nature Protocols, vol.430, issue.4, p.17111724, 2006.
DOI : 10.1038/nprot.2006.227

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Directed Assembly of One-Dimensional Nanostructures into Functional Networks, Science, vol.291, issue.5504, p.291630633, 2001.
DOI : 10.1126/science.291.5504.630

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature, issue.6816, pp.40966-69, 2001.

F. Kim, S. Kwan, J. Akana, and P. Yang, Langmuir???Blodgett Nanorod Assembly, Journal of the American Chemical Society, vol.123, issue.18, p.12343604361, 2001.
DOI : 10.1021/ja0059138

D. Whang, S. Jin, Y. Wu, and C. M. Lieber, Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems, Nano Letters, vol.3, issue.9, p.12551259, 2003.
DOI : 10.1021/nl0345062

M. S. Islam, S. Sharma, R. S. Kamins, and . Williams, Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces, Nanotechnology, vol.15, issue.5, p.58, 2004.
DOI : 10.1088/0957-4484/15/5/L01

M. S. Islam, S. Sharma, R. Kamins, and . Williams, A novel interconnection technique for manufacturing nanowire devices, Applied Physics A : Materials Science & Processing, vol.80, issue.6, p.11331140, 2005.

T. Xu, Croissance localisée, caractérisation structurale et électronique de nanols silicium, pp.27-2009

Y. Shan, A. K. Kalkan, C. Y. Peng, and S. J. Fonash, From Si Source Gas Directly to Positioned, Electrically Contacted Si Nanowires:?? The Self-Assembling ???Grow-in-Place??? Approach, Nano Letters, vol.4, issue.11, p.20852089, 2004.
DOI : 10.1021/nl048901j

K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gosele, Self-ordering Regimes of Porous Alumina:?? The 10 Porosity Rule, Nano Letters, vol.2, issue.7, p.677680, 2002.
DOI : 10.1021/nl025537k

C. W. Park, C. G. Ahn, J. H. Yang, I. B. Baek, C. S. Ah et al., Control of channel doping concentration for enhancing the sensitivity of ???top-down??? fabricated Si nanochannel FET biosensors, Nanotechnology, vol.20, issue.47, p.475501, 2009.
DOI : 10.1088/0957-4484/20/47/475501

R. Juhasz, N. Elfstrom, and J. Linnros, Controlled Fabrication of Silicon Nanowires by Electron Beam Lithography and Electrochemical Size Reduction, Nano Letters, vol.5, issue.2, p.275280, 2005.
DOI : 10.1021/nl0481573

M. W. Larkin and R. Matta, The electron beam fabrication of small geometry transistors, 1966 International Electron Devices Meeting, p.491496, 1967.
DOI : 10.1109/IEDM.1966.187730

J. Haisma, M. Verheijen, K. Van-den, J. Heuvel, . Van-den et al., Mold-assisted nanolithography: A process for reliable pattern replication, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.6, p.4124, 1996.
DOI : 10.1116/1.588604

A. A. Talin, L. L. Hunter, F. Léonard, and B. Rokad, Large area, dense silicon nanowire array chemical sensors, Applied Physics Letters, vol.89, issue.15, pp.153102-69, 2006.
DOI : 10.1063/1.2358214

S. Substrats, 77 3.2.1.1 Structure d'un substrat SOI, p.78

.. Développement-d-'un-procédé-de-fabrication, 83 3.3.1 Description générale des étapes de fabrication des transistors 83 3.3.2 Lithographie électronique pour la réalisation de structures à nanol(s), p.86

.. Transfert-des-motifs-par-gravure, 96 3.3.3.1 Gravure humide et gravure sèche, p.99

A. A. Talin, L. L. Hunter, F. Léonard, and B. Rokad, Large area, dense silicon nanowire array chemical sensors, Applied Physics Letters, vol.89, issue.15, p.153102, 2006.
DOI : 10.1063/1.2358214

X. Vu, R. Ghoshmoulick, R. Jf-eschermann, A. Stockmann, S. Oenhäusser et al., Fabrication and application of silicon nanowire transistor arrays for biomolecular detection, Sensors and Actuators B: Chemical, vol.144, issue.2, 2008.
DOI : 10.1016/j.snb.2008.11.048

Z. Li, Y. Chen, X. Li, K. Kamins, R. Nauka et al., Sequence-specic label-free DNA sensors based on silicon nanowires, Nano Letters, vol.4, issue.2, p.245247, 2004.

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-evans et al., Label-free immunodetection with CMOScompatible semiconducting nanowires, Nature, issue.7127, p.445519522, 2007.

N. Elfström, J. Karlström, and . Linnros, Silicon Nanoribbons for Electrical Detection of Biomolecules, Nano Letters, vol.8, issue.3, p.945, 2008.
DOI : 10.1021/nl080094r

P. E. Sheehan and L. J. Whitman, Detection Limits for Nanoscale Biosensors, Nano Letters, vol.5, issue.4, p.803807, 2005.
DOI : 10.1021/nl050298x

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA481137

P. R. Nair and M. A. Alam, Design Considerations of Silicon Nanowire Biosensors, IEEE Transactions on Electron Devices, vol.54, issue.12, p.3400, 2007.
DOI : 10.1109/TED.2007.909059

A. Kim, C. S. Ah, H. Y. Yu, J. H. Yang, I. B. Baek et al., Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors, Applied Physics Letters, vol.91, issue.10, p.103901, 2007.
DOI : 10.1063/1.2779965

W. Beadle, R. Tsai, and . Plummer, Quick reference manual for silicon integrated circuit technology, 1985.

S. Sze, Physics of semiconductor devices 2nd Edition, p.2829, 1981.

A. Broers, Resolution limits for electron-beam lithography, IBM Journal of Research and Development, vol.32, issue.4, p.502513, 1988.

A. Grigorescu and C. Hagen, Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art, Nanotechnology, vol.20, issue.29, p.1231, 2009.
DOI : 10.1088/0957-4484/20/29/292001

B. Bhushan, Springer handbook of nanotechnology, 2006.

D. M. Manos and D. L. Flamm, Plasma etching : an introduction, 1989.

H. Jansen, H. Gardeniers, M. De-boer, M. Elwenspoek, and J. Fluitman, A survey on the reactive ion etching of silicon in microtechnology, Journal of Micromechanics and Microengineering, vol.6, issue.1, p.1428, 1996.
DOI : 10.1088/0960-1317/6/1/002

S. Rosli, H. Aziz, and . Hamid, Characteristics of RIE SF6/O2/Ar Plasmas on n-Silicon Etching, 2006 IEEE International Conference on Semiconductor Electronics, pp.6-851855, 2006.
DOI : 10.1109/SMELEC.2006.380758

G. Schwartz and P. Schaible, Reactive ion etching of silicon, Journal of Vacuum Science and Technology, vol.16, issue.2
DOI : 10.1116/1.569962

M. Koo, M. D. Edelstein, Q. Li, C. A. Richter, and E. M. Vogel, Silicon nanowires as enhancement-mode Schottky barrier eld-eect transistors, Nanotechnology, vol.16, p.14821485, 2005.

S. Sze, Physics of semiconductor devices 2nd Edition, p.291292, 1981.

S. Sze, Physics of semiconductor devices 2nd Edition, p.440441, 1981.

S. Sze, Physics of semiconductor devices 2nd Edition, pp.446447-108, 1981.

.. Suivi-d-'une-variation-de-ph and .. Et-la-biodétection, 124 4.2.2.2 Suivi du pH en temps réel sur une large gamme, p.132

F. Patolsky, G. Zheng, and C. M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species, Nature Protocols, vol.430, issue.4, p.17111724, 2006.
DOI : 10.1038/nprot.2006.227

Z. Li, Y. Chen, X. Li, K. Kamins, R. Nauka et al., Sequence-specic label-free DNA sensors based on silicon nanowires, Nano Letters, vol.4, issue.2, p.245247, 2004.

D. Kim, C. Lee, and X. Zheng, Probing Flow Velocity with Silicon Nanowire Sensors, Nano Letters, vol.9, issue.5, 2009.
DOI : 10.1021/nl900238a

F. H. Van-der-heyden, D. Stein, and C. Dekker, Streaming currents in a single nanouidic channel. Physical review letters, p.95116104, 2005.

I. Park, Z. Li, A. P. Pisano, and R. S. Williams, Top-down fabricated silicon nanowire sensors for real-time chemical detection, Nanotechnology, vol.21, issue.1, p.15501, 2010.
DOI : 10.1088/0957-4484/21/1/015501

L. Bousse and P. Bergveld, The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs, Sensors and Actuators, vol.6, issue.1, p.6578, 1984.
DOI : 10.1016/0250-6874(84)80028-1

J. C. Chou and C. N. Hsiao, Drift behavior of ISFETs with a-Si : H-SiO2 gate insulator, Materials Chemistry & Physics, vol.63, issue.3, p.270273, 2000.

G. Bolt, Determination of the Charge Density of Silica Sols, The Journal of Physical Chemistry, vol.61, issue.9, p.11661169, 1957.
DOI : 10.1021/j150555a007

R. Van-hal and P. Bergveld, A general model to describe the electrostatic potential at electrolyte oxide interfaces Advances in colloid and interface science, pp.1-33162, 1996.

D. V. Vezenov, A. Noy, L. F. Rozsnyai, and C. M. Lieber, Force Titrations and Ionization State Sensitive Imaging of Functional Groups in Aqueous Solutions by Chemical Force Microscopy, Journal of the American Chemical Society, vol.119, issue.8, p.11920062015, 1997.
DOI : 10.1021/ja963375m

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, vol.293, issue.5533, p.29312891292, 2001.
DOI : 10.1126/science.1062711

J. Borghetti, Commande optique de transistors à nanotubes de carbone fonctionnalisés et autoassemblés chimiquement, 2007.

X. P. Gao, G. Zheng, and C. M. Lieber, Subthreshold Regime has the Optimal Sensitivity for Nanowire FET Biosensors, Nano Letters, vol.10, issue.2
DOI : 10.1021/nl9034219

T. M. Squires, R. J. Messinger, and S. R. Manalis, Making it stick: convection, reaction and diffusion in surface-based biosensors, Nature Biotechnology, vol.61, issue.4, p.417426, 2008.
DOI : 10.1038/nbt1388

S. Tan, . Lao, A. Ji, N. Agarwal, D. Balasubramanian et al., Microuidic design for bio-sample delivery to silicon nanowire biosensor-a simulation study, Journal of Physics : Conference Series, p.626630, 2006.

P. Bergveld, Thirty years of ISFETOLOGY What happened in the past 30 years and what may happen in the next 30 years, Sensors & Actuators : B. Chemical, vol.88, issue.1, p.120, 2003.

N. Elfström and J. Linnros, Avalanche breakdown in surface modified silicon nanowires, Applied Physics Letters, vol.91, issue.10, p.103502, 2007.
DOI : 10.1063/1.2779110

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-evans et al., Label-free immunodetection with CMOScompatible semiconducting nanowires, Nature, issue.7127, p.445519522, 2007.

P. Bergveld, Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements, IEEE Transactions on Biomedical Engineering, vol.17, issue.1, p.7071, 1970.
DOI : 10.1109/TBME.1970.4502688

P. Bergveld, Development, operation, and application of the ion-sensitive eld-eect transistor as a tool for electrophysiology, IEEE Transactions on Biomedical Engineering, p.342351, 1972.

S. D. Moss, J. Janata, and C. C. Johnson, Potassium ion-sensitive eld eect transistor, Analytical Chemistry, issue.13, p.4722382243, 1975.
DOI : 10.1021/ac60363a005

N. Elfström, J. Karlström, and . Linnros, Silicon Nanoribbons for Electrical Detection of Biomolecules, Nano Letters, vol.8, issue.3, p.945, 2008.
DOI : 10.1021/nl080094r

Y. Chen, X. Wang, S. Erramilli, P. Mohanty, and A. Kalinowski, Silicon-based nanoelectronic field-effect pH sensor with local gate control, Applied Physics Letters, vol.89, issue.22, p.223512, 2006.
DOI : 10.1063/1.2392828

C. Fung, W. Cheung, and . Ko, A generalized theory of an electrolyte-insulatorsemiconductor eld-eect transistor, IEEE Transactions on Electron Devices, vol.33, issue.1, p.818, 1986.

. Des-cellules-mortes, Cette unité est en général normalisée suivant la nature de l'échantillon : CFU/mL pour les liquides

. Nucléotide, ADN et de l'ARN composé de 3 parties : 1. un groupement phosphate, identique pour les nucléotides de l'ADN et de l'ARN 2. un sucre à 5 atomes de carbone (désoxyribose pour l'ADN et ribose pour l'ARN) 3

E. Psa, Prostate Specic Antigen), protéine fabriquée par la prostate. Le dosage de son taux sanguin est utilisé pour le diagnostic ou le suivi du cancer de la prostate, Bovine Serum Albumin)

B. Annexe, Deux techniques classiques en biodétection : le test ELISA et la PCR Dans cette annexe, nous revenons sur deux techniques qu'il nous a semblé indispensable de connaître dans le domaine de la détection biologique

E. Le-test and E. Le, acronyme anglais de Enzyme-Linked ImmunoSorbent Assay, est une technique de dosage immunoenzymatique sur support solide qui a connu ses premiers développements dans les années 70 1 . La technique consiste à venir accrocher sur l'espèce cible (anticorps ou antigène) un anticorps couplé à une enzyme. La réaction de cette enzyme avec un substrat chromogène ou uorogène est à l

E. Le-procédé-de-la-technique and . Dite, en sandwich", utilisée pour la détection d'antigène, est décrit à la gure B

. Etape-de, coating" : les micropuits d'une plaque sont tapissés avec un anticorps de capture capable de se lier spéciquement à l'antigène recherché. L'anticorps de capture, qui assure la spécicité du test

E. Le-test and . Est-une-technique-bas-coût-très-répandue-aujourd, hui pour le dosage des hormones thyroïdiennes ou pour le dépistage en première ligne du VIH. Les tests utilisés actuellement en France sont dits de quatrième génération : leur particularité est de détecter simultanément les anticorps anti-VIH et l'antigène p24, qui apparaît seulement 2 à 3 semaines après la contamination , avec un seuil de détection inférieur à 50pg/mL. Une étude démontre leur ecacité avec une sensibilité de 100% (tous les patients infectés sont dépistés) et une spécicité de 99,5% (0,5% de faux-positifs) 2 . Le test ELISA est également utilisé pour détecter des agents biologiques 1Enzyme-linked immunosorbent assay (ELISA) Quantitative assay of immunoglobulin G, E. Engvall et al. Immunochemistry, vol.8, issue.9, pp.871-874, 1971.

B. Figure, 1 Le test ELISA dangereux : si l'on considère la toxine botulique, la sensibilité est cette fois de 1ng

. La-technique-de-polymérisation-en-chaîne, PCR) La technique de polymérisation en chaîne (Polymerase Chain Reaction (PCR)) a été développée dans les années 80 4 . Elle permet l'isolement, l'amplication et l'identication d'une séquence d'acides nucléiques (ADN ou ARN) spécique de l

J. L. Ferreira, Detection of preformed type A botulinal toxin in hash brown potatoes by using the mouse bioasssay and a modied ELISA test, Journal of AOAC International, vol.84, issue.5, pp.1460-1464, 2001.

K. Mullis, Specific Enzymatic Amplification of DNA In Vitro: The Polymerase Chain Reaction, Cold Spring Harbor Symposia on Quantitative Biology, vol.51, issue.0, pp.263-73, 1986.
DOI : 10.1101/SQB.1986.051.01.032

P. Principe-de-la and P. Dans-le-cas-de-la, les acides nucléiques sont, dans un premier temps, extraits des échantillons à analyser Ce matériel génétique est ensuite dupliqué par une réaction d'amplication. L'ensemble de la réaction d'amplication est constitué d'une succession d'une trentaine de cycles, eux-mêmes constitués de plusieurs étapes (gure B.3) : 1. une étape de dénaturation de l'ADN double brin par la chaleur an de générer des simples brins 2. une étape d'hybridation des oligonucléotides complémentaires des séquences encadrant la région à amplier