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Abstract 

 

This thesis investigates the mechanical behavior of a new type of formable all-metal 

bi-directionally corrugated sandwich sheet material. Unlike conventional flat sandwich panel 

materials, this type of sandwich sheet material can be formed into three-dimensional shapes 

using traditional sheet metal forming techniques. In a first step, the core structure geometry is 

optimized such as to offer the highest shear stiffness-to-weight ratio. The post yielding 

behavior of the “optimal” sandwich structure is investigated using finite elements simulations 

of multi-axial experiments. A phenomenological constitutive model is proposed using an 

associative flow rule and distortional hardening. An inverse procedure is outlined to describe 

the sandwich material model parameter identification based on uniaxial tension and four-point 

bending experiments. In addition, simulations of a draw bending experiment are performed 

using a detailed finite element model as a well as a computationally-efficient composite shell 

element model. Good agreement of both simulations is observed for different forming tool 

geometries which is seen as a partial validation of the proposed constitutive model.  
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Introduction   

 

There is a constant pressure on the automotive industry to come up with lightweight 

structural solutions to improve vehicle fuel efficiency without sacrificing structural 

performance. In addition, the design choices are subject to stringent cost constraints as 

innovations in automotive engineering are seldom successful unless both performance and 

cost advantages prevail. Fiber-reinforced composite materials provide excellent weight-

specific stiffness and strength properties, but their use is mostly limited to low volume 

production because of high production costs. Advanced high strength steels appear to be 

today’s material of choice in automotive engineering as these feature a higher strength-to-

weight ratio as conventional steels at a rather modest price premium. However, the stiffness 

of advanced high strength steels is the same as that of conventional steels. Thus, these 

materials do not provide a lightweight solution when the structural design is driven by 

stiffness requirements.  

Sandwich structures are known for their exceptionally-high bending stiffness-to-

weight ratio. The underlying design concept is the separation of two flat sheets by a much 

thicker core layer of low density (Fig. 1). 

 

 

 

Fig. 1 : Sandwich structures. 
 

 
 Sheet metal and fiber reinforced plastics are typically chosen as face sheet materials, 

while the choice of the low density core layer material is far more complex. In addition to 

basic elastic and weight properties of the core layer, multi-functionality (e.g. thermal, acoustic 
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and energy absorption properties) as well as manufacturing considerations come into play 

(Evans et al., 1998).  

Existing core structures 

 

To satisfy the requirement of low density (as compared to the face sheet material) 

lightweight bulk materials such as balsa wood (Cantwell and Daview, 1996, Vural and 

Ravichandran, 2003) or polymers may be used directly in combination with steel or aluminum 

skins (Palkowski and Lange, 2007). As an alternative to low density bulk materials, man-

made porous materials find wide spread use.  

Hexagonal honeycombs (fig. 2a) are still the most widely used constructed sandwich 

core material. The elastic structure-property relationships for honeycombs are known for 

several decades (Kelsey et al., 1960; Gibson and Ashby, 1988) and most research on 

honeycombs focused on understanding and modeling their large deformation behavior 

(McFarland, 1960, Wierzbicki, 1983, Papka and Kyriakides, 1994, Mohr and Doyoyo, 2004). 

Kevlar reinforced paper honeycombs are widely used in aerospace and aeronautical 

engineering with aluminum or composite face sheets (Mahinfalah et al. 2007). All-aluminum 

honeycomb panels are employed in architectural applications. The manufacturing of metallic 

honeycomb structures involves several semi-manual steps (Bitzer, 1997, Wadley et al., 2003) 

and is hence not suitable for economic mass production.  

Extensive research has been performed during the past two decades on the mechanical 

behavior of polymeric and metallic foams (fig. 2b) and their use in sandwich structures 

(Gibson and Ashby, 1988, Baumeister et al, 1997, Bart-Smith et al. 1998, 2001, Ashby et al., 

2000, Bastawros et al., 2000, Dillard et al., 2005, Gong et al., 2005, Tan et al., 2005, Demiray, 

2007, Ridhar and Shim, 2008, Luxner et al. 2009). However, their use in automotive 

applications is still inhibited by cost barriers as well as limited structural performance 

advantages.  

More recent developments are concerned with truss core sandwich materials (fig. 2c) 

(Deshpande et al., 2001, Evans et al., 2001, Chiras et al. 2002, Liu and Lu, 2004, Queheillalt 

an Wadley, 2005, Mohr, 2005, Hutchinson and Fleck, 2006, Liu et al., 2006). Wicks and 

Hutchinson (2001) have shown that an optimized geometry of truss core will offer a sandwich 

structure comparable to honeycombs in terms of shear and bending strength-to-weight ratio 
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and comparable to hat-stiffened plate in term of compression strength-to-weight ratio. 

However, the performance advantages of truss core structures are mostly limited to small 

deformations. Under large deformations, the individual truss members lose their axial load 

carry capacity due to buckling (Gibson et al., 1997).  

Egg-box structures (fig. 2d) present another type of architecture that can be used as core 

later for sandwich materials (Hale, 1960). Zupan et al (2003) investigated the through-

thickness compression response of egg-box structures, focusing on the collapse of the 

structure by bending of the side walls. A comparison with metal foams revealed that egg-box 

panels present the best energy absorption properties. Tokura and Hagiwara (2010) investigated 

the stiffness and strength of a two-layer panel material. They made use of a multi-stage stamping 

technique to introduce a periodic array of domes of pyramidal shape and triangular base into 

initially flat sheets. After stamping, the layers are then joined together at the apexes of the 

pyramids through spot-welding. Tokura and Hagiwara (2010) found that it is critically important 

to account for local thickness changes and work hardening during stamping when estimating the 

bending strength of the two layer panel material. 

 

 

Fig. 2 : Photographs of (a) aluminum honeycomb structure, (b) aluminum foam (Baumeister 
et al, 1997), (c) sandwich structure with aluminum alloy truss core (Deshpande et al,2001), 
(d) aluminum eggbox structure (Zupan et al, 2003) 
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Finally, folded cores are promising structures as new production means emerge. In 

particular, the chevron folded core has received interest for its impact energy absorption 

properties (Basily and Elsayed, 2004) or its transverse shear and compression behavior 

(Heimbs et al., 2006, Kintscher et al., 2007, Lebée et al, 2010).  

Forming of sandwich panels 

 

Sandwich structures with curved mid-planes are difficult to make. As a result, sandwich 

constructions are mostly limited to flat panel-type of structures reducing their scope of 

applications. In the automotive industry for instance, complex three-dimensional shapes are 

manufactured by converting flat blanks via various sheet metal forming operations. Thus, the 

development of a new formable sandwich sheet material that could be used with traditional 

sheet metal forming technology is of great interest.  

There are two main approaches for forming sandwich structures into three-dimensional 

shapes: building the different component parts into the required shape and assemble them to 

create the sandwich (Blitzer, 2000), or forming the sandwich structure directly. Jackson et al. 

(2008), explored the applicability of incremental sheet forming to different type of sandwich 

panels with metal faces. Only the panels with a ductile and incompressible core, polymer 

cores, could survive the deformation introduced by the local indentations during the process. 

Numerous investigations were made on the forming of sandwich panels composed of metallic 

face sheets with a polymer core (Miller 1981, Pearce 1991, Kim et al. 2003, Carrado et al. 

2006, Parsa et al. 2010). However, sandwich sheets with polymer cores cannot be welded, 

limiting their potential use in the automotive industry. Most research on the large deformation 

behavior of metallic sandwich plates focus on the response to three-point bending loadings 

(Bart-Smith 2001,Desphande et al. 2001, Rathbun 2004, Rubino et al. 2010, Valdevit et al. 

2006). The main failure modes that are observed include face buckling, face thinning, core 

struts buckling, core shear failure and delamination.  

Mohr and Straza (2005) showed that unlike conventional flat sandwich panels, sandwich 

sheets, with a thickness of about 2mm, can be formed into three-dimensional shapes using 

traditional sheet metal forming techniques such as stamping or draw bending. Mohr (2005) 

studied the formability of two different sandwich plates with stainless steel face sheets, with 
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stainless steel fibers and steel perforated cores. Deep drawing experiments and a detailed 

numerical and theoretical analysis of the bending and unbending behavior of the sandwich 

sheet revealed that cellular core structures of high relative density (>20%) are required to 

withstand the high shear loads during forming.  

With these results in mind, Seong et al. (2010) elaborated a design map to create a 

bendable all-metal sandwich structure with a sheared dimple core. They show that the core 

shear strength is increased as the gap between bonding points between the core and the face 

sheet decreases. An analytic investigation was performed on the suitable experimental set-up 

and geometric conditions for avoiding delamination failure during U-bending experiments on 

a welded sandwich plate (Seong et al. 2010). Seong et al. (2010) also investigated the bending 

response of sandwich sheets with adhesively bonded bi-directionally corrugated core layers. 

Considerations on the core geometry to avoid face sheet buckling were thought of to design 

an optimal sandwich sheet and carry on bending experiment.   

The formability of two types of sandwich sheets with metal faces and stainless steel fiber  

cores have been established. Gustafsson (2000) proposed the Hybrid Stainless Steel Assembly 

(HSSA) where the core fibre are oriented perpendicular to the face sheets and are bonded by 

epoxy resin or rubber. Markaki and Clyne (2003) presented the Cambridge Bonded Steel 

Sheets (CAMBOSS) and the Cambridge Brazed Steel Sheets (CAMBASS) where the 

stainless steel fibers are arranged in a network with solid joints between contacting fibers in 

order to increase the shear stiffness and strength of the core material.  

Modeling the behavior of cellular solids 

 

Engineering design requires a good understanding of the material behavior in order to 

perform numerical simulations. When sandwich structures are involved, the numerical analysis 

is preferably performed, for numerical efficiency, in terms of effective properties rather than using 

a detailed model of the given microstructure. In other words, phenomenological macroscopic 

constitutive models are needed to describe the effective behavior of cellular materials with a 

complex microstructure. 

Deshpande and Fleck (2000) developed an isotropic yield function for foams where the 

square of the mean stress is added to the square of the von Mises equivalent stress. They made 

use of an associated flow rule along with a stress-state dependant isotropic hardening law. 
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Xue and Hutchinson (2004) proposed an anisotropic constitutive model for metallic sandwich 

cores by adding three square normal stress terms to the Hill’48 equivalent stress definition. 

Note that similar to the physics-based Gurson (1977) model for porous metals, the 

phenomenological Deshpande-Fleck and Xue-Hutchinson models incorporate the effect of the 

mean stress on yield through even terms.   

Based on the assumption that the effect of in-plane stresses may be neglected in sandwich 

structures, Mohr and Doyoyo (2004) proposed a non-associated plasticity model to describe 

the large deformation response of low density honeycombs. A generalized anisotropic 

plasticity model for sandwich plate cores has been presented by Xue et al. (2005). They 

normalized all stress tensor components to define an elliptical yield function (which is an 

even function of the stress tensor). Due to the normalization, it is easy to introduce yield 

surface shape changes (distortional hardening) in addition to isotropic hardening. Xue et al. 

(2005) also show extensive results from unit cell simulations which support the introduction 

of distortional hardening. Micromechanical models of truss-lattice materials (Mohr, 2005) and 

hexagonal honeycombs (Mohr, 2005b) explain distortional hardening at the macroscopic level 

through the evolution of the unit cell geometry as the material is subjected to finite strains. In 

sheet metal plasticity, changing Lankford coefficients which are an indicator for texture 

changes (e.g. Savoie, 1995) can be related to distortional hardening. A general kinematic-

distortional hardening modeling framework can be found in Ortiz and Popov (1983). Aretz 

(2008) proposed a simple isotropic-distortional hardening model, where the shape coefficients 

of a non-quadratic plane stress yield surface (Aretz,2004) are expressed as a function of the 

equivalent plastic strain. To account for the direction dependent strain hardening with 

constant r-values, Stoughton and Yoon (2009) made use of a non-associated flow rule and 

integrated four stress-strain functions to control the evolution of the shape and size of a 

Hilll’48 yield criterion.   

Overview of the thesis 

 

The thesis investigates the mechanical behavior of an all-metal formable sandwich sheet 

material with a core structure composed of two bi-directionally corrugated steel layers. The 

core layers are composed of a periodic array of domes which are introduced into an initially flat 

sheet through stamping and brazed together to form a core structure. The core structure is thus 



 

conceptually similar to that investigated by Tokura and Hagiwara (2010). 

conventional egg-box structures, the contact areas between the core structure and the 

sandwich face sheets are ring shaped which reduces the risk of face sheet wrinkling or 

dimpling when the sandwich material is subject to bending.

the successful draw bending of a prototype made from this material. 

 

Fig. 3 : Experiment of bi-directional draw bending

The thesis mainly focuses on

- Presentation of this new sandwich sheet material along with

manufacturing of the core

- Determination of the core structure geometry offering the highest shear stiffness

weight ratio;  

- Understanding of the multi

phenomenological constitutive model of the sandwich structure

- Identification of the material model

bending.  
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o that investigated by Tokura and Hagiwara (2010). 

box structures, the contact areas between the core structure and the 

sandwich face sheets are ring shaped which reduces the risk of face sheet wrinkling or 

sandwich material is subject to bending. Figure 3 shows an illustration of 

the successful draw bending of a prototype made from this material.  

directional draw bending of a sandwich prototype.

 

 

ly focuses on:  

Presentation of this new sandwich sheet material along with 

manufacturing of the core structure; 

Determination of the core structure geometry offering the highest shear stiffness

Understanding of the multi-axial loading response and development

phenomenological constitutive model of the sandwich structure; 

Identification of the material model parameters and structural validation for draw 

 

o that investigated by Tokura and Hagiwara (2010). In contrast to 

box structures, the contact areas between the core structure and the 

sandwich face sheets are ring shaped which reduces the risk of face sheet wrinkling or 

shows an illustration of 

 

of a sandwich prototype. 

 simulations of the 

Determination of the core structure geometry offering the highest shear stiffness-to-

g response and development of a macroscopic 

rs and structural validation for draw 
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Chapter I : Description and Model of the Bi-directionally Corrugated 

Sandwich Structure 

 

The great motivation of this thesis is the understanding of the behavior of a new type of 

formable all-metal sandwich sheet: the bi-directionally corrugated sandwich structure. 

However, it was not possible to carry on all the physical experiments required to have an 

overview of the sandwich behavior. Analytical analyses are also restricted by the complex 

shape of the core structure. As an alternative, and thanks to the periodic and symmetric nature 

of the core geometry, numerical simulations of a representative unit cell of the sandwich 

material are performed to investigate the effective behavior of the material under different 

loading conditions. These simulations are referred as “virtual” experiments.  

Predicting the effective behavior of cellular materials based on FE analysis of the 

underlying unit cell (for periodic media) has been successfully used by several research 

groups. For example, Mohr and Doyoyo (2004) investigated the crushing response of 

aluminum honeycomb using a detailed shell element model of the hexagonal cell structure; 

Youseff et al. (2005) built a finite element model of a PU foam based on X-ray tomography 

images; while Caty et al. (2008) developed a micrsotructural FE model of a sintered stainless 

steel sphere assembly (similar to closed-cell foam) based on X-ray tomography images. It is 

worth mentioning that the unit cell computations are only representative for the material 

behavior of the microstructures remain mechanically stable. In the case of instabilities (which 

are frequent in cellular materials of low relative density), a careful analysis of the type of 

instabilities is needed to check the validity of the homogenized material description 

(Triantafyllidis and Schraad, 1998).  

This chapter starts by a detailed description of the physical core structure. Then, the 

finite-element model of a unit cell is presented. Since the exact geometry of the dimples of the 

bi-directionally corrugated core layers depends on the strain distribution after stamping, we 

perform numerical simulations of the all manufacturing process.  
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1.1. The bi-directionally corrugated core structure 

1.1.1 Core architecture and stamping tool  

The core architecture is made of two bi-directionally corrugated layers brazed together. 

Each layer is composed of a periodic array of domes (Fig. 1.1) which are introduced into an 

initially flat sheet through stamping.  

 

 

Fig. 1.1 : (a) Side view of the four layer sandwich structure, (b) top view of a single core 
layer. 
 
 

The material coordinate system (
� , 

, 
�) as shown in Fig. 1.1 is introduced to describe 

the microstructure. The coordinate axis 
� is aligned with the thickness direction of the 

sandwich sheet material (out-of-plane direction) whereas 

 and 
�  denote the so-called in-

plane directions. The L-direction is parallel to the connecting line of two neighboring domes 

while the W-direction is defined as 

 �  
� � 
� . The core structure features seven 
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symmetry planes; the bi-layer assembly is symmetric with respect to the central (W,L)– plane 

(Fig. 1.1). Furthermore, each layer is symmetric with respect to the (W,T)– and (L,T)– planes.  

In the manufacturing process, we can control the geometry of the stamping tools, while 

the final geometry of a core layer after stamping depends also on the plastic properties of the 

basis sheet material. The stamping tool consists of a male and a female die. The male die 

comprises a periodic array of pins that are positioned on a triangular pattern at a spacing D 

(Fig. 1.3). All pins have the same diameter �� and feature a corner radius  �� (Fig. 1.3). The 

receiving female die features the corresponding periodic array of holes of a diameter  �� along 

with a corner radius  �� (Fig.1.3). 

The relative density �� of the core structure describes the ratio of the overall mass density 

of the core structure to the density of the basis sheet material. In the case of incompressible 

sheet materials, the relative density is given by  

 

�� � 2��                                                                         �1.1� 

 

where � denotes the initial sheet thickness and �/2 is the effective height of a single core 

layer after stamping. 

1.1.2 Basis material 

The bi-layer core structure can be made of any sheet material that provides sufficient 

formability. Here, we focus on dimpled layers that are made from a tin mill product of the 

type “black plate” which is a light gage low-carbon, cold-reduced steel. According to ASTM 

A623-05, it features a maximum carbon and manganese content of 0.13% and 0.6% 

respectively. The material has been supplied by ArcelorMittal in the T4 temper.   

Uniaxial tensile tests are performed under static loading conditions to characterize the 

anisotropic plastic properties of this sheet material. Dogbone shaped ASTM-E8 specimens are 

extracted from the sheets along the rolling direction, the cross-rolling direction and the 45° 

direction. We make use of a universal testing machine (MTS Model 318.10) with a 100kN 

load cell. The specimens are loaded at a constant cross-head velocity of 2mm/min. A random 

speckle pattern is applied to the specimen surface and monitored throughout testing using a 

digital camera (Allied Vision, PIKE) with 10mm Nikon Nikkor lenses. The axial and width 
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strains are determined based on a series of 500-1000 pictures using digital image correlation; 

the virtual extensometer lengths are 15mm and 9mm for the axial and width directions, 

respectively.  

 

 

 
Fig. 1.2 : Engineering stress-strain curves for the 0.2mm thick low carbon steel sheet for 
loading along different in-plane directions. 

 

The measured engineering stress-strain curves are presented in Fig. 1.2. Assuming a 

Young’s modulus of 210GPa and an elastic Poisson’s ratio of 0.3, we determined a yield 

stress of about 310MPa at 0.2% plastic strain for all loading directions. The Lankford ratios 

are determined from the average slope of a plot of the logarithmic plastic width strain versus 

logarithmic plastic thickness strain (assuming plastic incompressibility). Upon evaluation, we 

find �� � 0.69, �"# � 1.15 and �%� � 0.76. In our simulations, we make use of the Hill (1948) 

yield function along with an associated flow rule and isotropic hardening to model the sheet 

material behavior. The corresponding yield stress ratios are given in Table 1.1. 

All specimens fractured at an engineering strain of about 0.25. Here, we extrapolate the 

measured true stress versus logarithmic plastic strain curve using the modified Swift law 

 



13 

 

' � (�)* + )��,                                                             �1.2� 

 

with the parameters ( � 570 -./, )� � 0.01 and 0 � 0.13. 

 

 

RLL RWW RTT RLW RLT RWT 

1.00 1.03 0.94 0.90 1.00 1.00 
 
 
Table 1.1 : Yield stress ratios.  
 

1.2. Stamping experiments 

1.2.1 Experimental set-up 

A stamping experiment is performed to provide an experimental basis for the validation 

of the computational model that is used for the subsequent parametric study. We 

manufactured a set of dies with � � 2.222 . The male tool had the dimensions �� �1.222 and �� � 0.222, while �� � 1.822 and �� � 0.222 have been used for the 

female die. The stamping tool features a matrix of 572 pins and dies over an area of 25 x 25 

mm. A four-column low friction guidance system guaranteed the alignment of the die and 

punch matrices throughout stamping. 

The tool is set up at the center of a universal testing machine. The force is applied via a 

cylinder on the upper clamping block (part #3 in Fig. 1.3). The oil lubricated sheet is 

positioned between the upper and lower clamping block of the tool (part #1 and #2). 

Throughout stamping, a 250kN load cell measures the total stamping force, while an LVDT 

inside the vertical actuator recorded the applied displacement. Each stamping experiment is 

performed under displacement control at an actuator velocity of 0.33mm/min.  
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                                (a)                                                                    (b) 
 
 
Fig. 1.3 : (a) Photograph of the stamping tool comprising a male die (part 1) and a 
female die (part 2); (b) side view of before stamping, 

 

1.2.2 Experimental results 

The measured force-displacement curves throughout stamping are shown in Fig. 1.4. The 

superposition of the results from two experiments (red and black curves) demonstrates good 

repeatability.  

After an initial linear response, the slope of the force-displacement curve decreases at a 

measured displacement of about 0.2mm. The stamping force continues to increase up to a 

displacement of about 1mm until the sheet fractures. The second experiment is stopped prior 

to fracture at a displacement of about 0.75mm. The slope of the corresponding loading branch 

of the force-displacement curve at the beginning of the experiments is smaller than for 

unloading. This is explained by the evolution of the specimen geometry throughout stamping. 

At the beginning of the experiment, the sheet material is predominantly subjected to bending, 

while the state of loading is more membrane-dominated once the sheet has formed its 

characteristic dimple shape.  
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Fig. 1.4 : Stamping pressure versus displacement. 
 
 
 

 

Fig. 1.5 : Side view of a single corrugated layer: comparison of the computed geometry 
(top) with a scanning electron micrograph of a prototype (bottom). 
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A SEM picture of a dimpled layer after stamping is shown in Fig. 1.5. The corresponding 

cross-sectional cut through a single dimple elucidates pronounced necking in a region where 

the sheet material leaves the punch radius (near cross-section label 2 in Fig. 1.5). Optical 

thickness measurements indicate that the sheet thickness is reduced to 0.16mm right below 

the punch while its thickness remains more or less unchanged near the die contact areas. 

Within the neck region, we observe thicknesses as low as 0.11mm which corresponds to a 

thickness reduction of 45%.  

1.3. Computational models for “virtual experiments” 

 

A finite element model is built to simulate the making of a core layer using Abaqus 6.8.3. 

The unit cell model of the material microstructure is subsequently used for all the virtual 

experiments on the bi-layer core structure. Thus, the size of the periodic unit cell and the 

boundary conditions are chosen according to the symmetry of the experimental set-up. Note 

that the detailed modeling approach is only feasible with reasonable computational effort at 

the unit cell level, whereas a macroscopic model is required for the design of structures made 

from sandwich materials.    

1.3.1  Important modeling assumptions 

The mechanical behavior of sheet materials in forming and crash simulations can be 

predicted with remarkably high accuracy using state-of-the-art computational models. Since 

the proposed sandwich material corresponds to a sheet metal assembly, it is expected that the 

virtual experiments will provide representative estimates of its effective behavior. The key 

simplifications with respect to representing the real sandwich structure are:  

 

(1) Assumption of perfect alignment of the two core layers; when manufacturing the 

sandwich material, it is very difficult to guarantee the perfect alignment of the core 

layers. It can be seen from the micrograph shown in Fig. 1.1 that small misalignment 

errors are present in the real material, while perfect alignment will be assumed in the 

virtual experiments; 
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(2) Negligence of property changes due to brazing; in reality, the four constituent layers 

of the sandwich material are brazed together; the temperature history throughout 

brazing may change the steel properties (preliminary experiments have shown this); 

this effect will be neglected in the present study; 

 

(3) Assumption of rigid braze joints; it is assumed that the braze joints are very thin and 

strong, such that the deformation in these joints is negligibly small with respect to the 

deformation of the core layers.    

 

An attempt was made to confront the results from virtual experiments with experiments on 

real prototypes. It was found that point #2 presents a first order effect which makes it almost 

impossible to achieve good agreement.  

 

 

 

 

 
Fig. 1.6 : The manufacturing steps. 
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1.3.2 Manufacturing simulations 

A finite element model of a unit cell of the core structure is obtained after simulating 

three manufacturing steps:  

 

(1) the stamping of flat sheets to create the dimpled shaped layers,  

 

(2) the forming of flat bonding lands on each layer, and  

 

(3) elastic springback.  

 

The residual plastic strain fields are imported from one step to the next one. Once the core 

structure is created, flat face sheets are added to form the sandwich structure. 

1.1.1.1. Stamping 

The dashed rectangles in Fig. 1.6 indicate the size of the unit cell models which are used 

to perform the virtual experiments. The green lines define the smallest model; the model 

defined by the red rectangle is twice as long as the green model, while the blue model is twice 

as wide. The different dimensions are needed to facilitate the definition of periodic boundary 

conditions (which depend on the specific loading case to be studied). In the case of the small 

green model, two punches (male die) along with their receiving female dies are needed for the 

stamping of this unit cell. All forming tools are modeled as analytical rigid surfaces. A mesh 

with five first-order solid elements (type C3D8R from the Abaqus element library) in the 

thickness direction is chosen to account for high through–thickness stresses as well as 

through-thickness necking. The receiving dies are fixed in space while the punches move 

along the T–direction (Fig. 1.7). To guarantee quasi-static conditions throughout the stamping 

simulations, the punch velocity increases linearly from 0 to 1m/s over a time interval of 40 µs. 

Subsequently, it is kept constant until the maximum stamping depth is reached. A kinematic 

contact formulation with a friction coefficient of 0.1 is employed to model the contact 

between the tools and the sheet surfaces. Throughout stamping, the in-plane displacement 

component 4�  is set to zero for all nodes on the boundary surface of normal 
�, while 4
 � 0 

on all boundaries of normal vector 

.  
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Fig. 1.7 : Sequence of computed geometries during the stamping of a unit cell of a single 
core layer. 

 

The results from the stamping experiments are compared with the numerical predictions 

to validate the model assumptions. We define the stamping pressure as the total stamping 

force per unit area of the stamped sheet. The initial slope of the simulation curve ((56�7 �2363-.//22) is much higher than that of the experiment ((89* � 65-.//22). This is 

attributed to the finite stiffness of (�: of the universal testing machine and the forming tool. 

Considering the forming tool as a spring in series with the work piece, we find a machine 

stiffness of (� � 67-.//22. Figure 1.4 shows the comparison of the simulation and the 

experimentally-measured stamping pressure versus displacement curves.  Note that both 

curves are initially identical since we added the displacement associated with finite machine 

stiffness, ∆4 � ./(�, to the simulation result (stiffness correction). The agreement between the 

two responses is remarkably good. Note that the simulations are performed without any 

fracture criterion. Consequently, the maximum load in the simulation is determined by the 

post-necking behavior of the simulation model, whereas the fracture initiates at an earlier 

point in the experiment.  

1.1.1.2. Forming of the bonding land, springback and joining of the core layers 
and face sheets 

The four-layer sandwich material needs to be virtually joined together in order to estimate 

the effective shear properties. A tie contact model (Abaqus, 2008) is used to join the core 

layers to each other as well as to the respective top and bottom face sheets. After completing 
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the previous stamping simulations (step #1, explicit time integration), an additional forming 

step is introduced (step #2, explicit time integration) where flat rigid plates are used to flatten 

the bonding lands (Fig. 1.6). A first rigid plate applies a pressure to the bottom surface of the 

corrugated sheet until the resulting material thickness below the centers of the punches equals 

about 80% of the initial sheet thickness. Similarly, a second rigid plate is used to apply a 

pressure to the top surface of the corrugated sheet. Here, the simulation is stopped as the 

initial sheet thickness above the dies equals about 90% of the initial sheet thickness. The 

flatness of the bonding lands (contact areas) is important to avoid an artificial mesh distortion 

when using the tie contact model. In reality, the flatness of the bonding lands is also important 

as it enhances braze joint strength. The flattened bonding lands of two opposing core layers 

are bonded to each other using the tie option with a position tolerance of 0.001mm.  

After joining all layers together with the tie contact, a spring back analysis is performed 

(step #3). Since springback analyses are simply static simulations without external loading, 

Abaqus/Standard is preferred for that step whereas all the others were performed using 

Abaqus/Explicit.  The final shape and dimensional changes associated with spring back are 

negligibly small for the present design, but it is still important to compute a macroscopically 

stress-free configuration before starting any virtual experiments on this unit cell model. Note 

that this last step is omitted for virtual experiments in the elastic range of the material as 

residual strains do not influence the elastic behavior.  

 Two 0.2mm thick face sheets are created and bonded onto the core layers to form the 

sandwich structure. A tie contact with a position tolerance of 0.002mm is used to create the 

virtual bond between the face sheets and the core structure.    
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Chapter II : Optimization of the Effective Shear Properties of the Bi-

directionally Corrugated Sandwich Core Structure 

 

Mohr (2005) investigated the forming by draw bending of sandwich sheets. The results 

revealed that the core shear failure is the dominant failure mechanism and that high relative 

density (>20%) core structures are required to withstand the high shear loads throughout 

forming. Hence, for our material to be formable, it is necessary that it offers great shear 

strength. Based on the working assumption that sandwich core structures of high transverse 

shear stiffness will also feature high transverse shear strength, the transverse shear stiffness of 

the newly-developed all-metal sandwich core structure is investigated numerically using the 

unit cell model defined in chapter I. Four-point bending experiments are used to validate the 

finite element model. A parametric study is performed to identify the material architectures 

that provide the highest shear stiffness-to-weight ratio for relative core densities ranging from 

0.2 to 0.35.  

The main results of the chapter have been summarized in the form of a journal paper 

under the title “Optimization of the Effective Shear Properties of a Bi-directionally 

Corrugated Sandwich Core Structure”, Journal of Applied Mechanics (in press). 
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2.1. Estimation of the effective shear stiffness 

The computational model, corresponding to the red square in Fig 1.6, comprised of two 

core layers and two face sheets is used for estimating the shear stiffness of the core structure. 

While an explicit time integration scheme is used for all forming simulations, shear 

experiments are performed using implicit time integration. The load is applied to the structure 

via the face sheets (Fig. 2.1).  

 

 

Fig. 2.1 : Unit cell model of the sandwich structure for estimating the transverse shear 
stiffness.  

 

The boundary conditions estimating the shear stiffness are: 

 

- Periodicity of the structure along the L-direction: the displacements of a node on a 

first (W,T)-boundary plane are identical to the displacements of the corresponding 

node with the same Wx  and Tx coordinate on the second (W,T)-boundary plane.   

 
- Symmetry of the mechanical problem along the W-direction: the in-plane 

displacement Wu  of all nodes on the (L,T)-boundary planes is set to zero.  

 
- Simple shear loading: A uniform displacement 4� along the L-direction is applied to 

all nodes on the top (W,L)-boundary plane, while it is set to zero for the bottom 
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boundary plane. The displacement along the T-direction is set to zero for both the top 

and bottom (W,L)-boundary planes.  

 

The shear modulus <�� is determined from the slope of the computed linear relationship 

between the shear force =� and the applied shear displacement4�,  

 

<�� � >�=��4�? 2�√3�A                                               �2.1� 

 

2.2. Parametric study of the effective shear stiffness 

2.2.1  Input parameters 

The computational model is used to perform a parametric study on the shear stiffness of 

the proposed sandwich material. In particular, we are interested in finding the “optimal” core 

geometries that provide the highest out-of-plane shear stiffness for a given relative density. 

Throughout our simulations, the initial sheet thickness is fixed to mmt 2.0=  which 

corresponds to the lowest gage for low carbon sheet material that is available for large coil 

widths. The following geometric parameters are varied: 

 

- Stamping depth parameter �B � �/�� + ��. As illustrated in Fig. 1.6, h denotes the 

punch displacement.  

 
- Dimple geometry parameter �C � �/�. This parameter describes the dimple width to 

height ratio.  

 
- Bonding land parameter �D � �/�. The diameter �D determines the size of the 

dimple’s top, i.e. it is closely linked to the bonding land on top of each dimple. 

 
- The corner radii for the punches and dies are always set to � � �/4.  

 
The range of parameters is shown in Tab. 2.1. 
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Geometric parameters       

αh 0.20 0.22 0.24 0.26 0.28 0.30 

αD 4 5 6 7   

αd 0.3 0.4 0.5 0.6   
 
 
Table 2.1 : Geometric parameters values. 

 

 

 The parameter �B is varied from 0.2 to 0.3 which corresponds to the lower range of 

relative densities for which optimal cellular core structures are expected to provide sufficient 

shear strength for sandwich sheet forming applications (e.g. Mohr and Straza, 2005). Since 

the initial sheet thickness � is kept constant, the variations of  �B translate also into a variation 

of the overall thickness of the core structure from about 1.3mm (for �B � 0.3) to 2.0mm (for  �B � 0.2). �C is varied from 4 to 7. A large �C  describes rather shallow cells, while the 

lowest value is chosen with forming limits in mind. The forming limits of the low carbon steel 

are not known (as it is not only subject to plane stress, but also substantial through-thickness 

stresses). However, some preliminary experimental work had shown that the forming of cell 

geometries with �C F 4 will probably be impossible to achieve in reality because of 

premature material fracture during stamping. The bonding land parameter �D  is varied from 

0.3 to 0.6 which corresponds to a variation of the bonding land area fraction from 8% to 33%. 

The full permutation of all parameter combinations (�B, �C , �D) resulted in 96446 =××  

simulation runs.  

2.2.2  Results 

A summary of all simulation results is shown in Fig. 2.2. It depicts the shear modulus as a 

function of the parameter �B. The results reveal that for a given �B (i.e. the same stamping 

depth), the shear modulus of the “optimal1” configuration can be up to three times higher than 

that of the worst configuration. Figure 2.3 shows the “optimal” configurations for the six �B 

that are considered in this study. It is interesting to observe that these feature the same 

                               
1 Here, the adjective “optimal” is used to make reference to the configuration that provides the highest shear 
modulus among all or a sub-group of configurations considered in this study.  
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geometric parameters �C � 4 (smallest width to height ratio) and �D � 0.6 (largest bonding 

land area fraction). Recall that the initial sheet thickness is the same for all configurations. 

However, the average thickness after stamping decreases as hα  decreases. It may be expected 

that this decrease in average thickness will also increase the likelihood of fracture during 

stamping. Note that the through-thickness necking is more pronounced for small values of �B.  

In Fig. 2.4, we show selected results of this parameter study to elucidate the influence 

of �C. Observe that the shear modulus is a decreasing monotonic function of the width to 

height ratio�C. Truncated cones can be used to represent the dimples of the structure as a 

simple think model. For constant �B and �D, decreasing �C implies a steeper cell wall angle 

which makes each “cone” of the core structure less stiff under shear loading. 

Moreover, the average wall thickness of the cones decreases as �C decreases, which 

would also decrease the cones shear stiffness. However, when calculating the macroscopic 

shear stresses, the stiffness of each cone is normalized by the representative area of 1.8�A. 

The effect of increasing representative area per cone appears to be dominant which explains 

that the effective shear stiffness decreases as the width to height ratio �C increases. This 

model is also validated by a previous numerical study of the effective shear behavior of an 

idealized core structure with uniform wall thickness that is made from truncated cones. Using 

the same definitions for the geometry parameters as for the dimpled layers, we find the same 

result as far as the effect of �C is concerned. 

Akisanya and Fleck (2006) considered that thin-walled frusta may be considered as the basic 

mechanical element of egg-box structures. They analyzed their response to shear and normal 

loading both experimentally and numerically. Their results reveal that the effective shear modulus 

of structures composed of frustra is nearly independent of the cell wall angle (for the same relative 

density). 

The effect of �D is highlighted in Fig. 2.4. Changing �D from 0.3 to 0.6 (without changing 

the height or width of the sandwich core structure unit cell) can increase the effective shear 

stiffness by more than 100%. The average cell wall thickness decreases and the cell wall 

inclination angle increases as �D increases. Both effects suggest that the effective shear 

stiffness should decrease as �D increases, which is in contradiction with the simulation result. 

It is speculated that the low stiffness for small values of �D is due to the combination of local 

indentation and necking of the sheet material when using punches of small diameter. The 

imprint of the punch is clearly visible for all configurations, but the local thickness reduction  
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Fig. 2.2 : (a) Macroscopic shear modulus as a function of the height-to-thickness ratio �B; the 
black crosses represents the simulation results for different stamping tool geometries; (b) 
cross-sectional views of four selected geometries. The numbered labels indicate the 
corresponding data points in (a). 
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is most pronounced in the case of the smallest punch (�D � 0.3, image (2) in Fig. 2.4b). The 

conical shape of the core structures causes a stress concentration towards the top of each 

dimple (i.e. the center of the symmetric core structure). This stress concentration is amplified 

further through the local indentation of the sheet material. Thus, the overall deformation of 

the core structure under macroscopic shear loading is not only due to the membrane 

deformation of the cone walls, but also due to the local shear deformation of the zones of 

stress concentration. A more uniform accumulation of shear deformation can be found for 

large values of �D. 

 

Given the observed monotonic relationships between the elastic shear stiffness and the 

respective geometric parameters, it may be concluded that the tools for forming a single 

corrugated layer should feature: 

 

� a small dimple width to dimple height ratio �C 

 

� a large bonding land diameter to width ratio �D 

 

The final choice of the parameters �C and �D is determined by the formability of the sheet 

material. It is interesting to note that the “optimal” configuration for shear stiffness appears to 

converge towards a geometry with vertical cell walls which is similar to that of a honeycomb.  

2.2.1   Comparison with hexagonal honeycomb 

Metallic honeycombs are known to provide excellent shear stiffness when used in 

sandwich construction. Here, we compare the shear stiffness of the proposed dimpled bi-layer 

sandwich core structure with that of hexagonal honeycombs. Metallic honeycombs usually 

feature both single and double-thickness walls which is due to the manufacturing process. 

Thus, the shear modulus is a function of the loading direction. For shear loading in the T-W-

plane, the exact analytical solution for the shear modulus reads  

 <�
<G � 38 > ��5? H 0.375��                                               �2.2� 
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with <5 denoting the shear modulus of the cell wall basis material. The relative density is 

defined by the ratio of the effective honeycomb density � to the basis material density �5 

which corresponds to the relative density �� for the dimpled core material. The theoretical 

bounds for the shear modulus of a honeycomb in the L-T-plane (Kelsey et al., 1958) are 

 916 > ��5?  I <��<G I 58 > ��5?                                               �2.3�
 

 

As shown by Grediac (1993), the shear modulus <�� is closer to its upper bound of <�� H0.625�/�5<5 when used in sandwich structures where the honeycomb cell size is similar to 

the core height.  

The dashed lines in Fig. 2.5 show the theoretical estimates of the shear moduli <�
 and <�� (upper bound). The comparison with the computational estimates of the shear modulus 

for the dimpled material reveals that the weight specific stiffness of honeycomb in the T-W 

plan, is slightly higher than that of the “optimal” structure. For a relative density of about 

0.35, the shear modulus of the dimpled material is 10.0GPa while the one for honeycomb is 

10.3GPa. It has to be enlightened that the same shear modulus is found for all in plane-

direction of the corrugated core structure (Fig. 2.5). 
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(a) 

 

(b) 

 
Fig. 2.3 : Optimal configurations for different values of each �B. 
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Fig. 2.4 : Influence of the parameters �C  and �D  on the elastic shear modulus. 
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Fig. 2.5 : Elastic shear modulus as a function of the relative density for the proposed core 
structure (solid lines) and hexagonal honeycomb (dashed lines). Note that the shear modulus 
of the proposed material is the same for both in-plane directions, while the honeycomb 
stiffness is direction dependent.   

 

2.2.2 Comment on the optimal design of formable sandwich sheets  

The present work focuses on the optimization of the shear stiffness only. As indicated 

earlier, it is expected that the optimal design for shear stiffness will also be close to the 

optimal design for shear strength. In practice, premature failure of the bonding between the 

two core layers as well as of the bonding between the core structure and the face sheets 

(delamination) might become critical. An ideal sandwich material is designed such that all 

possible failure modes occur simultaneously. The reader is referred to the textbooks of Allen 

(1969), Zenkert (1995) or Ashby et al. (2000) for more details on the design of sandwich 

structures. With regards to the present work, it is worth noting that preliminary draw bending 

experiments on prototypes demonstrated that the core structure deforms plastically before 

braze joint failure initiates. 

 

 

 



33 

 

2.3. Experimental validation 

 

A brazed prototype made from low carbon steel with the corresponding optimal 

microstructure has been provided to us by CellTech Metals (San Diego, CA). The average 

core relative density of the sample is 29.0=*
ρ . It is extremely difficult to measure the shear 

modulus of sandwich core structures in this density range. Most experimental techniques have 

been designed for core structures that are both softer and thicker than the present material. 

Because of its high shear stiffness and small thickness, the overall shear displacement (i.e. the 

relative displacement between the top and bottom face sheets) prior to failure is very small. 

An attempt was made to measure this relative displacement through digital image correlation 

in a shear lap experiment (see ASTM C273) using two sandwich prototypes glued to each 

other with inner and outer cuts (Fig. 2.6), but inconclusive results were obtained because of 

the lack in displacement measurement accuracy. In addition to the shear lap test, we 

performed eigenfrequency measurements and used the identification method of Rebillat and 

Boutillon (2010) to determine the shear modulus. However, as for the shear lap test, no 

satisfactory results could be obtained since the shear deformation of the core structure 

contributed only little to the overall deflection of the vibrating sandwich plate (which was the 

goal of the optimization).  

 

 

Fig. 2.6 : Shear-lap test experiment specimen. 
 
 

As an alternative to the above two testing techniques, we make use of a bending 

experiment with high shear loads (i.e. a narrow support point spacing). In this experiment, the 

shear modulus determination can be affected by the local indentation of the face sheets, the 

underlying sandwich theory and the effect of the face sheet stiffness on the effective core 

shear stiffness (e.g. Lebee and Sab, 2010). In order to omit any simplifying assumptions 

throughout the experimental analysis, we perform a large scale finite element analysis of the 

entire sandwich structures which is subject to bending and compare the computed load-

deflection curve with the experimental result.   
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2.3.1  Four-point bending experiment  

Four-point bending experiments are performed on 2522 wide and 12022 long 

sandwich beam specimens. All specimens are extracted from CellTech sandwich sheets. The 

thickness varies not only from specimen to specimen (see Table 2.2), but also within each 

specimen. The thickness measurements at three different locations along the beam axis reveal 

thickness variations of up to 0.12mm within the specimen; the average thickness of the 

specimen is J� + 2��K � 1.7222.  

Figure 2.7 shows a photograph along with a technical drawing of the four-point bending 

experiment. The specimen is supported though two cylindrical rollers. Two rollers of the same 

diameter (15.822) are used to apply the loading. The distance of the upper rollers is a � 25mm in all experiments, while the two different lower support point distances are 

considered (b1=88.7mm and b2=73.7mm) to vary the ratio of the shear force and bending 

moment in the four-point bending experiment. The displacement loading is applied through a 

ball seed using a hydraulic universal testing machine (Model 318.10,MTS). The vertical force 

is measured using a 2kN load cell, while the position LVDT of the vertical actuator is used to 

record the applied displacement. There is no need for a machine stiffness correction since the 

effective specimen stiffness is much smaller than the stiffness of the experimental set-up. The 

experiments are performed under displacement control at an actuator velocity of 

0.125mm/min.  

All bending experiments are performed in the elastic range. Thus, the experimental 

results are characterized by the measured slope of the force-displacement curves, ( � �=/�4. The stiffness K is determined from the linear interpolation of the measured force-

displacement curve for a displacement interval of about ∆4 � 0.522. Table 2.2 summarizes 

the experimental results for four different specimens and the two support point distances.  

The measured stiffness values vary by -17%/+24% and O11%/+17% around the 

average for the small and large support point spacing. These variations are primarily 

attributed to variations in sample thickness as well as the thickness variations within each 

specimen. However, there are many other sources of experimental uncertainty which are 

worth mentioning. For example, the specimen is not perfectly flat and the axes of all four 

roller axes are not perfectly parallel; as a result, the specimen is loaded in an uneven manner 

which would reduce its apparent stiffness. Even though large diameter rollers have been 

chosen, the local indentation of the sandwich beam may contribute to an experimental error. 
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Note that the indentation stiffness of the sandwich specimen depends also on the location of 

the support point with respect to the contact points between the face sheet and the dimpled 

core structure. Variations in the shear stiffness may also be due to defects in the braze joints 

as well as poor alignment of the core layers with respect to each other 

 

 

 
Sample 

Cmoy K1 K2 

 mm N.mm-2 N.mm-2 

    
1 1.38 5.36 9.90 
2 1.40 5.50 9.12 
3 1.25 4.67 8.69 
4 1.49 6.96 11.50 

Average 1.38 5.62 9.80 

 

Table 2.2 : Four point bending experiment results. K1 and K2  respectively the stiffness per 
unit width for the cylinders spacing b1 and b2.  

 

2.3.2  Model for the bending of the sandwich structure 

Using the same procedure as for the above unit cell computations (stamping, flattening, 

joining), we built a computational model of the four-point bending material. Due to the 

symmetry of the experimental set-up, only one half of the specimen is modeled. The boundary 

condition 4� � 0 is applied to all nodes located on the W-T-symmetry plane. Furthermore, we 

assume a wide beam (plane strain conditions along the W-direction) and make use of the 

periodicity of the core structure to reduce our computational model to a 1.9122 wide beam 

with periodic boundary conditions along the W-direction (4
 � 0 on all L-T-boundary 

planes). 44 punches and dies are required for the stamping process. The modeled core 

structure has a height of � � 1.3122, which corresponds to a relative density of �� � 0.31. 

The support and loading rollers are modeled as analytical rigid surfaces. All degrees of 

freedom of the rollers are fixed except for the vertical motion of the upper loading roller. 

Explicit time integration is used because of the size of the computational model (>100,000 

elements) and the modeling of contact. To guarantee quasi-static loading conditions, the upper 

cylinder velocity is increased linearly from 0 to 522/P over a time period of 100QP and 
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from 5 to 10022/P over another period of 100QP, before keeping the loading velocity 

constant. The contact between the tool and the sandwich surfaces is modeled using a 

kinematic contact model with a friction coefficient of 0.1.  

After completing the finite element analysis for a support point spacing of RS � 88.722 

and RA � 73.722, the specimen stiffnesses (S � 5.5T/22A and (A � 10.5T/22A are 

obtained from the linear load-deflection curves. The numerical results are remarkably close to 

the average stiffnesses measured experimentally: (S is underestimated by 3%, while (A is 

overestimated by 7%. Recall that the experimental results feature significant scatter (as 

explained above) and that the thickness of the numerical model is slightly smaller than the 

average for all samples.  

     

 

(a) 

 

(b) 
 
 
Fig. 2.7 : Four-point bending of wide sandwich beams: (a) photograph of the experimental 
set-up, (b) schematic of the finite element model. The detail depicts a small portion of the 
deformed finite element mesh.     
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Despite the known experimental and computational uncertainty, the good agreement of 

the simulations and the experimental results is seen as a partial validation of the 

computational model. The mesh used in the bending simulations (three solid elements through 

the sheet thickness) is coarser than that used for the unit cell analysis (five elements through 

the thickness). However, the simulation of a unit cell under shear loading revealed that the 

differences in the shear modulus estimates are less than 1%.  

2.4. Conclusions 

The transverse shear stiffness of the bi-directionally corrugated core structure is analyzed 

both experimentally and numerically using a detailed finite element model. A parametric 

study is performed to choose the stamping tool geometry such that the resulting core structure 

provides maximum shear stiffness for a given relative density. It is found that the optimal 

geometries for relative densities ranging from 0.2 to 0.35 all feature the same dome shape 

with the same height-to-width ratio, i.e. a small dome width to dome height ratio and a large 

bonding land diameter to dome width ratio. The simulation results also show that the 

estimated transverse shear strength of the proposed core structure is the same as that of 

hexagonal honeycombs of the same weight for high relative densities (greater than 0.35), but 

up to 30% smaller for low relative densities (lower than 0.2). However, unlike for hexagonal 

honeycombs, the shear stiffness is approximately the same for both in-plane directions.   
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Chapter III : Plasticity of Formable All-metal Sandwich Sheets: Virtual 

Experiments and Constitutive Modeling  

 

Performing numerical simulations using a detailed model of the core unit cell as defined 

in the previous chapters is reasonable as it features about 105 000 elements. However, 

numerical difficulties would be found for more complex experiments on wider surfaces. 

Hence, for numerical efficiency, the analysis of cellular structures with numerical tools is 

preferably performed in terms of effective properties rather than using a detailed model of the 

given microstructure. The goal of the present chapter is to define a macroscopic 

phenomenological constitutive model of the sandwich structure in the perspective of modeling 

forming and draw bending experiments on wide surfaces. First, the behavior of the bi-

directionally corrugated sandwich structure under different uniaxial loadings is investigated. 

Finite element experiments are carried out using the detailed unit cell model of the “optimal” 

core geometry, as defined in chapter II, for a relative density of �� � 0.31.  Then, based on 

biaxial tensile experiment simulations and a plastic work yield criterion, a constitutive model 

using distortional hardening is proposed and is used in conjunction with a layered shell 

element formulation to represent the sandwich structure.  

The main results of this chapter have been summarized in the form of a journal paper 

under the title “Plasticity of Formable All-metal Sandwich Sheets: Virtual Experiments and 

Constitutive Modeling”, International Journal of Solid and Structures (under revision). 
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3.1. Models for virtual experiments  

The virtually manufactured unit cell model of the bi-directionally corrugated sandwich 

sheet, as described in chapter I, is used for the virtual experiments. We use the geometry 

presenting the highest shear stiffness-to-weight ratio, as defined in chapter II, with  

 

� � 2.0622, �� � 1.2322, �� � �� � 0.3122 /0� �� � 1.4422. 
 

Here we have the initial face sheet � � 0.222 and the core thickness � � 1.3122, hence, 

the sandwich structure height is U � 1.7122 and the relative density �� � 0.31. 
The model includes the residual stress and plastic strain fields due to manufacturing.  

Here, we briefly describe the boundary conditions and output variables that have been used to 

characterize the effective mechanical behavior of the sandwich material. In fig 3.1, we recall 

the colored dashed lines marking the boundary of the unit cell used for the different virtual 

experiments.  All simulations results are presented in Section 3.2.  

 

 

Fig. 3.1 : The colored dashed lines mark the boundary of the unit cell used for selected virtual 
experiments. 
 

3.1.1 Out-of-plane compression  

The red unit cell model is positioned between two flat rigid plates (of normal 
�). The 

upper plate moves along the T-axis, while the lower plate is fixed in space. To guarantee 
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quasi-static conditions throughout the simulation (with explicit time integration), the loading 

velocity increases linearly from 0 to 0.003m/s maximum over a time interval of 5ms and is 

kept constant until the end of the virtual experiment. A kinematic contact formulation with a 

friction coefficient of 0.1 is employed to model the contact between the tools and the sheet 

surfaces. Periodic boundary conditions are defined for all nodes positioned on the lateral 

boundaries (of normal  

 and  
�).  

The effective engineering out-of-plane normal stress is defined as 

 

V�W � =�WX�                                                                  �3.1� 

 

with the initial cross-sectional area AZ � √[A �A.  

The corresponding out-of-plane engineering normal strain is defined as   

 

\� � 4ZC                                                                 �3.2� 

 

where 4Z and =� define the displacement and force applied by the moving upper plane.  

3.1.2 Out-of-plane shear 

The red unit cell model is used for shear in the (L,T)-plane, while the blue unit cell model 

is used for shear in the (W-T)-plane. The boundary conditions for shear loading in the (L,T)-

plane are:  

 

- Periodicity of the structure along the L-direction: the displacements of a node on a 

first (W,T)-boundary plane are identical to the displacements of the corresponding 

node with the same ^_ and ^� coordinate on the second (W,T)-boundary plane.  

 

- Symmetry of the mechanical problem along the W-direction: the in-plane 

displacement 4_ of all nodes on the (L,T)-boundary planes is set to zero. 
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Analogously, for virtual shear testing in the (W,T)-plane, the boundary conditions are:  

 

- Periodicity of the structure along the W-direction: the displacements of a node on a 

first (L,T)-boundary plane are identical to the displacements of the corresponding 

node with the same ^� and ^� coordinate on the second (L,T)-boundary plane.  

 

- Symmetry of the mechanical problem along the L-direction: the in-plane displacement 4� of all nodes on the (W,T)-boundary planes is set to zero. 

 

The shear load is introduced by a displacement 4� along the L-direction applied to all nodes 

on the (W,T)-boundary planes of the top face or by displacement 4
 along the W-direction 

applied to all nodes on the (L,T)-boundary planes of the top face for shearing on the other 

direction. To guarantee quasi-static conditions throughout the shearing simulations, the 

loading velocity increases linearly from 0 to 0.003m/s maximum over a time interval of 5ms 

and is kept constant until the end of the step. Denoting the corresponding reaction forces as =�W and =
W , we define the out-of-plane engineering shear stresses and strains as 

 

�̀�W � =�WX�      and        `
�W � =
WX�                                         �3.3� 

and   

c�� � 4dC       and        c
� � 4eC   .                                       �3.4� 

 

3.1.3 Uniaxial in-plane loading 

The green model is used for in-plane loading. Due to the symmetry of the mechanical 

problem with respect to the L-W-plane, a green model with one core layer and one face sheet 

is used for in-plane simulations. The specific boundary conditions are: 

 

- The in-plane displacement along the L-direction of all nodes on the first (W,T)-

boundary plane is set to zero. A kinematic constraint is imposed on all nodes on the 
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second (W,T)-boundary plane to guarantee that the plane remains flat. The 

displacement of these nodes is denoted as 4� .  
 

- Analogously, the in-plane displacement along the W-direction of all nodes on the first 

(L,T)-boundary plane is set to zero. A kinematic constraint is imposed on all nodes on 

the second (L,T)-boundary plane to guarantee that the plane remains flat. The 

displacement of these nodes is denoted as 4
. 

 

- The out-of-plane displacement 4�
 
of a set of nodes located on top of the core dimples 

(i.e. the center of the sandwich core) is set to zero. 

 

For uniaxial tension and compression along the L-direction, we prescribe 4� while 4
 is free 

(Fig. 3.2a). Conversely, we prescribe 4
 and leave 4� free for uniaxial loading along the W-

direction (Fig. 3.2b).  

In the case of in-plane loading, the engineering stresses for the face sheets, core layer and 

the entire sandwich material are 

 

V�W � fghigh  , V�� � fgjigj    and    V�5 � fghkfgjighkigj   (3.5) 

 

V
W � flhilh  , V
� � fljilj   and   V
5 � flm kfljilh kilj      (3.6) 

 

with the initial cross-sectional areas  X�� � √[A ��, X�W � √[" ��,  X
� � CA � and X
W � Cn" .  

The corresponding  macroscopic engineering strains read  

 

\� � 7gopqr    and   \
 � 7l>√spq ?.         (3.7) 

 



44 

 

3.1.4 Combined in-plane loading 

The same unit cell and boundary conditions as for uniaxial in-plane loading are used to 

perform virtual experiments for combined in-plane loading. We introduce the biaxial loading 

angle to describe the ratio of in-plane strains,  

 

�/0� � �\
�\� � �4_√3�4� .                                                        �3.8� 

 

The virtual experiments are then carried out for radial loading (i.e. monotonic loading with 

constant �).   

 
(a) 

 
 

 
(b) 

 
 
 
Fig. 3.2 : Illustration of the displacement boundary conditions for uniaxial tension (a) in the 
L-direction and (b) in the W-direction.  
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3.2.Results from virtual experiments 

The program of virtual experiments includes both out-of-plane and in-plane loading. The 

emphasis of the present work is on in-plane loading. Selected results for out-of-plane loading 

are included to shed some light on the overall mechanical behavior of this new material. 

3.2.1  Uniaxial out-of plane compression 

The macroscopic response for out-of-plane loading is shown in Fig. 3.3. The curve starts 

with a linear elastic regime followed by a monotonically hardening plastic response as the 

stress exceeds 30MPa. Observe from the deformation snapshots taken throughout different 

stages of loading that the dome height is progressively reduced during loading. This induces a 

state of compression in the flat bonding land area in the center of the core structure where 

regions of very high plastic strains develop. It is important to note that the out-of-plane 

compressive response of the present material is very different from that of traditional cellular 

materials. We observe 

 

- no peak stress (which indicates the absence of plastic collapse of the cellular 

microstructure); 

 

- no plateau regime (which indicates the absence of progressive folding of the cellular 

microstructure). 

 

However, as for traditional cellular materials, densification is expected to occur for the 

present material. The simulations were stopped too early to see the effect of densification on 

the stress-strain curve. The careful comparison of snapshots #2 and #3 reveals that a contact 

zone develops between the upper and lower domes which corresponds to an increase of the 

apparent size of the bonding lands.      

3.2.2 Out-of-plane shear 

Virtual experiments for out-of-plane shear loading are performed in the L-T- and W-T-

planes. The corresponding engineering shear stress-strain curves (Fig. 3.4) are almost the 

same (stress level is about 3% higher for L-direction). We observe an initial yield point at 
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around 15MPa. Thereafter, the stress continues to increase monotonically. Careful inspection 

of the deformed shapes shows a distortion on the dome structure due to out-of-plane shear.  

 

 
(a) 

 
 

 
(b) 

 
Fig. 3.3 : Out-of-plane compression: (a) macroscopic engineering stress-strain curve; (b) 
deformed configurations corresponding to the points labeled in the stress-strain curve. 
 

 

Observe the apparent jump in the displacement field near the center of the vertical unit cell 

boundaries. This is a three-dimensional effect. For example, for shear along the W-direction, 

the 4
-displacement field is continuous and satisfied the periodicity conditions along the 

boundaries, but it varies along the L-direction which gives the impression of a jump when 
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looking at the projection on the W-T-plane. The highest strains are observed near the braze 

joints which is expected as the net cross-section is the smallest in that area.     

 

 
(a) 

 
 
 

 
(b) 

 
 
 
Fig. 3.4 : Out-of-plane shear: (a) macroscopic engineering shear stress-strain curves; (b) side 
views of deformed configurations corresponding to the points labeled in the stress-strain 
curves. 
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3.2.3  Uniaxial in-plane tension  

Figure 3.5 shows the engineering stress-strain curves for uniaxial in-plane tension. The 

red curves show the results for tension along the L-direction, while the blue curves correspond 

to tension along the W-direction. The effective stress-strain curves are monotonically 

increasing and their shapes resemble that of a conventional metal. For tension in the L-

direction, the initial yield stress is about 130MPa for the entire sandwich material and reaches 

a value of about 160MPa at an engineering strain of 0.15.  

 

 
          (a)                                                (b)                                 (c) 

   
 
 

 
    (d) 

 
 
Fig. 3.5 : Uniaxial in-plane tension: engineering stress-strain curves for (a) entire sandwich 
cross-section, (b) the core structure, and (c) the face sheets; (d) 3D views of the deformed 
configurations corresponding to the points labeled in the stress-strain curves. 
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Figure 3.6a) elucidates the contribution of the face sheets and the core layers to the 

overall axial force of the sandwich material. For tension along the L-direction, the face sheets 

contribute about 57% to the overall force level, while the core layers contribute the other 

43%. This strong contribution of the core layer to the in-plane deformation resistance of the 

sandwich material is a very special feature of the bi-directionally corrugated core structure. 

Note that for most traditional sandwich material it is assumed that the contribution of the core 

layer to the in-plane stiffness and strength is negligible.  

 

 
 

 
Fig. 3.6 : (a) Decomposition of the section force (per unit width) for uniaxial tension along the 
L-direction into the contributions of the core structure (black) and the face sheets (red); (b) 
Engineering strain along the width direction as a function of the axial engineering strain for 
uniaxial tension along the L- and W-directions. 
 
 

It is worth noting that the same basis material (alloy and thickness) is used for the face 

sheets and the core structure. This also implies that the overall weight of the sandwich 

material is equally split between the face sheets and the core structure. Therefore, the weight-

specific response of the face sheets is more effective than that of the core structure (for 

uniaxial tension), but nonetheless the latter may still be seen as very high for a cellular 

material. In Fig. 3.5c, we also plotted the stress-strain response of the basis material for 

reference (dashed lines). The comparison of the dashed and solid curves reveals that a higher 
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effort is needed to deform the face sheets in the sandwich material as compared to testing 

these independently from the core structure. The coupling with the core structure results in 

non-uniform deformation fields (see contour plots in Fig. 3.5d) which increases the plastic 

work required for axial straining of the face sheets.  

The small differences between the two curves shown in Fig. 3.5a indicate some 

anisotropy in the sandwich material response. The breakdown into the contributions of the 

faces and core layers (Figs. 3.5b and 3.5c) demonstrates that this anisotropy may be attributed 

to the face sheet response. However, as shown by the dashed lines in Fig. 3.5c, this anisotropy 

is not only due to the original (texture related) anisotropy in the basis material. It is also due to 

the interaction with the core structure.  

The core structure is compressible (from a macroscopic point of view) and hence the 

definition of an r-value is not very meaningful to describe the anisotropy. Instead, we 

determine an apparent plastic Poisson’s ratio from a plot of the width versus axial strain (Fig. 

3.6b). For the present material, we obtain t�
* � O0.33 and t
�* � O0.28  for uniaxial 

tension along the L- and W-directions, respectively. 

3.2.4  Uniaxial in-plane compression 

The effective engineering stress-strain curves for uniaxial compression are shown in Fig. 

3.7a. They both exhibit a maximum in stress followed by a slightly decreasing stress level. 

The initial small strain response is very similar to that for uniaxial tension and we observe an 

initial yield stress of about 130MPa. The shallow peak in stress is associated with the out-of-

plane deformation of the face and core sheets which may be considered as a local collapse 

mode of the sandwich microstructure. This deformation mode is local in the sense that the 

sandwich mid-plane remains flat (as imposed by the symmetry conditions). The local bending 

stiffness of the core sheet is determined by the dimple pattern. In the case of compressive 

loading along the W-direction, less effort (as compared to the L-direction) is required to 

initiate an out-of-plane deformation mode as a plastic hinge can easily form perpendicularly 

to the loading direction (which corresponds to the expected orientation of a plastic hinge). 

This is due to the fact that the domes are positioned such that this hinge line can form between 

the domes i.e. in the area where the corrugated sheets exhibit the lowest plastic bending 

resistance. In the case of compression along the L-direction, the dome positioning prohibits 

the formation of a hinge line perpendicularly to the loading direction. This explains as to why 

the unit cell is more distorted for compression along the L-direction as compared to the W-
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direction. Figure 3.7 indicates that the decrease in stress level is mostly due to the folding of 

the core structure for W-compression. In the case of L-compression, the macroscopic 

deformation resistance of the core structure remains more or less constant which is consistent 

with the described plastic hinge mechanism.    

 

 
(a)                                                (b)                                   (c) 

 
 

 
 (d) 

 
 
Fig. 3.7 : Uniaxial in-plane compression: engineering stress-strain curves for (a) entire 
sandwich cross-section, (b) the core structure, and (c) the face sheets; (d) 3D views of the 
deformed configurations corresponding to the points labeled in the stress-strain curves. 

3.2.5  Biaxial in-plane behavior 

We limit our attention to states of loading that are of interest to sheet metal forming. 

Moreover, we assume that the effect of in-plane anisotropy on the mechanical properties is 
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small and focus on bi-axial in-plane loadings of positive strain along the W-direction (0° I� I 180°). In particular, we consider   

 

• � � 0° (transverse plane strain tension along L-direction) 

• � � 180° (transverse plane strain compression along L-direction) 

• � � 45° (equi-biaxial stretching) 

• � � 135° (in-plane shear, i.e. equal L-compression and W-stretching) 

 

In addition, in view of constructing an isotropic macroscopic yield surface, three intermediate 

loading angles are considered:  

 

• � � 11.3° 
• � � 101.3°, i.e. 

DvgDvl � Swxy�S�S.[� � O0.2 which is close to uniaxial tension along 

the W-direction  

• � � 168.7°, DvlDvg � O0.2 

 

Figure 3.8a summarizes all measured engineering stress–strain curves for the different loading 

cases of the biaxial experiments for the sandwich structure, the core structure and the face 

sheet. The red dotted lines recall the results for uniaxial tension. All curves for the L-direction 

are in hierarchical order with respect to � as expected for a conventional engineering material. 

The stress level for transverse plane strain tension (� � 0°) is the highest which is a common 

feature of materials with a convex yield surface and an associated flow rule. Similarly, the 

stress level for transverse plane strain compression (� � 180°) is the lowest. The stress along 

the L-direction is almost zero for � � 101.3° which is consistent with the observation that the 

corresponding stress-strain curve for the W-direction coincides with that for uniaxial tension 

(Fig. 3.8a).     

The contributions of the core structure and face sheet to the overall material response are 

also shown in Fig. 3.6a. A hierarchical order of the stress-strain curves for the L-direction is 

observed at this level. However, we note that the W-stress-strain curves for � � 45° (tension-

tension) and � � 135° (compression-tension) do intersect when considering the core structure 
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only. The snapshots of various stages of loading in Fig.3.8 b reveal that the sandwich 

structure is distorted for � � 135° which might explain the lower apparent strain hardening of 

the core layer as compared to � � 45° where the core layer appears to be stretched (and 

flattened) in a more uniform manner. It is worth noting that the face sheets remain 

approximately flat (i.e. the waviness is smaller than the face sheet thickness) when both in-

plane normal stresses are positive. As the second principal stress becomes negative (i.e. 

compression along the L-direction), we observe local out-of-plane deformation modes (see 

deformed configurations for � z 101.3°) .  
3.2.6  Volume change of core structure 

The volume change is determined from the displacement 4Z along the T-direction of the 

nodes located on the inner surface of the face sheets. At a given time step, the average surface 

displacement 4Z is determined and used to compute the engineering thickness strain. The 

corresponding plastic volume change is expressed through the volumetric strain 

 

\{* � J1 + \�*KJ1 + \
* KJ1 + \�*K O 1     (3.9) 

 

Figure 3.9 shows a plot of the plastic volumetric strain as a function of the plastic work for all 

virtual in-plane experiments performed. Except for the initial phase of uniaxial compression 

and � 180° , we observe a volume reduction (compaction). This is expected for tensile 

loading conditions, but negative volumetric strains are also observed for compression-

dominated loading such as  � � 135° and � � 168.7°. It is tentatively explained by the 

distortion of the compressed face sheet which can accommodate a local increase in core 

thickness, while the increase of the average core thickness is much smaller.     
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(a) 
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(b) 
 
 
Fig. 3.8 : Biaxial in-plane loading: (a) Engineering normal stress-strain curves for the L-
direction (left column) and W-direction (right column) for the full sandwich cross-section 
(first row), the core structure (second row), and the face sheets (third row); the label � 
indicates the bi-axial loading angle; (b) 3D views of the deformed configurations 
corresponding to the points labeled in the stress-strain curves. 
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3.3.Phenomenological macroscopic constitutive model 

3.3.1 Modeling approach 

The goal is to describe the macroscopic behavior of the sandwich sheet material using a 

composite shell model. A composite shell model assumes that the effect of the out-of-plane 

normal stress is negligible which is a strong but typical assumption made in the context of 

thin-walled structures. Different constitutive models are assigned to the thickness integration 

points of the composite shell element. We therefore need to provide constitutive models that 

describe the effective behavior of the face sheets and the core structure when built into a 

sandwich structure. As an alternative, one could consider the entire sandwich sheet as a 

homogeneous medium and develop a single constitutive model only. However, such a 

description would be suitable for membrane loading only whereas it is expected to break 

down in the case of bending loading. The constitutive model for the face sheet basis material 

is known, but it provides only a poor approximation of the effective behavior of the face 

sheets when these are integrated into a sandwich structure. 

3.3.2  Notation and kinematics 

The constitutive equations are written in the material coordinate system which is defined 

through the longitudinal in-plane direction (L), the width in-plane direction (W) and the 

thickness direction (T). The Cauchy stress vector summarizes the non-zero stress components 

in that coordinate frame, | � }'�� '

 ~�
��, while a standard co-rotational formulation 

is used to update the orientation of the material coordinate frame as the shell element is 

subject to large rotations and distortions (Abaqus, 2008). The work-conjugate logarithmic 

strain components are summarized by the strain vector, � � })�� )

 ��
��. A 

superscript ‘p’ is used to denote the corresponding plastic strains, �*. Bold lower case letters 

are used to denote vectors, while second-order tensors are denoted by bold letters. Square 

brackets are used exclusively to indicate the argument of a function, e.g. � � ��^�.    
3.3.3  Elastic constitutive equation 

The core structure features hexagonal in-plane symmetry. Neglecting possible elastic 

anisotropy in the basis material, we can therefore use an isotropic elasticity model to describe 

the effective in-plane behavior, for the core structure as well as for the face sheets,  
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| � ��� O �*�     (3.10) 

with 

 

 � � vS��q o
S � 
S + 
A � 
A + t
S � 
A + t
A � 
S + S��A 
[ � 
[r        (3.11) 

 

\� and t denote the elastic modulus and Poisson’s ratio for uniaxial in-plane loading, while  
S � }1 0 0��, 
A � }0 1 0�� and 
[ � }0 0 1��. 

3.3.4  Macroscopic yield surface 

The yield function will be chosen such that it defines the envelopes of equal plastic work. 

We thus computed the plastic work per initial unit volume for each virtual experiment and 

plotted the corresponding true stress data points �'
, '�� for selected amounts of plastic work 

in Fig. 3.10 (face sheets) and Fig. 3.11 (core structure). Note that we assumed plastic 

incompressibility for the face sheets (){ � 0), while the volumetric strains reported in Fig. 3.9 

are used when calculating the true effective stresses for the core structure.  

 

 

Fig. 3.9 : Plastic volume change during in-plane loading for all virtual experiments performed 
as a function of the plastic work per initial volume. The red dashed line shows the model 
approximation according to Eq. (3.23).  
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Both the core structure and the face sheets are made from a Hill’48 material and it is 

hence natural to choose the Hill’48 yield function as a starting point for the construction of a 

yield function for the cellular material. However, the data for the core structure shows a 

pronounced tension/compression asymmetry which cannot be represented by the Hill’48 

function. As a first approximation, the tension/compression difference in our study is 

attributed to a linear pressure dependency of the effective inelastic material behavior. We 

therefore define the yield condition as, 

 

 � � '� O � � 0                 (3.12) 

 

where the equivalent stress depends both on the deviatoric and diagonal terms of the Cauchy 

stress tensor,  

 '� � '��6�� + �'�    (3.13) 

With 

'��6�� � 

�=�'� O '��A + <�'
 O '��A + U�'� O '
�A + 2�~
�A + 2-~��A + 2T~�
 A       (3.14) 

and 

'� � �gk�lk�� [ .      (3.15) 

 

Note that the above yield function preserves the convexity of the original Hill’48 criterion as 

the associated Hessian matrix is not affected by the linear pressure term. In the case of plane 

stress, the yield function reduces to  

 

��|� � �'�A + <'
A + U�'� O '
�A + 2T~�
 A + �[ �'� + '
� O � � 0.     (3.16) 

 

We fitted the above expression to our virtual experimental data. The solid envelopes in Figs. 

3.10a,d and 3.11a,d show the fit to the data using the parameters listed in Table 3.1.    
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3.3.5 Distortional-isotropic hardening 

Figures 3.10d and 3.11d shows the yield envelopes for two distinct plastic work densities 

in a single plot. The comparison of the calibrated yield envelopes demonstrates that the elastic 

domain is not increasing in a self-similar manner. Instead, the shape of the yield surfaces 

changes substantially (distortional hardening). In Eq. (3.12), changes of � represent isotropic 

hardening, while changes in the coefficients =, <, U, T and � would represent distortional 

hardening. As an alternative to modeling the evolution of the yield surface coefficients (e.g. 

Aretz (2005)), we describe the yield surface evolution through a linear combination of two 

distinct yield functions �S�|� and �A�|�, 
 ��|� � �1 O ���S�|� + ��A�|�,   (3.17) 

 

where the isotropic-distortional hardening factor � � ���*�� is defined as a function of the 

plastic work density. Denoting the plastic work density associated with the yield functions �S 

and �A as �*�S  and �*�A , respectively, we impose the order �*�A z �*�S .   

Note that the linear combination (with positive weights) of two convex functions is still 

convex. Furthermore, the corresponding weighted equivalent stress,  

 

  '� � �1 O ��'�S + �'�A    (3.18) 

 

is still a homogeneous function of degree one. For plastic work densities smaller than �*�S  and 

greater than �*�A , we assume isotropic hardening only. The yield function evolution law may 

thus be written as 

 

��|� � � '�S�|� O �1 + ���S              �1 O ���'�S�|� O �S� + ��'�A�|� O �A�   '�A�|� O ��A                ���   �*� I �*�S                ���   �*�S F �*� F �*�A   ���  �*�A I �*�                �  (3.19) 

 

where the isotropic-distortional hardening function � z O1 defines a monotonically 

increasing function of the plastic work density which fulfills the constraints ���*�S � � 0 and ���*�A � � 1.  
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3.3.6 Flow rule and volume change 

An associated plastic flow rule is adopted to describe the evolution of the plastic in-plane 

strains. Formally, we write  

 

  ��* � �� ���|       (3.20) 

 

with the plastic multiplier �� � 0. The increment in plastic work density (per initial volume) 

can be written as 

 ��*� � �1 + \{*�| · ��*.                               (3.21) 

 

where a constitutive equation needs to be specified to determine the evolution of the plastic 

(engineering) volumetric strain \{*. Plastic incompressibility is assumed as a first 

approximation for the face sheets, i.e. \{* � 0. The core layer on the other hand is considered 

as compressible. The change in volumetric strain is directly defined as a function of the 

plastic work density,  

 

  �\{* � ����������.    (3.22) 

 

In particular, the linear function  

 ������ � O����      (3.23)      

  

with � � 0.0008-./�S provides a reasonable approximation of the present experimental 

data for the core structure (see red dashed curve in Fig. 3.9). Note that the above expression is 

only valid up to the theoretical densification strain of \{* � �� O 1.  
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              (a)                                                                (b)   
 

 
 

              (c)                                                               (d)   
 
 
Fig. 3.10 : Envelopes of equal plastic work (per unit initial volume) for the face sheets in the 
true stress plane (σW,σL). The open dots present the results from virtual experiments, the black 
solid lines in (a) and (d) represent the least square fit of the yield function given by Eq. (3.16). 
The solid envelopes in (b) and (c) have been computed based on the isotropic-distortional 
hardening model given by Eq. (3.24).   
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             (a)                                                                  (b) 
 

 
 
 

              (c)                                                               (d)   
 
 
Fig. 3.11 : Envelopes of equal plastic work (per unit initial volume) for the core structure in 
the true stress plane (σW,σL). The open dots present the results from virtual experiments, the 
black solid lines in (a) and (d) represent the least square fit of the yield function given by Eq. 
(3.16). The solid envelopes in (b) and (c) have been computed based on the isotropic-
distortional hardening model given by Eq. (3.25).   
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3.3.7 Summary of material model parameters 

The proposed material model is specified through the following parameters: 

 

- The elastic parameters, Young’s modulus \ and Poisson’s ratio t, that describe 

the planar isotropic elastic behavior; 

 

- The yield functions �S and �A; each function �6 is specified through five 

parameters:  <6 , U6, T6, �6 and �6; 
 

- The isotropic-distortional hardening function ���*�� which describes combined 

isotropic-distortional hardening. 

 

The isotropic-distortional hardening function may be presented as a parametric or non-

parametric function. For the present sandwich material, the parametric function   

 

������� �
�� 
�¡��¢ £1 + �S� ¤��� O �*�,�S�*�,�A ¥¦ ���   �*� F �*�,�A  

1 + �A� £¤ ����*�,�A ¥ O 1¦ ���   �*�,�A I �*�
�              �3.24� 

            

provides a good approximation of the face sheet response. The yield envelopes for �*� �15T/22A and �*� � 30T/22A shown in Fig. 3.10 have been computed using the above 

expression for the isotropic-distortional hardening function.  

For the core structure, we propose the function 

 

�W����� �
�� 
�¡ �SW ¤��� O �*�,WS�*�,WA ¥ ���   �*� F �*�,WA  

1 + �AW £¤ ����*�,WA ¥ O 1¦ ���   �*�,WA I �*�
           �3.25�� 
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to describe the apparent strain hardening. Figure 3.11 includes the intermediate yield 

envelopes for �*� � 4T/22A and �*� � 8T/22A that have been determined using Eq. 

(3.17) in combination with Eq. (3.25).  All model parameters as calibrated for the present face 

sheet and core materials are summarized in Tables 3.1 and 3.2.  

 

 
 

 §¨©ª  G1 H1 N1 α1 k1 

 N/mm2 - - - - MPa 

Core 1 1 0.6 1.5 0.03 105 

Face 0.5 0.77 0.53 1.5 -0.1 373 

 
 
 

 §¨©«  G2 H2 N2 α2 k2 

 N/mm2 - - - - MPa 

Core 12 1.2 0.22 1.5 -0.43 114 

Face 50 0.85 0.3 1.5 -0.33 459 

 
Table 3.1 : Yield function parameters. 
 
 
 
 

 ¬ª ¬« 

Core 1.09 0.26 

Face 9.09 0.09 

 
Table 3.2 : Isotropic-distortional hardening function parameters  
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3.4.  Validation and discussion 

The constitutive model is implemented into the finite element software Abaqus/explicit 

through its VUMAT user material subroutine interface. In the VUMAT code, we adopt a 

standard return mapping algorithm with a backward-Euler time integration scheme (Simo and 

Hughes, 1998). It is subsequently used in conjunction with a composite shell element. The 

cross-section of the composite shell element is composed of three layers representing the top 

and bottom face sheets (each 0.2mm thick) along with a 1.2mm thick core layer. Three 

thickness integration points (for numerical integration with the Simpson rule) are employed 

per layer.  

3.4.1  Comparison: macroscopic model versus virtual experiments 

All in-plane experiments are simulated using the composite shell model. The results are 

reported in terms of the section normal forces =� and =
 as a function of the corresponding 

engineering normal strains \� and \
. The solid blue lines in Fig. 3.12 depict the results for 

the composite shell element while the dashed blue lines show the corresponding results from 

the virtual experiments. In addition, we also computed the individual contributions of the face 

sheets (red curves) and the core structure (black curves).  

We observe good overall agreement of the force-strain curves for most loading cases. The 

best agreement of model and virtual experiments is observed for transverse plane strain 

loading (� � 0° and � � 180°). For uniaxial tension and compression, the predicted force 

agrees well with that of the virtual experiment, but it is underestimated by up to 15% at large 

strains. The model predictions are less accurate for combined loading. However, the force 

level predictions are still reasonable when quantifying the error in absolute terms. For 

example, the relative error in =� exceeds 100% for � � 101.3°, but the absolute difference is 

less than 20T/22. The comparison of the force-strain curves for the face sheets 

demonstrates a good agreement for almost all experiments. The observed differences in force 

level for the sandwich may thus be attributed to deficiencies in the model predictions of the 

effective behavior of the core structure. The plots of the yield envelopes in Fig. 3.11 

demonstrate that the error in the core model predictions are not due to the yield functions. 

Instead, it is speculated that the flow rule is not very accurate. Note that all biaxial 

experiments are strain-driven and the flow rule therefore determines the loading path in stress 

space. 
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3.4.2  Discussion 

An attempt was made to come up with a simple micromechanics-based two-scale finite 

element model of the core structure. For example, a simplified three-dimensional shell 

element model of the unit cell could be assigned to each thickness integration point of 

macroscopic composite shell model (see for instance Mohr (2006)). However, our preliminary 

results have shown that a three-dimensional shell element model (at the micro-scale) provides 

only a poor quantitative prediction of the effective stress-strain response obtained from our 

virtual experiments (that make use of fine solid elements). Similarly, analytical solutions of 

strongly simplified mechanical models of the core structure (e.g. a truncated cone of uniform 

thickness) turned out to be inadequate from both a qualitative and quantitative point of view. 

Here, we proposed a simple phenomenological modeling framework to describe the effective 

behavior of the face sheets and core layers, respectively. Such models are only of little value 

as far as their predictive capabilities outside the range of calibration are concerned. However, 

at this stage, where the sandwich material itself is still under development, it appears to be 

reasonable to propose a phenomenological model to evaluate the mechanical performance of 

three-dimensional structures made from this sandwich sheet material. The modeling of the 

effective behavior of constructed cellular materials is particularly challenging due to the 

evolution of the material microstructure. This evolution causes the distortion of the 

macroscopic yield surface which is described through a phenomenological isotropic-

distortional hardening model in the present work. The introduction of two fixed yield surfaces �S and �A results in a rather simple model which can be easily calibrated based on 

experiments. Note that the plastic work density is the only internal state variable of the model. 

This is a very strong simplifying assumption which is expected to break down in case of non-

radial loading paths. The final deformed configurations for � � 11.3° and 101.3° shown in 

Fig. 3.8b have been subject to approximately the same amount of plastic work density 

(�*� � 25T/22A). Clearly, the state of the material is very different among these 

configurations. Further improvements of the above model would therefore not only require a 

modified flow rule, but also the introduction of additional state variables to provide a more 

accurate description of the microstructural evolution.    
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3.5. Conclusions 

 

In this chapter, the focus is made on the plastic behavior of the bi-directionally corrugated 

sandwich structure under different loadings. Finite elements experiments are carried out using 

a full meshing of the core geometry. Uniaxial loadings such as out-of plane compression and 

shearing, in-plane traction and compression revealed a different behavior from that of 

traditional cellular materials. A very special feature of this new material is the strong 

contribution of the core layer to the in-plane deformation resistance of the sandwich material. 

The core structure contributes up to 43% of the effective yield strength of the sandwich sheet 

material for in-plane loading. Besides, the out-of-plane compressive response shows no 

collapse or progressive folding of the cellular microstructure. In addition, anisotropy in the 

sandwich material response is observed. 

Based on the results from biaxial tensile experiment simulations, a phenomenological 

constitutive model is proposed for both the face sheets and the core structure. The yield 

function is chosen such that it defines the envelopes of plastic work density. The equivalent 

stress depends both on the deviatoric and diagonal terms of the Cauchy stress tensor in order 

to take into account the anisotropy of the structure and the pronounced tension/compression 

asymmetry of its behavior. Furthermore, a new isotropic-distortional hardening modeling 

framework is proposed to provide a first approximation of the stress-strain response for radial 

loading paths.  The constitutive model is implemented into a commercial finite element 

software and used in conjunction with a composite shell element model to describe the 

effective in-plane behavior of the sandwich sheet material.  
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Fig. 3.12 : Comparison of the force (per unit width) versus engineering strain curves for all 
virtual experiments. Different colors show the force for the entire sandwich section (blue), the 
face sheets (red) and the core structure (black). Dashed lines depict the results from virtual 
experiments, while the solid lines correspond to the macroscopic models.    
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Chapter IV : Model Parameter Identification and Application to Draw 

Bending 

 

The use of the phenomenological constitutive model presented in chapter III requires the 

identification of the effective behavior of the face sheets and that of the core structure. The 

main outstanding challenge is the identification of the model parameters based on 

experimental data. We have shown that the mechanical response of the face sheets is altered 

through the coupling with the periodic core structure. Similarly, the behavior of the core 

structure depends strongly on the mechanical coupling with the face sheets. Consequently, it 

is not possible to identify the respective material model parameters from separate experiments 

on the face sheets and the core structure.   

In the present chapter, a procedure is developed to identify the plastic material model 

parameters based on tension and bending experiments on the entire sandwich material. 

Extensive work make use of an inverse method to determine material properties for instance 

hardening parameters of metal sheets have been identified thanks to three-point bending 

experiments (Omerspahic et al., 2006, Eggertsen et al., 2010) and vibration analysis were 

used to identify the different layers properties of sandwich structures (Lauwagie et al., 2004, 

Shi et al., 2006, Rébillat et al.,2011).  

Finally, draw bending experiments will allow for a structural validation and discussion on 

the constitutive model.  

The main results of this chapter have been summarized in the form of a journal paper 

under the title “Composite Shell Element Model of Bi-directionally Corrugated Sandwich 

Sheets: Model Parameter Identification and Application to Draw Bending”, Journal of the 

Mechanics of Solids and Structures, (submitted for publication). 
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4.1. Calibration experiments 

As an alternative to real physical experiments, virtual experiments are used throughout 

this study. This is mainly done because of the limited availability of bi-directionally 

corrugated prototype material of consistent properties (with regards to face sheet-to-core layer 

joint quality, thermal treatment and thickness variations).  

Two different virtual experiments are performed to characterize the mechanical properties 

of the sandwich material: (1) uniaxial in-plane tension, and (2) four-point bending. In this 

section, all the virtual experiments are performed on specimens made from the virtually 

manufactured unit cell model of the bi-directionally corrugated sandwich sheet, as described 

in chapter I. We use the same geometric characteristics as in chapter III, corresponding to the 

structure offering the highest shear stiffness-to-weight ratio. Note that for computational 

efficiency, we use coarser meshing for large specimen models (three solid elements through 

the sheet thickness). However, the simulation of a unit cell under uniaxial in-plane tension 

revealed a less than 1% difference load. 

4.1.1 Calibration experiment #1: Uniaxial tension  

This uniaxial in-plane tension experiment along the L-direction is described in Subsection 

3.1.1 of chapter III.  

The computed engineering stress versus engineering strain curve is shown as a black solid 

line in Fig. 4.2 The material response becomes inelastic at an average stress of about 110MPa. 

The stress-strain curve increases monotonically under uniaxial tension until a stress of 

160MPa is reached at a strain of 0.15.    

4.1.2  Calibration experiment #2: Four-point bending 

The same experimental set-up as described in Subsection 2.3.1 of chapter II and 

illustrated by figure 4.1 is used to perform four-point bending experiments. The specimen will 

be positioned such that it is bent around the W-axis. Due to the symmetry of the mechanical 

system, the finite element model comprises only one half of the 100 mm-long specimens and 

the boundary condition 4� � 0 is applied to all nodes located on the W-T-symmetry plane. 

We assume a wide beam (plane strain conditions along the W-direction) and make use of the 

periodicity of the core structure to reduce our computational model to a 1.784 22 wide beam 
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(corresponds to the width of the unit cell) with plane strain boundary conditions along the W-

direction (4
 � 0 for all nodes on L-T-boundary planes).  

All degrees of freedom of the rollers are fixed except for the vertical motion of the upper 

loading roller. A total displacement of 4� � 522 is applied. 

 

The monotonically increasing punch force versus displacement curve is shown in Fig. 4.3 

(black curve), while Fig. 4.3 shows the deformed sandwich beam at various stages of the 

virtual experiment. The superposed color contours shows the equivalent plastic strain in the 

face sheets only. It is worth noting that the sandwich beam exhibits a similar response as 

conventional homogeneous materials: the cross-sections remain flat and perpendicular to the 

beam mid-axis. Unlike in conventional sandwich materials, the shear deformation of the core 

layer is negligible. This “shear-rigid” behavior is a characteristic feature of the bi-

directionally sandwich sheet material and is critical for the successful forming of three-

dimensional structures from flat sheets (Mohr, 2005).  

 

 

 

 

(a)                                                                         (b) 

 

Figure 4.1 : Technical drawing of the experimental set-ups: (a) four-point bending 
experiment, (b) draw bending experiment.  
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4.2.. Material model parameter identification 

4.2.1 Summary of material model parameters 

We recall that the material model is determined through the following parameters and 

functions: 

 

- Two elastic constants, \ and t 

 

- Ten yield surface shape parameters ­<S, US, TS, �S, �*�S ® and ­<A, UA, TA, �A, �*�A ® 
 

- Isotropic-distortional hardening function ���*�� 
 

- Thickness change parameter � 

 

The determination of the material model parameters based on the experimental results for 

uniaxial tension and four-point bending is shown. The constants of the isotropic elasticity 

model are easily obtained from a uniaxial tension experiment. The eight yield surface shape 

parameters on the other hand need to be determined from multi-axial experiments. However, 

it is postulated that these depend on the geometry of the core structure only. In a first 

approximation, it is assumed that these are independent of the choice of the basis material. We 

thus make use of the same parameters as proposed in chapter III, see Tab. 3.1. An inverse 

method is used to identify the distortional hardening functions parameters. 

4.2.2  Elastic constants and thickness change parameter 

The linear elastic range of the average engineering stress versus strain curve for uniaxial 

tension exhibits a modulus \5 � 73 <./ and a Poisson’s ratio t ¯ 0.3 (determined from in-

plane width strain versus in-plane axial strain curve). The same Poisson’s ratio is assumed for 

the core and face sheets. Furthermore, it is assumed that the face sheets remain flat in the 

elastic range and exhibit the basis material modulus \� � 210 <./. Using the rule of 

mixtures,  
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  \W � A°jknn \5 O A°jn \�.     (4.1) 

 

we can compute the homogeneous-equivalent Young’s modulus of the core layer as \W �31.2 <./.  

 

The thickness change parameter can also be determined from the uniaxial experiments. 

We assign the volume change of the sandwich material to the core structure only by plastic 

incompressibility of the face sheets (� � 0 ). A fit to the plot of the volumetric strain for the 

core layer as a function of the plastic work under uniaxial tension leads to � � 0.0008 -./�S (Fig. 4.2b).     

 

 

(a)                                                                   (b) 

 

Figure 4.2 : (a) Stress-strain curves for the uniaxial tensile experiment (in black the “virtual” 
experiment results, in blue the model results) along with (b) the plastic volume change as a 
function of the plastic work density.  
 
 

4.2.3  Isotropic-distortional hardening functions 

The current size of the elastic domain is controlled by the deformation resistances }�S± , �A± � 
and the isotropic-distortional hardening function ���*��. This function needs to be identified 
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for the core structure and the face sheets. Since the plasticity models for the core structure and 

the face sheets describe the respective homogeneous equivalent behavior as built into the 

sandwich material, it is impossible to perform separate experiments for the core and face 

sheets. The hardening functions are thus determined through inverse analysis of the results 

from uniaxial tension and four-point bending instead. For this, it is useful to introduce 

parametric forms of ���*��. Based on the work presented in Chapter III, and keeping in mind 

the condition on the isotropic-distortional hardening function ���*�S � � 0 and ���*�A � � 1, the 

parameters ��6  are defined as functions of the parameters �S6  and we use the form  

 

    ������� � ���¢ ²1 + �S� >
³´�
µ´,j¶
µ´,jq ?· ���   �*� F �*�,�A  
1 + �A� ²> 
³´
µ´,jq ? O 1· ���   �*�,�A I �*�

�         (4.2) 

 

for the face sheets (along with the constraint ����*�,�S � � 0). It is entirely defined by the 

parameter set }�S�, �A��. For the core structure, we propose the parametric form 

 

�W����� � � �SW >
³´�
µ´,h¶
µ´,hq ? ���   �*� F �*�,WA  
1 + �AW ²> 
³´
µ´,hq ? O 1· ���   �*�,WA I �*�

�     (4.3) 

 

to describe the combined isotropic-distortional hardening using the parameters }�SW , �AW�.  
In sum, four parameters need to be identified for each layer of the sandwich structure: 

 

- For the face sheets:  }�S� , �A� , �S� , �A� , �, and  

 

- For the core layer:  }�SW , �AW , �SW , �AW , �  
 

These eight parameters will be identified through an inverse procedure.   
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4.2.4  Composite shell element models 

The execution of the inverse parameter identification procedure requires shell element 

models of the tension and four-point bending experiments. The composite shell element is 

composed of three layers: (1) 0.2mm thick top face sheet, (2) 1.31mm thick core structure, 

and (3) 0.2mm thick bottom face sheet. One thickness integration point is used per face sheets 

and five thickness integration points for the core structure (for numerical integration with the 

Simpson rule). We use a first-order element with reduced integration. In total, the constitutive 

model needs to be evaluated at seven integration points per composite shell element.    

  

4.2.4.1. Shell model for uniaxial tension 

The strain fields are homogeneous prior to necking in a uniaxial tension experiment. The 

analysis of a single element FE mesh is therefore sufficient to simulate the material behavior 

under uniaxial tension. The simulation results for uniaxial tension are reported in terms of the 

section normal engineering stress Σ� as a function of the corresponding engineering strain \�.  

 

4.2.4.2. Shell element model for four-point bending 

A 50mm-long and 1mm-wide composite shell model is used to simulate the four-point 

bending experiment. As for the virtual experiments, the support points are represented as 

cylindrical rigid surfaces. The contact between the rigid support points the respective shell 

upper and lower surfaces is modeled as kinematic contact with a friction coefficient of 0.1. To 

improve the modeling of the effect of the support point curvature, 5.5mm-long areas 

underneath the rigid cylinders are meshed with 0.2mm-wide elements while the rest of the 

composite shell is meshed with 2mm-wide elements. The results are reported in terms of the 

sandwich normal force per unit width =� as a function of the upper support point 

displacement 4�.    
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Figure 4.3 : (a) Force per unit width-displacement curves for the four-point bending 
experiment (in black the “virtual” experiment results, in blue the model results) along with (b) 
sequence of the “virtual” experiment.  
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4.2.5  Inverse model parameter identification 

The inverse identification of the model parameters }�S� , �A� , �S�, �A�� and }�SW , �AW , �SW , �AW� 
is formulated as a minimization problem. For this, we define a cost function Γ to quantify the 

difference between the shell element model predictions and the experimental results, 

 

Γ � 10° º° + 10» º»                                                             �4.4� 

 

with the residuals for uniaxial tension,  

 

º° � ∑ >½¾¿À�vÁÂµ¿ �½ÃÄÅ�vÁÂµ¿ � O 1?A,°6ÆS                                                 �4.5�         

 

and for four-point bending,  

 

º» � ∑ >Ç¾¿À�7ÁÂµ¿ �ÇÃÄÅ�7ÁÂµ¿ � O 1?A,»6ÆS                                                 �4.6�         

 

The subscripts “exp” and “sim” are used to differentiate between experimental and simulation 

results. A total of 0° � 200 and 0» � 223 data points has been used to represent the 

respective experimental curves.   

 

 Èª È« ¬ª ¬« 

 MPa MPa - - 

Core 107.45 113.9 1.056 0.264 

Face 413.54 495.75 8.960 0.087 

 
Table 4.1 : Calibrated hardening parameters. 
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A  Nelder-Mead optimization algorithm (Matlab, 2010) is employed to perform the 

optimization without calculating the gradient of the cost function in the parameter space. The 

final set of parameters after 430 optimization runs is reported in Tab. 4.1. The corresponding 

error is Γ � 0.0091. A plot of the corresponding isotropic-distortional hardening functions for 

the core structure as well as for the face sheet is shown in Fig. 4.4.  

 

 

 

(a)                                                                   (b) 

 
Figure 4.4 : Distortional hardenings function as a function of the plastic work per initial 
volume for the core structure (a) and the face sheet (b). Note that the curves start near the 
origin (0,0) since the plastic work densities �*�S  are almost zero (see Table 3.1).  

 

 

The blue line in Fig. 4.2 depicts the results for the composite shell model while the black 

line shows the corresponding result from the virtual experiment. Note the good overall 

agreement of the stress-strain curve with a maximum difference of 5% for \� � 0.15 . The 

comparison of the results for four-point bending is shown in Fig. 4.3. We observe an excellent 

overall agreement of the force-displacement curves with a maximum difference of 1.5% for 4� � 522. After an initial linear macroscopic elastic response up to 4� � 122, the load 

per unit width rises monotonically. 
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4.3. Structural validation: draw bending 

Draw bending is chosen as basic forming experiment to validate the composite shell 

model at the structural level. As compared to more complex deep drawing operations, this 

particular forming experiment has the advantage that virtual experiments on detailed finite 

element models can still be performed without access to super computers. Further validations 

for more complex geometries need to be performed in the future once prototype sandwich 

sheets become available.  

4.3.1  Virtual experiment  

A 70mm-long sandwich sheet specimen of a total thickness of U � 1.7122 is used for 

draw bending. Figure 4.1b shows a picture of the experimental set up. The specimen is 

supported between a U-shaped die and a passive back holder. The black holder is positioned 

at a distance of 0.05U above the sheet. The edge radii � of the die and the 27mm-wide punch 

are the same. The validation experiments are performed for two different tool geometries, 

 

1.  � � 12 22 and  Δ � 2U  

 

2.  � � 13 22 and Δ � 3.5U  

 

with  Δ denoting the distance between the punch and the vertical die wall. All degrees of 

freedom of the rigid surfaces are fixed except for the vertical motion of the punch. Explicit 

time integration is used because of the size of the computational model (>300000 elements) 

and the modeling of contact. The contact between the tool and the sandwich surfaces is 

modeled using a kinematic contact model with a friction coefficient of 0.1. A total 

displacement of 4� � 4022 is applied to the punch.  

Figure 4.5b presents the deformed configurations at various stages throughout the 

experiment for the first tool configuration. Initially, the sandwich sheet is bent around the 

punch and the die. Traction of the bottom face sheet and compression of the top face sheet 

under the punch and traction of the top face sheet and compression of the bottom face sheet 

above the die are dominant deformation modes. Once the sandwich sheet has taken the shape 

of the punch, the draw bending experiment enters a steady-state regime as the sandwich 

structure is consecutively bent and unbent. The comparison of the top and bottom plots in 
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Fig.4.5a reveal that a lower force is required for the draw bending when using the second tool 

configuration.  

 

 

 

(a)                                                                   (b) 

 

Figure 4.5 : (a) Force per unit width-displacement curves for the draw bending experiments 
(in black the “virtual” experiment results, in blue the model results) along with (b) sequence 
of the first “virtual” experiment.  
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4.3.2 Composite shell model predictions and discussion 

The same boundary conditions as in the virtual experiments are used for the finite element 

simulation with composite shell elements of an edge length of 122. The blue lines in 

Fig.4.5a show the results for the composite shell model while the black lines show the 

corresponding result from the virtual experiment. A very good agreement of the force-

displacement curves is observed for both tool geometries.  

This good agreement is seen as a first promising step towards the modeling of the forming 

of sandwich sheet materials with shell elements. This talk is very challenging from the point 

of view of constitutive modeling due to the variety and complexity of deformation 

mechanisms at the microstructural level. The evolution of the microstructure is taken into 

account through a phenomenological combined isotropic-distortional hardening model. In the 

present chapter, we assume the same basic yield surface shape as that for a similar sandwich 

material which has been characterized through multi-axial experiments in the previous 

Chapter. The conduct of virtual multi-axial experiments appears to be a necessary step in 

identifying a material model for sandwich sheet materials with constructed core structures 

even if the real material is available. In the present study, we avoided the confrontation with 

real experimental data due to the unavailability of suitable samples. However, once “real” 

material becomes available, a two-step identification procedure is recommended: 

 

1. Multi-axial virtual experiments to determine all material model parameters 

including those describing the shape of the yield surface. Note that the virtual 

experiments will only be able to represent the real material behavior in an 

approximate manner.  

 

2. Uniaxial and four-point bending experiments on the real material and subsequent 

determination of the material model parameters as described in this paper. The 

results from the previous step will provide the yield surface shape parameters, while 

all other parameters will serve as starting values for the inverse procedure.   

 

Another important issue in modeling the forming of sandwich sheets is the prediction of 

their forming limits. In addition to conventional sheet metal forming limits such as 

pronounced necking and fracture, sandwich sheets are prone to delamination failure and local 
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wrinkling (dimpling) of a compressed face sheet. However, it is worth noting that a successful 

draw bending experiment could be performed on a small prototype strip (Fig.3 and Fig. 4.6) 

using a similar experimental set-up as that assumed above.    

 

 

 

 

 

 

Figure 4.6 : Draw bending of a prototype sandwich sheet demonstrating the formability of the 
sandwich sheet material. 

 

4.4.  Conclusions 

The present chapter discusses the identification of the parameters of the isotropic-

distortional hardening model that describes the elasto-plastic deformation response of the bi-

directionally corrugated sandwich sheet material. In a first approximation, we consider that 

the yield surface shape parameters depend on the geometry of the core structure only and are 

independent of the choice of the basis material. The focus is made on calibrating the 

distortional hardening parameters. An inverse method is used to identify the parameters where 

uniaxial tensile and four-point bending virtual experiments are compared to a composite shell 

model. The resulting set of parameters is validated thanks to draw-bending experiments.  
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Conclusion 

 

The focus of this thesis is the investigation of the mechanical behavior of a newly-

developed all-metal sandwich sheet material for forming applications. The structure is 

composed of two flat face sheets and two bi-directionally corrugated core layers. In order to 

study its behavior we make use of virtual experiments using a detailed finite element model of 

the unit cell of the periodic material microstructure. This approach allows us to gain an insight 

into the behavior of an idealized material which is free from imperfection.  

The first part of this thesis deals with the design of an optimized core structure that offers 

the highest shear stiffness-to-weight ratio. A parametric study is performed where the 

computational model of the sandwich material is used to investigate the effect of the stamping 

tool geometry on the effective transverse shear modulus of the resulting sandwich core 

structure. It is found that the highest shear stiffness per unit weight is provided by core 

structures that feature (1) a small dome width to dome height ratio, and (2) a large bonding 

land diameter to dome width ratio. The results also reveal that the transverse shear stiffness of 

the bi-directionally corrugated core structure is up to 30% lower than that of a hexagonal 

honeycomb of the same density (for relative densities ranging from 0.2 to 0.35). However, 

unlike for hexagonal honeycombs, the shear stiffness is approximately the same for both in-

plane directions. 

The plastic behavior of the “optimal” sandwich structure is investigated and special 

characteristics of the material are outlined. It is found that the core structure is used very 

efficiently, contributing up to 43% of the effective yield strength of the sandwich sheet 

material for in-plane loading; furthermore a different behavior from that of traditional cellular 

materials is found for its out-of-plane compressive response. Based on the results from virtual 

experiments for biaxial tension, a phenomenological constitutive model is proposed. The 

experimental data are used to determine the macroscopic yield surfaces based on an equal 

plastic work definition for both the core structure and the face sheets. The severe changes of 

the microstructural geometry become apparent as distortional hardening at the macroscopic 

level. A new isotropic-distortional hardening modeling framework based on a linear 

combination of two distinct yield functions is introduced to provide a first approximation of 

the stress-strain response of the sandwich structure for radial loading paths. 
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In addition, a method for identifying the parameters of the isotropic-distortional 

hardening model is proposed. While virtual multi-axial experiments are recommended to 

determine the exact shape of the yield surface, the elastic properties and the isotropic-

distortional hardening functions can be determined based on the results from uniaxial tension 

and four-point bending experiments. A gradient-free optimization method is employed to 

identify the material model parameters through inverse analysis. Finally, detailed finite 

element simulations of a draw bending experiment are carried out to validate the composite 

shell element model at the structural level.  

 

  



87 

 

Future work 

 

 

The present thesis work is a first step towards the modeling of the plasticity of metallic 

sandwich sheet materials. However, in order to ensure the validity of the developed model, 

additional experimental and numerical studies are needed.   

It is recommended to characterize the limits of the applicability of the proposed 

constitutive model in future work. For instance, the hypothesis of isotropic hardening needs to 

be validated for very large strains.  The model also needs to be validated for complex process 

experiments as it has been developed for radial loading paths only. As highlighted in Chapter 

III of this thesis, a more elaborate flow rule and the introduction of additional state variables 

would allow for a more precise description of the microstructural evolution. The confrontation 

of the model predictions with experimental results on real prototype sheets is also an 

important task that needs to be addressed in the future. 

Apart from validating the plasticity model further, future research needs to investigate the 

forming limits of metallic sandwich sheet materials. Once the prototype material becomes 

available in the form of large sheets, Nakazima or Hasek tests could be performed. It will be 

of particular interest to identify sandwich sheet specific damage mechanisms (such as face 

sheet dimpling and delamination) and formulate the corresponding forming limit diagrams.  
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