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Then, tomorrow was another day
The morning found me miles away

With still a million things to say

Now, when twilight dims the sky above
Recalling thrills of our love

There's one thing I'm certain of

Return | will to old Brazil

Frank Sinatra

Les statistiques sont une forme d’accomplissement de désir, tout comme les réves.

Jean Baudrillard
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INCIDENT OCCURRENCE AND RESPONSE ON URBAN FREEWAYS

Abstract

Research on road safety has been of great interest to engineers and planners for
decades. Regardless of modeling techniques, a serious factor of inaccuracy - in most
past studies - has been data aggregation. Nowadays, most freeways are equipped with
continuous surveillance systems making disaggregate traffic data readily available;
these have been used in few studies. In this context, the main objective of this
dissertation is to capitalize highway traffic data collected on a real-time basis at the
moment of accident occurrence in order to expand previous road safety work and to
highlight potential further applications. To this end, we first examine the effects of
various traffic parameters on type of road crash as well as on the injury level
sustained by vehicle occupants involved in accidents, while controlling for
environmental and geometric factors. Probit models are specified on 4-years of data
from the A4-A86 highway section in the lle-de-France region, France. Empirical
findings indicate that crash type can almost exclusively be defined by the prevailing
traffic conditions shortly before its occurrence. Increased traffic volume is found to
have a consistently positive effect on severity, while speed has a differential effect on
severity depending on flow conditions. We then establish a conceptual framework for
incident management applications using real-time traffic data on urban freeways. We
use dissertation previous findings to explore potential implications towards incident

propensity detection and enhanced management.

Key Words: road safety; crash type; severity; incident management; real-time traffic

data; probit.



Executive Summary

Executive Summary

An incident can be defined as any occurring event that causes some disruption or
deviation to a system’s normal operational conditions. Traffic incidents are unplanned
events that occur randomly in time and space. They cause a reduction to roadway
capacity or an abnormal increase in demand and are associated with high economic
and social impact. An estimated 1.2 million of people are killed worldwide each year,
while another 50 million are injured (WHO, 2004). Apart from the loss of human
lives, accidents have multiple collateral effects: delays, congestion, material damage,
environmental damage, pain to society, loss of productivity, impact on freight
transport, health costs, and so on. Increases in incident related costs along with
sustainable development concern have turned countries and international

organizations towards accident mitigation programs and policies.

‘Safety is the number of accidents (crashes), or accident consequences, by kind and
severity, expected to occur on the entity during a specified period of time’ (Hauer,
1997). Research on road safety has also attracted considerable research interest in the
past three decades. Major factors known to affect safety — in terms of both incident
occurrence and severity - are driver characteristics, vehicle features, exposure to risk
(e.g. traffic volumes), traffic control, weather conditions, and roadway design
characteristics. These measurable factors do not completely explain accident
occurrence and, so, stochastic models (including a disturbance error term) are

typically used.

Regardless of modeling techniques, a serious factor of inaccuracy - in most past
studies - has been data aggregation. The Average Annual Daily Traffic (AADT) has
been the most commonly used measure to reflect traffic conditions. However as most
freeways are equipped with continuous surveillance systems, disaggregate traffic data
collection is possible as well as readily available. While detailed vehicle movement
data in a section would be the best data source, traffic data from several consecutive
detectors in a section can be a good surrogate to identifying traffic dynamics that may
lead to accidents. Disaggregate traffic data have been used in only a limited number

of studies.
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Executive Summary

In this context, the main thesis research question is to explore the effect of actual
traffic conditions on accident patterning and consequences. The thesis objective
is to use highway traffic data collected on a real-time basis in order to: a) explore
the effects of traffic parameters on type of road crash, b) investigate the
influence of traffic parameters on the injury level sustained by vehicle
occupants, and to c) explore possible implications in incident management
strategies. To this end, four main research activities are undertaken: a) a literature
review, b) an empirical investigation on incident type propensity using real-time
traffic data on freeways, ¢) an empirical investigation of vehicle occupant injury
severity on freeways using real-time traffic data, and d) the development of a
conceptual framework towards introducing real-time traffic data in incident

management and response.

In the first research activity, a literature overview on related studies is performed. The
overview indicates that, due to the complexity of the road system and its management,
road safety analysis necessarily involves numerous scientific disciplines. The state of
the art in related research is summarized; the large body of literature is organized on
the basis of both methodological and thematic criteria. These criteria include: a) the
method employed, b) the level of analysis assumed, c) the scope of the performed
analysis, and d) the accident phase considered. The dissertation field of interest is,

then, defined with respect to the taxonomy established.

Road Safety Literature Organization

Controlled Field In-depth Data
Classification Criteria Experiment | Observational | investigation | Observational
A D A D A D A D
) Descriptive | - v v v - v v v
Generating —
Predictive - - - - - - v .
. Descriptive | - v v v - v v v
Patterning —
Predictive - - - - - - v ,
Descriptive | - v - v - v v v
Response —
Predictive - - - - - - v -
Descriptive | - v v - - v v v
Consequences —
Predictive - - - - - - v -
*A: aggregate
D: disaggregate dissertation field of interest
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Executive Summary

In the present dissertation, we conduct a data observational study within a descriptive
scope of analysis. Stochastic modeling is used in a rather disaggregate context of
analysis. Accident outcomes - in terms of either crash type or severity — serve as
dependent variables. Crash type refers to accident patterning, while severity is linked
to accident consequences. Independent variables include road user attributes, weather
and lighting conditions, vehicle type and age, traffic data, and so on. To this end, real-
time traffic data are extracted from continuous loop measurements at the time of the
accident occurrence (aggregate field observations). Results provide probability
estimations for accident outcomes, given that these accidents occur under specific
circumstances; if combined with frequency models, they could additionally provide
prediction estimations. Finally, we examine potential implications of the developed
models in optimizing incident management techniques; the latter being related to

accident response phase.

In the second research activity, we examine the effects of various parameters on type
of road crash as there is strong empirical evidence that accident characteristics are
crash type-specific. Several authors underlined the importance of by-crash-type
analysis, particularly when it comes to real-time risk assessment. They suggested that
the conditions preceding crashes are expected to differ by type of crash and, therefore,

any approach towards proactive traffic management should be type-specific in nature.

Multivariate Probit models are specified on 4-years of data (2000-2002, 2006) from
the A4-A86 highway section in the Ile-de-France region, France. Traffic parameters
are collected real-time both at — and prior to - the time of the accident and include
measurements of volume, speed, and density over 6-minute intervals. Empirical
results indicate a diverse effect of accident contributing factors to each crash type,
along with interdependencies that would be neglected under a univariate analysis

context. It has to be noted that previous studies adopt univariate approaches.

Rear-end crashes involving two vehicles are found to be more probable for relatively
low values of both speed and density, while rear-ends involving more than two
vehicles appear to be more probable under congestion. Two-vehicle sideswipe
accident probability increases with increasing volume, while multi-vehicle sideswipe

crashes are more probable at high speeds, during daytime, and on flat freeway
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segments. Overall, multi-vehicle crashes tend to occur under low or very high speeds,
while single-vehicle crashes appeared to be largely geometry-dependent. Qualitative
results from the Multivariate Probit model application are illustrated in the following
diagram. The fundamental diagram depicts the relationship between traffic volume
(Q) and speed (V) on a given freeway segment; each crash type (whose probability is
traffic-dependent) is related to a particular traffic regime which corresponds to a
specific part of the diagram.

VA

multiple (non rear-end) collisions

sideswipes with 2 vehicles

rear-ends with more
than 2 vehicles ends with

2vehicles

v

In the third research activity, we extend research on the factors influencing the level
of accident severity by including traffic data from the moment of the accident. Results
from previous research indicate that low speeds and high traffic volumes decrease
accident severity, while high speeds and low traffic volume produce the opposite
effect; a result largely based on mean annual traffic values. However, few studies
have investigated the association between traffic accident severity and actual traffic
characteristics (traffic volume, speed) collected real-time during the time of the
accident occurrence. A random parameters ordered probit model is applied to explore
the influence of speed and traffic volume on the injury level sustained by vehicle
occupants involved in accidents on the A4-A86 junction in the Paris region. The
random parameters specification allows for heterogeneity amongst road users;
otherwise neglected under a fixed parameters approach. It has to be noted that all

previous studies use a fixed parameters approach.

Empirical results indicate that travelling on 2 wheels and at nighttime significantly
increases the probability of getting involved in more severe accidents. In contrast,

travelling in heavy vehicles, on weekends or on dry pavement surfaces reduces the
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probability of severe accidents. Less experienced drivers seem to encounter problems
in dealing with adverse weather conditions and related potential dangers. Most
importantly, results indicate that there is a significant relationship between the
severity outcome and the traffic characteristics at the time of the accident. Traffic
volume was found to have a consistently positive effect, while speed appears to have
a differential effect on severity depending on flow conditions. While in higher traffic
volumes higher speeds aggravate severity outcome, in lower traffic volumes speed

does not significantly influence severity in a consistent pattern.

In the fourth research activity, we investigate the introduction of incident analysis
outcomes in an integrated incident management scheme. To this end, a synthesis of
related incident management analyses is performed. Further, crash data studies using
traffic data collected on a real-time basis at the time of the incident occurrence are
analyzed. The synthesis indicates that real-time traffic data has not been fully utilized
as they are only used for emergency vehicles’ travel-time estimation. However, they
could be used as a criterion for location and allocation if appropriately combined with
road safety analysis outcomes. Finally, we use dissertation previous findings to
explore such potential implications towards incident propensity detection and

enhanced management.

The present dissertation demonstrated the importance and magnitude of the effect of
prevailing traffic conditions on accident occurrences, while it provided additional
insight in accident mechanism of occurrence. From a methodological standpoint, the
use of disaggregate real-time traffic data provided better probability estimates.
Integrating such data in incident management strategies shows great potential towards
accident mitigation and enhanced management. Overall, the thesis significantly
contributes to research state of the art regarding an issue that has scarcely been
examined in the past. Furthermore, it provides the appropriate theoretical framework,

along with necessary supporting models for better utilizing disaggregate traffic data.
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ESTIMATION DES PROBABILITES D’INCIDENTS ET TRAITEMENT DE LEUR REPONSE
SUR DES AUTOROUTES URBAINES

Résumé

Les recherches en matiére de sécurité routiére suscitent largement 1’intérét des
chercheurs. Indépendamment des techniques de modélisation, un facteur important
d’imprécision -qui caractérise les études dans ce domaine- concerne le niveau
d’agrégation des données. Aujourd'hui, la plupart des autoroutes sont équipées de
systemes permanents de surveillance qui fournissent des données désagrégées. Dans
ce contexte, l'objectif de la thése est d’exploiter les données trafic recueillies en temps
réel au moment des accidents, afin d’¢largir le champ des travaux précédents et de
mettre en évidence un potentiel d'applications innovantes. A cette fin, nous examinons
les effets du trafic sur le type d'accident ainsi que sur la gravité subie par les
occupants des véhicules, tout en tenant compte des facteurs environnementaux et
géométriques. Des modeles Probit sont appliqués aux données de trafic et d’accidents
enregistrés pendant quatre années sur le tronc commun aux autoroutes A4 et A86 en
Ile-de-France. Les résultats empiriques indiquent que le type d'accident peut étre
presque exclusivement défini par les conditions de trafic prévalant peu avant son
occurrence. En outre, 'augmentation du débit s’avére exercer un effet constamment
positif sur la gravité, alors que la vitesse exerce un effet différentiel sur la gravité en
fonction des conditions d'écoulement. Nous établissons ensuite un cadre conceptuel
pour des applications de gestion des incidents qui s’appuie sur les données trafic
recueillies en temps réel. Nous utilisons les résultats de la thése afin d’explorer des
implications qui ont trait a la propension et a la détection des incidents, ainsi qu’a

I’amélioration de leur gestion.

Mots clés : sécurité routiere; type de collision; gravité; gestion d’incidents; données

trafic en temps réel; probit.



Résumé Substantiel

Résumé Substantiel

L’incident peut étre défini comme tout événement qui cause une certaine perturbation
ou déviation des conditions normales de fonctionnement d’un systéme. Les incidents
de trafic sont des événements non planifiés qui se produisent de maniére aléatoire
dans le temps et dans I'espace. Ils sont la cause soit d’une réduction de la capacité
routiére soit d’une augmentation irréguliére de la demande et sont associés a un
impact économique et social élevé. Au niveau mondial, on estime qu’environ 1,2
million de personnes sont tuées chaque année, tandis qu'encore 50 millions sont
blessées (WHO, 2004). Outre la perte de vies humaines, les accidents ont des
multiples effets collatéraux: embouteillages, retards subis par les usagers, dégats
matériels et environnementaux, impact social, perte de productivité, difficultés pour le
transport de marchandises, frais médicaux, etc. Les cotts qui sont associés, ainsi que
les préoccupations concernant le développement durable ont incité des pays et des
organisations internationales a adopter des politiques spécifiques et a appliquer des

programmes de réduction de I’insécurité routiere.

« La sécurité est le nombre d'accidents, ou les conséquences des accidents, par type et
gravité, qui sont susceptibles de se produire sur l'entit¢ au cours d'une période
spécifique » (Hauer, 1997). La recherche sur la sécurité routiére a suscité 1’intérét des
ingénieurs et des planificateurs pendant des décennies. Les facteurs importants connus
pour leur effet sur la sécurité - a la fois en termes d’occurrence et de gravité — sont,
entre autres, les caractéristiques du conducteur et du véhicule, I'exposition au risque
(par exemple les volumes de trafic), le contréle de la circulation, les conditions
météorologiques, et les caractéristiques géométriques du trongon routier. Ces facteurs
mesurables ne peuvent pas expliquer 1’occurrence des accidents d’une maniére
exhaustive. Par conséquent, des mod¢les stochastiques (comprenant un terme de

perturbation) sont généralement utilisés.

Indépendamment des techniques de modélisation, un facteur important d'incertitude -
dans la plupart des études précédentes - concerne le niveau d’'agrégation des données.
Le trafic journalier moyen annuel (TMJA) a été un des indicateurs le plus
fréquemment utilisé afin de représenter les conditions d’écoulement du trafic. De nos

jours, la plupart des autoroutes sont équipées de systémes permanents de surveillance
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qui rendent disponibles des données trafic désagrégées; celles-ci ont été utilisées dans
certaines études. Tandis que les données détaillées du mouvement du véhicule sur une
section routicre seraient la meilleure source de données, les données trafic provenant
de plusieurs détecteurs consécutifs sur une section peuvent servir comme alternative
pour I’identification des régimes de trafic menant aux accidents. Néanmoins, les

données trafic désagrégées ont ¢té tres peu utilisées dans des études précédentes.

Dans ce contexte, I'objectif principal de la dissertation est d’exploiter les données
de trafic des autoroutes collectées en temps réel afin de : a) explorer les effets des
paramétres de trafic sur le type d’accident routier, b) étudier l'influence des
paramétres de trafic sur le niveau de gravité subi par les occupants des véhicules,
c) explorer les implications potentielles dans des stratégies de gestion des
incidents. Nous abordons les questions de recherche par quatre étapes de travaux : a)
revue bibliographique, b) étude empirique des effets du trafic sur le type d’accident,
c¢) étude empirique des effets du trafic sur la gravité, d) élaboration d’un cadre

conceptuel pour I’intégration des données en temps réel a la gestion des incidents.

Tout d’abord, nous effectuons une revue bibliographique des études sur le sujet. La
littérature indique qu’en raison de la complexité inhérente au systéme routier et a sa
gestion, l'analyse de sécurité routiére implique nécessairement le recours a de
nombreuses disciplines scientifiqgues. Nous proposons le systéme suivant de
classification de la littérature de la sécurité routiére. Ce systéme est construit sur la
base de quatre critéres principaux : a) la méthode employée, b) le niveau de l'analyse
escomptée, C) I’objectif de I'analyse effectuée, et d) la phase des accidents considérée.
Puis, nous définissons le champ d’intérét de la thése par rapport a la classification

proposée.
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Organisation de la littérature de sécurité routiere

Essai Observation | Investigation | Observation
Criteres de classification Controlé au champ approfondie des données
A D A D A D A D
Descriptive - v 4 4 - v v v
Genese —
Prédictive - - - - - - v -
Structuration Descriptive - v v v - v v v
(Evolution/ — v
achévement) | Prédictive - - - - - - -
Descriptive - v - 4 - v v v
Réponse —
Prédictive - - - - - - v -
Descriptive - v v - - v v v
Conséquences —
Prédictive - - - - - - v -
*A: agrégé _ i
D: désagrégé | | Champs d’intérét de la thése |

Dans la thése, nous réalisons une étude d'observation des données de nature
descriptive. Une technique de modélisation stochastique est utilisée afin d’aborder les
questions principales de recherche dans un contexte d’analyse plutot désagrégée. Les
résultats des accidents -en termes a la fois de type et de gravité- servent comme
variables dépendantes. Le type d'accident fait référence a la structuration des
accidents, tandis que la gravité est liée a leurs conséquences. Les variables
indépendantes incluent les attributs d'usager de la route, les conditions
météorologiques et d'éclairage, le type et I’ancienneté des véhicules, des données
trafic etc. Dans cet objectif, des données du trafic au moment de I’occurrence de
I’accident ont été extraites de la base des enregistrements continus issus des boucles
(des observations agrégées et au champ). Les résultats fournissent des estimations de
probabilité, étant donné que les accidents se réalisent sous des conditions spécifiques.
Si on combine ces estimations avec des modeles de fréquence, on peut obtenir des
estimations prédictives. Nous examinons également les conséquences favorables des
modeles élaborés sur l'optimisation des techniques de gestion des incidents; cette

derniére est liée a la phase de réponse aux accidents.

En second lieu, nous choisissons d’étudier les effets de différents paramétres sur le
type d'accident routier puisqu'il y a des preuves empiriques fortes indiquant que les
caractéristiques des accidents sont largement dépendantes du type d’accident.

Plusieurs auteurs ont souligné l'importance de l'analyse par type d’accident,
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particuliérement quand il s’agit des évaluations du risque en temps réel. Ils suggérent
que les conditions qui précédent 1’occurrence des accidents différent par type
d'accident. En conséquence, toute tentative de gestion « proactive » de la circulation

doit étre faite par type d’accident.

Des modeles Probit multivariés ont été appliqués sur des données de trafic et
d’accidents relevées pendant quatre années (2000-2002, 2006) sur le tronc commun
des autoroutes A4 et A86 en lle-de-France. Les paramétres de trafic ont été collectés
en temps réel avant et au moment exact de 1’accident et incluent des mesures de débit,
de vitesse, et de densité pendant des séquences de 6 minutes. Les résultats empiriques
ont indiqué que les facteurs contribuant a I’occurrence des accidents exercent un effet
différencié par type d'accident considéré. De plus, les résultats ont révélé des
interdépendances parmi les variables dépendantes qui seraient négligées dans un
contexte d'analyse univariée. 11 faut noter que les études précédentes sur le sujet se

réalisent dans un contexte d’analyse univariée.

Les collisions par D’arriére se sont avérées plus probables pour des valeurs
relativement basses de vitesse et de densité, tandis que les collisions en chaine
paraissent plus probables en congestion. La probabilité de collisions latérales (de deux
véhicules) augmente avec les hausses du débit. Les collisions multiples sont plus
probables en régime des vitesses élevées, pendant la journée et sur des trongons
autoroutiers plats. En résumé les collisions multiples se produisent plutot en régime
de vitesses soit faibles soit trés élevées, tandis que la géométrie routiére s’avere étre
I’indicateur unique des accidents sans collision. Les résultats qualitatifs acquis par
I'application du modele Probit multivarié sont illustrés dans le diagramme qui suit. Le
diagramme fondamental représente la relation entre le débit (Q) et la vitesse (V) sur
un segment donné. Chaque type d'accident dont la probabilité est dépendante du trafic
est lié¢ a un régime de trafic précis qui correspond a une partie spécifique du

diagramme.
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A

collisions multiples

collisions par le coté

Collisions en chaine
collisions par
I’arriére

v
O

Troisiémement, nous examinons les facteurs ayant une influence sur le niveau de
gravité des blessures. Les résultats des recherches antérieures convergent sur le fait
que les vitesses faibles et les débits élevés diminuent la gravité des accidents, tandis
que les vitesses élevées et les débits faibles produisent l'effet inverse. Ces résultats
ont été —en grande partie- obtenus sur la base des valeurs moyennes annuelles du
débit. Néanmoins, rares sont les études qui ont tenté d’estimer la relation liant la
gravité des accidents aux caractéristiques de la circulation (débit, vitesse, densité)
enregistrées au moment de I’occurrence des accidents. Dans la thése, nous explorons
les facteurs ayant un effet sur la gravité des accidents a partir des données trafic
enregistrées a I’instant d’occurrence des accidents. En particulier, nous cherchons a
estimer I’influence de la vitesse et du débit sur le niveau de gravité des blessures que
subissent les occupants des véhicules impliqués dans les accidents survenant sur le
tronc commun des autoroutes A4 et A86, en région parisienne. Dans cet objectif, nous
appliquons un modele Probit ordonné avec paramétres aléatoires. Ce modele permet
I'nétérogénéité des usagers de la route, négligée dans le cas d’une approche avec des
parametres fixes. Il faut noter que la totalit¢ des études précédentes adoptent

I’approche des paramétres fixes.

Les résultats empiriques indiquent que voyager en 2 roues et pendant la nuit augmente
la probabilité d’implication dans des accidents plus graves. En revanche, voyager en
poids lourd, en week-end ou sur des chaussées séches réduit la probabilité des
accidents graves. De plus, il apparait que les conducteurs les moins expérimentés
rencontrent des difficultés face aux mauvaises conditions météorologiques et aux

dangers que celles-ci impliquent. Ainsi, les résultats indiquent une relation
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significative entre la gravité¢ des accidents et les caractéristiques d’écoulement du
trafic au moment de leur occurrence. L’augmentation du débit s’avére avoir un effet
constamment positif sur la gravité¢ (en la diminuant), tandis que la vitesse semble
exercer un effet différentiel par rapport au volume du trafic. Plus précisément, sous
des régimes de débit ¢levé, les vitesses élevées aggravent les accidents. En revanche,
sous des régimes de débit faible, nous n’avons pas détecté¢ d’influence de la vitesse

sur la gravité.

Dans la quatrieme étape d’analyse, nous étudions l'introduction, dans un schéma
intégral de gestion des incidents, des résultats issus des étapes précédentes. Nous
effectuons une synthése des études sur ce sujet afin d'établir un cadre conceptuel pour
des applications de gestion des incidents sur la base des données recueillies en temps
réel sur des autoroutes urbaines. La synthése indique que les données de trafic en
temps réel n’ont pas été enticrement exploitées et qu’elles s’utilisent exclusivement
pour I’estimation du temps de parcours des véhicules d’urgence. Néanmoins, elles
pourraient bien étre utilisées comme critére pour la localisation et ’affectation des
unités d’urgence Si elles étaient combinées proprement avec des résultats des analyses
de sécurité routi¢re. Enfin, nous utilisons des résultats de la thése afin d’explorer des
applications potentielles portant sur la propension a la détection des incidents ainsi

que sur ’amélioration de leur gestion.

La thése contribue a une compréhension approfondie du mécanisme d’occurrence des
accidents routiers. En ce qui concerne la méthodologie appliquée, I'utilisation des
données de trafic désagrégées et recueillies en temps réel fournit une meilleure
estimation de probabilité. L'intégration de ces données dans des stratégies de gestion
d’incidents montre une capacité considérable de réduction des accidents et
d’amélioration de leur gestion. En somme, la thése contribue a la recherche sur un
sujet qui a été peu étudié dans le passé. En méme temps, elle fournit le cadre
théorique nécessaire et les outils mathématiques indispensables pour mieux exploiter

les données trafic désagrégés.
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Chapter 1

Introduction

This chapter is an introduction to incident occurrence; it aims at discussing several
key-terms and at providing a concise state-of-the-art analysis concerning road
accidents. The road safety problem is pointed out, while incident management theory
and techniques are overviewed. The analysis main objectives are presented and the
potential interest of results is pointed out. Finally, the structure of the dissertation

remainder is provided.



Chapter 1 Introduction

1.1 Generic incidents

1.1.1 Operational incident

An incident can be defined as any occurring event that causes some disruption or
deviation to a system’s normal operational conditions. The disruption scale may vary
from minor discontinuities to complete failure. Incidents are involuntary, random
events whose effects are commonly unpleasant. They may be generally expected to
happen and processes to best address them may have been designed; however, their
definite occurrence remains uncertain and the moment of that occurrence is always
unknown. The entity that provokes an incident is not necessarily the main recipient of
its consequences; incident objects and incident subjects do not coincide. Nevertheless,
consequence intensity is generally greater for the objects that caused the incident
occurrence. Incidents may have collateral positive effects, but the predominant ones
remain negative. Incident theories have been developed and applied in several fields
such as industrial management and design, response to natural disasters, and so on. By
the term ‘accident’, we often refer to incidents with severe outcomes. However, in
injury prevention and epidemiology the term ‘accident’ is commonly avoided in an

attempt to highlight the predictable and preventable nature of most injuries.

1.1.2 Causal factors

The causal factors leading to incident occurrences are partially or completely
unknown. A full understanding of these factors would make the incident foreseeable
and, thus, avoidable. Knowing all incident contributing factors is not adequate for
preventing incidents. The most crucial issue is the form of the relationship between
contributing factors and incident occurrence as well as factors’ quantified impact.
This relationship form may vary from a simple linear causal chain to very complex
interactions and can be approximated by controlled experiments or observational
studies. Assumptions are made for the triggering event that initiates the incident
mechanism; however triggering events remain random and are often associated to
human mistakes or sudden mechanical failures. Analysts try to explore all possible
outcomes that may follow several hypothetical triggering events. The objective of
such investigations is either to minimize incident occurrences or to mitigate incident

consequences and interrupt their mechanism as soon as possible.
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1.1.3 Characteristics

Incident characteristics include incident probability of occurrence, type of triggering
event, type and magnitude of unpleasant outcomes, type and availability of
appropriate response, implicated costs, and so on. Apparently, strategies to deal with
incidents are incident characteristics-dependent. Perrow (1999) illustrates the risk of
technical systems by the use of a four-quadrant taxonomy. Those systems having the
characteristics of tight coupling and high complexity are most at risk of system
accidents while those that are less tightly coupled and less complex are not as likely to
experience such incidents. Rare events (having low probability of occurrence) are
generally not examined as thoroughly as common ones. Nevertheless, if a rare event
causes an environmental disaster (type and magnitude of outcome), it is probably
‘worth’ investigating. On the other hand, if incident prevention is more expensive
than its consequences (cost implications), maybe no effort will be made to prevent it

from happening.

1.1.4 Safety and risk

Safety can be regarded as a compromise between requirements and economic

necessity (Petroski, 1994). Therefore, the level of risk tolerated depends on an
utilitarian calculus that safety is desirable but costly and that organizations choose a
level of safety by balancing the benefits of safety reduction against the costs of safety
improvement (Marcus and Nichols, 1996). The level of safety achieved is not the
highest technically and humanly possible, but rather, depends on resource availability.
Under this scope, incidents that should be investigated may either be involuntary,
high-consequence, low-probability (IHL) events (like nuclear plant meltdowns) or
voluntary, low-consequence, high probability (VLH) events (like road accidents as
defined by Naveh and Marcus (2002)).

1.1.5 Incident management

Over the last decades, incident management has been of great interest to both
researchers and practitioners. Incident management includes a variety of applications
under the objective of best addressing an incident occurrence (as well as its
consequences) in various fields such as industrial failures, natural disasters, and so on.
While reactive approaches to incident management include all research performed in

the area of being prepared to deal with the occurrence of a specific incident and of its
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consequences (given that it occurs), proactive incident management includes all

investigations made in the aim of finding ways to prevent an incident from occurring.

In many fields (e.g. industry, medicine), the concept of prevention is commonly
described by a division into sub-concepts, each of which is intended to represent one
main preventive strategy (Andersson and Menckel, 1995). The most widely employed
classification in medicine was launched by Gjestland (1955). According to this
classification, preventive activities are divided into primary, secondary, and tertiary
activities that are related to different periods in time in the course of a disease.
Primary prevention is taken in advance, while secondary and tertiary actions are taken
later on. Primary prevention can be further divided into proactive and reactive
(Catalano and Dooley, 1980). Proactive activities are designed to deter or limit
exposure, while reactive are aimed at the promotion of coping or increasing
adaptation in response to an exposure that has already taken place (Catalano and
Dooley, 1980). Thus, proactive actions are taken before exposure, while reactive
actions can be taken either before or after exposure but are always designed to have

an effect after exposure (Andersson and Menckel, 1995).

1.1.6 Transportation

In the field of transportation, incidents have been occurring since the construction of
the first transportation system. Incidents in a transportation system include all
infrastructure, operational, or vehicle dysfunctions due to human, natural, mechanical,
or other causes. We distinguish among a large spectrum of incident types in respect to
the means of transportation and the infrastructure concerned (maritime, air, railway,
and so on). Most generic incident theory principles apply also in transportation safety
and risk analyses. Thus, air crashes - that happen rarely but count up to a hundred or
two of fatalities — can be considered as IHL events and are thoroughly investigated.
On the contrary, road accidents cause few fatalities, but they are very frequent events

(VLH events); as such they deserve research focus.
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1.2 Road incidents

1.2.1 Traffic incidents and accidents

Traffic incidents are unplanned events that occur randomly in time and space. They
cause a reduction to roadway capacity or an abnormal increase in demand and are
associated with high economic and social impact. Such events include traffic crashes,
disabled vehicles, spilled cargo, highway maintenance and reconstruction projects,
and special non-emergency events (FHWA, 2000). Incidents’ effects include
congestion and delays that result in increased cost of goods and vehicle maintenance,
productivity reduction, increased fuel consumption, environmental impacts, and so
on. Most importantly, incidents trigger secondary crashes whose severity is often
greater than that of the original incident (WVNTSC, 1995).

Among all road incidents, traffic accidents are the most commonly occurring events.
Traffic accidents are incidents in which a road user (pedestrian, bicyclist, car driver
etc.) or its vehicle collides with anything that causes damage to other road users
(pedestrians, animals, drivers, passengers), vehicles, and roadway features, or in
which the driver loses control of the vehicle and gets off the roadway or rolls over.
Traffic accidents are sometimes equally referred to as ‘crashes’, ‘traffic collisions’,
‘motor vehicle accidents’. There is an on-going discussion about the semantic
difference between ‘accident’ and ‘crash’, in that a ‘crash’ indicates in a simple
factual way what is observed, while ‘accident’ in addition seems to suggest a general
explanation of why it occurred. Some authors state that ‘accident’ has connotations of
it being an unavoidable event. In the present dissertation, all terms are used

interchangeably.

1.2.2 Causal factors

A great body of literature deals with identifying factors contributing to accident
occurrence as well as with quantifying the impact of such factors. Accidents are
commonly viewed as the result of a complex interaction among driver, vehicle, and
environmental factors (Figure 1). Driver attributes influencing accident occurrence
and severity include: driving experience, level of alert, restraint system use, years of
age, alcohol consumption, and so on. Vehicle characteristics playing an important role

in accident mechanism of occurrence are: years of age, size and weight, technical
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characteristics, safety equipment availability and condition, and so on. Finally,
environmental and infrastructure-related factors include a variety of factors from
weather and lighting conditions to pavement quality, road geometry, speed limits,
traffic characteristics, and so on. An exhaustive list of such factors can be found in
Gaudry and Lassare (2000).

Figure 1 Accident causal factors

vehicle

accident

environment road user

Road accidents occur as a result of a potentially very large number of causal factors
exercising their influence at the same location and time. Apart from vehicle-, driver-,
and environment-related characteristics that are endogenous to the system, other
factors may also influence accident occurrence such as i) factors external to the
system (oil price, population), ii) socioeconomic factors (taxation) that are subject to
political intervention, iii) factors related to the transportation policy applied (accident
countermeasures), iv) the size and structure of the transportation sector, and v) sheer

randomness.

1.2.3 Characteristics

Although accidents are the results of human choices and behavior, they are not chosen
to occur. On the contrary, when an accident happens, it is because certain road users
failed in avoiding it, although they wanted to. Accidents are the unintentional side
effects of certain actions taken for reasons other than that of causing injury or
damage. They are random and unpredictable in the sense that had they been
anticipated, they would probably not have happened. In this context, each single

accident is unpredictable by definition.
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More detailed explorations indicate various characteristics that differentiate road
accidents from each other; such characteristics are used for classification purposes.
Targeted studies are then undertaken to investigate and mitigate specific accident
categories in respect with their properties. Classification criteria found in the literature
include number and type of wvehicles involved (trucks, motorcycles), pedestrian
involvement, type of collision (rear-end, fixed object), severity outcomes (injury,
property damage only), professional driving, accident site geometry (intersection,
grade), road network (rural, highway), and so on.

1.2.3 Consequences and cost

Road accidents are an issue of major concern for all countries independently to their
level of development; highly developed countries have 60% of the total motor vehicle
fleet but they contribute only to 14% of the global road accident deaths (Jacobs et al,
2000). An estimated 1.2 million of people are killed worldwide each year, while
another 50 million are injured (WHO, 2004). Road accidents account for 95% of total
transportation fatalities and figure as the leading cause of death among young people.
Road traffic injuries ranked as the ninth leading cause of the global burden of disease
and injury. WHO estimates that road accidents will become the third leading cause of
death by the year 2020 (after heart disease and deaths linked to mental illness) if no

effective actions and efficient measures are taken.

Apart from the loss of lives, accidents have multiple collateral effects: material
damage, environmental damage, pain to society, loss of productivity, impact on
freight transport, health costs, delays, congestion, and so on. All these effects
correspond to a certain cost, which cumulatively results to be extremely high. This
cost is paid by insurance companies and health care systems and is, finally, covered
by citizens. Road traffic injuries’ cost accounts for 1% to 2% of the gross national
product of low- and middle-income countries (WHO, 2004). In 1997, the ETSC
estimated the total cost of transport accidents in Europe at 166 billion euros (ETSC,
1997). 97% of these costs were directly related to road transport. However, policies
that yield the largest reductions in road accident counts are not necessarily the most
effective. The most cost-effective policy would be one yielding the highest net social

benefits. Theoretically, the optimal road safety program has a marginal social cost that
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equals net marginal social benefit. The methods for evaluating the socio-economic
cost of road accidents vary among countries; cost elements taken into account include
medical costs, non-medical rehabilitation, lost productive capacity, human costs,

damage to property, administrative costs, and other costs such as congestion.

1.2.4 Road safety and risk

Increased implicated costs along with sustainable development concerns have turned
countries and international organizations towards adopting accident mitigation
programs and policies. Road safety refers to the level of safety achieved on a roadway
segment, network or a country. Inversely, risk (i.e. ‘road unsafety’) is the danger to
which the user is exposed when travelling. The level of safety implicates both
accident frequency and severity and is measured in many ways (such as absolute
number of crashes or deaths, crash rates over vehicle kilometers travelled, crash
probability of occurrence, response efficiency); however no integral index meeting
general acceptance has been established.

General policy may indirectly affect road accident rate in a number of ways:
legislation (speed limits etc.), courts and police enforcement (e.g. vehicle
inspections), police deterrence (point system), traffic police management, publicity
and education programs, and tax levies (e.g. gasoline taxes). Engineering is also
crucial in terms of urban design and land use, road design, vehicle safety design, road
maintenance, safety improvement measures, traffic planning, and so on. Medical
service response and health care system efficiency greatly affect accident outcomes.
Fire departments and all emergency vehicles interfere in accident clearance. Most
importantly, drivers and other road users play a decisive role in accident occurrence as
they define the so-called behavioral causal factors. Consequently, road safety can be
regarded as a common objective of psychology, statistics, engineering, policy

planning, and so on.

1.2.5 Incident management

In transportation research, incident management is defined as the systematic, planned,
and coordinated use of human, institutional, mechanical, and technical resources to
reduce the duration and impact of incidents, and improve the safety of motorists,

crash victims, and incident responders (FHWA, 2000). On uninterrupted flow
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facilities equipped with continuous surveillance systems, research and operators
mainly focus on minimizing incident overall duration; the latter including detection,
response and clearance times. Important factors affecting these times — and
consequently the overall incident duration — are (i) the operator ability to promptly
detect an incident occurrence, and (ii) the location of emergency stations (police,
ambulance). The benefits from minimizing incident duration are numerous and
concern highway operators (e.g. cost, road safety performance), crash victims (e.g.
time to hospital), other road users (e.g. delays, secondary incidents), and society (e.g.

incident externalities).

(1) Incident detection involves the analysis of patterns in the traffic surveillance data
observed just after the incident in order to develop models that can separate real-time
traffic conditions resulting from incidents from free-flow and/or recurring congestion
(Abdel-Aty and Pande, 2007). Incident detection analysis is reactive in nature and
attempts to detect incidents so that their impact can be minimized, while it does not

search to prevent incidents from happening.

(i) Emergency station location (e.g. police, fire stations) analysis falls into location
analysis; term that refers to the modeling, formulation, and solution of a class of
problems that can best be described as sitting facilities in some given space (ReVelle
and Eiselt, 2005). Obviously, emergency unit location is important to overall incident
duration. In particular, the time needed to reach an incident scene is of great concern
to emergency medical services (EMS) in order to mitigate incident consequences on
people. In a real-time context, emergency authorities are faced with two main
problems: an allocation problem and a redeployment problem (Gendreau et al., 2001).
The allocation problem consists of determining which unit must be sent to answer a
call. The redeployment problem consists of relocating available units to the potential
location sites when calls are received; emergency units are assigned to potential sites

to provide coverage.
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1.3 State of the Art

Research on road safety has attracted considerable research interest in the past three
decades. Major factors known to affect safety are driver characteristics, vehicle
features, exposure to risk (e.g. traffic volumes), traffic control, weather conditions,
and roadway design characteristics. To predict the safety of transportation systems
traffic, engineers model crash rate or frequency as a function of the above mentioned
factors. These measurable factors do not completely explain accident occurrence and,
so, models typically used are stochastic models including a disturbance error term. So,
despite their frequent application, the ability of such models to reliably identify
important accident predictors is open to question (Davis, 2004).

Accident occurrence remains unexplained to a certain extent. Some of the problems
frequently held responsible are: a) accident underreporting (mainly for property
damage only), b) miscounts for accidents or exposure measurements, c) inaccuracies
due to misclassification or misjudgment, d) conflicts among different databases
(aggregate exposure-discrete accident data, weather, differences among countries in
the way they register and count variables), ¢) time lag between the reporting and
registration of accidents or a site lag, d) unaccounted factors that strongly affect the
outcome, e) factors whose influence is badly estimated, f) unaccounted interrelations
between factors that are taken into account, g) other modeling assumptions and

restraints, and h) aggregation of the data used.

Regardless of modeling techniques, a serious factor of inaccuracy — in most past
studies — has been data aggregation (Lord and Mannering, 2010) and sample size
insufficiency (Pande and Abdel-Aty, 2006). Traditionally, models were macroscopic
in nature, where researchers mainly used summary statistics rather than microscopic
measures to develop the models. The Average Annual Daily Traffic (AADT) has been
most commonly used to reflect prevailing traffic conditions (Kim et al., 2006;
Mouskos et al., 1999; Qin et al., 2004). AADT is an aggregate measure of exposure;
the use of AADT to approximate vehicle kilometers traveled at a site might reduce the
natural variance that exists in exposure data and may result in heavy underdispersion
(Pasupathy et al., 2000). Later, many authors used aggregated data over shorter

periods of time (month or day) for developing the same models; others used deduced
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hourly traffic characteristics by combining AADT and a 1-day hourly traffic profile
for the site analyzed (lvan et al., 2000). Nevertheless, even hourly measures cannot
consider the short-term variation of traffic flow and are rather not well suited for

application to real-time operations.

As most freeways are equipped with continuous surveillance systems, disaggregate
traffic data collection is possible as well as readily available. Disaggregate traffic data
have been used in only a limited number of studies (Abdel-Aty et al., 2007;
Kockelman and Ma, 2007; Lee et al., 2003, 2002; Madanat and Liu, 1995). While
detailed vehicle movement data in a section would be the best data source, traffic data
from several consecutive detectors in a section can be a good surrogate to identifying

traffic dynamics that may lead to accidents (Oh et al., 2001).

1.4 Research question and objectives

The main research question of the thesis is whether and how traffic parameters affect
accident patterning, consequences, and response. Thus, the thesis objective is to use
highway traffic data collected on a real-time basis in order to:
a. explore the effects of traffic parameters on type of road crash,
b. investigate the influence of traffic parameters on the injury level sustained by
vehicle occupants, and to

c. explore possible implications in incident management strategies.

15 Interest of thesis

Road safety analyses are of particular interest to societies because of accident intense
consequences and increased cost. A markedly extensive body of literature deals with
accident frequency and severity, while numerous studies have been addressing
incident management techniques optimization. Nevertheless, research efforts on the
integration of road safety tools along with incident management techniques remain
few. Such efforts would introduce results obtained from safety analyses in an
integrated incident management scheme including both proactive and reactive

considerations.
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Furthermore, real-time traffic data have little been utilized in road safety and incident
management analyses. The exploration of the influence of real time traffic variables
on accident patterning (in terms of crash type) could provide significant insight in the
accident mechanism of occurrence, while proving highly beneficial to traffic and
incident managers. Pande and Abdel-Aty (2006) underlined the importance of by-
crash-type analysis, particularly when it comes to real-time risk assessment. They
suggested that the conditions preceding crashes are expected to differ by type of crash
and, therefore, any approach towards proactive traffic management should be type-

specific in nature.

Real-time data integration to accident severity analyses offers the possibility to
associate accident attributes to the actual traffic flow characteristics at the time of the
accident. Based on the analysis of historical data, typical traffic patterns recorded
prior to accidents may then act as real-time identifiers (Abdel-Aty and Pande, 2007).
Such explorations are useful for both researchers and practitioners in estimating
accident and congestion external costs and in transportation planning. Further, such
analyses may enable practitioners and authorities to locate hazardous — on severity
grounds — spots on the road networks. Finally, they may provide additional insight
regarding the factors that contribute to higher probabilities context for severe injuries

(given that an accident occurs).

In conclusion, the attempt to further study and develop accident models, and in
particular the integration of real-time data, can significantly contribute to the
elaboration of a better-structured incident response system with predictive power.
Thus, accident counts would decrease and accident consequences would be mitigated.
Apart from human lives saved, an economic burden would be taken off from
societies; non-recurrent congestion would be decreased, while environmental gains

would accumulate.
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1.6 Dissertation structure

The dissertation main text is organized as follows:

e Chapter 2 includes a theoretical background related to road safety research.
Definitions of key terms are provided, while a classification of road safety
literature is attempted. Emphasis is given on issues of interest to the analysis
further performed such as data observational studies, disaggregate investigations,
and so on.

e In Chapter 3, we examine the effects of various traffic parameters on type of road
crash. Multivariate Probit models are specified on 4-years of data (200-2002, 2006)
from the A4-A86 highway section in the Ile-de-France region, France. Empirical
findings indicate that crash type can almost exclusively be defined by the
prevailing traffic conditions shortly before its occurrence.

e In Chapter 4, we apply a random parameters ordered probit model to explore the
influence of speed and traffic volume on the injury level sustained by vehicle
occupants involved in accidents on the A4-A86 junction in the Paris region.
Results indicate that increased traffic volume has a consistently positive effect on
severity, while speed has a differential effect on severity depending on flow
conditions.

e In Chapter 5, we investigate the introduction of road safety analysis outcomes in an
integrated incident management scheme. A synthesis of related studies is
performed so as to establish a conceptual framework for incident management
applications using real-time traffic data on urban freeways. We use dissertation
previous findings to explore potential implications towards incident propensity
detection and enhanced management.

e Chapter 6 summarizes dissertation major findings and provides overall conclusions
regarding the analysis performed. The overall contribution of the thesis is
discussed, while indications for future research are given.

The dissertation main text is followed by a complete list of references, an annex

summarizing in Greek language the analysis performed, and an annex providing

indicative model outputs.
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Road Safety Literature

This chapter aims at establishing a theoretical background for the upcoming analysis
and at summarizing the state of the art in road safety research. Several key terms are
defined and basic assumptions are made. The large body of road safety literature is
organized on the basis of both methodological and thematic criteria. Finally, the
dissertation field of interest is defined with respect to the taxonomy established.



Chapter 2 Road Safety Literature

2.1 Introduction

The large body of literature on road safety includes many disciplines, various
methods, units and levels of analysis. A general classification of road safety studies is
attempted in the effort of establishing a rigorous taxonomy of previous research
efforts.

2.1.1 Road safety of an entity

In performing an experiment, the number of successes achieved largely depends on
the number of trials performed (exposure). In that sense, the number of accidents
occurring on a roadway segment largely depends on the amount of travel performed.
The exposure is then expressed in terms of vehicle-kilometers, vehicles, and so on.
Chapman (1973) defined exposure as ‘the amount of or opportunity for accidents that
driver or traffic system experiences’. Carroll (1971) proposed that exposure is ‘the
frequency of traffic events which create a risk of accident’. Hauer (1982) defined a
unit of exposure as ‘a trial in which the outcomes are an accident (possibly of several

types) or a non-accident’.

If we know exposure, we can differentiate high accident occurrence due to high risk
from high accident occurrence due to high exposure. Unfortunately exposure
measurements are expensive and carried out much too seldom while not specifically
for road safety purposes. A fundamental problem in studies of accident occurrence is
how to combine exposure and accident data in a meaningful and consistent way so
that the contribution of individual factors to accident risk can be identified (Jovanis
and Chang, 1989).

It is an open question whether safety should be measured in units of dangerous
situations (exposure) or accidents (outcome). The traffic conflicts technique assumes
proportionality between exposure and accidents. On the contrary, Wolfe (1982) notes
that exposure-based definitions suffer from two major limitations: a) they ignore
exposure to accidents implicating pedestrians and fixed objects (such as bridge
abutments, utility poles, and parked cars), and b) one can be exposed to risk while not
participating in dangerous situations (e.g. while being in a parked vehicle).

Overcoming such constraints, Hauer (1997) proposed the following definition: ‘Safety
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is the number of accidents (crashes), or accident consequences, by kind and severity,
expected to occur on the entity during a specified period of time’ (Hauer, 1997).

Described this way, the safety of an entity is a series of expected numbers or
frequencies. These expected numbers change in time and are distinct from accident
counts, which are a reflection of the underlying expected number that enable us to
estimate what the expected number or frequency at some point in time is or was. Un-
Safety (as measured by accident occurrence) is the product of the probability of
having an accident (risk) and the number of exposure units (Hauer, 1997).Factors
contributing to accident risk are thus conceptualized as affecting the probability of an

accident.

2.1.2 Disciplines

Due to the complexity of the road system and its management, road safety analysis
necessarily involves numerous scientific disciplines, in order to effectively treat
problems of:
e driver behavior in risk situations:
- economics (insurance, decisions under uncertainty)
- psychology (perception of danger, choice under uncertainty, driver training)
- ergonomics (information gathering, man/machine interaction, road/driver
task adaptation)
- physiology (capacities, handicaps for driving)
- psycho-sociology (attitudes and judgment when confronted with risk,
controls and social norms)
- sociology (cultural and organizational aspects, enforcement system)
e accident mechanism of occurrence:
- mechanics (traction, vehicle structure)
- traffic engineering (infrastructure and operations)
- ergonomics (understanding the road traffic system)
- physiology (fatigue, alcohol, physical capacities)
e traumatisms during collisions:
- bio-mechanics (shock resistance)

- medicine (traumatism severity)
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In what follows, four main criteria are used to classify road safety literature in groups
of studies; each group is then briefly described, along with some basic assumptions.
More elaborate descriptions are provided for methods further used in the present
thesis. We note that references made are indicative and not exhaustive. Thorough
literature reviews on the thesis field of interest are provided in Chapters 3 to 5. Road
safety literature organization enables for interesting remarks that are presented in the
end of Chapter 2.

2.1.3 Classification criteria

We propose road safety literature classification by the use of four main criteria: a) the
method employed, b) the level of analysis assumed, c) the scope of the performed

analysis, and d) the accident phase considered.

a) Method employed
The method employed refers to the scientific approach that is selected with regard to
the analysis objectives and to data availability. This may be:
e controlled experiment,
o field observational,
e multidisciplinary in-depth investigation, or
e data observational
For each of these approaches, specific methodologies are developed to appropriately

treat available data.

b) Level of analysis
The level of performed analyses is also dependent upon the analysis objectives and
data availability. We distinguish between:
e disaggregate and
e aggregate investigations.
Generally, disaggregate analyses over perform aggregate analyses as they provide

more accurate results; however they have higher data requirements.
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c) Scope of analysis

Some researchers are mostly interested in explaining a present or past situation/event,
while others attempt to predict future situations/events. In that sense, an analysis may
be either:

e descriptive of past and present situations or

e predictive of future changes.
We note that the term ‘descriptive’ is commonly used to refer to explanatory models
that may equally refer to present or future conditions. However, in the context of the
present thesis, this term is used differently as mentioned above.

d) Accident phase considered

Some researchers focus on the study of accident contributing factors and triggering
events, while others focus on accident evolution mechanism. Many researchers have
studied different accident response techniques, whereas others mainly worked on
accident consequences. Thus, four discrete accident phases may be considered:

e Qenerating,

e patterning,

e response, and

e consequences.

2.2 Method employed

2.2.1 Controlled experiment (laboratory)

Laboratory experiments or simulations are used to study in detail driver and vehicle
actions and reactions that may be linked to accidents but are difficult — or impossible-
to be observed in the field. Laboratory experiments commonly study actions such as
steering wheel movement, lateral and longitudinal position, speed estimation,
breathing rate, vigilance, and so on. Driver reactions to external environment stimulus
have been simulated and subjected to in-depth analysis. Driving simulators are used
for this purpose ; they allow for useful conclusions that would otherwise not have
been possible such as changes in the field of eyesight vision. Furthermore, statistical
models have been developed to simulate collision Kkinematical characteristics

(Sustersi¢ et al., 2007). However, the most common safety experiment is the one
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undertaken by vehicle industries (‘crash test’); it measures crashworthiness rates. In
all these experiments or simulations, the relationship between independent variables
and intermediate measures is directly applied. Then, inferences are made about the

effect of independent variables on highway accident risk.

The advantages of laboratory experiments include safety of the subjects, control of
some confounding results, and possibly reduced costs compared to field observation.
Among all shortcomings of laboratory experiments, the most restrictive is the
difficulty in generalizing laboratory findings to actual highway environments.
Although laboratory experiments allow us to obtain individual disaggregate and
detailed performance data, they are limited in their ability of providing insight in the
process of accident occurrence and, obviously, do not contain data on actual
involvements. Trials are conducted during the experiments, but they reflect ‘pseudo’
exposure as no actual risk system exposure is undertaken. In order to relax this
constraint, some researchers have tried to combine laboratory results with
observational data in order to test their real credibility (Jones and Whitfield, 1988).
Hauer (1997) points out the non-existence of road safety field experiments and argues

that real on-the-road experiments should be considered.

2.2.2 Field observational

On uninterrupted flow facilities equipped with continuous surveillance systems,
researchers applied field observational techniques in order to promptly detect incident
occurrences. Incident detection involves the analysis of patterns in the traffic data
observed just after the incident in order to develop models that can separate real-time
traffic conditions resulting from incidents from free-flow and/or recurring congestion
(Abdel-Aty and Pande, 2007). These patterns are identified through continuous loop

measurements.

Research on actual driving conditions includes unobtrusive observation of individual
drivers and vehicles, and on-road measurements of drivers in instrumented vehicles.
Emerging technologies, such as CCTV, are used in this purpose. In Liu (2007), laser
speed guns were used to measure the speed of oncoming vehicles. Cameras have also
been used to record driver behavior and characteristics in an effort to associate

approaching speed with driver and vehicle characteristics. However, accidents are rare
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events, while continuous field observations are expensive. Thus, data on accident
occurrences are not usually used; instead inferences about risk are made.

The traffic conflicts technique assumes proportionality between the frequency of
dangerous situations and accident occurrences. It is based on defining near accidents
(‘conflicts’), which are typically expressed as time to collision of the involved road
users. The advantage of this method is that data can be collected quite quickly. The
disadvantage is that the validity is lower compared to real accident analyses. In order
to estimate the number of accidents based on conflicts registration, fixed ratios
between the number of conflicts and accident counts are used. The latter implies that
conflicts can also be regarded as a measurement of exposure as well as an indirect

estimate of the number of accidents.

The major advantage of on-the-road research is that results obtained are disaggregate
and readily applicable to highway environment. A major disadvantage is that many
variables are not under strict experimental control, and some results may be due to
uncontrolled variables and/or be limited to the specific location where the study was
conducted. In addition, it is not always possible to directly relate such observations to
accident occurrences. Exposure to risk remains limited as accidents are rarely
observed, while budget constraints make it difficult to conduct more comprehensive
research (i.e. continuous surveillance over long highway segments and periods of
time). On the other hand, incident detection techniques have become rather obsolete
as the road users can promptly contact (by mobile phone etc.) highway authorities in

case of emergency.

2.2.3 Multidisciplinary in-depth investigation

In-depth investigation mainly refers to on-site investigation by specially trained
technicians, who rush to the accident site immediately after its occurrence. In-depth
investigation is held by multidisciplinary teams and a compilation of results is made
based upon their findings (OECD, 1988). Emphasis is always given on individual
accident analysis. However, we should note that the analysis may take place long after
the accident occurrence. In this context, clinical studies of individual accidents
(Shinar, 1998) are also part of this category. Reconstruction of the accident and of the
actual circumstances under which it took place is attempted and thoroughly studied.

Within this procedure, individual road accidents are treated as essentially
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deterministic events; although incomplete information can leave one uncertain about

how exactly an accident happened (Davis, 2004).

The main difference between multidisciplinary in-depth investigations and field
observational studies is that the first do not deal with exposure and a priori assume
incident occurrences. Also, they are unable to follow the actual incident patterning
since generating; instead, they attempt to — a posteriori — reconstruct and approximate
accident actual circumstances of occurrence. Such investigations require significant
human resources and a wealth of data that is rarely available — or traceable — in road
incident occurring. They seem more suitable for less frequent and more elaborately

recorded events such as industrial incidents or airplane crashes.

2.2.4 Data observational

Data observational studies are hypothetical experiments conducted through
econometric modeling. Econometric modeling techniques were initially developed for
assessing complex economic relationships and can be viewed as a scientific substitute
for perfectly controlled experiments. They are applicable in cases where it is
impossible to vary one independent variable at a time, while keeping all others
constant. They may be defined as the use of statistical reasoning and methods as
means to establish data-based descriptions of economic phenomena and empirically

based counterparts for, and tests of, economic theories (Smelser et al., 2001).

The essence of econometrics lies upon the mix of subject-matter theory, mathematical
statistics, and empirical data. It is not a technique designed to explore the kind of
empirical relationships that might possibly exist between the arbitrary set of variables,
but to estimate the parameters of a given theory. This theory must come from
somewhere else than the data at hand themselves, or the whole analysis will be more
or less invalidated due to circularity of argument (Heckman and Leamer, 2007).
Errors due to confounding effects can be avoided only to the extent that the relevant

explanatory factors are included in the model.

Usually, analysts combine accident data with controlled exposure and test the
hypothesis of interest. Regression and multivariate models have been employed to

describe accident occurrence. Studies about the safety effects of interventions are
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usually retrospective quasi-experiments. To assess the effect of some treatment on the
safety of an entity, one must predict what would have been the safety of an entity, had
it been left untreated. In observational studies, this can be done in a variety of ways

(e.g. comparison group).

2.2.4.1 Models

Models are formulated in order to increase our understanding of observed phenomena.
Most analytical models contain some basic assumptions from which conclusions are
logically deduced. As such, models are a restricted form of general theories, often
containing hypotheses, postulates, and assumptions used to test these theories
empirically. A theory is formulated to explain and predict regularities. The research
cycle could start with observations from which regularities, through induction, are
formulated into theories. Alternatively, theories are formulated through deductive
processes into testable hypotheses, subsequently verified with observations. A model
deriving from an acceptable theoretical construct is expected to possess the following
basic characteristics (Hakim et al., 1991):

e description of the phenomenon

e explanation of the phenomenon

e prediction of the phenomenon

e incorporate policy variables.

In reality, it is possible to build partial models that are able to produce accurate
predictions without necessarily explaining the phenomenon. Alternatively, some less
sophisticated models could describe the phenomenon without actually being able to

explain or predict it.

2.2.4.2 Statistical analysis
A statistical analysis is essentially a logical argument, where assumptions about the
process generating data are combined with observation statements in order to derive
statements about quantities not directly observed. Differences between what has been
assumed and how the data have actually been produced could then invalidate any

conclusions drawn from the analysis (underlying assumptions).
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A random experiment is an observation activity that can be repeated under identical
conditions, where the set of possible outcomes is known, but where the outcome of
any particular repetition is unknown in advance. Hacking (1964) notes that there are
situations which tend to reproduce, under repeated operation, stable relative
frequencies of outcomes. He calls this tendency chance, and the corresponding
situation a chance set-up. Probability theory then provides a logic for reasoning about
chance. As Hauer (1982) noted, one can readily apply Hacking’s treatment to the
study of road accidents by assuming, in the simplest case, that a section of road or an
intersection can be modeled as a chance set-up. Individual vehicle traversals provide
the trials to which the set-up is subjected; each trial is assumed to have a chance of
resulting in an accident. This chance may vary with roadway, traffic or environmental
conditions. Thus, we can empirically study how an intervention affects road safety
and the chances of accidents without knowing the details of any particular accident.

Statistical approaches assume that road accidents are individually unpredictable,
chancy phenomena although aggregates of accidents can show predictable statistical
regularities. Therefore, accidents are treated as individually random, although the
parameters governing their probability distributions may be modeled deterministically
(Davis, 2004). The majority of road safety statistical studies are based upon this

assumption, even though some objections have been raised.

One problem is that without prior knowledge concerning the underlying mechanism
generating the aggregated data, it may be difficult — or even impossible — to correctly
interpret aggregated results. The Simpson’s paradox (Simpson, 1951) arises in the
interpretation of contingency tables when an association between variables observed
in sub-populations is attenuated or even reversed when the sub-populations are
aggregated (Freedman, 1999). Davis (2004) suggests that the statistical regularities
observed in accident data have no independent status, but are simply the result of
aggregating particular types and frequencies of mechanisms. Based on statistical
applications in other fields, Davis (2004) proposes an alternative to the prevailing
assumption in accident statistical analysis. This alternative treatment begins with the
idea of a population of individual deterministic mechanisms, rather than the idea of

repeated trials of a chance set-up.
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A comprehensive literature review on accident statistical modeling can be found in
Garber and Wu (2001). The authors state that statistical models have been used in
road safety research for three main purposes:
a) to identify the major contributing factors,
b) to establish relationships between crashes and explanatory variables,
and

c) to screen covariates.

Statistical models can be divided into deterministic and stochastic. In deterministic
modeling (Foldvary, 1979; Gwynn, 1967; Hall and Pendleton, 1989; Lundy, 1965),
the influence of a variable is often examined by keeping all other parameters fixed
(single-variate models). In other cases, multiple linear regression, robust regression
and multivariate ratio of polynomials models were applied in multivariate analyses of
the causal factors (e.g. Garber and Ehrhart, 2000; Mohamedshah et al., 1993). All
deterministic models have a strong underlying assumption; they assume that the error
of the independent variable is normally distributed with a constant variance. Also,

they assume that the dependent variable is continuous.

Stochastic models amplify the number of independent variables treated. Despite the
stochastic treatment of the dependent variables, the link functions (that connect the
mean of number of accidents or the severity outcome to contributing factors) remain

deterministic. Several modeling specifications have been applied.

In frequency analyses:
= Poisson (lvan et al, 1999; Ivan and O’Mara, 1997; Lord et al., 2005;
Oh et al. 2004, 2006; Saccomanno and Buyco, 1988; Vogt and Bared,
1998),
= Negative Binomial (Abdel-Aty and Radwan, 2000; Carson and
Mannering, 2001; Donnell and Mason, 2006; Garber and Wu, 2001;
Hadi et al., 1995; Hiselius, 2004; Karlaftis and Tarko, 1998; Knuiman
et al.,, 1993; Lord, 2006; Lord et al., 2005; Maher 1991; Maher and
Summersgill, 1996; Martin, 2002; Miaou, 1994; Milton and
Mannering, 1998; Oh et al. 2004, 2006; Persaud et al., 2002; Poch and
Mannering, 1996; Shankar et al., 1995; Tunaru, 1999),
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= Zero Inflated Poisson and Zero Inflated Negative Binomial (Garber
and Wu, 2001; Kumara and Chin, 2003; Lee and Mannering, 2002;
Miaou, 1994; Shankar et al., 1997).

An overview of such studies can be found in Xie et al. (2007).

In severity analyses:

= Linear regression (Boufous et al., 2008),

= Ordered Probit model (Chimba and Sando, 2009; Xie et al., 2009; Gray
et al., 2008; Pai and Saleh, 2008; Lee and Abdel-Aty, 2005;
Yamamoto and Shankar, 2004; Kockelman and Kweon, 2002; Quddus
et al., 2002; Zajac and Ivan, 2002),

= partial proportional odds model (Quddus et al., 2009; Wang and
Abdel-Aty, 2008),

= Logit model (Abdel-Aty, 2003 ; Eluru et al., 2008 ; Kim et al., 2008 ;
Milton et al., 2008 ; Savolainen and Mannering, 2007 ; Shankar et al.,
1996).

An overview of such studies can be found in Chapter 4 of the present dissertation.

2.2.4.3 Non-parametric methods
Data mining can be defined as the nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in large amounts of data
(Fayyad et al., 1996). From a statistical perspective, it can be viewed as a computer
automated exploratory data analysis of (usually) large complex data sets (Friedman,
1997). However, in contrast to statistical techniques, the problems and methods of
data mining have some distinct features of their own. First, data sets may be much
larger than in typical statistical analyses. Second, data mining pays much less
attention to the large-scale asymptotic properties of its inferences; instead, emphasis is
given on the general philosophy of ‘learning’, including consideration of the
complexity of models and the computations they require (Hosking et al., 1997).
Furthermore, data mining has tackled with problems such as what to do in situations
where the number of variables is so large that looking all pairs of variables is
computationally infeasible (Mannila, 2000). Additionally, in contrast with statistics,

data mining is typically a form of secondary analysis: the data has been collected for

Incident Occurrence and Response on Urban Freeways 53



Chapter 2 Road Safety Literature

some other purpose than for answering a specific data analytical question (Geurts et
al. 2005).

Data mining techniques can be divided in two: the computational (supervised
learning) and the non-computational (unsupervised learning) techniques. Each
technique has its strengths and weaknesses in terms of representation language,
classification power, descriptive abilities and expert knowledge required.

Supervised learning

Rule induction is used to identify rule sets representing interesting subgroups in
accident data (Kavsek et al., 2002). The learning is based on past experience, and the
learned knowledge is used to classify new data. Applications of computational
techniques in accident modeling include:
= Decision trees (Clarke et al., 1998a ; Strnad et al., 1998),
= Neural networks
- Artificial NN (Abdel-Aty and Pande, 2005; Abdelwahab and
Abdel-Aty, 2002; Awad and Jason, 1998; Chang, 2005; Delen
et al., 2006; Mussone et al., 1999; Mussone et al., 1996; Riviere
et al., 2006),
- Probabilistic NN (Abdel-Aty and Pande, 2005),
- Back Propagation NN (Chang , 2005),
- Time delay NN (Zhong et al., 2004),
- Bayesian NN (Riviere et al., 2006 ; Xie et al., 2007),
- Genetic Algorithms (Gas) (Clarke et al., 2005, 1998b),
- Spatial data mining (Zeitouni and Chelghoum, 2001),
- Association algorithm (Geurts et al., 2005),
e Fuzzy methods (Jilani and Burney, 2007; Song and Chissom, 1993;
Vaija, 1987),
e Hybrid methods (Neuro-fuzzy) (Awad and Jason, 1998).
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Unsupervised learning

Non-computational learning is based on the statistical regularity of the patterns
recognized in data. Clustering techniques are used to discover frequent patterns in
accident data (Ljubic et al., 2002). Tree-based methodologies have been shown as
useful tools to obtain homogeneous data sets in accident analysis and to establish the
empirical relationship between traffic accidents and independent variables. They
result from the statistical regularity of the patterns recognized in data and are used for
explaining and/or predicting either a categorical or a continuous response. They have
commonly been applied to reduce the heterogeneity in accident data (Abdel-Aty et al.,
2005; Chang and Chen, 2005; Hakkert et al., 1996; Karlaftis and Golias, 2002;
Maggazu et al., 2006; Park and Saccomanno, 2005; Stewart, 1996). The tree structure
is very helpful in clarifying the relationships between independent variables and
accidents, along with the interactions among independent variables. The ability of

graphically displaying results is very advantageous.

2.2.4.4 Parametric vs. non-parametric models

Parametric models have been widely preferred from analysts because they have
explicit theoretical foundations, they can produce interpretable coefficients for each
explanatory variable of the model, and they can be easily estimated. Nevertheless,
parametric procedures require the functional form of the model to be specified in
advance, they are not invariant with respect to monotone transformation of the
variables, they are easily and significantly influenced by outliers, they do not handle
well discrete independent variables with more than two levels, and they are adversely
affected by multicollinearity among independent variables (Hadi et al., 1995; Karlaftis
and Tarko, 1998).

The application of non-parametric models for accident data modeling has received
much less attention. The primary reason is the complexity in estimating these models.
Other criticism that has impeded on ANN broad use concerns the over-fitting
observed in small samples (Vogt and Bared, 1998). This constraint limits their
transferability and applicability for crash predictions, even though these models
possess better linear and nonlinear approximation abilities than statistical regression
methods. We should note, though, that approaches able to alleviate this problem do

exist. The most important problem that analysts confront with ANN is that they
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essentially work as black-boxes and do not generate interpretable parameters for each
explanatory variable. In some studies (Delen et al., 2006; Fish and Blodgett, 2003;
Xie et al., 2007), sensitivity analysis was performed to deduct relationships between
dependent and explanatory variables (interdependent or not to each other). Sensitivity
analysis is empirical and cannot be considered equivalent to the GLM statistical
inference. Moreover, it is usually time consuming to develop an ANN model, because
it is made by experimentation; the computation time is also superior to regression
models and greatly depends on the size of the training data set. The most significant
advantage of ANN methods is that they perform without having to establish the
functional form linking the dependent and explanatory variables. Furthermore, they
can approximate any continuous function defined on a compact set with arbitrary
accuracy, though this strong ability may lead to over-fitting. Another advantage is that
they can handle interrelation problems between independent variables.

Tree-based methodologies also present theoretical and practical advantages compared
to parametric models as they neither require the functional form of the model to be
specified in advance. They can handle collinearity problems, while the assumption of
additive relationship between risk factors is not required. Outliers are isolated into a
node and do not contribute to splitting, so they do not affect the coefficient estimates,
as in GLM models. They are adaptable in dealing with high dimensional and non-
homogeneous data sets. However, as discussed by Harrel (2001), they do not utilize
continuous and ordinal variables effectively. Also, they have the disadvantage of
over-fitting in three directions: searching for predictors, the best splits, and multiple
searches. They do not provide a probability level or confidence interval for the risk
factors and predictions. When they are employed to analyze a new data set, the lack of
formal statistical inference procedures is a critical issue (Chang and Chen, 2005). In
addition, the simple binary tree appears to have difficulty in handling the interactions
between risk factors. A further drawback is the difficulty in doing elasticity analysis

in order to acquire information on the marginal effects of the variables.
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2.3 Level of analysis

The level of analysis is of great importance in road safety explorations regardless the
unit of the analysis that may itself be highly differentiated. For example, Jovanis and
Delleur (1981) and Mountain et al. (1998) have analyzed specific accident locations
such as links or intersections. Other researchers such as Saccomanno and Buyco
(1988), Chirachavala and Cleveland (1985), and Woods and Simms (2002) have
studied specific vehicle types (e.g. trucks). The analysis level refers to data
aggregation that affects both dependent and independent variables. A common
problem in road safety analyses is to successfully combine disaggregate dependent
variables — such as accident counts — with aggregate regressors such as weather data.

2.3.1 Disaggreqgate

Disaggregate explorations consider an individual observation as the unit of the
analysis. The individual observation may be a moving automobile, a single driver, an
accident count, and so on. Disaggregate methodologies may be applied in case studies
analyses, experiments or simulations. Markedly, disaggregate level of analysis refers

not only to the dependent variables, but to regressors as well.

2.3.1.1 Unit of the analysis
The unit of analysis could be an intersection or a roadway segment, a specific road
user category (e.g. pedestrians) or all road users, any vehicle involved in accidents or

all vehicles on the roadway, and so on.

Fixed-length sections versus homogeneous road sections

An important issue of concern is road network segmentation for the analysis purposes;
two are the most common alternatives: a) fixed-length sections or b) homogeneous

sections (in terms of geometric or other characteristics).

In order to account directly for the effects of highway geometric characteristics on
accidents, homogeneous sections should be preferred. Homogeneous sections are
often considered to limit the observed heterogeneity. Miaou and Lum (1993) pointed
out several problems in using homogeneous sections; this segmentation technique can

result to short road sections (especially curved and graded ones) that may have
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undesirable impacts on the estimation of the linear regression. The homogeneity
requirement may exacerbate potential heteroskedasticity problems and lead to losses
in estimation efficiency. The resulting increase in the standards error of model
coefficients could lead the analyst to draw erroneous inferences with regard to the
effects of model covariates.

On the other hand, fixed-length sections limit potential heteroskedasticity due to
unequal sample sizes, while being much easier to be defined. In addition, the
migration of accidents is better accounted for. Nevertheless, heterogeneity problems
among segments may arise and the impact of road geometry cannot be easily
observed. In any case, the disadvantages of using fixed-length sections, relative to
homogeneous sections, are far less severe (Shankar et al., 1995).

2.3.1.2 Dependent and independent variables

The dependent variable is chosen with regards to the study specific objectives. In the
greatest part of the literature, dependent variables cluster in two large categories: a)
crash counts-related, and b) severity-related. In both cases, research focuses on
modeling relationships between these dependent variables and independent variables;
independent (or explanatory) variables are factors thought to be related to accident
occurrence and whose influence is being investigated (i.e. the nature and magnitude of
their effect).

The choice of explanatory variables depends upon many criteria such as theoretical
assumptions made, overall study objectives, data availability, and so on. Another
issue of interest is the number of independent variables considered; small numbers
offer a gain in transferability of results, whereas large numbers offer a considerable
statistic gain on the detriment of generalization. Any variable whose value is not
supposed to be held constant during the hypothetical experiment should not be
included among regressors. Independent variables should not be affected by road user
decisions; otherwise, endogeneity bias occurs. On the contrary, omitted variable bias
occurs whenever a regressor is correlated to some relevant explanatory variable not
included in the model. A third issue of concern is the correlation among independent
variables. The problem of multicollinearity arises when one independent variable can

be expressed as a linear function of others. In that case, the influence of each variable
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cannot be easily estimated as regressors tend to vary together within the sample. A
common practice is to omit (if possible) some of them. Another way to address the
problem is by applying multiplicative decompositions; alternative expressions of

variables (e.g. log) in order to eliminate the linearity property.

Crash counts-related models

Studies that explore the influence of several factors on accident counts are the most

common road safety analyses. The dependent variable is either an expected frequency

(counts/unit of time) or an expected rate (counts/unit of exposure). The expected

frequency is often expressed in accident counts per year, month, week, or day with

respect to the aggregation level considered. The expected rate can be expressed in
accident counts per capita, per vehicle, per road segment, and — even more accurately

— per vehicle kilometers traveled. In that context, previous research has dealt with

modeling relationships between accident occurrences and:

e geometric elements (Garber and Wu, 2001; Karlaftis and Golias, 2002; Knuiman et
al., 1993; Lundy, 1965; Miaou et al., 1992; Okamoto and Koshi, 1989; Shankar et
al., 1995; Vogt and Bared, 1998; Wong and Nicholson, 1992),

e prevailing traffic conditions (Carson and Mannering, 2001; Chang and Chen, 2005;
Frantzeskakis and lordanis, 1987; Garber and Wu, 2001; Hall and Pendleton, 1989;
Lave, 1985; Oh and Chang, 1999; Oh et al., 2000),

e weather (Chang and Chen, 2005; Fridstrom and Ingebrigtsen, 1989; lvey et al.,
1981; Jovanis and Delleur, 1981),

e roadway environment in terms of lighting conditions, warning signs, pavement
characteristics, and so on (Carson and Mannering, 2001; Karlaftis and Tarko,
1998; Lee and Mannering, 2002; Martin, 2002, Taylor et al., 2000), and

e public policy in terms of traffic regulations, speed limit, enforcement, hours-of-
service for professional drivers, and so on (Hall and Mukherjee, 2008; McCarthy,
1999; Naveh and Marcus, 2007; Navon, 2003; Richter et al., 2004; Yannis et al.,
2007).

Severity-related models

Numerous studies explore the factors having an impact on accident severity. The

dependent variable is usually depicted on a 3- or 4-point ordinal scale (e.g. no injury,
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severe injury, fatal). The unit of analysis varies across studies and depends on the
study objective; units include non-motorized road users (Ballesteros et al., 2004; Kim
et al., 2008; Sze and Wong, 2007), crashes (Chang and Wang, 2006; Eluru et al.,
2008; Gray et al., 2008; Wang and Abdel-Aty, 2008; Yamamoto and Shankar, 2004),

and so on.

The independent variables considered usually include:

e driver (or rider) characteristics (Boufous et al., 2008; Dupont et al., 2010; Helai et
al., 2008; Kim et al., 2008; Lapparent, 2008; Pai, 2009; Sze and Wong, 2007;
Wang and Abdel-Aty, 2008; Yamamoto and Shankar, 2004),

¢ vehicle characteristics (Ballesteros et al, 2004 ; Dupont et al., 2010 ; Helai et al.,
2008 ; Kim et al., 2008 ; Pai, 2009),

e road geometry (Al-Ghamdi, 2002; Milton et al., 2008; Savolainen and Mannering,
2007; Shankar et al., 1996),

e crash characteristics related to the exact circumstances under which the accident
occurred (Chang and Wang, 2006; Gray et al., 2008; Helai et al., 2008; Wang and
Abdel-Aty, 2008; Yamamoto and Shankar, 2004; Yannis et al., 2010), and

e other variables such as speed limit, day of the week, time of day, AADT, and
traffic conditions (Abdel-Aty, 2003; Conroy et al., 2008; Gray et al., 2008; Helai et
al., 2008; Kim et al., 2008; Milton et al., 2008; Pai and Saleh, 2008; Pai, 2009;
Savolainen and Mannering, 2007; Sze and Wong, 2007; Yamamoto and Shankar,
2004; Zajac and lvan, 2002).

2.3.2 Aggregate

Aggregate studies cluster individual observations in order to infer statistical properties
for the whole group. Clustering may refer to accident counts (under similar
conditions, on the same day, and so on), road segments (neighboring or sharing
similar characteristics), individuals (drivers or other road users involved in the same
accident and so on), prevailing conditions (traffic, weather, lighting, and so on).
Aggregation may equally refer to the period of reference considered. Efforts are made
to shorten the period of reference in order to gain in accuracy; daily, hourly, or

minute-intervals averaged measures are preferred over annual ones.
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In aggregate accident data, the random effects (noise, disturbance) which have a
decisive impact at the micro level, are ‘evened out’ by the virtue of the law of large
numbers. The causal process determines the expected number of accidents, as a
function of all factors making up the causal set. The variation due to causal factors is
systematic and can be influenced by policy measures. Natural data variation may
result in heavy underdispersion (Pasupathy et al., 2000). Furthermore, ecological
fallacy may arise whenever an observed statistical relationship between aggregated
variables is falsely attributed to the units over which they are aggregated (Davis,
2002). Generally, aggregation makes results less detailed; nevertheless, aggregate
studies are commonly performed because of data limitations such as sample data

insufficiency.

Aggregate observational accident studies are based on cross-sectional (spatial) or
time-series (temporal) variation, or a combination of both (panel data).

2.3.2.1 Cross-sectional models
Cross-sectional models link (frequency- or severity-related) outcomes to entities-
specific characteristics by making use of the variation among entities; the variation is
observed at the same point of time. The ‘entity’ can be any kind of geographically
defined unit, or any sort of identifiable physical or institutional object such as a
person, a family, a company, a vehicle, or a group of such micro-units exhibiting
certain common characteristics. Cross-sectional analysis is based upon a very
restrictive assumption; i.e. the entities are not different in any other way than what is
captured by the variables of the model. However, not all variables — that vary across
sites and affect road accidents — are identifiable and measurable. If unmeasured, such
variation may cause biased estimations. Cross-sectional data sets have beneficial
properties that help in parameter estimation such as a) variation that exists in the
explanatory variables across observations (often without strong covariation) and b)
large population. Therefore, analysts perform cross-sectional studies for description
and comparison purposes. We note, however, that cross-sectional studies have

suffered severe criticism as to their use for prediction purposes.
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2.3.2.2 Time-series models

A time-series is a chronological sequence of observations of the same phenomenon;
each observation referring to the same period of time (hour, day, month, year, and so
on). Time-series modeling is based on the assumption that the historical values of a
variable provide an indication of its value in the future (Box and Jenkins, 1970). Road
safety analysts explore time-series data in an effort to detect patterns in accident
occurrences that could serve for prediction purposes. In time-series modeling,
variation among observations may be too small if the data show collinearity among
regressors. Additionally, time-series models may exhibit autocorrelation (correlation
between successive disturbance terms) due to omitted variables. Furthermore, in some
cases, an observation may be dependent upon previous observations (autoregression).
Several techniques have been developed to address autocorrelation and autoregression
problems. In macroscopic road safety evaluations, time-series models are often
considered superior to cross-sectional models, because the latter do not take into
account the geographical and cultural differences between countries, states or
provinces (Page, 2001).

2.3.2.3 Panel data models
Panel data models exploit combined cross-sectional and time-series data sets; i.e.
repeated chronological observations on a given cross-section of entities. Special
techniques have been developed for panel data treatment (Hsiao, 1993). Panel
databases are the richest source of information. Panel data analyses show several
advantages over cross-sectional or time-series analyses (Hsiao, 1993). From a
statistical perspective, by increasing the number of observations, panel data have
higher degrees of freedom and less collinearity (particularly in comparison with time-
series data); the efficiency of parameter estimates is improved. Moreover, panel data
allow the researcher to distinguish between time and sectional trends within data
(Karlaftis and Tarko, 1998). However, panel data may suffer from heterogeneity and

heteroscedasticity resulting to decreased estimation efficiency.
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2.4 Scope of analysis

The scope of road safety analyses may be to describe a present situation (in terms of
safety performance) of a road network on a local, regional, national or international
level. Alternatively, the analysis scope may emphasize on predicting future safety
levels with regards to vehicle fleet evolution, road safety measures’ implementation,
infrastructure upgrade, and so on. In light of the above, the scope of road safety

analyses is either descriptive or predictive.

2.4.1 Descriptive

Accurate descriptions and safety evaluations (over a road segment, a network, and so
on) can prove useful in many ways. They help in assessing any progress made and,
also, in establishing quantified targets. An integral index could be of use in describing
actual conditions and in performing comparisons between networks, regions or
countries; however, no such index meeting general acceptance has been defined.
Microscopic risk analysis and description on the individual level are also important in
exploring accident occurrences. Connections between macroscopic theories and

individual models remain limited.

Rumar (1999) proposed a three-dimensional cube to describe the road safety problem
(Figure 2); the three dimensions being a) exposure (magnitude of the activity that
results in accidents), b) accident risk, and ¢) consequence. The magnitude of the
problem is then the product of these factors. Exposure is measured in various ways
such as population size, vehicles, network size, drivers, vehicle kilometers traveled,
and so on. Risk is defined as the probability of accident occurrence per units of
exposure, while consequences refer to injuries. Factors influencing exposure include:
economic situation, GDP per capita, urban population density and other demographic
factors, modal split, travel route, trip length, traffic decomposition, and so on. Factors
influencing risk are related to driver (speed, alcohol, age, gender), to groups of road
users (protection), to vehicles (vehicle type), to roads (type of road, maintenance), to
environment (darkness, weather), and so on. Finally, factors effecting severity may be
related to human factors (speed, alcohol), vehicle (active and passive safety), crash

protective roadsides, guardrails, barriers, emergency care, health system, and so on.

Incident Occurrence and Response on Urban Freeways 63



Chapter 2 Road Safety Literature

Figure 2 The Road Safety Problem (Rumar, 1999)

. accidents (injured)
Risk=

exposure

Exposure

injured [killed}
accidents (injured]

Consequences =

Descriptive analyses that are being exclusively based on absolute numbers of
accidents, injuries or fatalities can be reality distorting. Fatalities may increase while
risk is decreasing just because the decrease in risk does not fully compensate the
effects of exogenous factors (Page, 2001). In order to be able to compare and rank
road safety problems, it is necessary to estimate the magnitude and character of the
activities that generate the problems — i.e. the exposure. Exposure can be directly
extracted from traffic measurements aggregated in time and space. Alternatively, it
may be estimated by induced exposure techniques. In these techniques, the relative
weights of both exposure and risk level are interpreted and estimated from accident
data or by case control studies, where the risk is estimated directly by comparing
samples with equal exposure. Quasi-induced exposure techniques — exclusively based
on accident data — have also been developed. The quasi-induced exposure method was
first introduced by Haight (1971) and its applications have received considerable
attention ever since. The attractiveness of the quasi-induced exposure method lies
upon the simplistic nature of the theory and its independence from data requirements
associated with traditional exposure measures. Nevertheless, this method has suffered
severe criticism and analysts are advised to use it very carefully (Jiang and Lyles,
2007).
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2.4.1.1 Individual risk evaluations
In a microscopic level of analysis, risk factor models have been developed to
analytically describe risk on the individual level. These bottom-up models try to
describe processes of individual behavior or to demonstrate interactions among
different elements of the transportation system. The main objective is to identify all
technical and human failures in the traffic- vehicle- road interaction that lead to
collisions, as well as to quantify their influence. Approaches to risk quantification can
be found in various disciplines such as psychology, sociology, ergonomics, medicine,
biomechanics, and physics. Overall, we can distinguish between technical models and
human-factor models; the vehicle (e.g. size, brakes, stability), the road (e.g. geometry,
surface, intersections), and the traffic (e.g. volume, speed, gaps) being considered as

situational stimuli to driver behavior.

Behavioral models

Behavioral models are human-factored models that focus on road user risk perception
and response; they search to identify if the failure occurred at perceiving, accepting,
or at controlling the risk, while associating accident involvement to specific
behaviors. Behavioral models can be classified into: input-output (action) models;
task analysis models (taxonomic); functional models (e.g. cognitive, motivational,
adaptive, mechanical). Action models are behavioral models based on variables
related to user disposition, user assimilation, or user situation. Most action models are
structured following Rasmussen’s hierarchical model that differentiates among

knowledge-, rule-, and skill-based errors.

In road safety literature, the most frequently discussed behavioral risk model is
Wilde’s (1982) risk homeostasis model; a model relating risk perception to risk
acceptance. According to this theory, risk taking behavior involves an attempt to
balance perceived risk and desired risk. In particular, people seem to adjust their
behavior in response to changes in perceived risk (Adams, 1985). Risk-homeostatic
theory leads to the conclusion that the only measures having a permanent effect on
accidents are those that alter attitudes to risk taking. We should note though that this

theory has been debated extensively in the literature.
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2.4.1.2 National and international evaluations
Numerous factors influence the safety level as measured on a country scale; some
being endogenous to road safety performance, while others being exogenous. Such
factors are concerned with road safety policy, distribution and crashworthiness of
vehicle fleet, road network characteristics, human behavior and attitudes, and so on
(Brenac, 1989; Briithning, 1995; Sivak, 1996; Vanlaar and Yannis, 2006). The
evaluation of safety actions by international comparisons consists in evaluating the
performance of a country; i.e. the effectiveness of endogenous factors in each country,
the exogenous factors being neutralized (Pages, 2001). The performance is the ability
of a road safety policy to be effective and the ability of a population to accept and

respect this policy.

National crash counts and absolute number of fatalities do not provide the necessary
information in order to perform comparative evaluations. Even exposure
measurements (exogenous factor) are not considered to be sufficient for data
standardization (Andreassen, 1991). A common practice in international comparisons
is to use time-series of accident or fatality rates in an effort to reveal safety
improvements, while assuming constant all exogenous factors. Nevertheless, time-
series comparisons are dependent upon the initial level of mileage and on the origin

and end periods of comparison (Andreassen, 1991).

Several researchers (Bester, 2001; Oppe, 1989) have worked on the issue of assessing
safety performance on a large scale; a comprehensive literature review can be found
in Al-Haji (2005). Most researchers used national motorization level as the main
independent variable in their analysis. Smeed (1949) compared data from twenty
countries and found an inverse relationship between traffic risk (expressed as fatality
per motor vehicle) and motorization level (number of vehicles per inhabitant). Since
1949, many studies have been based on Smeed’s formula (Jacobs and Hutchinson,
1973; Mekky, 1985); an overview of these studies can be found in Elvik and Vaa
(2004). However, several authors have criticized Smeed’s simplistic assumption about
motorization being the only independent variable in the model (Broughton, 1988;
Koornstra and Oppe, 1992). Thus, more elaborate models have been developed in
order to include the influence of additional variables. Al-Haji (2005) identified a set

of eleven macro-indicators that affect road safety level and, thus, defined a composite
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(multidimensional) index. Page (2005) established a country-performance indicator
by comparing the mean performance of 21 OECD countries and over a 15-years
period.

2.4.1.3 Before-after studies
Effectiveness evaluations (before-after studies) investigate and compare the safety
level of an entity before and after the implementation of a safety measure. The entity
may be a road segment, a highway or a whole network. Safety measures vary in scale
accordingly; from simple road lighting of a crossroad to enhanced enforcement of the
national network. Before-after studies provide an estimate of the effectiveness
achieved under specific conditions and possess very limited predictive power.

2.4.2 Predictive

Predictive models are used in cases where a large number of factors are involved

and/or when these factors cannot be controlled through experimental design. The
objective is to estimate an equation that relates independent variables of interest to
accidents. Thus, any future change in independent variables has a measurable effect
on accident occurrence; thus, predictions can be made. However, accidents are
random events and, consequently, all analyses should be based on explicitly
probabilistic models. Single events may occur at random intervals, but their long-term
frequency may remain constant. Therefore, single events are impossible to be

predicted, but their overall frequency may be estimated.

2.5 Accident phase

Any accident may be viewed as a continuum of interrelated consecutive events; road safety explorations
safety explorations focus on different phases of an accident mechanism of occurrence. The sequence of such
The sequence of such events begins with the occurrence of some type of danger or conflict. This danger may
conflict. This danger may be due to weather, traffic, or other causal factors. Accidents are a subset of these

are a subset of these dangerous situations and, thus, possess lower frequencies of occurrence. Hauer (1997)
occurrence. Hauer (1997) proposed a four-level pyramid (

Figure 3) to represent the continuum of events leading to accidents; each level volume
indicating frequency of occurrence. A triggering event — such as driver misestimating

potential dangers — provokes the transition from dangerous situations to accident
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occurrences and initiates accident mechanism of occurrence. Accident generating is
the phase beginning from any dangerous situation and ending with an accident

occurrence.

Figure 3 Accident generating (Hauer, 1997)
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Given that an accident occurs, prevailing conditions at the proximity of the accident
site play an important role to its patterning. Prevailing conditions refer to a wide range
of characteristics such as weather, road geometry, traffic decomposition, and so on.
On a high-speed traffic stream, for example, a collision may be more severe compared
to low-speed environments. Prevailing conditions may also act as triggering events for
new accident occurrences, i.e. secondary accidents. Accident patterning is the phase
during which the accident is evolving with respect to prevailing conditions and lasts

approximately until accident notification.

Accident patterning is followed by a response phase starting from accident
notification and lasting until the complete accident clearance and the full restoration
of roadway capacity to its normal level. This phase includes dispatching of a response
unit (RU) to be assigned to service the incident, its arrival on the site, and all actions
needed to restore roadway capacity. These actions may be related to site management,
traffic management, motorist information, clearance, and so on (Bunn and Savage,

2003). Response phase is critical in determining accident consequences.

Accident consequences occur during all accident phases and include road
infrastructure deterioration, delays and congestion, property damage, human losses,
and so on. However, accident consequences are measured and examined mainly after
the accident clearance, when accident duration can be accurately estimated and all

consequences are revealed. Police reports register the main consequences suffered by
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vehicles and road users. Medical services examine and record data on the health
condition of implicated persons.

In accordance to the above, accident mechanism of events can be graphically
represented as follows (Figure 4).

Figure 4 Accident mechanism of events
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2.5.1 Generating

In the accident generating process, the interest lies upon determining if and how the
risk system affects whether or not an accident will occur. Analysts explore the
successive transition from normal traffic conditions to dangerous conditions and from
dangerous conditions to accident occurrences. In this context, emphasis is given on
conflicting traffic conditions, adverse weather, driver fatigue, and all parameters that
may create potential hazards. Moreover, triggering events are investigated in an effort
to understand accident mechanism of occurrence and to implement appropriate
measures for their mitigation. A large number of studies attempt to identify accident
causal factors and to quantify their impact. In great part of the literature, every
accident is considered to result from a combination of: driver, vehicle and
roadway/operational environment mistakes or failures. However, the assumption of
time-increasing danger (up to the accident occurrence) holds in all of these studies;

while the triggering event is considered to be random.

Instead of this causal chain-based approach, some authors addressed the problem in a
more integrated way by adopting systemic approaches. Jovanis and Chang (1989)

formulated a model of accident occurrence using principles from survival theory.
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They viewed the accident as a ‘system failure’ and introduced hazard models in road
safety research. The latter had been widely used in biomedical studies to detect the
effect of specific medical treatments on the lifetimes of observed patients. The
probability of failure at any time is determined by the total hazard contributed by the
level of each risk component at that moment. This model is called a latent system
model because the cause of failure is not specifically known and each component has
some latent effect on the risk system. Further, the cumulative hazard of some risk
components (e.g. fatigue of driver) can be considered by specifying the system hazard
as a function of time. The model can estimate the probability of having an accident at

any time given survival until that time.

2.5.2 Patterning

Accident patterning is the process by which the risk system determines the type of
accident outcome; it is primarily determined by instantaneous risk factors (those at or
near the accident scene). During the patterning process, the risk system interacts with
the accident occurrence and impacts on its evolution. For example, a two-vehicle
crash may be fatal or not depending on traffic stream speed. The same crash may lead
to multiple collisions due to low visibility. Accident patterning approximately lasts
until the accident notification. However, in some cases, the patterning procedure may
continue until the complete clearance of the accident; secondary accidents may occur
while e.g. waiting for the emergency units. Jovanis and Chang (1986) affirm that

accident patterning may be examined with or without detailed exposure data.

2.5.2.1 Crash type
Crash type can be viewed as the outcome of a circumstance of type-specific
dangerous conditions. Road safety studies that do not distinguish among different
collision types are aggregate in nature; different crash types may occur under
substantially different circumstances and may be associated with predictor variables
in different ways. Crash taxonomy includes a wide variety of parameters such as crash
location (e.g. on/off-road), collision type (head-on, sideswipe, at angle, rear-end
collision), number of vehicles involved (single-, two-, multi-vehicle crashes), and

maneuvers of vehicles prior to the accident (lane-changing etc.).
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All these parameters are expected to interact with traffic conditions and to influence
crash outcome. Kim et al. (2006) argued that crash type models are useful for at least
three reasons: (a) the need to identify sites that may be of high risk with respect to
specific crash type, but that may not be revealed through total crash modeling, (b)
countermeasures are likely to affect only a subset of all crashes, and (c) different
crash types are usually associated with road geometry, the environment, and traffic
variables in different ways. Pande and Abdel-Aty (2006) underlined the importance of
by-crash-type analysis, particularly when it comes to real-time risk assessment; Golob
and Recker (2004) argued that there may be a direct correspondence between level of
service (a traffic performance measure) and crash typology (a traffic safety measure).

Several authors reported that different types of highway crashes occur under markedly
different circumstances (e.g. roadway or light conditions), particularly with respect to
traffic volume. In most of these studies, the analysis is performed after segregating
accidents in two large categories: single- and multi-vehicle crashes (Ceder and
Livneh, 1982; Garber and Subramanyan, 2001; Ivan et al., 2000; Pasupathy et al.,
2000; Persaud and Mucsi, 1995; Qin et al., 2004; Zhou and Sisiopiku, 1997). In few
other studies, the segregation is made by distinguishing between rear-ends and
sideswipes (Golob et al., 2004; Lee et al., 2006a).

Summarizing the above, there is strong empirical evidence that accident
characteristics are crash type-specific (Golob et al., 2008; Khattak et al., 1998; Lee et
al., 2006a; Shankar et al., 1995). However, different types of collisions are generally
not distinguished in most research, except in severity analyses. A possible reason for
this is the difficulty in collecting the necessary data; in addition, most accidents on
freeways are thought to be rear-ends, but substantial number of crashes are not (Lee et
al., 2006a). The differentiation becomes clearer when it comes to considering traffic
parameters such as speed; ignoring the differential effect of traffic parameters on
crash occurrence may introduce serious bias in the results (Mensah and Hauer, 1998).
Smeed (1955), for example, argued that the annual amount of exposure does not
influence — in practice — the annual accident rate for total accidents. Nonetheless, he
pointed out that the accident rate for single-vehicle crashes tends to decrease when
exposure increases, while the opposite is observed in the case of multivehicle

accidents.
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2.5.3 Response

Response to road incidents refers to all actions taken in order to best address incident
occurrence (as well as its consequences) and restore roadway capacity to its normal
level. The response phase includes incident detection and verification, motorist
information, emergency units’ allocation and redeployment, site management, traffic
management, and clearance (Bunn and Savage, 2003). The proper identification and
prioritization of factors that contribute to emergency management services response
and clearance times result in better usage of taxpayer resources (Lee and Fazio, 2005).
Empirical evidence suggests that environmental factors such as weather or roadway
conditions has minimal effect on response times, while day of the week, urban or rural
area, off or opposing-lane crash location, number of vehicles involved, heavy vehicle
involvement, and response time significantly affect clearance time during peak
periods (Lee and Fazio, 2005).

Incident duration is the time elapsed between occurrence of an incident and the

clearance of the incidence and restoration of the roadway capacity to its normal level

(Zografos et al., 2002). The total incident duration can be segregated in four elements

(Figure 5):

e Detection/reporting time (T1): from the incident occurrence to the incident
detection and verification

e Dispatching/preparation time (T2): from the incident detection to the dispatching
of a response unit (RU) to be assigned to service the incident

e Travel time (T3): from the assignment of a response unit to its arrival on the site

e Clearance time (T4): the time required to clear the incident and restore roadway

capacity.
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Figure 5 The components of incident duration (Zografos et al., 2002)
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Incident management is defined as the systematic, planned, and coordinated use of
human, institutional, mechanical, and technical resources to reduce the duration and
impact of incidents, and to improve the safety of motorists, crash victims, and incident
responders (FHWA, 2000). On highways, research and operators focus on minimizing
incident overall duration; important factors that affect duration are: (i) the operator
ability to promptly detect an incident occurrence, and (ii) the location of emergency
stations (police, ambulance). The benefits of minimizing incident duration are
numerous and concern highway operators (e.g. cost, road safety performance), crash
victims (e.g. time to hospital), other road users (e.g. delays, secondary incidents), and

society (e.g. incident externalities).

Emergency station location (e.g. police, fire stations) analysis falls into location
analysis; term that refers to the modeling, formulation, and solution of a class of
problems that can best be described as sitting facilities in some given space (ReVelle
and Eiselt, 2005). Obviously, emergency unit location is important to overall incident
duration. In particular, the time needed to reach an incident scene is of great concern
to emergency medical services (EMS) in order to mitigate incident consequences on
people. In a real-time context, EMS managers are faced with two main problems: an
allocation problem and a redeployment problem (Gendreau et al., 2001). The
allocation problem consists of determining which ambulance must be sent to answer a
call. The redeployment problem consists of relocating available ambulances to the
potential location sites when calls are received; ambulances are assigned to potential

sites to provide coverage. Covering constraints may be either absolute or relative.
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Absolute constraints require that all demands are satisfied within r, minutes, while
relative constraints require that a proportion of demand a is also satisfied within ry

minutes (r2> ry).

2.5.4 Consequences

A large and multi-disciplinary body of literature focuses on the measurement and
mitigation of accident consequences. A lot of studies emphasized on accident
consequence mitigation rather than accident risk limitation. Consequences can be
reduced in many ways: by changes in the environment or in vehicles, by the use of
protective devices, by driver training, rescue procedures, treatment or rehabilitation
routines.

Consequences are measured long or short after the accident clearance (e.g. 30 days for
fatalities) and may be described in many different ways depending on the point of
view of interest. They primarily concern the efficiency of medical services provided
after the accident occurrence (the treatment of injured persons). Secondarily, they
concern explorations on accident severity contributing factors such as weather
conditions or speeding. In that sense, consequences phase may begin from the actual
time of the accident occurrence. A third category of consequence analyses attempt to
estimate the overall accident monetary cost. In accordance with the above, three types
of indicators are used to describe consequences: a) health-related, b) contributing

factors investigations, and c) monetary indicators.

2.5.4.1 Medical services
Biomechanical models have been developed through experiments and simulated
collisions. The human body can be simulated for most of the common collisions and
the injuries caused can be studied using computers. There are various ways to
describe the injury level. A commonly used classification scheme is the International
Classification of Diseases (ICD); it describes the type of injury and its location but it
does not capture injury severity, which is a very important variable. Thus, the
Abbreviated Injury Scale (AIS) is often preferred to ICD. The AIS measures severity
and varies from 1: minor injury to 6: maximum injury; however, it cannot represent
multiple injuries. In such cases, another scale is used — the Injury Severity Score

(I1SS). The latter indicates the severity in terms of long-term disability and goes from
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0: no long-term impairment to 6: lifetime serious impairment. Finally, an injury cost

scale has been elaborated by Zeidler et al. (1993).

2.5.4.2 Severity contributing factors
The outcome of an accident is often measured as the level of injury sustained by the
most severely injured vehicle occupant (Chang and Mannering, 1999). This typically
includes severity levels of: no injury (property damage only), evident injury, disabling

injury, and fatality.

Many factors influence accident consequences; they have been modeled and
quantified to a significant extent. A review of such models can be found in Hakim et
al. (1991). The main factors found to affect severity are: type and age of traffic
element (user/vehicle) involved in the accident, accident maneuver type, speed,
vehicle mass, road and roadside design, use of protective equipment, alcohol and drug
consumption, traffic characteristics, intervention policies, weather, day of the week,

speed limit, and so on.

Various methodological approaches have been applied: Logistic regression (Jones and
Whitfield, 1988; Lui et al., 1988; Shankar and Mannering, 1996; Yau, 2004),
multivariate time-series approaches to predict severity (Lassarre, 1986), bivariate
models of injury outcomes (Saccomanno et al., 1996; Yamamoto and Shankar, 2004),
standard multinomial logit models (Carson and Mannering, 2001; Savolainen and
Mannering, 2007), nested logit for shared unobservables among severity categories
(Khorashadi et al., 2005; Lee and Mannering, 2002; Martin, J.-L., 2002; Shankar et al.
1995; Ulfarsson and Mannering, 2004) and mixed logit structures (Milton et al.,
2008).

2.5.4.3 Monetary indicators
Apart from the loss of lives, accidents have multiple collateral effects: material
damage, environmental damage, pain to society, loss of productivity, impact on
freight transport, health costs, delays, congestion, and so on. Also, they may trigger
secondary crashes whose severity is often greater than that of the original incident
(VNTSC, 1995). All these effects correspond to a certain cost, which cumulatively

results to be extremely high. This cost is paid by insurance companies and health care
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systems and is, finally, covered by citizens. In most countries, accident economic
losses reach 1 or 2% of GNP (Page, 2001). In 1997, the ETSC estimated the total cost
of transport accidents in Europe at 166 billion euros (ETSC, 1997). 97% of these costs
were directly related to road transport.

The methods for evaluating the socio-economic cost of road accidents vary
significantly across countries; cost elements taken into account include medical costs,
non-medical rehabilitation, lost productive capacity, human costs, damage to
property, administrative costs, and other costs such as congestion. Accident
prevention strategies and safety measures’ choice are often based on costing accident
consequences; the aim being to relate accident cost reductions to road safety

investments.

2.6 Summary of findings

2.6.1 Literature organization

Road safety literature was organized by making use of four main criteria: a) the
method employed, b) the level of analysis assumed, c) the scope of the performed
analysis, and d) the accident phase considered. A four-dimension matrix (Table 1)

illustrates road safety literature organization and summarizes analysis major findings.

Table 1 Road Safety Literature Organization

Controlled Field In-depth Data
Classification Criteria Experiment | Observational | investigation | Observational
A D A D A D A D
) Descriptive | - v v v - v v v
Generating —
Predictive - - - - - - v .
. Descriptive | - v v v - v v v
Patterning —
Predictive - - - - - - v ,
Descriptive | - v - v - v v v
Response —
Predictive - - - - - - v .
Descriptive | - v v - - v v v
Consequences —
Predictive - - - - - - v .

*A: aggregate

dissertation field of interest

D: disaggregate
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Controlled experiments allow for individual disaggregate observations such as single
driver behavior or vehicle performance. They may refer to accident generating,
patterning, response, or consequences. By simulating actual conditions, analysts
explore individual reactions to external stimuli (e.g. in driving simulators); these
reactions refer to accident generating and patterning processes. Additionally, there are
also applications in incident management; for example, traffic simulators can help in
estimating emergency units travel times. Accident outcomes can also be modeled in
controlled experiments as in ‘crash tests’. In general, laboratory experiments allow for
in-depth investigations to accident causal factors; however, they do not contain data
on actual accident involvements. Most importantly, controlled experiments do not

consider exposure to risk and, consequently, lack predictive power.

Field observational studies mainly focus on disaggregate individual observations (e.g.
driver behavior as recorded on CCTV); however, they sometimes treat aggregate
groups of individuals (e.g. loop measurements). They include analyses of accident
generating, patterning, and response phases. To the best of our knowledge no field
observational research exists on accident consequences. Disaggregate response
studies include, for example, CCTV incident duration registrations. Road accidents
are rare events and, so, sample size inefficiency is a common problem. On the other
hand, budget constraints do not allow for long continuous surveillance and, thus,
inferences about exposure are made. As a result, field observational studies lack

predictive power.

In-depth investigations are rare in road safety analysis; they take place after accident
occurrences and — by definition — refer to individual observations. They cannot
reproduce accident actual circumstances of occurrence, but they approximate accident
causal factors and patterning through examining its consequences; examples include
vehicle examinations by engineers. In-depth investigations may also include accident
response explorations as in IMS evaluation studies. In-depth investigations are
observation-specific and do not account for any exposure measure — actual or
inferred. As such, they remain only descriptive and cannot be used in accident

predictions.

Incident Occurrence and Response on Urban Freeways 77



Chapter 2 Road Safety Literature

In data observational studies, the unit of the analysis may be a single accident
occurrence, but independent variables —such as weather — may be aggregate in nature.
Most importantly, exposure measurements (either used as independent variables or in
the dependent variable expression) are generally aggregate. As a result, data
observational studies remain aggregate to an extent; although efforts towards
disaggregation are constantly made. As to accident phasing, observational studies may
equally refer to all accident phases; i.e. generating, patterning, response, and
consequences. In addition, statistical modeling enables for both descriptive and
predictive analyses given that exposure is taken into account. Accidents are random
and unpredictable; however, robust estimations about future exposure are possible.
Consequently, if the analyst approximates the relationship between accident
occurrence and exposure, he may then infer accident propensities. Data observational
studies offer more possibilities compared to all other study types and can be easily
applied, while data requirements are not extremely high. Nevertheless, their results do
not possess the level of detail, certainty and precision that other study types provide.

2.6.2 Field of interest

In the present dissertation, we conduct a data observational study within a descriptive
scope of analysis. Stochastic modeling is used in a rather disaggregate context of
analysis. Accident outcomes — in terms of either crash type or severity — serve as
dependent variables. Crash type refers to accident patterning, while severity is linked
to accident consequences. Independent variables include road user attributes, weather
and lighting conditions, vehicle type and age, traffic data, and so on. To this end, real-
time traffic data are extracted from continuous loop measurements at the time of the
accident occurrence (aggregate field observations). Results provide probability
estimations for accident outcomes, given that these accidents occur under specific
circumstances; if combined with frequency models, they could additionally provide
prediction estimations. Finally, we examine potential implications of the developed
models in optimizing incident management techniques; the latter being related to

accident response phase.
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Identifying crash type propensity using real-time traffic

data on freeways

In this Chapter, we examine the effects of various traffic parameters on type of road
crash. Multivariate Probit models are specified on 4-years of data from the A4-A86
highway section in the lle-de-France region, France. Empirical findings indicate that
crash type can almost exclusively be defined by the prevailing traffic conditions
shortly before its occurrence.

*This chapter has been accepted for publication to the Journal of Safety Research.
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3.1 Introduction

Crash data analysis is the most frequently used tool for assessing the safety
performance of a transportation facility (Abdel-Aty and Pande, 2007). Accidents may
be viewed as the result of the interaction of multiple variables including road
geometry (e.g. curvature), driver characteristics and behavior (e.g. gender, age),
traffic conditions (e.g. speed limit, volume), environmental factors (e.g. weather), and
so on. The conventional approach to crash data analysis has been to establish
relationships between these variables and crash frequency (Ceder, 1982; Garber and
Ehrhart, 2000; Yan et al., 2009) or severity (Abdelwahab and Abdel-Aty, 2002; Al-
Ghamdi, 2002; Srinivasan, 2002). Crash frequency data have been analyzed using a
number of modeling techniques that have ranged from conventional regression
(Garber and Ehrhart, 2000; Mountain et al., 1996) to artificial neural network models
(Abdel-Aty and Pande, 2005; Abdelwahab and Abdel-Aty, 2002). For a more in-depth
discussion on methodological advances in crash data analyses, see Abdel-Aty and
Pande (2007); for shortcomings and a discussion see Lord and Mannering (2010) and
Songchitruksa and Tarko (2006).

Regardless of the modeling technique used, a serious factor of inaccuracy — in most
past studies — has been data aggregation (Lord and Mannering, 2010) and sample size
sufficiency (Pande and Abdel-Aty, 2006). Nowadays, most freeways are equipped
with continuous surveillance systems making disaggregate traffic data readily
available; these have been used in some studies (Abdel-Aty et al., 2007; Kockelman
and Ma, 2007; Lee et al., 2002, 2003; Madanat and Liu, 1995). While detailed vehicle
movement data in a section would be the best data source, traffic data from several
consecutive detectors in a section can be a good surrogate to identifying traffic

dynamics that may lead to accidents (Oh et al., 2001).

Aggregation also refers to crash type as different crash types may occur under
substantially different circumstances and may be associated with predictor variables
in different ways. Crash taxonomy includes a wide variety of parameters such as crash
location (e.g. on/off-road), type of collision (frontal etc.), number of vehicles
involved, and maneuvers of vehicles prior to the accident (lane-changing etc.). All

these parameters are expected to interact with traffic conditions and to influence crash
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outcome; however, crash prediction models investigating different crash types have
not been developed possibly due to the difficulty in collecting the necessary data. Kim
et al. (2006) argued that crash type models are useful for at least three reasons: (a) the
need to identify sites that are high risk with respect to specific crash types but that
may not be revealed through total crash modeling, (b) countermeasures are likely to
affect only a subset of all crashes, and (c) different crash types are usually associated
with road geometry, the environment, and traffic variables in different ways. Pande
and Abdel-Aty (2006) underlined the importance of by-crash-type analysis,
particularly when it comes to real-time risk assessment. They suggested that the
conditions preceding crashes are expected to differ by type of crash and, therefore,
any approach towards proactive traffic management should be type-specific in nature.

In this chapter we focus on examining the effects of various traffic parameters
collected real-time both at — and prior to — the time of the accident on type of crash.
Multivariate Probit models are specified on 4-years of data from the A4-A86 highway
section in the Ile-de-France region, France. We use a disaggregate approach in which
the units of analysis are the crashes themselves (rather than aggregations of crashes
over time), and traffic data are measurements of volume, speed, and density over 6-
minute intervals. Such an analysis offers a wide variety of potential benefits; from a
methodological standpoint, disaggregation minimizes possible bias (Davis, 2002),
while additional light can be shed on the causal relationship between accidents and

several contributing factors such as geometry, traffic conditions, and so on.

3.2 Background

Traditionally, crash prediction models were macroscopic in nature, where researchers
mainly used summary statistics rather than microscopic measures to develop the
models. The Average Annual Daily Traffic (AADT) has been the most commonly
used measure in the literature to reflect traffic conditions (Kim et al., 2006; Mouskos
et al., 1999; Qin et al., 2004). AADT is an aggregate measure of exposure; however,
the use of AADT to approximate vehicle kilometers traveled at a site might reduce the
natural variance that exists in exposure data and may result in heavy underdispersion
(Pasupathy et al., 2000). Many researchers reported a U-shaped relationship between

traffic volume and accident rate (Gwynn, 1967; Leutzbach, 1966), with multi-vehicles
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accidents increasing with flow and single-vehicle accidents decreasing with
increasing flow (Ceder and Livneh, 1982; Zhou and Sisiopiku, 1997).

Later, many authors used aggregated data over a month, a week or a day for
developing the same models; others used deduced hourly traffic characteristics by
combining AADT and a 1-day hourly traffic profile for the site analyzed (Ivan et al.,
2000). Noticeably, a number of studies used aggregated congestion measures (v/c
ratio in Frantzeskakis and lordanis (1987), Level of Service in Pasupathy et al. (2000),
Persaud and Nguyen (1998), Zhou and Sisiopiku (1997)) instead of the AADT, with
most authors reporting increased crash probability under congested traffic. Hourly
traffic measures, when first utilized, were considered to be disaggregate in nature
compared to annual measurements; however, even hourly measures cannot consider
the short-term variation of traffic flow and are rather not well suited for application to

real-time operations.

Regardless of the aggregation level, there is strong empirical evidence that accident
characteristics are crash type-specific (Golob et al., 2008; Khattak et al., 1998; Lee et
al., 2006a; McCartt et al., 2004; Shankar et al., 1995). However, various types of
collisions are generally not distinguished in most research, except in some severity
analyses. A possible reason for this is the difficulty in collecting the necessary data; in
addition, most accidents on freeways are thought to be rear-ends, but substantial
number of crashes are not (Lee et al., 2006a). The differentiation becomes clearer
when it comes to considering traffic parameters such as speed; ignoring the
differential effect of traffic parameters on crash occurrence may introduce serious bias
in the results (Mensah and Hauer, 1998). Smeed (1955), for example, argued that the
annual amount of exposure does not influence — in practice — the annual accident rate
for total accidents. Nonetheless, he pointed out that the accident rate for single-vehicle
crashes tends to decrease when exposure increases, while in the case of multivehicle
accidents the opposite is observed. Golob and Recker (2004) argued that there may be
a direct correspondence between level of service (a traffic performance measure) and

crash typology (a traffic safety measure).

Several authors reported that different types of highway crashes occur under markedly

different circumstances (e.g. roadway or light conditions), particularly with respect to
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traffic volume. In most of these studies, the analysis is performed after segregating
accidents in two large categories: single- and multi-vehicle crashes (Ceder and
Livneh, 1982; Garber and Subramanyan, 2001; Ivan et al., 2000; Pasupathy et al.,
2000; Persaud and Mucsi, 1995; Qin et al., 2004; Zhou and Sisiopiku, 1997). In some
studies, crash occurrence contributing factors have been explored while considering
the type of primary collision and distinguishing between rear-ends and sideswipes
(Golob et al., 2004; Lee et al., 2006a). Most studies use aggregate traffic measures
(Ceder and Livneh, 1982; Pasupathy et al., 2000; Zhou and Sisiopiku, 1997), while
few of the studies perform a by-crash-type analysis utilizing traffic data collected real
time shortly before the accident’s occurrence (Abdel-Aty et al., 2007; Golob and
Recker, 2001; Golob et al., 2004, 2008).

Golob and Recker (2001) performed nonlinear canonical correlation analysis
(NLCCA) with three sets of variables concerning accidents that occurred on South
California highways during 1998. Results indicated that the type of collision is
strongly related to median traffic speed and to temporal variations in speed on the left
and interior lanes. Further, using the same datasets, Golob et al. (2004) and Golob and
Recker (2001) developed a classification scheme by which traffic flow conditions on
an urban freeway can be classified into mutually exclusive clusters that differ as much
as possible in terms of likelihood of type of crash. In Golob et al. (2004) vehicle
exposure to each regime was estimated by drawing a random sample of traffic flow
measurements for the period of the analysis. Results suggested that lane-change
crashes tend to occur under conditions in which there is the highest variability in
speeds, while rear-end crashes tend to cluster where there is both lower speed
variation and lower speeds. In Golob and Recker (2001), 21 traffic regimes for three
different ambient conditions were defined and each of these regimes was shown to
have a unique profile in terms of the type of crashes that are most likely to occur.
Daylight conditions were shown to be related to collision type rather than the number
of vehicles involved, while the scaling for nighttime conditions was based on the
number of vehicles involved. Golob et al. (2008) captured the relationships between
traffic flow and type of accidents that occur under different types of traffic flow
conditions; results indicate that accidents involving a single vehicle are predominantly
associated with late-night hit-object and run-off-the-road accidents. Also, two-vehicle

accidents are more likely when volumes are similar in all lanes; large-scale accidents
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(4 or more vehicles) are more likely to occur when volumes are similar in all lanes

and there are high levels of variation in these volumes.

Abdel-Aty and Pande (2005) used real-time traffic and accident data from the 1-4
corridor in Orlando to identify and classify crash propensity factors; variations in
speed at least 10 to 15 minutes prior to an accident’s occurrence was found to be the
best classifier and results showed that at least 70% of the crashes on the evaluation
dataset could be identified. In Pande and Abdel-Aty (2006), the need to further
distinguish crash propensity by crash type was recognized and the authors developed
classification models using historical crash data and information on real-time traffic
parameters obtained from the same site. High average speed downstream along with
low average speed upstream, low average differences between adjacent lane
occupancies upstream at high speeds (up and downstream), and high standard
deviation of volume and speed downstream were found to increase the likelihood of

lane-change related collisions.

Abdel-Aty et al. (2007) developed real time crash risk assessment models for rear-end
and lane-change crashes in an effort to reliably assess the crash risk on a real-time
basis using historical crash and loop detector data obtained from the I1-4 corridor in
Orlando from 1994 through 2003. Rear-end crashes were separated into two groups —
congested and high speed — based on prevailing speeds at surrounding stations 5 t010
minutes before the crash. Under congestion, rear-end crashes were found to be more
probable, particularly if speed variation and average occupancy are elevated. Under
free flow, rear-end crashes seem to have a greater likelihood of occurrence when the
average difference between occupancy of adjacent lanes and the average upstream

speeds are high.

Lee et al. (2002, 2003, 2006b, 2006c) extensively worked on establishing real-time
risk indicators. In Lee et al. (2006a), 4-years of accident data from the 1-880 freeway
in Hayward (California) were used to identify real-time indicators of sideswipes
versus rear-ends. Using logistic regression models, they showed that other traffic
related factors such as variation in flow and peak/off-peak periods are important

factors that are correlated with sideswipe crashes.
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Simultaneous analysis of accident frequency by crash type and vehicle involvement
using real-time traffic data has remained sparse (Golob and Recker, 2001),
particularly in Europe. The papers previously discussed have provided very useful
insights toward understanding accident occurrence; by using prevailing traffic flow
data just prior to the time of the accident, we attempt to overcome the problems of
argument and function averaging (Mensah and Hauer, 1998). The first is a result of
using aggregate flow data rather than data measuring traffic conditions at the time of
the accident, while the second is caused by using the same functional relationship for
all types of collisions under all conditions.

3.3 Data and Methodology

3.3.1 The Data

To explore the factors that determine accident occurrence by crash type, the A4-A86
highway section from a dense urban area a few miles to the east of Paris was selected
(Figure 6). The A4-A86 junction has a length of 2.3 kilometres and includes four
lanes per direction (to and from Paris). In particular, we used measurements from 3
stations per direction situated at kilometres 5.50, 6.00, 7.05 (direction to Paris) and
5.50, 6.14, 7.03 (direction from Paris). The A4-A86 junction is a particular site as it is
the point where the Ile-de-France Ring Road (Périphérique-A86) coincides with the
Autoroute de I’Est (A4) and merging is prevalent; five lanes are reduced to four on
each direction. All stations are situated on the common part of the two highways; i.e.

after the merging and before their separation.

Accident data were extracted from B.A.A.C. (Bulletins d’Analyse des Accidents
Corporels) along with the Verbal Proceedings from an INRETS study (Aron and
Seidowsky, 2004). The BAAC files provide a wealth of useful information such as
crash type for all accidents, location and time, lighting conditions, and infrastructure
characteristics such as road curvature and alignment. Detailed weather data are
available on a 30-minute basis. We extracted such data directly from the closest
meteorological station and for the 30-minute interval into which the reported time of
the accident occurred. In total, 381 accidents were recorded during the period 2000-
2002 and 2006. We statistically checked and found no significant difference between
the 2000-2002 and 2006 registrations.
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Figure 6 The A4-A86 junction
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Traffic data (flow, speed, occupancy) were provided as part of the same INRETS
study (Aron and Seidowsky, 2004), and cover the period 2000-2002 and 2006; data
are recorded on 6-minute intervals. Such intervals may be too large to capture short-
term variations; however, data averaged on shorter intervals are not available.
Besides, several authors (Abdel-Aty and Pande, 2005; Oh et al., 2000; Pande and
Abdel-Aty, 2006) have used 5-minute intervals to perform similar analyses. For each
6-minute period, the traffic database provides a series of speed, volume and
occupancy measurements for each lane. The recorded traffic volume and speed — used
in the thesis — were for the six-minute period ending 6 minutes before the accident
(from the closest downstream detector). This time lag was used to avoid the impact of
the crash itself on the traffic variables and as a buffer to compensate for any
‘inaccuracies’ in the exact time of the accident. For example, if an accident occurred
at 9:00h, the traffic data considered were obtained from the 8:48-8:54 period. Similar

techniques have been applied in other real-time data analyses (Abdel-Aty et al., 2007,
Lee et al., 2006a).
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Loop detectors often suffer from problems that may result in unreasonable values for
speed, volume, and occupancy. We reviewed all data sequences based on time series
deviations, deviations across lanes, and logical rules derived from reasonable volume,
occupancy and speed relationships. Aberrant values (e.g. speed>200 km/h or speed>0
along with flow=0) were discarded from the database. Accidents with traffic data
unavailability were also discarded. Each observation in the dataset is a record of the
crash type of each accident, the corresponding traffic conditions, and various external

factors.

Table 2 presents the descriptive statistics of all crash types considered. Frontal crashes
(‘Type 1°) rarely occur on freeways. A number of accidents were recorded as
belonging to none of the described categories (‘Type 7°). Rear-ends account for
almost 36% of total accidents which contradicts the common belief that almost all
freeway accidents are rear-ends. Finally, accident distribution appears to be rather
balanced; this indication suggests the need for detailed analysis by crash type.

Table 2 Dependent variables in crash-type analysis

Crash type Type Summary Statistics™ Description
. =1 if rear-end with 2 vehicles;
= 0 ’
Type 2 binary F(1)=21.3% —0 otherwise
. =1 if sideswipe with 2 vehicles;
= 0 !
Type 3 binary F(1)=16.6% —0 otherwise
. =1 if rear-end with more than 2 vehicles;
= 0 !
Type 4 binary F(1)=14.5% —0 otherwise
Type 5 binary F(1)=14.1% =1 if multiple collisions; =0 otherwise
Type 6 binary F(1)=11.8% =1 if single-vehicle crash; =0 otherwise

'F: frequency

Table 3 presents a definition for each independent variable considered together with
its type, some summary statistics, and a short description. Most independent variables
are defined as extracted from the data bases used, with the exception of ‘pointe’,
‘SDQ2’, ‘SDV2’. ‘pointe’ is a binary variable introduced to represent if the accident
occurred under congested or free-flow traffic regime. Peak and off-peak hours per
direction were based on previous analyses and are site-specific. ‘SDQ2’ equals the
standard deviation of traffic volume across lanes over 6 minutes, while ‘SDV2’ equals

the standard deviation of speed across lanes over 6 minutes. These variables were
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intended to capture driver lane change behavior as there is empirical evidence that
such variables are associated with sideswipe crashes (Oh et al., 2001; Pande and
Abdel-Aty, 2006).

Table 3 Explanatory variables in crash-type analysis

Variable Type Summary Statistics’  Description

General accident information
Road direction

(sens) binary F(1)=47.1% =1from Paris; =2 to Paris
Type of day

(tjour) binary F(1)=83.0% =1 if weekday, Saturday; =2 if Sunday, holiday
Peak/off-peak period

(pointe) dummy F(0)=53.2% =0 if peak hours; =1otherwise

If (sens=1 and tjour=weekday) peak hours=7.00-19.00
If (sens=1 and tjour=Saturday) peak hours=8.00-17.00
If(sens=1 and tjour=2) peak hours=17.00-20.00
If(sens=2 and tjour=weekday) peak hours=8.00-20.00
If (sens=2 and tjour=Saturday) peak hours=11.00-18.00
If (sens=2 and tjour=2) peak hours=0

Weather conditions

(meteo) dummy F(0)=83.0% =0 if weather is fine or cloudy; =1 otherwise
Lighting conditions
(jour) dummy F(0)=65.5 % =0 if daylight, dawn or dusk; =1 otherwise

Road geometry
Road curvature

(tplan) dummy F(0)=39.1% =0 if straight line; =1 otherwise
Gradient
(profil) dummy F(0)=75.9% =0 if flat; =1 otherwise

Traffic characteristics
Traffic volume

(Q2) continuous M=112.4, SD=55.3  Average traffic volume per lane and over 6 minutes (in
vehicles)
(SDQ2) continuous M=22.35, SD=13.5 Standard deviation of traffic volume across lanes over 6
minutes
Speed
(V2) continuous M=73.3,SD=31.7 Average speed for all lanes and over 6 minutes (in km/h)
(SDV2) continuous M=12.2,SD=7.9 Standard deviation of speed across lanes over 6 minutes
Density
(D2) continuous M=2.4, SD=2.3 Average traffic density per lane over 6 minutes (in
veh/km)

LF: frequency
M: average value
SD: Standard Deviation

3.3.2 Methodology

Probit models have been widely used to analyze dependent variables of discrete

nature (0,1). The relationship among the dependent and the independent variables
does not lead to the estimation of a value for the dependent variable, but to the
estimation of a probability that one of the two alternatives will occur (Washington et

al., 2003). Here, we use Probit models to estimate the factors that affect the
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occurrence of a given crash type versus all other crash types considered. In this sense,
increased probability of a crash type occurrence under increased values of a specific
independent variable would indicate that the latter contributes to the mechanism of
occurrence of the specific crash type.

The general specification for a univariate Probit model (for an event n resulting in an
outcome i) can be expressed as (Washington et al., 2003):

YVip = fidin + &in (Equation 31)

Where:

Yin defines an unobserved variable representing the latent utility (or propensity) for
alternative i,

X is a vector of observed characteristics determining the outcome of the event n,

B:  represents a vector of unknown coefficients to be estimated for the alternative i,
and

£in represents a vector of error terms.

If further assumed that £:» follows the normal distribution and that i=1,2, we obtain

the specification of the binomial Probit model (Washington et al., 2003):

Fﬁ{l} = P(ﬁjxlﬁ - JBZXE?’. = —E&in + EEﬁj (Equation 32)

Equation 3.2 estimates the probability of occurrence of alternative 1 for event n. The

terms £1n:€2n are normally distributed with zero mean and variances o1z , 62.

Any road accident can be regarded as an event whose outcome is the type of crash
that finally occurred (rear-end, side-swipe etc.). The binomial Probit model of
Equation 3.2 can be used for estimating factors contributing or preventing a specific
crash type versus all other types. Under this assumption, Equation 3.2 provides the

probability of occurrence of a crash type (alternative 1) for each of the n accidents.
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The multivariate probit model is one form of a multivariate discrete choice model that
simultaneously estimates the influence of independent variables on (more than one)
dependent variables and allows for the error terms to be freely correlated. The
multivariate Probit model is based on the multivariate normal distribution and is
recommended in cases where the dependent variables may be reasonably assumed as
being correlated (Greene, 2003). Road accidents are very complex events; the
contributing factors of each crash type may as well have a — positive or negative —
influence to the occurrence of other crash types. Independence among different crash
types may not be a valid assumption. The multivariate Probit model was used in the
analysis to jointly identify traffic patterns that contribute to accident occurrence of all
crash types while controlling for geometry and environmental conditions.

Multivariate probit models have been used in transportation research in a number of
cases mainly focusing on travel demand and mode choice (Choo and Mokhtarian,
2008; Goulias et al., 1998). The general specification for a multivariate probit model

of n dependent variables (alternatives) can be expressed as (Greene, 2003):
Vi=BXite ,i=1.,n (Equation 3.3)

Where:

¥ defines an unobserved variable representing the latent utility (or propensity) for
alternative i=1,2,

A is a vector of observed characteristics determining alternative 1,

B5: represents a vector of unknown coefficients to be estimated, and

£: represents a vector of error terms that are normally distributed with zero mean and

constant variance.

The variance-covariance matrix of the error terms is given as follows:

[ 0]

(Equation 3.4)

where p is a measure of the correlation among the latent utilities.
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The main barrier for extending the univariate probit model to a multivariate setting
lies in the evaluation of higher-order multivariate normal integrals (Viswanathan et
al., 2000). It has been suggested that it is possible to approximate multivariate normal
probabilities by random sampling (Lerman and Manski, 1981). Further, in cases
where errors of estimates vary randomly, an estimate of the log-likelihood and its
derivatives can be obtained; these estimates are close to the one that results from the
actual computation of the integral (McFadden, 1989). In light of the above,
multivariate probit models are estimated using simulation methods — most frequently

Monte Carlo integration — rather than conventional numerical approaches.

3.4 Empirical results

Separate binomial Probit models were applied for each dependent variable
considered; the statistical software Limpdep (v.8) was used for all applications.
Parameters £ of Equation 3.1were estimated using maximum likelihood. Univariate
estimation results are presented in Table 4. A multivariate Probit model was also
applied to jointly estimate the probabilities of occurrence of each crash type,
considering that the contributing factors are interrelated. The multivariate Probit
estimation results are presented in Table 6, while Table 7 shows the correlation
coefficients among the five equations (crash types) that are significant at the 95%
level. All omitted variables were discarded on the grounds of low statistical

significance. In annex 2 of the dissertation, model outputs are attached.

Table 4 Model estimation for univariate Probit models

Dependent Variables

Independent
Variables
constant

V2

D2

Q2

Jour

Tjour

profil

tplan

Type2

Type3

Type4d

Type5

Type6

Coef. t-stat

1.069 1.46
-0.171 221
-0.222 -2.47

-0.321  -151

Coef. t-stat
-1.482 -5.70
0.004 1.92

0.034 1.54

Coef. t-stat
-1.789 -5.00

0076 179

0.443 176

Coef.

-1.275
0.006

-0.410

-0.473

t-stat

-4.67
1.68

-1.75

-1.75

Coef.  t-stat
-0.784 -4.03

-0.616
-0.509

-2.01
-2.13

observations

235

235

235

235

235

p-value for
overall

model
significance
(x* test)

0.040

0.068

0.007

0.039

0.039

Incident Occurrence and Response on Urban Freeways

91



Chapter 3 Identifying crash type propensity using real-time traffic data on freeways

Table 4 provides model estimation results for rear-end crashes involving two vehicles
(‘type2’); significant factors were the average vehicle speed (‘V2’), traffic density
(‘D2’), and lighting conditions (‘jour’). In particular, 2-vehicle rear-end crashes seem
to be more probable (compared to all other crash types) during daytime compared to
nighttime; this finding is similar to the work of Golob and Recker (2001) who
reported that rear-end collisions are more likely to occur on dry roads during daylight.
Persaud and Mucsi (1995) and Ivan et al. (2000) concluded that all types of multi-
vehicle crashes occur mainly during the daytime when light conditions are good. This
finding was supported by suggesting that during daytime, congestion is formed and
sudden traffic decelerations are frequent. However, in our analysis, the variable
reflecting congestion (‘pointe’ in Table 3) was not found to be statistically significant
revealing that this assumption remains an open question. A possible explanation for
the latter may be the presence of the variable ‘D2’ (traffic density) that absorbs all
relevant variance. The use of lights during nighttime makes deceleration visible from
a longer distance and reaction times may increase for on-coming drivers. Therefore,
as drivers perceive potential dangers earlier, they have more time to reduce their
speed or perform other last-minute maneuvers to avoid the crash; the latter could
explain the increased probabilities of rear-end crashes under daylight conditions in

our data.

Regarding traffic flow parameters, rear-end crashes were found to be more probable
for lower values of density and average speed. This result may seem contradictory to
previous finding — and appear surprising — as several studies including Abdel-Aty et
al. (2007), Golob and Recker (2004), Golob et al. (2008) indicated congestion as
being among the most robust precursors of rear-end crash occurrence. However, when
considering that the specific site has heavy traffic during daytime, it can be reasonably
assumed that these traffic conditions (low density and speed) most probably reflect
the critical transition from free-flow to congestion (at least in the context of this
thesis). In this context, rear-end crashes seem to cluster at a traffic flow regime when
average speed starts to decrease, but traffic density is still not high; under this regime,

queues are not yet formed, but sudden decelerations may occur at any time.

Table 4 includes model estimation results for sideswipe crashes involving two

vehicles (‘type3’) that were found to be positively associated with both average traffic
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volume (‘Q2’) and road gradient (‘profil’). This suggests that the probability of
occurrence of such a sideswipe crash (versus all other crash types) increases on ‘non-
flat’ road segments and for high volumes of traffic. As traffic flow increases, variation
in speeds between adjacent lanes becomes more probable, lane change maneuvers
become more frequent, and sideswipe accidents may occur. In addition, road gradient
makes lane change maneuvers even more difficult due to visibility restrictions and
difficulties in maintaining the vehicle’s control. Moreover, on grades, speed variation
among drivers may be higher compared to flat road segments (due to different vehicle
mechanical properties), the latter indicating a higher propensity for lane-change

maneuvers.

Table 4 also provides model estimation results for the occurrence of rear-end crashes
involving more than two vehicles (‘type4’) that were found to be positively associated
with average traffic density (‘D2’) and type of day (‘tjour’). In particular, rear-ends
involving more than two vehicles are more probable to occur (compared to all other
crash types) on Sundays and on holidays and for high levels of traffic density. This
finding is similar to other findings that rear-ends happen under congestion as various
authors have reported (Abdel-Aty et al., 2007; Lee et al., 2002; McCartt et al., 2004).
Under congestion, queues are formed and on-coming drivers have to adjust their
speeds (or even immobilize their vehicle) on short time and distance; several reasons
such as driving at inappropriate speeds do not always allow for the appropriate actions
to be taken in order to avoid an accident from occurring. Further, while in queues,
other drivers do not have the possibility to react and, thus, multi-vehicle chain
accidents are inevitable. This finding is further highlighted by the fact that, in contrast
to the above, rear-ends involving two vehicles are not probable under congestion but

rather before its formation.

Table 4 further provides model estimation results for the occurrence of multi-vehicle
collisions other than rear-ends (‘type5’); significant factors were average traffic speed
(‘V2’), lighting conditions (‘jour’), and road gradient (‘profil’). In particular, they
seem more probable to occur at high speeds, during daylight conditions, and on flat
road segments. It can be assumed that this crash category mainly includes multi-
vehicle crashes related to lane-change maneuvers; results indicate that under ‘normal’

driving conditions (in terms of lighting and road gradient), when drivers chose their
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speed freely (high speeds at free-flow regime), multi-vehicle collisions have a higher
propensity of occurring. One possible explanation could be that, under such
conditions, driver attention decreases and possible fatigue may result in longer
reaction times. Besides, the risk homeostasis hypothesis suggests that under
‘dangerous’ conditions drivers adapt their behavior and compensate their exposure to
increased risk (Wilde, 1982); as a result, drivers do not react promptly in order to
avoid their implication in an accident occurring at their vicinity, particularly at high
speeds. Besides, at lower speeds, multi-vehicle rear-end crashes are more probable to
occur (as already mentioned). We do note however that this suggestion needs to be
further investigated.

Table 4 also includes model estimation results for the occurrence of single-vehicle
collisions (‘type6’) that were found to be exclusively associated with road geometry
(‘profil’, ‘tplan’). In particular, single-vehicle crashes seem to be more probable
(compared to all other crash types) on straight and flat road segments. In the literature,
single-vehicle accidents are reported under light-traffic conditions (Golob et al., 2008)
and after sunset (Ivan et al., 2000; Persaud and Mucsi, 1995), while no association to
road geometry has been reported. However, this was not found here, as single-vehicle
accidents seem to cluster on straight and flat road segments. Several possible
explanations can justify the above; first, as in the case of multi-vehicle collisions, this
finding can be attributed to lower driver attention under such geometric conditions.
Second, the risk homeostasis hypothesis suggests that under conditions perceived as
‘dangerous’ (such as ascending, descending or curved road segments) drivers adapt
their behavior and compensate their exposure to increased risk (Wilde, 1982). As a
result, drivers may lose the vehicle’s control due to fatigue or other reasons. However,
all other drivers, because of favorable geometric features, react on time to avoid their
implication and, thus, occurring accidents remain single-vehicle ones. On the other
hand, higher probability for single-vehicle accident occurrence on flat and straight
roadway segments could be attributed to drivers avoiding other vehicles. In any case,

this finding needs further investigation.
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Table 5 Qualitative results for univariate Probit models

Independent Variables
constant V2 D2 Q2  jour tjour profi tplan
|

Dependent
variables

Type 2 + - - -

Type 3 - + +

Type 4 - + +

Type 5 - + - -

Type 6 - - -

A comparative overview of the univariate Probit models qualitative results allows for
interesting remarks (Table 5). Surprisingly, weather was not found to be significant in
any of the models estimated; probably real-time traffic observations ‘include’ weather
influence and partially ‘absorb’ its effect on accident occurrence. In addition, the
standard deviations of average traffic measures among lanes (‘SDV2’, ‘SDQ2’) were
discarded from the final models due to low statistical significance (below 90%).
However, we note that in the literature, there is strong empirical evidence that the
difference in traffic characteristics among adjacent lanes significantly affects crash
occurrence (Abdel-Aty et al., 2007; Golob and Recker, 2001; Lee et al., 2002).

Noticeably, traffic-related independent variables were found significant in almost all
models. This finding suggests the importance of considering such variables in crash
frequency analyses; in particular, results indicate that two-vehicle crashes (sideswipes
and rear-ends) seem to cluster at traffic regimes close to transition from free-flow to
congestion. Multi-vehicle rear-ends are most probable under congestion, while all
other multi-vehicle crashes most frequently occur under free-flow. Single-vehicle
accidents (hit-object, roll-overs etc.) cannot be attributed to ‘specific’ traffic patterns
as it is possible that many other exogenous factors (such as alcohol use and fatigue)

may intervene.

Multivariate model results (Table 6) reveal no difference in the manner in which
independent variables affect crash outcome (crash type). However, not all variables
were found to be statistically significant; most non-traffic-related factors resulted in
low t-statistics for all crash types with the exception of single-vehicle accidents. The
outcome of a crash (involving at least two vehicles), in terms of resulting crash type,
seems to be almost exclusively defined by the prevailing traffic conditions shortly

before its occurrence. This finding would be neglected under a univariate analysis per
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crash type. Further, the correlation coefficients (Table 7) reveal significant shared
effects among different crash types’ mechanism of occurrence and suggest the
validity of the proposed multivariate investigation, particularly in this setting where
limited data are available. The negative sign of all correlation coefficients implies that
each crash type occurs under different traffic regimes; the latter coming to support the
necessity for by-crash-type analyses. As previous findings of this chapter (concerning
traffic parameters) also suggest, single-vehicle crashes appear to be the less related to
other crash type patterns of occurrence. However, they appear to happen under
markedly different conditions compared to rear-ends involving 2 vehicles. Finally, the
shared effects among all other crash types result to be of similar magnitude.

Table 6 Model estimation for multivariate Probit model

Dependent Variables

Independent Type2 Type3 Typed Type5 Type6
Variables Coef t-stat Coef t-stat Coef  t-stat Coef t-stat  Coef  t-stat
constant 0.927 0.10 -1.476 -5.01 -1.703 -4.39 -1.226 -462 -0.526 -3.38
V2 -0.016 -1.85 0.006 1.73

D2 -0.201 -1.54 0.075 1.57

Q2 0.004 1.62

Jour -0.24  -1.06 -0.363 -1.70

Tjour 0.387 1.45

profil 0.240 0.98 -0.633 -2.42 -0529 -2.05
tplan -0.645 -3.89

Number of observations : 235
p-value for overall model significance (x*test) : 0.0328

Table 7 Correlation coefficients for multivariate Probit model

Correlation Coefficients
coefficient t-stat

R(type2,type3) -0.278 -2.24
R(type2,typed) -0.327 -2.02
R(type3,typed4) -0.335 -1.80
R(type2,type5) -0.288 -5.59
R(type3,type5) -0.224 -1.52
R(type4,type5) -0.278 -2.86
R(type2,type6) -0.426 -2.60
R(type3,type6) -0.876 -0.88
R(type4,type6) -0.003 -0.03
R(typeb,type6) -0.186 -1.08
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Qualitative results from the Multivariate Probit model application are illustrated in
Figure 7. The fundamental diagram depicts the relationship between traffic volume
(Q) and speed (V) on a given freeway segment; each crash type (whose probability is
traffic-dependent) is related to a particular traffic regime which corresponds to a
specific part of the diagram. The simultaneous analysis by vehicle involvement and
maneuver possibly indicates that aggregation in by-crash-type analyses may lead to
erroneous estimations. Rear-end crashes are more probable under congestion, while
side-swipes are more probable under ‘intermediate’ density traffic regimes. Similar

findings were reported by Golob and Recker (2004).

Figure 7 Crash type distribution
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3.5 Concluding remarks

We assessed the effects of traffic variables (as obtained on a real-time basis) on crash
type while controlling for road geometry and environmental factors. Empirical results
indicated a diverse effect of accident contributing factors to each crash type, along
with interdependencies that would be neglected under a univariate analysis context.
Rear-end crashes involving two vehicles were found to be more probable for
relatively low values of both speed and density, while rear-ends involving more than
two vehicles appear to be more probable under congestion. Two-vehicle sideswipe
accident probability increases with increasing volume, while multi-vehicle sideswipe
crashes are more probable at high speeds, during daytime, and on flat freeway

segments. Overall, multi-vehicle crashes tend to occur under low or very high speeds,
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while road geometry was found to be the single crash type indicator for single-vehicle
accidents. In particular, single-vehicle accidents were found to be more probable on
flat and straight road segments.

Weather and traffic’s standard deviation across lanes were not found to be statistically
significant indicators of crash type. Empirical results seem promising in establishing
real-time crash type predictors. However, we recognise that this analysis suffers from
limitations needing further investigation; first, loop detectors aggregate counts and
occupancies over 6-min intervals. Possible uncertainty in the exact time of the
accident occurrence should also be examined. Further, we did not distinguish in our
analysis among freeway lanes, and only separated traffic regimes in two (peak and
off-peak). Golob and Recker (2004), after performing a similar analysis, provided
important evidence that it is significant (i) to capture variations in speed and flows

separately across lanes and (ii) to more strictly define traffic regimes.

The potential benefits of integrating empirical results in a real-time traffic
management application are numerous. Once a ‘location’ (i.e. a specific set of design,
operational and travel characteristics) is identified as being susceptible to a given
crash type occurrence, it may be flagged with warnings through variable message
signs (VMS). Further, the concept of variable speed limits could be used to intervene
on driver behavior and to reduce speed variation. In addition to real-time monitoring
of safety levels, a safety performance tool can be used in project evaluation and
planning. Safety aspects of costs and benefits can be assessed by comparing the levels
of safety estimated before and after implementation of a treatment (Golob and Recker,
2004). Finally, a procedure that uses real-time data on traffic flow, speed, and
occupancy and the relationship between these variables and crash-type occurrence
could be used to develop congestion mitigation strategies that incorporate safety
(Garber and Subramanyan, 2001).
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empirical Investigation

In this Chapter, we apply a random parameters ordered probit model to explore the
influence of speed and traffic volume on the injury level sustained by vehicle
occupants involved in accidents on the A4-A86 junction in the Paris region. Results
indicate that increased traffic volume has a consistently positive effect on severity,

while speed has a differential effect on severity depending on flow conditions.

*This chapter has been published to Accident Analysis and Prevention 42 (2010) 1606-1620.
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4.1 Introduction

Accident severity investigations are of particular concern to both decision makers and
researchers and the literature has indicated several factors as significantly influencing
crash-injury severity level sustained by road users (Abdel-Aty, 2003; Chimba and
Sando, 2009; Gray et al., 2008; Kockelman and Kweon, 2002; Lapparent, 2008; Lee
and Abdel-Aty, 2005; O’Donnell and Connor, 1996; Pai and Saleh, 2008; Quddus et
al., 2002; Xie et al., 2009; Zajac and Ivan, 2002). Among the most important factors
are driver age, collision type, weather and lighting conditions that have been
extensively explored as to their effect on severity.

Results from previous research indicate that low speeds and high traffic volumes
decrease accident severity, while high speeds and low traffic volume produce the
opposite effect (see for example Martin, 2002); a result largely based on mean annual
traffic values. However, few studies have investigated the association between traffic
accident severity and actual traffic characteristics (traffic volume, speed) collected
real-time during the time of the accident’s occurrence (Golob and Recker, 2003;

Quddus et al., 2009).

We extend research on the factors influencing the level of accident injury severity by
including traffic data from the moment of the accident. Thus, the purpose of this
research effort is to elaborate a model that associates traffic characteristics to the
severity outcome of freeway accidents. Real-time traffic data are nowadays available
for most freeway networks. Their integration to road safety analyses offers the
possibility to associate accident attributes to the actual traffic flow characteristics at
the time of the accident. Based on the analysis of historical data, typical traffic
patterns recorded prior to accidents may then act as real-time identifiers (Abdel-Aty
and Pande, 2007). Such research is useful for researchers and practitioners in
estimating accident and congestion external costs and in transportation planning.
Further, it may enable practitioners and authorities to locate hazardous — on severity
grounds — spots on the road networks by utilizing real-time data widely available.
Finally, it may provide additional insight regarding the factors that may contribute to
higher probabilities context for severe injuries (given that an accident occurs). The

model controls for various driver, vehicle, and crash characteristics along with real-
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time traffic and weather, by exploring possible associations between these factors and
the severity outcome sustained by individuals involved in accidents.

4.2 Background

There has been extensive literature documenting links between accident
characteristics and the severity levels sustained by road users; studies have
investigated the effect of road and vehicle characteristics, driver attributes, weather
etc. (Table 8 provides a summary of previous research efforts in the injury severity

area).

In all modeling efforts, the dependent variable is severity, usually depicted on a 3- or

4-point ordinal scale (e.g. no injury, severe injury, fatal). The unit of analysis varies

across studies and depends on the objective; units include, for example:

e non-motorized road users (pedestrians and/or bicyclists) (Ballesteros et al., 2004;
Kim et al., 2008; Lee and Abdel-Aty, 2005; Sze and Wong, 2007),

e crashes (Chang and Wang, 2006; Eluru et al., 2008; Gray et al., 2008; Wang and
Abdel-Aty, 2008; Yamamoto and Shankar, 2004),

e motorcycle occupants (Pai and Saleh, 2008; Pai, 2009),

e drivers (Abdel-Aty et al., 1998; Abdel-Aty, 2003; Conroy et al., 2008; Kockelman
and Kweon, 2002) or

e any car occupant (Lapparent, 2008).

The independent variables considered usually include driver, vehicle, crash and road
characteristics. Driver (or rider) characteristics most commonly refer to driver age,
gender, alcohol consumption, and safety equipment usage (Boufous et al., 2008; Helai
et al., 2008; Kim et al., 2008; Lapparent, 2008; Pai, 2009; Sze and Wong, 2007; Wang
and Abdel-Aty, 2008; Yamamoto and Shankar, 2004). Vehicle characteristics refer to
the type of vehicles (car, heavy vehicle, etc.) and the number of vehicles involved in
the crash (Ballesteros et al., 2004; Helai et al., 2008; Kim et al., 2008; Pai, 2009).
Road factors include curvature, number of lanes, type of road (e.g. rural and urban),
surface conditions, junction control and so on (Al-Ghamdi, 2002; Milton et al., 2008;

Savolainen and Mannering, 2007; Shankar et al., 1996). Crash characteristics are
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related to the exact circumstances under which the accident occurred (vehicle
maneuvering before collision, crash’s main cause and so on) (Chang and Wang, 2006;
Gray et al., 2008; Helai et al., 2008; Wang and Abdel-Aty, 2008; Yamamoto and
Shankar, 2004). Other variables such as speed limit, day of the week, time of day,
AADT, weather and traffic conditions have also been examined regarding their
influence on accident severity (Abdel-Aty, 2003; Conroy et al., 2008; Gray et al.,
2008; Helai et al., 2008; Kim et al., 2008; Milton et al., 2008; Pai and Saleh, 2008;
Pai, 2009; Savolainen and Mannering, 2007; Sze and Wong, 2007; Yamamoto and
Shankar, 2004; Zajac and lvan, 2002).

Findings from previous studies are, to a large extent, consistent. Factors most

commonly found to increase severity are:

e increased driver or rider age (Sze and Wong, 2007; Xie et al., 2009)

e driving while intoxicated (Kim et al., 2008; Savolainen and Mannering, 2007;
Zajac and lvan, 2002).

¢ head-on-collisions (Eluru et al., 2008; Savolainen and Mannering, 2007),

e crashes with heavy vehicles and motorcycles (Lee and Abdel-Aty, 2005;
Yamamoto and Shankar, 2004),

e poor lighting conditions (Chimba and Sando, 2009; Gray et al., 2008; Helai et al.,
2008),

e vertical and horizontal curvature (Savolainen and Mannering, 2007; Xie et al.,
2009),

e rural versus urban areas (Lapparent, 2008), and

e speeding (Boufous et al., 2008; Lee and Abdel-Aty, 2005; Pai and Saleh 2008)

In contrast to the above, the use of restraint systems (helmet or seat belt) appears to

significantly decrease the level of injuries sustained by road users (Wang and Abdel-

Aty, 2008; Yamamoto and Shankar, 2004).

However, research reports conflicting findings on some occasions, particularly when
it comes to factors such as gender, intersections type, road surface conditions and
seating position. For example, O’Donnell and Connor (1996) and Sze and Wong
(2007) concluded that female drivers are associated with increased severity, while
Shankar et al. (1996) and Yamamoto and Shankar (2004) report the opposite. Milton
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et al. (2008) and Xie et al. (2009) found that interchanges and junctions decrease
injury levels, Lapparent (2008) and Al-Ghamdi (2002) both found that intersection
presence decreases severity, while Helai et al. (2008) and Boufous et al. (2008) report
that severity increases in more complex intersection arrangements (such as Y and T).
Yamamoto and Shankar (2004) observed that icy pavements are associated with lower
severities in urban areas and Shankar et al. (1996) argued that in single vehicle
crashes wet pavements increase severity, while icy or snow-covered pavements tend
to decrease it. Xie et al. (2009) found that both icy and wet pavements decrease
accident severity, while in Quddus et al. (2002), wet surface was found to decrease
the severity outcome of motorcycle accidents. Seating on the left-rear position is more
dangerous according to O’Donnell and Connor (1996). Lapparent (2008) found that

all car seating positions are safer than the driver’s seat.

Interestingly, in most studies, fine weather was found to increase severity (Eluru et
al., 2008; Gray et al., 2008; Kim et al., 2008; Pai and Saleh, 2008; Pai, 2009; Quddus
et al.,, 2009; Yamamoto and Shankar, 2004; Xie et al., 2009), while other weather
conditions (rain and snow) tend to decrease it; still, various authors claim the opposite
(Abdel-Aty, 2003; Lee and Abdel-Aty, 2005), while some conclude that weather has
no significant effect on severity (Abdel-Aty, 2003). Drivers seem to rather adjust their
behavior to inclement weather by decreasing the speed which has a positive
(decreased) effect on injury-severity (Quddus et al., 2009; Shankar et al., 1996).
Further, adverse weather may alarm drivers who tend to be more vigilant and become
more conservative in their driving behavior as argued in the offset hypothesis, which
predicts that users adapt to innovations that improve safety by becoming less vigilant
about safety. For example, Winston et al. (2006) tested the offset hypothesis using
disaggregate data to analyze the effects of airbags and antilock brakes on automobile
safety and found that safety-conscious drivers are more likely than other drivers to
acquire airbags and antilock brakes; however, these safety devices were not found to
have a significant effect on collisions or injuries, suggesting drivers trade off

enhanced safety for speedier trips.

Average traffic characteristics such as truck percentage and traffic volume have been
used as explanatory variables in a number of studies (Abdel-Aty et al., 1998; Milton
et al., 2008; Wang and Abdel-Aty, 2008; Zajac and Ivan, 2002); these studies were
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limited to average values of the parameters such as the annual truck percentage or the
Average Annual Daily Traffic (AADT). Traffic data at the moment of the accident
have seldom been utilized to explore crash severity (Quddus et al., 2009).

For example, in Abdel-Aty et al. (1998), the odds for severe crashes for Average
Daily Traffic>20,000 were found much higher for young and middle aged drivers and
much smaller for very old drivers (over 75), while the middle age group (25-64 years
old) was found to be the ‘safest’ in terms of injury severity. In Zajac and Ivan (2002),
AADT was not found to significantly affect injury severity in pedestrian crashes.
Wang and Abdel-Aty (2008) examined left-turn crash-injury severity at signalized
intersections and concluded that neither the total approach traffic volume nor the
entire intersection volume, but rather specific vehicle trajectories, affected crash
injury significantly. In Milton et al. (2008), findings were not consistent across
segments, suggesting that the effect of traffic (AADT) on injury-severity outcomes
cannot be assumed uniform across geographic locations. Quddus et al. (2009) used
real-time traffic data from the time of the accident; a 30-minutes time-lag was applied
to avoid the traffic impact of the crash itself and traffic flow was found to be
important in explaining the severity of each road accident, with traffic increases
leading to crash severity decreases. In general, despite the large number of research
efforts on the topic of accident severity, papers investigating the impact of traffic

characteristics on accident severity remain few.
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Table 8 Summary of injury severity modeling studies

Study Injury severity Data source Method of Unit of analysis  Independent Summary of findings
scale analysis variables
employed considered
Chimba (1) Property 2003 Florida (USA) (1) ANN Driver - Driver Factors increasing severity
and Sando  damage only high crash location backpropagatio characteristics® e No daylight
(2009) (2) Incapacitating  database n -Speed limit e Cloudy sky
and fatal (2) ordered -General infob e Curved sections
probit model -Weather o Higher speed limit
-Road e Alcohol use
geometry® e Turning movement
Other finding
o ANN performs better than OP
Pai (2009) (1) Slight injury 1991-2004 UK two- or Binary logistic ~ Motorcyclist -Driver Factors increasing severity
(2) Serious injury  more-vehicles crashes, model characteristics® e Rider being over 60
(3) Fatal injury occurring at T- -Motorcyclist e Engine size over 125cc
Jlggs(,:ttlc?nnes,nlwr:)\tlgiz:/;/?:?eat Cfﬁ?{?ﬁgﬁ'ﬁl?a e Heavy goods vehicle involvement
- ° > i 1
and resulting to at least characteristics” Eiznze\,}\l,;zltise?vowed’
one siontiniry éri\rrzscr'leristicse * an built-up rogds ;
“General info® . ngh.t—of—way—wolatlon
Weather Other finding
¢ Injuries were greatest when a travelling straight motorcycle
on the main road crashed into a right-turn car from a minor
road, particularly at stop-/yield-controlled junctions
Qudduset (1) Slight injury 2003-2006 UK M25 (1) Ordered Crash leadingto - General info®  Factors increasing severity
al. (2009) (2) Serious injury  motorway crash and logit at least one -Traffic o Fine weather versus rain
(3) Fatal injury traffic dataset 2 slight injury characteristics' e Weekdays and darkness
Heterogeneous -Congestion Factors not influencing severity uniformly or at all
<(:h%ice)model —Wea:jther e Congestion
HCM -Roa o Traffic flow
(3) Generalized geometry® o Snow

ordered logit
(4) Partial
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proportional

odds
Xie et al. (1) No injury 2003 US national crash (1) Ordered Driver -Driver Factors increasing severity
(2009) (2) Possible injury  database (automobiles, probit model characteristics® e The age of the driver and of the vehicle, drunk driving,
(3) Non- SUVs, vans) (2) Bayesian - Vehicle curvy road alignments, inadequate light conditions, initial
incapacitated ordered probit characteristics impact points on the left side area, rollover and fire
injury model -General info® Factors decreasing severity
(4) Capacitated -Road o Crashes related to junctions or interchanges, icy or wet
injury geometry* surfaces and adverse weather
(5) Fatal injury - Crash Other findings
characteristics® o For large sample data, the two models produce similar
-Weather results
e For small sample data and proper prior setting, the BOP
overperforms the OP
Boufous et  Survival risk ratio  2000-2001 New South Linear Driver -driver Factors increasing severity
al. (2008) (the number of Wales (Australia) crash  regression characteristics® e Complex intersections (Y or T junctions and roundabouts)
patients with a accidents that resulted - vehicle e High speed limit
certain injury in the hospitalization of characteristics® o Nog'][ WeF;ring seat belt
Co‘tjz_WQQ htive drivers aged over 50 'ﬁraSht ot Driver’s errors (e.g. disobeying traffic control)
not died in the characteristics ;
hospital and the -general info” : ;ﬂ?:?;?gas
total number of -road geometry®
patients diagnosed -area type
with that code)
Conroy et Injury severity 1997-2006 US head-on  logistic Driver -driver Factors increasing severity
al. (2008) score (0-75) frontal crashes resulting  regression characteristics® e Drivers with intrusion into their position

in at least one serious
injury and in which car
occupants used safety

- crash
characteristics®
-vehicle

¢ Driving a passenger vehicle
Factor decreasing severity
e Drivers in wide impacts versus narrow impacts
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belts and vehicles’ age damage Other finding
was under 8 years e Drivers in wide frontal impacts were almost four times
more likely to have a head injury
Eluruetal. (1) No injury or 2004 NHTSA (US) (1) Ordered- Crash involving - Driver Factors increasing severity
(2008) possible injury crashes involving non response logit non motorists characteristics® e Being pedestrian versus being cyclist
(2) Non- motorists (pedestrians model - Vehicle ¢ Higher speed limits
incpacitating and cyclists) (2) Mixed characteristics® o Being male and older
injury generalized - Crash e Crashes with vehicles other than passenger cars
(3) Incapacitating ordered- characteristics® o Frontal impact crash
inury response logit - Road e Evening and late night periods
(4) Fatal injury geometry” Factors decreasing severity
- Non-mqtorlsg o Snow
characteristics o Signalized intersections
- Weather
Grayetal. (1) Slightinjury Subset of 1991-2003 Ordered probit ~ Crash - Young male Factors increasing severity
(2008) (2) Serious injury  accidents in Great model driver e Driving in darkness
(3) Fatal injury Britain involving male characteristics® o Trips in early morning and towards the end of the week
drivers aged 17-25 - Crash e Driving on main roads
characterigtics: o Overtaking maneuvers
- General info e Weather other than ‘fine no high winds’
- Road e Speed limit of 60mph
g(\e/c\)/methryc ¢ Passing the site of a previous accident versus other
- Weather carriageway hazards
Helaietal. (1) Low 2003-2005 Singapore Hierarchical Driver-vehicle - Driver Factors increasing severity
(2008) individual crashes at signalized binomial unit characteristics® e Night versus daytime
severity intersections logistic model - Vehicle e Y or T intersections
(2) High characteristics’ ¢ Right-most lane
individual -Crash e Bad street lighting
severity characterlgtlcs: o Red light camera presence
- General info™ {5\ heel vehicle
ég)ﬁgtrf e Being aged under 25 or over 65
- Weather
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Kim et al. (1) Possibe or no-  1997-2000 North Heteroskedastic  Pedestrian - Driver Factors increasing severity
(2008) injury Carolina (US) logit model characteristics® e Intoxicated driver, darkness with or without streetlights,
(2) Non- pedestrian-vehicle - Vehicle greater pedestrian age, sport utility vehicle, truck, freeway,
incapacitating crashes involving one characteristics® state-route, and speeding
injury pedestrian and one - Crash Factors decreasing severity
() Incapacitating  vehicle characteristics® e Intoxicated driver, PM peak (15:00-17:59), traffic signal
injury - General info” control, and inclement weather
(4) Fatality - Road Other finding
geometrf e Pedestrian’s age was a significant contributor to
- Pedestrian heteroskedasticity by increasing the variance of the error
characteristics’ terms across pedestrians with age, but the gender did not
- Area type affect the variation
- Weather
Lapparent (1) No injury 2003 crashes at France Bivariate Car user - Car user Factors increasing severity
(2008) (2) Light injury ordered probit characteristics® e Increasing age
(3) Severe injury model - Crash e Crash at intersection for drivers
(4) Fatal injury characteri§tics: e Crash on secondary roads and being front-seat passenger
- General info e Crash out of the city
- Road Factors decreasing severity
geometry® e Crash at intersections and being front- or rear-seat
passenger
¢ Crash on highways and being rear-seat passenger
Other finding
o Safety belt use reduces injury level whatever the position of
the car occupant
Milton et (1) Property - Washington State Mixed (random  The most - ADT" Factors decreasing severity
al. (2008) damage only highway segments parameters) severely injured - Road e Grade brakes, interchanges and horizontal curves
(2) Possible injury  accident database logit model person geometry® Factors not influencing severity uniformly
(3) Injury - Western Regional - Traffic e Increasing truck ADT
(evident, Climate Centre weather characteristics’ o ADT
disabling or database - Weather e Average annual snowfall
fatality) - WSDOT traffic data e Truck %
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Pai and (1) No injury 1991-2001 GB Ordered probit ~ Motorcycle - Motorcyclist Factors increasing severity
Saleh (2) Slight injury accidents at T-junctions ~ model occupant characteristics® e Rider being male or over 60
(2008) (3) Serious injury  involving motorcycles - Motorcycle e Increasing engine size
or fatality and resulting to at least characteristics’ ¢ Crash partner other than motorcycle
one injury -Crash e Darkness, fine weather, spring/summer, midnight/early
characteristics® morning, and weekend riding
- General info® speeding
- Road Other finding
geometry” e The effects of some variables on injury levels vary across
- Weather different crash types
Wangand (1) No injury 2000-2005 vehicular Partial Accident - Driver Factors increasing severity
Abdel-Aty  (2) Possible injury  left-turn crashes at 4- proportional characteristics® e Crashes involving motorcycle, with drivers ejected from
(2008) (3) Non- legged signalized odds model - Vehicle vehicle, front impact, conflicting with near-side
incapacitating intersections in Central ~ with logit and characteristics® approaching vehicle, and driver being intoxicated
injury Florida (US) probit functions - Crash Factors decreasing severity
(4) Incapacitating characteristics® e Driver being young or using safety equipment, crashes
injury - General info” occurring at night at intersections with street lights
(5) Fatality - Road Factor not influencing severity
geometry® o AADT
- AADT
Savolainen (1) No injury or 2003-2005 Indiana (US)  Nested logit Motorcycle - Driver and Factors increasing severity in single-vehicle crashes
and possible injury motorcycle accidents model operator rider e Increasing age, speeding, April and July, darkness,
Mannering  (2) Non- Standard characteristics® collisions with roadside object, being female, and alcohol
(2007) incapacitating - Vehicle involvement
injury Multinomial characteristics'  Factors decreasing severity in single-vehicle crashes
(3) Incapacitating logit model - Crash e Helmet use, motorcycle less than 5 years, and wet
injury characteristics® pavement and intersection crashes
(4) Fatality - General info®
- Road
geometry®
- Speed
Sze and (1) Slightly 1991-2004 Hong Kong  Logistic Pedestrian - General info®  Factors increasing severity
Wong injured police crash database regression - Road e Age above 65, head injury, a crash at a crossing or on a
(2007) (2) Killed or (crashes involving geometry* road section with a speed limit above 50km/h or at a

seriously injured

pedestrians)

- Non-motorist

signalized intersection
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characteristics®

Factors decreasing severity

- Speed limit ¢ Being male, aged below 15, being on an overcrowded or
- Congestion obstructed path and being involved in a daytime crash on a
road section with severe or moderate congestion
Changand (1) Noinjury 2001 accidents in the Classification Crash - Driver Factors increasing severity
Wang (2) Injury Taipei area (Taiwan) and regression characteristics® e Collisions with pedestrians, motorcycle and bicycle riders
(2006) (3) Fatality tree model - Vehicle Other finding
characteristics’  « Collision type, contributing circumstance and driver/vehicle
- Crash action are critical in determining severity
characteristics®
- General info®
- Road
geometry”
- Speed limit
- Weather
Lee and (1) No injury 1999-2002 Florida (US)  Ordered probit  pedestrian - Driver Factors increasing severity
Abdel-Aty  (2) Possible injury  pedestrian accidents at model characteristics® e Pedestrian being old, female or intoxicated
(2005) (3) Non- intersections - Vehicle e High vehicle speed

incpacitating
injury

(4) Incapacitating

characteristics®
- General info®
- Road

o Adverse weather and dark lighting
¢ Vans, buses and trucks versus passenger cars
e Rural versus urban areas

injury geometr){c e Intersections without traffic control
(5) Fatal injury - Pedestrian
characteristics®
- Area type
- Weather
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- General info®

€-pass use

Ballesteros (1) Non fatal (1) 1995-1999 Logistic Pedestrian - Vehicle Factor increasing severity
et al. (2) Fatal Maryland (US) crashes  regression characteristics" e SUVs and Pus compared to conventional cars
(2004) (1) 1ISS<16 involving at least one - Speed limit Factor not influencing severity
(2) 1SS>=16 pedestrian having been ¢ Vans compared to conventional cars
treated or dead and
either a conventional
car, a sports utility
vehicle, a pickup truck
or avan
(2) Trauma registries by
Emergency Medical
Services
(3) 1995-1999 fatalities
from medical examiner
Yamamoto (1) Property 1993-1996 Washington  Bivariate Accident - Driver Factors increasing driver’s injury severity in urban areas
and damage only State (US) single ordered probit characteristics® e Off-roadway, collisions with trees, driver age, speeding,
Shankar (2) Possible injury vehicle collisions with model - Vehicle falling asleep, and being sober
(2004) (3) Evident injury  fixed objects characteristics’  Factors decreasing driver’s injury severity in urban areas
(4) Fatality - Crash e Intersection, rain, icy pavement, restraint systems use,
characteristics® vehicle age, driving a motorcycle or truck, being male,
- General info™ collisions with sign posts or concrete barrier
- Road Factors increasing passenger’s injury severity in urban areas
geometry® e Driver’s age, driver being intoxicated, or falling asleep,
- Number of increasing number of passengers, the driver being male
passengers Factors decreasing passenger’s injury severity in urban areas
- Speed e Intersection, rain, restraint systems use, being a truck
- Weather passenger, collisions with sign posts or bridge face
Abdel-Aty (1) Property 1999-2000 Central (1) Ordered Driver - Driver Factors increasing severity
(2003) damage only Florida (US) crashes probit model characteristics® e Being over 65
(2) Possible/ near toll plaza (2) Multinomial - Vehicle e Being female
evident injury logit model characteristics® o Impact on the side
(3) Severef/fatal (3) Nested logit - Crash o No seatbelt use
injury model characteristics®
[ ]

- Road

Number of impacts
o Adverse weather
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geometry” ¢ Not driving a truck
- Area type Other findings
- Toll ~ e OPM performs than MLM
characteristics' o The NLM performs slightly better than the OPM but is
- Weather more difficult to estimate
Al-Ghamdi (1) Non-fatal A subset 0f 1997-1998  Logistic Accident - Driver Factors increasing severity
(2002) (2) Fatal accidents on urban regression characteristics® e Non-intersection versus intersection
roads in Riyadh (S. - Vehicle e Wrong-way versus all other causes (violations)
Arabia) leading to at characteristics’  Other finding
least one slight injury - Crash o Among all independent variables, only the location and
characteristics® cause of the accident were found to significantly affect
- General infob Severity
- Road
geometry”
Kockelman (1) No injury 1998 US dataset Ordered probit ~ Driver in - Driver Factor increasing severity
and Kweon  (2) Not severe including property model 1. single- characteristics® e Under single-vehicle crash conditions, the use of pickups
(2002) injury damages, injury crashes vehicle crash - Vehicle and sport utility versus passenger cars
(3) Severe injury  and fatal crashes 2. two-vehicle characteristics  Factor decreasing severity
(4) Death crash - Crash e In two-vehicle crashes, driving a pickups or sport utility
3: all crashes characteristics® vehicle versus being occupant of other collision partners
- General info®
Quddus et (1) Slight injury 1992-2000 Singapore Ordered probit ~ The most - Motorcyclist Factors increasing severity
al. (2002) (2) Serious injury  accidents involving model severely injured  characteristics’ e The motorcyclist having non-Singaporean nationality

(3) Fatal injury

motorcycles

person

- Motorcycle
characteristics®
- Crash
characteristics®
- General info®
- Road

e Motorcycle increased engine capacity

e Motorcycle headlight not turned on during daytime
e Collisions with pedestrians and fixed objects

e Having a pillion passenger

¢ Riding during early morning hours

e The motorcyclist being at fault

geometry” Factor decreasing severity
o Wet surface
Factor not influencing severity
¢ Motorcyclist age
Incident Occurrence and Response on Urban Freeways 112



Chapter 4

Vehicle Occupant Injury Severity on Highways

Zajac and (1) No injury 1989-1998 rural Ordered probit ~ Crash - Driver Factors increasing severity
Ivan (2002) (2) Probable Connecticut (US) model characteristics® e Driver alcohol consumption
injury, but not highway accidents - Vehicle e Pedestrian age 65years and older
visible involving pedestrians characteristics’ ¢ Pedestrian alcohol consumption
(3) Not disabling  crossing the road at - General info ¢ Village, downtown fringe and low-density residential areas
injury, but visible locations with no traffic -ADT _ versus compact residential, low-density commercial and
(4) Disabling control - Non-motorist medium density commercial areas
injury characteristics®  Factor not influencing severity
(5) Fatality - Speed limit o On-street parking
- Area type
- Weather
Abdel-Aty (1) No injury 1994-1995 Florida crash  Log-linear Driversbyage - Driver Factor increasing fatality
et al. (2) Injury and ADT files model with 3 group characteristics® e Being very old (80+) versus being old (65-79)
(1998) (3) Fatal variables and - ADT" Factor decreasing severity
two-way e Belonging to middle age group (25-64)
interactions
O’Donnell (1) Non-treated 1991 NSW (Australia) (1) Ordered Motor-vehicle - Vehicle Factors increasing severity
and Connor  injury motor vehicle accident logit model occupant characteristics’ e Seating on the left-rear position
(1996) (2) Treated injury  victims’ file (2) Ordered - Crash e Being female
(3) Admitted probit model characteristics® Being involved in head-on collisions
injury - Occupant’s  Other finding
(4) Death characteristics’ ¢ The effects of increasing the age of casualty from 33 to 50
are greater than effects of a speed increase from 42 to 100
km/h
Shankar et (1) Property 1988-1993 accidentson  Nested logit Accident - Driver Factors increasing severity in single-vehicle crashes
al. (1996) damage only rural freeways in model characteristics® o Wet-pavement rear-end collisions, curves’ length number,
(2) Possible injury  Washington State (US) - Vehicle all drivers being male, vehicle-mass difference indicator
(3) Evident injury characteristics’  Factors decreasing severity in single-vehicle crashes
(4) Disabling - Crash e Icy or snow-covered pavement, restraint system use

injury or fatality

characteristics®
- General info®
- Road
geometry®

- Weather
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%Under ‘driver (rider/car user) characteristics’ category, several different variables related to the drivers (riders/car users) —implicated in the
accidents treated- are considered in each study. E.g. alcohol consumption and sex.

®Under ‘general info’ category, several different variables related to the crash are considered. E.g. daylight and time.

‘Under ‘road geometry’ category, several different variables related to the geometry of the road segment —on which the accident took place are
considered in each study. E.g. curvature and intersection.

dUnder ‘vehicle characteristics’ category, several different variables related to the vehicles —implicated in the accidents treated- are considered in
each study. E.g. age and type.

®Under crash characteristics’ category, several different variables related to the crash incident are considered in each study. E.g. collision type or
speed.

"Under “traffic characteristics’ category, several different variables related to traffic are considered in each study. E.g. traffic flow and truck %.
%Under ‘non motorist characteristics> category, several different variables related to pedestrians and cyclists —implicated in the accidents treated-
are considered in each study. E.g. age and sex.

"Average daily traffic volume.

'Under “toll characteristics® category, several different variables related to toll plazas and road users are considered. E.g. e-pass user or not and
plaza structure.

JUnder ‘occupant’s characteristics’ category, several different variables related to each occupant —of the vehicles involved in crashes- are

considered in each study. E.g. position in vehicle and age.
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4.3 Data and Methodology

4.3.1 The data

To explore the factors that determine occupant injury severity, the highway A4-A86
section from a dense urban area a few miles to the east of Paris was selected.
Accident, weather, and traffic data were extracted from the same databases as in the
crash type analysis (3.3.1 The Data).

The unit of the analysis adopted was any vehicle occupant involved in an accident
(rider, driver or passenger) resulting in at least one person being slightly injured. The
severity levels considered were:

® ‘no injury’,

e ‘slight injury’,

e ‘severe or fatal injury’.

Each observation in the dataset is a record of the level of injury sustained by each
vehicle occupant involved in the accident and by various external factors. By the term
‘vehicle occupant’, we refer to either drivers or passengers. Eventually, a single
accident corresponds to various observations; whose number equals the number of all
persons involved in the accident. Table 9 presents a definition for each variable

together with its type, some summary statistics, and a short description.

Table 9 Explanatory variables in severity analysis

Variable Type Summary Description
Statistics'
General accident information
Road direction
(sens) Binary F(1)=47.1% =1from Paris; =2 to Paris
Type of day
(tday) Binary F(1)=63% =1 if weekday; =2 if weekend
Time of the day
(heure) Continuous M=11.7,SD=7.9 time of accident (24 h clock)
Lighting conditions
(daylight) Dummy F(0)=40.4% =0 if daylight; =1 otherwise
(crepus) Dummy F(0)=12.7% =0 if dawn or dusk; =1 otherwise
(nsansep) Dummy F(0)=1.5% =0 if nighttime with no public lighting; =1 otherwise
(nepallum) Dummy F(0)=45.4% =0 if nighttime with public lighting; =1 otherwise
Road surface condition
(normal) Dummy F(0)=63.0% =0 if dry; =1 otherwise
(mouille) Dummy F(0)=35.4% =0 if wet; =1 otherwise
Pavement condition
(bon) Dummy F(0)=99.3% =0 if good or comfortable; =1 otherwise
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Road curvature

(ligne) Dummy F(0)=60.0% =0 if straight line; =1 otherwise
(flat) Dummy F(0)=65.2% =0 if flat; =1 otherwise
Weather conditions
(normale) Dummy F(0)=77.2% =0 if weather is fine or cloudy; =1 otherwise
(pluie) Dummy F(0)=22.5% =0 if raining; =1 otherwise
(neige) Dummy F(0)=0% =0 if snowing; =1 otherwise
(brouilla) Dummy F(0)=0.3% =0 if weather is foggy; =1 otherwise

Road user attributes
Socio-professional status

(c_chom) Dummy F(0)=6.4% =0 if unemployed; =1 otherwise
(c_prof) Dummy F(0)=2.8% =0 if professional driver; =1 otherwise
(retrait) Dummy F(0)=1.9% =0 if retired; =1 otherwise
Sex
(masculine) Dummy F(0)=93.9% =0 if male; =1 otherwise
Age
(age) Continuous M=34.3,SD=11.6  Road user’s age in years
Travel purpose
(travail) Dummy F(0)=32.5% =0 if work or university; =1 otherwise
(prof) Dummy F(0)=17.8% =0 if professional use; =1 otherwise
Restraint system use
(utilse2) Binary F(0)=83.9% =1ifyes; =2 no
Alcohol consumption
(alcool) Binary F(1)=95.4% =1if legal; =2 if illegal
Road user
(conduct) Dummy F(0)=78.9% =0 if driver; =1 otherwise
Driver’s experience
(anciperm) Continuous M=9.4,SD=9.7 Years of driving license holding
(ancienwl) Continuous M=8.8,SD=9.2 =anciperm*normale
Vehicle’s characteristics
Vehicle type
(moto) Dummy F(0)=20.2% =0 if 2wheels; =1 otherwise
(VL) Dummy F(0)=71.9% =0 if car; =1 otherwise
(HV) Dummy F(0)=4.4% =0 if heavy vehicle; =1 otherwise
Vehicle age
(ancient) Continuous M=6.0,SD=4.3 Vehicle’s age

Traffic characteristics
Traffic volume

(Q6minv) Continuous M=104.2,SD=41.  Average traffic volume per lane and over 6 minutes (in
3 vehicles)
(Q1) Dummy F(0)=67.9% =0 if Q6minv<112; =1 otherwise
(Q2) Dummy F(0)=32.1% =0 if Q6minv>112; =1 otherwise
Speed
(Vmoy) Continuous M=82.6,SD=31.4  Average speed for all lanes and over 6 minutes (in km/h)
(VQL) Continuous M=75.7,SD=31.1 =Vmoy*Q1 (in km/h)
(VQ2) Continuous M=85.7,SD=31.1 =Vmoy*Q2 (in km/h)

LF: frequency
M: average value
SD: Standard Deviation

Almost all independent variables are defined as extracted from the data bases used,
with the exception of ‘ancienw1’, ‘Q1°, ‘Q2’, ‘VQI’, and ‘VQ2’. ‘Ancienw1’ equals
the years of driving license holding under weather conditions other than normal. This
variable was defined to explore the combined effect of adverse weather and driving

experience. The mean value and the standard deviation of ‘ancienw1’ were estimated
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after omitting all zero values (77.2% of the observations). ‘Q1’° and ‘Q2’ were defined
to separate traffic flow in two regimes; that is respectively over or under 112 vehicles
per lane in 6-minutes time. The 112 value resulted after performing various trials to
significantly separate the two regimes. ‘VQ1’ and ‘VQ2’ are intended to reflect the
differential effect of speed on severity under different traffic flow regimes. It has to be
noted that —as in the case of ‘ancienw1’- the descriptive statistics computations (for

both VQ1 and VQ2) were made after discarding of all zero values.

4.3.2 Methodology

Ordered-response models recognize the indexed nature of dependent variables and

assume the existence of an underlying continuous latent variable — related to a single
index of explanatory variables- and an error term (Greene, 2003). In an ordered probit
model the random error associated with this continuous variable is assumed to follow
a normal distribution. Because the injury severity outcome of traffic accidents is
ordered (0 for no injury, 1 for slight injuries, and 2 for severe injury/fatality), ordered
probit models have been extensively used to model the marginal probability effects of
several contributory factors on severity (Abdel-Aty, 2003; Gray et al., 2008;
Kockelman and Kweon, 2002; Lee and Abdel-Aty, 2005; O’Donnell and Connor,
1996; Pai and Saleh, 2008; Quddus et al., 2002; Xie et al., 2009; Zajac and Ivan,
2002). Markedly, all such models are multinomial choice models (polytomous) as

they provide more than two available possibilities.

The normality assumption made by the ordered probit models is not restrictive, since
‘shifting’ the thresholds would alter the probabilities of observing each severity
outcome (Washington et al., 2003); further, it allows conditional heteroskedasticity to
be captured more easily than with other specifications. An additional attractive
property of the ordered probit model —versus other models of discreteness- that makes
it appropriate for exploring severity is that the differences between the ordinal
categories of the dependent variable (no injury, slight injury, and fatality) are not

assumed to be equal (McKelvey and Zavoina, 1975).
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The severity function determining the severity level for each individual (in) can be
defined as follows (Greene, 2003):

Y*in=p Xin+ein (Equation 4.1)

where:

y*in denotes the latent injury risk propensity for each individual involved in a road
accident, X, is a vector of the independent variables considered, £ is the vector of
estimable coefficients, and &, is a random error term assumed to follow the standard

normal distribution across individuals.

It is reasonable to assume that unobserved values of injury yi,* correspond to
observed values of injury yi, as follows (Greene, 2003):

0 if ~oo<yin*<uy (no injury)
Yin= 1 if a<yin*<uy (slight injury)
2 If p<yin*<+oo (severe or fatal injury)

Thresholds s, 12 (1< u2) are constant and to be estimated along with the .

Then, the predicted probability of the injury level I (I = 0,1,2) for given X, is given by
(Greene, 2003):

B(y, = 0|X.,) = F(#;_X:5)

ﬁ{}’m = 1|Xiﬁ:] = F(F?_Xmﬁ}_ F(.ﬁ?xmﬁj .
(Equation 4.2)

B(y, =2|X,) =1— F(i;_XB)

However, some assumptions of the standard probit model pose limitations to its
application, including marginal probability effects that (marginal effects) change their
sign exactly once when moving from the smallest to the largest outcome and that
possible heterogeneity among observations is not properly addressed; these

shortcomings are a result to the following properties:
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(i) independent variables coefficients g are fixed across injury levels,
(i) the thresholds £; are fixed across observations,

(iii) the probability function (Equation 4.2) is single —indexed,
(iv) the error term is normally distributed.

Much research in the statistics and econometrics literature has gone into addressing
these shortcomings. To address the fixed coefficients assumption (i), Everitt (1988)
proposed a finite mixture model that accounts for heterogeneity between groups of
individual observations by clustering. In the case of ordered data, it provides a very
flexible way of modeling heterogeneity among groups of individuals (Boes and
Winkelmann, 2006), while also improving on the marginal effect estimation. In the
same case (i), Boes and Winkelmann (2006) proposed a random coefficients model as
a more flexible specification. These models randomize the parameters of interest by
introducing an error term correlated with the unobserved factors in &, (from Equation
4.1). In the case of fixed thresholds (ii), Terza (1985) and Maddala (1983) proposed
the generalized threshold model which overcomes the limitation of fixed thresholds
by allowing them to be dependent on covariates; this generalization also makes the
analysis of marginal effects more flexible, but includes additional parameters to be
estimated. In the case of the probability function (iii), Boes and Winkelmann (2006)
proposed a sequential ordered-response model based on methods used in the literature
on discrete time duration data. The probability function of the dependent variable is
expressed as a sequence of binary choice models where each decision is made for a
specific category | conditional on refusing all smaller categories (this is achieved by
starting from the lowest category and moving stepwise to the highest). Under this
generalization, even though marginal effects estimation is more flexible, it becomes

computationally cumbersome.

In transportation research, some of these variances to the standard ordered response
model have been employed; examples are the works of Anastasopoulos and
Mannering (2009), Eluru et al. (2008) and Milton et al. (2008). In the present thesis,
we use the random coefficient specification where road user is the unit of analysis.
Since each individual has specific characteristics that may influence the severity

outcome differentially, there is a possibility of (additional) heterogeneity in the
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model. However, in the standard ordered probit model the distributional assumption
does not allow for additional heterogeneity between individual realizations; the
random parameter models allow the influences of variables affecting accident injury-
severity proportions to vary across observations. This is achieved by adding an error
term that is correlated with the unobserved factors in ¢j, and translating individual
heterogeneity into parameter heterogeneity as follows (Greene, 2003):

Lin=p +oin (Equation 4.3)

where ¢ is a randomly distributed term.

The severity function now becomes (Greene, 2003):

y*inzﬁ Xintein’ (Equation 44)
where ¢’ is the new error term (Greene, 2003):

&in " =Xin Qin+ €in (Equation 4.5)

4.4 Empirical Results

Choice probabilities in random parameters (mixed) models of discrete choice take the
form of a multidimensional integral over a mixing distribution (Brownstone and
Train, 1999). The integral does not have a closed form and, so, it must be evaluated
numerically. If the integral is approximated with random draws, a large number of
draws is usually needed to assure low simulation error in the estimated parameters
(Train, 2000). Bhat (2001) tested Halton sequences (‘intelligent’ draws) for mixed
logit estimation and found them be vastly superior to random draws. In particular, he
found that the simulation error in the estimated parameters was lower using 100
Halton numbers than 1000 random numbers. The reasons for the improvement are
twofold. First, the Halton numbers are designed to give fairly even coverage over the
domain of the mixing distribution. With more evenly spread draws for each
observation, the simulated probabilities vary less over observations, relative to those

calculated with random draws (Train, 2000).
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The probit specification of Equation 4.5 was estimated using simulation-based
maximum likelihood, as maximum likelihood estimation of the random parameters
ordered probit model is computationally cumbersome (Anastasopoulos and
Mannering, 2009). Halton draws were used to estimate the parameters that maximized
the simulated log-likelihood function and normal, triangular and uniform distributions
were considered for the functional form of the parameter density function. The
statistical software Limpdep (v.8) has been used for all applications.

Model estimation results are shown in Table 10; omitted variables were removed from
the final model on the basis of low statistical significance. All estimated parameters
included in the final model are statistically significant (at a 95% confidence level) and
the signs are plausible as discussed below. The standard deviation of the parameter
distribution was significantly different from O for all but two of the variables included
in the final model; average speed in low traffic conditions and traffic volume was
found to have fixed parameters across the population of road users. The normal
distribution was found to provide the best statistical fit for the density function of the

random parameters.

Table 10 Model estimation results for random and fixed parameters ordered probit models

Variable Fixed parameters model Random parameters model

coefficient t-statistics coefficient t-statistics SD?
Constant 0.426 0.33 2.429 6.48 0.737
‘Tday’ -0.737 -7.71 -1.680 -9.62 1.132
‘daylight’ 0.930 10.17 1.544 10.18 2.277
‘Normal’ -0.508 -5.32 -1.064 -6.39 0.574
‘Flat® 0.629 7.09 0.764 5.59 0.092
‘Ancienw]’ -0.009 -8.69 -0.067 -3.46 0.027
‘Moto’ -0.627 -6.74 -1.805 -10.79 0.110
‘HV’ 0.626 6.74 0.481 1.69 0.030
‘vQr’ 0.017 1.26 0.015 8.59 0.000
‘Q6minv’ -0.001 -0.83 -0.012 -6.96 0.000
Thresholds
ul 0.988 22.36 1.934 13.52
u2 2.011 33.13 4.330 16.65
Number of observations 893
Log-likelihood with constant only LLI -1207.487 -1207.487
Log-likelihood at convergence LL(B) -1045.860 -590.441
p2=(LLI-LL(b))/LL(c) 0.134 0.511

#Standard Deviation of parameter distribution
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Table 10 indicates that the random parameters model significantly overperforms the
fixed parameters model based on both the log-likelihood at convergence (LL(5)) and

the overall fitting (g2 statistic) which improve noticeably when moving from the fixed

to the random parameters specification (Washington et al., 2003). Also, the likelihood
ratio test" yields a value of 910.84, indicating a confidence that the random parameter
model performs ‘better’. This modeling approach allows for the possibility of
heterogeneity being present as it can capture the different effects of the independent
variables on the population of vehicle occupants. We note that, besides statistical fit,
the two modeling specifications yield different qualitative and quantitative results for
the parameter estimates. For example, the traffic related variables (‘Vql’ and
‘Q6min’) were found to be statistically significant only in the random parameters
analysis, which would yield on widely different policy recommendations depending
on the model selected.

The type of the day (working day or weekend/holiday) on which the accident occurred
was found to have an effect on the severity outcome and resulted in a normally
distributed random parameter with a mean of -1.680 and a standard deviation of
1.132. In particular, accidents occurrence on weekdays seems to increase the severity
outcome sustained by most vehicle occupants, but this effect varies across the
population of vehicle occupants. This finding may result from the higher level of alert
of the emergency response systems on weekends. Further, regular drivers that
commute daily and follow the same itinerary may be over-confident, may over-
estimate their abilities and under-estimate potential dangers. However, further
research is needed to validate the above. Similar were the findings in Quddus et al.
(2009), but not in Gray et al. (2008), where more severe crashes were found to occur
on Fridays, Saturdays and Sundays. If we attempt to further interpret the distributional
results, we find that approximately 93.1% of the individuals are more seriously
injured on working days (only 6.9% of the distribution is above 0). The latter

indicates that not all users react uniformly to the type-of-day variable. This conclusion

! The likelihood ratio test statistic is -2[LL(Bfixea)-LL(Brandom)] and is X2 distributed with v the degrees
of freedom (Washington et al., 2003); v is equal to the difference in the numbers of parameters in the
fixed and random parameters models (here v=7).
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would have been neglected under a fixed-parameter analysis, introducing a bias in the
results because of unaccounted heterogeneity.

The lighting conditions were also found to be significant in the injury outcome.
Specifically, daylight conditions were found to exercise a positive and variable
influence on the severity outcome of road users involved in accidents. A random
parameter with a mean of 1.544 and a standard deviation of 2.777 was estimated for
the related indicator variable (O if daylight, 1 otherwise). This suggests that 71% of
the distribution is over zero. It can be assumed that under daylight, most drivers’
vision is better and, eventually, they have more time to perceive and comprehend the
road environment and to react correspondingly. Therefore, as they perceive potential
dangers earlier, they have more time to reduce their speed or perform other last-
minute actions that reduce the severity of an on-coming crash. Similar conclusions
were drawn by Chimba and Sando (2009), Helai et al. (2008), Lee and Abdel-Aty
(2005), Pai and Saleh (2008), Savolainen and Mannering (2007).

Even though weather conditions were not found to determine severity, road surface
conditions seem to significantly affect it. The presence of normal surface conditions
(normal=0) versus all others (wet or icy pavement) resulted in a normally distributed
random parameter with a mean of -1.064 and a standard deviation of 0.574 implying
that normal road surface conditions significantly increase accident severity (negative
coefficient), but their effect is not the same across different individuals. Interestingly,
the distribution is over O at almost 97% of its surface, suggesting that normal road
surface conditions almost always aggravate the severity outcome. We note however
that this effect is not the same across road users (as it would be in a fixed-parameters
model), but has a varying magnitude; normal surface conditions were found to
provoke more severe accidents in several studies (Savolainen and Mannering, 2007
for single-vehicle crashes; Quddus et al., 2002; Savolainen and Yamamoto and
Shankar, 2004 for urban areas; Shankar et al., 1996; Xie et al., 2009). This effect can
be explained by driver risk-adjusting behavior to the environment (risk offset

hypothesis), where on wet or icy pavement drivers are more careful.

Further, as anticipated, no (road) curvature was found to reduce severity of

individuals involved in crashes. In other words, vertical curvature is expected to
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increase the severity level sustained. The relative indicator variable (‘flat’) equals zero
for no vertical curvature and 1 otherwise. Its estimated coefficient was found to be
normally distributed with a mean of 0.764 and a standard deviation of 0.092, implying
that practically all road users react uniformly to road curvature with respect to the
severity outcome. Ascending or descending highway segments may limit the driver’s
field of vision causing a reduction in the time available for reacting to potential
dangers. This finding corroborates earlier observations by Savolainen and Mannering
(2007) for single-vehicle crashes. However, the magnitude of this effect is variable
across drivers and rather limited as freeways design meet high standards.

The variable capturing the combined effect of rainy weather and drivers’ experience
(‘ancienw1’) was defined to explore the possible association between severity and the
behavior of inexperienced drivers (holding recent driving licenses) under adverse
weather conditions. Indeed, it was found that under severe weather conditions such as
snow, severity levels increase for ‘recent driver licenses’ (inexperienced drivers). The
corresponding coefficient was found to be normally distributed with a mean of -0.067
and standard deviation of 0.027. This finding implies that under fine weather
conditions, there is no significant effect of the driver’s experience on severity
outcome. On the contrary, increased experience causes a significant reduction in the

probability of severe accidents in rainy weather.

Two of the explanatory variables (‘moto’, ‘HV’) examined refer to the type of vehicle
in which the road user was travelling at the time of the accident. They were both
found to follow the normal distribution. Specifically, the parameter distribution for
the indicator variable for 2-wheelers (moto=0, 1 otherwise) was found to have a mean
of -1.805 and a standard deviation of 0.110. Correspondingly, the parameter
distribution for the indicator variable of heavy vehicles occupants (HV=0, 1
otherwise) was found to have a mean of 0.481 and a standard deviation of 0.030. This
indicates that practically all 2-wheels riders (all distribution below zero) have
significantly higher probabilities of getting severely injured if involved in accidents.
In contrast, practically all heavy vehicle drivers and passengers (all distribution above
zero) have significantly lower probability of suffering a severe injury when involved
in crashes. This finding can be explained by the difference in the mass of heavy

vehicles compared to other vehicles; in case of a collision, the lighter vehicles absorb
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the greatest part of the kinetic energy. The limited protection that motorcycles offer
along with their reduced stability and the difficulty in being observed by other road
users influences severity in this direction. Abdel-Aty (2003) claimed that passenger
car occupants suffer more severe injuries than van and pickup occupants. Shankar et
al. (1996) concluded that the vehicle-mass difference indicator is a factor significantly
affecting severity, while Yamamoto and Shankar (2004) found that driving a
motorcycle or truck in urban areas significantly decreases driver injury severity. We
note that, in the UK, heavy goods involvement in motorcycle accidents occurring at
T-junctions was also found to increase severity (Pai, 2009).

Turning to traffic characteristics, model estimation results indicate that they have
fixed parameters across observations as the standard deviation was not found to be
significantly different from zero. The negative sign (-0.012) of the traffic volume
coefficient (Q6minv) implies that for lower traffic volumes, probability of more
severe accidents is significantly higher. The latter comes to verify the common
assumption that under free flow, drivers tend to travel at higher speeds and, thus, the
severity level of potential accidents increases (Golob et al., 2008; Quddus et al., 2009;
The Scottish Office Central Research Unit, 1997). Indeed, the average speed
developed under dense traffic conditions (>1,120 vehicles/lane/hour) was found to
have a significant and positive association with severity as the corresponding variable
(‘VQ1’) has a positive parameter coefficient (0.015). This implies that beyond a given
traffic volume level (1,120/lane/hour), higher speeds imply higher probability for
more severe accidents. However, there appears to be no significant difference beneath
this traffic volume; this can be attributed to the dispersion of speeds under free flow at
a rather random manner and does not affect severity in a consistent pattern. We note
that in previous work by Aron et al. (2009) in accident frequency estimation, the
authors concluded that under ‘fluid’ traffic conditions only 29% of the accidents

occur, while fewer injury accidents occur in ‘dense’ traffic.
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4.5 Concluding remarks

Accident severity is of particular concern to both decision makers and researchers.
Past studies have indicated several factors as significantly influencing crash-injury
severity (e.g. driver age, weather conditions and so on). In the present thesis, using
highway data from Paris, France, we found that travelling on 2-wheels, at night or on
highway segments with curvature significantly increases the probability of getting
involved in more severe accidents. In contrast, travelling in heavy vehicles, on
weekends or on dry pavement surfaces, reduces the probability of severe accidents.
Less experienced drivers seem to encounter problems in dealing with adverse weather

conditions and related potential dangers.

Most importantly, the analysis illustrated that there is a significant relationship
between the severity outcome and the traffic characteristics at the time of the accident.
Traffic volume was found to have a consistently positive effect, while speed appears
to have a differential effect with respect to traffic volume. While in higher traffic
volumes higher speeds aggravate severity outcome, in lower traffic volumes speed
does not significantly influence severity in a consistent pattern. This finding indicates
that speed-reducing measures should be considered even in rather dense traffic
highway segments (that allow however for speed variation among drivers) and should
address speeds lower than the posted speed limits. In this context, real time
adjustment of speed limits may prove very beneficial, though further research is

needed to verify the latter.

The modeling approach presented in this chapter is a random parameters ordered
probit model that offers the possibility of heterogeneity as it captures the differential
effect of the independent variables on the population of road users. This
differentiation does not only concern the magnitude of the effect on the population,
but also the effect itself, whether it is positive or negative across the population. The
use of a fixed parameters ordered probit model would lead to neglecting

heterogeneity, biasing the results and making incorrect policy recommendations.

Introducing real-time collected data from the time of the accident can provide

additional insight into the context that severe accidents occur and could also prove
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helpful in reducing severity of accidents. If further combined with frequency models,
they could help in identifying appropriate safety enhancements, in estimating

monetary gain and possibly in preventing severe accident occurrence.

Suggestions for further research would include the influence of real-time traffic data
aggregation level. On the freeway treated, traffic data are collected for every 6
minutes, while on other infrastructures, the respective period is much shorter. For
example, on most U.S. freeways the measurements are averaged and collected for
every 30 seconds.
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Chapter 5

Incident management using real-time traffic data on

urban freeways

This Chapter investigates the introduction of road safety analysis outcomes in an
integrated incident management scheme. To this end, we provide a synopsis of related
incident management analyses. A synthesis is then performed in the effort of
establishing a conceptual framework for incident management applications using
real-time traffic data on urban freeways. We use dissertation previous findings to
explore potential implications towards incident propensity detection and enhanced

management.
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5.1 Introduction

5.1.1 Incident management and duration

Over the last decades, incident management has been of great interest to both
researchers and practitioners. Incident management includes a variety of applications
under the objective of best addressing an incident occurrence (as well as its
consequences) in various fields such as industrial failures, natural disasters, and so on.
In transportation research, incident management is defined as the systematic, planned,
and coordinated use of human, institutional, mechanical, and technical resources to
reduce the duration and impact of incidents, and improve the safety of motorists,
crash victims, and incident responders (FHWA, 2000).

Incident duration is the time elapsed between the occurrence of an incident and its
complete clearance (Zografos et al., 2002). During this time interval, consecutive
actions taken by the operators are: detection, verification, motorist information,
response, site management, traffic management, and clearance (Bunn and Savage,
2003). Among other goals, incident management strategies aim at minimizing
incident duration. An Integrated Management System (IMS) consists of the following
three subsystems: i) incident detection, ii) incident response logistics, and iii) motorist
information and traffic management (Zografos et al., 2002). The benefits of
minimizing incident duration are numerous and concern highway operators (e.g. cost,
road safety performance), crash victims (e.g. time to hospital), other road users (e.g.
delays, secondary incidents), and society (e.g. incident externalities). Besides, the
proper identification and prioritization of factors that contribute to emergency
management services response and clearance times result in better usage of taxpayer

resources (Lee and Fazio, 2005).

5.1.2 Emergency response and location analysis

Emergency station location (e.g. police, fire stations) analysis falls into location
analysis; term that refers to the modeling, formulation, and solution of a class of
problems that can best be described as sitting facilities in some given space (ReVelle
and Eiselt, 2005). Obviously, emergency unit location is important to overall incident
duration. In particular, the time needed to reach an incident scene is of great concern

to emergency medical services (EMS) in order to mitigate incident consequences on
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people. In a real-time context, EMS managers are faced with two main problems: an
allocation problem and a redeployment problem (Gendreau et al., 2001). The
allocation problem consists of determining which ambulance must be sent to answer a
call. The redeployment problem consists of relocating available ambulances to the
potential location sites when calls are received; ambulances are assigned to potential
sites to provide coverage. Covering constraints may be either absolute or relative.
Absolute constraints require that all demands are satisfied within r, minutes, while
relative constraints require that a proportion of demand a is also satisfied within ry

minutes (rz> ry).

There are four components that characterize location problems; these are 1)
customers, who are presumed to be already located at points on routes, 2) facilities
that will be located, 3) a space in which customers and facilities are located, and 4) a
metric that indicates distances or times between customers and facilities (ReVelle and
Eiselt, 2005). Facility location models have been widely applied in real life problems
with examples that include the sitting of EMS, police and fire stations, bus garages
and airline hubs (Current et al. 2002). Comprehensive reviews of such models can be
found in Drezner and Hamacher (2002), Goldberg (2004), Revelle and Eiselt (2005),
and Jia et al. (2007), while Brotcorne et al. (2003) provide a focused review of their
application in emergency response services. Location models are distinguished in
coverage and median type models (Berman and Krass, 2002). Coverage-type models
attempt to locate servers so that adequate coverage is provided to demand points,
implying that there is at least one server that can undertake demand for service in a
position within a preset maximum distance. Median-type models minimize average or

total travel cost between servers and demand and locate them accordingly.

Early efforts on emergency response service planning focused on two basic coverage
models: the Location Set Covering Problem (LSCP) by Toregas et al. (1971) and the
Maximal Coverage Location Problem (MCLP) by Church and Revelle (1974). The
former consists in minimizing the number of facilities required to cover all demand
nodes within a specified time or distance standard, while the latter assumes that the
number of vehicles is less than the number needed to cover all demand nodes. Later
efforts considered the case of several server types (Marianov and ReVelle, 1992;

Schilling et al., 1979) and multiple coverage of demand for service (Gendreau et al.,
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1997, 2001; Hogan and ReVelle, 1986). On the other hand, the p-median problem,
originally proposed by Hakimi (1964) was used by Calvo and Marks (1973), Carson
and Batta (1990) and Paluzzi (2004) for planning emergency response services.

Basic location models are deterministic and, in that sense, do not capture inherent
uncertainties often encountered in emergency response services (Brotcorne et al.
2003; Jia et al., 2007). As a result, dynamic models that involve uncertainty (mainly
uncertainty regarding demand evolution) were developed (Revelle and Eiselt, 2005).
Probabilistic methods and scenario approaches were employed to address such
problems. Nonetheless, Revelle and Eiselt (2005) note that very few references exist
on the subject of cyclic demands for emergency responses. Cyclic or periodic
demands refer to relatively predictable demand patterns that fluctuate through a day or
a year. Another approach derives from queuing, where customers will patronize
facilities not only based on their proximity to them, but also on the expected
congestion at facilities (Larson, 1974). If parameters are uncertain, and furthermore,
no information about probabilities is known, we refer to robust optimization problems

(Snyder, 2006) that often optimize the worst case performance of the system.

5.1.3 Ambulance location and relocation problems

Brotcorne et al. (2003) provided a substantial review on the ambulance location and
relocation models proposed over the last 30 years. The authors note that advanced
information technologies are often used to assist the ambulance management process
in terms of road network surveillance, vehicle positioning systems, geographical
information systems, and so on. Ideally, they remark, these systems should be fully
integrated and interconnected within an ambulance relocation module. Besides, with
newest models and algorithms, large scale problems can be solved rapidly and
dynamically in real-time, with a high level of accuracy. Thus, a new ambulance
redeployment strategy can be recomputed at any time t, using real-time available
information. The authors trace only one such research effort (Gendreau et al., 2001)

and note potential research interest in the field.

Carson and Batta (1990) developed a model where a single ambulance was relocated
on the Amherst Campus of the State of New York according to the population

movements throughout a day. The authors divided the day in four unequal time
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periods and solved one-medium problems on respective network states to determine
locations for the ambulance. Gendreau et al. (2001) developed a model that — in
addition to the standard coverage and site capacity constraints — included a number of
practical considerations inherent to the dynamic nature of the problem such as
avoiding long trips, and avoiding round trips. The objective was to maximize the
backup coverage demand minus a relocation cost. The model was truly dynamic since
it incorporated new information on the state of the system received at each period t
that a call was registered. The authors developed a fast tabu search heuristic
implemented on parallel processors. Rajagopalan et al. (2008) formulated a dynamic
model with the objective of determining the minimum number of ambulances and
their locations for each time cluster in which significant changes in demand pattern
occurred while coverage availability requirements were met. More recently, Schmid
and Doerner (2010) worked on ambulance location and relocation problems in urban
environment. They developed a multi-period version, taking into account time-
varying coverage areas, where they allowed vehicles to be repositioned in order to
maintain certain coverage standard through the planning horizon. The total planning
horizon of 24hours was equally split into 6 time intervals and time-dependent travel

times were aggregated accordingly.

An overview of time-dependent ambulance location and relocation models reveals

that dynamic models may refer to:

o fluctuations in demand (calls) (Rajagopalan et al., 2008)

e population movements throughout a day (Carson and Batta, 1990)
e changing fleet sizes (Repede and Bernardo, 1994)

e ambulance specific busy probabilities (Galvao et al., 2005)

¢ travel time variability (Schmid and Doerner, 2010)
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5.2 Real-time traffic data in incident management

Conventionally, planning and resources coordination were predefined. Lately,
technological advancements allow for resources co-ordination to be made real-time
taking into account time-varying parameters such as traffic flow. Nowadays, most
freeways are equipped with continuous surveillance systems making disaggregate
traffic data readily available; these have been used in incident management
applications. In particular, real-time traffic data have been largely utilized under the
scope of: a) travel time estimation, and b) incident detection.

a) Travel time on freeways is largely traffic-dependent; minimized under free-flow, it
reaches a maximum when congestion is formed. Non-recurrent congestion is
related to incident occurrences and accounts for over 50% of the total delay
suffered by road users (Lindley, 1987). Incident response strategies include travel
time implications as they search to minimize incident duration; the latter including
emergency units’ travel time and the time to restore roadway capacity. Thus, some
studies address the issue of locating emergency units under the objective of
minimizing travel times with regards to changing traffic conditions (Schmid and
Doerner, 2010), while others focus on traffic incident management on-the-scene, in
order to minimize the time required to restore road capacity (Bunn and Savage,
2003). All such efforts remain reactive in nature as they attempt to minimize
incident impacts, while they do not search to prevent incidents from happening (as

in proactive investigations). They all take place after an incidence occurrence.

b) Real-time decision support systems have been identified as promising means for
improving the decision making capabilities in incidence response logistics
(Zografos, 2002). Towards this direction, various authors (Madanat et al., 1995;
Stephanedes and Liu, 1995) developed incident detection algorithms in the effort
to promptly detect incidents and reduce the time required to initiate traffic
management actions and emergency response measures (Corby and Saccomanno,
1997). Various criteria were used as accident-detection parameters; change in
speeds, vehicle occupancy, traffic volume, and so on. Incident detection involves
the analysis of patterns in traffic surveillance data observed just after the incident.

The analysis is performed in order to develop models that separate real-time traffic
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conditions resulting from incidents from free-flow and/or recurring congestion
(Abdel-Aty and Pande, 2007). In the 1990s, incident detection analyses attracted
research interest since real-time traffic data became widely available. Later, new
technologies (the use of mobile phones, GPS, CCTV systems etc.) made incident
detection rather obsolete as users communicate directly with road operators in the
case of an emergency; with the latter being able of promptly verifying an incident
occurrence. Incident detection analysis is also reactive in nature and — by definition

— takes place after an incident occurrence.

5.3 Real-time traffic data in road safety

Madanat and Liu (1995) were of the first researchers to conceive the idea of a real-
time incident likelihood prediction simulator to proactively address incidents. They
used freeway geometric characteristics, segment-wide characteristics (e.g. weather,
time of the day), and section-specific conditions (e.g. traffic volume, speed, speed
variance) as inputs to their model. The outputs were the time-varying likelihoods of

traffic incidents.

Oh et al. (2000) classified traffic conditions in two patterns: (a) disruptive, being the
traffic condition potentially leading to an accident occurrence and (b) normal, being
the traffic pattern not involved in accidents. The standard deviation of speed averaged
over a 5-minute interval was the best indicator of disruptive traffic flow. They used
the 1-880 freeway (California) accident and traffic dataset and estimated the
likelihood of given traffic observations (as described by speed variation) belonging to

either disruptive or normal conditions.

Golob and Recker (2004, 2001) and Golob et al. (2008) extensively worked on the
matching of traffic flow parameters and crash characteristics including injury severity.
Accident and traffic data from South California highways were used in that purpose.
Traffic flow was measured in terms of 30-sec observations from inductive loop
detectors in the vicinity of the accident prior to the time of its occurrence (-2.5 to -
30min). In Golob et al. (2004), a prototype software tool was generated in an effort to
develop a real-time safety monitoring tool. Kockelman and Ma (2007) used a subset

of the previous study dataset to associate the time distance of a traffic observation
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(from accident occurrence time) to crash likelihood. However, empirical findings
indicated no relationship between speed, speed variance, and crash likelihood.

Abdel-Aty and Pande (2005), Pande and Abdel-Aty (2006) and Abdel-Aty et al.
(2007) used real-time traffic and accident data from the 1-4 corridor in Orlando to
identify crash propensity factors. Results showed that at least 70% of the crashes on
the evaluation dataset could be identified. Furthermore, the authors evaluated ITS
strategies in a simulation environment (PARAMICS) for their potential benefits in
improving real-time safety on the I-4 corridor (Abdel-Aty et al., 2007). It was found
that under congestion, ramp metering and/or route deviation can yield significant
reduction in real-time crash risk. However, variable speed limits may be more

beneficial.

Lee et al. (2002) opposed the notion of ‘preemptive warning system’ to conventional
incident detection reactive systems. The goal was twofold: to a) in real-time identify
traffic conditions associated with high crash frequency, and to b) intervene to modify
traffic conditions (e.g. variable speed limit). Crash potential was defined as the long-
term likelihood that a crash will occur for given traffic, environment, and roadway
conditions. Using data from Canadian freeways (Lee et al., 2002, 2003, 2006a,
2006b), the authors found that variation in speed and traffic density were statistically
significant predictors of rear-ends’ frequency, while variation in flow and peak/off-
peak periods were correlated with sideswipe crashes. The optimal observation time
was found to be precursor-specific. In Lee et al. (2006b), a microscopic traffic
simulation was used to realistically simulate changes in traffic conditions as an effect
of variable speed limits. In Lee et al. (2006c), the effects of a safety measure (ramp
metering) were quantified; results suggested that ramp metering would reduce crash
potential by 5-37%.

Concluding, safety-oriented analyses using real-time traffic data attempt to identify
appropriate crash precursors that could act as identifiers of potentially dangerous
situations. Results seem very promising, but have not been extensively applied.
Applications include traffic management measures such as ramp metering (Lee et al.,
2006¢) and have not been integrated in IMS schemes for enhanced traffic incident

management.

Incident Occurrence and Response on Urban Freeways 135



Chapter 5 Incident management using real-time traffic data on urban freeways

5.4 Conceptual framework

5.4.1 Proactive vs. reactive approaches

In many fields (e.g. industry, medicine), the concept of prevention is commonly
described by a division into sub-concepts, each of which is intended to represent one
main preventive strategy (Andersson and Menckel, 1995). The most widely employed
classification in medicine was launched by Gjestland (1955). According to this
classification, preventive activities are divided into primary, secondary, and tertiary
activities that are related to different periods in time in the course of a disease.
Primary prevention is taken in advance, while secondary and tertiary actions are taken

later on.

Primary prevention can be further divided into proactive and reactive (Catalano and
Dooley, 1980). Proactive activities are designed to deter or limit exposure, while
reactive activities are aimed at the promotion of coping or increasing adaptation in
response to an exposure that has already taken place (Catalano and Dooley, 1980).
Thus, proactive actions are taken before exposure (primary activities), while reactive
actions can be taken either before or after exposure but are always designed to have

an effect after exposure (Andersson and Menckel, 1995).

In line with the above, proactive incident management includes all investigations
made in the aim of finding ways to limit dangerous conditions and to prevent
incidents from happening. Reactive approaches to generic incident management
include all research performed in the area of being prepared to deal with the
occurrence of a specific incident and of its consequences. The following scheme
summarizes all possible preventive activities (Figure 8Error! Reference source not
found.).

Figure 8 Preventive Activities

Preventive Strategies

. Proactive
Primary 2
accident Reactive
Secondary Reactive
Tertiary Reactive
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5.4.2 Incident management taxonomy

Employing a similar terminology in transportation research, proactive traffic incident
management would refer to all actions taken in advance in order to limit or deter road
users’ exposure in danger. In essence, all such actions aim at preventing incidents
from happening and may include passive or active measures; the latter requiring
human participation and initiative. In line with the above, proactive measures may
refer to enhanced road design (a passive measure), driver additional training (an
active measure), or even real-time applications such as variable speed limits. In
accordance to Gjestland (1955) classification, proactive incident management would —
by definition — be a primary prevention as it takes place before incident occurrences.

Similarly, reactive traffic incident management would include all conventional
incident management approaches, along with all actions taking place after the incident
and aiming at mitigating its consequences. However, to the best of our knowledge, no
primary reactive techniques have been developed with traffic incident management
analysis. Such techniques would take place before the accident occurrence; while still
targeting consequence mitigation. If, for example, a hazardous situation is occurring
due to high speeds, the operator could —proactively- warn drivers for potential dangers
or directly decrease speed limits (a passive measure if drivers’ compliance is
considered given). However, if drivers do not react accordingly and/or risk level stays
high, the operator could —reactively- relocate the position of emergency vehicles in

order to respond faster to a potential incident occurrence.

To the best of our knowledge, reactive incident management approaches taking place
before the incident occurrence while utilizing real-time traffic data are not yet
considered. Table 11 summarizes the proposed framework for traffic incident
management techniques with respect to their target (proactive vs. reactive), to whether
human initiatives are required (active, reactive), and to the time they apply (primary,

secondary or tertiary). Indicative examples are given for each emerging category.
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Table 11 Traffic incident management taxonomy

Proactive Reactive
active passive active passive
Primar e.g. warning message for e.g. variable e.g. warning message for e.g. ambulance
y potential dangers speed limits restraint system use relocation
e.g. warning message for e.g. ambulance
Secondary incident occurrence allocation
Tertiary 3 ) ) e.g. enhanced health

treatment

Concluding, even though other disciplines (including road safety and traffic
management) consider both proactive and reactive strategies, traffic incident
management has remained mainly reactive in nature. Furthermore, it mainly considers
passive measures and strategies where road user initiatives are not needed. Moreover,
incident management techniques mainly take place after an incident occurs excluding
any primary prevention considerations. Finally, crash type-specific strategies have
little been discussed.

Real- time traffic data availability enables for additional applications; incorporating
such data in incident management enables for new perspectives in road safety
techniques and seems beneficial in many ways. Road safety studies have dealt with
minimizing road user exposure by adopting either active or passive approaches;
however without incident management considerations. To the best of our knowledge,
incident management dynamic models do not take full advantage of real-time traffic
data availability. Under the light of the above, integrating road safety analyses (using
real-time traffic data) in incident management would help in minimizing incident

duration as well as in reducing incident occurrences.

5.4.3 Integrating road safety analyses to incident management

In Chapter 3, we examined the effects of various traffic parameters on type of road
crash. Multivariate Probit models were specified on 4-years of data from the A4-A86
highway section in the lle-de-France region, France. Results provided the propensity
of each of the five crash types considered with regard to lighting conditions, road
gradient, traffic density, average speed, and traffic volume. Crash type propensity
could be used in an IMS as an additional constraint in EU location. First, there is
strong empirical evidence that severity outcomes are crash type-dependent (Yau,

2004; Pai and Saleh, 2008). Second, incident management (in terms of type of EU
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needed, overall duration, and so on) is related to crash type (Drakopoulos et al.,
2001); the model outcomes could be used to estimate on a real-time basis the location
of crash-specific emergency units such as fire-fighting vehicles. Third, crash type
propensity (if combined with a corresponding crash frequency analysis) could be used
in crash prediction modeling.

In Chapter 4, we applied a random parameters ordered probit model to explore the
influence of speed and traffic volume on the injury level sustained by wvehicle
occupants involved in accidents on the A4-A86 junction in the Paris region. The
application estimated a predicted probability of several injury levels given that an
incident occurs with regard to type of day, lighting conditions, pavement condition,
weather, road curvature, driver experience, type of vehicle, traffic flow, and average

speed.

Severity probability estimation could be used in IMS in various ways. Traffic crash
severity has the most effect on response times; by assessing resources currently
dedicated to insignificant factors, emergency management services can further
improve response times to those casualties that crucially need emergency services
(Lee and Fazio, 2005). Moreover, severity outcome probability could be utilized in
relocating ambulances along the highway according to the probability of severe
incident occurrence. As a result, ambulances could be relocated nearer to the point
where they are most needed and incident response time and duration could be
significantly reduced. To the best of our knowledge, no such dynamic ambulance

relocation model using probabilistic demand on highways has been developed.

Incident Occurrence and Response on Urban Freeways 139



Chapter 6

Conclusions

This Chapter summarizes thesis major findings and provides overall conclusions
regarding the analysis performed. The thesis contribution is discussed, while

indications for future research are given.
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6.1 Research undertaken

Increases in accident related costs along with sustainable development concern have
turned countries and international organizations towards accident mitigation programs
and policies. Incident occurrence and response have also attracted considerable
research interest in the past three decades. Regardless of modeling techniques, a
serious factor of inaccuracy — in most past studies — has been data aggregation. The
Average Annual Daily Traffic (AADT) has been the most commonly used measure to
reflect traffic conditions. However as most freeways are equipped with continuous
surveillance systems, disaggregate traffic data collection is possible as well as readily
available; such data have been used in only a limited number of studies.

In this context, the main research question of the thesis was whether and how traffic
parameters affect accident patterning, consequences, and response. The thesis
objective was to use highway traffic data collected on a real-time basis in order to: a)
explore the effects of various traffic parameters on type of road crash, b) investigate
the influence of traffic parameters on the injury level sustained by vehicle occupants,
and to c) explore possible implications in incident management strategies. To this end,
four main research activities were undertaken:

1) a literature review of relevant road safety research,

2) an empirical investigation on accident type propensity,

3) an empirical investigation of vehicle occupant injury severity, and

4) the development of a conceptual framework towards introducing real-time

traffic data in incident management and response.

6.2 Summary of findings

In the first research activity (Chapter 2), we summarized the state of the art in road
safety research; the large body of literature was organized on the basis of both
methodological and thematic criteria. These criteria included a) the method employed,
b) the level of analysis assumed, c) the scope of the performed analysis, and d) the
incident phase considered. The dissertation field of interest was defined with respect
to the taxonomy established. In particular, a data observational study was conducted

within a descriptive scope of analysis. Stochastic modeling was used to address the
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main research questions in a rather disaggregate context of analysis. Incident
outcomes — in terms of either crash type or severity — were the dependent variables
considered. Incident type refers to accident patterning, while severity is linked to
incident consequences. To this end, real-time traffic data were extracted from
continuous loop measurements at the time of the incident’s occurrence (aggregate

field observations).

In the second research activity (Chapter 3), we examined the effects of various traffic
parameters on incident type. Multivariate Probit models were specified on 4-years of
data from the A4-A86 highway section in the lle-de-France region, France. Empirical
findings indicated that incident type could almost exclusively be defined by the
prevailing traffic conditions shortly before its occurrence. Rear-end crashes, for
example, involving two vehicles were found to be more probable for relatively low
values of both speed and density, rear-end crashes involving more than two vehicles
appeared to be more probable under congested conditions, while single-vehicle

crashes appeared to be largely geometry-dependent.

In the third research activity (Chapter 4), we extended research on the factors
influencing the level of incident severity by including traffic data from the moment of
the accident. A random parameters ordered probit model was applied to explore the
influence of speed and traffic volume on the injury level sustained by vehicle
occupants involved in accidents on the A4-A86 junction in the Paris region. Results
indicated that increased traffic volume had a consistently positive effect on severity,

while speed had a differential effect on severity depending on flow conditions.

In the fourth research activity (Chapter 5), we investigated the introduction of incident
analysis outcomes in an integrated incident management scheme. To this end, a
synthesis of related incident management analyses was performed. Further, crash data
studies using traffic data collected on a real-time basis at the time of the incident
occurrence were analyzed. The synthesis led to establishing a conceptual framework
for incident management applications using real-time traffic data on urban freeways.
We used findings from the previous research activities to explore potential

implications towards incident propensity detection and enhanced management.

Incident Occurrence and Response on Urban Freeways 142



Chapter 6 Conclusions

6.3 Conclusions and thesis contribution

The main research question of the thesis was to explore the effect of various traffic
parameters on accident type frequency and accident severity. All research activities
indicated a strong and critical impact of prevailing traffic conditions upon accident
occurrences. Traffic speed and volume were found to almost exclusively define crash
type and to significantly affect the injury severity level sustained by vehicle occupants
involved in accidents. This overall conclusion suggests that similar accident
investigations should consider the actual traffic conditions at the moment of the

accident occurrences.

The thesis offered an important potential gain to society as additional light was shed
on the accident mechanism of occurrence. Road users may become able to recognize
hazardous situations (i.e. traffic conflicts), to know the best way of addressing them,
and to react appropriately towards mitigating the hazard. Also, road authorities may
implement effective real-time measures and, thus, reduce accident probabilities.
Emergency response authorities could benefit from results in order to provide a
quicker and more effective treatment to injured persons and, consequently, reduce
fatalities and heavy injuries due to crashes. All these potential benefits may
significantly reduce traffic accident severity and mitigate related fatalities that figure
among the leading causes of death, especially in developing countries and among

young people.

The thesis contribution to research state of the art and practice is manifold as real-time
traffic data are readily available in most freeways and show significant potential for
research and applications. However, related work has been limited in the past years.
In freeway incident research, most studies use aggregation of exposure data
neglecting their natural variance which may result in heavy underdispersion. We used
traffic data averaged over a 6-minute interval and collected real-time at the moment of
the incident’s occurrence. From a methodological standpoint, such disaggregation
minimizes possible bias and provides better estimates. Moreover, the exploration of
the influence of real-time traffic variables on incident outcomes (in terms of both type

and severity) provided significant insight in the incident’s mechanism of occurrence.
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Based on the analysis of historical data performed, typical traffic patterns recorded
prior to accidents may then act as real-time identifiers (Abdel-Aty and Pande, 2007).
Such research is useful for researchers and practitioners in estimating accident and
congestion external costs and in transportation planning. Further, it may enable
practitioners and authorities to locate hazardous spots on the road networks by
utilizing real-time data widely available. Once a location is identified as being
susceptible to a given crash type occurrence, it may be flagged with warnings through
variable message signs (VMS). Furthermore, the concept of variable speed limits
could be used to intervene on driver behavior and to reduce speed variation. The
presence of traffic police on the designated locations could also serve as a crash

prevention measure.

In addition to real-time monitoring of safety levels, a safety performance tool could be
developed and used in project evaluation and planning. Safety aspects of costs and
benefits can be assessed by comparing the levels of safety before and after
implementation of a treatment (Golob and Recker, 2004). Finally, a procedure that
uses real-time data on traffic flow, speed, and occupancy and the relationship between
these variables and crash-type occurrence could be used to develop congestion

mitigation strategies that incorporate safety (Garber and Subramanyan, 2001).

In conclusion, the attempt to further study and develop accident models, and in
particular the integration of real-time data, can significantly contribute to the
elaboration of a better-structured incident response system with predictive power.
Thus, accident counts would be decreased and their consequences would be further
limited. Apart from human lives saved, an economic burden would be taken off from
societies; non-recurrent congestion would be decreased, while environmental gains

would occur.
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6.4 Future research

We recognise that the analysis performed suffers from limitations needing further
investigation; first, loop detectors aggregate counts and occupancies over 6-min
intervals. Second, the set of influencing factors used as regressors was not exhaustive.
Possible uncertainty in the exact time of the accident occurrence should also be
examined. Further, we did not distinguish in our analysis among freeway lanes, and
only separated traffic regimes in two (peak and off-peak). Golob and Recker (2004),
after performing a similar analysis, provided important evidence that it is significant
(1) to capture variations in speed and flows separately across lanes and (ii) to more
strictly define traffic regimes.

Considering the above, suggestions for further research would include the influence of
real-time traffic data aggregation level. On the freeway treated, traffic data are
collected every 6 minutes, while on other infrastructures, the respective period is
much shorter. For example, on most U.S. freeways the measurements are averaged
and collected every 30 seconds. In addition, more causal factors should be included in
future analyses in order to acquire a better understanding of accident mechanism of
occurrence. Also, considering more traffic regimes may provide additional insight in

the impact of traffic conditions on safety analyses.

Furthermore, we have assumed linearity of the utility functions in all model
specifications. We note however that the possibility of a non-linear utility function
cannot be rejected; recent research in micro-economics (Orro et al., 2010) provides
evidence that linearity may not be always the case. To the best of our knowledge, in

road safety, such an assumption has not been tested yet.

Also, we used a dummy variable to test for the homogeneity of data over the analysis
period (2000-2002 and 2006) and found them to be homogeneous even though
operational changes had indeed taken place (e.g. speed camera enforcement). The
robustness of results was not tested for the case of other changes (such as extension of
the calibration period); such stability evaluations could be made to further validate

results. In addition, the site studied (A4-A86 junction) has very specific
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characteristics. As a result, any extrapolation and transferability assumption regarding
the results obtained should be first tested.

Finally, real-traffic time data availability enables for primary preventive incident
management applications; i.e. applications that take place before the incident
occurrences. Incorporating real-time traffic data in incident management enables for
new perspectives in road safety techniques and seems beneficial in many ways;
however it has not been adequately considered yet. We should note that all such
techniques and measures should be first tested for their efficiency in terms of road
safety enhancement.
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ANAIITYEH IMPOTYNOY NPOXOMOIQXIHE I'lA THN IPOBAEWH KAI TH AIAXEIPIZH
EKTAKTQN XYMBANTQN XE AIKTYA AYTOKINHTOAPOMQN

Mepiinyn

Q¢ ovufav yopokpileTor 0mTO10ONTOTE EKONAOVUEVO YEYOVOGS, TO OMOI0 TPOKOAEL
dtapoyn M amdKAen amd TG Kavovikég cuvOnKkes Asttovpyiag evog cvotiuotog. Ta
0dwd cvpupdvra givor yeyovota to. 0moiot CUEIMVOVTOL [E TuYaio Tpdmo TOGO GTO
xpOVO, OGO Kol GTO YDOPO KOL TO OTOIN TPOKOAOVV HEI®OTN TNG KLKAOPOPLOKTG
KAVOTNTAG TOV 000V, EVAD GLVOILOVTOL LE VYNAO OTKOVOUIKO KOl KOWVOVIKO KOGTOG,.
Exto¢ and v andAeio avlponiveov (odv, Ta 001Kd GOUPAVTO ETPEPOVY TOAAUTALS
OPVNTIKEG EMITTAOCELS OTWG KVKAOPOPLUKT GLUPOPNOT), KAOLGTEPNGELS GTOVS AOUTOVG
YPNOTEC TOL OIKTVOV, OLCYEPELD OTN UETAPOPH EUTOPELHATOV, VAMKEG CNUIES,
nepPUAAOVTIKY]  EMPAPLVOT, KOWOVIKO OVTIKTUTO, OTMOAEW TAPOYOYIKOTNTOGC,
katafoAny vooniiov k.Am. To vynid ocvvemaydpevo KOGTOG G€ GUVOVAGUO LE TO
€VIovo eVOQEPOV Y100 PLOCIUN ovATTLEN £€Y0VV OTPEYEL EMCTNUOVES, OEBvVeilg
opyavicpovg kot v IloMtelo oty vioBénon mpooeyyicemv yo ™ peimon twv

031KMOV GVUPAVTOV KoL TOV TEPLOPICUO TMV GLVETELDY TOVG.

H peiwon ot owyeipion twv 00K®V cLpPdviov £xel TPOGEAKVOEL £VIOVO
EMOTNUOVIKO  evolapépov.  Atdpopeg pebodoroyieg mpotvmomoinong  €xovv
EQOPUOOCTEL 0NV TTPOOTADEID. KATAVONONG TOV HNYOVIGHOD TPOKANONG OJKOV
ovppavtov. H oupadomoinon dedopéveov (data aggregation) amoteAei onpovtikod
Tapayovta avokpifelog otig meplocotepeg Tpotepes depevvnoels. H Etiola Méon
Huepnow Kvkhogpopia (EMHK) eivon 1 mAéov ypnoyomowodpevn €voeEn y v
OTOTUTIMOT] TOV  KLVKAOQOPLIK®Y oLvONKOV oTa 0d0kd diktva. Qotdco, o1
TEPIOCOTEPOL AVTOKIVNTOOPOUOL glvar TAEOV €EOMMGUEVOL e GLUGTNUATO GLVEXOVG
napaKorovOnong, ta omoia KaBGTOvV SbECE U OHOOTONUEVO KUKAOPOPLOKE.
dedopéva. H dabecipdomra v dedopEVOV auTdV 0V €xEl ETOPK®OG aSlomondel oe

TPONYOVUEVES EPEVVEG.
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Hepiinym

To kevipiké gpoOTpo TG SwTpifnc eivar N EmMOPAO] TOV KUKAOQPOPLOKAOV
ouwvOnkov oty npékinoen arvynpdtov. To avrikeipevo g owrpiprg eivar N
00O 0N TOV KUKAOPOPLOK®DV HEG0UEVAOV GUTOKIVIITOOPONMV TOV GLAAEYOVTAL
0E TMPAYRATIKO YPOVo, DOTE vo. otepeuvn0ovv: @) N eTIdPEO] KUVKAOQPOPLOKAOV
TOPOUETPOV OTOV TUTO 0010V ocvpfavrog, P) M emidpacny KLVKAOQPOPLOKAOV
TOPOUETPOV oTN 60PapPOTNTA 001KOD SVUPAVTOS KOU Y) 1] EVOOUATOCT TOV
PO YOVUEVOV EMOPACEMV ©TN PEATIOT] OGVTIHETAOMION TOV GUVETELDV TOV
ovupavrog. H enitevén tov otdx0v ™G dwtpPng mpaypatonoteital pEcw twv eENg
1e600pwV  emuépovs gpyociwv: 1) Piproypagiky] avackonnorn, 2) EUREIPIKN
dtepedivnon mpooldbeong ekONAMONG GLYKEKPIUEVOL TOTOL GLUPEVTOC, 3) eumElpIKN
dtepedivnon g coPapotnrog cvpPdvtoc kat 4) avantvén mioiciov yio v éviaén

TOV KUKAOQPOPLOKADV 0EO0UEVOV TN dLoyElplon EKTOKTOV GUUPAVT®V.

Kotd v mpom evommra epyocwwv, m Piproypoeioc opyavovetor pe Pdon
pefodoroykd ko Bepatikd kprripia. Ta kpiripla Ta&vounong teptrapupdvouv: o)
puébooo (my. meipapa, mapoatnpnoels mediov), P) to emimedo avdivong (m.y.
opadomoinon N un opodomoinon dedouévmv), y) TO0 OKOmO TG avaAvong (m.y.
TpOPAey, TEPLYPOPN) Kat 8) TN @don Tov cvuPavtog (.. Tpdkinon, ékfacn). X
OUVEYEWN, T TEPOYN EVOPEPOVTOG NG OlatpiPng opileton ¢ mpog TV
npaypoatorombeica  tagvounon.  Ewwotepa,  mpoypotomoleiton  mBOVOTIKY
TPOTLTOTOIN GO HEC® EMEEEPYNUTIOG UM OUAGOTOMUEVOV OEd0UEVOV. Ol EKPAGEIC TV
oVUPAVTOV —VoOoVUEVES ElTE MG TOTOG £iTe ®C GoPapdTnTo GLUPAVTOC - ATOTEAOVV TIG
eEnpmuéveg petafantéc g avdivons. o 1o okomd avtd, YPNCUOTO0VVTOL
KUKAOQOPLOKE EGOUEVO TTOV OVTIGTOLYOVV OTN OTIYUN €KONA®ONG SLUPdvTog amd

GUVEXELG LETPNOELS POPATDV.

21 devtepm evomTa gpyaclOV, eEetaletar N enidpacn apBuod mapapétpov GTov
010 081K0H GLpPavTog. Epappdlovtor molvpetafintd (multivariate) povtéda probit
o€ TETPOETN dedopéva cuUPavtov and To Koo TUNU TV avToKvntddpopwy A4-
A86 otmv mepoyn lle-de-France g Taliiog. To xvkAogoplokd dedopéva
OLUVEAEYNOOV GE TPOYUATIKO YpOVO KOTA Tn OpKeEl TV CLUPAVIOV Kot
neEPLOUPAVOVY HETPNOELS GOPTOL, TOYLTNTOS KOl TUKVOTNTOG KOTA TN OldpKeEwd
e€aAenTOV YpoVIK®OV dlactnudtev. Ta eUTEPIKd ATOTEAEGLOTO KOATAOEIKVOOVV TMG O

TOn0g cLUPEVTOog pmopel —oYEdOV AMOKAEIGTIKA- Vo EKTUNOEL Ao TIG EMKPOATOVCES
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KUK oQoplokég cvvOnkes. o mopdoetypa, ol VOTOUETOMIKEG EUTAOKEG ME OVO
oyfquoto  gpeovifovtar mo mOAVES Yoo OXETIKA YOUNAEG TIMES TaXDTNTOG Kot
TUKVOTNTOC, EVM Ol VOTOUETOMIKEG EUTAOKEG UE TEPLGGOTEPA OO VO OYNLLOTO
eaivovtor mlavotepes o€ cuvONKeES KuKAoQOploknG cuueopnons. H yeopetpia g
0000 @aivetar vo amotelel T povadikny €voelEn vynAng mloavotnrag mpodKANong
ovpPavtoc pe gumhokn evog povo oynuatog. Emonupaiveror tt n moivpetofAnt
avldALoN EMUTPEMEL TOV EVIOMIGUO OAANAETIOPACEWV HETOEL TV e&npTnuévav

petaPAntdv ot omoiec O Tapaprémovtay pe povouetafintn (univariate) avaivon.

Ymv tpitm evomra, efetdloviar ot mopdyovieg mOL EmMNPEALOLY TO EMIMESO
coPapotnrag cvuPdvtoc pe Pacn KuKAOPOPIOKA OEO0UEVA OO TO KOO TUNLO TMV
avtokvntodpduwv A4-A86 oto Ilopict. Ewdwodtepa, diepevvdrtor n emidpacn mov
00KEL TOGO M OVOTTVGGOUEVT] TOYVTNTO, OGO KOl 0 KUKAOPOPLoKOS pdpToc. Ewcdyetan,
Yo TPAOTN Qopa otn oxetikn Piprloypagia, datetayuévo poviédo probit tuyaiov
napapétpov  (random parameters ordered probit model). H yprion toyaiov
TOPAUETPOV TPOGPEPEL TN SVVOTOTNTO HOVIEAOTOINONG KOl TOGOTIKOTOINGNG TNG
ETEPOYEVEWNG UETOED TOV YPNOTAOV TOV 0d1KOV OIKTOOV, KAHMG KOl TN dVvaTOTNTO
e€étaong Tov Kotd TOGOV 1M ETEPOYEVELD VTN EYXEL ONUOVTIKEG ETMUTTAOCELS CTNV
a&lomotion TV HOVTEA®V. ZnueldveTal 0Tt 1 gtepoyévela Ba mapafrenotay oty
TEPIMTOOTN EPOPUOYNG TPOTHTOL GTADEPDV TAPAUETPMVY, TO OTOTI0 YPNCILOTOLEITAL OE
oA ™ oyetkn PipAoypagio. ATO To OTOTEAEGUATE TOV LOVTEA®Y TPOKVTTEL OTL Ol
LETOKIVAOELS UE OTKLVKAO TN VOKTO TPOKOAOVYV ONUAVTIKY avénon g mbavotntag
eUTAOKNG o€ GoPapotepo cuuPav. Avtifétmg, ot peETaKVAGES pe Papéo oynuoTo
oyetilovtar pe younAdtepn mhovotnto eumAokne o€ cofapdtepa cvupdvia. And ta
amoteAéopoTo TEKpOipeTal, €miong, OTL M coPapOTNTO GLVOEETOL GTEVA UE TIG
KUKAOQOPLOKES GUVONKES TOV €mKpaTOVV TN oTIYU €kdNA®oNg tov cvpuPdvtoc. H
abENON TOV KLKAOPOPLOKOD (POPTOL aokel otafept enidpacrn ot cofapodtnta TV
SLUUBAVTOV, EVO 1M ETOPACT TNG TOYLTNTOS OLLPOPOTOLEITAL AVAAOYO LE TO EMIMESO

TOL KUKAOPOPLOKOD (pOPTOV.

210 TG0 NG TETOPTNG EVOTNTOS EPYUCIDOV, JIEPELVATAL 1) EVTOEN TOV TOPICUATOV
TOV TPONYOVUEVOV EPYACIOV GE OAOKANPOUEVO OYEO10 Oloyelptong EKTOKTOV
ocuoupavtov. Ipaypatomoteitar cOvOeon GYeTIKOV peLVAV He 6TOYXO TOV KaBopiopd

TAOIGIOV EQAPUOYDV OloYelPIoNG CUUPAVIOV pE XPNOT KUKAOPOPLOUKADV OEOOUEVMV
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Hepiinym

OV GLAAEYOVTOL GE TPOAYHOTIKO XPOVO amd aGTIKOVG 0LTOKIVITOdpopovs. H chvheon
KOTOOEIKVVEL TG TA OEOOUEVO OVTA dgv Exovv TANPmG a&lomonbel oto medio g
dweipiong ocvppdviov, kabmg 1 xpnon tovg meplopileTal GTOV VITOAOYIGUO T®V
xPOVOV Talldiov TV oYNUATOV €KTOKTNG avaykne. Qotdco, ta dedopéva avtd Oa
pmopovcoav emiong va ypnoyonombodv wg kprtnplo yo tn yopofétnon kot Tov
KOTOPEPIOUO TOV TEPOYOV  €VOVVNG HOovAdwV €ktoktng ovaykne. Télog, Tta
nopiopato ¢ datpPng a&lomotodvtal ot dlepehvnon EPUPUOYDV LE OTMTEPO
oTOY0 TOV TMEPOPICUO NG TPoddfeong mpdkAnong copPaviov kot T PeATiopévn

dwyeipion tovg.

H dwpn ocvvelopéper oty KoAdtepn KATOVONOCT TOL UNYOVIGUOV TPOKANGTG
o0dkav ovuPavrov. Eriong, n éviaén tov mopiopudtov o oTpatnykés dtayeipiong
EKTOKTOV oLUPAVTOV Onuovpyel véeg duvatdTTeG HEl®OoNG TV CLUBAVTOV Kot
Beltiopévng dwyeiplong Tovc. LuvoMKd, 1N OW0KTOPIKN OoTpPny cvuPdiiel o
dtepedivnon evog {NtMUoTog 10 0moio £yl mEPLOPICUEVA EEETOGTEL 0TO TOPEADOV, EVD
TOPEYEL TO KATAAANAO BempnTiKd TAOIC1I0 KOt TO OmoTovpeEVe, LafnuaTikd epyoieia

Yo TV TEPALTEP® AEIOTOINGT U1 OLOOOTOUEVAOV KUKAOPOPIIK®DV OG0 UEVDV.
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Model outputs

Examples of model outputs (Limpdep v.8)

--> probit;lhs=typed4; rhs= ONE, tjour,k2 $
Normal exit from iterations. Exit status=0.

Binomial Probit Model
Maximum Likelihood Estimates
Model estimated: May 10, 2010 at 11:17:06AM.

| |
| |
| |
| Dependent variable TYPE4 |
| Weighting variable None |
| Number of observations 235
| Iterations completed 5 |
| Log likelihood function -94.43988 |
| Number of parameters 3 |
| Info. Criterion: AIC = .82928
| Finite Sample: AIC = .82972
| Info. Criterion: BIC = .87344
| Info. Criterion:HQIC = .84708
| Restricted log likelihood -97.14205 |
| McFadden Pseudo R-squared .0278167 |
| Chi squared 5.404346 |
| Degrees of freedom 2 |
| Prob[ChiSgd > value] = .6705965E-01 |
| Hosmer-Lemeshow chi-squared = 10.76788 |
| P-value= .21520 with deg.fr. = 8 |
e +
- o o o F—————— o
-+
|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z]|>z]| Mean of
X|
- o o o F—————— Fo—————
-+
————————— +Index function for probability
Constant -1.78863194 .35827108 -4.992 .0000
TJOUR | .44331172 .25263488 1.755 .0793 1.17021277
K2 | .07607589 .04261042 1.785 .0742 2.41355111
e +

| Fit Measures for Binomial Choice Model |
| Probit model for variable TYPE4 |

e +
| Proportions PO= .855319 Pl= .144681 |
| N = 235 NO= 201 Nl= 34 |
| LogL= -94.440 LogL0= -97.142 |
| Estrella = 1-(L/L0)"(-2L0/n) = .02305 |
e +
| Efron | McFadden | Ben./Lerman |
| 02370 | .02782 | .75868 |
| Cramer | Veall/Zim. | Rsqgrd ML |
| 02482 | .04967 | .02273 |
e +
| Information Akaike I.C. Schwarz I.C. |
| Criteria .82928 .87344 |
e +
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--> MPROBIT;Lhs=TYPE2,TYPE3,TYPE4,TYPE5,TYPEG6;

Eql=ONE,v2,k2, jour;
Eg2=0ONE, q2,profil;
Eg3=ONE, k2, tjour;

Eg4=ONE,V2,profil, jour;

Eg5=ONE,profil, tplan$

Normal exit from iterations.

Multivariate Probit Model:

Maximum Likelihood Estimates
, 2010 at 02:41:33PM.

Model estimated: May 04

5 equations.

Exit status=0.

| |

| |

| |

| Dependent variable MVProbit

| Weighting variable None |

| Number of observations 235

| Iterations completed 42 |

| Log likelihood function -446.72775 |

| Number of parameters 27 |

| Info. Criterion: AIC = 4.03172

| Finite Sample: AIC = 4.06281

| Info. Criterion: BIC = 4.42921

| Info. Criterion:HQIC = 4.19197

| Replications for simulated probs. = 20 |
o +
- o ——— o ——— o - F————————
+

|Variable| Coefficient |Standard Error |b/St.Er.|P[|Z]|>z]|Mean of X|
- o o ——— F————— F—————— o
————————— +Index function for TYPE2

Constant | .92657704 .93157796 .995 .3199

V2 | -.01614016 .00871664 -1.852 .0641 73.3042553
K2 | -.20092640 .13071583 -1.537 .1243 2.41355111
JOUR | -.24011301 .22614560 -1.062 .2883 .34468085
————————— +Index function for TYPE3

Constant | -1.47561169 .29450580 -5.010 .0000

Q2 | .00375210 .00231056 1.624 .1044 112.404752
PROFIL| .24023659 .24634945 .975 .3295 .25106383
————————— +Index function for TYPE4

Constant | -1.70263483 .38816560 -4.386 .0000

K2 | .07535639 .04800296 1.570 .1165 2.41355111
TJOUR | .38705066 .26728168 1.448 .1476 1.17021277
————————— +Index function for TYPES

Constant | -1.22576893 .26534673 -4.619 .0000

V2 | .00590282 .00342004 1.726 .0844 73.3042553
PROFIL| -.63319856 .26183919 -2.418 .0156 .25106383
JOUR | -.36314454 .21306959 -1.704 .0883 .34468085
————————— +Index function for TYPEG6

Constant -.52630315 .15578289 -3.378 .0007

PROFIL| -.52906800 .25835671 -2.048 .0406 .25106383
TPLAN | -.64455388 .16572314 -3.889 .0001 .60851064
————————— +Correlation coefficients

R(01,02) | -.27817767 .12408676 -2.242 .0250

R(01,03) | -.32671084 .16161857 -2.021 .0432

R(02,03) | -.33545709 .18665474 -1.797 .0723

R(01,04) | -.28810840 .05151744 -5.592 .0000

R(02,04) | -.22396158 .14735068 -1.520 .1285

R(03,04) | -.27769381 .097209064 -2.857 .0043

R(01,05) | -.42603264 .16410021 -2.596 .0094

R(02,05) | -.08756017 .09923649 -.882 .3776

R(03,05) | -.00302254 .10815616 -.028 L9777

R(04,05) | -.18599181 .17283783 -1.076 .2819

Incident Occurrence and Response on Urban Freeways 174



Model outputs

if
if
if
if

create;
create;
create;
create;
create;
create;
create;

(Q6MINV<112) Q1=0 $
(Q6MINV>112) Q1=1 $
(Q6MINV<112) Q2=1 $
(Q6MINV>112) 02=0 $

vqgl=vmoy*ql $
vg2=vmoy*q2 $
ancienw=anciperm*pluie $
--> ordered;lhs=grav2;rhs=one, tjour,

jour,

ancienw, moto,pl, vql, géminv
;RPM;Pts=5;Halton
;Fcn=one (c) ,tjour(c),

ancienw(n) .

jour(c),

moto(c) ,pl(c), vgl(n), gbminv(n) $

Sample is
Ordered probability model
Ordered probit
LHS variable =

1 pds and

(normal)

893 individual

model
values 0,1,..., 3

normal (c),

S.

Normal exit from iterations. Exit status=0.

t———_———— +
| Random Coefficients OrdProbs Model |
| Maximum Likelihood Estimates

| Model estimated: Jun 20, 2009 at 05:27:37PM. |
| Dependent variable GRAV?2 |
| Weighting variable None |
| Number of observations 893

| Iterations completed 20 |
| Log likelihood function -563.2782 |
| Number of parameters 16 |
| Info. Criterion: AIC = 1.29738

| Finite Sample: AIC = 1.29807

| Info. Criterion: BIC = 1.38328

| Info. Criterion:HQIC = 1.33020

| |
| |
| |
| |
| |

Simulation based on

5 Halton draws

normal,

plat(c),

plat,

retrait,

retrait(c),

- +

F-——— fo——————— - f——— f——— f——
-+

|Variable| Coefficient Standard Error |b/St.Er.|P[|Z|>z]| Mean of
X

+-—— f-———— - f-—— f-—— -
-+

————————— +Means for random parameters

Constant| -.44301558 .59438251 -.745 .4561

TJOUR | -.93295707 .13437103 -6.943 .0000 .21200750
JOUR | .80057043 .11946992 6.701 .0000 .48217636
NORMAL | =-.71503572 .12310491 -5.808 .0000 .27204503
PLAT | .93164857 .12137748 7.676 .0000 .32082552
RETRAIT | 1.02478454 .52600775 1.948 .0514 .97936210
ANCIENW | .02977253 .00538850 5.525 .0000 .14071295
MOTO | -.69683858 .16128257 -4.321 .0000 .78986867
PL | .44336970 .23218199 1.910 .0562 .94934334
vQ1l | .00520172 .00156140 3.331 .0009 29.7847717
Q6MINV | -.00650266 .00159127 -4.086 .0000 107.034703
————————— +Scale parameters for dists. of random parameters

Constant | .000000  ...... (Fixed Parameter).......

TJOUR | .000000  ...... (Fixed Parameter).......

JOUR | .000000  ...... (Fixed Parameter).......

NORMAL | .000000  ...... (Fixed Parameter).......

PLAT | .000000  ...... (Fixed Parameter).......

RETRAIT | .000000  ...... (Fixed Parameter).......

ANCIENW | .00366067 .00309254 1.184 2365
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MOTO | .000000  ...... (Fixed Parameter).......
PL | .000000  ...... (Fixed Parameter).......
VQ1l | .00176403 .00095787 1.842 .0655
Q6MINV | .00099245 .00044707 2.220 .0264
————————— +Threshold parameters for probabilities

MU (1) | 1.15355006 .09034273 12.769 .0000
MU (2) | 2.22566575 .14479618 15.371 .0000

Implied standard deviations of random parameters

Matrix S.D Beta has 11 rows and 1 columns.

1

+ ______________
1] .0000000D+00
2] .0000000D+00
3] .0000000D+00
4] .0000000D+00
5] .0000000D+00
6/ .0000000D+00
7| .00366

8] .0000000D+00
9] .0000000D+00
10] .00176
11} .00099
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