. Dans-la-suite, nous n'évoquerons que les problèmes de type relaxation. Un principe variationnel qui généralise le théorème de, 1954.

[. A. Soulimani, Une méthode énergétique de modélisation de la viscoélasticité non linéaire en grandes déformations, 1993.

. Bernstein, K. E. Bernstein-b, and . J. Zapas-l, A study of stress relaxation with finite strain, Transactions of the society of theology, pp.391-410, 1963.

M. A. Blot, Variational principles in irreversible thermodynamics with application to viscoelasticity, Phys. Rev, vol.97, pp.1463-1469, 1955.

&. Breuer, . Onat, . S. Breuer, and . T. Unat-e, On the determination of free energy in linear viscoelastic solids ZAMP, pp.184-191, 1964.

R. A. Brockman, On the use of the Blatz-Ko constitutive model in nonlinear finite element analysis, Computers & Structures, vol.24, issue.4, pp.607-611, 1986.
DOI : 10.1016/0045-7949(86)90199-9

R. L. Brown, A thermodynamic study of materials representable by integral expansions, International Journal of Engineering Science, vol.14, issue.11, pp.1033-1046, 1976.
DOI : 10.1016/0020-7225(76)90098-7

L. Brun, Thermodynamique et viscoélasticité, Cahiers du Groupe Français de Rhéologie, pp.191-202, 1967.

L. Brun, Méthodes énergétiques pour les systèmes évolutifs linéaires, J. Mécanique, vol.8, pp.125-166, 1969.

R. M. Christensen, A nonlinear theory of viscoelasticity for application to elastomers, Transactions of the ASME, pp.762-768, 1980.

R. M. Christensen, Variational and minimum theorems for the linear theory of viscoelasticity, Zeitschrift f??r angewandte Mathematik und Physik ZAMP, vol.3, issue.2, pp.233-243, 1968.
DOI : 10.1007/BF01601468

C. Noll and C. B. Noll-w, An approximation theorem for functionals, with applications in continuum mechanics, Mod. Phys, pp.239-249, 1961.

C. Noll and C. B. Noll-w, Fondations of linear viscoelasticity, Reviews of Modern Physics, vol.17, pp.2-239, 1961.

. R. Dal-'tray and . Lions-j-l, Mathematical analysis and numerical methods for science and technologie, 1990.

. Ehrîacher-k-fédelich and F. A. Ehrlacher, Sur un principe de minimum concernant des matériaux à comportement indépendant du temps physique, C.R.A.S, p.pp, 1989.

J. L. Ericksen, On the Propagation of Waves in Isotropic Incompressible Perfectly Elastic Materials, Indiana University Mathematics Journal, vol.2, issue.2, pp.329-337, 1953.
DOI : 10.1512/iumj.1953.2.52018

J. L. Ericksen, Deformations possible in every isotropic, incompressible, perfectly elastic body, Zeitschrift f??r angewandte Mathematik und Physik ZAMP, vol.246, issue.6, pp.466-489, 1954.
DOI : 10.1007/BF01601214

P. Eringen, Mechanics of Continua, Journal of Applied Mechanics, vol.35, issue.4, 1967.
DOI : 10.1115/1.3601337

. Fabrizio-k-morro, . Fabrizio-m, and . Morro-a, Viscoelastic relaxation functions compatible with thermodynamics, Journal of Elasticity, vol.24, issue.69, pp.63-75, 1988.
DOI : 10.1007/BF00041695

. Fabrizio, Minimum principles, convexity, and thermodynamics in viscoelasticity, Continuum Mechanics and Thermodynamics, vol.69, issue.3, pp.197-211, 1989.
DOI : 10.1007/BF01171379

. B. Fédelich, Trajets d'équilibre des systèmes mécaniques dissipatifs à comportement indépendant du temps physique, 1990.

. Fortin-k-glowinski, . Fortin-m, and . Glowinski-r, Méthodes de Lagrangien Augmenté Lagrangian Application à la résolution de problèmes aux limites Dunod-Bordas, pp.193-216, 1910.

. R. Glowinski-k-le-tallec-]-glowinski and . Le-tallec-p, Numerical Solution of Problems in Incompressible Finite Elasticity by Augmented Lagrangian Methods. I. Two-Dimensional and Axisymmetric Problems, SIAM Journal on Applied Mathematics, vol.42, issue.2, pp.400-429, 1982.
DOI : 10.1137/0142031

. R. Glowinski-k-le-tallec-]-glowinski and . Le-tallec-p, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics S, I.A.M. Studies in Applied Mathematics, 1989.

M. H. Gradowczyk, On the accuracy of the Green-Rivlin representation for viscoelastic materials, International Journal of Solids and Structures, vol.5, issue.8, pp.873-877, 1969.
DOI : 10.1016/0020-7683(69)90052-3

. Green-k-tobolsky and T. S. Green-m, A New Approach to the Theory of Relaxing Polymeric Media, The Journal of Chemical Physics, vol.14, issue.2, pp.80-92, 1946.
DOI : 10.1063/1.1724109

. Green-k-rivlin, . E. Green-a, and S. Rlvlin, The mechanics of non-linear materials with memory, Archive for Rational Mechanics and Analysis, vol.4, issue.1, pp.1-21, 1957.
DOI : 10.1007/BF00297992

. E. Gurtin-k-herrera-]-gurtin-m and . Herrera-i, On dissipation inequalities and linear viscoelasticity, Quarterly of Applied Mathematics, vol.23, issue.3, p.235, 1965.
DOI : 10.1090/qam/189346

. E. Gurtin-k-sternberg-]-gurtin-m and . Sternberg-e, On the linear theory of viscoelasticity, Archive for Rational Mechanics and Analysis, vol.14, issue.1, pp.291-356, 1962.
DOI : 10.1007/BF00253942

. Gurtin and . E. Gurtin-m, Variational principles for linear elastodynamics, Archive for Rational Mechanics and Analysis, vol.16, issue.1, pp.34-50, 1963.
DOI : 10.1007/BF00248489

M. E. Gürtin, Variational principles for linear initial-value problems, Quarterly of Applied Mathematics, vol.22, issue.3, pp.252-256, 1964.
DOI : 10.1090/qam/99951

S. L. Hart- and C. J. , Large elastic deformations of thin rubber membranes, Int. J. Eng. Sei, vol.5, p.pp, 1967.

. Hassani, . S. Hassani, . A. Alaoui, and . Ehrlacher-a, A non linear viscoelastic model: the pseudo-linear model, European Journal of Mechanics, 1997.

. K. Hausler-k-sayir-]-hausler and . B. Sayir-m, Nonlinear viscoelastic response of carbon black reinforced rubber derived from moderately large deformations in torsion, J. Mech. Phys. Solids, vol.43, pp.2-295, 1995.

M. Hestenes, Multiplier and gradient methods, Journal of Optimization Theory and Applications, vol.4, issue.5, pp.303-320, 1969.
DOI : 10.1007/BF00927673

. Huet, Sur une application du calcul symbolique à la viscoélasticité non linéaire, C. R. Acad. Sciences, pp.275-793, 1972.

. Huet, Viscoélasticité non linéaire et calcul symbolique, Cahiers du Groupe français de rhéologie, pp.150-159, 1974.

. Huet, Relations Between Creep and Relaxation Functions in Nonlinear Viscoelasticity with or Without Aging, Journal of Rheology, vol.29, issue.3, pp.245-257, 1985.
DOI : 10.1122/1.549789

C. Huet, Minimum theorems for viscoelasticity, European Journal of Mechanics, vol.11, pp.653-684, 1992.

H. Hu and H. , Some variational principles in the theory of elasticity and the theory of plasticity, pp.259-290, 1954.

L. A. Lodge, Constitutive equations from molecular network theories for polymer solutions, Rheologica Acta, vol.217, issue.2, pp.379-392, 1968.
DOI : 10.1007/BF01984856

. J. Lubliner, A model of rubber viscoelasticity, Mechanics Research Communications, vol.12, issue.2, pp.93-99, 1985.
DOI : 10.1016/0093-6413(85)90075-8

C. W. Mcguirt and G. Llanls, Constitutive Equations for Viscoelastic Solids under Finite Uniaxial and Biaxial Deformations, Transactions of the Society of Rheology, vol.14, issue.2, p.117, 1970.
DOI : 10.1122/1.549182

K. N. Morman, An adaptation of finite linear viscoelasticity theory for rubber-like viscoelasticity by use of a generalized strain measure, Rheologica Acta, vol.28, issue.1, p.pp, 1988.
DOI : 10.1007/BF01372444

K. Nakamura, Minimum Principles in the Linear Theory of Viscoelasticity, Journal of the Physical Society of Japan, vol.47, issue.4, pp.1299-1304, 1979.
DOI : 10.1143/JPSJ.47.1299

. Nakamura-k-horikawa-]-nakamura-k and . Horikawa-a, Variational and minimum principles in the linear theory of viscoelasticity, Journal of the Physical Society of Japan, vol.47, pp.4-469, 1979.

M. S. Nemat-nasser, Some basic kinematical relations for finite deformations of continua, Mechanics of Materials, vol.6, pp.127-138, 1987.

W. Noll, A mathematical theory of the mechanical behavior of continuous media, Archive for Rational Mechanics and Analysis, vol.27, issue.1, pp.197-226, 1958.
DOI : 10.1007/BF00277929

J. T. Oden, Finite elements of nonlinear continua, 1972.

1. Ogden and . W. Ogden-r, Large deformation isotropic elasticity -On the correlation of theory and experiment for incompressible rubber-like solids, Proc. R. Soc. London Ser. A, p.pp, 1972.

R. W. Ogden, Volume changes associated with the deformation of rubber-like solids, Journal of the Mechanics and Physics of Solids, vol.24, issue.6, pp.323-338, 1976.
DOI : 10.1016/0022-5096(76)90007-7

R. W. Ogden, Nearly isochoric elastic deformations: Application to rubberlike solids, Journal of the Mechanics and Physics of Solids, vol.26, issue.1, pp.37-57, 1978.
DOI : 10.1016/0022-5096(78)90012-1

. A. Pipkin, Small finite deformations of viscoelastic solids, Reviews of Modern Physics, p.pp, 1964.

&. Pipkin, . Rivlin, A. C. Pipkin, and R. R. , Small deformations superposed on large deformations in materials with fading memory, Archive for Rational Mechanics and Analysis, vol.4, issue.1, pp.297-308, 1961.
DOI : 10.1007/BF00277445

L. Poli and . Delerue-p, Le calcul symblique à deux variables et ses applications, 1954.

J. N. Reddy, Modified Gurtin's variational principles in the linear dynamic theory of viscoelasticity, International Journal of Solids and Structures, vol.12, issue.3, pp.227-235, 1976.
DOI : 10.1016/0020-7683(76)90065-2

R. S. Rlvlin, Large elastic deformations of isotropic materials ; Part III: Experiments on the deformation of rubber, Philos. Trans. Roy. Soc, pp.251-288, 1951.

R. T. Rockafellar, A dual approach to solving nonlinear programming problems by unconstrained optimization, Mathematical Programming, pp.354-373, 1973.
DOI : 10.1007/BF01580138

. Saleeb, C. A. Saleeb, and A. S. , On the development of explicit robust schemes for implementation of a class of hyperelastic models in large-strain analysis of rubbers, International Journal for Numerical Methods in Engineering, vol.6, issue.6, pp.1237-1249, 1992.
DOI : 10.1002/nme.1620330609

. J. Salençon, Cours dt calcul des structures anélastiques: Viscoélasticité, 1983.

. J. Salençon, Mécanique des milieux continus, Tome I: Concepts généraux, 1989.

. J. Salençon, Mécanique des milieux continus, Tome II: Elasticité -Milieux curvilignes, 1988.

R. A. Schapery, A theory of nonlinear viscoelasticity based on irreversible thermodynamics, Proc. 5 th National Congress of Applied Mechanics, pp.511-530, 1966.

R. A. Schapery, On the characterization of nonlinear viscoelastic materials, Polymer Engineering and Science, vol.9, issue.4, p.295, 1969.
DOI : 10.1002/pen.760090410

. J. Serrín, Mathematical principles of classical fluid mechanics in Encyclopedia of Physics, 1959.

M. J. Sewell and F. Sldoroff, Maximum and minimum principles, a unified approach, with applications, modèle viscoélastique non linéaire avec configuration intermédiaire Journal de Mécanique, 13 N°4 Variables internes en viscoélasticité, I. Variables internes scalaires et tensorielles, pp.679-713, 1974.

1. Sidoroff and F. Sldoroff, Variables internes en viscoélasticité, IL Milieux avec configuration intermédiaire, Journal de Mécanique, pp.14-571, 1975.

J. C. Slgnorini, Trasformazioni termoelastiche finite, Annali di Matematica Pura ed Applicata, Series 4, vol.XI, issue.19, pp.147-201, 1955.
DOI : 10.1007/BF02410769

S. A. Spencer-k-rivlin-] and S. Rivlin-r, Further results in the theory of matrix polynomials, Archive for Rational Mechanics and Analysis, vol.3, issue.1, pp.214-230, 1959.
DOI : 10.1007/BF00281388

S. A. Schwartzl-p, The Netherlands, Proc. Acad. Sei, pp.474-478, 1952.

C. Truesdell and N. W. , The non-linear fields theories of mechanics in Encyclopedia of Physics, 1965.