M. B. Bibliographie and . Alaya, Sur la méthode du shift en simulation, Probabilités numériques, pp.61-66, 1992.

M. B. Alaya, On the simulation of expectations of random variables depending on a stopping time, Stochastic Analysis and Applications, 1993.
DOI : 10.1515/9783110844641

R. Alcouffe, Monte Carlo Methods and applications in Neutonics, Phonotics and Statistical Physics, n° 240 , Lecture Notes in Physics, 1985.

L. and S. Anderson, Random Number Generators on Vector Supercomputers and Other Advanced Architectures, SIAM Review, vol.32, issue.2, pp.221-251, 1990.
DOI : 10.1137/1032044

L. Arnold, E. Oeljeklaus, and E. E. Pardoux, Almost sure and moment stability for linear ito equations, Lyapunov Exponents, n° 1186, 1986.
DOI : 10.1137/0321020

L. Arnold, G. Papanicolaou, and E. V. Wihstutz, Asymptotic Analysis of the Lyapunov Exponent and Rotation Number of the Random Oscillator and Applications, SIAM Journal on Applied Mathematics, vol.46, issue.3
DOI : 10.1137/0146030

E. Berger, An almost sure invariance principle for stationary sequences of Banach space valued random variables. Probab. th. rel. Fields, pp.161-201, 1990.

R. N. Bhattacharya, On the functional central limit theorem and the law of the iterated logarithm for Markov processes, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.5, issue.2, pp.185-201, 1982.
DOI : 10.1007/BF00531822

P. Billingsley, Convergence of Probability Measures, 1968.
DOI : 10.1002/9780470316962

K. Binder, Monte Carlo Methods in Statistical Physics, 1986.

N. Bouleau, Probabilités de l'ingénieur, variables aléatoires et simulation, 1986.

N. Bouleau, On effective computation of expectations in large or infinite dimension, Journal of Computational and Applied Mathematics, vol.31, issue.1, pp.23-34, 1990.
DOI : 10.1016/0377-0427(90)90333-U

URL : https://hal.archives-ouvertes.fr/hal-00448696

N. Bouleau, On numerical integration by the shift and application to Wiener space
URL : https://hal.archives-ouvertes.fr/hal-00107444

N. Dunford and J. T. Schwartz, Linear Operators, part I. Interscience, 1967.

O. Faure, Simulation du mouvement brownien et des diffusions, Thèse de l'école nationale des ponts et chaussées, 1992.
URL : https://hal.archives-ouvertes.fr/tel-00523258

W. Feller, An introduction to Probability Theory and its Applications, 1971.

A. Friedman, Stochastic Differential Equations and Applications, 1975.
DOI : 10.1007/978-3-642-11079-5_2

¡. , I. S. Gai, and J. F. Koksma, Sur l'ordre de grandeur des fonctions sommables, Indigationes Math, vol.12, pp.192-207, 1950.

M. I. Gordin, The central limite theorem for stationary sequences, Soviet Math. Dokl, vol.10, issue.5, pp.1174-1175, 1969.

¡. , A. Grorud, and D. Talay, Approximation of Lyapunov exponents of nonlinear stochastic differential systems, 1990.
URL : https://hal.archives-ouvertes.fr/inria-00075218

G. Halasz, Remarks on the remainder in Birkhoff's ergodic theorem, Acta Mathematica Academiae Scientiarum Hungaricae, vol.19, issue.1, pp.389-395, 1976.
DOI : 10.1007/BF01896805

P. Hall and C. C. Heyde, Martingale limit theory and its application Academic press, 1980.

T. E. Harris, The existence of stationary measures for certain Markov processes. Third Berkeley sump, Matth Stat. Proba. II, 1956.

D. W. Heermann, Computer simulation methods in theoretical physics, 1986.

C. C. Heyde, On the central limit theorem and iterated logarithm law for stationary processes, Bulletin of the Australian Mathematical Society, vol.10, issue.01, 1975.
DOI : 10.1214/aop/1176996714

C. C. Heyde and D. J. Scott, Invariance Principles for the Law of the Iterated Logarithm for Martingales and Processes with Stationary Increments, The Annals of Probability, vol.1, issue.3, pp.428-436, 1973.
DOI : 10.1214/aop/1176996937

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 1981.

C. T. Ionescu-tulcea and G. Marinescu, Théorie ergodique pour des classes d'opérations non complètement continues, Ann. Math, vol.47, pp.140-147, 1946.

M. H. Kalos, Monte Carlo methods in quantum problems, NATO ASI series. Reidel, vol.125, 1984.
DOI : 10.1007/978-94-009-6384-9

. Kleimann, Some exact results on stability and growth of lineair parameter excited stochastic systems, Stochastic Control Theory and Stochastic Differential Equations, 1979.

P. Liardet, Reguralities of distribution, Compositio Mathematica, pp.267-293, 1987.

J. Neveu, Martingales à temps discret, 1972.

J. Neveu, Potentiel markovien r??current des cha??nes de Harris, Annales de l???institut Fourier, vol.22, issue.2, pp.85-130, 1972.
DOI : 10.5802/aif.414

F. Norman, Markov Process and learning Models. Academic, 1972.

S. Orey, Lecture notes on limits theorems for Markov chain transition probabilities, 1971.

G. Pages, Van der Corput sequences, Kakutani transforms and one-dimensional numerical integration, Journal of Computational and Applied Mathematics, vol.44, issue.1, 1992.
DOI : 10.1016/0377-0427(92)90051-X

E. Pardoux and M. Pignol, Etude de la stabilité de la solution d'une E.D.S bilinéaire à coefficients périodiques, application au mouvement d'une pale d'hélicoptère Analysis and Optimization of systems, A Bensoussan et J. L. Lions Lecture Notes in Control and Info, vol.63, pp.92-103, 1984.

E. Pardoux and V. Wihstutz, Lyapunov Exponent and Rotation Number of Two-Dimensional Linear Stochastic Systems with Small Diffusion, SIAM Journal on Applied Mathematics, vol.48, issue.2, pp.442-457, 1988.
DOI : 10.1137/0148024

W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Memoirs of the American Mathematical Society, vol.2, issue.161, 1975.
DOI : 10.1090/memo/0161

M. Pinsky, Instability of the Harmonic Oscillator with Small Noise, SIAM Journal on Applied Mathematics, vol.46, issue.3, pp.451-463, 1986.
DOI : 10.1137/0146031

M. Pinsky and V. Wihstutz, Lyapunov exponents of nilpotent ito systems, Stochastics, vol.30, issue.1, pp.43-57, 1988.
DOI : 10.1016/0022-0396(72)90007-1

C. Rebbi, Lattice gauge theories and Monte Carlo Simulations, World scientific, 1983.
DOI : 10.1142/0043

URL : http://cds.cern.ch/record/136422/files/CM-P00066633.pdf

D. Revuz, Markov chains, 1975.

M. Rosenblatt, A CENTRAL LIMIT THEOREM AND A STRONG MIXING CONDITION, Proc. Nat. Acad. USA, pp.412-413, 1956.
DOI : 10.1073/pnas.42.1.43

J. Rousseau-egele, Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux. The Annals of Probability, pp.772-788, 1983.

D. J. Scott, Central limit theorems for martingales and for processes with stationary increments using a Skorokhod representation approach, Advances in Applied Probability, vol.10, issue.01, pp.119-137, 1973.
DOI : 10.1214/aoms/1177697749

A. N. Shiryayev, Probability. N° 95 , Graduate Texts in Mathematics, 1984.

D. Talay, Second-order discretization schemes of stochastic differential systems for the computation of the invariant law, Stochastics and Stochastic Reports, vol.20, issue.1, pp.13-36, 1990.
DOI : 10.1080/17442509008833606

URL : https://hal.archives-ouvertes.fr/inria-00075799

D. Talay, Approximation of Upper Lyapunov Exponents of Bilinear Stochastic Differential Systems, SIAM Journal on Numerical Analysis, vol.28, issue.4, pp.1141-1164, 1991.
DOI : 10.1137/0728061

URL : https://hal.archives-ouvertes.fr/inria-00075594

D. Talay, Approximation et simulation de solutions d'équations différentielles stochastiques, Probabilités numériques, pp.23-38, 1992.

D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Analysis and Applications, vol.20, issue.4, pp.94-120, 1990.
DOI : 10.1080/07362999008809220

URL : https://hal.archives-ouvertes.fr/inria-00075490