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Abstract

The achievement of sustained nuclear fusion in magnetically con�ned plasma relies
on e�cient con�nement of alpha particles, which are high-energy ions produced by
the fusion reaction. Such particles can excite instabilities in the frequency range of
Alfv�en Eigenmodes (AEs), which signi�cantly degrade their con�nement and threat-
ens the vacuum vessel of future reactors. In order to develop diagnostics and control
schemes, a better understanding of linear and nonlinear features of resonant inter-
actions between plasma waves and high-energy particles, which is the aim of this
thesis, is required. In the case of an isolated single resonance, the description of
AE destabilization by high-energy ions is homothetic to the so-called Berk-Breizman
(BB) problem, which is an extension of the classic bump-on-tail electrostatic problem,
including external damping to a thermal plasma, and collisions. A semi-Lagrangian
simulation code, COBBLES, is developed to solve the initial-value BB problem in
both perturbative ( �f ) and self-consistent (full-f ) approaches. Two collision models
are considered, namely a Krook model, and a model that includes dynamical fric-
tion (drag) and velocity-space di�usion. The nonlinear behavior of instabilities in
experimentally-relevant conditions is categorized into steady-state, periodic, chaotic,
and frequency-sweeping (chirping) regimes, depending on external damping rate and
collision frequency. The chaotic regime is shown to extend into a linearly stable region,
and a mechanism that solves the paradox formed by the existence of such subcriti-
cal instabilities is proposed. Analytic and semi-empirical laws for nonlinear chirping
characteristics, such as sweeping-rate, lifetime, and asymmetry, are developed and
validated. Long-time simulations demonstrate the existence of a quasi-periodic chirp-
ing regime. Although the existence of such regime stands for both collision models,
drag and di�usion are essential to reproduce the alternation between major chirp-
ing events and quiescent phases, which is observed in experiments. Based on these
�ndings, a new method for analyzing fundamental kinetic plasma parameters, such
as linear drive and external damping rate, is developed. The method, which consists
of �tting procedures between COBBLES simulations and quasi-periodic chirping AE
experiments, does not require any internal diagnostics. This approach is applied to
Toroidicity-induced AEs (TAEs) on JT-60 Upgrade and Mega-Amp Spherical Toka-
mak devices, which yields estimations of local kinetic parameters and suggests the
existence of TAEs relatively far from marginal stability. The results are validated by
recovering measured growth and decay of perturbation amplitude, and by estimating
collision frequencies from experimental equilibrium data.



R�esum�e

Le succ�es de la fusion nucl�eaire par con�nement magn�etique repose sur un con�ne-
ment e�cace des particules alpha, qui sont des ions hautement �energ�etiques produits
par les r�eactions de fusion. De telles particules peuvent exciter des instabilit�es dans
le domaine de fr�equence des modes d'Alfv�en (AEs) qui d�egradent leur con�nement
et risquent d'endommager l'enceinte �a vide de r�eacteurs futurs. A�n de d�evelopper
des diagnostiques et moyens de contrôle, une meilleure compr�ehension des comporte-
ments lin�eaire et non-lin�eaire des interactions r�esonantes entre ondes plasma et par-
ticules �energ�etiques, qui constitue le but de cette th�ese, est requise. Dans le cas
d'une r�esonance unique et isol�ee, la description de la d�estabilisation des AEs par des
ions �energ�etiques est homoth�etique au probl�eme de Berk-Breizman (BB), qui est une
extension du probl�eme classique de l'instabilit�e faisceau, incluant un amortissement
externe vers un plasma thermique, et des collisions. Un code semi-Lagrangien, COB-
BLES, est d�evelopp�e pour r�esoudre le probl�eme aux valeurs initiales de BB selon
deux approches, perturbative (�f ) et auto-coh�erente (full- f ). Deux mod�eles de col-
lisions sont consid�er�es, �a savoir un mod�ele de Krook, et un mod�ele qui inclue la
friction dynamique et la di�usion dans l'espace des vitesses. Le comportement non-
lin�eaire de ces instabilit�es dans des conditions correspondantes aux exp�eriences est
cat�egoris�e en r�egimes stable, p�eriodique, chaotique, et de balayage en fr�equence (sif-
et), selon le taux d'amortissement externe et la fr�equence de collision. On montre que
le r�egime chaotique d�eborde dans une r�egion lin�eairement stable, et l'on propose un
m�ecanisme qui r�esoud le paradoxe que constitue l'existence de telles instabilit�es sous-
critiques. On d�eveloppe et valide des lois analytiques et semi-empiriques r�egissant les
caract�eristiques non-lin�eaires de si�et, telles que la vitesse de balayage, la dur�ee de vie,
et l'asym�etrie. Des simulations de longue dur�ee d�emontrent l'existence d'un r�egime de
si�ets quasi-p�eriodiques. Bien que ce r�egime existe quel que soit l'un des deux mod�eles
de collision, la friction et la di�usion sont essentielles pour reproduire l'alternance
entre si�ets et p�eriodes de repos, telle qu'observ�ee exp�erimentalement. Grâce �a
ces d�ecouvertes, on d�eveloppe une nouvelle m�ethode pour analyser des param�etres
cin�etiques fondamentaux du plasma, tels que le taux de croissance lin�eaire et le taux
d'amortissement externe. Cette m�ethode, qui consiste �a faire correspondre les sim-
ulations de COBBLES avec des exp�eriences d'AEs qui pr�esentent des si�ets quasi-
p�eriodiques, ne requiert aucun diagnostique interne. Cette approche est appliqu�ee �a
des AEs induits par la toroidicit�e (TAEs) sur les machines JT-60 Upgrade et Mega-
Amp Spherical Tokamak. On obtient des estimations de param�etres cin�etiques locaux
qui sugg�erent l'existence de TAEs relativement loin de la stabilit�e marginale. Les
r�esultats sont valid�es en recouvrant la croissance et d�ecroissance de l'amplitude des
perturbations mesur�ees, et en estimant les fr�equences de collision �a partir des donn�ees
exp�erimentales d'�equilibre.
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Chapter 1

Introduction

This manuscript has been written in an e�ort toward pedagogy, privileging clarity
over details, physical pictures over mathematical developments. We hope it can be
used as an introduction to the Berk-Breizman problem and its numerical computa-
tion. However we cannot pretend being able to introduce notions such as nuclear
fusion, magnetic plasma con�nement, Magneto-HydroDynamics (MHD), kinetic the-
ory, tokamak geometry, or particle orbits, with as much clarity as in well-known
textbooks. For this reason, the reader is assumed to be familiar with the basis of the
above �elds. In this introduction we expose the background and motivation for our
work.

1.1 Energetic particles-driven AEs

In an ignited tokamak operating with a deuterium-tritium mix, the con�nement of � -
particles is critical to prevent damages on the �rst-wall and to achieve break-even. The
reason is that these high energy particles must be kept long enough in the plasma
core to allow enough of their energy to heat thermal populations by slowing-down
processes. A major concern is that high energy ions can excite plasma instabilities in
the frequency range of Alfv�en Eigenmodes (AEs), which signi�cantly enhance their
transport. Ever since the recognition of this issue in the 1970's, considerable progress
has been made in the theoretical understanding of the principal Alfv�enic instabilities.
However, the estimation of the mode growth rate is complex, and the question of
their stability in ITER [ACH + 01] remains to be clari�ed. In addition, estimation of
the e�ect on transport and development of diagnostics and control schemes require
signi�cant progress on our understanding of nonlinear behaviors.

We limit our framework to the tokamak con�guration. In this work, we focus our
interest on the Toroidicity induced Alfv�en Eigenmode (TAE) [CCC85], which is a
shear-Alfv�en wave (SAW) located in a gap of the SAW continuum that is created by
toroidal coupling of two successive poloidal modes, and which can be destabilized by
resonant interactions with high-energy ions. TAEs have been observed to be driven by
� -particles in burning plamas [WSB+ 96, NFB+ 97], Ion-Cyclotron-Resonance Heating
(ICRH) [WWC + 94], and Neutral Beam Injection (NBI) [WFP + 91, WSD+ 91]. In this
work we consider only the latter situation (NBI-driven TAEs).

1.2 The BB problem as a paradigm for TAEs

In general, TAEs are described in a three-dimensional (3D) con�guration space. How-
ever, near a phase-space surface where the resonance condition is satis�ed (resonant
phase-space surface), it is possible to obtain a new set of variables in which the
perturbation is described by a one-dimensional (1D) e�ective Hamiltonian in 2 con-
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jugated variables [BBP97a, BBP+ 97c, WB98, GDPN+ 08], if we assume an isolated
single mode. In this sense, the problem of kinetic interactions between TAEs and
fast-particles is homothetic to a simple 1D single mode bump-on-tail instability. The
so-called Berk-Breizman (BB) problem [BBY93, BBP97a, BBP+ 97c, BBP96] is a gen-
eralization of the bump-on-tail problem, where we take into account an external wave
damping accounting for background dissipative mechanisms, and a collision operator.
Observed qualitative and quantitative similarities between BB nonlinear theory and
both global TAE simulations [WB98, PBG + 04] and experiments [FBB+ 98, HFS00]
are an indication of the validity of this reduction of dimensionality. Similar arguments
exist for other Alfv�en wave instabilities such as the geodesic acoustic mode (GAM)
[BBB + 06], and the beta Alfv�en eigenmode (BAE) [Ngu09]. These analogies enable
more understanding of fully nonlinear problems in complex geometries by using a
model that is analytically and numerically tractable. This approach is complemen-
tary to heavier 3D analysis.

1.3 Frequency sweeping

A feature of the nonlinear evolution of AEs, the frequency sweeping (chirping) of
the resonant frequency by 10-30% on a timescale much faster than the equilib-
rium evolution, has been observed in the plasma core region of tokamaks JT-60
Upgrade (JT-60U) [KKK + 99], DIII-D [Hei95], the Small Tight Aspect Ratio Toka-
mak (START) [MGS + 99], the Mega Amp Spherical Tokamak (MAST) [PBG+ 04],
the National Spherical Torus Experiment (NSTX) [FGB06], and in stellerators such
as the Large Helical Device (LHD) [OYT+ 06], and the Compact Helical Stellerator
(CHS) [TTT + 99]. In general, two branches coexist, with their frequency sweeping
downwardly (down-chirping) for one, upwardly (up-chirping) for the other. In many
experiments, asymmetric chirping has been observed, with the amplitude of down-
chirping branches signi�cantly dominating up-chirping ones. Chirping TAEs have
been reproduced in 3D simulations with a hybrid MHD/drift-kinetic code [TSTI03],
and with a drift-kinetic perturbative code [PBG + 04]. Qualitatively similar chirping
modes are spontaneously generated by the BB model, and have been shown to corre-
spond to the evolution of holes and clumps in the velocity distribution. Theory relates
the time evolution of the frequency shift with the linear drive  L and the external
damping rate  d [BBP97b], when the evolution of holes and clumps is adiabatic. The
idea of using chirping velocity (or sweeping rate) as a diagnostic for growth rates
looks promising. If we assume that the mode is close to marginal stability, L �  d,
and if we further assume that holes and clumps are in the adiabatic regime, then
the growth rates are simply obtained by �tting analytic prediction to experimental
measurement of chirping velocity. However, these two assumptions are not veri�ed in
general, which limits the applicability of this simple approach. In most experiments,
chirping events are quasi-periodic, with a period in the order of the millisecond. On
the one hand, the long-time simulation of repetitive chirping with 3D codes is a heavy
task, which has not been undertaken yet. On the other hand, simulations of the BB
model with many chirping events have been performed [VBSC07, LBS10], but such
solutions do not feature any quasi-periodicity. In this sense, repetitive chirping that
qualitatively agrees with an experiment has not been reproduced, neither with 1D
nor 3D simulations.

1.4 Aim of this thesis

Our main goals are to improve our understanding of wave-particle nonlinear resonant
interactions, develop diagnostics and identify control parameters for AEs. From these
backgrounds, a straight-forward plan is to:
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� clarify the link between BB model and AEs,

� extend BB theory where it is insu�cient to explain experimental observations,

� analyze experimental data by applying the BB model to AEs.

1.5 Outline

In brief, we reduce the problem of TAEs to a numerically and analytically tractable
paradigm, the BB problem. We make a survey of linear and nonlinear physics of the
BB model, and work on improving our understanding, by extending theory and by
using systematic numerical observations, focusing on the frequency sweeping regime.
Armed with new �ndings and robust numerical tools, we �nally go back to the original
problem of TAEs, explaining quantitative features of experimental observations, and
developing a new method for accurate linear predictions.

In Chap. 2, we review the physics of the TAE, and simplify the description of
the problem from 6D to 2D in phase-space, around a single resonant phase-space
surface. The �rst step in this procedure is to isolate the gyromotion, which is de-
coupled from the wave for typical TAEs with f � 100 kHz, by changing variables
to the guiding-center coordinates. This change of variables is based on the so-called
Lie transform perturbation theory, which we review in order to get a better grasp of
involved hypothesis. Then we show how to reduce the guiding-center Hamiltonian,
as well as collision operator and background mechanisms, and discuss limitations of
this simpli�ed description. In Chap. 3, we review basic nonlinear physics of the BB
problem. We develop and verify numerical tools that we use in following chapters.
In particular, we develop and verify a kinetic code to solve the initial-value problem.
We show that numerical simulations in experimentally relevant conditions, with cold-
bulk and weak, warm-beam distributions, require a careful choice of advection scheme.
Among the family of so-called Constrained Interpolation Pro�le (CIP) schemes, a lo-
cally conservative version (CIP-CSL) displays the best convergence properties. As an
intermediate summary, we cast the analogies between BB model and 1D description
of TAEs. In Chap. 4, we investigate kinetic features of self-consistent interactions
between an energetic particle beam and a weakly unstable electrostatic wave in 1D
plasma, within the BB framework, with an emphasis on chirping regime and sub-
critical instabilities. We show that the nonlinear time-evolution of chirping in 1D
simulations can be used to retrieve information about linear input parameters with
good precision. We identify a regime where chirping events are quasi-periodical. This
regime exists whether the collision model is annihilation/creation type, or takes into
account dynamical friction and velocity-space di�usion. Based on these �ndings, in
Chap. 5, we propose a new method to estimate local linear drive, external damping,
and collision frequencies from the spectrogram of magnetic �eld variations measured
by a Mirnov coil at the edge of the plasma. This method, which relies on a �tting
of normalized chirping characteristics between the experiment and BB simulations,
is described and applied to TAE experiments in MAST and JT-60U. We show that
the BB model can successfully reproduce features observed in the experiment only
if the collision operator includes drag and di�usion terms. We �nd a quantitative
agreement for the di�usion frequency, and a qualitative agreement for the drag fre-
quency, between the values obtained with our �tting procedure, and an independent
estimation obtained from experimental equilibrium measurements. In the conclusion
(Chap. 6), we summarize our �ndings, and we suggest numerical and experimental
investigations these �ndings enable.
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Chapter 2

Energetic particle-induced
TAEs

The TAE is a shear-Alfv�en wave located in a gap of the SAW continuum that is created
by toroidal coupling of two successive poloidal modes, which can be destabilized by
energetic particles. This chapter deals with the modelization at several levels of com-
plexity of an isolated single-mode TAE. In Sec. 2.1, we give a short review of the basic
TAE physics, and of the state-of-the-art of its linear stability analysis, emphasizing a
need for improved accuracy. When the TAE is an isolated single-mode, it is possible
to reduce the problem to a simple harmonic oscillator, by expanding the perturbed
Hamiltonian around a resonant phase-space surface. This reduction from 3D to 1D
becomes particularly transparent in angle-action variables (� i , J i ), once the pertur-
bation has been put in the form exp({l i _� i � {!t ), where l i are integers. In Sec. 2.2,
we show how to obtain the latter form. The �rst step is to separate the gyromotion,
which does not resonate with typical TAEs, by changing variables to guiding-center
coordinates. This procedure can be done while conserving the Hamiltonian properties
by making use of Lie transform perturbation theory, which we review thoroughly. In
Sec. 2.3, we show how to reduce the Hamiltonian, collision operator, and background
damping mechanisms from their 3D description to a 1D model.

2.1 Review

This short review is intended to introduce notions and notations that we use when
applying the BB model to the TAE, and to motivate our linear analysis of TAEs. For
a more comprehensive review of energetic-particle driven AEs, see Ref. [Hei08].

2.1.1 Toroidal geometry

Hereafter, we make use of magnetic ux coordinates [RDH03], also called as straight
�eld-line coordinates, (r , � , � ), where r , � and � are minor radius, poloidal and toroidal
angle, respectively, to describe the nested poloidal ux surfaces of the equilibrium
magnetic �eld B 0 . In these coordinates,B 0 takes the following form,

B 0 = r � � r (q� � � ); (2.1)

where � (r ) is the poloidal ux (divided by 2 � ), and the safety factor, de�ned by

q(r ) �
B 0 � r �
B 0 � r �

; (2.2)

is the ux surface-averaged number of toroidal rotation that a �eld line undergoes in
one poloidal rotation.

4



 0

 20

 40

 60

 80

 100

 0.4  0.6  0.8

f [
kH

z]

r [m]

wn=1,m=2
wn=1,m=3

n=1 continuum

Fig. 2.1: Alfv�en continuum for n = 1, with and without coupling between m = 2 and
m = 3 poloidal modes. The q pro�le has been modeled byq(r ) = 1 :2 + 2:1 (r=a)1:5,
and the electronic density by ne(r ) = 0 :11 + 1:57 (1 � r 2=a2)0:3 [1019 m� 3]. Other
parameters areB0 = 1 :2 T, R0 = 3 :3 m, and a = 0 :96 m. Note that the discrepancy,
relatively far from resonance, between the upper branch of coupled continuum and
the uncoupled m = 2 branch, is accounted by errors of second-order in the aspect
ratio. Similar discrepancy is observed in Fig. 1 of Ref. [FD89] for example.

2.1.2 Physics of the TAE

In an homogeneous magnetized plasma, linear ideal-MHD arguments show the exis-
tence of a shear-Alfv�en wave of frequency! A with the dispersion relation

! 2
A = k2

k v2
A ; (2.3)

where

vA =
B0p

� 0
P

i ni mi
(2.4)

is the Alfv�en velocity, and kk is the wave number in the direction of the equilibrium
magnetic �eld B 0 . Let us consider axisymmetric toroidal plasmas. In the cylindrical
limit, the periodicities of the system require that there exists two integers, a toroidal
mode numbern and a poloidal mode numberm, such that

kk =
n � m=q(r )

R0
; (2.5)

where R0 is the distance from the symmetry axis of the tokamak to the magnetic
axis. In a non-homogeneous plasma in a sheared magnetic �eld, bothkk and vA are
functions of r . The simple dispersion relation Eq. (2.3) is still valid in this con�gura-
tion [CC86], and it is called the Alfv�en continuum. Since phase velocity is a function
of radius, a wave packet with �nite radial extent would su�er from phase-mixing, the
so-called continuum damping. Except for energetic particle modes, which are outside
of the scope of this work, resonant drive by fast particles is not enough to overcome
this damping. However, a toroidal coupling of two successive poloidal modesm and
m + 1 breaks up the continuous spectrum. This is illustrated in Fig. 2.1, which shows
the Alfv�en continuum for n = 1, m = 2 and m + 1 = 3, in cylindrical geometry,
where two poloidal continuum are decoupled, and in toroidal geometry, with a two-
mode coupling model [CC86, FD89]. The latter is obtained with equilibrium plasma
parameters corresponding to JT-60U shot E32359 att = 4 :2s, which we analyze in
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Chap. 5, assuming concentric circular magnetic ux surfaces, retaining toroidicity
e�ects in the �rst order in inverse aspect ratio. Though we show only the ! > 0
half-plane, the continuum is symmetric with respect to ! . Coupled modes are (n, m)
and (� n, � m � 1) for ! > 0, and (n, m + 1) and ( � n, � m) for ! < 0. The gap
is centered at a radiusrA such that q(rA ) = ( m + 1=2)=n, where the two continu-
ous spectra would cross in the absence of coupling, and where

�
�kk

�
� = 1=2qR0. The

resulting discrete eigenmode is a TAE, at a frequency! A = vA =2qR0.
For a deuterium plasma with typical magnetic �eld B0 � 1T and density ni �

1020m� 3, the Alfv�enic energy is EA � mi v2
A =2 � 10keV, which is in the range of

passing particles induced by NBI. For ITER parameters, EA � 1MeV , which is in
the range of passing� -particles born from fusion reactions. In both cases, TAEs can
be driven unstable by resonance with energetic particles. For far-passing particles,
the resonance condition is 
 = ! A , where


 = n ! � + l ! � ; (2.6)

where ! � = vk=R0 and ! � = vk=qR0 are frequencies of toroidal motion and poloidal
motion, respectively, and l = � m for co-passing particles,l = m for counter-passing
particles [TS98]. Since we analyze TAEs driven by co-injected ions, we can simplify
following discussions by considering only co-passing particles. Then, the resonance
condition is

! A � n
vk

R0
+ m

vk

q R0
= 0 : (2.7)

2.1.3 Linear stability

In theory, the linear growth rate  �  L �  d is positive when the drive by fast
particles overcomes damping processes to background plasma. The growth rate can
be estimated either by linear stability codes, such as PENN [JAVV95], TASK/WM
[FA03], NOVA-K [Che92], or CASTOR-K [BBB + 02] ; or by gyro- or drift- kinetic per-
turbative nonlinear initial value codes, such as FAC [CBB+ 97] or HAGIS [PAC+ 98].
The analysis requires internal diagnostics that are not always available.

The linear drive  L depends on several factors such as spatial and energy gradients
of EP distribution, and alignment between particle orbit and the eigenmode. In
the limit of large aspect ratio, analytic theory [FD89] yields successful estimations
of  L for well-de�ned numerical models [TSW+ 95]. However, in the general case,
complicated factors cited above forbid accurate analytic estimation, as yet. Moreover,
improvements in measurement of EP distributions are needed to allow estimation of
 L for experimental TAEs.

The external damping rate  d involves complicated mechanisms, which include
continuum damping (since parts of the mode extend spatially into the continuum)
[ZC92], radiative damping [MM92], Landau damping with thermal species [BF92,
ZCS96], and collisional damping by trapped electrons [GS92]. Most of these mech-
anisms are still under investigation, and cannot be quanti�ed by existing theory.
Experimentally,  d can be estimated by active measurements of externally injected
perturbations [FBB + 95, FBB+ 00]. However, the applicability of this technique is
limited to dedicated experiments.

Moreover, if the system is close to marginal stability,  is sensitive to small varia-
tions of driving and damping terms, and is very sensitive to plasma parameters such
as the q pro�le. In addition, the existence of unstable AEs in a regime where linear
theory predicts  < 0, or subcritical AEs, has not been ruled out. To access the
subcritical regime, nonlinear analysis is necessary. Therefore, accurate linear stabil-
ity analysis requires signi�cant theoretical and experimental improvements, or a new
approach.
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2.2 Angle-action description

2.2.1 Kinetic description

Since the kinetic equation is at the center of interest of this thesis, it is useful to get
a deep understanding of its meaning, by reviewing its derivation from fundamental
principles. The steps we summarize here are detailed in Ref. [KT86] for example.

A many-body system is completely described by the microscopic distribution
N (z; t) =

P
� (z � z i ), where z i � (x i ; v i ), x i and v i are the position and ve-

locity of a particle indexed as i , and the sum is taken over all particles. To simplify
the present discussion, we consider a single-species system ofNp particles, without
external forces, and normalize the total phase-space volume, assumed constant, to 1.
Substituting Newton equations of motion into the partial time derivative of N yields
the so-called Klimontovich-Dupree equation,

@N
@t

+ v �
@N
@x

+ amicro �
@N
@v

= 0 ; (2.8)

where amicro (z) is the acceleration due to microscopic electromagnetic �elds, at the
exception of those due to a particle located atz, if such a particle exists. The
microscopic electromagnetic �elds obey Maxwell equations, where density and current
are velocity moments ofN .

Since it is impossible to reproduce any many-body experiment at the microscopic
level, it is much more e�cient to take an ensemble point-of-view, where distributions
and �elds are smooth functions of phase-space. The statistical properties are com-
pletely determined by the distribution FN (z0

1 ; z0
2 ; : : : ; z0

N p
; t), where FN dV1 : : : dVN p

is the probability of �nding, at a time t, particle 1 within d V1, particle 2 within d V2,
: : : and particle Np within d VN p , and dVi is an in�nitesimal phase-space volume at
the neighborhood ofz = z0

i . By integrating FN over all z0
i but z0

1 , we can de�ne the
one-particle distribution function f 1, where f 1(z0

1 ; t)dV1 is the probability of �nding
one particle within dV1 at t. f 1 is related to the microscopic distribution by

f 1(z1 ; t) =
hN (z1 ; t)i

Np
; (2.9)

where hN i is the ensemble average
R

FN N dz0
1 : : : dz0

N p
. Similarly, by integrating

FN over all z0
i but z0

1 and z0
2 , we can de�ne the two-body distribution function

f 2(z0
1 ; z0

2 ; t), which is related to the microscopic distribution by

f 2(z1 ; z2 ; t) =
hN (z1 ; t)N (z2 ; t)i

N 2
p

�
� (z1 � z2 )

Np
f 1(z1 ; t); (2.10)

where we used a large particle number approximation,Np � 1. In the absence of
atomic and nuclear processes,Np is a constant, then the ensemble average of Eq. (2.8)
yields

@f1
@t

+ v �
@f1
@x

+ a �
@f1
@v

=
df 1

dt

�
�
�
�
coll :

; (2.11)

where the average accelerationa �


amicro

�
is given by electromagnetic �elds that

obey Maxwell equations, where density and current are velocity moments off 1. The
collision term,

df 1

dt

�
�
�
�
coll :

� a �
@f1
@v

�
1

Np

�
amicro �

@N
@v

�
; (2.12)

is shown to vanish in the absence of particle interactions, yielding Vlasov equation,
which is valid on a time-scale much shorter than a collisional time-scale. Eq. (2.11)
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Fig. 2.2: Illustration of Liouville's theorem. Time-evolution of an in�nitesimal volume
in a 2D phase-space (x, v), delimited by a solid curve at t = t1 and by a dashed curve
at t = t2. The phase-space volume is constant, dV1 = d V2, and, in the absence of
collision, the number of particles inside the volume is constant too.

is not a closed equation, because the second part of the collision term involves ex-
pressions of the formhNN i . Under the Coulomb approximation, which forbids any
retardation e�ect, and which is valid if the thermal velocity is much slower than the
speed of light, we can reduce the latter term as a function off 2. Similarly, the equa-
tion which gives the evolution of f 2 involves terms of the form hNNN i , and so on.
Altogether, we have a chain of equations for which we need a closure. A collision
operator is an approximative statistical operator that accounts for particle interac-
tions, which provides such closure. A clear review of collision operators is given in
Ref. [HS02]. In this thesis, we focus on a Fokker-Planck collision operator, which
is based on the fact that, in a Tokamak plasma, collisions are dominated by binary
Coulomb collisions with small-angle deection.

In the following, we write f 1 simply as f . The kinetic equation, Eq. (2.11), can
be put in Hamiltonian form,

@f
@t

� f h; f g =
df
dt

�
�
�
�
coll :

; (2.13)

where h is the Hamiltonian, and fg are Poisson brackets. The l.h.s. is the variation
of f following particle orbits, or so-called Lagrangian derivative of f , noted Dt f .

The fact that, in the absence of collisions,f is conserved along particle orbits, can
be seen as a direct consequence of Liouville's theorem, which states that the density in
phase-space is constant along particle orbits. Let us consider an in�nitesimal volume
of phase-space dV1 surrounding a particle at z1 at t = t1, as illustrated in Fig. 2.2.
The particle and all points of dV1 evolve following the equations of motion until a
time t = t2 where the particle is at z2, and dV1 is changed to a volume dV2. Liouville's
theorem arises from the following properties,

� Since the points of the boundary of dV follow the equations of motion, in the
absence of collisions, the number of particles inside dV is constant;

� Time-evolution can be seen as a series of in�nitesimal canonical transformations
generated by the Hamiltonian;

� Poincar�e's invariant: the volume element in phase-space is a canonical invariant.
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2.2.2 Review of Lie transform theory

When working in canonical variables, it is easy to exploit the properties of a Hamilto-
nian system. However, for some systems it is di�cult to �nd canonical variables, and
the most convenient variables may not be canonical. Moreover, if some variables are
canonical for the unperturbed system, they may be non-canonical for the perturbed
one. By applying the Lie near-identity transformation theory to the phase-space La-
grangian, one can change any Lagrangian into a simpler form in coordinates that
reveal the symmetries of the system, and use this formulation to study the properties
of a perturbed Hamiltonian system in any arbitrary noncanonical variables [CL83].

Noncanonical Hamiltonian Mechanics

Consider a Hamiltonian system with N degrees of freedom. Hamilton equations are
given by the application of a variational principle to the scalar Lagrangian L , in some
arbitrary coordinates z� on the 2N + 1-dimensional extended phase space, (t, z� ),

�
Z

L(z� (� ); � ) d� = 0 ; (2.14)

where � is an arbitrary parameter. Hereafter, Greek indices� , � and � run from 0 to
2N , whereas Latin indicesa and b run from 1 to N , and i , j , k from 1 to 2N . Thus,
any Hamiltonian system is characterized by its Lagrangian

L =  �
dz�

d�
; (2.15)

or equivalently by its fundamental one-form,  � dz� . In the canonical extended phase-
spacez� = ( t; qa ; pa), when z0 � t is the time coordinate,

 0 = � h(z� ; t); (2.16)

 a = pa ; (2.17)

 a+ N = 0 ; (2.18)

where h is the Hamiltonian. However, in noncanonical variables, all the � may be
nonzero.

From Eq. (2.14), which has the same form in any new coordinate systemZ � with
 � dz� = � � dZ � , Euler-Lagrange equations are obtained as

! ��
dz�

d�
= 0 ; (2.19)

where ! is a tensor de�ned by

! �� =
@�
@z�

�
@�
@z�

; (2.20)

and its restriction to the symplectic coordinates c! ij is the Lagrange tensor. Thus
the ow d � z� is an eigenvector of! �� with eigenvalue 0. The solution is unique only
after a normalization. In physical terms, we can take � = t. Since the Jacobian of
the coordinate transformation  � (z� ) = ( � h; pa ; 0) is nonsingular, we can invert the
Lagrange tensor. The Poisson tensorJ = b! � 1 then yields the equations of motion,

dzi

dz0 = Jij
�

@j
@z0

�
@0
@zi

�
: (2.21)
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Lie transform technique

We consider a fundamental one-form =  0 + � 1 which consists of an equilibrium
part  0 for which the ow is well-known, and a small perturbation  1. We want
to study the e�ect of the perturbation on the ow. The strategy is to search for a
near-identity transformation that will reveal the symmetries of the perturbed system.
Indeed, if the fundamental one-form is independent of some coordinatez� , then, as
an application of Noether's theorem,

dz�

dt
=

@�
@z�

dz�

dt
= � ! ��

dz�

dt
= 0 ; (2.22)

revealing an exact invariant. The general form of a near-identity transformation with
a small parameter � is

Z � = z� + �Z �
1f (z) + � 2Z �

2f (z) + : : : (2.23)

Rather than an expansion in � which is di�cult to invert, we express the transfor-
mation in operator form. We denote a forward transformation Z � = Z �

f (z; � ), and
a backward transformation z� = Z �

b (Z; � ). In the Lie transform technique, the
coordinate transformation is speci�ed by a generatorg� such that

@Z�f
@�

(z; � ) = g� (Z f (z; � )) ; (2.24)

and Z �
f (z;0) = z� .

The forward transformation of a scalar f (z) into F (Z; � ) is given by

F = e� �L g f; (2.25)

f = e+ �L g F; (2.26)

where L g is de�ned by its action on a scalar L gf = g� @� f , and its action on a
one-form (L g  ) � = g� (@�  � � @�  � ). The transformation of coordinates is just a
special case of scalar transformation,

Z �
b = e� �L g I � ; (2.27)

where I � (z) � z� = Z �
b (Z ) is the coordinate function. The transformation of a

one-form  (z) into �( Z; � ) is given by the functional relationships,

� = e� �L g  + d S; (2.28)

 = e+ �L g � + d s; (2.29)

where S and s are scalar functions.

Higher order perturbation theory

We now consider a fundamental one-form in the form of an expansion =  0 + � 1 +
� 2 2 + : : :. We introduce a push-forward transformation operator T = : : : T3T2T1,
where eachTn = e� � n L n is a Lie transform operator, and L n is a short for L gn .
Substituting these new de�nitions into Eq. (2.28), we have � = T  +d S, which yields
for each successive order, �0 =  0, and

� 1 = d S1 � L 1 0 +  1

� 2 = d S2 � L 2 0 +  2 � L 1 1 +
1
2

L 2
1 0

: : :

� n = d Sn � L n  0 + Cn ; for n 6= 0 : (2.30)
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Let us recall that our aim is to simplify the fundamental one-form in the new
coordinates �. To this aim we have to solve successively the latter equations for the
gauge scalarSn and the generating vectorg�

n (Each Cn is given by  n and the result
of the preceding ordern � 1). In these equations, the generating vector appears only
in the one-form (L n  0) � = g�

n ! 0�� . We already discussed that! 0�� has a unique
null eigenvector. Then we can add any multiple of this eigenvector tog�

n without
changing the equations we are now trying to solve. Let us suppose this eigenvector
has a nonzero component in the time direction, then we can set

g0
n = 0 ; (2.31)

so that the time-coordinate doesn't change (Z 0 = z0 = t). At this point, we are left
with 2N + 1 unknowns, namely 2N generating functionsgi

n and one scalar gaugeSn .
A priori we should be able to bring the 2N + 1 components of � n into a simpler form.
A good strategy is to make all its symplectic components �ni vanish by choosing

gj
n = ( @i Sn + Cni ) Jij

0 : (2.32)

Let us now focus on the time component of the new one-form,

� n 0 = � Hn = @t Sn � gj
n d! 0j 0 + Cn 0: (2.33)

It is convenient to introduce the lowest order velocity vector, de�ned as the time
derivative along the unperturbed orbits of the coordinates :

V �
0 �

dz�

dt

�
�
�
�
0

: (2.34)

Substituting the unperturbed equations of motion (2.21), we �nd that the scalar gauge
is given by its total time derivative over the unperturbed orbit,

DSn

Dt

�
�
�
�
0

� V �
0

@Sn
@z�

= � n 0 � V �
0 Cn� : (2.35)

In integrating the latter equation, we want to avoid any secularity e�ect. Then we
should remove any secular perturbation by taking

� n 0 = hV �
0 Cn� i 0 ; (2.36)

where the average is to be taken over the unperturbed orbits.

Finally, in the new coordinates Z � =
�
e+ �L g I �

�
z, the new one-form is given by

� n = hV �
0 Cn� i 0 dt; (2.37)

if we choose the generating functions

gj
n = ( @i Sn + Cni ) Jij

0 ; (2.38)

where the gauge scalar is given by

Sn = �
I

0
V̂ �

0 Cn� ; (2.39)

and a tilde represents the oscillatory part.
To illustrate the bene�ts of Lie transform theory compared to classical perturba-

tion theory, and to quantify its validity limit, we apply it to a simple mathematical
problem in App. A.
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2.2.3 Guiding-center Lagrangian

Guiding-center theory provides reduced equations of motion of a charged particle in
a slowly-varying (in time and space) electromagnetic �eld, where the fast gyromotion
is decoupled from the relatively slow drifting motion of the guiding-center. Guiding-
center theory is based on the closeness to the limit of a �xed and uniform magnetic
�eld, where the orbit of a particle in a frame following its gyration center is a circle.
The perturbation from this situation is quanti�ed by a small parameter � , if we assume
the following ordering,

� � != 
 c � �=L � 1; (2.40)

where 
 c = eB=m is the cyclotronic frequency (or gyrofrequency),� is the Larmor
radius (or gyroradius), ! is a characteristic frequency of interest, andL is the scale-
length of �eld variation.

On the one hand, the standard derivation of guiding-center equations of motion
is based on an averaging procedure [Nor63], which removes important properties of
the Hamiltonian formulation. On the other hand, the modern derivation [Lit83] is
based on Lie-transform perturbation theory. This approach preserves the validity
of Noether's theorem and the validity of Liouville's theorem, to each order in � . In
addition, expansion to arbitrary order is straightforward. Moreover, since we keep
the Hamiltonian formulation, further reductions of dimensionality are still possible
with Lie transforms.

The starting point is the one-form in canonical cartesian phase-space (x , p),

 = p � dx � h(x ; p; t) dt; (2.41)

where p = mv + eA , and A is the vector potential. The one-form can be expressed
in noncanonical phase-space (x ; v), and written as an expansion in � ,

 =  0 + �  1 + : : : ; (2.42)

where

 0 = eA (x ; t) � dx � e' 0(x ; t); (2.43)

 1 = mv � dx �
�

e' 1(x ; t) +
m
2

v2
�

dt; (2.44)

and where ' is the scalar potential.
In Ref. [Lit83], Lie-transform theory is applied to change variables to new coor-

dinates, where the new one-form � does not depend on the gyroangle. When this
procedure is carried up to the second order, we obtain the guiding-center one-form,

� = ( mUb(R ; t) + eA (R ; t)) � dR + M d� � H dt; (2.45)

where
H = e' (R ; t) +

m
2

U2 + ( e=m)MB (R ; t); (2.46)

and the guiding-center coordinatesZ � (R ; U; M; � ) as

R � x � �
v?


 ci
a; (2.47)

U � v � b = vk ; (2.48)

M �
mv2

?

2
 ci
; (2.49)

� � tan � 1
�

v � e1

v � e2

�
; (2.50)

where (e1 ; e2 ; b) is an orthogonal unit vectors system,a � cos(� )e1 � sin(� )e2 , and
c � a � b.
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In Eq. (2.45), the angle-action variables of the gyromotion, (� , M ), appear in
canonical form in the symplectic part, and H does not depend on� . Thus, since the
gyromotion is irrelevant to fast-ion/TAE interactions, we can drop the term M d� in
the guiding-center one-form.

2.2.4 Guiding-center action-angle variables

In Ref. [MH90], the zeroth order guiding-center one-form �0 is put in the form,

� 0 = P� d� + P� d� + M d� � H (P� ; P� ; �; M )dt; (2.51)

where P� is the toroidal canonical angular momentum,

P� � � e� (r ) + mbR0vk ; (2.52)

and P� is the poloidal canonical angular momentum. The latter expression can be
used as a starting point to develop an action-angle formalism where the perturbed
Hamiltonian takes a standard form. In Ref. [BBP95b], a canonical transformation is
performed to obtain

� 0 = J � de� + J � de� + J � de� � H (J � ; J � ; J � )dt; (2.53)

where _e� = 
 c, _e� = ! � , and _e� = ! � are the unperturbed frequencies of the gyromotion,
poloidal motion, and toroidal motion, respectively. e� and e� reduce to the geometric
angles� and � if we neglect �nite aspect ratio e�ects (But we do not neglect them,
since we would remove the toroidicity from which the TAE originates).

2.2.5 Application to TAE

Although TAEs resonate mainly with passing particles, when the source of high-
energy ions is isotropic, a large fraction of the energy transfer may be accounted by
resonance with the bounce-motion (or banana motion) of toroidally trapped particles
[TS98]. However, for tangential NBI ions, to which we con�ne our analysis, it is
su�cient to describe resonance with far passing particles.

In a gauge where the perturbed scalar potential is zero, the TAE can be described
by a perturbation Hamiltonian,

H1 = � eA 1? � vgc ; (2.54)

where vgc is the guiding-center velocity. Here,A 1? is the perpendicular part of the
perturbed vector potential, and we have neglected a second order termA 1? � A 1? .
In a small plasma pressure (small� ) limit, we can neglect parallel gradients, then
A 1? can be split into magnetic compression,

A c
1? = b0 � r � ; (2.55)

and magnetic shear,
A s

1? = r � � (b0 � r �) b0 ; (2.56)

where b0 � B 0=B0. For the TAE, which is a shear Alfv�en wave, the latter part only
is relevant, hence the excitation is described by a single scalar function �.

In Ref. [BBP95b] the perturbed Hamiltonian is put in the form

H1 = V(J ) cos(l � � � !t ); (2.57)

in arbitrary tokamak geometry, where (� , J ) are angle-action variables for the solvable
unperturbed Hamiltonian H0(J ), and l = ( l1; l2; l3) is a triplet of three integers.
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Substituting Eq. (2.56) into Eq. (2.54) yields

H1 = � evgc � r � + e(b0 � r �) b0 � vgc (2.58)

= � e
d�
dt

�
�
�
�
0

+ e
@�
@t

+ e(b0 � r �) vk ; (2.59)

where d� =dtj0 is the Lagrangian derivative of � along unperturbed particle orbit,
which can be removed from the Lagrangian without altering Euler equations.

For a singlen=m mode of frequency! , the eigenfunction takes the following form,

�( r; �; � ) = C(t)e� {!t � {' ( t )
m +1X

l = m

� l (r )e{n� � {l� + c :c:; (2.60)

where C and ' are the amplitude and phase of the wave. Substituting the eigenfunc-
tion and the expressionB 0 = ( @�=@r)r r � r (q� � � ) into Eq. (2.59), the TAE
excitation is reduced to

H1 = � {e C(t)e� {!t � {' ( t )
m +1X

l = m

� l (r )e{n� � {l� �
! � vkb0 � (nr � � mr � )

�
+ c :c:;

(2.61)
where we have neglected time-derivation of slowly varying phase and amplitude of the
wave.

Then we change the variables to the canonical angle-actions (e� , e� , J � , J � ), in order
to express the perturbed Hamiltonian as a Fourier series ine� ,

H1 = � {e C(t)e� {!t � {' ( t ) e{n e�
+ 1X

p= �1

Vp(J � ; J � )e{p e� + c :c:; (2.62)

where

Vp =
Z

de�
2�

e� {p e� � {n e�
m +1X

l = m

� l (r )e{n� � {l� �
! � vkb0 � (nr � � mr � )

�
: (2.63)

Formally, the problem is expressed in the desired form of Eq. (2.57), but the nu-
merical computation of the Fourier componentsVp, which is needed for quantitative
comparison of absolute physical quantities between 3D and 1D model, requires to
relate geometric angles and canonical angles, which may be complicated depending
on the equilibrium con�guration. However, since each particle of the resonant phase-
space surface interact with the wave in the same way at the same frequency (though
with di�erent strength), comparison of quantities that are normalized to the mode
frequency is possible, even without evaluatingVp coe�cients.

2.3 Reduction to a one dimensional problem

If we consider only small toroidal mode numbersn, n and n + 1 modes are isolated.
Let us consider a single toroidal mode number. On the one hand, since on a ux
surface r = rm where a poloidal mode numberm is centered, the safety factor is
q(rm ) = (2 m + 1) =(2n), then we can estimate the distance � r = r m +1 � r m between
two neighbouring m modes by writing � r q0 � q(r m ) � q(r m +1 ), as

� r �
1

nq0: (2.64)

On the other hand, the characteristic width of TAE modes �r is of the order of
�r � r 2

m =nqR0 [CCC85]. Hence, for typical parameters,�r= � r � (r m =R0)S � 1,
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whereS � rq0=q is the magnetic shear. Thus, TAEs have a two-scale radial structure,
the larger scale corresponding to the enveloppe of the TAE. In our analysis, we assume
that the number of m harmonics involved is small enough to consider resonances one
by one, as isolatedn, m mode. The latter hypothesis is reasonable for su�ciently
core-localised, low-n TAEs. We must keep in mind, though, that high- n TAEs are
likely to be destabilized in future devices such as ITER, in which case it may be
necessary to take into account multiple-wave resonances.

The evolution of the distribution f (x ; v; t) of energetic ions is described in 3D
con�guration space by the kinetic equation (2.13), with the perturbed Hamiltonian
Eq. (2.57). In the following, we reduce the problem to a 1D Hamiltonian system, by
considering a singlen, m mode.

2.3.1 Reduction of the Hamiltonian

Formally, the resonant phase-space surface,J = f J R such that JR 3 = F (JR 1; JR 2)g,
is de�ned by a function F . The resonance condition,

l � 
 (J R ) = !; (2.65)

where 
 (J ) � @H0
@J (J ), is satis�ed on the resonant phase-space surface.

Once the perturbed Hamiltonian has been put in the form of Eq. (2.57), we can
reduce the problem to one action and one angle [Lic69, GDPN+ 08], by performing
a canonical transformation J � d� � H dt = I � d � H 0dt + d S with the generating
function

S = � I �  + I 3(l � � � !t ) + I 1� 1 + I 2� 2 + F (I 1; I 2)� 3: (2.66)

This procedure yields,

J1 = I 1 + l1 I 3  1 = � 1 + � 3 @I 1 F
J2 = I 2 + l2 I 3  2 = � 2 + � 3 @I 2 F
J3 = F (I 1; I 2) + l3 I 3  3 = l � � � !t ,

and H = H 0 + ! I 3. Thus, near the resonant phase-space surface,J = J R + I 3 l ,
and we can expand the new Hamiltonian around this surface,

H 0( ; I ) = H0(J R + I 3 l ) + V (J R + I 3 l ) cos 3 � I 3 ! (2.67)

= H0(J R ) + I 3 (l � 
 (J R ) � ! ) +
1
2

D I 2
3

+ V(J R + I 3 l ) cos 3; (2.68)

with D(J R ) � l i l j @J i @J j H0(J R ).
If the variations of H (J ) are small around J R , we can replaceV(J R + I 3 n ) by

V (J R ) in the latter expression, and obtain the new Hamiltonian H 0 = H0(J R ) +
H1;J R ( 3; I 3), with

H1;J R ( ; I ) �
1
2

D I 2 + V cos : (2.69)

Thus, the problem has been reduced to a 1D Hamiltonian problem for the angle-action
variables ( , I )� ( 3, I 3).

Substituting the expression of the TAE perturbation, Eq. (2.62) into Eq. (2.57),
we obtain

 = pe� + ne� � !t; (2.70)

I =
J � � J � R

n
� � e

� � � R

n
; (2.71)

D � n2 @2H0

@J2�
(J R ); (2.72)

V = � {e C(t)Vp(J � R ; J � R ); (2.73)
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where the subscript R means that the quantity is evaluated at the resonance, and
with � = ( e�; e�; e� ), J = ( J � ; J � ; J � ), and l = (0 ; p; n).

2.3.2 Reduction of the collision, source and sink terms

A �rst, simple model is obtained by reducing the e�ects of collisions to the recovery
of an equilibrium energetic particle distribution, with a recovery rate � a(v).

A more rigorous treatment of collision processes is obtained if we project a collision
operator that describes Coulomb collisions perceived by energetic ions, on the resonant
phase-space surface. We consider collisions on energetic particles by thermal electrons
(s = e), ions (s = i ), and carbon impurities (s = c), and describe them by a Fokker-
Planck collision operator [HS02] that acts on the distribution of energetic particles
(s = b). In spherical coordinates (v,�), where � is the angle between v and b,
neglecting gyroangle dependency,

df
dt

�
�
�
�
coll :

= � de
1
2

1
sin �

@
@�

�
sin �

@f
@�

�
+

1
v2

@
@v

�
v3

�
� slow f +

1
2

� kv
@f
@v

��
;

(2.74)
where� de , � slow and � k are pitch-angle scattering, slowing-down, and parallel velocity
di�usion rates, respectively, vk = v cos � is the parallel velocity of energetic particles.

We consider a TAE with toroidal mode number n, resulting from the coupling of m
and m + 1 poloidal modes. To simplify the following discussion, we consider strongly
co-passing beam particles that resonate with the TAE at a velocity v � vk = vA .
Then the resonance condition is given by 
 = ! A , where 
 is given by Eq. (2.6). To
project the Fokker-Planck operator on the resonant phase-space surface, we follow the
procedure described in Refs. [BBP97a, LBS09]. We replace@v f by J b0 @
 f , where
J is the Jacobian of the coordinate transformation fromvk to 
,

J =
@P�
@vk

@

@P�

�
�
�
�
vk

=
mSmbvk

2r 2ebB0
; (2.75)

and S is the magnetic shear. Herees and ms are charge and mass of a speciess,
respectively, andb stands for beam particles. This procedure yields

df
dt

�
�
�
�
coll :

= � 2
f

@f
@


+ � 3
d

@2f
@
 2 ; (2.76)

with

� 2
f = vk J

�
2� k + � slow � � de

�
; (2.77)

� 3
d =

v2

2
J 2 �

� k cos � + � de sin �
�

: (2.78)

We assume Maxwellian background distributions, with a same temperatureT0.
Typical experiments satisfy the following ordering of thermal velocities,vT c < v T i �
vA � vT e , while the beam energyEb is much larger than T0. Within these assump-
tions, around the resonance,

� 2
f =

vkJ
v3

X

s

ns  bs

ms

�
erf � s �

2� sp
�

e� � 2
s

�
; (2.79)

� 3
d =

J 2

2v3

X

s

ns  bs

2mb� 2
s

h�
(2� 2

s � 1)v2
? + 2v2

k

�
erf � s

+
2� sp

�
(v2 � 3v2

k ) e� � 2
s

�
; (2.80)
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where � s � v=vT s , v? = v sin �, vk = vA ,

 bs =
e2

be2
s log �

� 2
0mb

; (2.81)

� 0 is the vacuum permittivity, and log � is the Coulomb logarithm. Since the magnetic
moment is an invariant of the motion of injected beam ions from deposition to resonant
phase-space surface,v2

? = v2
b(1 � R2

T =R2
0), where vb is the velocity of beam particles,

and RT is the tangential radius of the beam.
The equivalent collision operator in the BB model is obtained by substituting


 = kv in Eq. (2.76).

2.3.3 Reduction of the background damping mechanisms

Since the time-scale of fast-particle evolution is much faster than background thermal
populations evolution, these two dynamics are decoupled. Hence we can reasonably
treat the e�ects of background damping in an extrinsic way. We assume that all
background damping mechanisms a�ect linearly the wave energyW,

dW
dt

= � 2  d W(t): (2.82)

Damping includes mechanisms such as radiative damping, which strength depends
on the frequency [MM92]. Hence, in a rigorous model, d should be a function of ! .
However, theory needs to be developed before this complex interplay can be taken
into account. Thus, we limit our framework to cases where d can be treated as a
constant. This framework is consistent with a �xed mode frequency.

2.3.4 Limitations

We assumed an isolated single mode, which is reasonable for su�ciently core-localized,
low-n TAEs. However, for future devices with higher-n, an other model that includes
multiple-modes interactions has to be developed.

Since it assumes a �xed mode structure, implying a �xed Magneto-Hydrodynamic
(MHD) equilibrium, the above reduced model looses its validity on a time-scale of
MHD equilibrium evolution, which is of the order of the second on large devices
such as JT-60U. We must also require that wave amplitude is low enough, such that
nonlinear redistribution of energetic particles does not signi�cantly alter the mode
structure and frequency. In practice, since the frequency and growth rate of TAEs
are very sensitive to theq pro�le, if the frequency of a low-amplitude TAE observed
in experiments stays nearly constant during a certain time-window, we infer that the
�xed-mode-structure assumption is satis�ed for this time-window.

In the case of frequency sweeping, which is the case we apply to experiments, it is
sometimes argued that since the frequency is changed, so must be the mode structure.
However, we must distinguish at least three classes of frequency sweeping, namely,
slow frequency sweeping (slow-FS), fast frequency sweeping (fast-FS), and so-called
abrupt large-amplitude events (ALE) [SKT + 01], although it is not clear for the latter
if the frequency does sweep. In the case of JT-60U shot number E32359, which is
analyzed in Chap. 5, slow-FS have a timescale of 100� 200 ms, and their frequency
is correlated with bulk equilibrium variations, therefore they are out of the scope of
the above reduce model. Fast-FS have a timescale of 1� 5 ms, and the associated
redistribution of energetic ions is relatively small [STI+ 02], therefore are consistent
with a �xed-mode-structure hypothesis. Although the occurrence of fast-FS and
ALEs seems to be linked, ALEs are identi�ed as so-called Energetic Particle-driven
Modes (EPMs) [BFV+ 07], have signi�cantly larger amplitude and shorter timescale
(200� 400 � s), and induce signi�cant loss of energetic ions, and are out of the scope
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of this work since we assume a weak drive and a constant density of energetic ions in
the BB model.

Finally, modeling all background damping mechanisms as an extrinsic, �xed linear
damping on the wave is a strong assumption, whose validation requires more under-
standing of these mechanisms. We must assume that d does not depend neither on
the wave amplitude, nor on the energetic population. In the case of frequency sweep-
ing, the assumption is clearly violated if the nonlinear modi�cation of frequency is
of the order of the linear frequency, especially if a chirping phase-space structure ap-
proaches the SAW continuum, where damping rate depends largely on the frequency.

Overall, the above reduced model is suitable for describing resonant interactions
between energetic particles and a weakly driven, isolated TAE, even for slightly-
chirping modes, as long as

� phase-space structures are well con�ned within the continuum gap ;

� redistribution of energetic population is negligible as far as wave dispersiveness
and damping mechanisms are concerned ;

� we look at time-scales much smaller than the equilibrium evolution time-scale.
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Chapter 3

The Berk-Breizman model

The BB model, describing the fully nonlinear wave-particle interactions between ener-
getic particles and an electrostatic wave in a 1D plasma, is an extension of the Vlasov-
Poisson system, where we take into account collisions and external wave damping. In
this system, we consider a bump-on-tail velocity distribution comprising a Maxwellian
bulk and a beam of energetic particles, and we apply a small electrostatic perturba-
tion. The apparent simplicity of the corresponding equation system hides surprisingly
rich physics. Depending on the parameters of the model, the perturbation may be
damped or ampli�ed due to a transfer of energy between resonant particles and the
wave. In the stable case, when the perturbation is small, linear theory predicts expo-
nential decay of the wave amplitude, which in the absence of collisions and external
damping is known as Landau damping [Lan46]. In the unstable case, on the contrary,
linear theory predicts exponential growth of the wave amplitude. Then, trapping
of resonant particles signi�cantly modi�es the distribution function and an island
structure appears. Saturation of the instability and following nonlinear evolution
are determined by a competition among the drive by resonant particles, the external
damping, the particle relaxation which tends to recover the initial positive slope in
the distribution function, and particle trapping that tends to smooth it. It has been
predicted [BBP97a, BBP+ 97c, BBP96] and observed [VDR+ 03] that three kinds of
behavior emerge, namely steady-state, periodic, or chaotic responses, depending on
the strength of each factor. In addition, chaotic solutions can display signi�cant shift-
ing of the mode frequency (chirping), both upwardly and downwardly, as holes and
clumps are formed in the distribution [BBP97b, BBP98, BBC+ 99].

In Sec. 3.1, we recall the equations of the BB model, in both full-f and �f ap-
proaches. In Sec. 3.2, we show the linear dispersion relation, and present tools that we
use for accurate linear analysis. For our purposes of validating and extending BB the-
ory, and of applying it to TAEs, we develop a kinetic code based on the Constrained
Interpolation Pro�le - Conservative Semi-Lagrangian (CIP-CSL) scheme [NTYT01]
for solving the initial value problem. In Sec. 3.3, we present the main principles of our
code, which we name COBBLES. In the full-f case, we show that a locally conservative
implementation is a key point for robust simulations in experimentally-relevant con-
ditions, which are particularly stringent in a numerical point-of-view. In Sec. 3.4, we
verify nonlinear capabilities of COBBLES. In the collisionless limit without external
damping, we are able to solve the simpler Vlasov-Poisson system and recover satura-
tion level, relative oscillation amplitude, and the so-called Bernstein-Greene-Kruskal
(BGK) steady-state solution [BGK57]. Then, we analyze the conservation and con-
vergence properties for a system with �nite  d and collision frequencies. Further,
we benchmark COBBLES against a parameter scan given in former works by Vann
[VDR + 03]. A drag and di�usion collision operator is veri�ed by recovering qualitative
steady-state distributions predicted by theory. Finally, we consider multiple-waves in-
teraction and estimate a particle di�usion coe�cient which agrees with quasi-linear
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Tab. 3.1: Correspondence between physical and normalized quantities.

Physical quantity Normalization constant

Time ! � 1
p

Length � D

Velocity vth

Density n0

Distribution f n 0=vth

Electric �eld mv2
th =(e� D )

Energy, Hamiltonian mv2
th

Power m� D n0v2
th ! p

theory. In Sec. 3.5, we summarize the analogies between BB model and 1D model of
TAE.

3.1 Basic equations and physics

Depending on the application, it may be convenient to cast the BB model either in a
self-consistent form (full-f ) or in a perturbative form ( �f ).

3.1.1 Normalization

For the sake of concision in this thesis, and to avoid numerical treatment of too large
and too small numbers in simulations, we adopt the normalization shown in Tab. 3.1,
where the plasma frequency! p is de�ned by ! 2

p = n0e2=(� 0m), e, m, and n0 are the
charge, mass, and total density, respectively, of the evolving species,� D = vth =! p is
the Debye length, andvth is a typical thermal velocity.

3.1.2 Full- f BB model

We consider a 1D plasma with a distribution function f (x; v; t ). In the initial condi-
tion, the velocity distribution,

f 0(v) � f (v; t = 0) = f M
0 (v) + f B

0 (v); (3.1)

where f is the spatial average off , comprises a Maxwellian bulk,

f M
0 (v) =

nM

vT M
p

2�
e� 1

2

�
v

v T M

� 2

; (3.2)

and a beam of high-energy particles,

f B
0 (v) =

nB

vT B
p

2�
e� 1

2

�
v � v B
v T B

� 2

; (3.3)

where nM and nB are bulk and beam densities, which verifynM + nB = 1, vT M

and vT B are thermal velocities of bulk and beam particles, andvB is the beam drift
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Fig. 3.1: Initial distribution function f 0. Velocity is normalized to the resonant
velocity vR . Full curve is distribution A, broken curve is distribution B.

velocity. To ensure charge neutrality, we assume a �xed background population of
the opposite charge with a distribution function f 0(v). Fig. 3.1 shows two typical
initial distribution functions, with a cold bulk and a weak, warm beam. The �rst
one, to which we refer in the following asdistribution A , with nB = 0 :1, vT M = 0 :5,
vT B = 1 :0, and vB = 4 :5, is used to benchmark our code in 3.4.3. The second one,
distribution B , with nB = 0 :1, vT M = 0 :2, vT B = 3 :0, and vB = 5 :0, hence a warmer
beam and a colder bulk, is used to validate and develop some aspects of BB theory.
For both distributions, we will always choose a system sizeL = 2 �=k with k = 0 :3.

The evolution of the distribution is given by the kinetic equation

@f
@t

+ v
@f
@x

+ E
@f
@v

= C(f � f 0); (3.4)

where E is the electric �eld, and C(f � f 0) is a collision operator.
In this work, we consider either one of the following two collision models. On the

one hand, a large part of existing theory for the BB-model deals with collisions in the
form of a Krook operator [BGK54],

CK (f � f 0) = � � a(v) ( f � f 0) ; (3.5)

which is a simple model for collisional processes that tend to recover the initial dis-
tribution at a rate � a , including both source and sink of energetic particles. If we
assume cold and adiabatic bulk plasmas,� a(v) acts only on the beam. Reecting this
situation, we design the velocity dependency of� a(v) as

� a(v) =
�

� a if v > v �

0 else
; (3.6)

where v� satis�es f M
0 (v� )=f M

0 (0) = � � , and we choose� � = 10 � 3. Hence, � a(v) is
constant in the beam region, and zero in the bulk region, except for the benchmark
in Sec. 3.4.3 where it is explicitly stated to be constant everywhere.
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On the other hand, a more realistic collision operator, the one-dimensional pro-
jection of a Fokker-Plank operator, Eq. (2.76), includes a dynamical friction (drag)
term and a velocity-space di�usion term,

CFP (f � f 0) =
� 2

f (v)

k
@(f � f 0)

@v
+

� 3
d (v)
k2

@2 (f � f 0)
@v2

; (3.7)

where k is the wave number for the resonance under investigation, and with similar
velocity-dependence for� f and � d. An other large part of existing theory deals with
the latter operator in the absence of drag (� f = 0). Investigations of the e�ects of
dynamical friction are fairly recent [LBS09, LFC10].

We de�ne the e�ective collision frequency as � e� � � a in the Krook case and
� e� � � 3

d = 2
L 0 in the case with di�usion. A dimensional analysis gives a typical

lifetime of phase-space structures as� � 1
e� .

In the expression of the electric �eld,

E (x; t ) = Êk (t)e{kx + c:c:; (3.8)

we assume a single mode of wave numberk, reecting the situation of an isolated
single mode AE. The displacement current equation (DCE),

@E
@t

= �
Z

v (f � f 0) dv � 2  d E; (3.9)

yields the time evolution of the wave. In the initial condition we apply a small per-
turbation, f (x; v; t = 0) = f 0(v)(1 + � coskx), and the initial electric �eld is given by
solving Poisson's equation. In Eq. (3.9), an external wave damping has been added to
model all linear dissipation mechanisms of the wave energy to the background plasma
that are not included in the previous equations [BBY93]. The presence of a factor 2
in front of  d is consistent with Berk and Breizman's literature and will be justi�ed
in Sec. 3.2.

Conservation properties

Before deriving the conservation properties of this model, it is useful to note the
following property. If f (x; v; t ), g[f (x; v; t ); t] and h(x; v; t ) are arbitrary functions,
analytic in a phase-space � � (x; v), then

Z
f h; f g� g(f; t ) dx dv =

Z L

0
dx

�
f

@(g h)
@x

� 1

�1
�

Z 1

�1
dv

�
f

@(g h)
@v

� L

0
(3.10)

= 0 for usual boundary conditions, (3.11)

where integration in the l.h.s. is over the whole phase-space surface.
In the ideal situation, the model presented above ensures conservation of total

particle number N (t) �
R

f dxdv. This is proven by taking the integral over the
whole phase-space of the kinetic equation, which can be written as

@t f � f h; f gx;v = C(f � f 0); (3.12)

where h is the Hamiltonian,

h(x; v; t ) = v2=2 + ' (x; t ); (3.13)

and ' is the electrostatic potential. Thus we obtain

dN
dt

=
Z

C(f � f 0) dx dv: (3.14)

22



With Krook operator, if � a(v) = � a is taken as constant, the latter equation can be
written as

d� N
dt

+ � a � N = 0 ; (3.15)

where � N (t) � N (t) � N (0). Since � N (0) = 0, Eq. (3.15) yields the conservation
of total particle number, d� N=dt = 0. However, in numerical simulations, some
spurious leakage of particles from velocity boundaries induces a small error in this
conservation. When � a(v) has the velocity dependence of Eq. (3.6), Eq. (3.15) is
changed to

d� N
dt

+ � a � N = � a L
Z v �

�1

�
f � f 0

�
dv: (3.16)

In the bulk part v < v � , we assume that the variation of the distribution is negligible,�
�f (v; t) � f 0(v)

�
� � f 0(v), and we show the approximative conservation of total particle

number, �
�
�
�
d� N

dt
+ � a � N

�
�
�
� � � a N (0): (3.17)

With Fokker-Plank operator, d N=dt = 0 is immediate from Eq. (3.14).
Let us now derive an energy equation to relate power transfers between wave,

particles, and external damping. Detailing each term is useful to clarify di�erent
possible decomposition of the power transfer, corresponding to di�erent point of view.
Taking the integral over phase space of the product of the Hamiltonian with the kinetic
equation, and dividing it by the system size yields

1
L

Z
h

@f
@t

d� =
Z

v2

2
@f
@t

dx
L

dv +
Z

'
@f
@t

dx
L

dv = P� ; (3.18)

where the right hand side shows the collisional power transferP� � PT
� + P '

� ,

PT
� (t) �

Z
C(f � f 0)

v2

2
dx
L

dv; (3.19)

P '
� (t) �

Z
C(f � f 0)'

dx
L

dv: (3.20)

The left integral of the left hand side is the kinetic part dT =dt, where T is the total
particle kinetic energy density,

T (t) �
Z

v2

2
f dv: (3.21)

Substituting the kinetic equation into the right integral of the left hand side, we �nd
out that the �eld part is � Ph + P '

� , where we de�ne the particle power transfer as

Ph (t) �
Z

v E f
dx
L

dv: (3.22)

There are two ways of decomposingPh . The substitution of DCE (3.9) into the
expression ofPh yields

Ph = �
dE
dt

� Pd; (3.23)

where the electric �eld energy density is de�ned by

E(t) �
Z

E 2

2
dx
L

; (3.24)

and the external damping power transfer by

Pd(t) � 4  d E: (3.25)
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On the other hand, by substituting the kinetic equation (3.4) into the expression of
dT =dt we obtain

Ph = � PT
� +

dT
dt

: (3.26)

We can further separate the response of the particules into resonant and non-
resonant pieces if we decompose the distribution intof � f R + f NR and de�ne
T � T R + T NR . The non-resonant part of the kinetic energy is the sloshing energy,

T NR �
Z

v2

2
f NR dv (3.27)

For non-resonant particles, the velocity is oscillatory and we can replace the amplitude
of its oscillation by the linear responseE0=! , where E0 = 2 jÊk j, and we obtain
T NR = E. The wave energyW is composed of the �eld energyE and the sloshing
energy T NR which supports the wave,

W � T NR + E = 2 E: (3.28)

Finally, we can express the power transfer equation in two equivalent ways, de-
pending on whether we consider the non-resonant kinetic energy as part of the total
kinetic energy or as part of the total wave energy. In the electric �eld point of view,

dE
dt

+ Ph + 4  d E = 0 ; (3.29)

showing the balance between the �eld and all the particles. In the wave-as-quasi-
particles point of view,

dW
dt

+ PR
h + 2  d W = 0; (3.30)

where PR
h is the resonant power transfer,

PR
h �

Z
v E f R dx

L
dv = Ph �

dT NR

dt
; (3.31)

showing the balance between wave and resonant particles.

3.1.3 �f BB model

If the bulk particles interact adiabatically with the wave, their contribution to the
Lagrangian can be expressed as part of the electric �eld. Then it is possible to adopt
a perturbative approach, and to cast the BB model in a reduced form that describes
the time evolution of beam particles only [BBP95a, CD93]. The evolution of the beam
distribution, f B (x; v; t ), is given by the kinetic equation

@fB

@t
+ v

@fB

@x
+ ~E

@fB

@v
= C

�
f B � f B

0

�
; (3.32)

where the pseudo-electric �eld ~E is de�ned as

~E(x; t ) � Q(t) cos( ) � P(t) sin( ); (3.33)

where  � kx � !t . In this model, the real frequency of the wave is imposed as
! = 1. This restriction does not forbid nonlinear phenomena like frequency sweeping,
since both amplitude and phase of the wave are time-dependent. In this thesis, we
renormalize physical quantities for the �f model so that they do not depend onk.
In practice, we choosek = 1. In the collision operators, � a , � f and � d are taken as
constants, since, with the �f description, velocity dependency is not needed to avoid
a�ecting bulk plasma with collisions.
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The evolution of the pseudo-electric �eld is given by

dQ
dt

= � 1
2�

R
f B (x; v; t ) cos( ) dx dv �  d Q; (3.34)

dP
dt

= 1
2�

R
f B (x; v; t ) sin( ) dx dv �  d P: (3.35)

The initial values of Q and P are given by solving Poisson's equation. Note that the
latter equations, without factor 2 in front of  d, are consistent with Eq. (3.9).

In the collisionless case, one can see from the linear dispersion relation Eq. (3.58)
that ! = 1 only if f B

0 is symmetric around the resonant velocity,vR � !=k . Since we
assumed! = 1 from the start, we consider only such distributions, for the model to
be self-consistent. The velocity distribution of beam particles in the initial condition
is shown in Fig. 3.2. A constant slope is imposed betweenv = � vc and v = vc, where
vc is an arbitrary cut-o� velocity. The zero average ensures that the plasma frequency
is not perturbed by the beam density. Smooth joins between the constant gradient
region and the large velocity regions are necessary to prevent numerical oscillations at
v � � vc. Since we always choosevc large enough so that border e�ects are negligible,
an initial distribution is fully characterized by its slope at resonant velocity, in other
words by  L 0.

Conservation properties

Arguments similar to those for full- f model yield the conservation of total particle
number. The power balance is changed to,

Ph + PE + Pd = 0 ; (3.36)

where Ph is the kinetic power transfer,

Ph �
Z

v E f B dx dv; (3.37)

PE is the electric �eld power transfer,

PE �
2�
k

d
dt

�
P _Q � Q _P +

Q2 + P2

2

�
; (3.38)
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Tab. 3.2: Non exhaustive list of approaches and collision operators in the literature.
"BB" refers to Berk, Breizman and coworkers, "Lesur" refers to this thesis.

Author Approach Collisions

BB �f Krook / Di�usion

Vann full- f Krook

Lilley �f Krook / Di�usion / Di�usion+Drag

Lesur �f / full- f Krook / Di�usion / Di�usion+Drag

and Pd is the power transfer due to external damping and collisions. In the Krook
case,

Pd �
2�
k

h
( d + � a)

�
P _Q � Q _P

�
+  d

�
Q2 + P2� i

; (3.39)

while in the Fokker-Planck case, collisions do not contribute to this latter power
transfer, thus Pd is obtained by substituting � a = 0 in Eq. (3.39).

Compared to the full-f model, the �f model does not take into account e�ects of
time-evolution of bulk particles, which is a caveat when assessing limit of theory that
breaks-up when phase-space structures approach the bulk, but it has an advantage
in the application to experiment, where we assume �xed mode structure, hence �xed
background plasma. Moreover, the velocity range required to simulate a similar reso-
nant region can be signi�cantly reduced with the �f model, saving computation time.
Since, in this thesis, we often refer to literature by Berk and Breizman, by Vann, or
by Lilley, we clarify which approaches and which collision operators have been studied
by these authors, in Tab. 3.2.

3.2 Linear analysis

When the perturbation is small, linear theory predicts exponential growth or decay
[Lan46] of the wave amplitude. For the full-f model with Krook collisions, the linear
dispersion relation,

 + 2  d � { ! =
Z

�

v @v f 0

( + � a) + { (k v � ! )
dv; (3.40)

where � is the appropriate Landau contour [Lan46], yields the linear growth rate  ,
and the real frequency ! of the wave. We implemented an algorithm to solve the
latter equation, applying a method of residue for locating the zeros of an analytic
function in the complex plane [Dav86]. We refer to this algorithm as Davies solver.
In the following,  L is de�ned as the linear growth rate for  d = � a = 0.

In the collisionless limit, if we assume a small perturbation and a linear growth
rate  much smaller than the real frequency! , the dispersion relation reduces to

 =  L �
2  d

! @
 R(DL )j 
= !
; (3.41)

where

R(DL ) = 1 �
1



P
Z

v@v f 0

kv � 

dv; (3.42)

and P is a notation for Cauchy's principal value. In the cold Maxwellian limit,
 L =  L 0, where  L 0 is a measure of the slope of initial distribution at resonant
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Fig. 3.3: Growth rate in the collisionless limit. Solid line corresponds to Eq. (3.44),
dashed line corresponds to distribution A, for which  L = 0 :1981, and dotted line
corresponds to distribution B, for which  L = 0 :0324.

velocity,

 L 0 �
�

2k2

@f0
@v

�
�
�
�
v= vR

: (3.43)

In this limit, a simple relation,  =  L �  d, stands. However, with our choice of
distribution function, we must keep in mind that there is some discrepancy between
 and  L �  d,

 =  L

�
1 �

 d

 L 0

�
for � a = 0 ;  � !: (3.44)

Fig. 3.3 shows the growth rate estimated by Davies solver as a function of external
damping, in the collisionless limit, for both initial distributions A and B. Eq. (3.44)
is recovered in the limit of small  .

With Fokker-Planck collisions, the kinetic equation in Fourier-Laplace space is a
second order di�erential equation in v, which prevents a similar treatment. However,
we can take another approach, which is also valid in the Krook case, where we search
for solutions of the form exp(pt), where p �  � {! . Writing f k (v; t) = f p(v)ept and
Ek (t) = Epept the Fourier component of f � f 0 and E, respectively, we obtain a linear
equation system,

(p + {kv)f p + Ep
@f0
@v

= � � a f p +
� 2

f

k
@fp
@v

+
� 3

d

k2

@2f p

@v2
; (3.45)

(p + 2  d)Ep = �
Z

v f p dv: (3.46)

Discretizing the velocity space asvj = j � v for j = 1 � � � Nv , the latter system is
approximated to �rst order accuracy in � v by

(p + {kvj )f j + Ep
@f0
@v

(vj ) = � � a f j +
� 2

f

2k� v
(f j +1 � f j � 1)

+
� 3

d

k2� v2 (f j +1 � 2f j + f j � 1); (3.47)

(p + 2  d)Ep = � � v
N vX

j =1

vj f j ; (3.48)
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Fig. 3.4: Eigenvalues for initial distribution A, with  d = 0 :1. (a) Krook case, with
� a = 0 :25. (b) Fokker-Planck case, with � f = 0 :02 and � d = 0 :05.

where f j � f p(vj ), and boundary conditions are f 0 = f N v +1 = 0. This system of
Nv + 1 equations can be put in matrix form,

M � F = pF ; (3.49)

where F is a Nv + 1 dimension vector de�ned by

Fj = f j (j = 1 � � � Nv ); (3.50)

FN v +1 = Ep; (3.51)

and M is a Nv + 1 dimension square matrix de�ned by

Mj;j = � {kvj � � a � 2
� 3

d

k2� v2 (j = 1 � � � Nv ); (3.52)

Mj +1 ;j =
� 3

d

k2� v2 +
� 2

f

2k� v
(j = 1 � � � Nv � 1); (3.53)

Mj;j +1 =
� 3

d

k2� v2 �
� 2

f

2k� v
(j = 1 � � � Nv � 1); (3.54)

MN v +1 ;j = � @v f 0(vj ) ( j = 1 � � � Nv ); (3.55)

Mj;N v +1 = � vj � v (j = 1 � � � Nv ); (3.56)

MN v +1 ;N v +1 = � 2 d; (3.57)

where Mi;j is the element of columni , line j . We solve the above eigenvalue problem
using LAPACK library. In the Krook case, ! + { = kv � {� a constitutes a continuum
of trivial solutions with E = 0. This eigenvalue method does not yield solutions with
 < � � a . Moreover, as approaches� � a , increasing number of grid points are needed
to accurately estimate the growth rate, since continuum solutions tend to perturb
nontrivial solutions. Eigenvalues found by this method are shown in Fig. 3.4(a), for
initial distribution A, for which  L = 0 :1981, and with  d = 0 :1 and � a = 0 :25. The
least stable solution is ! = 0 :9953,  = � 0:04551, which is con�rmed with Davies
solver (see Table 3.3). Thus, damped solutions can be found, ifj j < � a . In the
Fokker-Planck case, the continuum is topologically changed, and depends on both
distribution function and grid points number. Thus, when estimating growth rates
with this method, we must be careful to use values that are converged withNv . This
is illustrated in Fig. 3.4(b), which shows eigenvalues for distribution A, with  d = 0 :1,
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� f = 0 :02 and � d = 0 :05. The most unstable solution is! = 1 :0204,  = 0 :1737,
which is in agreement with full-f simulation (see Table 3.3).

For the �f model with Krook collisions, the linear dispersion relation is changed
to

 +  d � { (! � 1) =
1
2k

Z

�

@v f B
0

( + � a) + { (k v � ! )
dv: (3.58)

As announced before, we have! = 1 only if the imaginary part of the right-hand side
vanishes, in other words iff B

0 is anti-symmetric around the resonant velocity. In the
collisionless case, for=! � 1, Eq. (3.58) yields

 =  L 0 �  d: (3.59)

If we search for solutions of the form exp(pt), as f k (v; t) = f p(v)ept and Z (t) =
Zpept , where Z (t) � [Q(t) + {P(t)] exp(� {t), we obtain a linear equation system,

(p + {kv)f p +
Zp

2
@f0
@v

= � � a f p +
� 2

f

k
@fp
@v

+
� 3

d

k2

@2f p

@v2
; (3.60)

(p + 2  d + {)Ep = �
1
k

Z
f p dv: (3.61)

The discretized version of the latter system can easily be put in the form of an
eigenvalue matrix problem, and solved in a way similar to the full-f case.

3.3 The kinetic code COBBLES

3.3.1 Numerical implementation

Let us recall that the BB model is an extension of the Vlasov-Poisson system, which
is recovered in the collisionless, closed system ( d = 0) limit. In a previous work
[LIT07], we developed a 1D semi-Lagrangian full-f Vlasov code, based on the Cubic-
Interpolated-Propagation (CIP) scheme [NY99] and the splitting method [CK76],
which enabled accurate simulations of the Vlasov-Poisson system. In this thesis,
we extend our code to include distribution relaxation and extrinsic dissipation, and
develop a�f version. We refer to these codes as full-f COBBLES and �f COBBLES,
respectively, COBBLES standing for COnservative Berk-Breizman semi-Lagrangian
Extended Solver.

In both codes we solve DCE instead of Poisson equation. Looking at the spatial
average of Eq. (3.9),

dE
dt

= �
Z

v
�
f � f 0

�
dv � 2  dE; (3.62)

we see that a small deviation from a constant total momentum can be the source
of a systematic error in the average electric �eld. Such deviation arises when Krook
collisions are included, or can be caused by numerical error. To avoid this problem,
we replace

R
vf 0dv by

R
vf dv in the DCE [Van02]. Then Eq. (3.62) is changed to

dt E + 2  dE = 0, which ensures a zero average electric �eld, sinceE
�
�
t =0 = 0.

Let us now describe the main points of our algorithm. All quantities like f are sam-
pled on uniform Eulerian grids with Nx and Nv grid points in the x and v directions,
respectively, within the computational domain f (x; v) j 0 � x < L; v min � v � vmax g.
For distribution A, cut-o� velocities are always chosen as vmin = � 8 and vmax = 8.
For distribution B, vmin = � 10 and vmax = 18. We de�ne the Courant-Friedrichs-
Lewy number CFL � vmax � t N x = (2L) as a measure of the time-step width � t. We
use the Strang splitting [Str68] formula to obtain a second-order accuracy in time
[VDR + 03]. For each time-step, we perform the following steps,
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1. Advect @t f + v @x f = 0 for a time � t=2

2. Solve @t f = � � a (f � f 0) � (� 2
f =k) @v f 0 + ( � 3

d =k2) @2
v (f � f 0) for a time

� t=2

3. Solve DCE for a time � t=2

4. Advect @t f + ( E (x) � � 2
f =k) @v f = 0 for a time � t

5. Repeat the step 3.

6. Repeat the step 2.

7. Repeat the step 1.

Numerically, step 3 is performed by a forward Euler scheme. Note that the
implementation of friction is split into steps 2 and 4. In step 2, f is replaced by
f 0 + exp( � � a � t=2)(f � f 0) � (� 2

f =k)@v f 0� t=2, then the di�usion equation is solved
by the Crank-Nicolson method [CN47]. The remaining problem, corresponding to
steps 1 and 4, is the advection of a 1D hyperbolic equation,

@t F + u @� F = 0 ; (3.63)

where u is constant in the � direction, � is a generalized advection coordinate, and
F is a general function of� and t. We aim at long-time accurate simulations in the
whole ( d, � a) space. The choice of advection scheme is of crucial importance to
reach this goal. In Appendix C, we recall the CIP-CSL algorithm, which we use for
solving Eq.(3.63), and its extension to the position-velocity phase-space, as presented
in Ref. [NTYT01]. The key idea is that in addition to the distribution function,
we advect its integrated value � to keep a ux balance between neighboring grids.
We justify this choice in the following section. Boundary conditions are periodic in
con�guration space, and zero-ux at velocity boundaries.

COBBLES is coded in Fortran 90 language. It is parallelized in a hybrid fash-
ion, using MPI in the velocity direction and OpenMP. Fig. 3.5 shows the speed-up
on JAEA's BX900 systems as the number of Central Processing Units (CPUs) is in-
creased, at �xed grid-points number Nx � Nv = 64 � 4096. Although there is room
for optimization, the observed scaling properties are su�cient for our purposes. The
use of OpenMP in addition to MPI provides a signi�cant speed-up for 128 CPUs.
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Di�erences between �f and full-f versions are in the initialization, which de�nes
f B instead of f , and in the DCE, which is replaced by Eqs. (3.34) and (3.35).

Note that we also implemented the treatment of two species, which was used
to benchmark simulations of Ref. [NLG+ 10], though this feature is not used in this
thesis.

3.3.2 Comparison of advection schemes

Compared to the benchmark of 3.4.3, our choices of parameters for testing theory,
in Chap. 4, constitute di�cult conditions for numerical stability of full- f simulations
and drastically increases computational cost. As a consequence, we must take special
care in choosing an advection scheme that minimizes computational time. Therefore
we discuss the relevancy of the CIP-CSL advection scheme, and present a comparison
with four other advection schemes.

In choosing the advection scheme, we focus on stability and convergence proper-
ties, which are estimated with severe benchmark parameters relevant for analysis in
Sec. 4.1.2, where we use distribution B (with a cold bulk and a weak, warm beam).
Compared to distribution A, which is used as initial condition in the following bench-
mark (Sec. 3.4.3), simulations with initial distribution B are more sensitive to numer-
ical errors such as numerical di�usion. Firstly, the colder the bulk, the less grid points
are available in the bulk, leading to arti�cial heating. Secondly, the weak warm beam
induces weaker linear instabilities, which produce narrower islands in phase space. To
resolve such a narrow island, increased grid resolution is needed. Furthermore, for
steady-state solutions, when the island is narrower we observe unphysical drive after
nonlinear saturation, which suggests that the region of attening acquire spurious
gradient by inuence of surrounding distribution. In this work, we aim at producing
a numerical scan of nonlinear behavior in the whole parameter space. Near marginal
stability, the linear growth rate  is very small (we limit the investigation range to
j j > 10� 6 to avoid excessive computation cost) and long-time computations (t � 105)
are required. For this reason, we cannot a�ord too much grid points, and we have to
take utmost care in choosing a robust and quickly converging numerical scheme.

A comparison of several advection schemes for one of the case of Fig. 4.2 (with
distribution B) is shown in Fig. 3.6. The time evolution of a beam instability with
a low dissipation � a(v > v � ) = 0 :002, and a small external damping d = 0 :002, for
increasing grid resolution, is compared to a reference run for each of �ve schemes :
Flux-Balance (FB) [Fij99], CIP [NY99], CIP with rational function interpolation (R-
CIP) [XYNI96], CIP-CSL, and Rational - CIP-CSL (R-CIP-CSL) scheme [XYPK02].
The reference run is obtained with a high resolutionNx � Nv = 256 � 4096 using
CIP-CSL. The CIP scheme is a low-di�usion and stable scheme, and is implemented
in a way that exactly conserves the total mass. However, it is not locally conservative.
After several amplitude oscillations in the nonlinear phase, we observe the apparition
of numerical oscillations in the velocity direction in a large gradient region of the
distribution, which appears between a cold bulk and a beam. While, in this test case,
numerical divergence eventually occurs even for very high resolution with the CIP
scheme, the other schemes show convergence to a same solution. The FB scheme
is only second-order accurate, so that convergence is slow compared to the CIP-
based schemes, which are third-order accurate in general [NY99]. Rational function
interpolation aims at preventing numerical oscillations by preserving convex-concave
and monotonic properties, but at the expense of this property, numerical di�usion
produces spurious drive leading to higher saturation levels. R-CIP-CSL produces
less numerical di�usion than R-CIP, but convergence is slower than with CIP-CSL.
Finally, the CIP-CSL scheme shows quick convergence without unfavorable numerical
oscillations, and therefore, we use this scheme in the following simulations.

As an illustration of �f model, we include in Fig. 3.6 the time-evolution of beam
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Fig. 3.6: Time evolution of the normalized bounce frequency for di�erent advection
schemes. Solutions are shown for grid resolutionNx � Nv of 64� 512, 128� 1024, and
128� 2048, and for a reference run described in the text. (a-e) Full-f simulations with
initial distribution B, � a(v > v � ) = 0 :002,  d = 0 :002, and CFL = 0:9. Each sub-
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32



Tab. 3.3: Linear frequency and growth rate, obtained by solving the eigenvalue prob-
lem, or using Davies solver, or by �tting an exponential and performing a Fourier
analysis of electric �eld time-series in full-f COBBLES simulations. In both cases,
the initial distribution is A, with  L = 0 :1981, and d = 0 :1.

Collision operator Krook Di�usion+Drag

Collision frequencies � a = 0 :25 � f = 0 :02, � d = 0 :05

Eigenvalue ! = 0 :9953,  = � 0:04551 ! = 1 :0204,  = 0 :1737

Davies solver ! = 0 :9953,  = � 0:04551 : : :

COBBLES simulation ! = 0 :9948,  = � 0:04549 ! = 1 :0176,  = 0 :1743

instability obtained by �f COBBLES (with the CIP-CSL scheme), for similar param-
eters as those of the full-f simulations.

3.4 Veri�cation of COBBLES

For concision, we present only the veri�cation of full-f COBBLES, except for con-
servation properties, for which it is revealing to compare full-f and �f approaches,
and for veri�cation of drag and di�usion collision operator, since reference material is
based on hypothesis of�f model. As a preliminary test, we compared linear growth
rate and real frequency measured in COBBLES simulations with those obtained with
Davies solver in the Krook case, or by solving the eigenvalue problem in the Fokker-
Planck case, and found good quantitative agreement, which is illustrated in Table
3.3.

3.4.1 Collisionless closed system (  d = � a;f;d = 0)

Our purpose is to test nonlinear capabilities of COBBLES. Let us consider the simpler
collisionless Vlasov-Poisson model without external damping, corresponding to the
BB model without any collision nor extrinsic dissipation. In the unstable case, linear
growth goes on until a signi�cant number of resonant particle trajectories are modi�ed
by electrostatic trapping. In the nonlinear phase, the distribution develops an island
structure in phase-space, and becomes at on average in the resonant velocity region.
The instability saturates and linear theory breaks down. As a measure of the electric
�eld amplitude E0, we use ! b, the bounce frequency of particles that are deeply
trapped in the electrostatic potential, which is de�ned by ! 2

b � kE0. O'Neil extended
the theory of collisionless wave-particle interaction in the nonlinear phase [O'N65],
within the assumptions  L =! b � 1 and !=! b � 1. He obtained an analytic estimation
of the evolution of wave amplitude. In the small-time limit, ! bt � 1, the electric �eld
amplitude is estimated as

! b(t)
! b(0)

= exp
 L

�! b

Z 1

0
d�

�
1 � cos

2! bt
�

�
: (3.64)

Fig. 3.7 shows the evolution of normalized bounce frequency! b= L , along with
snapshots of the distribution function, for initial distribution B. We recover the linear
growth rate obtained from Davies solver within 1% error. The nonlinear evolution of
the wave is in qualitative agreement with the analytic estimation (3.64) in its validity
limit (for the �rst few amplitude oscillations). Although it is impossible to quanti-
tatively compare all the features of this analytic solution because of an ambiguity in
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Fig. 3.7: Full-f COBBLES simulation with  d = � a;f;d = 0, for initial distribution B,
with Nx � Nv = 256 � 2048 grid points. (a) Nonlinear evolution of normalized bounce
frequency. (b) Snapshots of distribution function.

the initial time in Eq.(3.64), we observe a good agreement for the amplitude oscilla-
tions frequency, and for the relative amplitude of these oscillations compared to the
saturation level. Furthermore, the saturation level is close to the value! b= L � 3:2,
which was numerically obtained in Refs. [CD93, OWM71] with the �f BB model.

In the time-asymptotic limit, assuming some in�nitesimal amount of collision,
the steady-state solution of the Vlasov-Maxwell system is a distribution given as a
function of the energy only. This BGK solution is consistent with a non-zero electric
�eld. Fig. 3.8 is a contour plot of the distribution function in the time-asymptotic limit
of numerical simulation, on which several constant energy curves are superposed. We
clearly observe an island structure, which agrees with the BGK solution. This island
is topologically di�erent from the initial condition, thus some collisions are needed to
violate Liouville's theorem and obtain the BGK solution. In numerical simulations,
�nite numerical dissipation, which is due to interpolation on a discretized grid, smears
out �ne-scale structures near the separatrix, allowing a reconnection of contour lines
of f .

3.4.2 Conserved quantities

Total particle number in simulations is calculated by taking the sum over the compu-
tation domain of the integrated value of the electronic distribution, N (tn ) =

P
i;j � n

i;j .
When � a is a constant, the relative error in particle conservation is, as expected from
a locally conservative scheme, of the order of machine precision (We are working
with 64 bits double-precision variables, which use 8 bits for the exponent and 56 bits
for the precision, so that 256 � 1016 is the minimum numerical error). Even when
� a(v) has the velocity dependence of the equation (3.6), the relative error is negligible
(< 10� 9 %), as shown in Fig. 3.9(a).

In both cases, numerical simulations show good �delity to the power balance,
even for a relatively small number of grid points. The relative error in power balance,
jPE + Pd + Ph j =(jPE j + jPd j + jPh j), is included in Fig. 3.9. A direct comparison
between �f and full-f is not really meaningful, since simulation parameters, and
de�nitions of PE and Pd are di�erent. Fig. 3.10 illustrates how the di�erent power
transfers (normalized to P0 � �v R  4

L =k2) compensate with each others.
Entropy can be seen as a measure of numerical dissipation, since it grows as small

structures dissipate. In full-f simulations we de�ne entropy as a sum over grid points
of f log f , and we check that f is always strictly positive. In �f simulations, we
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arbitrarily assume a bulk distribution as f M = 2 jf B
min j in the resonant region, where

f B
min is the minimum of f B

0 . The factor 2 is to ensure that f = f M + f B does not
take negative values because of perturbations inf B near its minimum. The relative
error in the total entropy is included in Fig. 3.9.

3.4.3 Benchmark

We consider �ve kinds of behavior for the time-evolution of the instability in the
Krook case, and produce the behavior bifurcation diagram in the ( d, � a) space.
These behaviors are illustrated in Chap. 4 (Fig. 4.1). The category is obtained by
an analysis of the electric �eld energy densityE(t) and of the spectrogram of electric
�eld. A numerical solution is de�ned as

1. Damped: if the asymptotic-time limit of E(t) is zero;

2. Steady-state: if the asymptotic-time limit of E(t) is �nite;

3. Periodic: if for large enought there is a period � for which E(t + � ) ! E (t);

4. Chirping: if there is a spectral component whose frequency signi�cantly shifts
in time.

5. Chaotic: if E(t) is bounded, but does not satisfy one of the previous conditions.

The categories 1., 2., 3. and 5. are de�ned in the same way as Vann [VDR+ 03], and we
added a new diagnosis for the characterization of chirping solutions. Each numerical
solution is systematically categorized by an algorithm based on a decision tree which
is based on the one developed by Vann. We describe this algorithm in Appendix D.

As a benchmark of both COBBLES code and our categorization algorithm, we re-
produce results presented in Fig. 3. of Ref. [VDR+ 03] (Note that our de�nition of  d

is consistent with Berk and Breizman's literature, and di�ers from Vann's article by a
factor 2). The initial distribution is A, for which  L = 0 :1981. The �eld energy of the
initial perturbation is 2 � 10� 4 of the total energy, which corresponds to! b= L = 0 :05
at t = 0. We perform a series of simulations in the parameter space ( d; � a) , where
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Fig. 3.11: Behavior bifurcation diagram. The classi�cation of each solution is plotted
in the (  d, � a) parameter space. The solid curve is the linear stability threshold
obtained by solving the linear dispersion relation numerically. The parameters of
these simulations areNx � Nv = 64 � 512 and CFL = 1:2.

� a is chosen as velocity-independent. We set the time-duration of each simulation to
tmax = 3000. In the categorization algorithm, we choosetmin = 1000, � 1 = 10 � 12,
� 2 = 0 :05, � 3 = 0 :01, � 4 = 10 � 9, and � 5 = 0 :25. The resulting behavior bifurcation
diagram is shown in Fig. 3.11. The 1416 simulations used for this plot took approxi-
mately 115 CPU hours on an Altix3700Bx2 array of Intel Itanium2 processors. The
categorization of 92 % of these time-series is in agreement with the reference, most
of the di�erence coming from a di�erent way of sorting out chaotic from periodic
solutions. This result is a further indication of the validity of both COBBLES and
categorization algorithms.

3.4.4 Steady-state with drag and di�usion

To verify our implementation of collision operator with drag and di�usion, we con-
�rmed that a Gaussian perturbation in the velocity distribution follows the analytic
solution of the di�usion equation in the absence of electric �eld and drag, and is sim-
ply advected at a rate _v = � 2

f =k in the absence of electric �eld and di�usion.

As an additional test, we compare nonlinear steady-state solutions between�f -
COBBLES and analytic predictions derived in Ref. [Lil09]. Fig. 3.12 shows steady-
states in �f -COBBLES simulations with di�erent collision frequencies. Fig. 3.12(b)
in this manuscript, and Fig. 6.13 in Ref. [Lil09], which share the same normalization,
can be directly compared. We con�rm quantitative agreement with theory.

3.4.5 Multiple-modes interaction

Though this feature is not used in this thesis, we also test multiple-waves capabilities
of COBBLES. When many electrostatic waves are excited, the amplitude of each
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wave grows exponentially until nonlinear saturation occurs, and each wave develops
an island structure in phase-space. If the width of each island is much smaller than
the distance between the phase velocities of two neighbouring waves, we can treat
the problem as a superposition of the former single wave-particle problem. However,
if island structures overlap each others, particle trajectories are not integrable. We
consider a situation where there exists a velocity interval within which the phase
velocities of many waves are close enough and their islands overlap. We perform a
full- f COBBLES simulation, without collisions nor external damping, with nB = 0 :05,
vT M = vT B = 4 :0, vB = 16:0, vmax = � vmin = 30, L = 512, Nx � Nv = 512 � 64,
initializing 10 waves with wave numbers km � 2�m=L and a random phase for each
wave m. Fig. 3.13 shows the position and width of each island, and trajectories
in the velocity direction of three test particles evolving within the resonant region.
We observe overlapping of islands, and resonant particles seem to undergo Brownian
motion in the velocity direction.

When particle di�usion time is much longer than correlation time, quasi-linear
theory [SG69] predicts velocity di�usion of particles in the resonant region, leading
to a attening of the distribution, as we observe in numerical simulations. In the
resonant region, the quasi-linear di�usion coe�cient DQL can be estimated as

DQL =
�

P
m jEkm j2 =km

� vR
; (3.65)

whereEkm is the Fourier component for the wave numberkm of the electric �eld, and
� vR is the width of the whole resonant region.

Another way of estimating the di�usion coe�cient involves the variance of the
displacement in velocity of a large number of test particles. For any time interval � t
larger than the correlation time, but smaller than the distribution relaxation time,
this estimated coe�cient DP is given by

DP =

D
[v(t0 + � t) � v(t0)]2

E

2� t
; (3.66)

where angle brackets represent an ensemble average.
In our simulation, we estimate DP by following the trajectories of 3 � 105 test

particles, which are initialized with an uniform distribution over the resonant region,
and a random position. Fig. 3.14 shows thatDQL matchesDP in simulation, even as
we double � t.
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Tab. 3.4: Analogies between the BB model and the reduced model for the TAE.

Harmonic oscillator BB model 1D model for TAEs

Hamiltonian
1
2 D I 2 + V cos 

Hamiltonian
1
2 (v � vR )2 + ' (x; t )

Hamiltonian
1
2 D I 2 + V cos 

Action
I

Velocity in the wave frame
I (v) = ( v � vR )=k

Deviation from resonant surface
I = e(� R � � )=n

Angle
 

Position in the wave frame
 (x; t ) = kx � !t

 = pe� + ne� � !t

E�ective mass
D

D = k2 D � n2
�
�
� @2 H 0

@�2

�
�
�

Oscillations amplitude
V

Electric �eld amplitude
V = ! 2

b=k2
Magnetic �eld amplitude

V = � {e C(t)Vp(J � R ; J � R ) � � A ?

3.5 The BB model as a paradigm for the TAE

The BB problem can be put in Hamiltonian form with the Hamiltonian given in
Eq. (3.13). Let us make a canonical transformation with the generating function
S � vR (x � vR t=2) to a moving-frame coordinate set, ( , I ), where  � kx � !t and
I � (v � vR )=k. The new Hamiltonian,

he� = h � I ! �
! 2

2k2 =
k2

2
I 2 +

! 2
b

k2 cos ; (3.67)

takes a standard form, which is shared with the e�ective Hamiltonian of the TAE,
Eq. (2.69). Therefore, the BB problem is a simple 1D model that is homothetic to a
whole class of instabilities, including EP-driven TAEs.

Fig. 3.15 is a schematic representation of wave-particle interactions relevant to
TAEs. A dotted-dashed rectangle represents the physics encompassed by the BB rep-
resentation of TAEs. All physics outside this rectangle are treated as input parameters
in the BB model.

Table 3.4 summarizes the parallels between the BB model and the reduced model
for the TAE.
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Fig. 3.15: Schematic representation of wave-particle interactions relevant to the TAE.
The dotted-dashed rectangle represents the limit of the BB representation of TAEs.
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Chapter 4

Kinetic nonlinearities

To di�erent nonlinear behaviors of the BB model correspond di�erent regimes of res-
onant energy transfer. In terms of alpha-particle issues, there is an interplay between
two e�ects. On the one hand, energy transfer from particles to the wave, which is sup-
ported by the thermal plasma, is favorable since the energy from fusion reactions must
be channeled to heat the bulk plasma. On the other hand, a large wave amplitude
is unfavorable, since it is associated with transport and energetic-particle ejection. A
survey of kinetic nonlinearities provides important insight into the optimum regime.

In Sec. 4.1, we perform a systematic parameter scan in ( d, � a) in the full- f , Krook
case. We con�rm the validity of available theory, and show limits of �f approach. In
Sec. 4.2, we investigate nonlinear chirping features, since they can provide precious
information about the state of the plasma. Existing quantitative predictions of these
features are veri�ed for both collision operators, and we extend theory by including
the e�ects of beam distribution shape, �nite collision frequency, and drag. In Sec. 4.3,
we investigate instabilities that arise in a regime where linear theory predicts wave
damping, provided that initial perturbation is large enough. We propose a mechanism
to explain the apparent contradiction between linear theory and the behavior of sub-
critical instabilities observed in simulations, and perform a numerical investigation of
an initial amplitude threshold.

4.1 Nonlinear regimes

Theories [BB90, BBP96, BBP97b, BBP98, BBC+ 99] have been developed by Berk,
Breizman, and coworkers, to quantitavely predict nonlinear behaviors in various pa-
rameter regimes and to explain underlying mechanisms. On the one hand, some of
these theories have been validated by numerical simulations based on the�f model.
A concern with this perturbative approach is that, as instability grows, the resonant
region may expand and ultimately include a signi�cant portion of bulk particles. An
other concern is that, when chirping occurs, corresponding resonant velocity may
propagate into the bulk. In such situations, kinetic e�ects of bulk plasma should also
be taken into account. On the other hand, full-f simulations have been performed by
Vann and coworkers [VDR+ 03]. However, as we show in 3.3.2, this approach shows
some di�culty in simulating situations considered in the aforementioned theories,
which assume a plasma near marginal stability with a cold bulk and a weak beam. In
fact, these theories have not been validated with this approach. Filling the gap be-
tween these two fronts of the current state of research, with quantitative comparisons
between available theory and full-f model, is the aim of this section. We investigate
the validity of analytic theories for the following nonlinear features,

� saturation level in a parameter regime above marginal stability;
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� saturation level and bifurcation criterion between steady-state and periodic so-
lutions near marginal stability;

� time-evolution of a frequency shifting mode.

We choose initial bump-on-tail distribution B, which was introduced in 3.1.2. The
parameters of distribution B were actually chosen so that we stay within the validity
limit of these theories, with su�ciently cold bulk and su�ciently weak warm beam.
We recall these parameters asnB = 0 :1, vT P = 0 :2, vT B = 3 :0, vB = 5 :0, which give,
for k = 0 :3,  L = 0 :0324 and! = 0 :925. As mentioned before,� a is a function of the
velocity such that collisions a�ect only the beam particles. The �eld energy of initial
perturbation is 2 � 10� 8 of total energy, or ! b= L = 0 :3.

4.1.1 Nonlinear saturation

Fig. 4.1 shows four examples of nonlinear saturation in the unstable case, correspond-
ing to steady-state, periodic, chaotic, and chirping behaviors, obtained by varying
� a at �xed  d. Spectrums are obtained by applying Fast Fourier Transform to time-
series, which are �ltered by a Hann window [PTVF92]. Included are both spectrum of
electric �eld amplitude, where we consider only times after nonlinear saturation, and
spectrogram of the electric �eld measured at some arbitrary point in con�guration
space.

4.1.2 Scan in the (  d, � a) space

For the benchmark in 3.4.3, we set a same value for the maximum time of every
numerical simulations. However, we must now take into account computational cost,
which is much larger because of a decrease of L by one order of magnitude. As
we approach marginal stability, the time window must be increasingly large to suc-
cessfully capture the nonlinear behavior. To reduce computational cost, we choose a
time-window size as a function of , as

tmax = 20
2�
j j

: (4.1)

The frequency of amplitude oscillations is of the order of! b, which is empirically
of the order of  after the transient phase, so that such time windows contain at
least a few amplitude oscillations, enough to sort steady-state, periodic and chaotic
responses. In the categorization algorithm described in App. D, we choosetmin =
tmax =2, and each time series is sampled every �ts = 20. � 0 = 10 � 14 is chosen as a
free-streaming criterion, � 6 = 0 :05, � 7 = 0 :05 are used to sort out chirping solutions,
and the other � -thresholds are the same as above (� 1 = 10 � 12, � 2 = 0 :05, � 3 = 0 :01,
� 4 = 10 � 9, and � 5 = 0 :25). The behavior of wave amplitude time-series obtained by
full- f COBBLES is characterized in Fig. 4.2. The 391 simulations used for this plot
required approximately 15000 CPU hours on an Altix3700Bx2 array of Intel Itanium2
processors.

Agreement between linear stability threshold and the boundary between linearly
stable and unstable simulations con�rms that the problem of recurrence is taken care
of by the free streaming test in our categorization algorithm. When  d �  L and
� a �  d, a bursty behavior, characterized by a succession of bursts with characteristic
growth and decay rates of  L and  d, respectively, and with a quiescent phase in
between that lasts a time 1=� a , as described in [BBY92], is expected. A few solutions
in the chaotic region appear to follow this picture. However, most of the chaotic
solutions do not feature a signi�cantly quiescent phase. Consequently, an attempt
at sorting out a pulsating regime from the chaotic region seems vain. For small
collision rates, we observe instabilities in the linearly stable region, which suggests
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Fig. 4.1: Typical nonlinear behavior in steady-state (a-c), periodic (d-f), chaotic (g-i)
and chirping (j-l) cases. Full-f simulations with initial distribution B,  d = 0 :03, and
values for � a are 0:02, 0:008, 0:005, and 0:00002, respectively. Left: Time-evolution
of electric �eld amplitude. Center: Fourier spectrum of electric �eld amplitude after
t = 3000, with a time-window � t = 105. Right: Spectrogram of electric �eld at x = 0,
with a moving Fourier-window of width � t = 400.
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Fig. 4.2: Behavior bifurcation diagram for a cold bulk, weak warm beam distribution.
The classi�cation of each solution is plotted in the ( d, � a) parameter space. The
solid curve is the linear stability threshold obtained by Davies solver. The parameters
of these full-f simulations are CFL = 3:0, vmin = � 10, vmax = 18, Nv = 2048 and
Nx ranges from 128 to 256. Smaller diamonds and triangles on the right of the linear
stability threshold represent subcritical instabilities.
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Fig. 4.3: Saturation level at a given collision frequency� a= L = 0 :1 for distribution B
(Low- L case), and for higher beam density and lower beam temperature (Higher- L

case). The parameters of full-f simulations are those of Fig. 4.2. Parameters of�f
simulations are such that  L take the same two values.

the possibility of subcritical instabilities. This e�ect is discussed in Sec. 4.3. The
chirping regime is discussed in details in Sec. 4.2. The physics of several other regions
of this diagram is discussed in the remaining of this section.

4.1.3 Steady-state above marginal stability (  d � � a �  L )

When external damping and distribution relaxation are of the same order and both
are small compared to the linear drive, we expect and observe the saturation of wave
amplitude to a steady-state in the time-asymptotic limit. To estimate a saturation
level, we assume a rate of annihilation of beam particles much smaller than the sat-
urated bounce frequency,� a � ! b at t ! 1 . We also assume that the resonant
region is narrow compared to the resonant velocity, 4! b=k � !=k , so that we can
assume that the contribution to resonant power transfer comes from a narrow region
around vR . Berk and Breizman derived a relation yielding the saturation level in this
situation [BB90],

! b = 1 :96
� a

 d
 L : (4.2)

Thus, if we re-normalize all quantities to the linear growth rate, then within the
aforementioned assumptions, the saturation level depends only on the ratio of� a to
 d.

We investigate the validity of this theory by numerically computing the scaling
law for the saturation level at a given normalized relaxation rate � a= L = 0 :1. In a
previous work [BBP95a], such a scan has been done using a�f particle code, and the
results showed good agreement with analytic prediction in a region where d � � a .
Fig. 4.3 shows the saturation level obtained from theory, Eq.(4.2), and from both�f
and full-f COBBLES simulations. When the initial distribution is distribution B, we
observe quantitative agreement between theory and both�f and full-f simulations in
the parameter region  d � � a .

To reveal some limitations of �f model, the same computation is done for a dis-
tribution with a slightly higher beam density, nB = 0 :15, and a slightly lower beam
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temperature, vB = 2 :5, giving  L = 0 :067 instead of 0:032. When we use�f model,
the scaling law is roughly independent of L and is in agreement with theory in a
parameter region  d � � a , in agreement with aforementioned work. On the other
hand, when we take into account the evolution of bulk plasma, we observe a signif-
icant dependency of the saturation amplitude on the linear growth rate. For larger
 L , we �nd some discrepancy with theory in the low  d region, because the island
width � v becomes of the order of the resonant velocity (�v=vR = 0 :14! b= L in the
low- L case, and � v=vR = 0 :29! b= L in the higher- L case). This result shows that
it is necessary to take into account the e�ect of bulk particles to accurately discuss
the validity limit of this theory.

4.1.4 Near-marginal steady-state and periodicity (  �  L �
 d �  L )

When  �  L , a reduced integral equation for the time evolution of electric �eld
amplitude has been developed using an extension based on the closeness to marginal
stability [BBP96]. Within the assumption ! b= � 1,

d! 2
b

dt
= (  L 0 �  d) ! 2

b �
 L 0

2

Z t

t= 2
dt1

Z t 1

t � t 1

dt2(t � t1)2

e� � a (2 t � t 1 � t 2 ) ! 2
b(t1) ! 2

b(t2) ! 2
b(t + t2 � t1): (4.3)

For a cold bulk, warm beam distribution, in the collisionless limit, as we approach
marginal stability, Eq. 3.44 reduces to

 �  L 0 �  d; (4.4)

which agrees with the linear part of the latter integral equation (4.3). In Ref. [BBP96],
the analytic treatment is carried on by normalizing time by  L 0 �  d.

We observe that the relation (4.4) is a good approximation in most of the param-
eter space. However, as we get closer to the linear stability threshold, the relative
error j L 0 �  d �  j=(j L 0 �  d j + j j) approaches unity for �nite collisions. In addition,
for our choice of distribution, there is a 14% discrepancy of L 0 = 0 :0368 compared
to  L = 0 :0324. We infer that we can replace L 0 �  d by  in the integral equation
(4.3) and use itself as the relevant choice of normalization parameter.

This procedure yields a steady solution,

! 2
b = 2

p
2� 2

a

r


 L 0
: (4.5)

A series of simulations near marginal stability (0:005< = L < 0:02), for � a spanning
2 orders of magnitude, con�rms the validity of the latter expression. Fig. 4.4 shows
quantitative agreement with the saturation level of numerical solutions.

Nonlinear stability analysis reveals that the steady solution (4.5) is unstable when
� a < � cr , with � cr = 4 :4 . To assess this criterion for the bifurcation from steady-
state to periodic solutions, a zoom in the behavior bifurcation diagram (Fig. 4.2) in
a region near marginal stability where this bifurcation occurs is presented in Fig. 4.5.
We observe a qualitative agreement between the steady-periodic boundary and� cr .
However, when= L < 0:01, chaotic solutions appear for� a � � cr . This discrepancy
is explained by the existence of nonlinear excitations. As we approach marginal sta-
bility, the nonlinear behavior becomes sensible to the initial perturbation level. To
prove this point, we perform a series of simulations in the vicinity of the bifurcation
with an initial amplitude reduced from ! b= L = 0 :3 to ! b= L = 3 � 10� 7. Fig. 4.6
shows the values of�= for the bifurcation between steady-state and periodic solu-
tions. The bifurcation occurs somewhere in between. We con�rm that � cr = stays
close to the predicted value of 4:4 for smaller values of .
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Fig. 4.4: Saturation level near marginal stability. Measured in full-f simulations for
the distribution and the numerical parameters of Fig. 4.2.
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correspond to subcritical instabilities.
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4.2 Nonlinear features of chirping

In the collisionless limit, when � a <  �  L , the integral equation (4.3) is consis-
tent with explosive solutions that diverge in a �nite time, which suggests that the
mode energy is partitioned into several spectral components. The resulting sideband
frequencies have been observed to shift both upwardly and downwardly [BBP+ 97c],
the frequency shift �! (t) increasing in time.

These chirping solutions arise when hole and clump structures [BBP97a] are
formed in phase-space. They belong to a chaotic regime, and each chirping event
is slightly di�erent. In this section, we are interested in the nonlinear chirping char-
acteristics, averaged over a signi�cant number of chirping events. In particular, in
our simulations, the �rst chirping event is observed to stand out from the statistics,
with a larger extent of chirping - up to twice as much as any other one of the follow-
ing series of repetitive chirping. This may be due to the fact that the �rst chirping
bene�ts from a perfectly constant velocity-slope, while following events su�er from
the interference of phase-space structures that remain from previous chirping events.
Since the latter condition seems more experimentally-relevant, the �rst chirping is
ignored in the present analysis, unless stated otherwise.

Since we want to use chirping features as experimental diagnostics, it is necessary
to validate and develop corresponding theory. These features are quanti�ed from raw
simulation results in this section, and from experimental data in Chap. 5, using an
algorithm described in Appendix E.

4.2.1 Holes and clumps

Holes and clumps are nonlinear coherent structures with time-dependant velocities.
In general, several holes and several clumps, with di�erent amplitude, coexist, as
shown in Fig. 4.7(a), which is a snapshot of the velocity distribution for a Krook �f
simulation. In Fig. 4.7(b), we plot D as a function of the real frequency! and the
growth rate  , where

D(!;  ) �  +  d � { (! � 1) �
1
2k

Z

�

@v f B
0

( + � a) + { (k v � ! )
dv; (4.6)

so that D = 0 gives the linear dispersion relation Eq. (3.58). This plot suggests that
to each hole/clump corresponds an eigenmode, with frequency and growth rate both
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